
ÌÅÈÏÄÏÉ ÔÏÐÉÊÇÓ ÊÁÉ ÊÁÈÏËÉÊÇÓ
ÂÅËÔÉÓÔÏÐÏÉÇÓÇÓ

Ç ÄÉÄÁÊÔÏÑÉÊÇ ÄÉÁÔÑÉÂÇ

ÕðïâÜëëåôáé óôçí

ïñéóèåßóá áðü ôç ÃåíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò

ôïõ ÔìÞìáôïò ÐëçñïöïñéêÞò

ÅîåôáóôéêÞ ÅðéôñïðÞ

áðü ôïí

ÊÙÍÓÔÁÍÔIÍÏ ÂOÃÊËÇ

ùò ìÝñïò ôùí Õðï÷ñåþóåþí ôïõ ãéá ôç ëÞøç

ÄÉÄÁÊÔÏÑÉÊÏÕ ÄÉÐËÙÌÁÔÏÓ ÓÔÇÍ ÐËÇÑÏÖÏÑÉÊÇ

Éïýíéïò 2010

Thesis Committee

Isaac E. Lagaris (Supervisor), Professor, Department of Computer Sci-

ence, University of Ioannina

Nikolaos P. Galatsanos, Professor Department of Electrical and Computer

Engineering, University of Patras

Aristeidhs Lykas, Associate Professor, Department of Computer Science,

University of Ioannina

Thesis Approve Committee

Isaac E. Lagaris, Professor, Department of Computer Science, University

of Ioannina

Nikolaos P. Galatsanos, Professor, Department of Electrical and Com-

puter Engineering, University of Patras

Ioannis Demetropoulos, Professor, Department of Informatics and

Telecommunications Engineering, University of Western Macedonia

Charalambos Mpotsaris, Department of Regional Economic Development

,University of Central Greece

Aristeidhs Lykas, Associate Professor, Department of Computer Science,

University of Ioannina

Konstantinos E. Parsopoulos, Assistant Professor, Department of Com-

puter Science, University of Ioannina

Dimitrios Papageorgiou, Assistant Professor, Department of Materials Sci-

ence and Engineering, University of Ioannina

i

Åõ÷áñéóôßåò

Èá Þèåëá íá áðåõèýíù ôéò åõ÷áñéóôßåò ìïõ óôïí åðéâëÝðïíôá êáèçãçôÞ ìïõ ê. ÉóáÜê

ËáãáñÞ ãéá ôçí ðïëýôéìç âïÞèåéá ôïõ ãéá ôçí ðåñÜôùóç ôçò ðáñïýóáò åñãáóßáò êáé ãéá ôç

óõíå÷Þ êáé áäéÜêïðç óôÞñéîÞ ôïõ êáôÜ ôç äéÜñêåéá ôùí óðïõäþí ìïõ.

Èá Þèåëá åðßóçò íá åõ÷áñéóôÞóù ôïõò óõíåñãÜôåò óå üëç ôçí ðïñåßá ôïõ äéäáêôïñéêïý

ìïõ, ÄçìÞôñç Ðáðáãåùñãßïõ, Ðáíáãéþôç ×áôæçäïýêá êáé Êùíóôáíôßíï Ðáñóüðïõëï.

Åðßóçò åõ÷áñéóôþ áðü ôçí êáñäéÜ ìïõ ôïõò ðïëý êáëïýò ìïõ ößëïõò ×Üñç Ðáðáäüðïõëï,

Ôóßðïõñá ÌÜñêï (êïõìðÜñïò), Ãéáííßêïõ Áíáóôáóßá (êïõìðÜñá), ÊáæéÜííç Óðýñï (ìÝãéóôïò

Öõóéêüò 1), Ëéüíôï ÉùÜííç (ìÝãéóôïò Öõóéêüò 2), Áìïéñüðïõëï Êùí/íï (ìÝãéóôïò Öõóéêüò

3), ×áóÜíç Âáóßëç (Á' Ìç÷áíéêü).

Åõ÷áñéóôþ ôïõò ãïíåßò ìïõ ãéá ôçí õëéêÞ êáé çèéêÞ óõìðáñÜóôáóÞ ôïõò êáôÜ ôç

äéÜñêåéá ôùí óðïõäþí ìïõ, ôïí áäåñöü ìïõ ðïõ ìå áíÝ÷åôáé ôüóá ÷ñüíéá.

ÔÝëïò, åõ÷áñéóôþ ôçí Ðçíåëüðç, ðïõ ÷ùñßò ôçí õðïìïíÞ ôçò, ôçí õðïóôÞñéîç ôçò êáé

ôçí áãÜðç ôçò äåí èá åß÷á åðéôý÷åé ôïõò óôü÷ïõò ìïõ.

Êùíóôáíôßíïò Âüãêëçò

ÉùÜííéíá, Éïýëéïò 2010

Extended Abstract

Costas Voglis, PhD Computer Science Department, University of Ioannina Greece. June,

2010. Methods for Local and Global Optimization. Thesis Supervisor: Isaac E. Lagaris

In this thesis new methods for local and global optimization are presented their be-

havior is analyzed and experimentally tested. Also a broad review of standard techniques

for local and global optimization is given.

The issues presented in this thesis vary from one dimensional optimization to stochastic

methods for global optimization applied in problems in many dimensions. Each topic

described, is presented in clear algorithmic form and compared to standard competitive

methods.

In the topic of local optimization four new techniques are presented and one modi�ca-

tion of an existing method. Concerning global optimization a stochastic global framework

consisting of four steps is presented. For each step in this framework the contribution of

this thesis is exposed.

This thesis is divided in two main parts: In the �rst part the research on local op-

timization is presented and in the second part the results for the global optimization

counterpart.

Part 1: Local Optimization

Chapter 2

In Chapter 2 a complete bibliographic survey of the most important methods in local

optimization is presented.

Chapter 3

In this chapter, an algorithm for solving a quadratic programming problem with positive

de�nite Hessian and bound constraints, that employs a Lagrange multiplier approach is

presented. The quadratic programming problem with simple bounds is stated as:

q(x) = min
x

1

2
xTBx+ xTd; (1)

subject to: ai ≤ xi ≤ bi;∀i ∈ I = {1; 2; · · · ; n}

where x; d ∈ Rn and B is a symmetric, positive de�nite n × n matrix. The proposed

method falls in the category of active set techniques. The algorithm, at each iteration,

modi�es the minimization parameters both in the primal space and in the dual space

(Lagrange multipliers). The method may be pro�tably used on a number of problems from

the �elds of Physics, Chemistry, Computer Science and Engineering. Comparative results

of numerical experiments are reported demonstrating the advantages of the proposed

approach.

The algorithm presented is an infeasible active set algorithm, which generates a �nite

number of iterations that are not necessarily descent. In each step the �rst order opti-

mality condition along with the complementarity constraint are maintained, until primal

and dual feasibility hold. Two closely related methods in the literature are the Projected

Newton method and the infeasible method of Kunisch and Rendl that treats only upper

bounds.

Chapter 4

A trust region algorithm for unconstrained and bound constrained nonlinear optimization

problems is presented in Chapter 4. The trust region is a rectangular hyperbox in contrast

with the commonly used hyperellipsoid. The resulting quadratic subproblems are solved

approximately by an adaptation of Powell's dogleg method for rectangular trust regions

and a the novel quadratic programming algorithm presented in Chapter 3. The problem

we are concerned is

min
x
f(x);

subject to: ai ≤ xi ≤ bi;∀i ∈ I = {1; 2; · · · ; n}

where x; a; b ∈ Rn.

The method developed that adopts a rectangular shape for the trust region. This

geometry has the obvious advantage of the linearity of the subproblem constraints and

in addition allows e�ortless adaptation to bound constrained problems. The emerging

quadratic subproblems are of the sort:

min
s
m(s) =

1

2
sTBs+ sTg subject to: �i ≤ si ≤ �i (2)

a modi�cation of Powell's dogleg technique is developed to obtain an approximate solution

and an exact technique based on quadratic algorithm in Chapter 3.

We embed this scheme in a quasi{Newton framework that uses a positive de�nite

approximation to the Hessian matrix. This renders the problem in Eq.4.1 a strictly convex

one, and hence the dogleg technique and the convex quadratic solver are applicable.

Chapter 5

In this Chapter a local search method suitable for supervised training of feed-forward

arti�cial neural networks, with one hidden layer and sigmoidal activation functions is

iv

developed. The resulting Sum-of-Squares objective function is minimized using a hybrid

technique that switches between the Gauss{Newton (GN) approach in the small residual

case, and Newton's method in case where large residuals are detected. This is done in the

spirit of Fletcher and Xu where instead of Newton's method, a variable metric method

(BFGS) was preferred in order to avoid the calculation of the Hessian matrix, which in

the general case is both costly and cumbersome. In the special case that is considered

here, the Hessian matrix can be expressed analytically and calculated e�ciently by taking

advantage of the properties of the sigmoidal activation function and its derivatives.

The Sum-of-Squares problem is stated as

min
x
F (x) =

m∑
i=1

f2
i (x);

subject to: ai ≤ xi ≤ bi;∀i ∈ I = {1; 2; · · · ; n}

where fi : R
n → R i = 1; : : : ;m continuous and di�erentiable functions and x; a; b ∈ Rn.

In comparing GN and Newton methods, the GN is generally preferred for zero residual

problem (ZRP) that is when r(x∗) = 0, whereas Newton-like methods are preferred for

large residual problems (LRP) or when Jk looses rank.

Usually is not known beforehand whether a problem will turn out to have small or large

residuals at the solution. It seems reasonable, therefore, to consider hybrid algorithms,

which would behave like Gauss-Newton if the residuals turn out to be small (and take

advantage of the cost savings associated with these methods) but switch to Newton like

steps if the residuals at the solution are large (with the cost of approximating or computing

second order derivatives).

Chapter 6

In Chapter 6 a software library for numerically estimating �rst and second order partial

derivatives of a function by �nite di�erencing is presented. Various truncation schemes

are o�ered resulting in corresponding formulas that are accurate to order O(h), O(h2),

and O(h4), h being the di�erencing step. The derivatives are calculated via forward,

backward and central di�erences. Care has been taken that only feasible points are

used in the case where bound constraints are imposed on the variables. The Hessian

may be approximated either from function or from gradient values. There are three

versions of the software: a sequential version, an OpenMP version for shared memory

architectures and an MPI version for distributed systems (clusters). The parallel versions

exploit the multiprocessing capability o�ered by computer clusters, as well as modern

multicore systems and due to the independent character of the derivative computation,

the speed up scales almost linearly with the number of available processors/cores.

Part 2: Global Optimization

In the second part of this dissertation, algorithms for a certain class of stochastic global

optimization are presented. Stochastic two-phase clustering and sampling techniques are

v

the main concern of this thesis. These algorithms consist of two phases: a global phase

where the search space is explored using a sampling algorithms and a local phase realized

by a local optimization algorithm. In this thesis the general global optimization problem

is tackled, that can be formulated as:

Find all minima f(x);

subject to: ai ≤ xi ≤ bi;∀i ∈ I = {1; 2; · · · ; n}

Obviously, if all minima are retrieved the global minimum is found to. This problem is

presented in bibliography [24, 33, 36, 77, 86, 156, 163].

Below a general algorithm of a stochastic two-phase clustering algorithm is presented.

General Algorithm 1: Stochastic Two-Phase Clustering

Step 1. Sample search space.

Step 2. Cluster sample points int groups that correspond to the same minimum.

Step 3. From representative points of the cluster start a local search.

Step 4. Check for termination.

In this thesis an alternative methodology to the General Algorithm 1 is proposed.

Instead of applying clustering to identify already found local minima, one can create a

suitable adaptive sampling distribution that will not take samples around already found

local minima. The general algorithm for adaptive sampling distribution creation in the

global optimization framework is given bellow:

General Algorithm 2: Stochastic Two-Phase Distribution Driven

Step 1. Sample from the distribution.

Step 2. Start a local search from the sampled point.

Step 3. Update distribution parameters.

Step 4. Check for termination.

In global optimization bibliography many contributions have been made for every

step of General Algorithm 1. The ideas described in this thesis, follow the same line of

research. Considering steps 1 and 3 of the General Algorithm 2, two alternative sampling

techniques are described in Chapters 8 and 9 respectively. In Chapter 10 a clustering

algorithm is presented, suitable for Step 2 of General Algorithm 1. In Chapter 11 a local

search method appropriate for both general algorithms is presented and �nally in Chapter

12 a new termination criterion is introduced.

vi

Chapter 7

In this Chapter an introduction to stochastic, two-phase optimization with clustering is

performed and a detailed bibliographic review is given.

Chapter 8

A stochastic global optimization method based on Multistart is presented. In this, the

local search is conditionally applied with a probability that takes in account the topology

of the objective function at the detail o�ered by the current status of exploration. As a

result, the number of unnecessary local searches is drastically limited, yielding an e�cient

method. Results of its application on a set of common test functions are reported, along

with a performance comparison against other established methods of similar nature.

The method is based on the de�nition of the region of attraction of the local minimum

and makes use of an maximum attraction radius in order to de�ne this region. By making

use a probabilistic model around each minimum recognizing the region of attraction of

various shapes and sizes is achieved. When a sample point is detected inside a region of

attraction, a local search is not performed. On the other size, when a sample point is

considered outside all regions of attraction then a local search is performed. The proposed

method can be also seen as a variation of General Algorithm 2, where the sampling is

de�ned implicitly.

Chapter 9

In this chapter a novel method for selecting candidate starting points for stochastic two-

phase algorithms, is proposed. The sampling method takes into account previous local

searches. The information revealed from the local search forms a normal distribution

around the most recently found local minimum. This is a direct way to implement General

Algorithm 2, presented in introduction. The �nal sampling distribution is a weighted sum

of all normal distributions created around the retrieved local minima.

Chapter 10

In Chapter 10 a new approach for clustering in stochastic global optimization framework

is presented. The proposed algorithm attempts to cluster sample points around minima

using the global k-means algorithm enhanced with spectral information. The major con-

tribution is a novel way of introducing gradient information into the clustering problem.

Gradient information is proven to be very helpful in de�ning clusters around minima. Af-

ter the cluster creation step the minima are retrieved using a local optimization method

starting from cluster centers.

The proposed approach can be described in brief in Algorithm 0.1 :

vii

Algorithm 0.1 The proposed clustering method

S1 Sample points in the region of interest : For this step we use two alternatives:

S2 Concentrate the sample to obtain groups around the local minima: Displace sample

points by using a fraction of the negative gradient or few steps of a local optimizer.

S3 Recognize these groups by the aid of a clustering method : In general out clustering

method consists on two main steps (which will be thoroughly analyzed later):

(a) Estimate the number of clusters k formed by the concentrated sampled points

(b) Apply global k-means (or a proposed variation) seeking k clusters.

S4 Stopping condition: Any stopping criterion from the bibliography can be used.

Chapter 11

Stochastic methods based on multistart, that employ a clustering scheme to separate

di�erent regions of attractions have proven to be quite successful. The research in this

direction was pioneered by Rinnoy Kan and its group in a series of articles. Various

authors followed up this line, see for example Torn and Viitanen, Schoen and Locatelli,

Ali and Storey and a host of methods and software implementations have appeared in

the literature. A common feature of these methods is the use of a local search (LS), i.e.

a procedure for locating a local minimum. The characteristics of this procedure play an

important role as far as the performance and the e�ectiveness of the global method is

concerned. If by x∗ = L(x) we denote that a local search started at point x, will end up

�nding the local minimizer x∗, then the region of attraction of a minimizer x∗ may be

de�ned as the set A(L; x∗) = {xi; x∗ = L(xi)} and depends in addition to the position of

the minimum x∗, on the LS procedure.

If x∗ and y∗ are distinct local minima A(L; x) ∩ A(L; y) ̸= Ø provided that the local

search is deterministic. Stochastic LS procedures create overlapping regions of attraction

a fact that in the framework is rather undesirable. Also regions of attraction may be

contiguous or not. Evidently a non{contiguous region can not be described by a single

cluster, and hence the existence of such regions may inuence the performance of the

method negatively. So a proper LF for clustering should be such that the regions of

attraction that it creates are contiguous. Vrahatis et al have provided a tool for visualizing

the regions of attraction. An interesting fact is that all of the most successful LS search

create disjoint regions. Hence a LS with contiguous regions of attraction would be very

useful for clustering methods.

viii

Chapter 12

For a broad class of global optimization problems, it can never be veri�ed in �nite time that

the global optimum is identi�ed with certainty. Therefore a need emerges for stopping

rules which decide if the expected bene�t of further searching outweighs the required

computational e�ort.

Stopping rules have to decide for the path between the Scylla of computational e�-

ciency and the Charybdis of the completeness warranty. In other words their objective

is to collect the complete set of the existent local minima with the least computational

e�ort. The ideal case would be to stop the search as soon as all the minima have been

discovered. Since this is not possible, further searching is necessary to ensure that there

are no left{out minima, a fact that inevitably leads to a compromise. So the stopping

rules, depending on the speci�c problem at hand, negotiate either for e�ciency or for a

degree of completeness.

In this Chapter a new stopping rule is described that can be applied in every multistart-

like global optimization framework. The basic assumption is that one can calculate theo-

retically the relation between the number of recovered minima m and the number of local

searches k for a problem that has w distinct local minima. Also suppose that this is a

relation of the sort

m = N ≡ N (k)(w); N → w as k →∞ (3)

Imagine now that one applies multistart-based algorithm and plots the number of recov-

ered minima versus the number of local searches.

One then at the k-th local search, may compare the experimental curve with the

theoretical one and �nd which w is the one that produces the best match. If this is

possible then at k-th local search we will now the number of expected local minima and

hence a very e�cient stopping rule may emerge.

The stopping rule proposed is based on the assumption that The probability of locating

a local minimum, among the w distinct ones, by applying a local search is p = 1
w
.

ix

Ðåñßëçøç

Âüãêëçò Êùíóôáíôßíïò ôïõ ÁëåîÜíäñïõ êáé ôçò Åõöñïóýíçò, PhD ÔìÞìá ÐëçñïöïñéêÞò,

ÐáíåðéóôÞìéï Éùáííßíùí, Éïýíéïò, 2010. ÌÝèïäïé ÔïðéêÞò êáé ÊáèïëéêÞò Âåëñéóôïðïßçóçò.

ÅðéâëÝðïíôáò: ÉóáÜê Ç. ËáãáñÞò

Óôçí ðáñïýóá äéáôñéâÞ ðÝñáí ìéáò óýíôïìçò âéâëéïãñáöéêÞò áíáóêüðçóçò ôùí ìåèüäùí

áé÷ìÞò ãéá ôï ðñüâëçìá ôçò ôïðéêÞò êáé êáèïëéêÞò âåëôéóôïðïßçóçò (åëá÷éóôïðïßçóçò),

ðáñïõóéÜæïíôáé íÝïé áëãüñéèìïé, ôüóï ãéá ôïðéêÞ üóï êáé ãéá êáèïëéêÞ âåëôéóôïðïßçóç,

áíáëýåôáé ç óõìðåñéöïñÜ ôïõò êáé åîåôÜæåôáé ðåéñáìáôéêÜ ç áðüäïóÞ ôïõò.

Ôï åýñïò èåìÜôùí ôçò ðáñïýóáò äéáôñéâÞò îåêéíÜ áðü ìÝèïäï ìïíïäéÜóôáôçò ôïðéêÞò

åëá÷éóôïðïßçóçò êáé öôÜíåé óå óôï÷áóôéêÝò ìåèüäïõò ãéá ôç ëýóç ôïõ ðñïâëÞìáôïò ôïõ

êáèïëéêïý åëá÷ßóôïõ ãéá óõíáñôÞóåéò ðïëëþí ìåôáâëçôþí. Ôï êÜèå èÝìá ðïõ ðåñéãñÜöåôáé

óõíïäåýåôáé áðü áíáëõôéêÝò áíáöïñÝò óôç âéâëéïãñáößá, ðáñïõóéÜæåôáé óå áëãïñéèìéêÞ

ìïñöÞ êáé óõãêñßíåôáé ìå áíôßóôïé÷åò ìåèüäïõò.

¼óï áöïñÜ ôçí ôïðéêÞ âåëôéóôïðïßçóç ðáñïõóéÜæïíôáé óå áõôÞ ôç äéáôñéâÞ ôÝóóåñåéò

íÝåò ôå÷íéêÝò êáé ìßá ôñïðïðïßçóç õðÜñ÷ïõóáò ôå÷íéêÞò. Ìéá áðü ôéò íÝåò ìåèüäïõò

ðïõ áöïñÜ ìïíïäéÜóôáôç ôïðéêÞ åëá÷éóôïðïßçóç èá ìåëåôçèåß óôï ðëáßóéï ôçò ÊáèïëéêÞò

Åëá÷éóôïðïßçóçò, áöïý áíáðôý÷èçêå ãéá íá ëýóåé ðñïâëÞìáôá óôï ãåíéêü ðëáßóéï ÊáèïëéêÞò

Åëá÷éóôïðïßçóçò.

Ç ðáñïýóá äéáôñéâÞ ÷ùñßæåôáé óå äõï ôìÞìáôá: Óôï ðñþôï ôìÞìá ðáñïõóéÜæïõìå ôá

åõñÞìáôá ðïõ áöïñïýí ôïðéêÞ åëá÷éóôïðïßçóç êáé óôï äåýôåñï, ìåèïäïëïãßá ãéá êáèïëéêÞ

åëá÷éóôïðïßçóç. Áêïëïõèåß óõíïðôéêÞ ðåñéãñáöÞ ôïõ êÜèå ôìÞìáôïò.

1o TìÞìá: ÔïðéêÞ Åëá÷éóôïðïßçóç

2ï ÊåöÜëáéï

Óôï äåýôåñï ÊåöÜëáéï ðáñïõóéÜæïõìå ìéá åêôåíÞ âéâëéïãñáöéêÞ áíáöïñÜ óôéò ðéï óçìáíôéêÝò

ôå÷íéêÝò ôïðéêÞò åëá÷éóôïðïßçóçò, îåêéíþíôáò áðü ôïí ïñéóìü ôïõ åëá÷ßóôïõ, ôéò éêáíÝò

êáé áíáãáßåò óõíèÞêåò ãéá ôçí ýðáñîç ôïõ êáé ðñï÷ùñüíôáò óå áëãïñßèìïõò áíÜëïãá ìå ôçí

ðëçñïöïñßá ðïõ äéáèÝôïõìå ãéá ôçí áíôéêåéìåíéêÞ óõíÜñôçóç. ÄéáëÝîáìå ôçí ôáîéíüìçóç

ôùí ìåèüäùí êáô' áñ÷Þí óå ìïíïäéÜóôáôåò êáé ðïëõäéÜóôáôåò êáé êáôÜ äåýôåñïí óå ìåèüäïõò

ðïõ äåí ÷ñçóéìïðïéïýí ðáñáãþãïõò, óå ìåèüäïõò ðïõ ÷ñçóéìïðïéïýí 1ç ðáñÜãùãï êáé óå

ìåèüäïõò ðïõ ÷ñçóéìïðïéïýí ðñþôåò êáé äåýôåñåò ðáñáãþãïõò. Ç óýíïøç áõôÞ ðñïóðáèåß

íá ïñßóåé ôéò âÜóåéò ðÜíù óôéò ïðïßåò óôçñß÷ôçêå ç Ýñåõíá êáé íá åðéäåßîåé ôá óçìåßá ðïõ

åñåõíÞèçêáí êáé áíáðôý÷èçêáí ðåñáéôÝñù.

3ï ÊåöÜëáéï

Óôï ÊåöÜëáéï 3, ðáñïõóéÜæåôáé ìéá íÝá ôå÷íéêÞ ãéá ôçí åðßëõóç ôïõ ðñïâëÞìáôïò ôïõ

êõñôïý ôåôñáãùíéêïý ðñïãñáììáôéóìïý (convex quadratic programming) ìå áðëÜ üñéá

(bound constraints). Ôï ðñüâëçìá ðïõ ëýíåôáé ðåñéãñÜöåôáé ùò:

q(x) = min
x

1

2
xTBx+ xTd;

õðü ôïí ðåñéïñéóìü: ai ≤ xi ≤ bi; ∀i ∈ I = {1; 2; · · · ; n}

üðïõ x; d ∈ Rn êáé B óõììåôñéêüò, èåôéêÜ ïñéóìÝíïò n × n ðßíáêáò. Ôï óõãêåêñéìÝíï

ðñüâëçìá, áí êáé áñêåôÜ åîåéäéêåõìÝíï, âñßóêåé ðëçèþñá åöáñìïãþí óå ðñïâëÞìáôá êáôáóêåõþí,

ìç÷áíéêÞò, âéïéáôñéêÞò, õðïëïãéóôéêÞò öõóéêÞò áêüìá êáé ôáîéíüìçóçò äåäïìÝíùí óôá

ðëáßóéá ôçò õðïëïãéóôéêÞò íïçìïóýíçò. ¸íáò áêüìá âáóéêüò ëüãïò ðïõ ìáò ïäÞãçóå

íá áó÷ïëçèïýìå ìå ôï óõãêåêñéìÝíï ðñüâëçìá åßíáé üôé ðñïêýðôåé óáí õðïðñüâëçìá óå

ìåèüäïõò ôïðéêÞò åëá÷éóôïðïßçóçò ðïõ ÷ñçóéìïðïéïýí ðåñéï÷Ýò åìðéóôïóýíçò. ÔÝôïéåò

ìÝèïäïé, ðïõ èá ðáñïõóéáóôïýí óôï åðüìåíï ÊåöÜëáéï ôçò äéáôñéâÞò, áðáéôïýí óå êÜèå

åðáíÜëçøÞ ôïõò ôçí åðßëõóç åíüò ðñïâëÞìáôïò êõñôïý ôåôñáãùíéêïý ðñïãñáììáôéóìïý ìå

áðëïýò ðåñéïñéóìïýò óôéò ìåôáâëçôÝò.

Ç åðßëõóç áêïëïõèåß ôçí ìåèïäïëïãßá ôùí ðïëëáðëáóéáóôþí Lagrange êáé éêáíïðïéåß

ôéò óõíèÞêåò Kunh-Tucker ãéá ôçí ýðáñîç åëá÷ßóôïõ.

Óå êÜèå åðáíÜëçøç ïñßæïíôáé ôñßá óýíïëá äåéêôþí, êáé áíáôßèåíôáé ôéìÝò ôüóï óôéò

ðáñáìÝôñïõò x üóï êáé óôïõò ðïëëáðëáóéáóôÝò Lagrange �; � áíÜëïãá ìå ôï óýíïëï ðïõ

áíÞêïõí. Ìå ôïí ôñüðï áõôü åðéôõã÷Üíïõìå íá ëýíïõìå óå êÜèå åðáíÜëçøç Ýíá ãñáììéêü

óýóôçìá ôï ðïëý n ôÜîçò, áðü ôç ëýóç ôïõ ïðïßïõ èá ðñïêýøïõí ôá óýíïëá ôçò åðüìåíçò

åðáíÜëçøçò.

Âáóéêü õðïëïãéóôéêü êüóôïò ôïõ áëãïñßèìïõ åßíáé ç ëýóç óå êÜèå åðáíÜëçøç åíüò

ãñáììéêïý óõóôÞìáôïò ôï ðïëý n ôÜîçò. ÅêôåôáìÝíá ðåéñÜìáôá óå ðëÞèïò ðñáãìáôéêþí

êáé ôå÷íçôþí ðñïâëçìÜôùí áðïäåéêíýïõí ôçí áíùôåñüôçôá ôçò ìåèüäïõ, Ýíáíôé áíôáãùíéóôéêþí

ôå÷íéêþí óôç âéâëéïãñáößá.

4ï ÊåöÜëáéï

To ÊåöÜëáéï 4, ðåñéëáìâÜíåé ìåëÝôç ôïõ ðñïâëÞìáôïò ôïðéêÞò åëá÷éóôïðïßçóçò ìå áðëÜ

üñéá ÷ñçóéìïðïéþíôáò ôçí ôå÷íéêÞ ôùí ðåñéï÷þí åìðéóôïóýíçò (trust region). Ôï ðñüâëçìá

ðïõ ìáò áðáó÷ïëåß óå áõôÞí ôçí ðåñßðôùóç åßíáé ôï:

min
x
f(x);

õðü ôïí ðåñéïñéóìü: ai ≤ xi ≤ bi; ∀i ∈ I = {1; 2; · · · ; n}

üðïõ x; a; b ∈ Rn. Óýìöùíá ìå ôçí ìÝèïäï ôçò ðåñéï÷Þò åìðéóôïóýíçò ç óõíÜñôçóç f(x)

ðñïóåããßæåôáé ôïðéêÜ ìå Ýíá êõñôü ôåôñáãùíéêü ìïíôÝëï ôï ïðïßï åëá÷éóôïðïéåßôáé óå êÜèå

åðáíÜëçøç õðü ôïí ðåñéïñéóìü ìéáò ðåñéï÷Þò åíäéáöÝñïíôïò (trust region).

xi

Ç ðåñéï÷Þ åíäéáöÝñïíôïò óôçí âéâëéïãñáößá åßíáé óõíÞèùò óöáéñéêÞ (üðïõ êáé êáèïñßæåôáé

áðü ìéá áêôßíá ∆k). Óôçí ðáñïýóá äéáôñéâÞ, ðáñïõóéÜæïõìå ìéá äéáöïñåôéêÞ ðñïóÝããéóç

÷ñçóéìïðïéþíôáò õðåñ-ïñèïãþíéá (hyperrectangle) ðåñéï÷Þ åíäéáöÝñïíôïò (ðïõ êáèïñßæåôáé

áðü ôçí ðëåõñÜ ôïõ õðåñ-ïñèïãùíßïõ ∆k).

Ç åðéëïãÞ áõôÞ âáóßæåôáé óôçí áðëÞ ðáñáôÞñçóç üôé åÜí ôï ðñüâëçìá Ý÷åé Þäç áðëÜ

üñéá óáí ðåñéïñéóìïýò, ç ôïìÞ ôùí áðëþí ïñßùí ìå ôï õðåñ-ïñèïãþíéï ôçò ðåñéï÷Þò

åìðéóôïóýíçò åßíáé åðßóçò õðåñ-ïñèïãþíéï. ¸ôóé ôï õðïðñüâëçìá ðïõ ðñÝðåé íá ëõèåß óå

êÜèå åðáíÜëçøç åßíáé óáí áõôü ðïõ ìåëåôÞóáìå óôï ÊåöÜëáéï 3, äçëáäÞ êõñôÞ ôåôñáãùíéêÞ

óõíÜñôçóç ìå ðåñéïñéóìïýò áðëÜ üñéá.

Ôï õðïðñüâëçìá ëýíåôáé ìå äõï ôå÷íéêÝò. Ìéá ðñïóåããéóôéêÞ âáóéóìÝíç óôçí ôå÷íéêÞ

êõíüðïõò (dogleg) ðïõ áíÝðôõîå ï Powell êáé ìéá áêñéâÞò ÷ñçóéìïðïéþíôáò ôïí áëãüñéèìï

ðïõ ðåñéãñÜøáìå óôï ÊåöÜëáéï 3 ôçò äéáôñéâÞò. Ç ðñïóåããéóôéêÞ ëýóç ðïõ ðáñïõóéÜæïõìå

åßíáé åëáöñþò ôñïðïðïéçìÝíç ãéá íá ôáéñéÜæåé óôçí õðåñ-ïñèïãþíéá ðåñéï÷Þ åìðéóôïóýíçò.

Áðü ôçí Üëëç ìåñéÜ ç áêñéâÞò ëýóç, áí êáé õðïëïãéóôéêÜ ðéï áêñéâÞ, óõãêëßíåé ôá÷ýôåñá

óôï ôïðéêü åëÜ÷éóôï. Ï áëãüñéèìïò õðåñ-ïñèðïãþíéáò ðåñéï÷Þò åìðéóôïóýíçò ìáæß ìå

ôéò äõï ìåèüäïõò åðßëõóçò ôïõ ôåôñáãùíéêïý õðïðñïâÞìáôïò äïêéìÜóôçêå åêôåíþò óå

ðñïâëÞìáôá ìå ðåñéïñéóìïýò, áëëÜ êáé ÷ùñßò ðåñéïñéóìïýò ìå åîáéñåôéêÞ áðüäïóç.

5ï ÊåöÜëáéï

Óôï ÊåöÜëáéï 5, ðáñïõóéÜæåôáé ìéá ôñïðïðïßçóç ôçò ãíùóôÞò ìåèüäïõ ôùí Fletcher êáé Xu

ãéá ðñïâëÞìáôá åëá÷éóôïðïßçóçò óõíáñôÞóåùí ôçò ìïñöÞò åëá÷ßóôùí ôåôñáãþíùí, êáèþò

êáé ôçí åöáñìïãÞ ôçò óå ðñïâëÞìáôá åêðáßäåõóçò íåõñùíéêþí äéêôýùí. Óôçí ìåëÝôç áõôÞ

ôï ðñüâëçìá ðïõ åðéëýåôáé äéáôõðþíåôáé ùò:

min
x
F (x) =

m∑
i=1

f 2
i (x);

õðü ôïí ðåñéïñéóìü: ai ≤ xi ≤ bi; ∀i ∈ I = {1; 2; · · · ; n}

üðïõ fi : R
n → R óõíå÷åßò êáé ðáñáãùãßóéìåò óõíáñôÞóåéò ãéá i = 1; : : : ;m êáé x; a; b ∈

Rn. Ç ìåèïäïëïãßá ôùí Fletcher êáé Xu áðïôåëåß Ýíá óõíäõáóìü äõï ðïëý ãíùóôþí

ðñïóåããßóåùí ôïõ Åóóéáíïý ðßíáêá. Ôçò BFGS ãéá ôïðéêÞ åëá÷éóôïðïßçóç êáé ôçò ìåèüäïõ

ôïõ Gauss-Newton ãéá ôçí åéäéêÞ ðåñßðôùóç ôïõ áèñïßóìáôïò ôåôñáãþíùí.

Ç ìÝèïäïò ìðïñåß íá ÷ñçóéìïðïéÞóåé óå êÜèå åðáíÜëçøç ôïí Ýíá Þ ôïí Üëëï áëãüñéèìï

áíÜëïãá ìå Ýíá êñéôÞñéï ðïõ âáóßæåôáé óôï ðïóïóôü ìåßùóçò ôçò áíôéêåéìåíéêÞò óõíÜñôçóçò.

Ôï êñéôÞñéï áõôü ðñïóðáèåß íá äéáãíþóåé áí ôï ðñüâëçìá áíÞêåé óôçí êáôçãïñßá ôïõ ìéêñïý

õðïëïßðïõ (small residual) Þ óå áõôÞ ôïõ ìåãÜëïõ õðïëïßðïõ (large residual). Óôçí ðñþôç

êáôçãïñßá ç ëýóç åßíáé êïíôÜ óôï ìçäÝí, åíþ óôçí äåýôåñç êáôçãïñßá ü÷é.

Ãéá íá êáôáíïÞóïõìå ôï äéá÷ùñéóìü èá äþóïõìå ôïí ôýðï ôïõ ðßíáêá äåõôÝñùí ðáñáãþãùí

(hessian matrix) óå ðñïâëÞìáôá åëá÷ßóôùí ôåôñáãþíùí.

Ç(xk) = ∇2F (xk) = JT (xk)J(xk) +
m∑
i=1

fi(xk)∇2fi(xk)

xii

üðïõ J(x); n×m ðßíáêáò ìå óôïé÷åßá
@fi(x)

@xj
.

Ôá ðñïâëÞìáôá ìéêñïý Ý÷ïõí ëýóç x∗ óôçí ïðïßá fi(x
∗) ≃ 0 êáé êáôÜ óõíÝðåéá êïíôÜ

óôç ëýóç ï åóóéáíüò ðßíáêáò ìðïñåß íá ðñïóåããéóôåß ìå áêñßâåéá ìå ôçí ðñïóÝããéóç

Ç(xk) = JT (xk)J(xk), ðïõ ïõóéáóôéêÜ åßíáé ç ðñïóÝããéóç Gauss-Newton. Óå áíôßèåôç

ðåñßðôùóç ç ðñïóÝããéóç Gauss-Newton äåí åßíáé áêñéâÞò ìéáò êáé ï üñïò
m∑
i=1

fi(xk)∇2fi(xk)

åßíáé óçìáíôéêüò. Óôçí ðåñßðôùóç áõôÞ êáëü èá Þôáí íá ÷ñçóéìïðïéçèåß ìéá êáëýôåñç

ðñïóÝããéóç üðùò ð÷. ç BFGS åíçìÝñùóç.

Ç óõíåéóöïñÜ ôçò äéáôñéâÞò Ýãêåéôáé óå äõï óçìåßá. Ðñþôïí, ç BFGS áíôéêáôáóôÜèçêå

áðü ôçí ìÝèïäï Newton ðïõ ÷ñçóéìïðïéåß äåýôåñåò ðáñáãþãïõò êáé äåýôåñïí ç ìÝèïäïò

åöáñìüóôçêå ãéá ðñþôç öïñÜ óôçí åêðáßäåõóç íåõñùíéêþí äéêôýùí. Ãéá ôï óêïðü áõôü,

õðïëïãßóáìå áíáëõôéêÜ ôéò ðñþôåò êáé äåýôåñåò ðáñáãþãïõò ãéá Ýíá ïðïéïäÞðïôå íåõñùíéêü

äßêôõï ìå Ýíá êñõììÝíï åðßðåäï. ÓõíïðôéêÜ ï áëãüñéèìïò ðïõ ðáñïõóéÜæåôáé ÷ñçóéìïðïéåß,

óå êÜèå åðáíÜëçøÞ ôïõ, ôï êñéôÞñéï ôùí Fletcher & ×õ ãéá íá áðïöáóßóåé áí èá ÷ñçóéìïðïéÞóåé

ôçí Gauss-Newton (öôçíÞ) ðñïóÝããéóç Þ ôïí ðëÞñç åóóéáíü ðßíáêá, ï ïðïßïò åßíáé õðïëïãéóôéêÜ

ðéï áêñéâüò.

6ï ÊåöÜëáéï

ÅðåéäÞ ï õðïëïãéóìüò ôùí ðáñáãþãùí ðáßæåé ðÜñá ðïëý óçìáíôéêü ëüãï óå áëãüñéèìïõò

åëá÷éóôïðïßçóçò, á ìéá ðáñÜëëçëç ìéá âéâëéïèÞêç ëïãéóìéêïý (NDL) ðïõ ðáñÝ÷åé ôç äõíáôüôçôá

ãéá ðáñÜëëçëï õðïëïãéóìü ðñþôùí êáé äåýôåñùí ðáñáãþãùí ìå ôç ìÝèïäï ôùí ðåðåñáóìÝíùí

äéáöïñþí (�nite di�erences). Äõï óçìáíôéêïß ëüãïé ìáò ïäÞãçóáí óôçí áíÜðôõîç ôçò

âéâëéïèÞêçò. Ï ðñþôïò åßíáé ç áíõðáñîßá åëåýèåñïõ ðáêÝôïõ ëïãéóìéêïý ãéá ôïí ðáñÜëëçëï

õðïëïãéóìü ôùí ðáñáãþãùí. Ï äåýôåñïò ëüãïò Ý÷åé íá êÜíåé ìå ôç ñáãäáßá áíÜðôõîç êáé

÷ñÞóç ðáñÜëëçëùí õðïëïãéóôéêþí óõóôçìÜôùí, åßôå óå åðßðåäï óõóôÜäùí õðïëïãéóôþí

(clusters), åßôå óå áñ÷éôåêôïíéêÝò ðïëëþí ðõñÞíùí (multicore). Ï êÜèå Ýíáò ðëÝïí ìðïñåß

äéáèÝôåé Ýíá ðïëõðýñçíï õðïëïãéóôéêü óýóôçìá, êáé ç NDL ôï åêìåôáëëåýåóáé óôï Ýðáêñï.

Ç âéâëéïèÞêç ðáñÝ÷åé ìéá áíáëõôéêÞ äéåðáöÞ ãéá êÜèå ðáñÜãùãï ðïõ èÝëïõìå íá õðïëïãéóôåß,

ôçí áêñßâåéá ðïõ åðéèõìåß ï ÷ñÞóôçò êáé áí õðÜñ÷ïõí üñéá óôéò ìåôáâëçôÝò. Ç âéâëéïèÞêç

ìðïñåß íá ÷ñçóéìïðïéçèåß óå åöáñìïãÝò âåëôéóôïðïßçóçò óôéò ïðïßåò áíáëõôéêÝò ðáñÜãùãïé

åßíáé äýóêïëï íá õðïëïãéóôïýí êáé õðïóôçñßæåé äéåðáöÝò ãéá ôéò ðëáôöüñìåò MPI êáé

OpenMP.

ÓõíïðôéêÜ ç âéâëéïèÞêç ðïõ ðáñïõóéÜæåôáé Ý÷åé ôá åîÞò ÷áñáêôçñéóôéêÜ ðïõ ôçí îå÷ùñßæïõí

áðü ôïí áíôáãùíéóìü:

• Áõôüìáôïò õðïëïãéóìüò ôïõ âÞìáôïò ãéá åðßôåõîç åðéèõìçôÞò áêñßâåéáò ðñïóÝããéóçò:

Åßíáé ãíùóôü üôé óôéò ìåèüäïõò ðåðåñáóìÝíùí äéáöïñþí õðïëïãßæïíôáé ïé ôéìÝò

ôçò óõíÜñôçóåé óå ìéêñÝò ìåôáôïðßóåéò ãýñù áðü ôï óçìåßï ðïõ ìáò åíäéáöÝñåé ç

ðáñÜãùãïò. ÁíÜëïãá ìå ôçí ìåôáôüðéóç êáé ôïí ôýðï ðïõ ÷ñçóéìïðïéïýìå, ìðïñïýìå

íá åðéôý÷ïõìå êáé óõãêåêñéìÝíç áêñßâåéá ðñïóÝããéóçò. Ï ÷ñÞóôçò åßíáé åëåýèåñïò

íá åðéëÝîåé ìüíï ôçí åðéèõìçôÞ áêñßâåéá êáé ç âéâëéïèÞêç êÜíåé ôïõò õðïëïãéóìïý

xiii

ãéá ôï âÞìá.

• Õ ðïóôÞñéîç áðëþí ïñßùí óôéò ìåôáâëçôÝò : Ç âéâëéïèÞêç ìå êáôÜëëçëïõò åëÝã÷ïõò

óÝâåôáé ôï ðåäßï ïñéóìïý ôçò óõíÜñôçóçò ðïõ ðáñÝ÷åé ï ÷ñÞóôçò. ¸ôóé ïäçãåßôáé

óôï íá ÷ñçóéìïðïéÞóåé ðñïò ôá ìðñïò, êåíôñéêÝò Þ ðñïò ôá ðßóù äéáöïñÝò, áíÜëïãá

ìå ôï áí ðáñáâéÜæïíôáé ôá üñéá.

• Ç õðïóôÞñéîç ðëáôöüñìáò MPI êáé OpenMP: Ôá óýã÷ñïíá ðáñÜëëçëá õðïëïãéóôéêÜ

óõóôÞìáôá ìðïñïýí íá ÷ùñéóôïýí åßôå óå êáôáíåìçìÝíá óõóôÞìáôá ðïëëþí åðåîåñãáóôþí

ðïõ åðéêïéíùíïýí ìå ãñÞãïñá ôïðéêÜ äßêôõá (cluster of nodes) Þ óå óõóôÞìáôá êïéíÞò

ìíÞìçò ìå ðïëëïýò åðåîåñãáóôÝò ðïõ åðéêïéíùíïýí ìå äéáýëïõò (shared memory mul-

tiprocessors). Êáé ãéá ôéò äõï ðåñéðôþóåéò, ç âéâëéïèÞêç ðáñÝ÷åé ôñüðïõò åêôÝëåóçò,

ðïõ ìðïñåß íá åßíáé êáé ìåéêôïß.

• ÅðéëïãÞ ôñüðïõ êáôáíïìÞò ôùí êëÞóåùí ãéá ôïí õðïëïãéóìü ôùí ðáñáãþãùí: Ç

âéâëéïèÞêç NDL ðáñÝ÷åé ôç äõíáôüôçôá íá ìåôáâÜëåé êáíåßò ôïí ôñüðï ìå ôïí ïðïßï

êáôáíÝìïíôáé ïé óõíáñôçóéáêÝò êëÞóåéò óôïõò äéáèÝóéìïõò åðåîåñãáóôÝò.

Ç âéâëéïèÞêç Ý÷åé äïêéìáóôåß åíäåëå÷þò óå üëåò ôéò ðåñéðôþóåéò ÷ñÞóçò. Åðßóçò, Ý÷ïõí

ãßíåé ìåôñÞóåéò ãéá ôïí õðïëïãéóìü ôçò åðéôÜ÷õíóçò (speed-up) óå äéÜöïñá ðáñÜëëçëá

óõóôÞìáôá êáé öáßíåôáé üôé ç ðáñïýóá âéâëéïèÞêç ìðïñåß íá åðéöÝñåé óçìáíôéêÜ êÝñäç óå

÷ñüíï õðïëïãéóìïý. Áõôü åðéâåâáéþíåôáé áðü ôéò êáìðýëåò ôçò åðéôÜ÷õíóçò, ïé ïðïßåò

ðñïóåããßæïõí ôç èåùñçôéêÞ áêüìá êáé ãéá ðïëý ãñÞãïñåò óõíáñôÞóåéò.

2o TìÞìá: ÊáèïëéêÞ Åëá÷éóôïðïßçóç

Óôï 2ï ôìÞìá ôçò äéáôñéâÞò èá ðáñïõóéáóôïýí ôá áðïôåëÝóìáôá ôçò Ýñåõíáò ãéá ôï áíôéêåßìåíï

ôçò êáèïëéêÞò åëá÷éóôïðïßçóçò. Óå ãåíéêÝò ãñáììÝò ç Ýñåõíá ìáò êáôåõèýíèçêå óå ìéá

óõãêåêñéìÝíç, áí êáé åõñåßá, êáôçãïñßá ôå÷íéêþí ðïõ áíáöÝñïíôáé óôçí âéâëéïãñáößá

ùò óôï÷áóôéêÝò ôå÷íéêÝò äõï öÜóåùí ìå ïìáäïðïßçóç (stochastic two-phase clustering

techniques). Ïé ôå÷íéêÝò áõôÝò ðåñéëáìâÜíïõí äõï öÜóåéò, ìéá êáèïëéêÞ êáôÜ ôçí ïðïßá

åîåñåõíÜôáé ï ÷þñïò áíáæÞôçóçò êáé ìéá ôïðéêÞ üðïõ óõíÞèùò åöáñìüæåôáé Ýíá áëãüñéèìïò

ôïðéêÞò åëá÷éóôïðïßçóçò. Óýìöùíá ìå ôïí ïñéóìü, ôï êáèïëéêü åëÜ÷éóôï åßíáé Ýíá óçìåßï

x∗ ãéá ôï ïðïßï éó÷ýåé f(x) > f(x∗); ∀x ̸= x∗; a ≤ x ≤ b. Óôçí ðáñïýóá äéáôñéâÞ äåí

áó÷ïëïýìáóôå ìüíï ìå ôçí ýðáñîç åíüò êáèïëéêïý åëá÷ßóôïõ, áëëÜ áíôéìåôùðßæïõìå Ýíá

ðéï ãåíéêü ðñüâëçìá:

Âñåò üëá ôá åëÜ÷éóôá ôçò f(x);

õðü ôïí ðåñéïñéóìü: ai ≤ xi ≤ bi; ∀i ∈ I = {1; 2; · · · ; n}

Ðñïöáíþò, åÜí âñïýìå üëá ôá åëÜ÷éóôá ìðïñïýìå íá åðéëÝîïõìå ôï ìéêñüôåñï óáí Ýíá

êáèïëéêü åëÜ÷éóôï. Ôï ðñüâëçìá ôïõ åíôïðéóìïý üëùí ôùí åëá÷ßóôùí åìöáíßæåôáé ðïëý

óõ÷íÜ óôç âéâëéïãñáößá ð÷. [24, 33, 156, 86, 163, 77, 36]

xiv

ÓõãêåêñéìÝíá ôï ãåíéêü ðåñßãñáììá ôçò ìåèïäïëïãßáò ðïõ ìåëåôÞóáìå åìöáíßæåôáé

ðáñáêÜôù:

Ãåíéêüò Áëãüñéèìïò 1: Stochastic Two-Phase Clustering

ÂÞìá 1. Äåéãìáôïëçøßá ôïõ ÷þñïõ áíáæÞôçóçò.

ÂÞìá 2. Ïìáäïðïßçóçóç ôùí óçìåßùí ðïõ áíÞêïõí óôçí ïìÜäá ðïõ ïäçãåß óôï ßäéï

åëÜ÷éóôï.

ÂÞìá 3. Áðü áíôéðñïóùðåõôéêÜ óçìåßá ôùí ïìáäïðïéÞóåùí ìå ôïðéêÞ åëá÷éóôïðïßçóç

êáé åíôïðéóìüò ôá åëÜ÷éóôá.

ÂÞìá 4. ¸ëåã÷ïò êñéôçñßïõ ôåñìáôéóìïý.

Ï ãåíéêüò áëãüñéèìïò ðïõ ðåñéãñÜøáìå, óôçí áêñáßá ôïõ ìïñöÞ áíÜãåôáé óôïí êëáóéêü

áëãüñéèìï ðïëëáðëÞò åêêßíçóçò (Multistart). ÓõãêåêñéìÝíá, áí óôï ÂÞìá 1, ïñßóïõìå

ïìïéüìïñöç êáôáíïìÞ êáé óôï ÂÞìá 2 äåí ïñßóïõìå êáìßá ïìáäïðïßçóç áëëÜ îåêéíÜìå

áðü üëá ôá óçìåßá ôïðéêÝò åëá÷éóôïðïéÞóåéò (ÂÞìá 3), ôüôå Ý÷ïõìå ðåñéãñÜøåé ôçí ìÝèïäï

Multistart. Ðïëý ìåãÜëç åñåõíçôéêÞ ðñïóðÜèåéá Ý÷åé êáôáâëçèåß ôá ôåëåõôáßá 20 ÷ñüíéá

ãéá íá âåëôéùèåß ï áëãüñéèìïò Multistart ìå áðþôåñï óêïðü: ôç äéåíÝñãåéá ìéáò ôïðéêÞò

åëá÷éóôïðïßçóçò áíÜ åëÜ÷éóôï.

Óôçí ðáñïýóá äéáôñéâÞ ðÝñá áðü ôç óõìâïëÞ ìáò óå óõãêåêñéìÝíá âÞìáôá ôïõ ãåíéêïý

áëãïñßèìïõ 1, ï ïðïßïò Ý÷åé ìåëåôçèåß åîáíôëçôéêÜ áðü åñåõíçôÝò ôá ôåëåõôáßá 20 ÷ñüíéá,

ðñïôåßíáìå êáé ìéá Üëëç éóïäýíáìç êáé ãåíéêÞ ìåèïäïëïãßá. Áíôß íá ðñïóðáèåß êáíåßò íá

ïìáäïðïéÞóåé, åê ôùí õóôÝñùí, ôõ÷áßá äåßãìáôá óôï ÷þñï áíáæÞôçóçò ìå êïéíÞ éäéüôçôá

üôé ïäçãïýí óôï ßäéï åëÜ÷éóôï, ìðïñåß íá ðáñÜãåé ôõ÷áßá óçìåßá ìå ôÝôïéï ôñüðï, þóôå íá

áðïöåýãïíôáé ôá Þäç åõñåèÝíôá åëÜ÷éóôá. Êáé ìå ôéò äõï ìåèïäïëïãßåò ï áðþôåñïò óêïðüò

ôçò äéåíÝñãåéáò ìéáò ôïðéêÞò åëá÷éóôïðïßçóçò áíÜ åëÜ÷éóôï åßíáé ßäéïò.

Ï ãåíéêüò áëãüñéèìïò êáèïäçãïýìåíçò áðü åêðáéäåõüìåíåò êáôáíïìÝò áíáæÞôçóçò

ðåñéãñÜöåôáé ðáñáêÜôù:

Ãåíéêüò Áëãüñéèìïò 2: Stochastic Two-Phase Distribution Driven

ÂÞìá 1. Äåéãìáôïëçøßá ôïõ ÷þñïõ áíáæÞôçóçò áðü ôçí êáôáíïìÞ.

ÂÞìá 2. ÔïðéêÞ åëá÷éóôïðïßçóç êáé åíôïðéóìüò åëá÷ßóôùí.

ÂÞìá 3. ÅíçìÝñùóç ôùí ðáñáìÝôñùí ôçò êáôáíïìÞò.

ÂÞìá 4. ¸ëåã÷ïò êñéôçñßïõ ôåñìáôéóìïý.

Óôç âéâëéïãñáößá Ý÷åé ðáñïõóéáóôåß ðëçèþñá ìåèüäùí ðïõ óêïðåýïõí íá âåëôéþóïõí

ôï ãåíéêü áëãüñéèìï 1 êáé Þ óõíåéóöïñÜ ôïõò óôü÷åõå êÜðïéï áðü ôá 4 âÞìáôá. Óôçí

ðáñïýóá äéáôñéâÞ, óôá åðüìåíá êåöÜëáéá, èá ðåñéãñáöïýí ïé íÝåò éäÝåò ðïõ åíéó÷ýïõí ôïí

ãåíéêü áëãüñéèìï êáé õëïðïéïýí ôá âÞìáôá 1 êáé 3 ôïõ ãåíéêïý áëãïñßèìïõ 2.

xv

ÓõãêåêñéìÝíá, üóï áöïñÜ ôá ÂÞìáôá 1 êáé 3 ôïõ ãåíéêïý áëãüñßèìïõ 2 ðåñéãñÜöïíôáé

äõï äéáöïñåôéêÝò ôå÷íéêÝò óôá êåöÜëáéá 8 êáé 9. Óôï ÊåöÜëáéï 10 ðáñïõóéÜæåôáé Ýíáò

áëãüñéèìï ïìáäïðïßçóçò ãéá ôï ÂÞìá 2 ôïõ ãåíéêïý áëãïñßèìïõ 1. Óôï ÊåöÜëáéï 11

ðåñéãñÜöåôáé ìéá ôñïðïðïßçóç ìéáò êëáóéêÞò ìåèüäïõ ôïðéêÞò åëá÷éóôïðïßçóçò êáôÜëëçëçò

êáé ãéá ôá äõï ðñïáíáöåñèÝíôá áëãïñéèìéêÜ ðëáßóéá. ÔÝëïò óôï ÊåöÜëáéï 12 ðáñïõóéÜæåôáé

Ýíá íÝï êñéôÞñéï ôåñìáôéóìïý, ïäçãïýìåíï áðü ôçí éäáíéêÞ ðåñßðôùóç üôé êÜèå åëÜ÷éóôï

Ý÷åé ßóç ðéèáíüôçôá íá áíáêôçèåß áðü Ýíáí áëãüñéèìï ôïðéêÞò åëá÷éóôïðïßçóçò ðïõ îåêéíÜ

áðü ôõ÷áßï óçìåßï.

7ï ÊåöÜëáéï

Óôï ÊåöÜëáéá 7 ðáñáôßèåôáé ìéá åéóáãùãÞ óôï ðñüâëçìá ôçò êáèïëéêÞò åëá÷éóôïðïßçóçò,

êáé ìéá áíáëõôéêÞ ðáñïõóßáóç ôçò âéâëéïãñáößáò ôùí óôï÷áóôéêþí ìåèüäùí êáé óõãêåêñéìÝíá

ôùí ìåèüäùí ïìáäïðïßçóçò (clustering global optimization). Óôçí êáôçãïñßá ôùí óôï÷áóôéêþí

ìåèüäùí êáôáôÜóóïíôáé üëïé ïé áëãüñéèìïé óôïõò ïðïßïõò áíáöÝñåôáé ç ÷ñÞóç ôõ÷áßùí

ìåôáâëçôþí êáé ôï áðïôÝëåóìá ôçò åêôÝëåóÞò ôïõò, ìå óôáèåñÝò ðáñáìÝôñïõò, äåí åßíáé

êáô' áíÜãêç ôï ßäéï. Ç áíáëõôéêÞ åéóáãùãÞ âïçèÜåé ôïí áíáãíþóôç íá ðÜñåé ìéá ãåýóç,

ðåñéóóüôåñï áëãïñéèìéêÞ, ó÷åôéêÜ ìå ôçí êáôçãïñßá ôùí óôï÷áóôéêþí áëãïñßèìùí êáèïëéêÞò

åëá÷éóôïðïßçóçò.

8ï ÊåöÜëáéï

Óôï 8ï ÊåöÜëáéï ðåñéãñÜöåôáé Ýíáò áëãüñéèìïò (Ádapt) ìéá õëïðïßçóç ôïõ Ãåíéêïý Áëãïñßèìïõ

2. Ç Adapt ðåñéãñÜöåé Ýììåóá ìéá êáôáíïìÞ áðü ôçí ïðïßá ðñïêýðôïõí óçìåßá ãéá ôïðéêÞ

åëá÷éóôïðïßçóç, ïñßæïíôáò áðáãïñåõìÝíåò ðåñéï÷Ýò ãýñù áðü åëÜ÷éóôá.

Ç áðüöáóç ãéá ôï áí áðü Ýíá áñ÷éêü óçìåßï èá ðñÝðåé íá îåêéíÞóåé ôïðéêÞ åëá÷éóôïðïßçóç,

ðáßñíåôáé ìå ôç âïÞèåéá ðëçñïöïñßáò áðü ôá Þäç óõëëå÷èÝíôá åëÜ÷éóôá, ôçò èÝóçò ôïõò êáé

ìéáò ðëçñïöïñßáò ó÷åôéêÞò ìå ôï ìÝãåèïò ôçò ðåñéï÷Þò ôïõò1.

Áöïý ðåñéãñáöåß áíáëõôéêÜ ç ìÝèïäïò, ãßíåôáé ìéá áíÜëõóç ôçò óõìðåñéöïñÜò ôçò

óå ìåãÜëï áñéèìü åðáíáëÞøåùí (áñ÷éêþí óçìåßùí) êáé óçìåéþíåôáé üôé áí åêôåëåóôïýí

Üðåéñåò åðáíáëÞøåéò äåéãìáôïëçøßáò áñ÷éêþí óçìåßùí ç ðéèáíüôçôá íá ÌÇÍ âñåèåß êÜðïéï

åëÜ÷éóôï ìçäåíßæåôáé. Åðßóçò êáôÜ ôçí ðåñéãñáöÞ ôçò ìåèüäïõ ðáñïõóéÜæïíôáé êáé ôá

ðñþôá øÞãìáôá ãéá ôçí áíÜãêç ôçò ôïðéêÞò ìïíïäéÜóôáôçò åëá÷éóôïðïßçóçò ôïõ Êåöáëáßïõ

11.

Êëåßíïíôáò ôï êåöÜëáéï ó÷ïëéÜæïõìå ìéá ðñïöáíÞ ðáñÜëëçëç õëïðïßçóç ôïõ áëãïñßèìïõ.

ÅêôåôáìÝíá ðåéñÜìáôá äåß÷íïõí ôçí áðïäïôéêüôçôá ôïõ áëãïñßèìïõ Adapt óå óýãêñéóç ìå

äõï state-of-the art áëãïñßèìïõò.

1Ìå ôïí üñï ðåñéï÷Þ, åííïïýìå ôçí ðåñéï÷Þ Ýëîçò (region of attraction) åíüò åëá÷ßóôïõ ðïõ ïõóéáóôéêÜ

åßíáé üëá ôá óçìåßá ôïõ ÷þñïõ áðü ôá ïðïßá ìéá ôïðéêÞ åëá÷éóôïðïßçóç ïäçãåß óôï åëÜ÷éóôï

xvi

9ï ÊåöÜëáéï

Óôï 9ï ÊåöÜëáéï, ðáñïõóéÜæåôáé åðßóçò ìéá Üìåóç õëïðïßçóç ôïõ Ãåíéêïý Áëãïñßèìïõ 2

ìå ôïí ïñéóìü ìéáò óõíÜñôçóçò äåéãìáôïëçøßáò, ìå óêïðü íá ðáñÝ÷åé áñ÷éêÜ óçìåßá ìáêñéÜ

áðü Þäç õðÜñ÷ïíôá åëÜ÷éóôá.

Ç ìÝèïäïò âáóßæåôáé óôïí áëãüñéèìï äåéãìáôïëçøßáò ìå áðüññéøç (rejection sampling).

Ùò âáóéêÞ êáôáíïìÞ èåùñåßôáé ç ïìïéüìïñöç. Ç óõíÜñôçóç ðõêíüôçôáò ðéèáíüôçôáò áðü

ôçí ïðïßá êáëïýìáóôå íá äåéãìáôïëçðôÞóïõìå åßíáé Ýíá Üèñïéóìá êáíïíéêþí êáôáíïìþí

F (x) =
Nlocal∑
i=1

�i∑
j �j

N(x;�i;Σi)

üðïõ Ílocal ï áñéèìüò ôùí ôïðéêþí åëá÷ßóôùí ðïõ Ý÷ïõí âñåèåß, �i ðüóåò öïñÝò Ý÷åé âñåèåß

ôï êÜèå åëÜ÷éóôï êáé �i;Σi ïé ðáñÜìåôñïé ôçò êáôáíïìÞò ðïõ áíáôßèåôáé óå êÜèå ôïðéêü

åëÜ÷éóôï. Ïé ðáñÜìåôñïé �i;Σi åíçìåñþíïíôáé on-line êÜèå öïñÜ ðïõ ôï åëÜ÷éóôï óôï

ïðïßï áíôéóôïé÷ïýí áíáêáëõöèåß ãéá �-ïóôç öïñÜ :

• �i = �i−1 + �i(xi − �i−1)

• Σi = Σi−1 + �i(xi − �i)(xi − �i)T ,

üðïõ �i ∈ (0; 1); �0 = (0; 0; : : : ; 0)T ;Σ0 = �In êáé xi ôï áñ÷éêü óçìåßï ðïõ ïäÞãçóå óôï

i-ïóôü åëÜ÷éóôï.

Óýìöùíá ìå ôá ðåéñáìáôéêÜ áðïôåëÝóìáôá, ç íÝá ìïñöÞ äåéãìáôïëçøßáò åßíáé ðïëý

áðïôåëåóìáôéêÞ óôï íá êáôåõèýíåé ôá áñ÷éêÜ óçìåßá óå ìç åîåñåõíçìÝíåò ðåñéï÷Ýò.

10ï ÊåöÜëáéï

Óôï 10ï ÊåöÜëáéï, ðñïôåßíåôáé Ýíáò íÝïò áëãüñéèìïò ïìáäïðïßçóçò (ÂÞìá 2 ôïõ Ãåíéêïý

Áëãïñßèìïõ 1) ï ïðïßïò âáóßæåôáé óôç óõíåñãáóßá äõï ðïëý éó÷õñþí ôå÷íéêþí: óôïí

êáèïëéêü áëãüñéèìï k-ìÝóùí (global k-means) êáé óôçí èåùñßá öáóìáôéêÞò ïìáäïðïßçóçò

(spectral clustering).

Ï áëãüñéèìïò ðáßñíåé óáí åßóïäï áñ÷éêÜ ïìïéüìïñöá óçìåßá óôï ÷þñï áíáæÞôçóçò ôá

ïðïßá Ý÷ïõí óõãêåíôñùèåß ìå ôçí åöáñìïãÞ áëãïñßèìïõ ôïðéêÞò åëá÷éóôïðïßçóçò (ôçò

ìïñöÞò ôïõ Êåöáëáßïõ 11). Ç ðñïôåéíüìåíç ìÝèïäïò ÷ñçóéìïðïéåß ôá óõãêåíôñùìÝíá

óçìåßá (èÝóåéò êáé ðáñáãþãïõò) ãéá íá åêôéìÞóåé ôï ðëÞèïò k ôùí ïìÜäùí êáé óôç óõíÝ÷åéá

åöáñìüæåé ôïí áëãüñéèìï global k-means Þ ìéá ðáñáëëáãÞ ôïõ ðïõ ëåéôïõñãåß óôï öáóìáôéêü

÷þñï ãéá íá õðïëïãßóåé ôá êÝíôñá. Áðü ôï êÜèå êÝíôñï ìéá ïëïêëçñùìÝíç ôïðéêÞ åëá÷éóôïðïßçóç

èá ïäçãÞóåé óå Ýíá åëÜ÷éóôï.

Âáóéêü õðïëïãéóôéêü êüóôïò ôïõ áëãïñßèìïõ, ðÝñá áðü ôéò êëÞóåéò ôçò óõíÜñôçóçò

êáé ôçò ðáñáãþãïõ, åßíáé êáé ï õðïëïãéóìüò ôùí éäéïôéìþí åíüò N ×N ðßíáêá óõó÷Ýôéóçò

ôùí N áñ÷éêþí óçìåßùí.

Ç óõíåéóöïñÜ ôçò ìåèüäïõ Ýãêåéôáé (á) óôçí åöáñìïãÞ ôüóï ôùí öáóìáôéêþí ìåèüäùí

üóï êáé ôïõ áëãïñßèìïõ global k-means óôï óõãêåêñéìÝíï ðñüâëçìá (â) óôçí ÷ñÞóç

ôçò ðáñáãþãïõ óôá óõãêåíôñùìÝíá óçìåßá (óôïí ðßíáêá óõó÷Ýôéóçò) ãéá íá âïçèçèåß ç

xvii

ïìáäïðïßçóç (ã) óôçí áðüðåéñá åêôßìçóçò ôïõ áñéèìïý ôùí ïìÜäùí ìå âÜóç ôç öáóìáôéêÞ

ðëçñïöïñßá (ä)óôçí ðáñáëëáãÞ ôïõ áëãïñßèìïõ global k-means þóôå íá ëáìâÜíåé õðüøç

ôç öáóìáôéêÞ ðëçñïöïñßá.

Ï áëãüñéèìïò óõìðåñéöÝñåôáé ðïëý êáëÜ ðåéñáìáôéêÜ êáé ï áñéèìüò ôùí ôïðéêþí åëá÷éóôïðïéÞóåùí

ôéò ïðïßåò îåêéíÜåé åßíáé ðïëý ìéêñïò. Åðßóçò, ï áëãüñéèìïò ïìáäïðïßçóçò Ý÷åé ìüíï ìéá

ðáñÜìåôñï ðïõ ðñÝðåé íá ñõèìéóôåß áðü ôïí ÷ñÞóôç ç ïðïßá åßíáé ï åêôéìþìåíïò áñéèìüò

ôùí ãåéôüíùí áíÜ ïìÜäá.

11ï ÊåöÜëáéï

Óôï 11ï ÊåöÜëáéï ôçò äéáôñéâÞò ðáñïõóéÜæåôáé Ýíáò áëãüñéèìïò ìïíïäéÜóôáôçò ôïðéêÞò

åëá÷éóôïðïßçóçò (ãñáììéêÞò áíáæÞôçóçò), ï ïðïßïò åßíáé êáôÜëëçëïò ãéá ôç ìÝèïäï ôïðéêÞò

åëá÷éóôïðïßçóçò êáé óôá äõï ãåíéêÜ áëãïñéèìéêÜ ðëáßóéá. Ï áëãüñéèìïò áíÞêåé óôçí

êáôçãïñßá ôùí ìåèüäùí ìå ãñáììéêÞ áíáæÞôçóç. Ìðïñåß íá ÷ñçóéìïðïéÞóåé ïðïéáäÞðïôå

ðñïóÝããéóç ôïõ åóóéáíïý ðßíáêá (BFGS, DFP, ðñáãìáôéêü åóóéáíü) êáé åîáóöáëßæåé

åðáñêÞ ðôþóç óå êÜèå åðáíÜëçøç ìå ìéá ôñïðïðïßçóç ôïõ ãíùóôïý áëãïñßèìïõ ãñáììéêÞò

áíáæÞôçóçò ìå ïðéóèï÷þñçóç (backtracking line search).

Ç äéáöïñÜ ôïõ ðñïôåéíüìåíïõ áëãïñßèìïõ ãñáììéêÞò áíáæÞôçóçò Ýãêåéôáé óôï üôé,

ðñïóðáèåß íá åíôïðßóåé ôï êïíôéíüôåñï äõíáôü åëÜ÷éóôï óôï áñ÷éêü óçìåßï êáé ü÷é Ýíá

ôõ÷áßï åëÜ÷éóôï. ÓõãêåêñéìÝíá, ï áëãüñéèìïò ãñáììéêÞò áíáæÞôçóçò åðé÷åéñåß íá êáôáëÞîåé

óôï ßäéï åëÜ÷éóôï ðïõ èá êáôÝëçãå êáé ìïíïäéÜóôáôç áíáæÞôçóç ìå áðåéñïåëÜ÷éóôï âÞìá

êáôÜ ôçí áíôßèåôç äéåýèõíóç ôçò ðáñáãþãïõ. ÆçôÜìå ëïéðüí Ýíáí áëãüñéèìï ãñáììéêÞò

áíáæÞôçóçò ðïõ íá åîáóöáëßæåé áðüëõôç ðôþóç (strictly descent) Þ üðùò ôçí ðåñéãñÜöïõí

ïé Rinnoy-Kan êáé Timmer:

xk+1 = xk + �kpk; ìå �k ôÝôïéï

f(xk + �pk) ≤ f(xk + pk); ∀ 0 ≤ ≤ � ≤ �k

Ç áðáßôçóç áõôÞ åîõðçñåôïýóå ôéò èåùñçôéêÝò áðïäåßîåéò óôéò ðñùôïðüñåò åñãáóßåò ó÷åôéêÜ

ìå ôïõò áëãïñßèìïõò ïìáäïðïßçóçò. ÐÜñüëá áõôÜ Äåí Ý÷åé ðáñïõóéáóôåß óôç âéâëéïãñáößá,

êáìßá ìÝèïäïò ðïõ íá õëïðïéåß áõôÞí ôçí áðáßôçóç. Ôï ðáñáêÜôù ó÷Þìá, ðáñïõóéÜæåé

ôá áñ÷éêÜ êáé ôåëéêÜ óçìåßá ôïðéêþí åëá÷éóôïðïéÞóåùí áðü ïìïéüìïñöá ôõ÷áßá áñ÷éêÜ

óçìåßá, ÷ñçóéìïðïéþíôáò ìéá BFGS óôï áñéóôåñü ó÷Þìá êáé ôïí áëãüñéèìï ãñáììéêÞò

áíáæÞôçóçò ðïõ ðáñïõóéÜæåôáé óôï ÊåöÜëáéï 11 óôï äåîß ó÷Þìá:

xviii

Áðü ôá ðáñáðÜíù ó÷Þìáôá åßíáé ðñïöáíÝò üôé Ýíáò áëãüñéèìïò êáèïëéêÞò åëá÷éóôïðïßçóçò

ðïõ óôçñßæåôáé óôïí ïñéóìü ôçò ðåñéï÷Þò Ýëîçò (region o� attraction) êáé óôçí áðüóôáóç

ôùí áñ÷éêþí óçìåßùí ìå ôá åëÜ÷éóôá ðïõ êáôáëÞãïõí èá âáóéóôåß óå ðáñáðïéçìÝíåò

ðëçñïöïñßåò åÜí ÷ñçóéìïðïéÞóåé ôïðéêÞ áíáæÞôçóç ðïõ äåí åßíáé strictly descent. Ìå âÜóç

ëïéðüí ôçí ðáñáðÜíù ðáñáôÞñçóç êáé ôçí ðáñÜëëçëç áíÜðôõîç ðáñáëëáãþí ôïõ Ãåíéêïý

Áëãüñéèìïõ ÊáèïëéêÞò Åëá÷éóôïðïßçóçò (âë. Adapt), êñßèçêå åðéôáêôéêÞ ç áíÜãêç áíÜðôõîçò

åíüò áëãïñßèìïõ ðïõ áðü ôç ìéá èá åîáóöáëßæåé óýãêëéóç óôï êïíôéíüôåñï åëÜ÷éóôï êáé

áðü ôçí Üëëç èá åßíáé áðïäïôéêüò üðùò ïé êëáóóéêïß áëãüñéèìïé ãñáììéêÞò áíáæÞôçóçò.

Ï áëãüñéèìïò ãñáììéêÞò áíáæÞôçóçò ðïõ ðáñïõóéÜæåôáé óôï ðáñþí êåöÜëáéï, óå áíôßèåóç

ìå ôïí êëáóéêü áëãüñéèìï ïðéóèï÷þñçóçò, åðé÷åéñåß óôáäéáêÜ âÞìáôá ðñïò ôá åìðñüò. Ôá

âÞìáôá îåêéíÜíå áðü ôï ìéêñüôåñï äõíáôü êáé ìåãáëþíïõí óôáäéáêÜ ìÝ÷ñé åßôå íá öôÜóïõìå

óôï ìÝãéóôï âÞìá (=1), åßôå íá áñ÷ßóåé íá áõîÜíåôáé ç ôéìÞ ôçò óõíÜñôçóçò.

Ï áëãüñéèìïò óõãêñßíåôáé ðåéñáìáôéêÜ êáô' áñ÷Þí ãéá íá åëåã÷èåß ç áðïäïôéêüôçôÜ ôïõ,

äçëáäÞ ðüóï êïóôßæåé õðïëïãéóôéêÜ ìéá ôÝôïéá áðáßôçóç êáé êáôÜ äåýôåñïí ãéá íá ðñïâëçèåß

ç ÷ñçóéìüôçôá óôï ðëáßóéï åíüò áëãïñßèìïõ êáèïëéêÞò åëá÷éóôïðïßçóçò. Ôáõôü÷ñïíá,

ðñïôåßíåôáé ç ðáñáëëçëïðïßçóç ôïõ áëãïñßèìïõ ðïõ èá ìåßùíå ôï êüóôïò ôïõ.

12ï ÊåöÜëáéï

Óôï ôåëåõôáßï ÊåöÜëáéï ôçò äéáôñéâÞò ðáñïõóéÜæåôáé ìéá ìåëÝôç åíüò íÝïõ êñéôçñßïõ

ôåñìáôéóìïý ìå åöáñìïãÞ óå üëåò ôéò óôï÷áóôéêÝò ìåèüäïõò ìå äõï öÜóåéò êáé ÷ñÞóç

ïìáäïðïßçóçò. To êñéôÞñéï ôåñìáôéóìïý âáóßæåôáé óôçí õðüèåóç üôé êÜèå ôïðéêü åëÜ÷éóôï

Ý÷åé ôçí ßäéá ðéèáíüôçôá íá áíáêôçèåß áðü ìéá ôõ÷áßá ïìïéüìïñöç äåéãìáôïëçøßá, Þ áëëéþò

ïé ðåñéï÷Ýò Ýëîçò ãýñù áðü üëá ôá åëÜ÷éóôá Ý÷ïõí (ðåñßðïõ) ôï ßäéï ìÝãåèïò. Óßãïõñá

ç áðáßôçóç áõôÞ ìðïñåß íá öáßíåôáé ðïëý ðåñéïñéóôéêÞ. Óêïðüò, üìùò, ôùí ìåèüäùí

ïìáäïðïßçóçò åßíáé íá ìçí åðéôñÝðïõí ôçí åðáíáëçðôéêÞ åýñåóç ôùí ßäéùí åëá÷ßóôùí áíåîÜñôçôá

áðü ôï ìÝãåèïò ôùí ðåñéï÷þí Ýëîçò. Ìå ôïí ôñüðï áõôü üëá ôá åëÜ÷éóôá áíáêôþíôáé

ïìïéüìïñöá.

Ôï êñéôÞñéï ôåñìáôéóìïý ðñïÞëèå áðü ôï ðáñáêÜôù ðåßñáìá:

Áò õðïèÝóïõìå üôé Ý÷ïõìå Ýíá êïõôß ìå w äéáöïñåôéêÝò óöáßñåò, áñéèìçìÝíåò óõíå÷üìåíá

1; 2; : : : w. ÅðéëÝãïõìå ìéá óöáßñá ôõ÷áßá, óçìåéþíïõìå ôïí áñéèìü ôçò êáé ôçí ôïðïèåôïýìå

xix

óôï êïõôß. Áõôü èåùñåßôáé ìéá åðáíÜëçøç. Áí ï áñéèìüò ôçò óöáßñáò åìöáíßæåôáé ãéá

ðñþôç öïñÜ áõîÜíïõìå ôïí áñéèìü m ôùí äéáöïñåôéêþí ðïõ Ý÷ïõìå âñåé

Áò õðïèÝóïõìå üôé óôçí k åðáíÜëçøç, ç ðéèáíüôçôá m óöáßñåò (åëÜ÷éóôá) íá Ý÷ïõí

âñåèåß åßíáé p(k)m . Ôüôå, ç áíáìåíüìåíç ôéìÞ ôùí äéáöïñåôéêþí óöáéñþí èá äßíåôáé áðü:

< N >(k)=
k∑
i=1

i · p(k)i = p(k)1 + 2p(k)2 + · · ·+ kp(k)k

üðïõ ç ðïëý óçìáíôéêÞ ðéèáíüôçôá p(k)m èá õðïëïãßæåôáé áðü ôïí áíáäñïìéêü ôýðï:

p(k+1)
i = p�p

(k)
i + p�p

(k)
i−1

Ç ðáñáðÜíù áíáäñïìéêÞ ó÷Ýóç áíÜãåôáé óôï åîÞò: Ç ðéèáíüôçôá óôçí k+1 åðáíÜëçøç íá

Ý÷ïõí áíáêáëõöèåß i óöáßñåò óõó÷åôßæåôáé ìå

• ôçí ðéèáíüôçôá óôçí k åðáíÜëçøç íá Ý÷ïõí Þäç âñåèåß i äéáöïñåôéêÝò óöáßñåò êáé

óôçí åðüìåíç íá ìç âñåèåß êáìßá êáéíïýñãéá (êáé áõôü ìå ðéèáíüôçôá p�)

• ôçí ðéèáíüôçôá óôçí k åðáíÜëçøç íá Ý÷ïõí Þäç âñåèåß i−1 äéáöïñåôéêÝò óöáßñåò êáé

óôçí åðüìåíç íá âñåèåß ìßá áêüìá êáéíïýñãéá óöáßñá (êáé áõôü ìå ðéèáíüôçôá p�)

Ôï ðñüâëçìá ôþñá áíÜãåôáé óôïí êáèïñéóìü ôùí ðéèáíïôÞôùí p� êáé p�. Ìå ôçí õðüèåóç

üôé êÜèå óöáßñá ìðïñåß íá áíáêôçèåß ìå ßóç ðéèáíüôçôá ìå üëåò ôéò Üëëåò Ý÷ïõìå

H ðéèáíüôçôá íá åðéëÝîïõìå ìéá áðü ôéò i áíáêôçèåßóåò w óöáßñåò íá åßíáé p� = i
w
.

H ðéèáíüôçôá ìçí åðéëÝîïõìå ìéá êáéíïýñãéá óöáßñá p� = w−(i−1)
w

.

Áí óôçí ðáñáðÜíù áíÜëõóç èåùñÞóïõìå áíôß ãéá óöáßñåò ôïðéêÜ åëÜ÷éóôá êáé áíôéóôïé÷Þóïõìå

ôçí åðéëïãÞ ìå ôïðéêÞ åëá÷éóôïðïßçóç, ðñïêýðôåé üôé < N >(k) èá åßíáé ï áíáìåíüìåíïò

áñéèìüò ôïðéêþí åëá÷éóôïðïéÞóåùí. Ôï êñéôÞñéï ôåñìáôéóìïý èá ïñßæåôáé ìå âÜóç ôç

äéáêýìáíóç ôçò ðïóüôçôáò< N >(k) êáé ôïí ðñáãìáôéêü áñéèìü åëá÷éóôïðïéÞóåùí. ÄçëáäÞ,

êÜðïéá óôéãìÞ ðïõ äåí èá áíáêáëýðôïíôáé ðëÝïí åëÜ÷éóôá ç ðåéñáìáôéêÞ åêôßìçóç ôïõ

áñéèìïý ôùí ôïðéêþí åëá÷éóôïðïéÞóåùí èá ôáõôßæåôáé ìå ôç èåùñçôéêÞ < N >(k).

xx

Table of Contents

I Introduction 2

1 Introduction to Optimization 3

1.1 Mathematical formulation . 3

1.2 Continuous Versus Discrete Optimization 4

1.3 Constrained And Unconstrained Optimization 5

1.4 Global And Local Optimization . 6

1.5 Stochastic and Deterministic Optimization 6

1.6 Optimality Conditions . 6

1.6.1 Unconstrained Problems . 6

1.6.2 Constrained Problems . 7

1.7 Optimization Algorithms . 9

1.8 Parallel Computation . 10

1.8.1 Parallelizing local search . 11

II Local Optimization 13

2 Survey on Local Optimization 14

2.1 Classi�cation of Methods . 15

2.2 Direct Search Methods . 16

2.2.1 One dimensional minimization . 16

2.2.2 Multidimensional Optimization . 17

2.3 Methods that use the Gradient . 21

2.3.1 Steepest descent . 21

2.3.2 Conjugate gradient methods . 21

2.3.3 Quasi-Newton methods . 22

2.3.4 Line search for descent methods . 24

2.3.5 Trust Region . 26

2.3.6 Sum of squares problems . 27

2.4 Methods that use second derivatives . 28

2.4.1 Newton's Method . 28

2.5 Termination Criteria . 28

xxi

3 An algorithm for convex quadratic programming subject to bound con-

straints 30

3.1 Summary . 30

3.2 Introduction . 30

3.3 Solving the quadratic problem . 32

3.4 Other convex quadratic codes . 34

3.4.1 QPBOX . 35

3.4.2 QLD . 35

3.4.3 QUACAN . 35

3.5 Results of Numerical Experiments . 35

3.5.1 Random problems . 35

3.5.2 Circus Tent problem . 37

3.5.3 Biharmonic Equation problem . 38

3.5.4 Intensity Modulated Radiation Therapy 39

3.5.5 Support Vector Classi�cation . 39

3.6 Conclusions . 40

4 A Rectangular Trust Region Approach for Unconstrained and Bound

Constrained Nonlinear Optimization 50

4.1 Summary . 50

4.2 Introduction . 50

4.3 Trust Region Methods . 51

4.4 Dogleg approximate solution . 52

4.4.1 Experimental results . 54

4.5 Boxcqp exact solution . 58

4.5.1 Experimental results . 60

5 A Hybrid Local Search Method for Neural{Network Training 64

5.1 Introduction . 64

5.1.1 Problem Description . 64

5.1.2 Description of the algorithm . 66

5.1.3 Hessian Calculation . 68

5.2 Experimental results . 68

5.3 Conclusion . 70

6 Parallelizing derivatives 72

6.1 Summary . 72

6.2 Introduction . 72

6.3 Derivative formulae . 74

6.3.1 First order derivatives . 74

6.3.2 Second order derivatives . 75

6.4 Parallelization strategy . 77

xxii

6.5 User interface . 79

6.5.1 Naming conventions . 79

6.5.2 Common arguments . 80

6.5.3 Gradient calculation . 81

6.5.4 Jacobian calculation . 82

6.5.5 Hessian calculation . 82

6.6 Installation instructions and sample program 83

6.6.1 Installation instructions . 83

6.6.2 Sample program . 85

6.7 Performance results . 86

6.7.1 MPI{parallel . 87

6.7.2 OpenMP{parallel . 87

6.8 Test run description . 88

III Global Optimization 90

7 Survey on Stochastic Global Optimization 91

7.1 Introduction . 92

7.2 Random Search Methods . 92

7.2.1 Pure Random Search . 92

7.2.2 Random Search . 93

7.2.3 Pure Adaptive Search . 94

7.2.4 Adaptive Search . 94

7.2.5 Controlled Random Search (CRS) 95

7.3 Two-phase Methods . 96

7.3.1 Multistart . 97

7.3.2 Clustering Methods . 97

7.3.3 Multi Level Single Linkage . 102

7.3.4 Healed Topographical Multilevel Single Linkage 103

7.3.5 Random Linkage . 103

7.4 Simulated Annealing . 104

7.4.1 The Algorithm . 105

7.4.2 Practical Implementations . 106

7.5 Genetic Algorithms . 106

7.6 Particle Swarm Optimization . 109

7.6.1 Description and rationale . 109

8 Towards \Ideal Multistart" A stochastic approach for locating the min-

ima of a continuous function inside a bounded domain 111

8.1 Summary . 111

8.2 Introduction . 111

xxiii

8.3 Description of the Method . 114

8.3.1 Ideal Multistart . 114

8.3.2 Estimating the local search probability 116

8.3.3 Local search properties . 117

8.3.4 Asymptotic guaranty . 118

8.3.5 A model for �(z; l) . 120

8.3.6 The ADAPT Algorithm . 120

8.4 Experiments and Comparison . 123

8.5 A parallel scheme . 123

8.6 Conclusions and further Work . 125

9 Sampling from a Sum of Normal Distributions. An application to Global

Optimization 126

9.1 Introduction . 126

9.2 Global Optimization using Normal Distributions 126

9.3 Sampling . 127

9.4 Online Estimation of Normal Distribution parameters 131

9.5 Sampling as termination criterion . 134

9.6 Experimental results . 137

9.7 Conclusive remarks . 143

10 A Spectral Clustering Approach for Recovering Multiple Minima 144

10.1 Introduction . 144

10.2 Clustering techniques . 145

10.2.1 Hierarchical Clustering . 146

10.2.2 Partitional Clustering . 147

10.3 Clustering in Global Optimization . 148

10.3.1 Existing Algorithms . 148

10.4 A new Clustering Approach for Global Optimization 153

10.4.1 Step 1: Sampling methodology . 155

10.4.2 Step 2: Concentrate samples around minima 156

10.4.3 Step 3: Clustering . 156

10.5 The proposed algorithm . 167

10.6 Implementation and numerical experiments 170

11 A Local Search with \Strictly" Monotonic Descent and its Application

in Global Optimization 173

11.1 Introduction . 173

11.2 Motivation towards a new local search . 174

11.3 Description of the new local search . 176

11.3.1 Original idea . 177

11.3.2 Including gradient information . 180

xxiv

11.3.3 Accelerating: A way of choosing � 182

11.4 Experiments and comparison . 182

11.4.1 E�ciency vs. Cost . 183

11.4.2 The proposed search in a global framework 183

12 Stopping rules 188

12.1 Stopping rule for multistart-like algorithms 189

12.2 Widely used Stopping Rules . 190

12.2.1 Recent Stopping rules [85] . 190

12.3 Proposed stopping rule idea . 194

12.3.1 Setting up the problem . 195

12.3.2 Calculation of probabilities p(k)i . 195

12.3.3 An illustration of the criterion . 196

12.4 Experimental evaluation . 196

13 Appendix - Test Functions 200

13.1 Ackley's test function ([1]) . 200

13.2 Bird's test function ([104]) . 200

13.3 Bohachevsky 's test function ([15]) . 200

13.4 Carrom table test function ([104]) . 202

13.5 Giunta's test function ([54]) . 202

13.6 Griewank's test function ([63]) . 202

13.7 Guillin Hills's test function ([151]) . 204

13.8 Holder test function ([104]) . 204

13.9 Langermanns's test function ([122]) . 204

13.10Levy's 3rd test function ([88]) . 206

13.11Levy's 5th test function ([88]) . 206

13.12Liang's test function [90] . 206

13.13Piccioni's test function ([94]) . 208

13.14Rastrigin's test function ([130]) . 208

13.15Voglis's Test Function . 208

13.16Scha�er's Test Function ([104]) . 210

13.17Shubert's Test Function ([142]) . 210

13.18M0 Test Function ([142]) . 210

13.19M3 Test Function ([142]) . 212

13.20Siam Problem 4 Function ([143]) . 212

xxv

List of Figures

1.1 Geometrical representation of a general optimization problem 5

3.1 Circus tent problem. 38

3.2 On the left we show the acting force, on the right is the �nal shape of the

membrane. 38

3.3 Optimal separating classi�er. 39

3.4 Examples of SVM classi�cation. 41

3.5 Plot for act prob = 0:5 and ncond = 0:1 . 42

3.6 Plot for act prob = 0:5 and ncond = 1 . 42

3.7 Plot for act prob = 0:5 and ncond = 5 . 43

4.1 Dogleg path . 53

4.2 Our approach in Case 3 . 54

4.3 Bound handling . 56

6.1 Library's Programming Model . 79

6.2 Speedup for experiment E1 (N = 500) . 88

6.3 Speedup for experiment E2 (N = 20) . 88

6.4 OpenMP implementation speedup . 89

7.1 An illustration of Hessian information . 101

8.1 A point x that would lead to a new minimum y, is inside the overlap region

of the spheres around two recovered minima y1 and y2 117

8.2 Illustration of the modi�ed line search . 119

8.3 A suitable local search, with contiguous regions of attraction 120

8.4 An improper local search, with disjoint regions of attraction 121

8.5 Model plots for several l values . 121

9.1 Sampled points in two dimensional search space quasi-random and uniform

sequences . 129

9.2 Selecting a sampled point . 130

9.3 Sampling around a minimum in Six-Hump-Camel function using the pro-

posed and uniform distribution . 131

xxvi

9.4 Sampling around a minimum in Rastrigin function using the proposed and

uniform distribution . 132

9.5 On-line computation of � and Σ for a minimum at x∗ = [4; 0]T 134

9.6 Distribution of standard test functions . 136

10.1 Sampling 500 points . 156

10.2 Sampling 200 points, concentrating using a step on negative gradient . . . 157

10.3 Number of cluster estimation using spectral information, on a simple example159

10.4 A sample dataset . 160

10.5 Ackley's function 200 starting points well concentrated around minima . . 161

10.6 Using 2 neighbors for a�nity matrix (k = 44) 161

10.7 Using 3 neighbors for a�nity matrix (k = 30) 162

10.8 Using 4 neighbors for a�nity matrix (k = 25) 162

10.9 Using 5 neighbors for a�nity matrix (k = 25) 162

10.10Ackley's function 200 starting points. Slightly transformed sample 163

10.11Using 2 neighbors for a�nity matrix (k = 25) 163

10.12Using 3 neighbors for a�nity matrix (k = 25) 163

10.13Using 4 neighbors for a�nity matrix (k = 1) 164

10.14Using 5 neighbors for a�nity matrix (k = 1) 164

10.15Example of gradient association criterion 164

10.16A plot of pairwise a�nities between samples using Rastrigin's function . . 165

10.17A plot of pairwise a�nities between samples using Ackley's function 165

10.18Sorted eigenvalues of the a�nity matrix and the corresponding eigengap,

without gradient information . 166

10.19Sorted eigenvalues of the a�nity matrix and the corresponding eigengap

using the gradient information . 166

10.20Gradient vector plot of the concentrated sampled points 166

10.21Positional plot of the concentrated sampled points 167

10.22An illustration of our approach for Ackley's test function 170

10.23An illustration of our approach for random quadratics test function 171

11.1 Regions of attraction . 176

11.2 Contour plot of the gaussians around minima 177

11.3 The signi�cance of scaling factor min(1; max(1;|x|)
|s|) 178

11.4 Illustrative behavior of Version 1 . 180

11.5 Illustration of the gradient information . 182

12.1 Illustration of the approximation of the expected number to the real number

of minima . 197

13.1 Ackley's test function . 201

13.2 Birds's test function . 201

13.3 Bohachevsky's test function . 201

xxvii

13.4 Carrom table test function . 203

13.5 Giunta's test function . 203

13.6 Griewanks's test function . 203

13.7 Guillin Hills test function . 205

13.8 Holder-like test function . 205

13.9 Lagermanns's test function . 207

13.10Levy's No 3 test function . 207

13.11Levy's No 5 test function . 207

13.12Liangs's test function . 209

13.13Piccioni's test function . 209

13.14Rastrigin's test function . 209

13.15Voglis 's test function . 211

13.16Scha�er's test function . 211

13.17Shubert's test function . 211

13.18M0 test function . 213

13.19M3 test function . 213

13.20Siam Problem 4 test function . 213

xxviii

List of Tables

3.1 Random table results, act prob = 0:5; up low prob = 0:5 43

3.2 Random table results, act prob = 0:9; up low prob = 0:5 45

3.3 Random table results, act prob = 0:1; up low prob = 0:5 47

3.4 CPU times (secs). (N:C: No convergence) 49

4.1 Unconstrained case . 57

4.2 Constrained case (1) . 58

4.3 Constrained case (2) . 59

4.4 Unconstrained case . 61

4.5 Constrained case (1) . 62

4.6 Constrained case (2) . 63

5.1 Analytic Hessian calculation . 68

5.2 LRP: Minimum No 1 . 69

5.3 LRP: Minimum No 2 . 69

5.4 ZRP: Minimum No 1 . 69

5.5 ZRP: Minimum No 2 . 70

5.6 Comparative results for the More's test set 71

6.1 Relative errors in several example functions. 87

7.1 Simulated Annealing algorithms . 106

8.1 Adapt results using uniform random distribution 124

9.1 Results using Σi = 10−4I and constant learning rate 138

9.2 Results using Σi = 10−4I and variable learning rate 139

9.3 Results using Σ equal to the Hessian and constant learning rate 140

9.4 Results using Σ equal to the Hessian and variable learning rate 141

9.5 Comparison of Normal(50) for all possible con�gurations 142

11.1 Results for the armijo type backtracking line search 184

11.2 Results the proposed line search, � = 10, � = 1:1 184

11.3 Results the proposed line search, � = 20, � = 1:1 185

11.4 Results the proposed line search, � = 30, � = 1:1 185

11.5 Results the proposed line search, � = 10, � = 1:3 186

xxix

11.6 Results from density clustering global optimization algorithm 186

11.7 Results from typical distance clustering global optimization algorithm . . . 187

12.1 The MSE of the expected number of minima vs. the real minima found

and its variance . 197

12.2 Stopping rule results . 199

xxx

List of Algorithms

0.1 The proposed clustering method . viii

1.2 Newton / quasi-Newton framework . 12

2.3 The Golden Section method . 16

2.4 Brent's method . 17

2.5 Hooke and Jeeves method . 18

2.6 Roll algorithm . 19

4.7 Basic trust region . 52

4.8 DOGBOX . 55

5.9 Newton-like + Line Search Framework . 67

7.10 Pure Random Search (PRS) . 93

7.11 Random Search . 93

7.12 Pure Adaptive Search (PAS) . 94

7.13 Adaptive Search (AS) . 95

7.14 Controlled Random Search . 96

7.15 Multistart . 97

7.16 Density Clustering . 98

7.17 Single Linkage . 99

7.18 Typical Distance Clustering . 101

7.19 Hessian-based ISO-OCT Clustering . 102

7.20 Multi Level Single Linkage . 103

7.21 Healed Topographical Multi Level Single Linkage 104

7.22 Random Linkage . 104

7.23 Simulated Annealing . 106

9.24 Global optimization using sum of Normal Distributions 127

9.25 Rejection Sampling . 128

9.26 Inverse Rejection Sampling . 130

10.27General Clustering Algorithm . 145

10.28Clustering 1: Becker and Lago Algorithm 148

10.29Clustering 2: Torn's Algorithm . 149

10.30Clustering 3: Spircu's Algorithm . 150

10.31Clustering 4: Boender et al Algorithm . 151

10.32Clustering 5: Betro and Rotondi Algorithm 152

10.33Clustering 6: Timmer's Algorithm . 153

xxxi

10.34Clustering 7: Rotondi's Algorithm . 154

10.35The proposed method { Outline . 155

10.36Spectral Clustering . 158

10.37The calculation of � . 160

10.38Proposed clustering algorithm . 168

10.39Algorithm A�nity . 169

11.40In�nitesimal gradient descent . 175

11.41New local search: Version 1 . 179

11.42New local search: Version 2 with gradient information (Main Step) 181

11.43New local search: Version 3 choosing � (Initialize) 183

1

Part I

Introduction

2

Chapter 1

Introduction to Optimization

In recent years, the �eld of Optimization, has undergone a rapid development. This is

mainly due to the fact that optimization has found applications in many interesting areas

of science and technology, including molecular biology, imaging, digital signal processing,

portfolio management, networks and more. Another important factor that favored this

development is the tremendous growth in computing power that we have witnessed in our

times. Methods that were once considered inapplicable, due to the long CPU times they

required, nowadays may be common practice, since the CPU times may have dropped

a few orders of magnitude. Many di�erent methods have been designed to treat a host

of diverse classes of problems. For example we have continuous and discrete problems,

constrained and unconstrained, and so on so forth. There are a great many applications

that can be formulated as continuous optimization problems; for instance,

• �nding the optimal trajectory for an aircraft or a robot arm;

• identifying the seismic properties of a piece of the earths crust by �tting a model of

the region under study to a set of readings from a network of recording stations;

• designing a portfolio of investments to maximize expected return while maintaining

an acceptable level of risk;

• controlling a chemical process or a mechanical device to optimize performance or

meet standards of robustness;

• computing the optimal shape of an automobile or aircraft component;

• identifying parameters in machine learning problems

1.1 Mathematical formulation

Mathematically speaking, optimization is the minimization or maximization of a function

subject to constraints on its variables. We use the following notation:

3

x is the vector of variables, also called unknowns or parameters;

f is the objective function, a function of x that we want to maximize or minimize;

c is the vector of constraints that the unknowns must satisfy. This is a vector func-

tion of the variables x.The number of components in c is the number of individual

restrictions that we place on the variables.

The optimization problem may be stated as

min
x∈Rn

f(x) subject to x ∈ S (1.1)

where S is a compact subset or Rn. However in the optimization literature the set S is

preferably represented by two set of nonlinear (in general) functions. The �rst set imposes

equality and the second inequality constraints. Hence, the general optimization problem

is now transformed into:

min
x∈Rn

f(x) subject to

{
ci(x) = 0; i ∈ E ;
ci(x) ≥ 0; i ∈ I:

(1.2)

Here f and each ci are scalar-valued functions of the variables x, and I; E are sets of

indices. The set S = { x | ci(x) = 0; i ∈ E and ci(x) ≥ 0; i ∈ I} is known as feasible set.

As a simple example consider the problem

min
x∈Rn

(x1 − 2)2 + (x1 − 1)2 subject to

{
x21 − x2 ≤ 0;

x1 + x2 ≤ 2:
(1.3)

We can write the problem 1.3 in the form of 1.2 by de�ning

f(x) = (x1 − 2)2 + (x1 − 1)2; x = (x1; x2)
T

c(x) =

[
−x21 + x2
−x1 − x2 + 2

]
; I ∈ {1; 2}; E = {}

Figure 1.1 illustrates the contours of the function f(x) and also shows the feasible

region which is the set of points satisfying all the constraints (The \infeasible side" of the

inequality constraints is shaded).

1.2 Continuous Versus Discrete Optimization

The generic term discrete optimization usually refers to problems in which the solution

we seek is one of a number of objects in a �nite set. By contrast, continuous optimization

problems �nd a solution from an uncountably in�nite set o� typically a set of vectors

with real components. Continuous optimization problems are normally easier to solve,

because the smoothness of the functions makes it possible to use objective and constraint

4

Figure 1.1: Geometrical representation of a general optimization problem

information at a particular point x to deduce information about the functions behavior

at all points close to x. The same statement cannot be made about discrete problems,

where points that are \close" in some sense may have markedly di�erent function values.

Moreover, the set of possible solutions is too large to make an exhaustive search for the

best value in this �nite set. Some models contain variables that are allowed to vary

continuously and others that can attain only integer values; we refer to these as mixed

integer programming problems.

1.3 Constrained And Unconstrained Optimization

the objective function and constraints (linear, nonlinear, convex), the number of variables

(large or small), the smoothness of the functions (di�erentiable or non di�erentiable), and

so on. Possibly the most important distinction is between problems that have constraints

on the variables and those that do not. This book is divided into two parts according to

this classi�cation. Unconstrained optimization problems arise directly in many practical

applications. If there are natural constraints on the variables, it is sometimes safe to disre-

gard them and to assume that they have no e�ect on the optimal solution. Unconstrained

problems arise also as reformulations of constrained optimization problems, in which the

constraints are replaced by penalization terms in the objective function that have the ef-

fect of discouraging constraint violations. Constrained optimization problems arise from

models that include explicit constraints on the variables. These constraints may be sim-

ple bounds such as 0 ≤ x1 ≤ 100, more general linear constraints such as
∑

i xi ≤ 1, or

nonlinear inequalities that represent complex relationships among the variables.

5

1.4 Global And Local Optimization

The fastest optimization algorithms seek only a local solution, a point at which the ob-

jective function is smaller than at all other feasible points in its vicinity. They do not

always �nd the best of all such minima, that is, the global solution. Global solutions are

necessary (or at least highly desirable) in some applications, but they are usually di�cult

to identify and even more di�cult to locate. An important special case is convex program-

ming, in which all local solutions are also global solutions. Linear programming problems

fall in the category of convex programming. However, general nonlinear problems, both

constrained and unconstrained, may possess local solutions that are not global solutions.

1.5 Stochastic and Deterministic Optimization

Global optimization algorithms are usually broadly divided into deterministic and stochas-

tic. Deterministic methods provide a theoretical guarantee of locating the global mini-

mum, or at least a local minimum whose objective function value di�ers by at worst � from

the global one for a given � > 0. Stochastic methods only o�er a guarantee in probability.

On the other hand, stochastic methods are usually faster in locating a global optimum

than deterministic ones. Moreover, stochastic methods adapt better to black-box formu-

lations and extremely ill-behaved functions, whereas deterministic methods usually rest

on at least some theoretical assumptions about the problem formulation and its analyt-

ical properties. Comparisons between deterministic and stochastic global optimization

methods are scarce in the literature.

1.6 Optimality Conditions

In this section we provide the mathematical formulations for optimality conditions for

both constrained and unconstrained optimization problems. These conditions will be

continuously reference throughout this thesis.

1.6.1 Unconstrained Problems

The unconstrained optimization problem can be stated as:

min
x
f(x) x ∈ Rn (1.4)

We provide the necessary de�nitions of what is a minimum for problem in Eq 1.4.

De�nition 1.1. A point x∗ is a global minimizer if f(x∗) ≤ f(x) for all x ∈ RN .

De�nition 1.2. A point x∗ is a local minimizer if there is a neighborhood N of x∗ such

that f(x∗) ≤ f(x) for all x ∈ N .

6

De�nition 1.3. A point x∗ is a strict local minimizer (also called a strong local minimizer)

if there is a neighborhood N of x∗ such that f(x∗) < f(x) for all x ∈ N with x ̸= x∗.

De�nition 1.4. A point x∗ is an isolated local minimizer if there is a neighborhood N
of x∗ such that x∗ is the only local minimizer in N .

De�nition 1.5. We call x∗ a stationary point if ∇f(x∗) = 0.

In the following theorems we state the necessary and the su�cient conditions for

the existence of a local minimizer. Necessary conditions for optimality are derived by

assuming that x∗ is a local minimizer and then proving facts about ∇f(x∗) and ∇2f(x∗).

Theorem 1.1 (First order necessary conditions). If x∗ is a local minimizer and f is

continuously di�erentiable in an open neighborhood of x∗, then ∇f(x∗) = 0.

Theorem 1.2 (Second order necessary conditions). If x∗ is a local minimizer of f and

∇2f is continuous in an open neighborhood of x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is positive

semide�nite.

We now describe su�cient conditions, which are conditions on the derivatives of f at

a point x∗ that guarantee that x∗ is a local minimizer.

Theorem 1.3 (Second order su�cient conditions). Suppose that ∇2f is continuous in

an open neighborhood of x∗ and that ∇f(x∗) = 0 and ∇2f(x∗) is positive de�nite. Then

x∗ is a strict local minimizer of f .

Theorem 1.4. When f is convex, any local minimizer x∗ is a global minimizer of f . In

addition if f is di�erentiable, then any stationary point x∗ is a global minimizer of f .

1.6.2 Constrained Problems

Consider now the general problem of Eq 1.1 using the formulation of Eq 1.2. In this

Section we provide the mathematical characterizations of the solutions of Eq 1.2. Recall

that for the unconstrained optimization problem of previous Section, we characterized

solution points x∗ in the following way:

• Necessary conditions: Local minima of unconstrained problems have ∇f(x∗) = 0

and ∇f2(x∗) positive semide�nite.

• Su�cient conditions: Any point x∗ at which ∇f(x∗) = 0 and ∇2f(x∗) is positive

de�nite is a strong local minimizer of f .

Our aim in this chapter is to derive similar conditions to characterize the solutions of

constrained optimization problems.

De�nition 1.6. A vector x∗ is a local solution of the problem Eq 1.1 if x∗ ∈ S and there

is a neighborhood N of x∗ such that f(x∗) ≤ f(x) for x ∈ N ∩ S.

7

De�nition 1.7. A vector x∗ is a strict local solution (also called a strong local solution)

if x∗ ∈ S and there is a neighborhood N of x∗ such that f(x∗) < f(x) for all x ∈ N ∩ S
with x ̸= x∗.

De�nition 1.8. A point x∗ is an isolated local solution if x ∈ S and there is a neighbor-

hood N of x∗ such that x∗ is the only local minimizer in N ∩ S.

Using the formulation of Eq 1.2 we can now provide formal de�nitions for necessary

and su�cient optimality conditions.

De�nition 1.9. The Lagangian function for the constrained optimization problem of

Eq 1.2 is de�ned as:

L(x; �) = f(x)−
∑
i∈E∪I

�ici(x)

De�nition 1.10. The active set A(x) at any feasible point x is the union of the set E
with the indices of the active inequality constraints; A(x) = E ∪ {i ∈ I | ci(x) = 0}.

De�nition 1.11. Given the point x∗ and the active set A(x∗), we say that the linear

independence constraint quali�cation (LICQ) holds if the set of active constraint gradients

{∇ci(x∗); i ∈ A(x∗)} is linearly independent.

The above conditions allows us to state the following optimality conditions for a general

nonlinear programming problem of Eq 1.2. These conditions provide the foundation for

many of the algorithms presented in the bibliography. They are called �rst-orderconditions

because they concern themselves with properties of the gradients (�rst-derivative vectors)

of the objective and constraint functions.

Theorem 1.5. First-Order Necessary Conditions Suppose that x∗ is a local solution of

Eq 1.2 and that the LICQ holds at x∗ . Then there is a Lagrange multiplier vector �∗,

with components �∗i ; i ∈ E ∪ I, such that the following conditions are satis�ed at (x∗; �∗)

∇L(x∗; �∗) = 0; (1.5)

ci(x
∗) = 0; for all i ∈ E ; (1.6)

ci(x
∗) ≥ 0; for all i ∈ I; (1.7)

�∗i ≥ 0; for all i ∈ I; (1.8)

�∗i ci(x
∗) = 0; for all i ∈ E ∪mathcalI: (1.9)

The conditions described in Eq 1.5-1.9 are also known as Karush-Kuhn-Tucker condi-

tions, or KKT conditions for short.

In order to derive the Second Order Optimality Conditions for the general constrained

case we need some more de�nitions.

8

De�nition 1.12. Given a point x∗ and the active constraints set A(x∗), we de�ne the

set F1 as

F1 =

{
�d | � > 0;

dT∇ci(x∗) = 0; for all i ∈ E ;
dT∇ci(x∗) ≥ 0; for all i ∈ A(x∗) ∩ I

Note that F1 is the tangent cone to the feasible set at x
∗.

Given F1 from De�nition 1.12 and some Lagrange multiplier vector �∗ satisfying the

KKT conditions we de�ne a subset F2(�
∗) of F1 by

De�nition 1.13.

F2(�
∗) = {w ∈ F1 | ∇ci(x∗)Tw = 0; for all i ∈ A(x∗) ∩ I with �∗i > 0}

or alternativly

w ∈ F2(�
∗) ≡

∇ci(x∗)Tw = 0 for all i ∈ E ;
∇ci(x∗)Tw = 0 for all i ∈ A(x∗) ∩ I with �∗i > 0;

∇ci(x∗)Tw ≥ 0 for all i ∈ A(x∗) ∩ I with �∗i = 0:

The subset F2(�∗) contains the directions w that tend to the active inequality con-

straints for which the Lagrange multiplier component �∗ is positive, as well as to the

equality constraints.

Theorem 1.6 (Second-Order Necessary Conditions). Suppose that x∗ is a local solution of

problem of Eq 1.2 and that the LICQ condition is satis�ed. Let � be a Lagrange multiplier

vector such that the KKT conditions (Eqs 1.5-1.9) are satis�ed, and let F2(�∗) be de�ned

as above. Then

wT∇xxL(x∗; �∗)w ≥ 0; for all w ∈ F2(�∗): (1.10)

Theorem 1.7 (Second-Order Su�cient Conditions). Suppose that x∗ is a local solution of

problem of Eq 1.2 and that the LICQ condition is satis�ed. Let � be a Lagrange multiplier

vector such that the KKT conditions (Eqs 1.5-1.9) are satis�ed, and let F2(�∗) be de�ned

as above. Then

wT∇xxL(x∗; �∗)w > 0; for all w ∈ F2(�∗); w ̸= 0: (1.11)

1.7 Optimization Algorithms

Optimization algorithms are iterative. They begin with an initial guess of the optimal

values of the variables and generate a sequence of improved estimates until they reach

a solution. The strategy used to move from one iterate to the next distinguishes one

algorithm from another. Most strategies make use of the values of the objective function

f , the constraints c, and possibly the �rst and second derivatives of these functions.

Some algorithms accumulate information gathered at previous iterations, while others

9

use only local information from the current point. Regardless of these speci�cs (which

will receive plenty of attention in the rest of the book), all good algorithms should possess

the following properties:

• Robustness. They should perform well on a wide variety of problems in their class,

for all reasonable choices of the initial variables.

• E�ciency. They should not require too much computer time or storage.

• Accuracy. They should be able to identify a solution with precision, without being

overly sensitive to errors in the data or to the arithmetic rounding errors that occur

when the algorithm is implemented on a computer.

1.8 Parallel Computation

Parallel and distributed computation is having a signi�cant impact upon how large scale

scienti�c computation is performed. To solve the large numerical problems of interest to

scientists and engineers today, very powerful computers are necessary, and it appears that

many if not all of the most powerful scienti�c computers of the future (as well as at present)

will be parallel and distributed computers. To numerical computation researchers, one

of the most interesting aspects of the transition from sequential or vector computers to

parallel and distributed computers is that new algorithm development may be required

to use the new machines e�ciently.

Parallelism is of interest in optimization because many optimization problems are ex-

pensive to solve. To understand why this is so, one needs at least the following rudimen-

tary understanding of optimization algorithms. All algorithms for solving optimization

problems are iterative. Each iteration involves at least one evaluation of the nonlinear

functions (f(x) or ci(x)), and in many cases, of their �rst (and occasionally second) deriva-

tives. In addition, each iteration involves linear algebraic computations, which generally

require 0(n2) or O(n3) arithmetic operations in the case of problems with a small to mod-

erate (say less than 100) number of variables, and O(n) or O(n2) arithmetic operations

in the case of problems with a larger number of variables.

The main expenses in optimization algorithms, then, can come from at least four

possible sources:

1. The nonlinear functions, constraints, and/or derivatives may be expensive to eval-

uate.

2. The number of variables or constraints, and hence the cost of each iteration aside

from function and derivative evaluation, may be large.

3. Many evaluations of the objective function, constraints, or derivatives may be re-

quired.

10

4. Many iterations may be required.

These sources of computational expense in turn lead to three levels at which one

may consider introducing parallelism into an optimization algorithm, and which together

encompass the general possibilities for utilizing parallelism in optimization:

1. Parallelize the individual evaluations of the objective function, constraints, and/or

their derivatives.

2. Parallelize the linear algebra involved in each iteration.

3. Parallelize the optimization process at a high level, either to perform multiple func-

tion, constraint, and/or derivative evaluations on multiple processors concurrently,

and/or to reduce the total number of iterations required.

The �rst possibility of parallelization is the most common one, although each researcher

creates its own custom code and there is a lack of general purpose high performance code

in the literature. In this thesis we present such an implementation which takes fully ad-

vantage of modern parallel architectures. The second possibility, parallelizing the linear

algebraic calculations, may be the concern of optimization researchers if the linear algebra

is particular to optimization algorithms. Parallelizing the optimization process in a non-

linear optimization algorithm is likely to lead to a �coarse-grain� parallel algorithm. By

this we mean an algorithm where each processor performs a signi�cant amount of com-

putation in between each point where it communicates or synchronizes with other pro-

cessors. For example, if each processor performs at least one function evaluation between

communication points, and these function evaluations are even moderately expensive, a

coarse-grain parallel algorithm results. Such parallel algorithms are generally well suited

to MIMD computers, including shared memory multiprocessors, virtual shared memory

multiprocessors, distributed memory multiprocessors, and networks of computers used as

multiprocessors. A basic part of this thesis is the implementation of parallel algorithms

both for local and global optimization

1.8.1 Parallelizing local search

When the number of variables is not too large, say less than 500, unconstrained optimiza-

tion problems are generally solved either by approaches built around Newton�s method,

or by \quasi-Newton" methods. Approaches built around Newton�s method require the

nxn Hessian matrix ∇2f(x) of second partial derivatives of f(x) to be calculated at each

iteration, and the solution of an nxn system of linear equations involving this matrix at

each iteration. Since both of these requirements can be quite expensive, especially when

function and derivative evaluation is expensive or n is not very small, it is more common to

use quasi-Newton methods, which avoid these costs, to solve unconstrained optimization

problems with small to moderate numbers of variables. Quasi-Newton methods maintain

a rough approximation to the Hessian matrix, which is updated after each iteration using

information about the step and gradient values at that iteration.

11

The basic sketch of a Newton/quasi-Newton algorithm is presented bellow:

Algorithm 1.2 Newton / quasi-Newton framework

(1) Check the termination criteria in order to stop or not.

(2) Solve B(k)d(k) = −g(k) for d(k) (B(k) = ∇2f(x(k)) for Newton's method)

(3) Apply a selection method to obtain a better point x(k+1) (and calculate f(x(k+1)))

using d(k)

(4) Calculate the gradient vector g(k+1).

(5) Update B(k) to B(k+1) using a quasi-Newton formula.

The main opportunities for using parallelism in existing or new quasi-Newton methods

correspond to the three general uses of parallelism in optimization algorithms that were

mentioned in the previous Section.

• One can parallelize the individual evaluations of f(x) or ∇f(x) in steps (3) and (4)

above.

• One can parallelize the linear algebraic calculations in steps (2) and (4) above.

• One can perform multiple evaluations of f(x) or ∇f(x) concurrently, either within
the algorithmic framework above, or by devising new algorithms for step (3).

12

Part II

Local Optimization

13

Chapter 2

Survey on Local Optimization

There is a vast literature on local optimization methods. Excellent detailed descriptions

can be found in the books by Fletcher [40], Dennis & Schnabel [35], Gill, Murray & Wright

[53], Nash & Sofer [108] to name a few. Here we shall give a very brief introduction to

the subject of "Unconstrained Local Optimization" for reasons of self-containment. The

local optimization problem can be stated as:

Find x∗ ∈ Rn; such that: f(x∗) ≤ f(x); ∀x ∈ Dn (2.1)

where Dn ⊂ Rn is a small neighborhood around x∗. The necessary conditions at the

minimum are given by:

∇f(x∗) = 0; and ∇2f(x∗) ≥ 0labelneces (2.2)

while the su�cient conditions by:

∇f(x∗) = 0; and ∇2f(x∗) > 0 (2.3)

We refer to f(x) by the term objective function, and to he minimizing point x∗ by the

term minimizer. Often we may use the notation:

f ∗ = f(x∗); f (k) = f(x(k))

g(x) = ∇f(x); g(k) = g(x(k))

G(x) = ∇2f(x); G∗ = G(x∗); G(k) = G(x(k))

There is not a single optimization method appropriate for all problems. The choice of

the proper method is highly dependent on the problem itself. Hence in practice, given a

problem, it is important to have the ability to predict which method will perform well. To

develop such a predictive sense, the understanding of the underlying theory in addition

to experience acquired through usage, is required. Therefore, a classi�cation of methods

based on the theoretical speci�cs can be very useful.

14

2.1 Classi�cation of Methods

An obvious and meaningful way to classify optimization methods, is according to the

functional information they use, i.e. if they use function values, �rst derivatives, second

derivatives etc.

• There are methods that only use function values (Direct search methods). These

methods are usually appropriate for problems where the objective function is not

smooth or contains noise.

• Methods that in addition to function values, make use of the gradient vector are

proper for smooth objectives that are continuously di�erentiable. However the per-

formance of these methods may deteriorate, if the gradient is not analytically avail-

able and �nite di�erences are employed to estimate it numerically. In an e�ort to

overcome this di�culty, automatic di�erentiation methods, based on a generalized

chain{rule technique, have been developed [61]. These methods, accept as input the

code for the objective function and produce as output the code for its gradient. (No

�nite di�erencing is involved).

• Another type of methods are those that make use of higher derivatives. The most

popular are the ones based on Newton's method that employ the Hessian matrix, i.e.

the matrix of the second derivatives. Again these methods are proper for smooth and

twice continuously di�erentiable objective functions. Numerical estimation of the

Hessian may have disastrous e�ects on their performance. Automatic di�erentiation

methods are again applicable.

A di�erent classi�cation scheme may be based on the dimensionality of the problem.

Most methods are designed for small to medium sized problems. Large scale problems

need special treatment. While the theoretical background remains the same, practical

considerations, such as the ratio of the CPU times spent for the bookkeeping operations

and for evaluating the function, play an important role. Since large problems often lead

to large and sparse linear systems, iterative methods enter the picture to take advantage

of the sparsity structure. For large problems, it is not clear if solving the intermediate

subproblems exactly is worthwhile. In fact it has been observed, that if avoided at the

early stages of the procedure, signi�cant time savings may be obtained.

A common ingredient of many optimization algorithms is the \line{search" procedure,

i.e. a search along a direction in the n-dimensional space. This actually is a univariate

optimization procedure and plays an important role both in theory and in practice. One

then can divide the various multidimensional optimization methods in those that do per-

form line-searches and to those that do not. In reviewing the local optimization methods,

we will follow the classi�cation we mentioned �rst.

15

2.2 Direct Search Methods

There are various methods that belong to this class. We refer to [146] for an extended

survey. For a more recent exposition see the book by Bazaraa et al [5]. Here we briey

describe the \Hooke and Jeeves" method, the \Roll" method and the \Simplex" or \

Polytope" method. We proceed with a discussion of line-search methods without deriva-

tives, that are appropriate for use in conjunction with direct search methods.

2.2.1 One dimensional minimization

There are many methods serving this one-dimensional task. To name a few we mention

the Fibonacci search, the golden section search, and the quadratic interpolation. Given an

interval [a1; b1] that brackets a minimum, we will describe the Golden Section method and

a method due to Brent [19]. Both methods assume that the function inside the bracket

is unimodal.

The Golden Section method

Let � =
√
5−1
2
≈ 0:618 be the golden section ratio, and � > 0 be a tolerance for the bracket

width. The Golden section algorithm follows the steps:

Algorithm 2.3 The Golden Section method

1. Set: c1 = a1 + (1− �)(b1 − a1) and fc = f(c1)

d1 = b1 − (1− �)(b1 − a1) and fd = f(d1)

2. Loop for k = 1; 2; · · · until bk+1 − ak+1 < �

if fc < fd then

Set: ak+1 = ak; bk+1 = dk; dk+1 = ck
ck+1 = ak+1 + (1− �)(bk+1 − ak+1)

fd = fc; fc = f(ck+1)

else

Set: ak+1 = ck; bk+1 = bk; ck+1 = dk
dk+1 = bk+1 − (1− �)(bk+1 − ak+1)

fc = fd; fd = f(dk+1)

end if

end Loop

The method of Brent

Brent's method locates the minimum �, within a prescribed tolerance ". At every iteration

j the method keeps track of six points aj, bj, uj, vj, wj and �j, not necessarily distinct.

A minimum always lies in the interval [aj; bj].

16

• �j is the point with the least value of f .

• wj is the point with the next lowest value of f .

• vj is the previous value of wj, and uj is the last point at which f has been evaluated.

Initially v1 = w1 = �1 = a1 + 3−
√
5

2
(b1 − a1). The jth iteration is described below.

Brent's book [19] presents many algorithms for minimization without using derivatives.

Algorithm 2.4 Brent's method

(1) Test for termination. If max(�j − aj; bj − �j) ≤ 2" then return with �j as the

approximate position of the minimum.

(2) Calculate p, q, so that �j + p=q is the turning point of the parabola passing through

the points (vj; f(vj)), (wj; f(wj)) and (�j; f(�j)).

(3) Calculate the new point uj+1: Let e be the value of p=q at the second{last cycle. If

|e| ≤ ", q = 0, �j + p=q ̸∈ (a; b) or |p=q| ≥ |e|=2, then take a golden section step,

otherwise uj+1 is taken to be �j +
p
q
, except that the distances |uj+1−�j|, uj+1− aj

and bj − uj+1 must be at least ".

(4) Evaluate f at the new point uj+1.

(5) Update the points aj, bj, vj, wj and �j as necessary.

Hence, it would be extremely useful to anyone who deals frequently with problems that

are connected with non-smooth objective functions.

2.2.2 Multidimensional Optimization

The Hooke and Jeeves method

This method [72], performs two types of moves. One is of exploratory nature, while the

other is a pattern search. Initially, a base point b1 is chosen, along with steps si for the

corresponding parameters xi, and the function f(b1) is evaluated. Then a sequence of

exploration and pattern moves follow.

The Roll method

This method [114] also belongs to the class of pattern search methods. It proceeds by

exploring the local topology of the objective function and taking proper steps along each

direction separately. In that it resembles the obvious (and ad{hoc) alternating variables

method [40]. When however the correlation among the variables becomes important, this

procedure cannot proceed further. In order to cure this problem the method performs a

line search along a properly formed direction at the end of each cycle.

17

Algorithm 2.5 Hooke and Jeeves method

Exploration: The purpose of the exploratory phase is to acquire information about f(x)

around the current base point. This is described next.

1. Evaluate f(b1 + s1ê1), where êi is the unit vector along the i
th direction.

If this leads to a lower value, then

accept b1 + s1ê1 as the new base point and replace b1.

go to step 2

end if

Evaluate f(b1 − s1ê1)
If this leads to a lower value, then

accept b1 − s1ê1 as the new base point and replace b1.

go to step 2

end if

2. Repeat step 1 for the variable x2; x3; · · · ; xn, with steps s1; s2; · · · ; sn, and
arrive at a new base point b2 after at most 2n+ 1 function evaluations.

3. If b2 = b1, then

set hi =
1
2
hi ∀i = 1; 2; · · · ; n

If the steps are smaller than a preset limit, then

return b1 as the minimizer.

Terminate.

end if

go to step 1

else

Start a pattern search from b2

end if

Pattern Search: Pattern search attempts to take advantage of the information gathered

during the exploratory phase by constructing promising search directions. We detail

how a pattern move is made from base point b2.

1. Move to point p1 = b2 + (b2 − b1) = 2b2 − b1, and apply the exploratory

procedure around p1.

2. If the lowest function value is lower than f(b2), then

The corresponding point is the new base point b3.

Repeat the previous step with all indices increased by one.

else

Abandon the pattern move from b2 and apply a new sequence of

exploratory moves again from b2.

end if

18

Let xc = (xc1; x
c
2; : : : ; x

c
n)

T be the current point and fc = f(xc). Let also si be a step

associated with each variable xi, and a > 1 an acceleration factor. The algorithm executes

the following steps ∀i = 1; 2; · · · ; n

Algorithm 2.6 Roll algorithm

(1) Pick a trial point: xtj = xcj for all j ̸= i and xti = xci + si

(2) Calculate f+ = f(xt).

(3) if f+ < fc set x
c = xt; fc = f+ and si = asi. Then, go to step 8.

(4) if f+ ≥ fc pick another trial point as :

xtj = xcj for all j ̸= i and xti = xci − si

(5) Calculate f− = f(xt).

(6) if f− < fc set x
c = xt; fc = f− and si = −asi. Then, go to step 8.

(7) if f− ≥ fc calculate an appropriate step by: si = −1
2

(f+−f−)
(f++f−−2fc)

si.

(8) Proceed from step 1 for the next value of i.

After looping over all variables, a line search is performed in the direction s =

(s1; s2; : : : ; sn)
T .

This is the pattern move of the Roll method. The above procedure is repeated until a

termination criterion applies.

The Simplex method

This method should not be confused with the well known Simplex method of linear pro-

gramming. In contrast with the previously described direct search methods, this one

maintains not just one, but a population of points, a feature that turns out to be impor-

tant in cases where the objective function contains noise. Originally this algorithm was

designed by Spendley et al. [144] and was re�ned later by Nelder and Mead [109, 110].

A simplex (or Polytope) in Rn is a construct with (n + 1) vertexes de�ning a volume

element. For instance in two dimensions the simplex is a triangle, in three dimensions

it is a tetrahedron, and so on so forth. The input to the algorithm apart from a few

parameters of minor importance, is an initial simplex. The algorithm brings the simplex

in the area of a minimum, adapts it to the local geometry, and �nally shrinks it around

the minimizer. It is a derivative-free, iterative method that proceeds toward the minimum

using a population of n + 1 points (the simplex vertexes) and hence it is expected to be

tolerant to noise, in spite its deterministic nature. The method executes the following

steps (simplex vertexes are denoted by wi).

(1) Examine the termination criteria to decide whether to stop or not.

19

(2) Number the simplex vertexes wi, so that the sequence fi = f(wi) is sorted in as-

cending order.

(3) Calculate the centroid of the �rst n vertexes: c = 1
n
Σn−1
i=0 wi

(4) Invert the \worst" vertex wn as: r = c+ �(c−wn) (usually � = 1)

(5) If f0 ≤ f(r) ≤ fn−1 then

set wn = r; fn = f(r), and go to step 1

end if

(6) If f(r) < f0 then

Expand as: e = c+ (r − c) (> 1, usually = 2)

If f(e) < f(r) then

set wn = e; fn = f(e)

else

set wn = r; fn = f(r)

end if

go to step 1

end if

(7) If f(r) ≥ fn−1 then

If f(r) ≥ fn then

contract as: k = c+ �(wn − c), (� < 1, usually � = 1
2
)

else

contract as: k = c+ �(r − c)

end if

If f(k) < min{f(r); fn}, then
set wn = k; fn = f(k)

else

Shrink the whole Polytope as:

Set wi =
1
2
(w0 +wi); fi = f(wi) for i = 1; 2; : : : ; n

end if

go to step 1

end if

The initial simplex may be constructed in various ways. One approach is to pick for the

�rst vertex the current point and the rest of the vertexes by line searches originating from

the current point and heading along each of the n directions. The second approach picks

again for the �rst vertex the current point and generates the rest by taking a single step

along each of the n directions.

20

2.3 Methods that use the Gradient

These are the most widely used methods. In this class belong the method of Steepest

descent introduced by Cauchy, the method of Conjugate gradients (there are quite a few

variants) and most importantly the Quasi Newton or alias the Variable metric methods.

2.3.1 Steepest descent

This is the simplest of the methods that use gradient information. It is based on the

Taylor expansion: f(x + h) = f(x) + h · ∇f(x) + O(h2). For a step of given length

|h| the drop in the function's value f(x)− f(x + h) becomes maximum when the angle

between vectors h and ∇f(x) equals �. Hence given an initial point x(1) and a small

positive tolerance � for the gradient, the suggested algorithm is given by:

Loop for k = 1; 2; · · · until |∇f(x(k))| < �

Perform a line search along the direction: s(k) = −∇f(x(k))

and obtain so x(k+1)

End Loop

2.3.2 Conjugate gradient methods

These, as well as the Quasi Newton methods, are based on a quadratic model for the

objective function. In the neighborhood of point x we may expand:

f(x+ h) ≈ Q(h) = f(x) + hTg(x) +
1

2
hTG(x)h (2.4)

The conjugate gradient methods are creating conjugate directions that are linearly inde-

pendent and solve the quadratic problem (i.e. minimize Q(h) with respect to h). A set

of vectors si; i = 1; 2; · · · ; n is said to be mutually conjugate with respect to a positive

de�nite matrix G, if and only if:

sTkGsj = 0; ∀ k ̸= j (2.5)

Since G is assumed positive de�nite, then for k = j the above quantity is positive, for all

sj ̸= 0. The conjugate gradient methods rely on the fact that given a quadratic function

Q with positive de�nite Hessian matrix G, then the exact minimum may be found by

performing exact line searches along the directions si; i = 1; 2; · · · ; n that are mutually

conjugate with respect to G. The way these vectors are constructed is important. For

example the set of the Hessian eigenvectors form such a set. However diagonalizing the

Hessian matrix is not practical, since both the memory requirement and the computational

e�ort are excessive. The advantage of conjugate gradient methods is that they construct

these directions with minimal computational e�ort and without using the Hessian matrix

explicitly and so the memory requirement for storing an n × n matrix is relaxed. The

conjugate gradient methods are economical in computer memory since they require only

21

a few arrays of n{elements each. The backbone algorithm for the Fletcher{Reeves [42],

Polak{Ribiere [123] and Hestenes{Stiefel [69] methods is described below:

Initially given a point x(1) we set (1) = −g(1). The kth iteration consists of the

following steps:

(1) Perform a line search along (k) and obtain x(k+1).

(2) Check the termination criteria in order to stop or not.

(3) Calculate the gradient vector g(k+1).

(4) Calculate a scalar �(k) using one of the following prescriptions:

(a) Fletcher{Reeves: �(k) = g(k+1)T g(k+1)

g(k)T g(k)

(b) Polak{Ribiere: �(k) = (g(k+1)−g(k))
T
g(k+1)

g(k)T g(k)

(c) Hestenes{Stiefel: �(k) = (g(k+1)−g(k))
T
g(k+1)

(g(k+1)−g(k))
T (k)

(5) Calculate a new search direction as: (k+1) = −g(k+1) + �(k) (k)

A note must be made here in order to stress that the incorporated line search must be an

accurate one, otherwise the algorithm may converge in a slow rate. Among the variants

the one most widely used is that of Fletcher{Reeves. However there is evidence that the

Polak{Ribiere algorithm has an advantage. It has been argued that when s(k) becomes

almost orthogonal to g(k+1), then very little progress is made and the Polak{Ribiere �

becomes zero, hence reseting to the steepest descent direction, a fact that enhances its

performance. Conjugate gradient methods were used for large problems due to the fact

that require only a few vectors of n elements each. However nowadays the Limited Memory

Quasi Newton methods are preferred since they maintain low memory requirements and

have shown superior performance.

2.3.3 Quasi-Newton methods

These methods are also based on the quadratic model, eqn. (2.4), but unlike the conjugate

gradient methods, make explicit use of an n×nmatrixB. Minimizing the quadratic model

is equivalent to solving:

Gh = −g (2.6)

Quasi Newton (QN) methods, maintain a positive de�nite matrix B ≈ G that approxi-

mates the Hessian. This matrix is updated iteratively, in an attempt to o�er an improved

approximation at every iteration. So a slightly di�erent linear system is solved, namely:

B = −g (2.7)

The backbone algorithm for the quasi-Newton methods [40, 35, 53] is presented below. At

the start of the kth iteration a point x(k), the gradient g(k) and an approximation B(k) to

22

the Hessian matrix G(k) are available. A common initial choice is B(0) = I (the identity

matrix). The following steps are then executed:

(1) Check the termination criteria in order to stop or not.

(2) Solve B(k) (k) = −g(k) for (k).

(3) Apply a selection method to obtain a \better" point x(k+1).

(4) Calculate the gradient vector g(k+1).

(5) Update B(k) to B(k+1) using a quasi-Newton formula.

Steps 3 and 5 above need further elaboration.

In step 3, to obtain a \better" point either a line search is performed along the quasi-

Newton direction, or a trust region strategy is followed.

The line search determines a value � = �∗ so as to reduce the value of the function

f(x(k)+� (k)), according to the so called Wolfe{Powell [59, 161, 126] criteria. The new

point is then taken to be x(k+1) = x(k) + �∗ (k).

The trust region strategy minimizes with respect to h(k) the quadratic form:

q(h(k)) = f(x(k)) + g(k)Th(k) +
1

2
h(k)TB(k)h(k)

subject to: ∥h(k)∥ ≤ R(k), where R(k) is a properly chosen radius (the trust region radius)

so that the quadratic approximation is reliable. In this case the candidate point x(k)+h(k)

is either accepted, if it corresponds to a lower value, or rejected otherwise. The trust

region radius is then updated to R(k+1) in order to make the quadratic approximation

more trustworthy at the next iteration.

The updates in step 5 most widely used are the BFGS [39, 56, 20, 140] update and the

DFP [31, 41] update. Using the de�nitions: δ(k) = x(k+1) − x(k) and γ(k) = g(k+1) − g(k),

we can write down the update formulas (the iteration superscript (k) is dropped on the

right hand side).

The BFGS update is:

B(k+1) = B +
γγT

δTγ
− BδδTB

δTBδ
(2.8)

The DFP update is:

B(k+1) = B +

(
1 +

δTBδ

δTγ

)
γγT

δTγ
− γδTB +BδγT

δTγ
(2.9)

If the initial approximation B(0) is positive de�nite, the above updates maintain this

property. However due to roundo� error involved in the numerical procedure after a

number of cycles B may become inde�nite. To forbid this from happening, the B matrix

is factorized in a way that guarantees its positive de�niteness even in the presence of

roundo� error, and then update equivalently the factors at every iteration. Among others,

23

the Cholesky B = LLT [35] and the Goldfarb{Idnani [57] ZTBZ = I factorizations are

the ones most frequently employed in the literature.

The update formulas 2.8 and 2.9 share the interesting property of duality. If one sets

H = B−1 then the equivalent updates to H can be obtained from the update formulas

for B, using the Sherman{Morrison{Woodbury rule.

(B + uvT)−1 = B−1 − B−1uvTB−1

1 + vTB−1u
(2.10)

where B is a non-singular n× n matrix, u;v ∈ Rn, and 1 + vTB−1u ̸= 0.

The DFP update is:

H (k+1) = H +
δδT

γTδ
− HγγTH

γTHγ
(2.11)

The BFGS update is:

H(k+1) = H +

(
1 +

γTHγ

γTδ

)
δδT

γTδ
− δγTH +HγδT

γTδ
(2.12)

Note that the BFGS update for H can be obtained from the DFP update for B by

interchanging γ with δ and similarly the DFP update for H can be obtained from the

BFGS update for B, via the same interchange. In that sense the BFGS and the DFP

updates are called dual. In practice both the B and the H updates have been used

successfully. There is an advantage to use the B update when one wishes to treat some

of the problem parameters as constants, since then the obvious dimensional reduction

is easily implemented. If factorization techniques are not used, (a bad choice, since the

code will not be robust) the H update has a edge, since it only requires a matrix-vector

multiplication and not the solution of a linear system of equations.

2.3.4 Line search for descent methods

Line searches are used in quasi-Newton and conjugate gradient methods. The idea of

a line search algorithm is simple: given a descent direction s(k), we take a step �(k)

in that direction, that yields an acceptable next iterate. For convenience we denote

f(�) ≡ f(x(k) + �(k)s(k)) and f ′(�) ≡ s(k)
T
g(k)(x(k) + �(k)s(k)). Descent methods are

known to converge [59, 161, 126] when � is chosen to satisfy the weak Wolfe{Powell

conditions:

f(�) ≤ f(0) + ��f ′(0) (2.13)

and

f ′(�) ≥ �f ′(0) (2.14)

where � ∈ (0; 1
2
) and � ∈ (�; 1). In practice, we prefer to use the more stringent test

|f ′(�)| ≤ −�f ′(0) (2.15)

in place of eqn. (2.14), which along with Eq. (2.13) are called the strong Wolfe{Powell

conditions.

24

We describe a line search algorithm which uses a sectioning scheme and that mainly

follows Al{Baali and Fletcher [2]. In the sectioning scheme, sequences aj, bj, �j are

generated. aj is always the current best point (least f) that satis�es Eq. (2.13) but

neither Eq. (2.14) nor (Eq. 2.15). �j is the current trial point. bj either fails to satisfy Eq.

2.13, or f(bj) ≥ f(aj), or both. However the interval (aj; bj) will always bracket either an

interval of acceptable points, or points for which f(�) ≤ f , with f being a lower bound

on f .

The line search is initialized with a1 = 0, b1 = ∞, f ≤ f(0) and an estimation for

�1 > 0. The jth iteration is given below:

(1) Evaluate f(�j)

(2) If f(�j) ≤ f then terminate

(3) If f(�j) > f(0) + �j�f
′(0) or f(�j) ≥ f(aj) then

Choose �j+1 ∈ T (aj; �j) using either a quadratic interpolating f(aj), f
′(aj)

and f(�j), or a cubic interpolating f(aj), f
′(a), f(�j) and f(bj).

Set aj+1 = aj, bj+1 = �j.

else

Evaluate f ′(�j)

Test for termination. For the weak Wolfe{Powell conditions use Eq. (2.14),

otherwise use Eq. (2.15).

Set aj+1 = �j

If (bj − aj)f ′(�j) < 0 then

Choose �j+1 ∈ E(aj; �j; bj) using a cubic interpolating either f(aj), f ′(aj),

f(�j) f
′(�j), or f(aj), f(bj), f(�j), f

′(�j).

Set bj+1 = bj

else

Choose �j+1 ∈ T (aj; �j) using a cubic that interpolates f(aj), f ′(aj), f(�j),

f ′(�j).

Set bj+1 = aj

end if

end if

When interpolating, we use the truncation scheme de�ned by

T (a; b) =

{
[a+ �1(b− a); b− �2(b− a)] if a < b

[b+ �2(a− b); a− �1(a− b)] if b < a
(2.16)

25

where 0 < �1 ≤ �2 ≤ 1
2
. When extrapolating, we de�ne

E(a; �; b) =

[min(�3; �);min(�4; �)] if a < � < b =∞
[�+ �5(b− a); b− �6(b− a)] if a < � < b

[b+ �6(a− b); �− �5(a− b)] if b < � < a

(2.17)

where 1 < �3 ≤ �4 and 0 < �5 ≤ �6 ≤ 1
2
.

2.3.5 Trust Region

The dogleg technique

Given a quadratic model:

f(x+ h) ≈ q(h) = f(x) + hT∇f(x) + 1

2
hT∇2f(x)h = f(x) + hTg +

1

2
hTGh

the problem:

min
h
{q(h)} subject to: ∥h∥ ≤ R

is solved approximately by the following technique termed by Powell as the dogleg method

[124]. This is one way to approximately solve the above constrained optimization problem

inside the trust region de�ned by its radius R. Two points are calculated. The Cauchy

point xc = x + hc and the Newton point: xN = x + hN . The Cauchy point is the

minimum along the gradient direction, i.e. hc = −�g with � = gT g
gTGg

, while the Newton

step is given by: hN = −G−1g. If ∥hN∥ ≤ R the Newton point is taken as the next trial

iterate. Otherwise the �rst point where the piecewise linear trajectory: x → xc → xN

intersects the sphere of radius R centered at x, is taken as the next trial iterate.

Dennis & Mei [34] proposed a similar procedure termed double dogleg, that de�nes

another point xD = x+ hD with:

hD = �hN ; � = 0:8 + 0:2; and =
(gT g)2

(gTGg)(gTG−1g)

and a modi�ed trajectory: x→ xc → xD → xN .

The updating scheme of the trust region radius is given below:

(1) Calculate the ratio of the actual to the expected reduction: r(k) = f (k)−f (k+1)

f (k)−q(h(k))
, where

f (k) stands for f(x(k)) and f (k+1) = f(x(k) + h(k)).

(2) Accept or reject the trial point according to:

If r(k) ≤ 0 then

x(k+1) = x(k); f (k+1) = f (k)

else

x(k+1) = x(k) + h(k)

end if

26

(3) if r(k) < 0:25 then

R(k+1) = ∥h(k)∥=4
else if r(k) > 0:75 and ∥h(k)∥ = R(k) then

R(k+1) = 2R(k)

else

R(k+1) = R(k)

end if

2.3.6 Sum of squares problems

Levenberg{Marquardt method for sum of squares

For the case where the objective function is a sum of squares, i.e.

f(x) =
M∑
i=1

f2
i (x) ≡ r(x)Tr(x)

with rT (x) = (f1(x); f2(x); : : : ; fM(x))T , a special method has been proposed �rst by

Levenberg [87] and later on by Marquardt [100]. Let J be the Jacobian matrix @fi(x)
@xj

and

let D be a diagonal matrix. The quadratic approximation to f(x+ h) is given by:

q(h) = f(x) + gT (x)h+
1

2
hTB(x)h

and is being minimized under the condition ∥Dh∥ ≤ R, where R is the radius of the trust

region. The trust region in this case is a hyper{ellipsoid with semi{axis lengths R=Dii.

Since g = 2JTr and if the Gauss{Newton approximation is made i.e. B(x) ≈ 2JTJ , we

get using the Lagrange multiplier procedure:

[JTJ + �DTD]h = −JTr or h(�) = −[JTJ + �DTD]−1JTr

Initially we set D(0)
ii = ∥@r(x

(0))
@xi
∥ ∀ i = 1; 2; : : : ; N . The kth iteration of the algorithm is

as:

(1) If ∥D(k)h(k)(0)∥ ≤ R(k) then

Set δ(k) = h(k)(0)

else

�nd a �(k) > 0 such that ∥D(k)h(k)(�(k))∥ = R(k)

Set δ(k) = h(k)(�(k))

end if

If f(x(k) + δ(k)) < f(x(k)) then

Set x(k+1) = x(k) + δ(k), and calculate J (k+1)

else

Set x(k+1) = x(k) and J (k+1) = J (k)

end if

27

(2) Update R(k) to R(k+1) (the algorithm is similar to the one described for the dogleg

case).

(3) Choose D(k+1) as:

D
(k+1)
ii = max

{
D

(k)
ii ; ∥

@r(x(k+1))
@xi

∥
}
∀ i = 1; 2; : : : ; N

A very robust implementation of the above is described by Mor�e [105].

2.4 Methods that use second derivatives

2.4.1 Newton's Method

The idea behind Newton's method is the basis of many algorithms. Again the quadratic

model 2.4 is employed and under the assumption that the initial point is near the min-

imum, i.e. |h| = |x∗ − x(0)| is small, we may determine h by solving the linear system

Gh = −g. The algorithm is similar to the one described for the Quasi-Newton meth-

ods, replacing however the updates to the B matrix with the calculation of the Hessian

matrix G. While G is positive de�nite the above procedure is stable, however G may

become singular or inde�nite, in which case the above algorithm has to be modi�ed to

be operational. Many alternatives have been suggested in the literature under the name

Modi�ed Newton methods, [60],[58]. However the method by Gill and Murray [52], seems

to perform better. Their method uses an LDLT Cholesky factorization for the Hessian,

where L is a lower triangular matrix with all diagonal elements equal to one. This is

possible when G is positive de�nite. When G is inde�nite or singular, then a diagonal

matrix is added to G suitably to ensure positive de�niteness, and this modi�ed G is

factorized. The resulting linear system is then solved taking advantage of the existing

factors. This method attains quadratic convergence near the minimum, a very desirable

feature. A disadvantage of the method is the usually expensive calculation of the Hessian

and its factorization at every iteration.

2.5 Termination Criteria

The issue when to terminate an algorithm, and therefore regard the current point as a

minimizer, is important. Ideally the necessary conditions alone (??), could dictate the

termination. However in practice, this will not work most of the time. For one thing,

the gradient will very rarely if ever, become exactly equal to zero, due to the rounding

errors that prevent exact arithmetic. In addition the optimality conditions (??), assume

that the objective function is twice continuously di�erentiable, which actually may not

be the case. Hence practical termination criteria had to be developed that deviate from

the ideally expected. An obvious modi�cation that has been frequently employed is:

|∇f(x)| ≤ �

28

where � is a small positive number. This rule is not scale invariant and hence is not

recommended for general use. Some other rules, that can be used in combination are

listed.

|x(k) − x(k−1)||∇f(x(k))| ≤ � (scale invariant)

|x(k) − x(k−1)| ≤ � (1 + |x(k)|)
f(x(k−1))− f(x(k)) ≤ � max(|f(x(k))|; |f(x(k−1))|)

For the Simplex method, an appropriate termination criterion is based upon:

1

n+ 1

n∑
i=0

|fi − f̄ | ≤ �

where, f̄ =
1

n+ 1

n∑
i=0

fi

The tolerances (all denoted above by �), should be chosen with care and taking in account

the accuracy of the calculations. Additional checks may be performed to establish the

quality of the approximate minimizer and possibly improve it, after the minimization

algorithm has come to an end.

29

Chapter 3

An algorithm for convex quadratic

programming subject to bound

constraints

3.1 Summary

We present an algorithm for solving a quadratic programming problem with positive

de�nite Hessian and bound constraints, that employs a Lagrange multiplier approach.

The proposed method falls in the category of active set techniques. The algorithm, at

each iteration, modi�es the minimization parameters both in the primal space and in

the dual space (Lagrange multipliers). The method may be pro�tably used on a number

of problems from the �elds of Physics, Chemistry, Computer Science and Engineering.

Comparative results of numerical experiments are reported demonstrating the advantages

of the proposed approach.

3.2 Introduction

The problem of minimizing a convex quadratic function subject to bound constraints

appears quite frequently in applications. For instance, many problems in computational

physics and engineering, are reduced to quadratic programming problems. Portfolio man-

agement can also be formulated as quadratic programming problem [120]. In the �eld

of Arti�cial Intelligence, and especially in Support Vector Machines (SVM) an e�cient

quadratic solver is crucial for the training process [64, 113]. Also methods for calculating

the radiation intensity in oncology treatment are formulated as quadratic optimization

problems [18]. In Physics, Chemistry and Engineering, the resulting optimization prob-

lems are most often highly non-linear. Iterative optimization methods, model the objective

function by truncating its Taylor expansion up to and including the quadratic term. Solv-

ing e�ciently the recurring quadratic problems is crucial for the overall performance of

30

the optimization procedure. In Section 2.3.5 we present the role of the proposed method

in the general setting of Sequential Quadratic Programming methods for non-linear pro-

gramming. To be more speci�c Quasi-Newton (BFGS, DFP, SR1) or modi�ed Newton

methods that are among the most important non-linear optimizers, are implemented in

the framework of trust region methods that require the solution of a quadratic problem

at each iteration. The Quadratic Programming problem with simple bounds is stated as:

q(x) = min
x

1

2
xTBx+ xTd; (3.1)

subject to: ai ≤ xi ≤ bi;∀i ∈ I = {1; 2; · · · ; n}

where x; d ∈ Rn and B is a symmetric, positive de�nite n× n matrix.

For the problem in Eq. (3.1) two major strategies exist in the literature, both of which

require feasible steps to be taken.

The �rst one is the Active Set strategy [53, 40, 8] which generates iterates on a face of

the feasible box until either a minimizer of the objective function is found or a point on

the boundary of that face is reached. The basic disadvantage of this approach, especially

in the large-scale case, is that constraints are added or removed one at a time, thus

requiring a number of iterations proportional to the problem size. To overcome this,

gradient projection methods [28, 8] were proposed. In that framework the active set

algorithm is allowed to add or remove many constraints per iteration.

The second strategy [164, 66, 26] consists in treating the inequality constraints using

interior point algorithms. In brief, an interior point algorithm consists of adding a series of

parameterized barrier functions which are minimized using Newton's method. The major

computational cost is due to the solution of a linear system, which provides a feasible

search direction. Recently, D' Apuzzo et. al. [29] presented a parallel implementation of

an interior-point method for box-constrained quadratic programming.

In the present article we propose an infeasible active set algorithm, which generates a

�nite number of iterations that are not necessarily descent. In each step we maintain the

�rst order optimality condition along with the complementarity constraint, until primal

and dual feasibility hold. Two closely related methods in the literature are the Projected

Newton method [7] and the infeasible method of Kunisch and Rendl [80] that treats only

upper bounds. In the �rst case the �rst order optimality condition is satis�ed, primal

feasibility is maintained throughout the iterations and a line search scheme is applied to

guarantee convergence. In the second case the new iterate is uniquely determined by the

active set. Hence note that the problem may be solved in at most 2n iterations1. We

recognize that bound constraints are a very special case of linear inequalities, which may

in general have the form Ax ≥ b, A being an m × n matrix and b is a vector ∈ Rm.

Our investigation is also motivated by the fact that in the convex case, and under certain

conditions a problem subject to inequality constraints can be transformed to a bound

12n is the number of all possible active sets

31

constrained one, using duality, i.e.:

min
x∈Rn

1

2
xTBx+ xTd (3.2)

subject to: Ax ≥ b

is equivalent to the dual:

max
y∈Rm

−1

2
yT B̃y + yT d̃ (3.3)

subject to: y ≥ 0

where B̃ = AB−1AT a positive de�nite matrix and d̃ = AB−1d+ b. The dual problem in

Eq. (3.3) is also a quadratic problem subject to bounds. Let y∗ be the solution of the dual

problem. We can then obtain, under certain circumstances, the solution to the initial

problem of Eq. (3.2) as:

x∗ = B−1(ATy∗ − d) (3.4)

The paper is organized as follows. The proposed algorithm is described in Section 3.3.

In Section 3.4 we briey present three di�erent competing quadratic programming codes

and comparison on �ve di�erent test problem types is performed in Section 3.5. Finally, in

Section 2.3.5 we present a trust region approach for nonlinear bound constrained problems

that takes full advantage of the present quadratic programming method.

3.3 Solving the quadratic problem

For the problem in Eq. (3.1), we construct the associated Lagrangian:

L(x; �; �) =
1

2
xTBx+ xTd− �T (x− a)− �T (b− x) (3.5)

The KKT necessary conditions at the minimum x∗; �∗; �∗ ∈ Rn require that:

Bx∗ + d− �∗ + �∗ = 0

�∗i ≥ 0; �∗
i ≥ 0; ∀i ∈ I

�∗i (x
∗
i − ai) = 0; ∀i ∈ I (3.6)

�∗
i (bi − x∗i) = 0; ∀i ∈ I
x∗i ∈ [ai; bi]; ∀i ∈ I

A solution to the above system (3.6), can be obtained through an active set strategy

described in detail in Algorithm 1:

32

Algorithm 1 BOXCQP

Initially set: k = 0, �(0) = �(0) = 0 and x(0) = −B−1d.

If x(0) is feasible, Stop, the solution is: x∗ = x(0).

At iteration k, the quantities x(k); �(k); �(k) are available.

1. De�ne the sets:

L(k) = {i : x(k)i < ai; or x(k)i = ai and �(k)i ≥ 0}
U (k) = {i : x(k)i > bi; or x(k)i = bi and �(k)

i ≥ 0}
S(k) = {i : ai < x(k)i < bi; or x(k)i = ai and �(k)i < 0;

or x(k)i = bi and �(k)
i < 0}

Note that L(k) ∪ U (k) ∪ S(k) = I

2. Set:

x(k+1)
i = ai; �

(k+1)
i = 0; ∀i ∈ L(k)

x(k+1)
i = bi; �

(k+1)
i = 0; ∀i ∈ U (k)

�(k+1)
i = 0; �(k+1)

i = 0; ∀i ∈ S(k)

3. Solve:

Bx(k+1) + d = �(k+1) − �(k+1)

for the n unknowns:

x(k+1)
i ; ∀i ∈ S(k)

�(k+1)
i ; ∀i ∈ U (k)

�(k+1)
i ; ∀i ∈ L(k)

4. Check if the new point is a solution and decide to either stop or iterate.

If (x(k+1)
i ∈ [ai; bi] ∀i ∈ S(k) and �(k+1)

i ≥ 0; ∀i ∈ U (k)

and �(k+1)
i ≥ 0; ∀i ∈ L(k)) Then

Stop, the solution is: x∗ = x(k+1).

Else

set k ← k + 1 and iterate from Step 1.

Endif

The solution of the linear system in Step 3 of Algorithm 3.3, needs further considera-

tion. Let us rewrite the system in a componentwise fashion.

33

∑
j∈I

Bijx
(k+1)
j + di = �(k+1)

i − �(k+1)
i ; ∀i ∈ I (3.7)

Since ∀i ∈ S(k) we have that �(k+1)
i = �(k+1)

i = 0, hence we can calculate x(k+1)
i ; ∀i ∈ S(k)

by splitting the sum in Eq. (3.7) and taking into account Step 2 of the algorithm, i.e.:∑
j∈S(k)

Bijx
(k+1)
j = −

∑
j∈L(k)

Bijaj −
∑
j∈U(k)

Bijbj − di; ∀i ∈ S(k) (3.8)

The submatrix Bij; with i; j ∈ S(k) is positive de�nite as can be readily veri�ed, given

that the full matrix B is. The calculation of �(k+1)
i ; ∀i ∈ L(k) and of �(k+1)

i ; ∀i ∈ U (k) is

straightforward and is given by:

�(k+1)
i =

∑
j∈I

Bijx
(k+1)
j + di; ∀i ∈ L(k) (3.9)

�(k+1)
i = −

∑
j∈I

Bijx
(k+1)
j − di; ∀i ∈ U (k) (3.10)

Convergence analysis in the line of Kunisch and Rendl [80] may be followed also for our

method. We numerically tested cases with thousands of variables and a wide spectra for

the condition number of B ranging from 1:259 to 105. When B becomes nearly singular,

then oscillation occurs as expected. (Note that for such cases the linear system Bx = −d
is ill conditioned). At this point corrective measures may be taken.

The main computational task of the algorithm above, is the solution of the linear

system in Step 3. The size of the system may vary according to the size of the active set

in each iteration. In our implementation we solve the linear system using either using a

direct solver via Cholesky decomposition (Variant 1) or the conjugate gradient method

(without any preconditioning) (Variant 2). We also provide the option to initially use an

inaccurate-inexpensive conjugate gradient search to obtain a starting point, and then to

switch back to Cholesky decomposition (Variant 3).

3.4 Other convex quadratic codes

There exist several Quadratic Programming codes in the literature. We have chosen

to compare with three of them, speci�cally with QPBOX, QLD and QUACAN. These

codes share several common features so that the comparison is both meaningful and fair.

All codes are written in the same language (FORTRAN 77) so that di�erent language

overheads are eliminated. Also they are written by leading experts int he �eld of Quadratic

Programming, so that their quality is guaranteed. Notice also that all codes are speci�c

to the problem, and not of general purpose nature and are distributed freely through the

World Wide Web, at the moment of this writing.

34

3.4.1 QPBOX

QPBOX [97] is a Fortran77 package for box constrained quadratic programs developed at

IMM of the Technical University of Denmark. The bound constrained quadratic program

is solved via a dual problem, which is the minimization of an unbounded, piecewise

quadratic function. The dual problem involves a lower bound of �1, i.e the smallest

eigenvalue of a symmetric, positive de�nite matrix, and is solved by Newton iteration

with line search. (Downloadable from http://www2.imm.dtu.dk/~hbn/Software/).

3.4.2 QLD

This program [136] is due to K.Schittkowski of the University of Bayreuth, Germany

and is a modi�cation of code due to MJD Powell of the University of Cambridge. It

is essentially an active set, interior point method and supports general linear constraints

too.(Downloadable from http://siconos.gforge.inria.fr/Documentation/Numerics_Doxygen/

ql0001_8f-source.html).

3.4.3 QUACAN

This program combines conjugate gradients and gradient projection techniques, as in

the algorithm of Mor�e J.J. and Toraldo G. (1991). QUACAN [49] is specialized for

convex problems subject to simple bounds. (Downloadable from http://search.cpan.org/

src/ELLIPSE/PDL-Opt-NonLinear-0.02/opti_lib/box9903.f).

3.5 Results of Numerical Experiments

To verify the e�ectiveness of the proposed approach we experimented with �ve di�erent

problem types, and measured cpu times to make a comparison possible. We have imple-

mented BOXCQP in Fortan 77 and used a 64-bit AMD Opteron processor with Linux

operating system and the GNU g77 FORTRAN compiler.

In the subsections that follow we describe in detail the test problems used and we

report the results of our experiments. In every experiment we have applied all the three

variants of BOXCQP (see Section 3.3).

3.5.1 Random problems

The �rst set of experiments treats randomly generated problems. We generate problems

following the general guidelines of [106]. The Hessian matrices B have the form

B =MTM with M = D
1
2Z (3.11)

where

D = diag(d1; : : : ; dn) with di = 10
i−1
n−1

ncond (3.12)

35

where ncond is a positive real, controlling the condition number of B (�2(B) = 10ncond)

and Z is a Householder matrix,

Z = I − 2

zT z
zzT (3.13)

The vectors d; a and b are created by the following procedure, which is controlled by two

real numbers in [0; 1], namely act prob and up low prob:

Random problem creation

for i = 0 to n do

ai ← rand(−1; 0)
bi ← rand(0; 1)

for i = 0 to n do

Get random �i ∈ [0; 1]

if �i ≤ act prob then

Get random �̃i ∈ [0; 1] {Add i to the active set.}
if �̃i ≤ up low prob then

xi ← bi {On upper bound.}
�i ← rand(0; 1)

�i ← 0

else

xi ← ai {On lower bound.}
�i ← 0

�i ← rand(0; 1)

else

xi ← (ai + bi)=2 {i in the interior.}
�i ← 0

�i ← 0

Calculate d← −Bx+ �− � {From Eq. (3.6).}

We have created three classes of random problems:

(a) Problems that the solution has approximately 50% of the variables on the bounds

with equal probability to be either on the lower or on the upper bound (act prob = 1
2
,

up low prob = 0:5).

(b) Problems that the solution has approximately 90% of the variables on the bounds

with equal probability to be on either the lower or on the upper bound (act prob =
9
10
, up low prob = 0:5).

(c) Problems that the solution has approximately 10% of the variables on the bounds

with equal probability to be either on the lower or on the upper bound (act prob =
1
10
, up low prob = 0:5).

For every random problem class we have created Hessian matrices with three di�erent

condition numbers:

36

- Using ncond = 0:1 and hence, �2(B) = 1:259

- Using ncond = 1 and hence, �2(B) = 10

- Using ncond = 5 and hence, �2(B) = 105

The results for the three variants of BOXCQP against the other other quadratic codes

for the classes (a), (b) and (c) and for three di�erent condition numbers are shown in

Tables 3.1, 3.2 and 3.3 respectively.

From the tables, we observe that our method performed worse only on the ill condi-

tioned problems of class (c) (20 cases in Table 3.3 were �2(B) = 105). In all other cases,

there exists a BOXCQP variant that outperforms all the tested codes. As a general obser-

vation we notice that Variant 2, performs better in the majority of the well conditioned

problems, whereas Variants 1 and 3 that incorporate the Choleksy decomposition exhibit

higher e�ciency in the nearly ill conditioned problems. We also note that in the ill condi-

tioned case where act prob = 0:1 (approximately 10% of the variables of the solution are

on the bounds) QPBOX and QLD outperform all three variants of BOXCQP. Commend

on Fig 3.5 3.6 3.6 Variant 2 scales very well with dimension for well conditioned problems

ncond = 0:1; ncond = 1 followed by Variant 3. Variant 1 on the other hand performs

better in the ill conditioned case. Seems that Variant 3 is a good compromise when you

don't know in advanced the condition number.

As a rule of thumb we propose the usage of Variant 2 when the matrix B is well

conditioned and Variant 1 when B is ill conditioned. In cases where we cannot a�ord to

calculate the condition number Variant 3 may be appropriate.

3.5.2 Circus Tent problem

The circus tent problem is taken from Matlab's optimization demo as an example of large-

scale quadratic programming with simple bounds. The problem is to build a circus tent

to cover a square lot. The tent is elastic and is to be supported by �ve poles. The question

is to �nd the shape of the tent at equilibrium, that corresponds to the minimum of the

energy function. As we can see in Figure 3.1, the problem has only lower bounds imposed

by the �ve poles and the ground. The surface formed by the elastic tent, is determined

by solving the bound constrained optimization problem:

min
x
q(x) =

1

2
xTBx+ xTd (3.14)

subject to: ai ≤ xi ∀i ∈ I = {1; 2; · · · ; n}

where q(x) corresponds to the energy function and H is a 5-point �nite di�erence

Laplacian over a square grid. It is obvious from Table 3.4 that variant 2 outperforms

all other codes. Notice that matrix B exhibits large sparse patterns that favors CGR

iterations .

37

Figure 3.1: Circus tent problem.

3.5.3 Biharmonic Equation problem

We consider the problem of describing small vertical deformations of an horizontal, elastic

membrane clamped on a rectangular boundary, under the inuence of a vertical force. The

membrane is constrained to remain below an obstacle. For an in depth discussion of this

problem see [80]. The formulation of the problem is given by Eq.(3.15).

min
x

1

2
xTBx+ xTd (3.15)

subject to: xi ≤ b ∀i ∈ I = {1; 2; · · · ; n}

We see an example in Fig 3.2 of a membrane under the inuence of a vertical force.

Figure 3.2: On the left we show the acting force, on the right is the �nal shape of the

membrane.

It is obvious from Table 3.4 that variant 3 performs better than all the other codes.

38

3.5.4 Intensity Modulated Radiation Therapy

This problem arises in the �eld of radiotherapy and concerns the determination of the

spatial distribution of the radiation, in a way that the patient's vital organs are minimally

irradiated. Knowing the beam settings and the intensity pro�le, one can calculate the

radiation dose. Inversely, when a desired dose is required, the proper intensity pro�le for

given beam settings can be retrieved by solving a quadratic problem. The beam settings

are successively modi�ed in an e�ort to satisfy a set of clinical constraints, and hence the

quadratic subproblem (shown in Eq. (3.16)), must be solved a large number of times [18].

min
x
q(x) =

1

2
xTBx+ xTd (3.16)

subject to xi ≥ 0 ∀i ∈ I = {1; 2; · · · ; n}

The results reported in Table 3.4, correspond to real world data, kindly provided by S.

Breedveld (private communication). In this example, seven beams are combined resulting

to a quadratic problem with 2342 parameters(see last line of Table 3.4).

3.5.5 Support Vector Classi�cation

In this classi�cation problem, the goal is to separate two classes using a hyperplane h(y) =

wTy+�, which is determined from available examples (D = {(y1; t1); (y2; t2); : : : (yl; tl)}; y ∈
Rn; t ∈ −1; 1). Furthermore it is desirable to produce a classi�er that will work well on

unseen examples, i.e. it will generalize well. Consider the example in Fig. 3.3. There

are many possible linear classi�ers that can separate the data, but there is only one that

maximizes the distance to the nearest data point of each class. This classi�er is termed

the optimal separating hyperplane and intuitively, one would expect that generalizes op-

timally.

optimal
separating hyperplane

Figure 3.3: Optimal separating classi�er.

The formulation of the maximum distance linear classi�er (if we omit the constant

39

term � of the hyperplane equation2) is a convex quadratic problem with simple bounds

on the variables. The resulting problem has the form:

min
x

1

2
xTBx− xT e (3.17)

subject to: 0 ≤ xi ≤ C ∀i ∈ I = {1; 2; · · · ; n}

where e ∈ Rl and with ei = 1, Bij = titjK(yi; yj) and K(y1; y2) is the kernel function

performing the non-linear mapping into the feature space. The parameters x ∈ Rl are La-

grange multipliers of an original quadratic problem, that de�ne the separating hyperplane

using the relation:

w∗Ty =
l∑

i=1

x∗i t
iK(yi; y) (3.18)

Hence the separating surface is given by:

h(y) = sgn(w∗Ty) (3.19)

In our experiments we used the CLOUDS [107] data set, which is a two-dimensional

data set with two classes. We have constructed the problem in Eq. (3.18) using an

RBF Kernel function K(y1; y2) = exp(−||y1−y2||2
22

), and setting C = 100. The experiments

conducted follow the procedure:

• Form the training set by extracting l examples from the dataset and let the rest

examples (5000-l) form the test set.

• Construct the matrix B for the problem in Eq. (3.18)

• Apply each solver, obtain the corresponding separating surface and test-set error.

In these experiments the large condition number of matrix B leads to ill conditioned

problems. To circumvent this, we added in the main diagonal of B a small positive term of

order 10−2. The resulting classi�cation surfaces for l = 200, 500, 1000 and 2000 training

examples from CLOUDS dataset are shown in Fig. 3.4.

The �rst 12 lines of Table 3.4 contain results for a varying number of training pat-

terns. The addition of the O(10−2) term in the main diagonal led to the creation of well

conditioned matrices that could be e�ciently solved by CGR algorithm.

3.6 Conclusions

The BOXCQP algorithm specialized to solve box-constrained convex quadratic problems,

has been developed. We have presented a number of applications in Computer Science,

Physics and Engineering where BOXCQP has been applied. In addition a trust region

method for nonlinear problems is sketched, that takes advantage BOXCQP in order to

2Also known as explicit bias.

40

(a) 200 training patterns (b) 500 training patterns

(c) 1000 training patterns (d) 2000 training patterns

Figure 3.4: Examples of SVM classi�cation.

e�ciently solve unconstrained and bound constrained non-linear problems. From the

experiments one observes the robustness of our method even in the case of nearly ill

conditioned problems.

Notice that all the energy minimization problems presented in this work, exhibit large

sparsity patterns. Sparsity can be exploited by using special linear solvers and further

signi�cant speed-up is expected.

Our software can be downloaded from http://www.cs.uoi.gr/~voglis both in a

FORTRAN 77 and in a Matlab version.

41

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
un

tim
e

in
 s

ec
s

Problem’s dimension

Performance scaling plot for ncond=0.1

Var. 1
Var. 2
Var. 3

Figure 3.5: Plot for act prob = 0:5 and ncond = 0:1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
un

tim
e

in
 s

ec
s

Problem’s dimension

Performance scaling plot for ncond=1

Var. 1
Var. 2
Var. 3

Figure 3.6: Plot for act prob = 0:5 and ncond = 1

42

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
un

tim
e

in
 s

ec
s

Problem’s dimension

Performance scaling plot for ncond=5

Var. 1
Var. 2
Var. 3

Figure 3.7: Plot for act prob = 0:5 and ncond = 5

Table 3.1: Random table results, act prob = 0:5; up low prob = 0:5

Prob. Name Var.1 Var.2 Var.3 QUACAN QPBOX QLD

Random (ncond = 0:1; n = 100; f∗ = −103:70) 0.00 0.00 0.00 0.00 0.00 0.010

Random (ncond = 1; n = 100; f∗ = −248:90) 0.00 0.00 0.00 0.00 0.00 0.01

Random (ncond = 5; n = 100; f∗ = −259614) 0.00 0.02 0.00 0.16 0.01 0.01

Random (ncond = 0:1; n = 200; f∗ = −183:32) 0.02 0.00 0.003 0.00 0.06 0.08

Random (ncond = 1; n = 200; f∗ = −421:78) 0.02 0.00 0.01 0.03 0.05 0.07

Random (ncond = 5; n = 200; f∗ = −608139) 0.03 0.18 0.03 1.38 0.07 0.07

Random (ncond = 0:1; n = 300; f∗ = −394:03) 0.08 0.01 0.01 0.02 0.19 0.25

Random (ncond = 1; n = 300; f∗ = −707:29) 0.08 0.02 0.02 0.08 0.20 0.26

Random (ncond = 5; n = 300; f∗ = −1146677) 0.12 0.75 0.12 5.328 0.25 0.25

Random (ncond = 0:1; n = 400; f∗ = −502:26) 0.19 0.02 0.050 0.06 0.44 0.60

Random (ncond = 1; n = 400; f∗ = −607:83) 0.22 0.08 0.11 0.25 0.47 0.61

Random (ncond = 5; n = 400; f∗ = −1679600) 0.37 2.00 0.42 16.16 0.69 0.58

Random (ncond = 0:1; n = 500; f∗ = −762:53) 0.40 0.05 0.09 0.10 0.86 1.23

Random (ncond = 1; n = 500; f∗ = −1133:68) 0.4141 0.15 0.18 0.48 0.85 1.19

Random (ncond = 5; n = 500; f∗ = −1692549) 0.63 4.04 0.87 48.75 1.24 1.25

Random (ncond = 0:1; n = 600; f∗ = −994:19) 0.78 0.06 0.12 0.14 1.43 2.13

Random (ncond = 1; n = 600; f∗ = −1288:29) 0.90 0.24 0.37 0.66 1.57 2.14

Random (ncond = 5; n = 600; f∗ = −2049820) 1.16 9.72 1.27 48.69 1.97 2.14

Random (ncond = 0:1; n = 700; f∗ = −838:28) 1.34 0.09 0.20 0.23 2.35 3.46

Random (ncond = 1; n = 700; f∗ = −1703:28) 1.31 0.28 0.34 0.73 2.45 3.68

Random (ncond = 5; n = 700; f∗ = −2328669) 2.49 20.45 2.84 164.35 3.92 3.45

Random (ncond = 0:1; n = 800; f∗ = −645:14) 2.58 0.13 0.27 0.31 3.80 5.44

Random (ncond = 1; n = 800; f∗ = −1824:65) 2.59 0.42 0.53 1.26 3.76 5.37

Random (ncond = 5; n = 800; f∗ = −2630417) 3.58 32.21 3.72 108.13 5.76 5.47

Random (ncond = 0:1; n = 900; f∗ = −596:17) 4.02 0.19 0.40 0.68 5.70 7.50

Random (ncond = 1; n = 900; f∗ = −1951:62) 4.04 0.63 0.77 2.13 5.60 7.44

Random (ncond = 5; n = 900; f∗ = −2904251) 5.16 46.01 5.87 145.91 7.39 7.64

Random (ncond = 0:1; n = 1000; f∗ = −1327:91) 4.52 0.22 0.54 0.50 7.83 10.17

Random (ncond = 1; n = 1000; f∗ = −2677:47) 4.58 0.66 0.95 1.68 7.93 10.00

continued on next page

43

continued from previous page

Random (ncond = 5; n = 1000; f∗ = −3082720) 6.82 72.48 8.19 143.93 10.02 9.93

Random (ncond = 0:1; n = 1100; f∗ = −1464:97) 7.86 0.35 0.77 0.81 10.69 13.79

Random (ncond = 1; n = 1100; f∗ = −2061:31) 7.98 1.01 1.45 3.50 10.31 13.57

Random (ncond = 5; n = 1100; f∗ = −4224564) 10.84 85.98 12.03 213.99 14.21 13.77

Random (ncond = 0:1; n = 1200; f∗ = −1332:93) 9.40 0.33 1.23 0.75 13.26 18.05

Random (ncond = 1; n = 1200; f∗ = −1978:65) 9.02 0.96 2.29 3.32 13.49 19.19

Random (ncond = 5; n = 1200; f∗ = −4071507) 11.08 90.54 11.95 187.50 16.90 19.31

Random (ncond = 0:1; n = 1300; f∗ = −2247:07) 10.73 0.41 1.29 1.14 17.33 23.89

Random (ncond = 1; n = 1300; f∗ = −2698:07) 11.67 1.46 2.91 4.43 17.73 24.35

Random (ncond = 5; n = 1400; f∗ = −1537:81) 16.66 136.48 20.56 733.69 25.75 24.06

Random (ncond = 0:1; n = 1400; f∗ = −2247:07) 12.03 0.43 1.57 1.14 20.94 30.16

Random (ncond = 1; n = 1400; f∗ = −2860:81) 11.97 1.20 2.15 3.51 21.41 30.57

Random (ncond = 5; n = 1400; f∗ = −4446068) 17.48 118.56 17.92 300.58 27.72 30.07

Random (ncond = 0:1; n = 1500; f∗ = −1287:82) 17.70 0.50 2.16 1.14 25.30 36.80

Random (ncond = 1; n = 1500; f∗ = −2952:20) 20.42 1.92 5.78 5.21 26.37 35.48

Random (ncond = 5; n = 1500; f∗ = −3811836) 27.47 226.89 34.67 624.51 47.77 36.22

Random (ncond = 0:1; n = 1600; f∗ = −2321:86) 23.34 0.61 2.68 1.76 29.76 48.56

Random (ncond = 1; n = 1600; f∗ = −3679:48) 26.29 2.60 4.57 7.79 33.50 46.80

Random (ncond = 5; n = 1600; f∗ = −5524905) 36.36 302.91 49.70 895.78 37.99 46.23

Random (ncond = 0:1; n = 1700; f∗ = −2994:18) 34.09 0.89 4.37 2.48 37.61 51.78

Random (ncond = 1; n = 1700; f∗ = −3748:60) 35.90 2.82 7.45 8.43 39.12 53.46

Random (ncond = 5; n = 1700; f∗ = −5223138) 38.31 262.87 43.32 734.07 52.66 54.31

Random (ncond = 0:1; n = 1800; f∗ = −1354:26) 29.42 0.68 4.43 2.13 43.82 64.54

Random (ncond = 1; n = 1800; f∗ = −3020:69) 28.75 1.93 4.79 7.11 43.91 64.10

Random (ncond = 5; n = 1800; f∗ = −5748462) 48.49 352.77 57.25 925.31 57.65 63.13

Random (ncond = 0:1; n = 1900; f∗ = −1466:46) 47.30 0.90 5.20 2.10 52.67 76.41

Random (ncond = 1; n = 1900; f∗ = −4447:00) 52.71 3.55 12.38 8.67 51.68 75.52

Random (ncond = 5; n = 1900; f∗ = −6772368) 67.32 298.62 60.88 1043.96 72.19 75.50

Random (ncond = 0:1; n = 2000; f∗ = −1536:18) 47.95 0.92 6.05 2.55 58.39 89.83

Random (ncond = 1; n = 2000; f∗ = −5177:91) 47.75 2.75 7.32 7.57 60.00 91.10

Random (ncond = 5; n = 2000; f∗ = −6248198) 74.03 395.21 70.79 711.86 103.15 89.13

44

Table 3.2: Random table results, act prob = 0:9; up low prob = 0:5

Prob. Name Var.1 Var.2 Var.3 QUACAN QPBOX QLD

Random (ncond = 0:1; n = 100; f∗ = −213:04) 0.00 0.01 0.01 0.00 0.00 0.00

Random (ncond = 1; n = 100; f∗ = −404:78) 0.00 0.01 0.01 0.00 0.00 0.00

Random (ncond = 5; n = 100; f∗ = −494902 0.24 0.01 0.01 0.00 0.01 0.00

Random (ncond = 0:1; n = 200; f∗ = −521:19) 0.02 0.00 0.00 0.01 0.06 0.10

Random (ncond = 1; n = 200; f∗ = −972:38) 0.02 0.01 0.01 0.01 0.06 0.11

Random (ncond = 5; n = 200; f∗ = −1236934 0.03 0.10 0.02 2.20 0.06 0.10

Random (ncond = 0:1; n = 300; f∗ = −382:97) 0.07 0.00 0.01 0.02 0.19 0.34

Random (ncond = 1; n = 300; f∗ = −891:98) 0.07 0.02 0.02 0.04 0.20 0.34

Random (ncond = 5; n = 300; f∗ = −1614883 0.08 0.10 0.05 2.45 0.19 0.33

Random (ncond = 0:1; n = 400; f∗ = −767:40) 0.16 0.02 0.02 0.05 0.46 0.80

Random (ncond = 1; n = 400; f∗ = −1589:16) 0.16 0.05 0.05 0.11 0.44 0.82

Random (ncond = 5; n = 400; f∗ = −2559084 0.19 0.64 0.19 10.93 0.49 0.81

Random (ncond = 0:1; n = 500; f∗ = −1011:44) 0.35 0.04 0.04 0.10 0.88 1.79

Random (ncond = 1; n = 500; f∗ = −1837:85) 0.37 0.15 0.15 0.38 0.84 1.70

Random (ncond = 5; n = 500; f∗ = −2567167 0.40 1.04 0.50 43.83 0.89 1.69

Random (ncond = 0:1; n = 600; f∗ = −874:34) 0.70 0.05 0.05 0.15 1.59 2.93

Random (ncond = 1; n = 600; f∗ = −2851:60) 0.64 0.13 0.13 0.35 1.48 3.16

Random (ncond = 5; n = 600; f∗ = −3219702 0.77 2.29 0.78 35.44 1.57 2.99

Random (ncond = 0:1; n = 700; f∗ = −1718:10) 1.49 0.09 0.09 0.27 2.53 4.79

Random (ncond = 1; n = 700; f∗ = −2322:62) 1.53 0.32 0.33 1.10 2.74 4.84

Random (ncond = 5; n = 700; f∗ = −3907450 1.31 3.78 1.23 104.96 2.49 5.08

Random (ncond = 0:1; n = 800; f∗ = −1847:63) 2.39 0.11 0.11 0.26 3.77 7.53

Random (ncond = 1; n = 800; f∗ = −2810:93) 2.42 0.35 0.36 0.96 3.82 7.47

Random (ncond = 5; n = 800; f∗ = −4336447) 2.52 9.36 2.10 63.45 4.09 7.40

Random (ncond = 0:1; n = 900; f∗ = −1926:40) 2.93 0.14 0.14 0.40 5.51 11.00

Random (ncond = 1; n = 900; f∗ = −2586:61) 3.78 0.49 0.49 1.48 5.55 10.30

Random (ncond = 5; n = 900; f∗ = −4953068) 4.00 11.63 3.21 129.98 5.79 10.33

Random (ncond = 0:1; n = 1000; f∗ = −1327:91) 4.52 0.22 0.54 0.49 7.83 10.17

Random (ncond = 1; n = 1000; f∗ = −3738:74) 3.57 0.43 0.43 1.45 7.27 15.08

Random (ncond = 5; n = 1000; f∗ = −5054535) 3.91 9.30 3.07 180.95 8.53 15.12

Random (ncond = 0:1; n = 1100; f∗ = −1464:97) 7.85 0.34 0.77 0.81 10.68 13.79

Random (ncond = 1; n = 1100; f∗ = −3223:46) 5.68 0.66 0.66 2.62 9.66 20.50

Random (ncond = 5; n = 1100; f∗ = −5699765) 7.86 19.25 6.08 300.41 11.82 18.90

Random (ncond = 0:1; n = 1200; f∗ = −1332:93) 9.40 0.32 1.22 0.74 13.25 18.05

Random (ncond = 1; n = 1200; f∗ = −3052:69) 8.40 0.73 0.73 3.01 12.95 25.86

Random (ncond = 5; n = 1200; f∗ = −6273425) 7.69 19.61 5.51 209.04 13.56 27.15

Random (ncond = 0:1; n = 1300; f∗ = −2247:07) 10.73 0.41 1.29 1.14 17.33 23.88

Random (ncond = 1; n = 1300; f∗ = −5120:61) 9.76 0.96 0.96 3.52 16.73 34.33

Random (ncond = 5; n = 1300; f∗ = −6959699) 10.34 26.22 8.07 365.77 17.86 33.73

Random (ncond = 0:1; n = 1400; f∗ = −1537:81) 12.03 0.43 1.56 1.14 20.94 30.15

Random (ncond = 10; n = 1400; f∗ = −− 5818:67) 12.53 1.29 1.30 3.32 20.75 40.12

Random (ncond = 5; n = 1400; f∗ = −6708835) 13.08 55.20 11.63 363.79 21.79 39.71

Random (ncond = 0:1; n = 1500; f∗ = −1287:82) 17.69 0.49 2.15 1.14 25.30 36.80

Random (ncond = 1; n = 1500; f∗ = 4595:18) 20.42 1.59 1.60 4.72 25.96 49.28

Random (ncond = 5; n = 1500; f∗ = −8134587) 21.22 68.82 16.76 387.54 26.71 49.82

Random (ncond = 0:1; n = 1600; f∗ = −2315:79) 23.34 0.61 2.68 1.76 29.76 48.55

Random (ncond = 1; n = 1600; f∗ = −7025:33) 23.88 2.06 2.07 7.24 33.57 63.22

Random (ncond = 5; n = 1600; f∗ = −8357410) 22.53 64.27 22.67 663.67 33.521 69.35

Random (ncond = 0:1; n = 1700; f∗ = −2994:18) 34.09 0.89 4.36 2.48 37.61 51.78

Random (ncond = 1; n = 1700; f∗ = −5597:19) 30.40 1.95 1.95 5.84 37.00 73.40

Random (ncond = 5; n = 1700; f∗ = −8926662) 30.31 106.51 24.51 488.59 45.261 88.21

Random (ncond = 0:1; n = 1800; f∗ = −4272:84) 28.56 0.61 0.62 1.59 51.00 88.60

continued on next page

45

continued from previous page

Random (ncond = 1; n = 1800; f∗ = −7183:86) 28.57 1.65 1.66 5.11 43.85 88.02

Random (ncond = 5; n = 1800; f∗ = −8926662) 30.31 106.52 24.51 488.60 45.26 88.21

Random (ncond = 0:1; n = 1900; f∗ = −6047:49) 42.79 0.69 0.71 2.29 53.38 106.33

Random (ncond = 1; n = 1900; f∗ = −6443:84) 42.80 2.48 2.48 9.87 49.56 106.76

Random (ncond = 5; n = 1900; f∗ = −9768911) 44.13 97.03 29.84 979.92 54.03 105.90

Random (ncond = 0:1; n = 2000; f∗ = −5199:87) 39.84 0.59 0.61 2.14 73.93 128.85

Random (ncond = 1; n = 2000; f∗ = −7383:81) 40.05 2.36 2.41 8.78 62.69 128.56

Random (ncond = 5; n = 2000; f∗ = −10262511) 42.04 147.56 32.04 613.54 67.91 128.35

46

Table 3.3: Random table results, act prob = 0:1; up low prob = 0:5

Prob. Name - Parameters Var.1 Var.2 Var.3 QUACAN QPOX QLD

Random (ncond = 0:1; n = 100; f∗ = −33:75) 0.00 0.00 0.00 0.00 0.01 0.00

Random (ncond = 1; n = 100; f∗ = −61:16) 0.00 0.00 0.00 0.01 0.01 0.01

Random (ncond = 5; n = 100; f∗ = −198582) 0.00 0.06 0.01 0.12 0.01 0.00

Random (ncond = 0:1; n = 200; f∗ = −61:26) 0.03 0.00 0.02 0.01 0.06 0.03

Random (ncond = 1; n = 200; f∗ = −137:74) 0.03 0.01 0.02 0.03 0.06 0.03

Random (ncond = 5; n = 200; f∗ = −198507) 0.06 0.82 0.10 1.00 0.072 0.04

Random (ncond = 0:1; n = 300; f∗ = −98:13) 0.12 0.01 0.06 0.01 0.22 0.12

Random (ncond = 1; n = 300; f∗ = −335:72) 0.11 0.03 0.06 0.07 0.21 0.14

Random (ncond = 5; n = 300; f∗ = −294620) 0.23 1.27 0.18 3.43 0.23 0.13

Random (ncond = 0:1; n = 400; f∗ = −81:61) 0.28 0.03 0.14 0.05 0.52 0.30

Random (ncond = 1; n = 400; f∗ = −239:87) 0.29 0.10 0.19 0.20 0.51 0.29

Random (ncond = 5; n = 400; f∗ = −371506) 0.73 13.43 1.15 11.81 0.57 0.29

Random (ncond = 0:1; n = 500; f∗ = −165:39) 0.58 0.05 0.27 0.09 0.98 0.61

Random (ncond = 1; n = 500; f∗ = −250:77) 0.69 0.17 0.45 0.39 0.99 0.57

Random (ncond = 5; n = 500; f∗ = −503874) 1.25 22.10 2.33 24.34 1.04 0.57

Random (ncond = 0:1; n = 600; f∗ = −120:53) 1.12 0.08 0.52 0.12 1.70 1.03

Random (ncond = 1; n = 600; f∗ = −420:14) 1.08 0.24 0.59 0.55 1.71 1.07

Random (ncond = 5; n = 600; f∗ = −646953) 2.69 36.03 3.69 37.16 1.84 1.05

Random (ncond = 0:1; n = 700; f∗ = −215:51) 2.05 0.12 0.92 0.28 2.83 1.72

Random (ncond = 1; n = 700; f∗ = −608:39) 3.42 0.67 2.23 1.13 2.91 1.75

Random (ncond = 5; n = 700; f∗ = −866604) 4.74 73.42 7.17 71.99 3.05 1.64

Random (ncond = 0:1; n = 800; f∗ = −379:52) 3.96 0.20 1.67 0.31 4.58 2.97

Random (ncond = 1; n = 800; f∗ = −555:21) 4.18 0.60 2.08 1.13 4.69 2.73

Random (ncond = 5; n = 800; f∗ = −874662) 9.41 113.31 13.11 84.98 5.02 2.87

Random (ncond = 0:1; n = 900; f∗ = −162:00) 6.42 0.27 2.79 0.52 6.89 3.85

Random (ncond = 1; n = 900; f∗ = −702:73) 6.28 0.87 2.99 1.73 6.91 3.83

Random (ncond = 5; n = 900; f∗ = −1288215) 14.06 159.45 18.67 144.42 7.42 3.77

Random (ncond = 0:1; n = 1000; f∗ = −385:19) 8.10 0.33 4.12 0.49 9.67 4.92

Random (ncond = 1; n = 1000; f∗ = −744:63) 7.80 0.93 4.17 1.99 9.58 5.23

Random (ncond = 5; n = 1000; f∗ = −947787) 21.76 150.66 23.29 137.16 10.21 4.78

Random (ncond = 0:1; n = 1100; f∗ = −359:04) 12.62 0.41 5.45 0.93 12.45 7.01

Random (ncond = 1; n = 1100; f∗ = −815:00) 9.65 1.08 4.58 2.60 11.98 7.34

Random (ncond = 5; n = 1100; f∗ = −1398369) 27.49 262.46 36.10 206.25 13.12 7.21

Random (ncond = 0:1; n = 1200; f∗ = −473:98) 15.27 0.50 7.10 0.66 15.82 9.64

Random (ncond = 1; n = 1200; f∗ = −757:89) 15.40 1.42 7.73 3.18 15.69 9.55

Random (ncond = 5; n = 1200; f∗ = −1719411) 38.69 332.99 51.92 208.28 16.41 9.46

Random (ncond = 0:1; n = 1300; f∗ = −387:00) 21.73 0.65 9.41 1.39 34.45 11.82

Random (ncond = 1; n = 1300; f∗ = −982:13) 21.78 1.85 10.21 4.12 19.54 12.06

Random (ncond = 5; n = 1300; f∗ = −1549329) 41.39 481.25 71.13 316.36 20.80 11.74

Random (ncond = 0:1; n = 1400; f∗ = −475:6) 24.19 0.69 12.07 1.28 25.21 14.47

Random (ncond = 1; n = 1400; f∗ = −993:08) 24.13 1.92 12.59 3.87 25.08 14.61

Random (ncond = 5; n = 1400; f∗ = −2063165) 51.78 570.86 93.98 254.72 26.55 14.44

Random (ncond = 0:1; n = 1500; f∗ = −311:40) 35.39 0.82 15.43 1.14 29.92 18.17

Random (ncond = 1; n = 1500; f∗ = −1076:26) 34.83 2.37 15.71 6.19 31.23 19.00

Random (ncond = 5; n = 1500; f∗ = −1791434) 80.21 628.68 111.98 510.94 32.73 18.67

Random (ncond = 0:1; n = 1600; f∗ = −285:54) 42.09 1.09 18.83 2.06 39.03 25.64

Random (ncond = 1; n = 1600; f∗ = −1112:70) 60.71 4.21 38.91 8.60 39.03 25.60

Random (ncond = 5; n = 1600; f∗ = −1794845) 80.80 482.62 109.59 765.19 41.66 25.64

Random (ncond = 0:1; n = 1700; f∗ = −552:04) 52.12 1.13 22.32 1.88 45.16 27.56

Random (ncond = 1; n = 1700; f∗ = −1238:63) 74.48 4.33 45.94 7.83 45.62 28.54

Random (ncond = 5; n = 1700; f∗ = −1845689) 125.11 559.45 133.35 630.73 47.11 27.14

Random (ncond = 0:1; n = 1800; f∗ = −579:5) 56.08 1.13 28.06 1.67 51.92 33.74

continued on next page

47

continued from previous page

Random (ncond = 1; n = 1800; f∗ = −1122:75) 54.58 3.15 27.59 6.78 52.20 33.69

Random (ncond = 5; n = 1800; f∗ = −2751580) 130.07 819.08 180.85 876.60 55.17 34.36

Random (ncond = 0:1; n = 1900; f∗ = −566:86) 76.20 1.37 34.12 3.00 60.27 40.06

Random (ncond = 1; n = 1900; f∗ = −1194:64) 75.6 3.92 35.20 9.03 60.39 40.63

Random (ncond = 5; n = 1900; f∗ = −2139161) 145.81 902.77 162.77 712.32 62.87 39.40

Random (ncond = 0:1; n = 2000; f∗ = −621:46) 78.98 1.36 37.10 1.91 69.26 49.50

Random (ncond = 1; n = 2000; f∗ = −1443:17) 114.84 4.57 74.21 8.00 69.67 49.85

Random (ncond = 5; n = 2000; f∗ = −2589665) 189.95 1191.16 269.69 670.03 73.12 50.21

48

Prob. Name Var.1 Var.2 Var.3 QUACAN QPBOX QLD

SVM (n = 100); f∗ = −167:79 0.00 0.00 0.00 0.01 0.01 0.00

SVM (n = 200); f∗ = −384:11 0.0430 0.0352 0.0391 0.1523 0.0703 0.0742

SVM (n = 300); f∗ = −545:54 0.1367 0.0977 0.1016 0.3945 0.2305 0.2539

SVM (n = 400); f∗ = −736:00 0.3672 0.2891 0.3359 2.0039 0.5352 0.6289

SVM (n = 500); f∗ = −933:94 0.7031 0.6133 0.7070 4.6914 1.0508 1.2734

SVM (n = 600); f∗ = −1073:77 1.1797 0.8398 0.9727 6.5430 1.8516 2.3633

SVM (n = 700); f∗ = −1222:33 2.2656 1.5078 1.8516 14.3320 3.0273 3.8125

SVM (n = 800); f∗ = −1323:44 3.3789 1.8750 2.2539 21.7461 4.6836 6.1953

SVM (n = 900); f∗ = −1431:59 5.6680 3.3984 3.8438 27.1602 7.3281 8.2031

SVM (n = 1000); f∗ = −1539:77 7.2578 4.2930 5.0117 34.0078 10.3945 11.3281

SVM (n = 2000); f∗ = −2849:68 68.7852 22.0078 36.2461 256.2266 77.2969 104.3086

SVM (n = 3000); f∗ = −4490:68 263.3477 63.9688 151.4023 1068.9766 264.5586 354.4297

Tent (n = 100); f∗ = 0:0168 0.0078 0.0039 0.0039 0.0039 N:C 0.0039

Tent (n = 400); f∗ = 0:3162 0.322 0.132 0.217 N:C N:C 0.248

Tent (n = 900); f∗ = 0:4442 5.570 1.453 3.273 N:C N:C 2.77

Tent (n = 1600); f∗ = 0:5023 48.3008 9.5742 29.1133 N:C N:C 20.5352

Tent (n = 3600); f∗ = 0:5455 557.74 55.74 284.05 N:C N:C 246.04

Tent (n = 4900); f∗ = 0:5540 1333.51 150.49 696.21 N:C N:C 617.58

Biharm (n = 100); f∗ = −0:0001 0.0030 0.0030 0.0020 0.0040 0.0120 0.0130

Biharm (n = 400); f∗ = −0:0004 0.1958 0.2090 0.1880 0.6450 0.6382 0.7539

Biharm (n = 900); f∗ = −0:0008 4.2788 3.1328 2.9180 18.5229 10.4912 9.2886

Biharm (n = 1600); f∗ = −0:0015 23.3280 17.8920 15.3110 119.6610 82.1220 60.8680

Biharm (n = 2500); f∗ = −0:0023 106.1869 77.2411 60.5740 775.0340 333.9110 222.7870

Biharm (n = 3600); f∗ = −0:0033 308.7246 271.4639 186.8857 2988.0826 1071.3447 684.5688

Biharm (n = 4900); f∗ = −0:0045 816.13 705.52 484.45 8282.04 3067.21 1837.66

IMRT (n = 2342); f∗ = 0:0563 54.22 33.11 40.56 85.11 67.88 73.22

Table 3.4: CPU times (secs). (N:C: No convergence)

49

Chapter 4

A Rectangular Trust Region Approach

for Unconstrained and Bound

Constrained Nonlinear Optimization

4.1 Summary

A trust region algorithm for unconstrained and bound constrained nonlinear optimization

problems is presented. The trust region is a rectangular hyperbox in contrast with the

commonly used hyperellipsoid. The resulting quadratic subproblems are solved approx-

imatelly by an adaptation of Powell's dogleg method for rectangular trust regions and

a the novel quadatratic programming algorithm presented in Chapter 3. Comparative

results of numerical experiments are reported.

4.2 Introduction

Non-linear optimization plays an important role in many �elds of science and engineering,

in the industry, as well as in a plethora of practical problems. Frequently the optimization

parameters are constrained inside a range imposed by the nature of the problem at hand.

Developing methods for bound constrained optimization is hence quite useful. We refer to

[27] (pp. 10{12) for a list of application areas. The most e�cient optimization methods are

based on Newton's method where a quadratic model is adopted as a local approximation to

the objective function. Two general approaches have been followed. One uses a line{search

along a properly selected descent direction, while the other permits steps of restricted size

in an e�ort to maintain the reliability of the quadratic approximation. The approaches in

this second class, bear the generic name Trust-Region techniques. In this article we deal

with a method of that type.

We develop a method that adopts a rectangular shape for the trust region. This

geometry has the obvious advantage of the linearity of the subproblem constraints and

50

in addition allows e�ortless adaptation to bound constrained problems. The emerging

quadratic subproblems are of the sort:

min
s

1

2
sTBs+ sTg subject to: ai ≤ si ≤ bi (4.1)

a modi�cation of Powell's [125] dogleg technique is developed to obtain an approximate

solution and an exact technique based on quadratic algorithm in Chapter 3.

We embed this scheme in a quasi{Newton framework that uses a positive de�nite

approximation to the Hessian matrix. This renders the problem in Eq.4.1 a strictly

convex one, and hence the dogleg technique is applicable.

In Section 2, we describe in brief the trust region class of algorithms along the lines of

Conn, Gould and Toint [27]. In Sections 3 and 4 we present the proposed methodology

along with our experimental results. Finally our conclusions are layed out in Section 5.

4.3 Trust Region Methods

Trust region methods fall in the category of sequential quadratic programming. The

algorithms in this class are iterative procedures in which the objective function f(x) is

represented by a quadratic model inside a suitable neighborhood (the trust region) of the

current iterate, as implied by the Taylor series expansion. This local model of f(x) at the

kth iteration can be written as:

f(xk + s) ≈ mk(s) = f(xk) + gTk s+
1

2
sTBks (4.2)

where gk = ∇f(xk) and Bk is a symmetric approximation to ∇2f(xk).

The trust region may be de�ned by:

Tk = {x ∈ ℜn | ||x− xk|| ≤ ∆k} (4.3)

It is obvious that di�erent choices for the norm lead to di�erent trust region shapes. The

Euclidean norm || · ||2, corresponds to a hypershpere, while the || · ||∞ norm de�nes a

hyperbox.

Given the model and the trust region, we seek a step sk with ||sk|| ≤ ∆k, such that

the model is su�ciently reduced in value. Using this step we compare the reduction in

the model to that in the objective function. If they agree to a certain extend, the step

is accepted and the trust region is either expanded or remains the same. Otherwise the

step is rejected and the trust region is contracted. The basic trust region algorithm is

sketched in Alg. 4.7

51

Algorithm 4.7 Basic trust region

S0: Pick the initial point and trust region parameter x0 and ∆0, and set k = 0.

S1: Construct a quadratic model:

mk(s) ≈ f(xk + s)

S2: Calculate sk with ||sk|| ≤ ∆k, so as to su�ciently reduce mk.

S3: Compute the ratio of actual to expected reduction, rk = f(xk)−f(xk+sk)
mk(0)−mk(sk)

. This value

will determine if the step will be accepted or not and the update for ∆k.

S4: Increment k ← k + 1 and repeat from S1.

4.4 Dogleg approximate solution

As mentioned in the introduction, our algorithm is a modi�cation of Powell's dogleg

method suitable for rectangular trust regions. The dogleg path is de�ned as:

s(a) =

{
aC for 0 ≤ a ≤ 1

C + (a− 1)(N − C) for 1 ≤ a ≤ 2

where C = − gTk gk
gT
k
Bkgk

gk is the Cauchy step, and N = −H−1
k gk is the Newton step, that is

the unconstrained minimizer of mk. In Fig. 4.1 we show the dogleg path for the cases of

the || · ||∞ and the || · ||2 norm. The quadratic model mk(s(a)), decreases monotonically

as a increases assuming that Bk is positive de�nite. In the original paper, the dogleg path

was truncated as soon as it intersected with the trust region boundary. We distinguish

the three following cases:

Case 1: N ∈ Tk
Case 2: C ∈ Tk and N =∈ Tk
Case 3: C =∈ Tk and N =∈ Tk

In our algorithm cases 1 and 2 are treated the same way as in Powell's original

paper[125]. However in case 3, we prefer a slightly di�erent approach. Instead of taking

the maximum feasible step along C (PC = bC; b ≤ 1) which is the case in the origi-

nal algorithm, we proceed further towards N in the direction N − PC until a bound is

encountered. In Fig.4.2 we show such a case when the trust region is a hyperbox. The

de�nition of the dogleg path under this modi�cation is:

s(a) =

{
aC for 0 ≤ a ≤ b

bC + (a− b)(N − bC) for b ≤ a ≤ 1 + b

where b = ||PC||2
||C||2 ∈ [0; 1]. It can be trivially shown that along this path mk(s(a))

monotonically decreases, reaching so a lower value for the model.

52

C

N

1

2

3

X

Dogleg Path

X

X'

C

N

HyperBox HyperSphere

X'

Figure 4.1: Dogleg path

We wish to apply our method to the more general problem:

min
x∈Rn

f(x) subject to: li ≤ xi ≤ ui (4.4)

This covers both unconstrained and bound constrained problems.

We employ BFGS updates to guarantee the positive de�niteness of the approximation

Bk, to the Hessian matrix. We construct the model mk(s) as described in Section 2, and

we omit the constant term f(xk) in Eq. 4.11.

The trust region at the kth iteration is de�ned as:

Tk = {x ∈ ℜn | ||x− xk||∞ ≤ ∆k} (4.5)

and thus the dogleg step must be constrained by:

||sk||∞ ≤ ∆k (4.6)

in other words:

−∆k ≤ max
k

(sk) ≤ ∆k (4.7)

From Eq. 4.7, and the fact that the new point xk+sk must be feasible, the subproblem

can be restated as:

mins∈Rn mk(s) =
1
2
sTBks+ sTgk

max[li − xi;−∆k] ≤ si ≤ min[ui − xi;∆k]

53

C

N

1

2

3

X

PC

HyperBox

s

Figure 4.2: Our approach in Case 3

It is worth mentioning that when the original problem involves bound constraints, the

trust region shape is a hyperectangle. When no bounds are present the trust region is

just a hypercube.

Special care must be taken when an iterate xk reaches a bound. We de�ne the active

set at a point x, as the set of indices:

A(x) =

{
i | xi = ui and

@f

@xi
< 0

}
∪{

i | xi = li and
@f

@xi
> 0

}
(4.8)

When A(xk) ̸= ∅ the dogleg step sk that is computed from the quadratic subproblem

may lead outside the feasible region and hence no progress can be achieved. To deal with

this situation, we reduce the dimension of the subproblem by excluding the minimization

parameters that belong to the active set. Let m the number of parameters in the active

set. The dimension of the subproblem is reduced to n−m. In Fig.4.3, we present a case

that progress would have been impossible without the reduction.

Our algorithm is presented in Alg. 4.8.

4.4.1 Experimental results

In order to investigate the behavior of the DOGBOX algorithm, we have performed a

substantial amount of numerical testing. We have attempted to solve 35 unconstrained

and bound constrained test problems taken from the More collection [106].

54

Algorithm 4.8 DOGBOX

S0: Pick the initial point and trust region parameter x0 and ∆0, and set k = 0

S1: If active constrains exist, reduce the subproblem's dimension. B̃k and g̃k are reduced

quantities.

S2: Construct the quadratic model around xk:

mk(s) = 1=2s̃T B̃ks̃+ s̃T g̃k

max
i

[li − xi;−∆] ≤ s̃i ≤ min
i
[ui − xi;∆]

S3: Calculate dogleg step s̃k

if N = −B̃T
k g̃k is feasible then

s̃k = N

else

if C = − g̃Tk g̃k
g̃T
k
B̃k g̃k

g̃k is feasible then

�nd the maximum � such that

C + � ∗ (N − C) ∈ Tk

s̃k = C + � ∗ (N − C)

else

�nd the maximum � such that

PC ≡ �C ∈ Tk

�nd the maximum � such that

PC + � ∗ (N − PC) ∈ Tk

s̃k = PC + � ∗ (N − PC)

end if

end if

S4: Using the reduced step s̃k, calculate the full space step sk and the ratio rk.

S5: Choose the new point xk+1 according to:

if rk ≤ 0:1 then

xk+1 = xk

else

xk+1 = xk + sk

endif

S6: Update trust region ∆k according to:

if rk < 0:25 then

∆k+1 = ||sk||=4
else if rk > 0:75 and ||sk|| = ∆k then

∆k+1 = 2∆k

else

∆k+1 = ∆k

endif

S7: Increment k ← k + 1 and repeat from S1.
55

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1

2

3

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

1
3

1

3

C

N

U(3)

N'

C'

N'

C'

Trust
Region

Trust
Region

a) Reaching
 a bound

b) Reducing the
 dimension

c) Reduced
 problem

Figure 4.3: Bound handling

The implementation was written in double precision FORTRAN 77, and was incorpo-

rated in the Merlin Optimization Environment [114].

In the unconstrained case we compare our hyperbox-dogleg method to the originally

proposed dogleg that is implemented in Merlin (command TRUST). We start the min-

imization from the points recommended by More (Test Points 1 and 2). Both methods

use BFGS updates to approximate the Hessian matrix and use exactly the same scheme

to treat the trust region. The stopping criteria are identical as well. The aim of these

experiments is to verify that, in the unconstrained case, our method is as e�ective as the

original one proposed by Powell. The results are shown in Table 4.1, were the number of

iterations ("It."), the function calls ("FC") and the gradient calls ("GC") are reported

for each method. In this table, "∗" denotes that the two methods ended up in di�erent

minima, and hence any comparison is meaningless.

For the bound constrained tests, the bounds were generated by the following two

schemes, were x stands for the initial starting points recommended by More.

(1− r)x ≤ x ≤ (1 + r)x; x ∈ Rn; 0 < r < 1 (4.9)

x− c ≤ x ≤ x+ c; x; c ∈ Rn (4.10)

56

Care was taken that in our experiments the unconstrained minimum was feasible in some,

but not in all, cases. In the bound constrained case, we compare our method against

Merlin's TRUST method and the well known Tolmin[127] algorithm which is also included

in the Merlin distribution. The results of the two bound constrained tests are shown in

Table 4.2 for Eq.4.9 and Table 4.3 for Eq.4.10. We should point out that the symbol "−"
in these tables means that the method did not converge to the solution.

The presented results for the unconstrained case, o�er a useful insight about the be-

havior of our algorithm. It seems that our method performs better (although marginally)

than the original dogleg-trust region method in the majority of the test problems. We

can infer that our slight modi�cation in the dogleg path, is responsible for that.

In the bound constrained case results, we witness a dramatic improvement when we

compare TRUST to our implementation. This is expected due to the hyberbox nature

of our approach, that helps dealing with bounds in a straightforward way. Another

conclusion that can be drawn is that our method behaves similarly to Tolmin in most

cases, and overall perfoms slightly better.

Table 4.1: Unconstrained case

Test Point 1 Test Point 2

Problem TRUST DOGBOX TRUST DOGBOX

Name It. FC GC It. FC GC It. FC GC It. FC GC

ROSEN 40 47 41 37 44 38 26 31 27 27 34 28

FRE-ROT 13 40 13 14 34 14 14 40 14 14 40 14

BRO-B-S 34 43 35 34 43 35 37 50 37 37 50 38

BEA 19 20 19 18 19 18 16 19 16 18 19 20

JEN-SAM 1 7 2 1 7 2 1 17 2 1 17 2

HEL-VAL 33 43 34 30 38 30 * * * * * *

BARD 23 42 23 20 39 20 23 41 23 22 40 22

GAUS 7 19 7 7 18 8 15 15 16 13 14 14

GULF 1 2 1 1 2 1 2 22 2 2 22 2

BOX3 37 39 38 39 40 42 52 57 53 51 57 52

POW-SIN 67 71 68 88 89 94 92 97 93 71 74 72

WOOD 36 44 36 37 46 37 24 30 25 34 43 35

KOW-OSB 33 49 33 34 49 34 41 56 41 42 62 42

BRO-DEN 37 65 37 41 69 41 42 69 42 49 83 49

OSB1 67 91 67 69 92 69 111 142 111 101 133 101

BIG-E6 44 62 44 46 69 46 41 57 41 40 58 40

OSB2 66 89 66 61 89 61 49 75 49 40 63 40

WATS 159 177 159 131 156 131 180 216 180 188 225 188

X-ROS 92 107 92 104 123 104 95 115 95 98 121 98

X-POW-S 204 218 204 221 247 231 254 274 254 204 221 204

PENI 202 226 202 172 217 172 57 81 57 38 61 38

PENII 203 241 203 270 300 271 259 300 260 253 300 254

VAR-DIM 15 21 15 25 31 25 23 28 23 24 29 24

TRIG 34 48 34 30 46 30 36 50 36 39 54 39

BR-A-LIN 19 36 19 18 34 18 1 1 1 1 1 1

DISC-INT 29 30 29 33 35 33 29 29 29 34 37 35

LIN-FR 3 5 4 2 3 2 3 4 3 2 3 2

LIN-R1 3 25 3 3 25 3 3 27 3 3 25 3

LIN-R10 3 24 3 4 28 4 5 28 5 4 27 4

CHEB 38 55 38 40 63 40 150 186 150 106 144 106

57

Table 4.2: Constrained case (1)

Test Point 1 Test Point 2

Problem TRUST DOGBOX TOLMIN TRUST DOGBOX TOLMIN

Name It. FC GC It. FC GC FC GC It. FC GC It. FC GC FC GC

ROSEN 6 39 6 2 2 2 3 2 5 11 6 2 2 2 3 2

FRE-ROT 39 84 39 2 2 2 3 2 1 2 1 2 2 2 3 2

POW-B-S 11 29 11 2 2 2 3 2 13 32 13 3 3 3 5 4

BROW-B-S 8 65 8 3 48 3 37 36 6 63 6 3 3 3 4 3

BEAL 46 93 46 3 3 3 4 3 1 2 1 3 3 3 4 3

JEN-SAM 1 2 1 3 3 3 5 4 1 13 2 3 3 3 6 5

GAUS 15 16 15 7 18 8 14 15 56 73 56 9 9 9 31 32

MEYE 63 117 63 20 47 20 25 24 - - - 12 12 12 23 22

GULF 50 100 50 6 6 6 8 7 50 97 50 10 10 10 8 7

BOX3 5 5 6 4 4 4 5 4 7 32 7 4 4 4 5 4

POW-SI - - - 4 4 4 5 4 - - - 3 3 3 4 3

KOW-OSB 68 84 68 13 13 13 20 19 58 105 58 7 7 7 8 7

BRO-DEN 1 9 2 3 3 3 7 6 1 12 2 3 3 3 5 4

OSB1 66 115 66 250 339 250 19 18 - - - 11 11 11 16 15

BIG-EX 53 70 53 10 11 10 19 18 30 46 30 16 32 16 27 26

OSB2 73 91 73 33 53 33 59 58 58 76 58 14 30 14 22 21

WATS 1 0 0 0 0 0 0 0 1 3 2 21 21 21 42 41

X-ROSE 7 33 7 2 2 2 3 2 6 40 6 2 2 2 3 2

X-POW-S - - - 6 6 6 6 5 - - - 3 3 3 4 3

PEN1 2 36 2 5 5 5 6 5 1 2 1 5 5 5 6 5

PEN2 50 97 50 5 5 5 10 9 90 136 90 5 5 5 7 6

VAR-DIM 22 82 22 10 10 10 11 10 20 70 20 10 10 10 11 10

TRIG 61 78 61 19 36 19 33 32 53 99 53 11 11 11 13 12

BR-A-LIN 8 41 8 3 3 3 4 3 0 0 0 0 0 0 0 0

DISC-BOUN - - - 20 35 20 39 38 0 0 0 0 0 0 0 0

LIN-FR 46 90 46 2 2 2 3 2 45 89 45 2 2 2 3 2

LIN-R1 1 5 2 11 11 11 12 11 1 7 2 11 11 11 12 11

LIN-R10 1 4 2 9 9 9 10 9 1 6 2 9 9 9 10 9

CHEB 49 69 49 44 66 44 60 59 74 143 74 52* 96 52 86 85

4.5 Boxcqp exact solution

We present in this section a trust region method for non-linear optimization with bound

constraints, where the trust region is a hyperbox, in contrast with the usual hypersphere

or hyperellipsoid shapes. The rectangular trust region is natural for problems with bound

constraints, because even when there is an overlap with the feasible region, its geometry is

preserved. Trust region methods fall in the category of sequential quadratic programming.

These algorithms are iterative and the objective function f(x) (assumed to be twice

continuously di�erentiable), is approximated in a proper neighborhood of the current

iterate (the trust region), by a quadratic model. Namely, at the kth iteration the model

is given by:

f(xk + s) ≈ m(k)(s) = f(x(k)) + sTg(k) +
1

2
sTB(k)s (4.11)

where g(k) = ∇f(x(k)) and B(k) in the case of Newton's method is a positive de�nite

modi�cation of the Hessian, while in the case of quasi-Newton methods is a positive

de�nite matrix produced by a low rank relevant update.

58

Table 4.3: Constrained case (2)

Problem Test Point 1 Test Point 2

Name TRUST DOGBOX TOLMIN TRUST DOGBOX TOLMIN

It. FC GC It. FC GC FC GC It. FC GC It. FC GC FC GC

ROSEN 24 60 24 14 17 14 17 16 26 66 26 5 5 5 11 10

FREU-ROT 16 44 16 9 9 9 28 27 42 99 42 3 3 3 5 4

BROW-B-S 7 64 7 3 44 3 15 14 14 78 14 3 3 3 4 3

BEAL - - - 8 24 8 20 19 1 2 1 2 2 2 3 2

JEN-SAM - - - 27 54 27 55 54 - - - 20 50 20 67 66

GAUS 9 9 9 7 18 7 14 13 49 52 41 14 28 15 33 32

MEYE 62 116 62 12 24 12 27 26 79 170 79 47 60 47 22 21

BOX3 6 35 6 4 4 4 5 4 7 35 7 5 5 5 6 5

POW-SI 63 94 63 17 37 17 45 44 - - - 10 41 10 23 22

KOW-OSB 36 52 36 33 43 33 48 47 41 57 41 44 64 44 46 45

BRO-DEN - - - 5 5 5 10 9 - - - 5 5 5 8 7

OSB1 76 102 76 70 93 70 103 102 300 300 300 91 124 91 99 98

BIG-EX 31 47 31 21 38 21 31 30 28 45 28 17 34 17 36 35

OSB2 84 106 84 54 78 54 91 90 53 69 53 19 37 19 39 38

X-ROSE 34 72 34 36 53 36 41 40 77 130 77 11 40 11 42 41

X-POW-S 79 118 79 32 61 32 56 55 - - - 9 34 9 27 26

PEN1 1 2 1 7 7 7 13 12 1 2 1 5 5 5 6 5

VAR-DIM 202 258 202 1 2 1 3 2 - - - 18 19 18 37 36

TRIG 28 41 28 32 47 32 53 52 * * * * * * * *

BR-A-LIN - - - 17 35 17 34 33 1 0 0 1 0 0 0 0

DISC-BOUN 27 30 27 33 35 33 46 45 32 34 32 34 37 35 50 49

DISC-INT 25 25 25 25 25 25 31 30 27 27 27 26 26 26 33 32

BROY-TRI 60 78 60 64 98 64 48 47 27 69 27 12 12 12 30 29

BROY-BAN 88 119 88 68 109 68 88 87 26 76 26 11 11 11 26 25

LIN-FR 48 93 48 2 2 2 3 2 47 92 47 2 2 2 3 2

LIN-R1 - - - 12 12 12 21 20 1 9 2 11 11 11 12 11

LIN-R10 - - - 10 10 10 19 18 1 8 2 9 9 9 10 9

CHEB 44 66 44 42 66 42 53 52 * * * * * * * *

The trust region may be de�ned by:

T(k) = {x ∈ ℜn | ||x− x(k)|| ≤ ∆(k)} (4.12)

It is obvious that di�erent choices for the norm lead to di�erent trust region shapes. The

Euclidean norm || · ||2, corresponds to a hypershpere, while the || · ||∞ norm de�nes a

hyperbox.

Given the model and the trust region, we seek a step ||s(k)|| ≤ ∆(k), that minimizes

m(k)(s). We compare the actual reduction �f (k) = f(x(k)) − f(x(k) + s(k)), to the model

reduction �m(k) = m(k)(0) − m(k)(s(k)). If they agree to a certain extend, the step is

accepted and the trust region is either expanded or remains the same. Otherwise the step

is rejected and the trust region is contracted. The code for this method is to be added

to the upcoming version 4.0 of Merlin Optimization Environment [114]. The basic trust

region algorithm is sketched in Algorithm 2.

Algorithm 2 Basic trust region

1. Pick the initial point and trust region parameter x(0) and ∆(0), and set k = 0.

59

2. Construct a quadratic model:

f(xk + s) ≈ m(k)(s) = f(x(k)) + sTg(k) +
1

2
sTB(k)s

3. Minimize m(k)(s) and hence determine ||s(k)|| ≤ ∆(k)

4. Compute the ratio of actual to expected reduction: r(k) = �f (k)

�m(k) , and update the

trust region, following the strategy of J. E. Dennis, R. B. Schnabel (1996) (Appendix

A, page 338).

5. Increment k ← k + 1 and repeat from 1.

Consider the bound constrained problem:

min
x
f(x); subject to: li ≤ xi ≤ ui

(The unconstrained case is obtained by letting ui = −li →∞.)

Let x(k) be the k-th iterate of the trust region algorithm.

Hence step 3 of Algorithm 2 becomes:

min
s

m(k)(s) = sTg(k) +
1

2
sTB(k)s (4.13)

subject to: max(li − x(k)i ;−∆(k)) ≤ si ≤ min(ui − x(k)i ;∆(k))

In the unconstrained case, our experiments (that used a BFGS update), showed similar

performance to spherical trust region implementations. For the bound constrained case

our method is obviously superior, since it maintains the simplicity of the rectangular trust

region, where our e�cient quadratic solver is applicable [155]. Note that the trust region

formed by the intersection of a sphere with the rectangular box de�ned by the parameter

bounds, is not easy to treat. Concluding, further numerical tests showed that our method

performs similarly to active set methods with line{search.

4.5.1 Experimental results

60

Table 4.4: Unconstrained case

Test Point 1 Test Point 2

Problem TRUST TRUSTQP TRUST TRUSTQP

Name It. FC GC It. FC GC It. FC GC It. FC GC

ROSEN 40 47 41 37 44 38 26 31 27 27 34 28

FRE-ROT 13 40 13 14 34 14 14 40 14 14 40 14

BRO-B-S 34 43 35 34 43 35 37 50 37 37 50 38

BEA 19 20 19 18 19 18 16 19 16 18 19 20

JEN-SAM 1 7 2 1 7 2 1 17 2 1 17 2

HEL-VAL 33 43 34 30 38 30 * * * * * *

BARD 23 42 23 20 39 20 23 41 23 22 40 22

GAUS 7 19 7 7 18 8 15 15 16 13 14 14

GULF 1 2 1 1 2 1 2 22 2 2 22 2

BOX3 37 39 38 39 40 42 52 57 53 51 57 52

POW-SIN 67 71 68 88 89 94 92 97 93 71 74 72

WOOD 36 44 36 37 46 37 24 30 25 34 43 35

KOW-OSB 33 49 33 34 49 34 41 56 41 42 62 42

BRO-DEN 37 65 37 41 69 41 42 69 42 49 83 49

OSB1 67 91 67 69 92 69 111 142 111 101 133 101

BIG-E6 44 62 44 46 69 46 41 57 41 40 58 40

OSB2 66 89 66 61 89 61 49 75 49 40 63 40

WATS 159 177 159 131 156 131 180 216 180 188 225 188

X-ROS 92 107 92 104 123 104 95 115 95 98 121 98

X-POW-S 204 218 204 221 247 231 254 274 254 204 221 204

PENI 202 226 202 172 217 172 57 81 57 38 61 38

PENII 203 241 203 270 300 271 259 300 260 253 300 254

VAR-DIM 15 21 15 25 31 25 23 28 23 24 29 24

TRIG 34 48 34 30 46 30 36 50 36 39 54 39

BR-A-LIN 19 36 19 18 34 18 1 1 1 1 1 1

DISC-INT 29 30 29 33 35 33 29 29 29 34 37 35

LIN-FR 3 5 4 2 3 2 3 4 3 2 3 2

LIN-R1 3 25 3 3 25 3 3 27 3 3 25 3

LIN-R10 3 24 3 4 28 4 5 28 5 4 27 4

CHEB 38 55 38 40 63 40 150 186 150 106 144 106

61

Table 4.5: Constrained case (1)

Test Point 1 Test Point 2

Problem TRUST TRUSTQP TOLMIN TRUST TRUSTQP TOLMIN

Name It. FC GC It. FC GC FC GC It. FC GC It. FC GC FC GC

ROSEN 6 39 6 2 2 2 3 2 5 11 6 2 2 2 3 2

FRE-ROT 39 84 39 2 2 2 3 2 1 2 1 2 2 2 3 2

POW-B-S 11 29 11 2 2 2 3 2 13 32 13 3 3 3 5 4

BROW-B-S 8 65 8 3 48 3 37 36 6 63 6 3 3 3 4 3

BEAL 46 93 46 3 3 3 4 3 1 2 1 3 3 3 4 3

JEN-SAM 1 2 1 3 3 3 5 4 1 13 2 3 3 3 6 5

GAUS 15 16 15 7 18 8 14 15 56 73 56 9 9 9 31 32

MEYE 63 117 63 20 47 20 25 24 - - - 12 12 12 23 22

GULF 50 100 50 6 6 6 8 7 50 97 50 10 10 10 8 7

BOX3 5 5 6 4 4 4 5 4 7 32 7 4 4 4 5 4

POW-SI - - - 4 4 4 5 4 - - - 3 3 3 4 3

KOW-OSB 68 84 68 13 13 13 20 19 58 105 58 7 7 7 8 7

BRO-DEN 1 9 2 3 3 3 7 6 1 12 2 3 3 3 5 4

OSB1 66 115 66 250 339 250 19 18 - - - 11 11 11 16 15

BIG-EX 53 70 53 10 11 10 19 18 30 46 30 16 32 16 27 26

OSB2 73 91 73 33 53 33 59 58 58 76 58 14 30 14 22 21

WATS 1 0 0 0 0 0 0 0 1 3 2 21 21 21 42 41

X-ROSE 7 33 7 2 2 2 3 2 6 40 6 2 2 2 3 2

X-POW-S - - - 6 6 6 6 5 - - - 3 3 3 4 3

PEN1 2 36 2 5 5 5 6 5 1 2 1 5 5 5 6 5

PEN2 50 97 50 5 5 5 10 9 90 136 90 5 5 5 7 6

VAR-DIM 22 82 22 10 10 10 11 10 20 70 20 10 10 10 11 10

TRIG 61 78 61 19 36 19 33 32 53 99 53 11 11 11 13 12

BR-A-LIN 8 41 8 3 3 3 4 3 0 0 0 0 0 0 0 0

DISC-BOUN - - - 20 35 20 39 38 0 0 0 0 0 0 0 0

LIN-FR 46 90 46 2 2 2 3 2 45 89 45 2 2 2 3 2

LIN-R1 1 5 2 11 11 11 12 11 1 7 2 11 11 11 12 11

LIN-R10 1 4 2 9 9 9 10 9 1 6 2 9 9 9 10 9

CHEB 49 69 49 44 66 44 60 59 74 143 74 52* 96 52 86 85

62

Table 4.6: Constrained case (2)

Problem Test Point 1 Test Point 2

Name TRUST TRUSTQP TOLMIN TRUST TRUSTQP TOLMIN

It. FC GC It. FC GC FC GC It. FC GC It. FC GC FC GC

ROSEN 24 60 24 14 17 14 17 16 26 66 26 5 5 5 11 10

FREU-ROT 16 44 16 9 9 9 28 27 42 99 42 3 3 3 5 4

BROW-B-S 7 64 7 3 44 3 15 14 14 78 14 3 3 3 4 3

BEAL - - - 8 24 8 20 19 1 2 1 2 2 2 3 2

JEN-SAM - - - 27 54 27 55 54 - - - 20 50 20 67 66

GAUS 9 9 9 7 18 7 14 13 49 52 41 14 28 15 33 32

MEYE 62 116 62 12 24 12 27 26 79 170 79 47 60 47 22 21

BOX3 6 35 6 4 4 4 5 4 7 35 7 5 5 5 6 5

POW-SI 63 94 63 17 37 17 45 44 - - - 10 41 10 23 22

KOW-OSB 36 52 36 33 43 33 48 47 41 57 41 44 64 44 46 45

BRO-DEN - - - 5 5 5 10 9 - - - 5 5 5 8 7

OSB1 76 102 76 70 93 70 103 102 300 300 300 91 124 91 99 98

BIG-EX 31 47 31 21 38 21 31 30 28 45 28 17 34 17 36 35

OSB2 84 106 84 54 78 54 91 90 53 69 53 19 37 19 39 38

X-ROSE 34 72 34 36 53 36 41 40 77 130 77 11 40 11 42 41

X-POW-S 79 118 79 32 61 32 56 55 - - - 9 34 9 27 26

PEN1 1 2 1 7 7 7 13 12 1 2 1 5 5 5 6 5

VAR-DIM 202 258 202 1 2 1 3 2 - - - 18 19 18 37 36

TRIG 28 41 28 32 47 32 53 52 * * * * * * * *

BR-A-LIN - - - 17 35 17 34 33 1 0 0 1 0 0 0 0

DISC-BOUN 27 30 27 33 35 33 46 45 32 34 32 34 37 35 50 49

DISC-INT 25 25 25 25 25 25 31 30 27 27 27 26 26 26 33 32

BROY-TRI 60 78 60 64 98 64 48 47 27 69 27 12 12 12 30 29

BROY-BAN 88 119 88 68 109 68 88 87 26 76 26 11 11 11 26 25

LIN-FR 48 93 48 2 2 2 3 2 47 92 47 2 2 2 3 2

LIN-R1 - - - 12 12 12 21 20 1 9 2 11 11 11 12 11

LIN-R10 - - - 10 10 10 19 18 1 8 2 9 9 9 10 9

CHEB 44 66 44 42 66 42 53 52 * * * * * * * *

63

Chapter 5

A Hybrid Local Search Method for

Neural{Network Training

5.1 Introduction

In this section our approach to develop a local search method suitable for supervised

training of feed-forward arti�cial neural networks, with one hidden layer and sigmoidal

activation functions. The resulting Sum-of-Squares objective function is minimized using a

hybrid technique that switches between the Gauss{Newton approach in the small residual

case, and Newton's method (Section 2.4.1)in case where large residuals are detected. This

is done in the spirit of Fletcher[43] where instead of Newton's method, a variable metric

method (BFGS)(Section 2.3.3) was preferred in order to avoid the calculation of the

Hessian matrix, which in the general case is both costly and cumbersome. In the special

case that we consider here, the Hessian matrix can be expressed analytically and calculated

e�ciently by taking advantage of the properties of the sigmoidal activation function and

its derivatives.

5.1.1 Problem Description

Arti�cial Neural Network (ANN) training is a subject of central interest due to the

widespread involvement of ANNs in a variety of scienti�c as well as practical tasks, such

as data �tting, modelling, classi�cation, pattern recognition, solution of di�erential equa-

tions etc. The \back{propagation" technique, that has been widely used mainly due to

the simplicity of its implementation, is far from being satisfactory. Its main shortcom-

ings, i.e. the oscillatory behavior and the sensitivity to round{o� that causes premature

termination, were early recognized. As a consequence, several alternative approaches em-

ploying e�cient and robust optimization methods have been tried out. Among the various

optimization techniques, Newton's method is the one with the most desirable properties.

However it requires the computation of the Hessian matrix which may be inaccurate and

very expensive if performed numerically, or very complicated to be expressed analytically.

64

Hence due to this extra burden, Newton's method is not the preferred method in a host

of practical applications. Training ANNs is an optimization problem, where the objec-

tive function can be cast as a sum of squared terms. This structure can be exploited

to devise e�cient approaches. In cases where the value of the objective function at the

minimum is close to zero, an excellent approximation for the Hessian matrix exists that

does not involve second derivatives. This is the well known \Gauss{Newton" approach.

When however the value at the minimum is far from zero then the Hessian is not well

approximated with severe consequences on the convergence of the approach. Taking the

above into account, a hybrid method has been developed by Fletcher[43], which at run

time detects, according to a simple criterion, the problem category, and switches appropri-

ately to either the Gauss-Newton or to the BFGS Quasi{Newton method. Quasi{Newton

methods do not use second order derivatives; instead they maintain at each iteration a

positive de�nite approximation for the Hessian via an updating scheme, using gradient

information only. Nowadays Quasi{Newton are considered the most succesful general

purpose optimization methods and are being widely used. In this article we focus on the

special problem of ANN training and we use a modi�ed Newton instead of BFGS in the

proposed framework of Fletcher[43]. We derive analytical closed-form expressions for the

Hessian of this problem and present the sigmoidal properties that can be exploited to

make the implementation e�cient.

Let N(x; p) denote an ANN with input vector x and weights p. In our case this will

be a perceptron with one hidden layer with sigmoidal units and linear output activation,

i.e.

N(x; p) =
h∑
i=1

pi(n+2)−(n+1)�

(
n∑

k=1

pi(n+2)−(n+1)+kxk + pi(n+2)

)
(5.1)

where:

• xi; ∀i = 1; · · · ; n are the components of the input vector x ∈ R(n).

• pi; ∀i = 1; · · · ; h(n+ 2) are the components of the weight vector p.

• h, denotes the number of hidden units.

• �(z) ≡ (1 + exp(−z))−1 is the sigmoid used as activation.

The training of the ANN to existing data is performed by minimizing the following \Error

function":

f(p) =
1

2

M∑
K=1

r2K ≡
1

2

M∑
K=1

[N(xK ; p)− yK]2 (5.2)

Useful expressions are its gradient:

g ≡ ∇pf(p) =
M∑
K=1

rK∇prK = JT r (5.3)

65

and the Hessian:

G ≡ ∇2
pf(p) = JTJ +

M∑
K=1

rK∇2
prK (5.4)

Where J is the Jacobian given by: JK;j =
@rK
@pj

5.1.2 Description of the algorithm

Nonlinear least-squares problems are among the most commonly occurring and important

applications, such as neural network training. Let r : ℜn → ℜm, with m ≥ n be a

nonlinear mapping. The problem is:

Find a local minimum x∗ of

f(x) =
1

2

m∑
i=1

[ri(x)]
2 =

1

2
r(x)T r(x)

Assuming that ri(x) is twice di�erentiable function then the derivatives of f are given

by:

g(x) = ∇f(x) = J(x)r(x) (5.5)

G(x) = ∇2f(x) = JT (x)J(x) +
m∑
i=1

ri(x)∇2ri(x) (5.6)

where J(x) is the Jacobian matrix with elements Jij = @ri(x)
xj

and G(x) is the Hessian

matrix, with elements Gij =
@2f

@xi@xj
. Throughout this paper we will use the notation Jk,

Gk, gk and fk for J(xk), G(xk), g(xk) and f(xk) respectively.

Many methods have been suggested for solving such problems. In this work we only

consider Newton-like methods with line search. These methods have the form of the

minimization algorithm 5.9.

Within this framework, di�erent methods correspond to di�erent choices for the matrix

Bk. Two well known methods which have been extensively studied and constitute the

basis for several others are the damped modi�ed Newton method (see Section 2.4.1)for

general nonlinear optimization and the damped Gauss-Newton method(see Section ??)

for nonlinear least squares problems.

Combining the methods

In comparing GN and Newton methods, the GN is generally preferred for zero residual

problem (ZRP) that is when r(x∗) = 0, whereas Newton-like methods are preferred for

large residual problems (LRP) or when Jk looses rank.

Usually is not known beforehand whether a problem will turn out to have small or large

residuals at the solution. It seems reasonable, therefore, to consider hybrid algorithms,

which would behave like Gauss-Newton if the residuals turn out to be small (and take

advantage of the cost savings associated with these methods) but switch to Newton like

66

Algorithm 5.9 Newton-like + Line Search Framework
Let xk be the current estimate of x∗

S1. [Test for convergence] If the conditions for convergence are satis�ed, the algorithm termi-

nates with x∗ = xk as solution

S2. [Compute search direction] Compute a non-zero vector pk, by solving

Bkpk = −gk (5.7)

where Bk is some positive de�nite approximation of the hessian ∇2fk. This property

ensures that pk is a descent direction.

S3. [Compute step length] Compute a positive scalar ak, called step length, which satis�es the

two conditions

f(xk + akpk) ≤ fk + �akg
T
k pk (5.8)

|g(xk + aksk)
T sk| ≤ −�gTk sk (5.9)

� ∈ (0; 1) and � ∈ (�; 1) known as Wolfe conditions.

S4. [Update the estimate of the minimum] Set xk+1 ← xk + akpk; k ← k + 1 and go back to

step S1.

steps if the residuals at the solution are large (with the cost of approximating or computing

second order derivatives).

We use Fletcher's criterion to switch between the GN approximation (JTk Jk) and a

positive de�nite modi�cation of the full Hessian.

In this way the method will asymptotically take Newton steps for a LRP and GN

steps for ZRP.

Following Fletcher, the quantity

lim
k→∞

fk − fk+1

fk
=

0 for the LRP,

1 for the ZRP.

Therefore this quantity de�nes a straightforward criterion that can be used to switch the

minimizing procedure from GN to modi�ed Newton.

We replace the second step of the minimization algorithm with the following

S2. Compute search direction.

Set Bk =

∇2fk if fk−1 − fk=fk−1 < �;

JTk Jk otherwise:

Solve Bkpk = −gk to get the search direction pk

67

5.1.3 Hessian Calculation

Using the mapping i = l(n + 2) − (n + 1) + m and j = r(n + 2) − (n + 1) + s where

l; r = 1 : : : h and m; s = 0 : : : n+ 1 we can write @2N(xK ;p)
@pi@pj

in a form

@2N(xK ; p)

@pl(n+2)−(n+1)+m@pr(n+2)−(n+1)+s

(5.10)

For simplicity we denote Yj =
∑n

k=1 pj(n+2)−(n+1)+kxk + pj(n+2). Using the above notation

we can derive an analytic formula for the Hessian matrix of a feedforward arti�cial neural

network N(x; p). The resulting formula is displayed in Table 5.1.

Table 5.1: Analytic Hessian calculation

l = r m = 0 s = 0 0

s = 1 : : : n �′(Yj)xs
s = n+ 1 �′(Yj)

m = 1 : : : n s = 0 �′(Yj)xm
s = 1 : : : n pl(n+2)−(n+1)xmxs�

′′(Yj)

s = n+ 1 pl(n+2)−(n+1)xm�
′′(Yj)

m = n+ 1 s = 0 �′(Yj)

s = 1 : : : n pl(n+2)−(n+1)xs�
′′(Yj)

s = n+ 1 pl(n+2)−(n+1)�
′′(Yj)

l ̸= r m = 0 : : : n+ 1 s = 0 : : : n+ 1 0

5.2 Experimental results

In order to compare the convergence speed of our hybrid method, to other well known

algorithms we have contacted a series of experiments using the Merlin Optimization

environment[114]. The Merlin testbed provides a set of powerful and robust minimization

routines, that guarantee its e�ectiveness.

We have tested our method against �ve other minimization procedures namely the

Quasi-Newton (Tolmin[127]), the Gauss-Newton with line search, the Hybrid BFGS{

Gauss-Newton1,the damped modi�ed Newton and the conjugate gradients with Polack{

Ribiere updates.

The strategy that we followed was to start the minimization in the neighborhood of a

local minimum and calculate the iterations and function calls that each method performed

in order to reach it. In this way we have a clear view of the convergence rate.

In the tables (5.2) and (5.3) we present the results for a training problem with input

dimension n = 2 hidden nodes h = 5 and training data M = 100. This problem falls

into the LRP category because the minimum reached is non-zero. Each table displays the

results for two di�erent minima of the same training problem.

1As it was presented in the original paper of Fletcher

68

Table 5.2: LRP: Minimum No 1

Method Iterations Function calls

Hybrid Newton 126 357

Hybrid BFGS 335 652

Newton 719 1000

Gauss-Newton 1000 3000

Tolmin 174 252

Conjugate Gradient 1480 6000

Minimum value 18.486

Table 5.3: LRP: Minimum No 2

Method Iterations Function calls

Hybrid Newton 20 64

Hybrid BFGS 33 100

Newton 35 57

Gauss-Newton 150 301

Tolmin 74 107

Conjugate Gradient 77 302

Minimum value 19.266

On the other hand, the results for a ZRP case are shown in the tables (5.4) and

(5.5)This training problem has input dimension n = 10 hidden nodes h = 10 and training

data M = 100. Again we present two results for di�erent local minima.

Table 5.4: ZRP: Minimum No 1

Method Iterations Function calls Minimum reached

Hybrid Newton 115 275 0

Hybrid BFGS 363 487 0

Newton 316 364 0

Gauss-Newton 257 296 0

Tolmin 513 697 0

Conjugate Gradient 2318 10000 1.0768

Minimum value 0

Finally we present comparative results using the well known More's test set of func-

tions. We compared Merlin's BFGS and Levenberg-Marquardt implementations to the

proposed hybrid approach. The number of gradient calls is equal to the number of itera-

tion for each case.

69

Table 5.5: ZRP: Minimum No 2

Method Iterations Function calls Minimum reached

Hybrid Newton 599 1000 0.0961

Hybrid BFGS 623 713 0.0101

Newton 759 1000 2.3282

Gauss-Newton 734 1000 0.4374

Tolmin 710 1000 0.0733

Conjugate Gradient 965 4000 1.2228

Minimum value 0

5.3 Conclusion

We have presented a novel hybrid method focused in Arti�cial Neural Network training.

Our proposal combines the hybrid ideas of Fletcher[43] and an e�cient way to compute

analytically second order derivatives. Our preliminary results are promising, however

more extensive experimentation should be contacted.

We are currently investigating online schemes for exact Hessian calculation, in order

to increase the speed of our method. We also search for a better way to distinguish

between LRP and SRP. Another extension is to calculate derivatives for alternative ANN

architectures and use the proposed algorithm for their training process.

70

Test name
BFGS LEVE Hybrid Newton

Func Eval/Iter Func Eval/Iter Func Eval/Iter(Gauss Steps)

ROSENBROCK
1.986 *10-16 0.000 3.958*10-16

80/12 10//3 16/2(1)

FREUDENSTEIN AND ROTH
7.183 *10-16 7.888 *10-31 48.984

77/14 28//9 64/10(2)

POWELL BADLY SCALED Acc Stop
1.232 * 10�32 1.102 * 10-8

202/59 23/4(2)

BROWN BADLY SCALED
7,17244E+11 2.549 * 10-29 1.139*10-14

40/2 50/17 1198/125(63)

BEALE
1.359*10-18 0.452 0.452

161/24 5545/1700 10016/1269(1)

JENNRICH AND SAMPSON
2020 259.58 2020

38/1 74/24 57/10(8)

HELICAL VALEY
3.024*10-34 1.271*10?57 5.933*10-38

183/24 30-8 110/13(10)

BARD
8.214*10-3 8.214*10-3 8.214*10-3

142/18 46/9 148/17(6)

GAUSSIAN
1.128*10-8 0.564 1.128*10-8

256/32 21/5 240/27(9)

MEYER Acc Stop
87.94 8477691

28813/6708 10006/1005(6)

GULF

3.849*10?2

0 Iterations

The gradient criterion is satis�ed

BOX 3-D
1.036*10-24 2.773*10-32 5.718*10-22

102/12 92/20 118/5(4)

POWELL SINGULAR
7.263*10?24 1.609*10-63 7.222*10-32

712/75 367/70 1471/73(62)

WOOD
1.187*10-17 0.000 1.187*10-17

587/62 36/7 169/18(13)

KOWALIK AND OSBORNE
3.075*10-4 1.027*10?3 1.027*10?3

665/68 569/110 10001/833(5)

BROWN AND DENNIS
85822.22 85822.22 85822.22

254/21 358/69 207/18(5)

OSBORNE 1
1.106 1.106 1.106

50/4 51/7 60/5(1)

BIGGS EXP6
0.306 0.180

Acc Stop
228/17 16730/2307

OSBORNE 2
1.790 1.790 1.790

549/17 171/14 466/7(1)

WATSON
2.829*10-13 2.836*10-3 868908

7963/184 8210/39 424/6(2)

EXTENDED ROSENBROCK
1.998*10-15 0.000 1.987*10-15

8976/406 46/5 231/10(9)

EXTENDED POWELL SINGULAR
3.705*10-16 3.112*10-68 7.928*10-32

3739/147 952/72 4166/87(70)

PENALTY I
2.249*10-5 2.249*10-5 2.249*10-5

1886/195 179/32 918/90(10)

PENALTY II
9.376*10-6 9.376*10-6

Acc Stop
12825/1351 160/29

VARIABLY DIMENSIONED
2.674*10-30 0.000 0.000

715/33 155/14 85/3(2)

TRIGONOMETRIC
4.224*10-5 8.788*10-4 2.795*10-5

1749/81 277/23 1120/48(17)

BROWN ALMOST LINEAR
1.316*1013 1.000 9.478*10-30

50/0/1 179/16 682/25(21)

DISCRETE BOUNDARY PR
9.358*10-21 2.503*10-33 8.962*10-21

751/35 90/9 203/9(7)

DISCRETE INTEGRAL EQ
1.116*10-22 3.229*10-33 1.034*10-22

574/27 90/9 222/10(8)

BROYDEN TRIDIAGONAL
0.974 1.521 1.349

1721/78 583/51 545/23(4)

BROYDEN BANDED
2.680 12.593 3.469*10-18

2122/96 455/40 382/18(11)

LINEAR, FULL RANK
9.999 10.000 9.999

49/2 58/5 95/3(1)

LINEAR, RANK 1
4.634 4.633 4.634

105/4 202/18 158/4(1)

LINEAR, RANK1, ZERO
6.135 6.135 6.135

120/5 155/14 53/2(1)

CHEBYQUAD Acc Stop
3.286*1014 68370621

1000004/88833 344/14(12)

LARGE EXTENDED ROSENBROCK
2.595 0.000 1.999*10-14

1357498/6704 406/5 10121/47(33)

EXTENDED BEALE
5.935*10+16 22.600 27.658

230/0/1 298869/0/2953 1000017/4895(23)

EXTENDED WOOD
2.962*10-16 0.000 2.916*10-16

356326/1768 1213/12 4059/17(12)

Table 5.6: Comparative results for the More's test set

71

Chapter 6

Parallelizing derivatives

6.1 Summary

We present a software library for numerically estimating �rst and second order partial

derivatives of a function by �nite di�erencing. Various truncation schemes are o�ered

resulting in corresponding formulas that are accurate to order O(h), O(h2), and O(h4),

h being the di�erencing step. The derivatives are calculated via forward, backward and

central di�erences. Care has been taken that only feasible points are used in the case

where bound constraints are imposed on the variables. The Hessian may be approximated

either from function or from gradient values. There are three versions of the software:

a sequential version, an OpenMP version for shared memory architectures and an MPI

version for distributed systems (clusters). The parallel versions exploit the multiprocessing

capability o�ered by computer clusters, as well as modern multicore systems and due to

the independent character of the derivative computation, the speed up scales almost

linearly with the number of available processors/cores.

6.2 Introduction

Estimating derivatives is a common subtask in many applications. For example the ma-

jority of optimization methods employ the gradient and/or the Hessian of the objective

function [111, 78, 53, 35, 40], while for the solution of nonlinear systems the Jacobian

matrix [35, 40] is required.

There are several methods for calculating derivatives. Methods that manipulate sym-

bolically analytic expressions and provide the derivative in closed form [162, 102], are

exact but of limited applicability. Automatic di�erentiation (AD) [62] is a promising

alternative that has been rather recently developed. Given the source code that imple-

ments a function, the AD software creates the code for its derivative exploiting repeated

application of the chain rule. Although this is a powerful technique, the complexity of

the process is considerable and sometimes the gains are marginal.

72

In a growing number of real world applications in science and engineering, the under-

lying functions are represented by large and complicated computer codes and the user

may �nd it di�cult or almost impossible to follow the original program (if it is available

in source form) and develop the corresponding code for the derivative. An alternative is

o�ered by �nite di�erencing, where the derivatives are approximated from function values

at suitably chosen points. The corresponding formulae may be derived in a number of

ways, and a detailed classi�cation is given in [11]. Recently Khan and Ohba [79] reported

formulas based on Taylor expansion, suitable for highly oscillating functions and Li [89]

extended this method by employing equally and unequally spaced points to estimate

derivatives of arbitrary order.

Derivative estimation via �nite di�erencing is simple but computationally expensive,

since it requires a number of function evaluations. Moreover there are several applications

where the time for a single function call is substantial. For example, the determination of

stable molecular conformations via \molecular mechanics" [22, 129], ab{initio quantum

mechanical structure calculations [129, 76], construction of potentials for the atomistic

simulation of materials [165, 115], the construction of nuclear forces [84], phase{shift

analysis from nucleon{nucleon scattering data [132], the solution of partial di�erential

equations via Galerkin type of methods [81, 82, 83] and all cases where the function's value

is a result of a simulation. In such cases parallelism could play a key role in accelerating

the process. Assuming that we have an ample number of available processors, the cost

for the derivative calculation may become almost equal to that of a single function call if

parallel processing is employed.

In the literature there exist several software packages for estimating derivatives nu-

merically. In the GSL library [50] the authors provide a �ve-point rule for central dif-

ferences and four-point rules for forward/backward di�erences using an adaptive scheme

to achieve the desired accuracy. NAG library [121] provides subroutine D04AAF that cal-

culates derivatives up to 14th order for a univariate function using an extended Neville's

algorithm [96, 95]. In the book of Mathews [101] three subroutines are o�ered for dif-

ferentiating univariate functions, one of which takes in account upper and lower variable

bounds. The numDeriv package [51] di�erentiates multivariate functions using Richard-

son extrapolation and calculates the Jacobian and Hessian matrices. Package DIFF [112]

di�erentiates univariate functions up to the third order using Neville's process. Mathemat-

ica [162] provides a command (ND) for di�erentiation up to any order, using Richardson's

extrapolation to the limit. Package LNIDIF [157] calculates �rst and second order deriva-

tives having non-uniformly spaced points, out to three dimensions. IMSL library provides

subroutine DERIV [75] for calculating up to third order derivatives of univariate functions.

From the above only [51] supports multivariate functions, while [157] is limited to three

dimensional functions. Note that the implementation of these packages is sequential,

hence they cannot exploit the advantage o�ered by the architecture of distributed or par-

allel systems. This capability is important and that is why even automatic di�erentiation

packages, such as [21], have followed the parallel implementation path.

73

The software described in this article, supports multivariate functions, respects vari-

able bounds, o�ers several prescribed accuracy levels, and is implemented using state of

the art parallel techniques in the framework of MPI [48] and OpenMP [30] platforms.

The rest of the paper is organized as follows. In Section 2 we provide derivative formulas.

In Section 3 we briey sketch the parallelization strategy followed, and in Section 4 we

describe the interface of the subroutines included in the library. Installation instructions

are given in Section 5. Finally in Section 6 we present and analyze numerical experi-

ments that concern both the accuracy and the e�ciency of the software. In the software's

distribution extensive test runs are included.

6.3 Derivative formulae

In the following, we present derivative formulae using forward di�erences (FD), backward

di�erences (BD), and central di�erences (CD), for several levels of accuracy. The formulae

for FD and BD are common. FD use positive while BD use negative di�erencing step.

The reason for this variety is to handle the bound constraints case, i.e. when xi ∈ [ai; bi].

Consider the case where the derivative at the bound xi = ai is desired. Then the proper

formula to use is from the forward di�erence class, since otherwise infeasible x−values
will be used, which may lead to numerical errors. (Imagine for example, a quantity under

the square root sign that becomes negative when x is infeasible). The software takes into

account bound constraints, in the sense that only feasible points are used to evaluate the

derivatives, and given the level of the desired accuracy, the proper formula is automatically

employed. In the case where there are no bounds or when the bounds are not violated, the

default selection is the FD formula for O(h) and the CD formulae for O(h2) and O(h4).

6.3.1 First order derivatives

The formulae of this section are used to evaluate the gradient of a scalar function and the

Jacobian of a vector function. Each formula uses a di�erent stepsize that is determined by

approximately minimizing the total (truncation and roundo�) error [53]. In what follows

we denote by � the relative error in the calculation of f , that defaults to the machine

precision in absence of such information.

1. Accurate to order O(h)

h = ±√�max{1; |x|}
FD/BD formula:

df(x)

dx
≈ f(x+ h)− f(x)

h
(6.1)

2. Accurate to order O(h2)

h = ±�1=3max{1; |x|}

74

(a) CD formula:
df(x)

dx
≈ f(x+ h)− f(x− h)

2h
(6.2)

(b) FD/BD formula:

df(x)

dx
≈ 4f(x+ h)− 3f(x)− f(x+ 2h)

2h
(6.3)

3. Accurate to order O(h4)

h = ±�1=5max{1; |x|}

(a) CD formula:

df(x)

dx
≈ 1

3

(
4
f(x+ h)− f(x− h)

2h
− f(x+ 2h)− f(x− 2h)

4h

)
(6.4)

(b) FD/BD formula:

df(x)

dx
≈ 1

21

(
64
f(x+ h)− f(x)

h
− 56

f(x+ 2h)− f(x)
2h

+14
f(x+ 4h)− f(x)

4h
− f(x+ 8h)− f(x)

8h

) (6.5)

The gradient of a function f(x); x ∈ RN is calculated as:

@f(x)

@xi
=
df(x+ �ei)

d�
|�=0; ∀i = 1; 2; : : : ; N

where ei is the unit vector in the ith direction. The gradient is coded using all formulae

(6.1) to (6.5).

The Jacobian of a vector function F T (x) = (f1(x); f2(x); : : : ; fM(x)) is given by:

Jti =
@ft(x)

@xi
=
dft(x+ �ei)

d�
|�=0

with t = 1; 2; : : : ;M and i = 1; 2; : : : ; N . Formulae up to O(h2) are implemented (only

formulae (6.1), (6.2) and (6.3)).

6.3.2 Second order derivatives

The library o�ers two options for the estimation of the Hessian elements. If the gradient

gi(x) = @f(x)
@xi

is available, the Hessian may be estimated by di�erencing the gradient,

otherwise it is estimated using function values.

75

Using the gradient

1. Accurate to order O(hi) +O(hj)

hk = ±
√
�max{1; |xk|} for k = i; j

FD/BD formula:

@2f(x)

@xi@xj
≈ 1

2

(
gi(x+ hjej)− gi(x)

hj
+
gj(x+ hiei)− gj(x)

hi

)
(6.6)

2. Accurate to order O(h2i) +O(h2j)

hk = ±�1=3max{1; |xk|} for k = i; j

(a) FD/BD formula:

@2f(x)

@xi@xj
≈ 1

2

(
4gi(x+ hjej)− gi(x+ 2hjej)− 3gi(x)

2hj
+

4gj(x+ hiei)− gj(x+ 2hiei)− 3gj(x)

2hi

) (6.7)

(b) CD formula:

@2f(x)

@xi@xj
≈ 1

2

(
gi(x+ hjej)− gi(x− hjej)

2hj
+

gj(x+ hiei)− gj(x− hiei)
2hi

) (6.8)

Using function values

1. Accurate to order O(hi) +O(hj)

hk = ±�1=3max{1; |xk|} for k = i; j

FD/BD formula:

@2f(x)

@xi@xj
≈ 1

hihj
(f(x+ hiei + hjej)− f(x+ hiei)− f(x+ hjej) + f(x)) (6.9)

2. Accurate to order O(hihj)

hk = ±�1=4max{1; |xk|} for k = i; j

(a) FD/BD formula:

O�{diagonal elements:

@2f(x)

@xi@xj
≈ 1

4hihj
(9f(x) + 16f(x+ hiei + hjej)

+f(x+ 2hiei + 2hjej)

−4f(x+ hiei + 2hjej)− 4f(x+ 2hiei + hjej)

−12f(x+ hiei)− 12f(x+ hjej)

+3f(x+ 2hiei) + 3f(x+ 2hjej))

(6.10)

76

Diagonal elements:

@2f(x)

@x2i
≈ 1

h2i
(2f(x)− f(x+ 3hiei) + 4f(x+ 2hiei)− 5f(x+ hiei)) (6.11)

(b) CD formula:

O�{diagonal elements:

@2f(x)

@xi@xj
≈ 1

4hihj
(f(x+ hiei + hjej) + f(x− hiei − hjej)

−f(x+ hiei − hjej)− f(x− hiei + hjej))

(6.12)

Diagonal elements:

@2f(x)

@x2i
≈ 1

h2i
(f(x+ hiei) + f(x− hiei)− 2f(x)) (6.13)

(c) Mixed CD and FD(BD) formula:

@2f(x)

@xi@xj
≈ 1

4hihj
(4 (f(x+ hiei + hjej)− f(x+ hiei − hjej))

−3 (f(x+ hjej)− f(x− hjej))
− (f(x+ 2hiei + hjej)− f(x+ 2hiei − hjej)))

(6.14)

6.4 Parallelization strategy

For the shared-memory parallelization of the Numerical Di�erentiation Library (NDL) we

have used OpenMP, the standard programming model for a wide range of parallel plat-

forms including small-scale SMPs and emerging multi-core processors. OpenMP de�nes

a portable programming interface based on directives, i.e. annotations that enclose loops

and sections of code. In addition, it provides a means of seamless parallelization of NDL,

as it allows the construction of a parallel program as a natural extension of its sequential

counterpart. To achieve optimal load balance and speedup in NDL, we exploit its inherent

nested parallelism [147], that results from the multiple function evaluations performed at

each coordinate direction. Nested parallelism is a major feature of OpenMP that allows

multiple levels of parallelism to be active simultaneously. Nowadays, several research and

commercial OpenMP compilers support more than one level of parallelism.

The parallelization of the software library on multiprocessor clusters has been based

on the master-worker programming paradigm, a fundamental approach for parallel and

distributed computing. In NDL, task parallelism is possible due to the independent

function evaluations assigned by the master to the workers. For each function evaluation,

the master provides the input vector x to the worker and receives the computed function

value f(x). The parallel version of NDL has been coded using the LWRPC library [65], a

77

runtime environment which is part of the software and provides a lightweight framework

for executing task parallelism on top of MPI. LWRPC is a exible and portable runtime

library that implements a two-level thread model (where user-level threads run on top

of kernel-level threads [23]) on clusters of multiprocessors, trying to exploit the shared-

memory hardware whenever this is available.

It provides transparent data movement and load balancing and allows for static and

dynamic scheduling of tasks. Furthermore, it supports multiple levels of parallelism and

enables the same code to run e�ciently on both distributed and shared memory multi-

processors.

In LWRPC, a task is represented with a data structure, called work descriptor. Tasks

are distributed to the available nodes and eventually executed on top of user-level threads.

The same approach has also been followed for the master which is the primary task. An

MPI process runs on each cluster node and utilizes one or more kernel threads that ex-

ecute these tasks. Moreover, task submission and management is performed completely

asynchronously by means of a special per-node server thread. There are ready queues

where tasks are submitted for execution. The submission of a work descriptor to a local

queue is always performed through hardware shared memory, otherwise appropriate mes-

sages are sent to the server thread of the remote node. Each work descriptor (i.e. task) is

associated with an owner node. If a task �nishes on its owner node, its parent is noti�ed

directly through shared memory. Otherwise, a message is sent to the owner node and this

noti�cation is performed by the server thread of that node.

When the application is executed on shared memory machines, the runtime library,

and accordingly the application, operates exclusively through the available hardware.

However, whenever a task is inserted on a remote node, its data has to be sent explicitly. In

this case, we associate each work descriptor with the arguments (data) of its corresponding

function, similarly to the Remote Procedure Call protocol [145]. For each argument,

the user speci�es its MPI data type and number of elements, an intent attribute, and

optionally a reduction operator. These MPI-speci�c details are the only references made

to message passing programming at the user level. Note that, the explicit data movement

is performed transparently to the user.

The parallel routines that NDL exports to MPI programs are designed to be called

by all MPI processes that participate in the program execution, similarly to the MPI

collective communication routines. This design adheres to the SPMD (Single Program

Multiple Data) execution model that MPI supports by default. When an NDL parallel

routine is invoked, the execution model switches to master-worker and the thread of the

process with rank 0 becomes responsible for distributing the tasks to the workers and

gathering the results. In NDL, each task corresponds to a function evaluation at a given

point. Before returning from the library call to the user program, the execution model

switches back to SPMD and the results are broadcast from the master to the rest of the

MPI processes. This is schematically illustrated in Fig. 6.1.

In the case of second order derivatives we use a nested parallelization model that is

78

SPMD

SPMD

Master-Slave

Slave1

Slave2

Slavep

Master

Figure 6.1: Library's Programming Model

provided by the LWRPC library. By nested we mean that each element of the Hessian is

calculated, as a �rst level job, by a single worker. That leads to (N2 + N)=2 �rst level

jobs. Every �rst level job is responsible to perform function/gradient evaluations, second

level jobs, according to the desired accuracy and the bounds. By inspecting the formulae

of the previous section, it is readily deduced that the required number of second level jobs

ranges between two and nine.

6.5 User interface

We have implemented subroutines for calculating gradients, Hessians and Jacobians. In all

cases we provide serial, OpenMP{parallel and MPI{parallel subroutines. Every subroutine

has a standard and an advanced interface. The advanced interface allows the user to

specify bounds on the variables and an estimate for the relative accuracy of the function

evaluation. It also returns the number of function calls, error codes and optionally issues

verbose output.

6.5.1 Naming conventions

We use the following naming convention for the subroutines:

79

xNDLyz (arguments)

where x, denotes the type of parallelization and can be:

empty : for the serial version

O: for the OpenMP{parallel version

P: for the MPI{parallel version

y denotes the order of accuracy and can be:

G: for the gradient

H: for the Hessian

J: for the Jacobian

z denotes the interface type correspondingly and can be:

empty : for the standard interface

A: for the advanced interface

where by empty is meant that the symbol is missing.

For example subroutine PNDLGA stands for the MPI{parallel code (P) for the gradient

calculation (G) using the advanced interface (A). Also, NDLJ is the serial subroutine to

calculate the Jacobian matrix using the standard interface.

6.5.2 Common arguments

The provided subroutines share a number of common arguments which are described

bellow.

X (input) Array containing the point at which the calculation is desired.

N (input) The dimensionality of the function.

XL (input) Array containing the lower bounds on the variables.

XU (input) Array containing the upper bounds on the variables.

FEPS (input) The user's estimate for the relative precision of the function evalu-

ation. If FEPS=0 it is reset to the machine's precision.

IORD (input) Requested order of accuracy. Possible values for gradients are 1, 2,

4 and for Hessians and Jacobians 1, 2.

IPRINT (input) Controls the amount of printout from the routine. Note that all

output appears on the standard output device. Possible values

are:

80

0 No printout at all.

1 Fatal error messages are printed.

2 Warning messages are printed.

3 Detailed information is printed (the formula that was

used, di�erentiation steps and the resulting derivatives

vector).

NOC (output) Number of calls to the function being di�erenciated.

IERR (output) Error indicator. Possible values are:

0 No errors at all.

1 Improper IORD value.

2 The supplied N is less than 1.

3 Some of the supplied upper bounds (XU) are less than

the corresponding lower bounds (XL).

4 Some of the supplied variables are out of bounds.

5 The value of FEPS is incorrect (less than 0 or greater

than 1).

6 The supplied IPRINT is incorrect.

7 N exceeds the maximum allowed value (MAXN). MAXN

must be increased appropriately and the library must be

recon�gured.

8 There is not enough internal storage. MAXN must be

increased to match the number of squared terms (M) and

the library must be recon�gured.

9 The number of squared terms (M) is less than 1.

6.5.3 Gradient calculation

Given a multidimensional function (F), these routines return the gradient vector (G) by

applying a numerical di�erentiation formula according to the desired order of accuracy

(IORD). The user provided function F must be declared as:

FUNCTION F (X, N)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION X(N)

Standard interface:

SUBROUTINE NDLG (F,X,N,IORD,G)

Advanced interface:

SUBROUTINE NDLGA (F,X,N,XL,XU,FEPS,IORD,IPRINT,G,NOC,IERR)

81

F (input) The function to be di�erentiated.

G (output) Array containing the resulting gradient vector

6.5.4 Jacobian calculation

Given a multidimensional function that is written as a sum of squared terms (residuals):

F (x) =
M∑
i=1

fi(x)
2

these routines return the Jacobian matrix (FJ) by applying a numerical di�erentiation

formula according to the desired order of accuracy (IORD). The user provided subroutine

must declared as:

SUBROUTINE RSD (X, N, M, F)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION X(N), F(M)

Standard interface:

SUBROUTINE NDLJ (RSD,X,N,M,IORD,FJ,LD)

Advanced interface:

SUBROUTINE NDLJA (RSD,X,N,M,XL,XU,FEPS,IORD,IPRINT,FJ,LD, NOC,IERR)

RSD (input) A subroutine that returns the residuals.

M (input) The number of squared terms.

LD (input) Leading dimension of matrix FJ.

FJ (output) The Jacobian matrix. Jij(x) =
@fi(x)

@xj

6.5.5 Hessian calculation

Using gradients

Given a routine (GRD) that evaluates analytically the �rst partial derivatives of a func-

tion, these routines return the Hessian matrix (HES) by applying a numerical di�eren-

tiation formula according to the desired order of accuracy (IORD). The user provided

subroutine GRD must be declared as:

SUBROUTINE GRD (X, N, G)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION X(N), G(N)

82

Standard interface:

SUBROUTINE NDLHG (GRD,X,N,IORD,HES,LD)

Advanced interface:

SUBROUTINE NDLHGA (GRD,X,N,XL,XU,FEPS,IORD,IPRINT,HES,LD,NOC,IERR)

GRD (input) A subroutine that returns the gradient vector (G), given the values

of the variables (X).

LD (input) Leading dimension of matrix HES.

HES (output) Array containing the resulting Hessian matrix. Note that only the

lower triangular part (plus the diagonal elements) is returned.

Using function values

Given a multidimensional function (F), these routines return the Hessian matrix (HES)

by applying a numerical di�erentiation formula according to the desired order of accuracy

(IORD). The user provided function F must be declared as:

FUNCTION F (X, N)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION X(N)

Standard interface:

SUBROUTINE NDLHF (F,X,N,IORD,HES,LD)

Advanced interface:

SUBROUTINE NDLHFA (F,X,N,XL,XU,FEPS,IORD,IPRINT,HES,LD,NOC,IERR)

F (input) The function to be di�erentiated.

LD (input) Leading dimension of matrix HES.

HES (output) Array containing the resulting Hessian matrix. Note that only the

lower triangular part (plus the diagonal elements) is returned.

6.6 Installation instructions and sample program

In this section we describe in brief how to con�gure and install the software and we provide

a basic sample program for the MPI{parallel case.

6.6.1 Installation instructions

The software is distributed as a tar.gz �le and can be uncompressed and extracted by

issuing

83

gunzip ndl-1.0.tar.gz tar -xvf ndl-1.0.tar.gz

A directory called ndl-1.0 will be created with three subdirectories serial, openmp and

mpi containing the serial, OpenMP{parallel and MPI{parallel distributions respectively.

Any of the three distributions can be installed by entering the corresponding directory

and executing the following steps:

1. Con�gure the package:

./configure

In the case of OpenMP one must specify the Fortran compiler with the appropriate

options. For example:

./configure F77=gfortran FFLAGS=-fopenmp ./configure F77=ifort

FFLAGS=-openmp

Other con�guration choices include the speci�cation of the installation directory:

./configure --prefix=<install-dir>

the de�nition of the desired C and Fortran compilers:

./configure CC=<path-to-mpicc> F77=<path-to-mpif77>

and the de�nition of the maximum problem dimension:

./configure --with-maxn=<num>

Further help for the con�guration parameters can be obtained by entering:

./configure --help

2. Build the library:

make

For each distribution a library �le will be created, libndl.a for the serial version,

libpndl.a for the OpenMP{parallel version and libondl.a for the MPI{parallel

version. This step also compiles the provided test run code.

3. Install the library:

make install

By default the NDL library �les will be placed in /usr/local/lib.

84

6.6.2 Sample program

We present a sample program (�le osample.f) that uses the OpenMP version of our

library in order to calculate the gradient of the function f(x1; x2) = x1 cos(x2)+x2 cos(x1)

using order O(h2).

program otest

implicit double precision (a-h, o-z)

parameter (n=2)

dimension x(n), g(n)

external f

C

x(1) = 1.0d0

x(2) = 1.1d0

iord = 2

call ondlg (f, x, n, iord, g)

print *, 'point ', (x(i), i=1, n)

print *, 'gradient ', (g(i), i=1, n)

end

c--

function f(x,n)

implicit double precision (a-h, o-z)

dimension x(n)

f = x(1)*cos(x(2))+x(2)*cos(x(1))

end

The above sample program can be compiled and executed using:

$ gfortran -o osample osample.f -londl $ export OMP_NUM_THREADS=2

$./osample

Command export OMP_NUM_THREADS=<num> sets the number of worker threads in the

OpenMP runtime library [30]. The MPI version of the above a sample program is pre-

sented bellow (�le psample.f).

program ptest

implicit double precision (a-h, o-z)

parameter (n=2)

dimension x(n), g(n)

external f

include 'mpif.h'

call mpi_init(mpierror)

c ...

85

x(1) = 1.0d0

x(2) = 1.1d0

iord = 2

call pndlg (f, x, n, iord, g)

c ...

call mpi_comm_rank (mpi_comm_world,irank,ierr)

if (irank.eq.0) then

print *, 'point ', (x(i), i=1, n)

print *, 'gradient ', (g(i), i=1, n)

endif

c ...

call mpi_finalize(mpierror)

end

c--

function f(x,n)

implicit double precision (a-h, o-z)

dimension x(n)

f = x(1)*cos(x(2))+x(2)*cos(x(1))

end

The above sample program can be compiled and executed using:

$ mpif77 -o psample psample.f -lpndl $ mpirun -n 2 ./psample

6.7 Performance results

In Table 6.1 we report the relative error de�ned as:

err(k) =
|f (k)(x)− f (k)

fd |
max(1; |f (k)(x)|)

where f (k)(x) is the exact kth order derivative and f (k)
fd is a �nite di�erence approximation

to it. We used the �ve test functions listed in the �rst column. The relative error has been

calculated at eleven equidistant points in [−1; 1]. In columns 2{4 we report the maximum
(among these points) err(1), for the O(h); O(h2) and O(h4) formulae. Correspondingly in

columns 5{6 we report the maximum err(2) for the O(h) and O(h2) formulae.

In order to measure the performance of the parallel-NDL implementation we have con-

ducted extensive tests for both OpenMP and MPI{parallel versions. We have performed

two sets of experiments:

E1 : We used a 500-dimensional test function (without imposing bounds on the

variables) and we calculated the gradient with O(h4) precision. That leads to a

total of 2000 function evaluations. We have arranged for function evaluation time

to be 1 ms, 10 ms and 100 ms respectively, via appropriate arti�cial delays.

86

Table 6.1: Relative errors in several example functions.

First order Second order

Function O(h) O(h2) O(h4) O(h) O(h2)

sin x 1.5E-08 2.0E-11 1.1E-13 1.0E-05 5.3E-09

ex 2.0E-08 2.4E-11 1.9E-13 1.4E-05 5.4E-09

x2 sinx 4.7E-08 1.0E-10 6.7E-13 6.0E-05 2.5E-08

xe−2x + sin 3x 1.5E-07 2.2E-10 5.1E-12 2.2E-04 1.2E-07

x7 + 2x5 − 5x 5.3E-07 2.7E-09 6.2E-11 8.2E-05 1.4E-07

E2 : We used a 20-dimensional test function (without imposing bounds on the vari-

ables) and we calculated the gradient with O(h4) precision. In this setting the total

number of function evaluations is 80. The computational cost for each function call

was again set to be 1 ms, 10 ms and 100 ms respectively.

We measure the speedup s de�ned as s = T1=Tp, where T1 is the time required for

execution on one processor and Tp is the real time required when running on p processors.

6.7.1 MPI{parallel

Our experiments are performed on a 200 node Hewlett-Packard XC cluster system. Each

node has 2 AMD Opteron{248 processors and 4GB main memory, while the nodes are

interconnected with Gigabit Ethernet.

In Fig. 6.2 we present the results from experiment E1. The solid line represents the

ideal speedup. For the 1 ms and 10 ms test functions where the communication times are

comparable to execution times, the speedup is reduced to approximately 35% and 70%

away from the ideal, while the speedup for the 100 ms function almost coincides with the

ideal as it was expected. The results for experiment E2 are presented in Fig. 6.3, where

similar behavior is observed. The steps in the curves for the 10 ms and 100 ms functions

are due to the way the required 80 function evaluations are distributed to the available

processors. If the number of processors p divides exactly the number of tasks nt, then all

p processors are employed for nt
p
cycles. Otherwise p processors are fully utilized for [nt

p
]

cycles, and one more cycle is needed employing nt mod p processors.

6.7.2 OpenMP{parallel

The same experiments were conducted on a shared-memory multiprocessor system equipped

with 4 Dual-Core 3.0GHz Intel Xeon processors and 4GB main memory, running 64-bit

Debian Linux. In Fig. 6.4 we present the results only for the 1 ms test function since the

others (10 ms, 100 ms test functions) almost coincide with the ideal speedup. We notice

a 19% reduction from the ideal speedup when N = 20.

87

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
pe

ed
up

 (
s)

Number of processors

1 ms/sec
10ms/s ec
100ms/sec

Perfect speedup

Figure 6.2: Speedup for experiment E1 (N = 500)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

S
pe

ed
up

 (
s)

Number of processors

1 ms/sec
10ms/s ec

100ms/sec
Perfect speedup

Figure 6.3: Speedup for experiment E2 (N = 20)

6.8 Test run description

Extensive test runs for the serial and parallel versions of the library were performed and

are available with the distribution. The user is advised to repeat these runs in order to

validate the installation. The relevant �les are located in a subdirectory named test.

88

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

 (
s)

Number of processors

N = 500, 1ms/call
N = 20, 1ms/s ec
Perfect speedup

Figure 6.4: OpenMP implementation speedup

Acknowledgments

The authors acknowledge the computational resources generously provided by the Center

for Scienti�c Simulation of the University of Ioannina.

89

Part III

Global Optimization

90

Chapter 7

Survey on Stochastic Global

Optimization

The global Optimization problem (P) can be stated as:

min f(x)

subject to x ∈ S

where f is a continuous function on S and S ⊆ Rn is a compact body. Some of the

methods we will describe require additional assumptions on the objective function f or

the feasible region S;we will note them wherever necessary. We will not consider very

specialized subclasses of problems. However, under these weak conditions we know that

the optimal solution value

f∗ ≡ max
x∈S

f(x) (7.1)

exists and is attained, i.e. the set

S∗ ≡ {x ∈ S : f(x) = f ∗} (7.2)

is nonempty.

It is well-known that the global optimization problem (P) is inherently unsolvable in a

�nite number of steps. This can be veri�ed as follows[]. For any continuously di�erentiable

function f , any point x and any neighborhood ï of x, there exists a function f ′ such that

f+f ′ is continuously di�erentiable, f+f ′ equals f for all points outside B, and the global

optimum of f + f ′ is x (f + f ′ is an indentation of f). Thus, for any point x, one cannot

verify with certainty that it is not the global optimum without evaluating the function in

at least one point in every neighborhood ï of x. As ï can be chosen arbitrarily small, it

follows that any method designed to solve the global optimization problem would require

an unbounded number of steps. Thus, generally, we shall not be able to �nd a point in S∗

in �nite time. Usually we will therefore consider the global optimization problem solved

if we have found a point in

B�(S
∗) ≡ {x ∈ S : ||x− x∗|| ≤ � for some x∗ ∈ S∗} (7.3)

91

or in the level set

S� ≡ {x ∈ S : f(x) ≥ f∗ − �} (7.4)

for some � > 0 [Dixon].

7.1 Introduction

In this chapter we will discuss stochastic methods for solving the following general global

optimization problem (P). Stochastic methods will be understood to be methods that

contain some stochastic elements. This means that either the outcome of the method

is itself a random variable (see Sections 7.3, 7.2 and 7.4), or the objective function is

considered to be a realization of a stochastic process. Therefore, we will have to sacri�ce

the possibility of an absolute guarantee of success. Instead, we will usually aim at proving

that, as the e�ort increases to in�nity, an element of B�(S
∗) or S� will be found with

probability one.

Section 7.3 discusses the so-called two-phase methods, i.e. methods which use both

random sampling (the global phase) and local optimization (the local phase). In Section

7.2 random search methods are described, which leads naturally to the class of Simulated

Annealing algorithms in Section 7.4.

7.2 Random Search Methods

The class of random search methods consists of algorithms which generate a sequence

of points in the feasible region following some prespeci�ed probability distribution, or

sequence of probability distributions. The most basic algorithms from this class proceed by

generating points from a single probability distribution, i.e. the points are independently

and identically distributed random variables. Alternatively, the distribution from which

a point in the sequence is generated can be updated adaptively, i.e. depending on the

iteration number and on previous iteration points.

The algorithms discussed in this section are of a conceptual nature, in the sense that at

this point there does not exist an e�cient implementation of these algorithms. However,

the theoretical results that can be obtained for these algorithms are interesting in itself.

Moreover, as we will see, they have a potential for inspiring (or theoretically supporting)

more practical algorithms for global optimization.

7.2.1 Pure Random Search

he simplest algorithm from the class of random search methods is the Pure Random

Search algorithm, which consists of generating a sequence of i.i.d. uniform points in the

feasible region S, while keeping track of the best point that is found. This algorithm o�ers

a probabilistic asymptotic guarantee in the sense that the global maximum will be found

92

with probability one as the sample size grows to in�nity. It is interesting to note that

this convergence result continues to hold if we replace the uniform distribution by any

distribution whose support has a nonempty intersection with S. An interesting question is

Algorithm 7.10 Pure Random Search (PRS)

Step 0. Set n = 1; y0 = −∞.

Step 1. Generate a point x from the uniform distribution over S.

Step 2. If f(x) > yn−1, then set yn = f(x) and xn = x. Otherwise, set yn = yn−1

and xn = xn−1:

Step 3. Increment n and return to Step 1.

whether this algorithm has any advantage over its deterministic counterpart grid search,

in which the function is evaluated in each point of a regular grid over S. One obvious

advantage of PRS is that it can be implemented adapiively, i.e. the number of points

generated does not need to be decided in advance. Another advantage is that the term

regular grid is not well-de�ned for some arbitrary number of points Î· over an arbitrary

set S. The two algorithms have been more extensively analyzed by e.g. [Anderssen and

Bloom�eld]. The result of their analysis is that the points of the random sample cover S

more e�ciently (according to some probabilistic criterion) than grid points do, at least if

the dimension of the problem is not too low.

7.2.2 Random Search

Let {�n}∞n=0 be a sequence of probability distributions on R
d. Then consider the following

conceptual algorithm: The map D with domain S×Rd and range S satis�es the following

Algorithm 7.11 Random Search

Step 0. Set n = 0 and choose x0 ∈ S.
Step 1. Generate yn+1 from the distribution �n.

Step 2. Set xn+1 = D(xn; yn+1), increment n and return to Step 1.

condition:

f(D(x; y)) ≤ f(x) and if y ∈ S; f(D(x; y)) ≤ f(y)) (7.5)

This condition ensures that the sequence {f(xn)}∞n=0 is monotone increasing with proba-

bility one. In fact, if:
∞∏
n=0

(1− �(A)) = 0 (7.6)

for all sets A that �(A) > 0, this sequnce will converge to f ∗ with probability one. If

the random search algorithm is adaptive, i.e. if we allow the distribution �n to depend

on the values of x0; :::; xn, then the convergence issue becomes more complicated. In the

remainder of this section we will discuss two classes of adaptive random search algorithms

for which convergence to the global optimum is obvious.

93

7.2.3 Pure Adaptive Search

The Pure Adaptive Search (PAS) algorithm di�ers from the PRS algorithm in that it

forces improvement in each iteration. Because of this feature the PAS algorithm �ts in

the general class of random search algorithms discussed above. In PAS, an iteration point

is generated from the uniform distribution on the subset of points that are improving with

respect to the previous iteration point. More formally, the algorithm reads: [Zabinksy

Algorithm 7.12 Pure Adaptive Search (PAS)

Step 0. Set n = 0 and choose y0 =∞.

Step 1. Generate xn+1 uniformly distributed in Sn+1 = {x ∈ S : f(x) < yn}.
Step 2. Set yn+1 = f(xn+1). Increment n and return to Step 1.

and Smith] provide a theorem that states that for a large class of global optimization

problems with convex feasible regions in Rd, exists an upper bound on the expected

number of iterations to achieve a solution arbirtary close to a global optimum.

Unfortunately, in practice, we encounter the following di�culties with directly imple-

menting the Pure Adaptive Search algorithm:

1. Constructing the improving region

Sn = {x ∈ S : f(x) > f(xn−1)}

2. Generating a point uniformly distributed in Sn.

One way to avoid these di�culties is by using the acceptance-rejection method for gen-

erating points in Sn. That is, generate points uniformly in the feasible region S until we

�nd a point that is in Sn.

7.2.4 Adaptive Search

In the Adaptive Search framework, points should be generated from the Boltzmann dis-

tribution �T , with density function

gT (x) ∝ ef(x)=T

where T is a \small"positive number. This is appropriate because for small T the distri-

bution �T will\concentrate near the global maximum". An important advantage of this

algorithm is that sampling is done from the feasible region S, instead of from a nested

set of smaller level sets of f . This avoids the two di�culties of PAS listed in the previous

section. The price that has to be paid for this is that the distribution from which we have

to sample changes during the course of the algorithm.

The number of trial points necessary in Step 1 can be inuenced by an appropriate

choice of the parameter T in Step 2 (where this choice will depend on the particular

94

Algorithm 7.13 Adaptive Search (AS)

Step 0. Set n = 0, T0 =∞ and y0 =∞.

Step 1. Generate x from the distribution �Tn over S. If f(x) < yn, set xn+1 = x.

Otherwise, repeat from Step 1.

Step 2. Set yn+1 = f(xn+1) and set the parameter Tn+1 = �(yn+1), where � is an

R+-valued nonincreasing function. Increment n and return to Step 1.

shape of the distributions �T). In accordance with the usual convention we will refer

to the parameter T as the temperature parameter. A particular choice of temperature

paÂrameters {Tnn=0}∞ is then called a cooling schedule. The proposed cooling schedule

for Adaptive Search is the following: given the current best function value yn, choose the

temperature Tn in such a way that a random variable generated from �Tn has a better

function value than yn with probability at least 1â�. In this case the expected number of

points that have to be generated at each temperature is at most 1
1−� . This analysis leads

to the cooling schedule:

�(y) =
f∗ − y

1−�(�; 1)
(7.7)

where 1−�(�; 1) is the critical value of a gamma distributed random variable with pa-

rameters � and 1 at level 1âa.

7.2.5 Controlled Random Search (CRS)

There are several versions of this method that is based upon heuristics. We describe here

a modi�cation of Price's [128] algorithm, similar but not identical to the one described in

[17]. The method seeks for one global minimum in a given domain S. Here the feasible

domain S is considered to be a rectangular hyperbox. The algorithm has been designed for

problems where the objective function is a�ected by the presence of noise and its gradient

is not analytically available. Such problems, in the case of local optimization are treated

with reasonable success by the irregular Simplex method [109], described in section 2.2.2.

CRS is inspired in part by the tactic followed in that method, i.e. maintaining a population

of points and performing operations such as reection with respect to a centroid, etc.

Note that if more than one global minima exist, this method will locate only one of

them.

The steps of the procedure are given by: CRS is simple to code and hence it has been

frequently used in several applications. There exist several versions of the algorithm in

the literature; however the main idea is common to all of them and no major performance

di�erences have been observed.

95

Algorithm 7.14 Controlled Random Search

Step 0. Set M > d+ 1,� = 10−6, ! = 1000

Set k = 0, Sk = {xk1; xk2; : : : ; xkM}
Evaluate fki = f(xki) for i = 1; 2; : : : ; ;M

Step 1. fkmax = max{fki }, and let the corresponding point be denoted as xkmax.

fkmin = min{fki }; and the corresponding point is denoted as xkmin.

If fkmax − fkmin ≤ �, polish xkmin via a local search procedure and STOP.

Step 2. Choose at random N + 1 points {xki0 ; x
k
i1
; : : : ; xkiN} from Sk.

Calculate the weighted centroids:

ckw =
N∑
j=1

wk
j x

k
ij
; fkw =

N∑
j=1

wk
j f(x

k
ij
)

where:

wk
j =

nkj∑N
j=1 n

k
j

; nkj =
1

f(xkij)− f
k
min + �k

; �k = !
(fkmax − fkmin)

2

f0
max − f 0

min

Calculate a trial point xkas:

xk = (xki0 − c
k
w)

f(xki0)− f
k
w

fkmax − fkmin + �k
+∆k

w

where ∆k
w = 2ckw − xki0 if f

k
w ≤ f(xki0) and ∆k

w = 2xki0 − c
k
w if fkw > f(xki0).

If xk =∈ S repeat Step 2.

Compute f(xk).

Step 3. If f(xk) ≥ fkmax then

Calculate the success rate (the fraction of function evaluations

that led to a new lower upper bound).

If success rate > 50% then

Set Sk+1 = Sk, k = k + 1 and goto Step 2.

Calculate yk =
ckw+xkiN

2
, compute fy = f(yk)

If fy ≥ fkmax then

Set Sk+1 = Sk, k = k + 1 and goto Step 2.

Set Sk+1 = Sk
∪
{yk} − {xkmax}, k = k + 1 and GOTO Step 1.

Step 4. Set Sk+1 = Sk
∪
{xk} − {xkmax}.

Increment: k = k + 1 and goto Step 1.

7.3 Two-phase Methods

In this section we will discuss stochastic methods in which two phases can be distinguished.

Firstly, we have a global phase, in which the function is evaluated in a number of randomly

sampled points. Secondly, in the local phase these sample points are manipulated, e.g.

96

by means of local searches, to yield a candidate global minimum. Most of these methods

can be viewed as variants of the so-called Multistart algorithm. The global phase of this

algorithm consists of generating a sample of points from a uniform distribution over S.

In the local phase a local search procedure L is applied to each of these points, yielding

various local minima. For a more extensive review of two-phase methods we refer to

[Rinnooy Kan and Timmer]. Some essential properties of the local search procedure L

will be presented in Section YY. The careful selection and implementation of the local

search plays a very important role in two-phase methods and became a basic direction of

our research.

7.3.1 Multistart

The simplest way to make use of a local search procedure L occurs in a method known as

Multistart. This method is obviously much more attractive than Pure Random Search.

Algorithm 7.15 Multistart

Step 0. Set n = 1; y0 = −∞.

Step 1. Generate a point x from the uniform distribution over S and apply L to

x yielding x′.

Step 2. If f(x′) > yn−1, then set yn = f(x′) and xn = x′. Otherwise, set yn = yn−1

and xn = xn−1:

Step 3. Increment n and return to Step 1.

However, the procedure is still lacking in e�ciency. The main reason for this is that it will

inevitably �nd each local maximum several times. Since local searches are the most time

consuming part of the procedure, L should ideally be invoked no more than once in every

region of attraction, where the region of attraction of the local maximum x∗i is de�ned as

the set of points in S starting from which L will converge to x∗. The clustering methods

and the Multi Level Single Linkage algorithms discussed in the following two subsections

have been designed with this objective in mind.

7.3.2 Clustering Methods

The basic idea behind clustering methods is to start from a uniform sample from S, to

create groups of mutually \close" points, and to start L no more than once in each of those

groups. Two ways to create such groups from the initial sample have been proposed. The

�rst, called reduction [Becker and Lago]), only retains a fraction of the sample consisting

of the points with the highest function values. The second, called concentration [Torn],

transforms the sample by allowing one or a few steepest descent steps from every point.

The basic framework for identifying clusters of points that result from the sample

obtained by one of the above methods is always the same. Clusters are formed in a

stepwise fashion, starting from a seed point, which may be the unclustered point with the

97

highest function value or the local maximum found by applying L to this point. Points

are then added to the cluster through application of a clustering rule.

In the remainder we will always use the reduction method as a starting point for

clustering. The reason for this is that with this method, within each cluster the points will

be uniformly distributed. Moreover, the clusters will correspond to connected components

of level sets. These two properties provide a powerful tool in determining statistically

correct clustering rules. The two most popular clustering rules are either density clustering

or Single Linkage clustering.

Density Clustering

A stepwise description of the density clustering algorithm is: The critical distance ri(x),

Algorithm 7.16 Density Clustering

Step 0. Set k = 1; X∗ = Ø.

Step 1. Generate Î points, x(k−i)N+i; : : : ; XkN , from the uniform distribution over

S, and determine the reduced sample consisting of the kN best points

from the sample Î1; : : : ; xkN . Set i = 1 and j = 1.

Step 2. If all reduced sample points have been assigned to a cluster, go to Step

4. If j < |X∗| then choose the j-th local minimum in X∗ as the next seed

point and go to Step 3. If j > |X∗|, then apply L to the unclustered

reduced sample point x̄ with the lowest function value. If the resulting

local maximum x∗ is an element ofX∗, then assign x̄ to the cluster initiated

by x∗ and return to Step 2. If x∗ ̸∈ X∗, then add x∗, to X∗ and let x∗ be

the next seed point.

Step 3. Add all unclustered reduced sample points which are within distance ri(x
∗)

of the seed point x∗, to the cluster initiated by x∗. If no point has been

added to the cluster for this speci�c value of ri(x
∗), then increment j and

return to Step 2, else increment i and repeat Step 3.

Step 4. Increment k and return to Step 1.

is chosen by [Rinnooy Kan and Timmer] to be equal to

ri(x) =
1√
�

(
iΓ(1 + d

2
) ·m(S) · �ln(kN)

kN

)1=d

(7.8)

where H(x) denotes the Hessian at the point x and � is some positive constant. The idea

behind this implementation is that the level set of the function f in the neighborhood of

a local maximum is approximated by an ellipsoid, or, in other words, the function f is

locally approximated by a quadratic function. Hence, the success of the method depends

on how well this approximation is. A method which does not a priori �x the shape of the

clusters is the Single Linkage clustering method.

98

Single Linkage Clustering

In the Single Linkage method [Rinnoy Kan and Timmer] the clusters are formed sequen-

tially. Again, each cluster is initiated by a seed point. After a cluster C is initiated, we

�nd an unclustered point x such that

d(x;C) = min
y∈C
||x− y||

is minimal This point is than added to C, after which the procedure is repeated until d(x,

C) exceeds some critical value r*. Experiments suggest that Single Linkage clustering ap-

proximates the level sets more accurately than density clustering. A stepwise description

of the Single Linkage method is: The suggested value for the critical distance in Step 3

Algorithm 7.17 Single Linkage

Step 0. Set k = 1; X∗ = Ø.

Step 1. Generate Î points, x(k−i)N+i; : : : ; XkN , from the uniform distribution over

S, and determine the reduced sample consisting of the kN best points

from the sample Î1; : : : ; xkN . Set j = 1.

Step 2. If all reduced sample points have been assigned to a cluster, go to Step

4. If j < |X∗| then choose the j-th local minimum in X∗ as the next seed

point and go to Step 3. If j > |X∗|, then select as the next seed point the

unclusterd reduced sample point x̄ with the lowest function value. Apply

L to x̄ to �nd a local maximum x∗, and add x∗, to X∗

Step 3. Add all unclustered reduced sample points which are within distance rk of

a point already in the cluster initiated by the seed point selected in Step

2 to the cluster. Increment j and return to Step 2.

Step 4. Increment k and return to Step 1.

is:

rk =
1√
�

(
Γ(1 + 1

d
) ·m(S) · �ln(kN)

kN

)1=d

(7.9)

his choice guarantees that, if � > 2, the probability that a local search is started by Single

Linkage in iteration k tends to zero with increasing k. Moreover, if � > 4, then, even if

the sampling continues forever, the total number of local searches ever started by Single

Linkage is �nite with probability one. This attractive property theoretically proves the

e�ciency of the method in terms of number of local searches performed. However, in the

process we lost the asymptotic guarantee of success. While Single Linkage is guaranteed

to �nd a local optimum in every connected component of the level set

{x ∈ S : f(x) ≥ y}

where y is chosen in such a way that this level set has an �−measure .

99

Typical Distance Clustering

A clustering procedure may form clusters of points by measuring the distanceof a candi-

date cluster point from the estimated center of the cluster. Thisdistance is checked against

a threshold and a decision is made accordingly.This threshold should be chosen properly

and depends on the problem under consideration. Hence to avoid the introduction of ad

hoc threshold values, an adaptive threshold called \typical distance" (rt) is de�ned as:

rt ≡
1

M

M∑
i=1

|xi − L (xi)| (7.10)

Here xi are starting - points for the local search procedure L, and M is the number

of the performed local searches. The main idea behind equation (7.10) is that after a

number of iterations and a number of local searches the quantity rt will be a reasonable

approximation for the mean radius of the regions of attraction. To see this note that

if we denote by Ml the number of times that the local search procedure discovered the

minimizer x∗l , then a mean radius for the region of attraction related to x
∗
l may be de�ned

as:

Rl =
1

Ml

Ml∑
j=1

∣∣∣x(j)l − x
∗
l

∣∣∣ (7.11)

where
{
x(j)l ; j = 1; : : : ;Ml

}
= {xi; i = 1; : : : ;M} ∩ A (x∗l), i.e. L

(
x(j)l

)
= x∗l . Since by

de�nitionM =
∑w

l=1Ml, where w is the number of local minima discovered so far, a mean

radius may be de�ned as:

< R >≡
w∑
l=1

Ml

M
Rl =

1

M

w∑
l=1

Ml∑
j=1

∣∣∣x(j)l − x
∗
l

∣∣∣ (7.12)

Comparing eqs. (7.10), (7.11) and (7.12), it follows that rt =< R >.

A point x is considered to be a \start point" if none of the following conditions is satis�ed:

• There is an already located minimum z that satis�es the conditions

1. (x− z)T (∇f(x)−∇f(z)) > 0.

2. |x− z| < mini;j i ̸=j |zi − zj| ; zi ∈ X∗; zj ∈ X∗.

• x is near to another point y ∈ V that satis�es the conditions

1. |x− y| < rt.

2. (x− y)T (∇f(x)−∇f(y)) > 0.

Hessian-based ISO-OCT Clustering

This method was proposed from [Tu and Mayne] and uses Hessian information to identify

clusters around minima. The authors intuition is based that in the neighbourhood of

100

Algorithm 7.18 Typical Distance Clustering

Step 0. Set k = 1; X∗ = Ø.

Step 1. Set V = T = Ø.

Sample N points via the Double Box procedure and add them to T .

For all x ∈ T do

Check if x is a valid starting point and if so add it to V .

Step 2. If |V |
N
< 1

2
Then

N = min
(
N + N

10
;NMAX

)
Step 3. For all x ∈ V do:

If x is a start point Then

Start a local search y = L(x)

Compute the typical distance rt using equation (7.10).

Add y to X∗

Step 4. Increase k and repeat from Step 1.

local minima, the objective function is convex and any two isolated local minima must

be separated by a region where the function is non-convex, that is, the Hessian matrix is

either negative de�nite or inde�nite.

(a) Six-sump camel back

(b) Initial sample (c) Sample with positive de�nite Hessian

Figure 7.1: An illustration of Hessian information

A description of this method is given in Algorithm7.19:

101

Algorithm 7.19 Hessian-based ISO-OCT Clustering

Step 0. Initialize M;n; �.

Step 1. Generate Î random points xi
Step 2. Compute the clustering parameters � and s using Eqs 7.137.14.

Step 3. Compute the gradient g(xi) =
@f(xi)
@xx

Step 4. Find n closest points of xi and compute the Hessian matrix H(xi) using

Eq 7.15.

Step 5. Compute the eigenvalues of H(xi). Then compute the scaled eigenvalues

�ij; i; j = 1; : : : ; N Discard xi if �ij < 0∀j. Retain the 80% of the points

with the largest scaled eigenvalues. .

Step 6. Identify clusters by applying the clustering analysis procedure ISO-OCT

to the Sreduced sample points.

Step 7. Perform local search L starting from the point with the smallest function

value in each cluster.

Step 8. Repear from Step 1.

� = 0:2

{
1

2

(
1

n

n∑
i=1

|ui − li|+
1

n

n∑
i=1

|xmax
i − xmin

i |

)}
(7.13)

�s = 0:5 · � (7.14)

Hk+1 = Hk +
(yk −Hksk)(yk −Hksk)T

(yk −Hksk)T sk
(7.15)

where yk = ∇f(xk+1)−∇f(xk) and sk = xk+1 − xk

7.3.3 Multi Level Single Linkage

Multi Level Single Linkage is a method with combines the computational e�ciency of

clustering methods with the theoretical virtues of Multistart. The local search procedure

L is applied to every sample point, except if there is another sample point within some

critical distance which has a larger function value. A stepwise description of the algorithm

is the following: The critical distance is again chosen to be

rk =
1√
�

(
Γ(1 + 1

d
) ·m(S) · �ln(kN)

kN

)1=d

(7.16)

In spite of its simplicity the theoretical properties of this algorithm are quite strong

[Rinnooy Kan and Timmer]:

1. If x is an arbitrary sample point, then the probability that L is applied to x in

iteration k tends to zero with increasing k.

2. If � > 2, then the probability that a local search is applied in iteration k tends to

zero with increasing it.

102

Algorithm 7.20 Multi Level Single Linkage

Step 0. Set k = 1; X∗ = Ø.

Step 1. Generate Î points, x(k−i)N+i; : : : ; XkN , from the uniform distribution over

S, and determine the reduced sample consisting of the kN best points

from the sample Î1; : : : ; xkN . Set i = 1.

Step 2. If there exists some j such that f(xj) > f(xi) and ||xjâxi|| < rk then go

to Step 3. Otherwise, apply L to xi, and add the local minimum found to

X∗.

Step 3. Increment i. If i < kN , go to Step 2. Otherwise, increment k and go to

Step 1.

3. If � > 4, then the total number of local searches started by MLSL is �nite with

probability one.

4. Any local maximum will be found by MLSL within a �nite number of iterations

with probability one.

The methods discussed in this section all aim at �nding all local optima of the optimization

problem (P). However, expecially in cases where the number of local optima is very large,

this will not be the best strategy. Therefore in the next two sections we will discuss

random search methods, which directly aim at �nding the global optimum.

7.3.4 Healed Topographical Multilevel Single Linkage

We describe now a stochastic method based on the MLSL algorithm of Rinnoy Kan and

Timmer[134], integrated with ideas from Viitanen [148] and Ali [3]. A healing technique

along with a threshold on the number of iterations is used, to prevent premature termina-

tion at the early stages of the algorithm. As it can be readily realized, healing, protects

the algorithm from premature termination, by delaying the growth of the t-values for a

number of initial iterations. As an additional control parameter, a threshold It on the

minimum number of iterations is used. This forces the algorithm to iterate for at least It
times.

7.3.5 Random Linkage

Random Linkage alogirithm was introduced in [Locatelli and Schoen] and as stepwise

description follows: It is understood that �k =∞ if ̸ ∃j : f(xj) > f(x). The functions �k
play the role of probabilistic thresholds. The whole algorithm may be seen as a generalized

acceptance/rejection method. If we set

�k(�) =

1 if � ≥ ak

0 otherwise

103

Algorithm 7.21 Healed Topographical Multi Level Single Linkage

Step 0. Set k = 1; X∗ = Ø.

Step 1. Generate Î points, x(k−i)N+i; : : : ; XkN , from the uniform distribution over

S, and determine the reduced sample consisting of the kN best points

from the sample Î1; : : : ; xkN . Set i = 1.

Step 2. This is the step that characterizes the method as \Topographical MLSL".

In this step we �rst add to the sample the already found (initially none)

local minima. So the sample contains N + w points, w being the number

of the local minima found so far. For every point ri ∈ S we �nd its c

closest neighbors bij; j = 1; · · · ; c. If f(ri) ≤ f(bij); ∀j = 1; · · · ; c, then
the point ri is called a graph minimum. The start points for the local

searches are chosen from within the set of the graph minima. A point

from that set is a start point as long as:

1. It is not a local minimum found earlier, and

2. There is no other point within a critical distance rk, with a lower

function value.

Step 3. Increment k and go to Step 1.

Algorithm 7.22 Random Linkage

Step 0. Set k = 0.

Step 1. Sample a single point xk+1 from the uniform distribution over S

Step 2. Start a local search L from xk+1 with probability : �k (�k(xk+1)), where

�k = min{||x− xj|| : j = 1; : : : ; k; f(xj) > f(x)}
Step 3. Increase k and repeat from Step 1

where ak is a sequence of non-negative real numbers then we de�ne the special sub-class of

Random Linkage Algorithms, denominated Threshold Random Linkage. For this special

class if

lim
k→∞

k1=dak =∞

then the probability of starting a local search tends to 0 as k →∞

7.4 Simulated Annealing

Simulated Annealing is a random search technique that avoids getting trapped in local

maxima by accepting, in addition to transitions corresponding to an increase in function

value, also transitions corresponding to a decrease in function value. The latter is done

in a limited way by means of a probabilistic acceptance criterion. In the course of the

maximization process, the probability of accepting deteriorations descends slowly towards

104

zero. These "deteriorations" make it possible to move away from local optima and explore

the feasible region S in its entirety.

Simulated Annealing originated from an analogy with the physical annealing proÂcess

of �nding low energy states of a solid in a heat bath (see Metropolis et al. [59]). Pincus

[66] developed an algorithm based on this analogy for solving discretizations of continuous

global optimization problems.

7.4.1 The Algorithm

Recall that the Adaptive Search algorithm is based on the following property of the family

of Boltzmann distributions:

lim
T→0

�T (S�) = 1 (7.17)

for all � > 0. This same property is the basis of the Simulated Annealing algorithm.

In fact, in this section we will show how Simulated Annealing can be derived as an

approximation of Adaptive Search.

As noted in the previous section, the Adaptive Search is basically a conceptual al-

gorithm, since, in general, it will be extremely di�cult to generate points directly from

the distribution �T . Therefore, consider taking the following, approximating approach.

Suppose we have a random walk on S, which converges to the uniform distribution on S.

Let the transition probability distribution given that the Markov chain is in state x ∈ S
be denoted by R(x; ·). We can then �lter this random walk as follows. In every iteration,

given iteration point xn, we generate a point zn+1 from R(xn; ·). Then, we accept this

point with probability:

min{1; e−(f(zn+1−f(xn)))=T}

(the Metropolis criterion), i.e. with this probability we set xn+1 ← zn+1. If we �lter the

Markov chain given by R in this way, the sequence of points generated will converge to

the Boltzmann distribution �T . So, we can generate a sequence of points {Xn(T)}∞n=0

with the property that for every � > 0

lim
n→∞

Pr(Xn(T) ∈ S�) = �T (S�) (7.18)

Combining Eq. 7.17 and Eq. 7.18 we get

lim
T→0

lim
n→∞

Pr(Xn(T) ∈ S�) = 1 (7.19)

for all � > 0. The Simulated Annealing algorithm is motivated by Eq. 7.19. It consists of

generating a sequence X0; X1; : : : using the �ltered random walk described above, except

that now the temperature parameter Î will decrease to zero as we proceed, according

to an adaptive cooling schedule denoted by �n(x0; : : : ; xn). We can formulate the general

Simulated Annealing algorithm as follows.

For the simulated algorithm described in Alg. 7.23, f∗
n → f ∗ almost surely, as n→∞.

105

Algorithm 7.23 Simulated Annealing

Step 0. Set n = 0 choose x0 ∈ S and T0 ∈ [0;∞].

Step 1. Select yn+1 according to the probability R(xn; ·).
Step 2. If f(yn+1) ≤ f(xn), set xn+1 = yn+1. If f(yn+1) > f(xn), set xn+1=yn+1

with probability exp ((f(xn)− f(yn+1))=T). Otherwise, set xn+1 = xn
Step 3. Set Tn+1 = �n+1(x0; : : : ; xn+1), increment n amd return to Step 1.

7.4.2 Practical Implementations

In this section we will discuss several speci�c Simulated Annealing algorithms from the

literature.

Table 7.1: Simulated Annealing algorithms

Authors Candidate point genera-

tion

Cooling scheme

Vanderbilt and Louie [] y = x + Qu; u ∈
U(−
√
3;
√
3); QQT = H

Tn+1 = �Tn

Bohachevsky, Johnson

and Stein []

y = x+∆r (u−x)
||u−x|| ; u ∈ Rd Tn = (f∗−f(xn))g

�
; g; � > 0

Corana et al. [] y = x+Ueh; eh unit vector ∈
Rd; U ∈ U(−uh; uh)

Tn+1 = �Tn

Romeinj and Smith y = x+ ��; ||�|| = 1 Tn = f∗−f(xn)
1−�(�;1)

1,

Dekkers and Aarts [] Uniformly in S, with proba-

bilty p apply local search

7.5 Genetic Algorithms

Genetic Algorithms (GA), introduced by Holland [71], fall in the class of evolutionary

algorithms, and they certainly have become quite popular recently. There is a host of

articles, conference proceedings and books dedicated to their introduction, illustration

and description. We refer for example to B�ack [4], Davis [32], Fogel [47], Goldberg [55],

Michalewicz [103], Rawlins [131], Whitley [159], [160] and Schwefel [139].

These methods search the space by letting a population of candidate solutions evolve

in an environment governed by rules inspired from the �eld of genetics; namely, crossover

and mutation. The individual solutions tend to improve over the generations, mimicking

the evolution of living species. Genetic algorithms require only function values and not

gradient or Hessian information, hence they are applicable as well to problems where

the objective function is non-smooth or contains noise. On the other hand, GAs may

converge, and usually do, at a very slow rate towards an accurate solution. To cure this

106

ine�ciency, several methods blend GAs with local search techniques and this combination

has proved to be quite satisfactory. GAs have been successfully applied to a host of

di�erent optimization problems, like wire routing, scheduling, neural network training,

portfolio management, di�erential equation solving, etc. In the literature there are quite

a few, slightly di�erent, methods that are based on genetic algorithms, and this may be

causing some confusion. However each variant is simply an adaptation of the underlying

basic algorithm, for a speci�c problem. This \spinal" algorithm on which all these variants

are based, may be described as follows:

1. Initialization : Create an initial population of individuals (points) randomly.

2. Elitism : Use a �tness function to rate each individual. This function is related to

the objective function and hence it depends on the problem at hand. The "�ttest"

individuals survive, i.e. they will be present in the population of the next generation.

3. Selection : Individuals are selected for further genetic processing. The selection, that

is of stochastic nature, is biased by the �tness value.

4. Production : The selected individuals are transformed by genetic-like operations to

reproduce \children" for the next generation. These operations are:

a. Crossover : Probabilistic recombination of two parents to result in the produc-

tion of two children. There are various ways to implement this. A simple one

for continuous problems is to use linear combinations of the parents.

b. Mutation : Probabilistic random modi�cation of a number of individuals. This

operation enhances the diversity of the population . There are many possible

ways as far as implementation is concerned.

The steps 2 through 4 are repeated until a termination condition is satis�ed. There

are several termination criteria. A commonly used one, is to stop when a preset up-

per bound for the number of generations is reached. Another is based on measuring

the diversity of the produced population and decide to stop when this is below a

preset threshold.

Practical implementations use various schemes for the �tness function, as well as for the

elitism, crossover and mutation operators. If the objective function is denoted by f(:),

the �tness function for the current generation may be casted as a probability measure for

survival. Let xi;∀i = 1; 2; · · · ;M be the members (points) of the generation of population

size M . Then the probability for survival (�tness) may be written as:

P (xi) =
fmax + �− f(xi)

M(fmax + �)−
∑

j=1;M f(xj)
(7.20)

� being a small number (e.g. 10−7), and fmax = max
i=1;M

{f(xi)}.

Note that P (xi) > 0 ∀i = 1; 2; · · · ;M and that
∑
i=1;M

P (xi) = 1.

Elitism may be a deterministic operation, for example:

107

\Pick K members with the highest �tness values"

or it may be complemented with a stochastic process of the sort:

\Pick additional L members at random, taking in account their �tness".

Hence a member xi will be selected with a probability P (xi), as given by relation (7.20).

This procedure is also known as the "Roulette Wheel Selection".

Maintaining the �ttest member through the generations corresponds to imposing K ≥
1. Note that multiple copies of a highly �t member may occur in the generation to come.

This "cloning" enhances the local character of the search, however, since the diversity of

the population is decreased, it may lead to a premature termination.

Crossover is a stochastic operation. A couple of parents (i.e. two distinct points) are

selected via the Roulette Wheel mechanism. Children then may be produced in a number

of ways.

Component Exchange : Let Pf ; Pm ∈ RN be the points corresponding to the two

parents and let Ch1 and Ch2 be \children" points to be created. With probability 1
2

choose either Ch1(i) = Pf (i) and Ch2(i) = Pm(i), or Ch1(i) = Pm(i) and Ch2(i) =

Pf (i), ∀i = 1; 2; · · · ; N .

Linear Combination : In this case the children points are linear combinations of the

parent points, namely: Ch1(i) = Pf (i) + q1(Pm(i) − Pf (i)) and Ch2(i) = Pm(i) +

q2(Pf (i) − Pm(i)). q1 and q2 are random mixing parameters and they are chosen

in (−d; 1 + d), d being a small positive number typically around 0.25. Note that if

we set d = 0, the \children" automatically satisfy box constraints. However since

d is usually di�erent than zero, children may not respect the box constraints and a

corrective action should be performed, for instance a projection on the bounds.

Mutation is a stochastic operation that adds random noise to selected members. A

choice made quite often is that as the generations proceed, the random noise added is

decreasing in amplitude. The rationale for this choice is that at the begining, mutation is

important for the exploration of the search domain. However as the generations advance

and the space is rather well covered, there is no need to spend function calls at random

points that are very likely to be useless.

Let Ng and Ig denote the maximum number of generations allowed and the current

generation count. Let also � > 0 be the mutation parameter. Then from a parent P a

child Ch is created component by component as:

∀i = 1; 2; · · · ; N choose with probability 1
2
either

Chi = Pi + (bi − Pi)(1− r
(1− Ig

Ng
)�

i)

or

Chi = Pi − (Pi − ai)(1− r
(1− Ig

Ng
)�

i)

108

ai; bi are the lower and upper bounds for the ith component and ri is a random number

in (0; 1). Since Pi ∈ (ai; bi), note that Chi ∈ (ai; bi) as well, i.e. the box constraints are

respected.

7.6 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is a method inspired from the social behavior

of a group of living beings, like \bird ocking" and \�sh schooling". The social sharing of

information helps birds to pro�t from the discoveries and the gained experience of other

birds, in their search for food. This fact sparked the idea that such a model may be

used as an optimization method. Note that other methods as well, have been inspired

from natural processes, for example Genetic Algorithms and Simulated Annealing. PSO

provides a population based stochastic search, in which the individual point{particles are

moving according to rules that simulate a bird ock social behavior. The particles in

the swarm explore a multidimensional space in search of promising regions, i.e. regions

where the objective function assumes lower values. Each particle's position is inuenced

by its own observations and by information acquired from nearby particles. The best

particle positions are taken under consideration. Local information is conveyed by the

particle's best position while global information is conveyed by the best positions of the

neighboring particles. PSO is suitable for minimizing all types of functions, continuous or

not, multimodal, or functions containing noise. No gradient information is required and is

not computationally expensive. Additional information may be found in the articles [71,

118, 117]. PSO caters for all types of objective functions, continuous or not, multimodal,

containing noise, etc. It does not require gradient information, only function values and is

very simple to implement. PSO methods have been successfully applied to many problems

[138] such as structural optimization, scheduling, neural network training, etc.

7.6.1 Description and rationale

At �rst one creates a swarm ofM particles, with positions x0i and corresponding velocities

v0i (i = 1; 2; : : : ;M), where the superscript denotes the number of time steps taken so

far. The position of each particle represents a potential solution. The particles will start

to move according to a relation of the form:

xk+1
i = xki + vk+1

i (7.21)

Before discussing the way the velocities are updated a few comments are proper. Each

particle keeps a record of its current position xki , its best historical position b
k
i , in the sense

that f(bki) = min
l=1;:::;k

f(xli) and the best position y
k attained by any particle so far. Inuence

from a particle's own best position results to local exploration, while the inuence from the

overall best position a particle ever had, points to global optimality. Having observed the

above we may proceed to derive a velocity update. A term proportional to bki −xki directs

109

the particle towards its best attained position. A term proportional to yk−xki directs the
particle towards the globally best position attained so far. A linear combination of the

above terms is considered, with random coe�cients, i.e.:

vk+1
i = vki + c1�1(b

k
i − xki) + c2�2(y

k − xki) (7.22)

�1; �2 are random numbers uniformly distributed in (0; 1), while c1; c2 are parameters

adjusting the velocity gain. Many authors have suggested the values c1 = c2 = 2. The

drawback of the update as it stands in eq. (7.22), is that it allows too high velocities

to occur, an undesirable fact that forces the swarm to drift past the region of the global

minimum. To address this issue, an inertia weight w is introduced [38] transforming the

update as:

vk+1
i = wvki + c1�1(b

k
i − xki) + c2�2(y

k − xki) (7.23)

Large w values (i.e. values close to 1) encourage global exploration, while small values (i.e.

values close to 0) facilitate local searches. This observation led to another modi�cation

by introducing a time-dependent inertia weight that initially assumes large values, so

that global exploration is favored, and subsequently is gradually reduced to promote local

tuning [141].

Another velocity update is based on the so called constriction factor denoted by �.

The scheme is quite similar to that of eq. (7.23). The advantage is that the value of �

has been derived analytically [25]. The update is given by:

vk+1
i = �

(
vki + c1�1(b

k
i − xki) + c2�2(y

k − xki)
)

(7.24)

and � is obtained by:

� =
2

|2− �−
√
�2 − 4�|

(7.25)

where � = c1 + c2, and � > 4.

PSO has been successfully applied to a host of di�erent problem classes, and has also

been combined with other techniques such as deection, stretching and repulsion [119],

in order to retrieve not one but all the global minimizers, that an objective function may

possess.

PSO is still unexplored and further research is required to comprehent the capabilities

of this rather new technique. Many realistic applications await and it remains to be seen

if PSO can cope with them. The simplicity, the robustness and its wide applicability

render PSO an attractive method for global optimization.

110

Chapter 8

Towards \Ideal Multistart" A

stochastic approach for locating the

minima of a continuous function inside a

bounded domain

8.1 Summary

A stochastic global optimization method based on Multistart is presented. In this, the

local search is conditionally applied with a probability that takes in account the topology

of the objective function at the detail o�ered by the current status of exploration. As a

result, the number of unnecessary local searches is drastically limited, yielding an e�cient

method. Results of its application on a set of common test functions are reported, along

with a performance comparison against other established methods of similar nature.

8.2 Introduction

Global optimization (GO) has received a lot of attention in recent years [116], due to the

ever emerging scienti�c and industrial demand. For instance the description of the stable

conformations of a molecule [99, 158, ?], the management of mutual funds [167, 135, 9, 74],

location and allocation issues [45, 70], engineering design and the design of drugs [46, 154],

to mention a few topics, are in need of e�cient global optimization techniques.

There exist several categories of GO methods. We distinguish two main classes: the

deterministic [44, 73] and the stochastic one. For a detailed account on classi�cation

of stochastic algorithms we refer to [14]. Deterministic methods provide a theoretical

guarantee of locating the global optimum. Stochastic methods o�er only a probabilistic

(asymptotic) guarantee: their convergence proofs usually declare that the global optimum

will be identi�ed in in�nite time with probability one. Moreover, stochastic methods adapt

111

better to black-box formulations and extremely ill-behaved functions, whereas determin-

istic methods are usually based on at least some theoretical assumptions such as Lipschitz

continuity and heavily depends on the problem at hand. A direct comparison between

these two approaches may be found in [?], where the authors conclude that the stochastic

approach is to be preferred. In addition deterministic methods su�er from the problem

of dimensionality. For example, the complexity of interval global optimization [?] rises

exponentially with the problem's dimension.

The problem we are interested in, may be expressed as:

Find all x∗i ∈ S ⊂ Rn that satisfy:

x∗i = argmin
x∈Si

f(x); Si = S ∩ {x; ||x− x∗i || < �} (8.1)

S is considered to be a bounded domain of �nite measure and � a positive in�nitesimally

small number. We are adopting the stochastic class of methods. One of the most widely

used stochastic algorithms is the so called Multistart [13]. It's popularity stems from

it's simplicity and inherent parallelization [153, 98, 37, 152]. Many stochastic methods

have been developed around it starting from the classic papers of [13, 133, 134, 150]

were the popular Single Linkage Clustering, Density Clustering and Multi{Level Single

Linkage procedures were introduced. Torn and Viitanen in [148] presented a Topographical

Clustering algorithm which was extended by Ali and Storey in [3] to the well known

Topographical Multi{Level Single Linkage algorithm. More recently Hart in his PhD

dissertation [67] proposes an adaptive method based on clustering and local searches,

Locatelli [93] introduces the family of Random Linkage algorithms and Schoen [137] and

Locatelli [92] give an analysis Two{phase methods. More recently, Liang et. al. [91]

introduce a function's landscape approximation, Bolton et. al. [16] provide a parallel

framework based on clustering procedures while Tsoulos and Lagaris [151] proposed the

so called typical distance clustering. Also related software may be found in [?].

In Multistart a point is sampled uniformly from the feasible region, and subsequently

a local search is started from it. The weakness of this algorithm is that the same local

minima may be found over and over again, wasting so computational resources. For this

reason clustering methods have been developed that attempt to avoid repetitive discovery

of the same minima [133, 134, 150, 151, 152].

The Multistart algorithm is presented bellow:

Multistart Algorithm

Initialize: Set k=1

Sample x ∈ S

yk = L(x)

Termination Control: If a stopping rule applies, STOP.

112

Sample: Sample x ∈ S

Main step: y = L(x)

If (y =∈ {yi; i = 1; 2; : : : ; k}) Then

k = k + 1

yk = y

Endif

Iterate: Go back to the Termination Control step.

The \region of attraction" of a local minimum associated with a local search pro-

cedure L is de�ned as:

Ai ≡ {x ∈ S;L(x) = x∗i } (8.2)

where L(x) is the minimizer returned when the local search procedure L is started at

point x. If S contains a total of w local minima, from the de�nition above follows:

∪wi=1Ai = S (8.3)

Let m(A) indicate the Lebesgue measure of A ⊆ Rn. If we assume a deterministic search

L, then the regions of attraction do not overlap, i.e. Ai ∩Aj = ∅ for i ̸= j, and from eq.

(8.3) one obtains:

m(S) =
w∑
i=1

m(Ai) (8.4)

If a point in S is sampled from a uniform distribution, the apriori probability pi that it

is contained in Ai is given by pi =
m(Ai)
m(S)

. If K points are sampled from S, the apriori

probability that at least one point is contained in Ai is given by:

1− (1− m(Ai)

m(S)
)K = 1− (1− pi)K (8.5)

From the above we infer that for large enough K, this probability tends to one, i.e. it

becomes \asymptotically certain" that at least one sampled point will be found to belong

to Ai. This holds ∀Ai; with m(Ai) ̸= 0.

In this article we �rst de�ne the \Ideal Multistart", a variation of Multistart in which

every local minimum is found only once. This ideal version assumes that the region of

113

attraction of a minimizer is determined as soon as the minimizer is located. Since this is

a false hypothesis this version is of no practical value. It o�ers however a framework and

a goal to work towards.

In section (8.3), we lay{out the new ideas involved and we present the corresponding

algorithm, while in section (8.4), we give a description of the numerical experiments

that were performed along with the results. Finally in section (8.6), our conclusions are

summarized and we give a recommendation for future research

8.3 Description of the Method

"Ideal Multistart" starts by sampling a point from S and applying a local search leading

to the �rst minimum y1, with region of attraction A1. Sampling points from S is continued

until a point is found that does not belong to A1. Once such a point is encountered, a local

search is performed that leads to the second minimum y2, having a region of attraction

A2. The next sample point from which a local search will start, is a point that belongs

neither to A1 nor to A2, i.e. it does not belong to their union (A1

∪
A2). This procedure

goes on, until a stopping rule instructs termination. The detailed algorithm is laid out in

the following paragraph.

8.3.1 Ideal Multistart

Ideal Multistart Algorithm

Initialize: Set k=1

Sample x ∈ S

yk = L(x)

Termination Control: If a stopping rule applies, STOP.

Sample: Sample x ∈ S

Main step: If (x =∈ ∪ki=1Ai) Then

y = L(x)

k = k + 1

yk = y

Endif

114

Iterate: Go back to the Termination Control step.

This algorithm invokes the local search procedure only w times, w being the number of

existing minima of f(:) in S. The main step is deterministic and requires the regions of

attraction Ai of the already located minima to be known, which is not the case in practice.

Hence we apply a stochastic modi�cation to the main step, by allowing the local search

to be performed with a probability, namely:

Main step (Stochastic):

Calculate the probability p, that x =∈ ∪ki=1Ai

Draw a random number � ∈ (0; 1) from a uniform distribution

If (� < p) Then

y = L(x)

If (y =∈ {yi; i = 1; 2; : : : ; k}) Then

k = k + 1

yk = y

Endif

Endif

This step requires the probability that a point does not belong to the region of attraction

of any of the minima collected so far. This requirement is easier to ful�ll, since even

with a low accuracy estimate for the probability, the algorithm will succeed. Notice

that an overestimated probability (p → 1) will transform the algorithm into the usual

Multistart. On the other hand underestimation (p → 0) is not of considerable cost,

since no local search is performed. Performance however will be optimized if reasonably

accurate estimates for the probability can be calculated. Several ways may be designed

to accomplish this goal. We suggest one in the following paragraph.

115

8.3.2 Estimating the local search probability

The required probability may depend on several factors, such as the distance from existing

minimizers, the direction of the gradient, the number of times each minimizer has been

discovered, etc. We consider how each factor inuences the probability and combine them

together to get the required estimate.

Let us de�ne the maximum attractive radius (MAR) as:

Ri = max
j
{||x(i)j − yi||} (8.6)

where x(i)j are the sampled points which led the subsequent local search to the ith minimizer

yi.

Given a sampled point x, let y be anyone of the recovered minimizers, with MAR

denoted by R. If ||y − x|| < R, then x is likely to be inside the region of attraction of y.

If however ∇f(x)T (y − x) ≥ 0, i.e. the direction from x to y is ascent, then x is likely

to be outside y's region of attraction. Letting z ≡ ||y − x||=R, then an estimate of the

probability that x =∈ A(y) may be given by:

p(x =∈ A(y)) =

{
1; if z > 1 or ∇f(x)T (y − x) ≥ 0

�(z; l) ∗
[
1 + (y−x)T∇f(x)

||y−x||∇f(x)|

]
; otherwise

(8.7)

l is the number of times y has been recovered so far, while �(z; l) is a model with the

following properties.

lim
z→0

�(z; l)→ 0

lim
z→1

�(z; l)→ 1 (8.8)

lim
l→∞

�(z; l)→ 0

0 < �(z; l) < 1

Notice that the factor inside the square brackets in eq. (8.7), varies from zero to one, as

the gradient from anti-parallel becomes perpendicular to y − x.
The probability that x =∈ ∪ki=1Ai is given by the product

∏k
i=1 p(x =∈ Ai) and may now

be approximated by the probability that x =∈ An, An being the region of attraction of

the nearest to x discovered minimizer yn. The rationale for this approximation is that if

x =∈ B(yi; Ri) ∀i ̸= n, where B(y;R) is a sphere of radius R centered at y, then the above

approximation is exact since all other probabilities as following from eq. (7) equal 1. If

on the other hand x is inside the intersection of two or more overlapping spheres, the

product of small terms may result to too small a probability for a point that could lead

to a new minimum (see in �g. 8.1, an example). The spheres are expected to overlap, due

to the manner their radii are chosen by eq. (8.6). Hence the approximation is prudent,

and essentially in most cases does not overestimate the local search probability. One may

employ alternative approximations, by considering for example the �rst two (or more)

nearest minimizers. This is an issue that needs further consideration and is outside the

scope of the present article.

116

Figure 8.1: A point x that would lead to a new minimum y, is inside the overlap region

of the spheres around two recovered minima y1 and y2

8.3.3 Local search properties

The probability model is based on distances from the discovered minima. It is implicitly

assumed that the closer to a minimum a point is, the greater the probability that falls

inside its region of attraction. This implies that the regions of attraction are contiguous

and surround the minima. This is not true for all local search procedures and hence this

assumption inuences the local search choice. For example widely used methods such

as Newton or quasi Newton, employing either a line search or a trust region strategy,

create disjoint regions of attraction. Hence these methods have to be modi�ed so that

their regions of attraction are contiguous, resembling those of a descent method with an

in�nitesimal step. In Fig. 8.3 we connect start-points (marked by +) to the minimum

they arrive via a local search. This is a desirable local search since its regions of attraction

are contiguous. Start points are attracted towards the closeby minima.

In this work we apply the BFGS method with a modi�ed line search. This modi�cation

creates contiguous regions of attraction ensuring a strictly descent path [133]

We present the associated algorithm bellow:

Modi�ed Line Search Algorithm

Input:

k = 0; Bk = I; � > 0

Step 1 (Calculate descent direction):

pk = −B−1
k ∇f(xk)

117

If ||∇f(x)|| > � Then

pk =
pk

||∇f(xk)||

End if

Step 2 (Line search):

mina(f(xk + �pk)), yielding ak

Step 3 (Next iterate):

xk+1 = xk + �kpk

Step 4 (Update approximation):

k = ∇f(xk+1)−∇f(xk)

�k = xk+1 − xk

Bk+1 = bfgs update(Bk; k; �k)

Step 5 (Termination Control):

If termination conditions are met stop, Else set k ← k + 1 and repeat from Step 1.

To illustrate the behaviour of this normalization at Step 1 of the line search we provide

�gs. 8.2(a)-8.2(d). The unique minimum appearing int �g. 8.2(d) is the �rst minimum in

�g. 8.2(b). Note that in �g. 8.2(c) the line search ends up to the nearest minimum while

that of �g. 8.2(a) in a di�erent minimum further apart.

In �g. 8.4 we connect start-points (marked by +) to the minimum the arrive via a

di�erent local search. This illustrates an undesirable local search since its regions of

attraction are disjoint. Start points are attracted towards distant minima.

8.3.4 Asymptotic guaranty

The probability that minimizer y is found with one trial is given by:

p(i)y =

∫
x∈A(y)

p(i)LS(x)
dx

|S|
(8.9)

where 1=|S| is the pdf of the uniform distribution and p(i)LS(x) is the local search probability

at x. The superscript i denotes the state of the process, i.e. the number of minima

118

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

(a) Ackley's function contour plot and

search step with a0 = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−78

−77

−76

−75

−74

−73

−72

−71

−70

−69

r

(b) Function pro�le along with the back-

tracking points

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

(c) Same as (a) but using a0 = 1
||∇f ||

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−78

−77

−76

−75

−74

−73

−72

−71

−70

−69

(d) Same as (b) for the normalized direc-

tion

Figure 8.2: Illustration of the modi�ed line search

discovered so far, the number of times each minimizer is found, the MAR's etc. The

probability that after k trials y is not found is then given by:

�(k)
y =

k∏
i=1

(1− p(i)y) ≤
(
1−min

i
{p(i)y }

)k
(8.10)

From the de�nition of p(i)y in eq. (8.9), we have:

p(i)y =

∫
x∈A1(y)

p(i)LS(x)
dx

|S|
+

∫
x∈A2(y)

p(i)LS(x)
dx

|S|
(8.11)

where

A1(y) = {x ∈ A(y); (yc − x)T∇f(x) ≤ 0}
A2(y) = {x ∈ A(y); (yc − x)T∇f(x) > 0}

and yc = yc(x), is the closest to x discovered minimizer.

If y is not found yet (and hence yc ̸= y), then A2(y) ̸= ∅ and hence |A2(y)| ̸= 0. Note

that

∀x ∈ A2(y); p(i)LS(x) = 1

119

Figure 8.3: A suitable local search, with contiguous regions of attraction

and hence from eq. (8.11)

p(i)y ≥
|A2(y)|
|S|

> 0;∀i = 1; 2; · · · ; k

At the limit as k → ∞ we deduce from above and eq. (8.10) that �(k)
y → 0, i.e. asymp-

totically all minimizers will be found.

8.3.5 A model for �(z; l)

Many models may be constructed with the desired properties described in (8.8). We

propose one that is simple to visualize and easy to implement.

�(z; l) = ze−l
2(z−1)2 ; ∀z ∈ (0; 1) (8.12)

A graphical representation is depicted in Fig.(8.5).

8.3.6 The ADAPT Algorithm

The proposed algorithm, in summary, is presented below:

ADAPT Algorithm

Input:

The input function f : Rn −→ R The search domain S ⊆ Rn A local search procedure

L(x) having the properties described in Section 8.3.3.

120

Figure 8.4: An improper local search, with disjoint regions of attraction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

l = 1
l = 4
l = 9

l = 100

Figure 8.5: Model plots for several l values

Initialize: Set k=1

Sample x ∈ S

yk = L(x)

rk = ||x− yk||, nk = 1

Termination Control: If a stopping rule applies, STOP.

Sample: Sample x ∈ S

Main step: i = argmin
j=1;:::;k

||x− yj||

121

d = ||x− yi||

If (d < ri) Then

If (∇f(x)T (yi − x) < 0) Then

z = ||yi−x||
ri

p = �(z; ni)
[
1 + (yi−x)T∇f(x)

||(yi−x)T∇f(x)||

]
Else

p = 1:0

Endif

Else

p = 1:0

Endif

Let � be a uniform random in [0; 1]

If (� < p) Then

y = L(x)

If (y is new minimum) Then

k = k + 1, rk = ||x− yk||, nk = 1

Else { We discovered the l-th local minimum }

rl = max(rl; ||x− yl||), nl = nl + 1

Endif

Else { Assuming that x belongs in the region of attraction of the i-th minimum

}

122

ri = max(ri; ||x− yi||), ni = ni + 1

Endif

Iterate: Go back to the Termination Control step.

8.4 Experiments and Comparison

The method has been tested on a number of test problems that are listed in Appendix

A. These test functions have been used in the past by many authors and hence they con-

stitute a convenient platform for comparison. We count for every problem the number of

local searches, the number of function and gradient evaluations and we report averages

on thirty experiments performed with di�erent random number sequences. We also count

the number of minima found. All experiments used the \Double-Box" stopping rule [85],

with the suggested compromise factor (0.5). The local search used by ADAPT is a modi-

�cation of BFGS so that the resulting regions of attraction have the properties described

in Section 8.3.3. A comparison is made with the standard \Multistart" with the \Topolog-

ical Multilevel Single Linkage" (TML) method [?] and with MinFinder [151]. All of the

above methods use as a local minimizer subroutine TOLMIN due to M.J.D. Powell [127].

We coded Multistart, while the codes for TML and MinFinder used, were obtained from

the corresponding authors with the default parameters. Observing the results listed in

Table 8.1 we note that the performance of the new method (ADAPT) is overall superior.

MinFinder has similar performance on functions M0, Borne, Shubert(N=5, 10) while it

has an edge with functions having a periodicity in their contour plots like Holder, Levy

No3, Rastrigin(N=2), and Shubert(N=2).

8.5 A parallel scheme

A sample Master-Slave parallel implementation is displayed below. The Master CPU

creates candidate start points. The Slave CPUs perform local searches. Note, that since

our method uses one point per iteration, each search is independent, enabling so maximum

utilization of the Slave CPUs. On the other hand, most clustering methods use a collection

of points, as for example in [133, 134, 151], that in turn create dependencies in the

application of the local searches, a fact that makes the parallelization less pro�table.

De�nitions:

• M-list: A list that holds the minimizers (managed by the Master CPU)

• S-list: A list of possible starting points (managed by the Master CPU)

123

T
ab
le
8.
1:

A
d
ap
t
re
su
lt
s
u
si
n
g
u
n
if
or
m

ra
n
d
om

d
is
tr
ib
u
ti
on

F
u
n
ct
io
n

T
M
L

M
u
lt
is
ta
rt

M
in
F
in
d
er

A
d
a
p
t

M
in
.

F
C

G
C

L
S

M
in
.

F
C

G
C

L
.S

M
in
.

F
C

G
C

L
.S

M
in
.

F
C

G
C

L
.S

A
ck
le
y

1
2
1

1
0
2
5
9

1
4
4
5
7

1
2
0
7

1
2
1

2
3
2
8
1

3
6
5
4
3

2
0
5
4

1
2
1

7
5
1
0

1
1
9
2
6

2
0
8

1
2
1

7
3
4
0

4
6
0
0

5
3
9

B
ir
d

1
5
8
.5

8
4
7
9
8

1
0
3
8
8
9

2
5
0
7

1
4
1
.5

2
1
2
1
9
6

1
5
0
5
2
9

3
7
3
7

1
7
2
.8

1
2
2
6
3
9

1
4
5
4
6
0

1
8
3
2

1
7
1
.7

5
6
0
0
8

5
5
2
9
6

1
4
6
8

B
o
h
a
ch
ef
sk
y

2
5

1
3
9
1
9
0

1
2
5
6
8
4

2
3
6
9

2
5

2
4
1
5
0
1

1
8
7
1
7
5

2
5
4
7

1
8
.7

2
5
9
0
7

3
2
2
4
3

5
3
8

2
4
.3

1
8
3
3
2

2
3
1
1
2

2
1
5

G
iu
n
ta

1
9
6

1
0
4
8
1
2

1
6
6
0
6

7
1
9

1
9
6

4
5
6
8
8

6
7
3
1
1

1
2
1
2

1
9
6

1
8
7
5
3

2
0
9
7
2

7
9
1

1
9
6

1
0
2
1
1

1
7
8
2
1

7
7
1

G
ri
en
w
a
n
k

5
2
7
.2

1
8
8
3
4
2
3

1
4
6
1
6
1
7

3
9
0
9
0

5
2
6
.4

1
9
1
2
4
5
2

1
8
9
2
1
1
1

3
8
7
2
7

5
2
9

1
1
3
3
9
0
8

1
2
8
4
9
8
2

3
0
5
7
7

5
2
8
.5

2
3
1
1
2
3

2
7
8
1
1
2

1
5
7
3
3

G
u
il
li
n
H
il
ls

2
5

8
1
1
5
3

6
9
8
4
7

2
4
5
1

2
4
.9

8
7
4
1
1

7
6
5
6
3

2
6
1
7

2
4
.8

2
2
9
0
1

2
3
5
7
0

8
2
0

2
4
.7

1
7
7
5
1

3
1
8
1
1

6
9
1

H
o
ld
er

8
5

2
8
7
4
9

2
3
3
4
6

6
2
2

8
5

6
9
0
3
8

3
4
4
6
8

9
8
8

8
5

8
2
8
9

8
9
7
7

2
6
1

8
5

1
6
7
8
8

1
6
4
6
1

3
5
2

L
a
n
g
er
m
a
n
n

2
5
7

1
2
9
5
2
1

1
2
4
3
6
0

3
5
6
6

2
6
0

1
8
5
6
6
9

1
1
1
4
7
8

4
1
6
9

2
7
0

5
0
3
4
7
0

5
0
0
6
7
5

1
9
1
2
3

2
7
0

8
0
5
7
8

8
0
3
8
6

2
4
7
9

L
ev
y
N
o
3

5
2
7

1
7
0
5
4
1

1
7
1
6
4
3

6
9
9
9

5
2
7

4
9
4
5
7
8

2
7
7
8
6
8

8
9
0
9

5
2
7

5
9
8
3
0

9
1
4
7
9

2
3
2
0

5
2
7

1
4
6
5
7
4

1
7
9
5
0
2

5
4
8
1

L
ev
y
N
o
5

5
0
8

1
7
3
0
2
6

1
8
3
0
9
2

5
0
1
1

5
0
8

3
6
5
2
5
8

1
7
5
7
1
8

6
7
8
3

5
0
8

8
1
0
3
7

1
6
0
6
8
3

2
7
3
3

5
0
8

8
4
1
5
2

8
3
4
6
2

2
6
4
4

L
ia
n
g

2
2
4
.6

9
0
5
0
6

5
1
5
3
8

2
4
6
4

2
3
3
.1

1
8
0
4
1
9

7
9
8
9
9

3
1
6
1

2
3
6

6
3
7
7
8
4

6
7
6
9
4
1

2
2
6
0
7

2
3
5
.8

7
3
2
1
5

5
0
5
6
9

2
3
4
0

P
ic
ci
o
n
n
i

4
3

5
8
0
4
2

4
2
5
3
6

1
4
7
5

4
2
.9

7
4
1
2
5

7
2
9
1
8

2
0
9
0

4
3

3
3
3
3
3

3
6
2
3
8

1
2
2
2

4
3

4
8
1
2
3

4
5
6
4
7

9
8
7

R
a
st
ri
g
in

4
9

1
1
3
4
0

1
4
8
1
2

7
4
1

4
9

2
2
2
3
3

1
7
0
6
3

1
7
0
5

4
9

1
7
3
0

2
8
3
3

8
5

4
9

1
7
8
1
0

7
4
8
1

1
3
6

V
o
g
li
s

6
0
.8

1
6
9
3
8

1
8
8
8

9
4
4

6
0
.5

3
5
4
0
8

2
5
0
5

2
3
0
4

6
1

2
1
6
8
4

2
3
1
2
6

6
9
4

6
1

1
6
9
3
2

1
2
6
7

4
3
7

S
ch
a
�
er

9
3
.7

4
8
4
0
1

2
3
2
9
5

8
6
5

9
4
.8

5
6
7
2
2

7
3
9
2
2

1
8
1
1

9
4
.5

2
2
3
7
0

2
4
6
8
2

8
7
6

9
4
.7

1
8
9
2
2

1
6
7
7
9

7
0
2

S
h
u
b
er
t

3
9
9
.6

8
9
0
8
9
9

2
5
9
4

2
2
9
7

3
9
8
.2

1
0
6
2
2
6
0

1
0
7
3
2

1
0
4
7
5

4
0
0

1
6
5
5
1

3
6
0
6
5

6
6
5

4
0
0

1
9
3
2
1
1

1
0
7
8
0

1
4
3
9

M
0

6
5
.1

5
3
8
1
7

3
5
3
1
1

1
6
5
4

6
4
.5

8
5
2
6
6

8
7
2
2
1

2
7
4
1

6
4

1
4
6
6
7

1
6
0
0
5

7
9
9

6
5
.7

1
6
6
5
9

1
7
0
3
3

1
0
2
3

M
3

2
5
.8

3
0
6
0
1

2
0
2
9
5

1
5
0
7

2
5
.8

4
7
1
8
8

3
3
8
7
2

2
1
8
4

2
3
.7

8
9
1
4

1
1
2
8
5

7
9
0

2
5
.6

8
7
5
2

1
7
1
6
8

7
1
1

B
o
rn
e

5
9
5
.6

1
0
9
0
9
7
4

3
2
2
9
6
8

1
1
3
2
4

5
9
3
.4

3
8
2
1
2
8
0

3
3
4
3
6
2
0

1
5
9
2
2

5
9
8
.2

1
9
1
6
2
9
5

2
1
3
8
7
6
6

6
8
8
6
5

5
9
8
.2

1
8
8
0
3
1
4

2
6
2
6
1
8
5

7
0
1
6
1

R
a
st
(N
=
5
)a

2
4
3

1
3
1
6
4
6

3
6
0
8
4

6
6
2

2
4
3

3
9
9
9
0
9

1
1
1
4
6
7

2
0
1
1

2
4
3

5
9
2
9
8

6
4
3
4
9

1
0
2
2

2
4
3

3
0
3
5
0

3
7
6
3
4

1
2
1
4

G
ri
ew

(N
=
5
)b

1
6
0
.1

1
8
5
9
8
7
8

1
6
1
9
2
6
6

2
7
7
1
7

1
5
9
.6

2
1
5
4
0
5
5

2
0
2
3
8
2
1

3
2
1
0
1

1
7
0

2
0
7
4
5
7
3

2
1
9
3
7
6
9

3
2
7
1
0

1
6
9
.8

1
8
3
3
6
2
8

2
0
5
2
6
8
1

3
4
9
1
1

G
ri
ew

(N
=
1
0
)
c

1
1
.1

8
6
8
1
5

7
8
8
4
3

1
2
7
7

1
1
.4

1
4
5
5
5
2

1
2
5
1
8
7

2
1
4
1

1
0
.4

8
5
4
5
4

8
5
2
0
9

1
2
7
0

1
2
.7

7
6
2
2
1

1
2
1
1
7
6

1
7
8
2

S
h
u
b
(N
=
5
)d

3
2

1
2
2
2
1

1
5
6
2
2

5
0
8

3
2

1
7
8
8
1

1
9
8
2
2

8
1
1

3
2

6
1
3
6

6
5
2
0

1
5
8

3
2

7
0
2
2

8
1
1
2

2
0
5

S
h
u
b
(N
=
1
0
)e

1
0
2
1
.2

1
7
7
9
3
5
7

2
2
0
4
3
5

3
9
7
7

1
0
0
2
.1

1
8
6
6
6
1
9

1
9
7
3
6
2
1

3
3
2
3
0

1
0
2
4

5
6
3
9
2
7

5
6
5
6
2
4

1
0
3
0
2

1
0
2
4

4
0
6
5
0
3

5
2
6
2
2
9

1
2
8
5
3

a
24
3
m
in
im

a
in

[−
0:
5;
0:
5]

5

b
17
1
m
in
im

a
in

[−
5;
5]

5

c
13

m
in
im

a
in

[−
3;
3]

1
0

d
32

m
in
im

a
in

[−
1;
1]

5

e
10
24

m
in
im

a
in

[−
1;
1]

1
0

124

• L-list: There is one such list for every Slave CPU. Each contains the minimizers

discovered by the corresponding CPU.

Master CPU:

1. Check if a stopping rule applies. If so terminate.

2. Take in account the updated minimizers list (M-list).

3. Create candidate start points and add them to the starting list (S-list) and assign

to each one a zero ag.

Slave CPUs:

1. If no zero ag start-points exist in the S-list, wait.

2. Pick from the S-list a start{point with zero ag, change its ag to one, and apply a

local search.

3. Add the minimizer to a temporary local minimizer list (L-list).

Updater CPU:

1. Pick a minimizer from the L-list and check if it is a new minimizer.

2. If so, add it to the S-list.

8.6 Conclusions and further Work

The adaptive character of the method enables a reasonably accurate estimate of the

probability that a point belongs to a region of attraction. This in turn, on one hand saves

a large fraction of local search applications, and on the other hand prevents the systematic

overlook of regions of attraction, reducing therefore the risk of loosing minima. The

method is robust and e�cient as has been deduced from the results of the computational

experiments. Most of the stochastic global optimization approaches use a population of

points to proceed and thus the population size is an additional parameter that a�ects the

performance of the method. The present work in contrast, uses a single point per iteration

without any adjustable parameters. This feature adds another (obvious) advantage in the

case where the parallel implementation is of interest.

A parallel algorithm that would bene�t from a cluster of tightly coupled processors or

from a parallel shared memory system would be signi�cant development. Such systems

are nowadays widely available and o�er the possibility of solving harder problems. Work

in this direction is underway.

Other models for the probability, such as adaptively grown Gaussian mixtures, may

be considered and some early, preliminary results are promising.

125

Chapter 9

Sampling from a Sum of Normal

Distributions. An application to Global

Optimization

9.1 Introduction

In this chapter we will propose a novel method for selecting candidate starting points for

stochastic two-phase algorithms, that will take into account previous local searches. The

information revealed from the local search forms a normal distribution around the most

recently found local minimum. This is a direct way to implement General Algorithm 2,

presented in introduction.

9.2 Global Optimization using Normal Distributions

Before we present our sampling methodology we must make clear that the proposed

algorithm can be used in addition to all sampled based global optimization algorithm

that employ local searches.

In the original methods a sample point x is selected using a uniform random distribu-

tion, and the global optimization strategy should decide whether or not to start a local

search from it. We propose the usage of multivariate normal distribution, centered at

local minima. More speci�cally after a local minimum y∗ is retrieved, we assign to it a

probability distribution function F that is de�ned as:

F =
1√
2�

1

|Σ|
e−

1
2
(x−�)TΣ−1(x−�) (9.1)

where � = mean value and Σ = covariance matrix of the distribution. We used the normal

distribution to model the probability distribution, because it is parameterizable and has

strong local properties.

126

Given N points x1; x2; : : : xN we can calculate the mean value � and the covariance

matrix Σ using:

� = E(X) =
1

N

N∑
i=1

xi (9.2)

Σ = E
(
(X − �)(X − �)T

)
=

1

N

N∑
i=1

(xi − �)(xi − �)T (9.3)

The algorithm for creating the proposed sampling distribution is given bellow:

Algorithm 9.24 Global optimization using sum of Normal Distributions

• Initialization:

From a uniform random starting point, apply the local optimization algorithm re-

trieve minimum y∗ and calculate �i and Σi from Eq 9.2 and Eq 9.3 from the speci�c

minimum i = 1.

• In every iteration:

1 Sampling : Get a uniformly random point x and select it for starting point if

for a random � ∈ (0; 1) the inequality

� ×maxx(F (x)) > F (x)

holds.

F (t) =
Nlocal∑
i=1

N(t; �i;Σi)

2 Update: For every local minimum that is retrieved update:

i The approximations �i Σi from every minimum yi

ii The quantity �i, which counts how many times the i-th minimum is found.

iii The position of the minimum and its function value

3 Termination: Apply a termination criterion

9.3 Sampling

The sampling method chosen for a global optimization task is considered very important

for the overall performance. Their application ensures the coverage of all solution space

and hence the recovery of the global minimum. In the global optimization bibliography

several sampling methods have been proposed such as:

127

1. Sampling from uniform distribution

2. Sampling from normal distribution (eg. Simulated Annealing)

3. Sampling from Quasi-Random uniform distributions

4. Importance Sampling

5. Rejection Sampling

In uniform distribution we can derive an analytic expression and hence for X;U; V ∈
U(0; 1) we can have::

• Normal distribution ï(0; 1): ï =
√
−2ln(U) cos(2�V)

• Exponential distribution with parameter �: Y = − ln(X)
�

• �-distribution with parameters 1 and �: Y = 1−X1=�

Quasi-random distribution are created using sequential algorithms that take into ac-

count previously selected points and after an in�nite number of iterations they approxi-

mate the uniform distribution. Some well known quasi-random sequences are the Halton

sequence, the Sobol sequence and the Nierderreiter sequence. These sequences posses an

important property (specially for low dimensioned problems) that they cover uniformly

the search space . This is depicted in Figure 9.1.

We can deduce from Figure 9.1 that uniform distribution leaves randomly \uncovered"

areas in the search domain, whereas the quasi-random distributions mange to cover the

search space uniformly.

Finally, rejection sampling is used to sample a point from complex distributions F (x).

This technique uses an auxiliary function G(x) for which F (x) < MG(x) holds, where

M > 1. The rejection sampling algorithm is presented bellow:

Algorithm 9.25 Rejection Sampling

* Sample x from g(x) and u from U(0; 1)

* Check whether or not u < f(x)
Mg(x)

.

o If this holds, accept x as a realization of f(x);

o if not, reject the value of x and repeat the sampling step.

In our methodology we set F (x) =
Nlocal∑
i=1

�i∑
j �j

N(x), g(x) = U(0; 1) and M =

maxxN(x). Alternatively one can perform the an inverse rejection sampling (if we do

not want to sample from the distribution F (x)) by reversing the inequality from the

second step, that is u >
f(x)

Mg(x)

128

(a) Sobol sequence (b) Niederreiter sequence

(c) Uniform sequence

Figure 9.1: Sampled points in two dimensional search space quasi-random and uniform

sequences

Let us illustrate the main idea behind our sampling technique. Assume that in the

process of the global optimization algorithm we have retrieved 3 local minima and we have

just sampled x from a uniform distribution in [a; b]. For every local minimum we have

created a normal distribution N(x; �i;Σi) according to Algorithm 9.24. Algorithm 9.24

selects a starting point x when � × max(F (x)) > F (x) for � ∈ U(0; 1). The sampling

algorithm is described in Algorihm 9.26.

In Figure 9.2we present three di�erent normal distributions centered at three afore-

mentioned local minima and their weighted sum. At the sampled point x we compute the

value of the weighted sum of normals F and we compare it to the global maximum value

of the weighted sum. The greatest the di�erence, the largest the probability to actually

allow x to become a starting point for local search. It can be easily deduced that if x is

sampled close to an already reached minimum, the probability to accept it would be very

small. In Figure 9.2 the probability to accept a starting point at x = −4 is almost one,

whereas to accept a starting point at x = 0 is almost zero.

129

Algorithm 9.26 Inverse Rejection Sampling

• repeat the following until a point is accepted

{ Get x from U([a; b]n) where n is the problem's dimension.

{ Sample xi from U(0; 1)

{ F̃ ← 0, maxF ← 0

{ for every local minimum retrieved

∗ F̃ ← F̃ + rhoi∑
j �j
N(x; �i;Σi)

∗ maxF ← maxF + rhoi∑
j �j
N(�i; �i;Σi)

{ If � ×maxF > F̃ then accept x as starting point

Figure 9.2: Selecting a sampled point

To continue the illustration of our sampling method, we now consider two-dimensional

examples, speci�cally the six-hump-back and the Rastrigin function.

In Figures 9.3 and 9.4 we used 200 uniformly random starting point to create the nor-

mal distributions around local minima. We then sampled 1000 points using the proposed

sampling methodology and uniform distribution. Figures 9.3(a) and 9.4(a) present the

selected points from our methodology whereas Figures 9.3(b) and 9.4(b) display points

from uniform distribution. We can notice that the proposed sum-of-normals distribution,

avoids starting points near the basin of attraction of an already recovered minimum, since

130

(a) Six Hump sum-of-normals distribution

(b) Six Hump uniform distribution

Figure 9.3: Sampling around a minimum in Six-Hump-Camel function using the proposed

and uniform distribution

the probability of not sampling a point near a local minimum is hight. Notice that even-

tually the sampled points from our distribution will �ll up the space around local minima

and even reveal the shape of the regions of attraction.

9.4 Online Estimation of Normal Distribution parameters

The maximum likehood update for the parameters �i and Σi is performed during execution

of our sampling and minimization proposal. For every minimum we calculate and update

the following quantities:

• �i = �i−1 + �i(xi − �i−1)

• Σi = Σi−1 + �i(xi − �i)(xi − �i)T , where �i ∈ (0; 1); �0 = (0; 0; : : : ; 0)T ;Σ0 = �In

131

(a) Rastrigin sum-of-normals distribution

(b) Rastrigin uniform distribution

Figure 9.4: Sampling around a minimum in Rastrigin function using the proposed and

uniform distribution

The covariance matrix Σi is updated through Rank-1 updates (quantity �i(xi−�i)(xi−
�i)

T). We can therefore use Cholesky decomposition Σi = LiL
T
i and store factor Li (lower

triangular) for every minimum. In this way we achieve update in O(n2) time and not

in O(n3) if we used the original matrix Σi. The determinant of Σi can be calculated

straightforwardly by using the Cholesky factor as:

• det(Σ) =
N∏
i=1

L2
ii

Also Cholesky factors can be used for the calculation of the exponential part of the

distribution as follows:

• (x− �)TΣ−1(x− �) =
(
L−1(x− �)

)T (
L−1(x− �)

)
where

L−1(x− �) = y ⇒ Ly = x− �

132

. Hence all the expensive exponential calculation is reduced in solving a lower triangular

linear system.

The quantity �i can be regarded as learning factor for the normal distribution around

the minimum. It can be a constant small number or a variable quantity as same minimum

is found consecutively. In the second case one possible formulation could be:

�i =
1

�i

where �i counts the times the i−th minimum is recovered. Following this strategy suggests

that, the position of the �rst sampled points, that lead to the i−th minimum, will play

the most important role in de�ning the shape of the normal distribution. In the case of

constant learning factor we chose a small value of order 10−4. This constant however is

not suitable for every objective function.

Initialization of �i can be performed in two ways:

1. Initialize using the mean among the starting point and the minimum � = (xstart −
x∗)=2

2. Initialize using the minimum � = x∗

Initialization of Σi can be performed in two ways:

1. Initialize using identity matrix In multiplied by a small quantity ai.

2. Initialize using the Hessian matrix (or an approximation) at the minimum. The Hes-

sian matrix at the minimum is returned by almost all gradient based minimization

algorithms.

In the �rst case we de�ne the initial normal distribution to be concentrated near the

minimum, and subsequent starting points that lead to the same minimum will \stretch

it" accordingly. In the second case can achieve the best possible representation of the

minimum 's region of attraction.

In conclusion the �nal distribution model we propose would be the weighted sum of

the normal distributions calculated on-line for every local minimum so far. The formula

will be:

F (x) =
M∑
i=1

�iN(x;�i;Σi) (9.4)

with
M∑
i=1

�i = 1 and �i =
�i∑M
i=1 �i

. The quantities pi should sum up to unity, so that∫∞
−∞N(x)dx = 1

In Figure 9.5 we present the progress of adjusting a normal distribution around a local

minimum, as it is recovered repeatedly by di�erent starting points. After 12 updates of

the covariance Sigmai, and center �i
In Figure 9.6 we present contour plots for the �nal sum-of-normals distribution ob-

tained for several test function. We can see how the proposed distributions succeeds in

learning the region of attraction of local minima.

133

(a) � = 1 (b) � = 3 (c) � = 6

(d) � = 9 (e) � = 12 (f) Region of attraction

Figure 9.5: On-line computation of � and Σ for a minimum at x∗ = [4; 0]T

9.5 Sampling as termination criterion

The proposed sampling algorithm from the sum-of-normal distribution can be used as a

termination criterion. When all the minima will be recovered and all the search space will

be covered by normal distributions, then accepting a point using the rejection sampling

would be di�cult. Recall that for � ∈ U(0; 1) in order to accept a point x the inequality

� ×maxx F (x) > F (x) must hold. The natural assumption is that when all the minima

are recovered repeatedly F (x)→ maxx F (x).

We propose two criteria for termination:

Count the rejections If the inequality � × maxx F (x) > F (x) does not hold for k

consecutive random � ∈ U(0; 1) values then STOP.

and additionally:

Measure the ratio If the the ratio
F (x)

maxx F (x)
for any random x is close to 1, then

STOP

For the �rst criterion the number of failures must be counted each time the rejec-

tion sampling is applied, while in the second we only have to measure the ratio as it is

unavoidable reaches 1.

134

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Ackley's test function

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) Bird test function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) Bohachefksy's test function

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d) Giunta's test function

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

(e) Griewank's test function

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Guillin Hills test function

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(g) Holder test function

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(h) Levy No 3 test function

135

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(i) Levy No 5 test function

1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(j) Liang test function

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(k) Piccioni's test function

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(l) Rastrigin's test function

−25 −20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20

25

(m) Rotating Quadratics test function

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

(n) Tube test function

Figure 9.6: Distribution of standard test functions

136

9.6 Experimental results

In this Section we will provide experimental veri�cation of the e�ectiveness of the proposed

sampling method. All algorithms were implemented in ANSI C and tested on a Intel

Pentium 4 (2.8 GHZ) running Linux (Ubuntu 9.10) operating system. For the local

optimization part of the algorithm, Merlin Optimization environment was employed.

The measure in every experiment is the overall number of local searches needed to

retrieve a speci�c number of local minima. Our sampling technique is opposed to uniform

random sampling. The testing methodology is simple. Sample a starting point, perform

local search and count the minima retrieved so far. For the proposed sampling method-

ology, a number of M uniform samples where �rst drawn in order to create some initial

normal distributions. Every experiment was conducted 50 times using di�erent random

seed and the mean value of local searches is presented.

We have conducted experiments using the following options:

1. Initialize Σi to unity.

2. Initialize Σi to Hessian at the minimum.

and

1. Use constant learning rate �i = 10−4.

2. Use decreasing learning rate.

All experiments performed using the Rinnoy-Kan termination criterion presented in

[]. In Tables 9.1-9.4 we present comparison of our sampling method to the uniform distri-

bution for 17 global optimization test functions. We count the number of local optimiza-

tions performed, since the local optimization method was the same in all experiments.

Columns with header Normal(N), mean that the �rst N points were sampled from the

uniform distribution and normal distributions are computed around minima. After the

�rst N samples, our sampling algorithm is employed to produce the subsequent starting

points.

It can be easily deduced from the results that the proposed methodology for sampling

exhibits better performance than the commonly used uniform sampling. In all results the

lowest number of local searches was achieved when the �rst N = 50 starting points were

sampled from the uniform distribution, and then the sum-of-normals distribution was

used. During this �rst \uniform" phase normal distributions were created and updated

around local minima.

Judging from Table 9.3 our methodology achieves best performance when variable

learning rate is used and the Hessian matrix is used to initialize Σi. A comparison of

all possible parameter con�guration using N = 50 initial uniform samples is displayed in

Table 9.5.

137

Table 9.1: Results using Σi = 10−4I and constant learning rate

Function (nom) Sampling method

Uniform Normal(5) Normal(10) Normal(50) Normal(100)

ackley (49) 2502 2387 2353 2337 2571

giunta (36) 1371 1275 1198 1174 1243

guilin (25) 9612 3868 3300 3273 3685

levy3 (130) 17163 15799 14922 14748 11026

rast (121) 14886 16227 15751 15579 15688

griew (123) 15378 14925 14585 14392 14584

levy5 (130) 12944 11998 11666 11648 12499

rotquad (59) 12091 11696 11588 11571 12738

holder (180) 2000 2035 1970 1965 2044

bird (25) 667 563 554 553 555

piccioni (37) 1446 1536 1433 1420 1479

shekel (10) 123 112 107 106 107

m0 (152) 4805 3746 3664 3657 3978

dejong (64) 4098 3308 3189 3093 3174

lager (64) 4227 5737 5291 5271 5555

tube (45) 2118 1736 1706 1701 1756

liang (99) 9811 10591 10172 10098 10955

138

Table 9.2: Results using Σi = 10−4I and variable learning rate

Function (nom) Sampling method

Uniform Normal(5) Normal(10) Normal(50) Normal(100)

ackley (49) 2502 2559 2443 2414 2599

giunta (36) 1371 1229 1220 1189 1192

guilin (25) 9612 9255 8457 8429 8779

levy3 (130) 17163 18704 17843 17709 18150

rast (121) 14886 11300 10914 14551 11161

griew (123) 15378 14199 13068 13003 13811

levy5 (130) 12944 11814 11743 11677 12191

rotquad (59) 12091 13122 12725 12622 13063

holder (180) 2000 915 746 734 895

bird (25) 667 525 412 398 407

piccioni (37) 1446 1453 1373 1363 1398

shekel (10) 123 119 131 128 134

m0 (152) 4805 5277 5130 5108 5190

dejong (64) 4098 2157 2079 2022 2183

lager (64) 4227 4230 4150 4139 4451

tube (45) 2118 2057 2056 2047 2164

liang (99) 9811 8337 8015 7887 9062

139

Table 9.3: Results using Σ equal to the Hessian and constant learning rate

Function (nom) Sampling method

Uniform Normal(5) Normal(10) Normal(50) Normal(100)

ackley (49) 2502 2488 2447 2390 2512

giunta (36) 1371 1478 1396 1385 1455

guilin (25) 9612 8182 8015 7929 8341

levy3 (130) 17163 17578 16192 16099 16851

rast (121) 14886 15794 14038 14883 14002

griew (123) 15378 14184 13322 14139 13690

levy5 (130) 12944 11737 11574 11525 12515

rotquad (59) 12091 11172 11622 11582 10073

holder (180) 2000 1997 1962 1950 2139

bird (25) 667 596 592 587 663

piccioni (37) 1446 1486 1268 1262 1285

shekel (10) 123 111 121 104 131

m0 (152) 4805 3847 3483 3461 3608

dejong (64) 4098 2637 2607 2597 2826

lager (64) 4227 4117 4022 3991 4265

tube (45) 2118 2159 2107 2104 2151

liang (99) 9811 9407 8766 8708 9509

140

Table 9.4: Results using Σ equal to the Hessian and variable learning rate

Function (nom) Sampling method

Uniform Normal(5) Normal(10) Normal(50) Normal(100)

ackley (49) 2502 1978 1811 1782 1790

giunta (36) 1371 1215 1073 1056 1104

guilin (25) 9612 5975 5281 5170 6212

levy3 (130) 17163 14618 14531 14434 16043

rast (121) 14886 15275 14782 14455 15081

griew (123) 15378 13925 12962 12793 13278

levy5 (130) 12944 11874 11501 10895 11073

rotquad (59) 12091 12604 12525 12412 13167

holder (180) 2000 1842 1803 1801 1856

bird (25) 667 712 671 670 716

piccioni (37) 1446 1341 1176 1136 1147

shekel (10) 123 132 126 109 115

m0 (152) 4805 4639 4593 4560 5009

dejong (64) 4098 4231 4014 3995 4332

lager (64) 4227 3581 3331 3324 3592

tube (45) 2118 1668 1534 1506 1586

liang (99) 9811 9557 9483 9162 9527

141

Table 9.5: Comparison of Normal(50) for all possible con�gurations

Function (nom) Parameter Con�guration (Normal(50))

Const. + Unity Var. + Unity Const. + Hess. Var. + Hess.

ackley (49) 2337 2414 2390 1782

giunta (36) 1174 1189 1385 1056

guilin (25) 3273 8429 7929 5170

levy3 (130) 14748 17709 16099 14434

rast (121) 15579 14551 14883 14455

griew (123) 14392 13003 14139 12793

levy5 (130) 11648 11677 11525 10895

rotquad (59) 11571 12622 11582 12412

holder (180) 1965 734 1950 1801

bird (25) 553 398 587 670

piccioni (37) 1420 1363 1262 1136

shekel (10) 106 128 104 109

m0 (152) 3657 5108 3461 4560

dejong (64) 3093 2022 2597 3995

lager (64) 5271 4139 3991 3324

tube (45) 1701 2047 2104 1506

liang (99) 10098 7887 8708 9162

Sum 102586 100264 104696 99260

142

9.7 Conclusive remarks

We have presented a new methodology for sampling random points for the our stochas-

tic two-phase optimization algorithm. The new sampling method is based on normal

distribution and it is created \on-line" during the global optimization process.

143

Chapter 10

A Spectral Clustering Approach for

Recovering Multiple Minima

10.1 Introduction

Clustering methods is a class of global optimization methods, which as an important part

include a cluster analysis technique. The motivation for exploring clustering methods is

based on the following:

(a) It is possible to obtain a sample of points in A consisting of concentration of points

in the neighborhood of local minimizers of .

(b) The points in the sample can be clustered giving clusters identifying the neighbor-

hoods of local minimizers and thus permitting local optimization methods to be

applied.

(c) The procedure (a)-(b) can be implemented e�ciently enough to compete with other

methods proposed for global optimization.

If the procedure employing the steps (a) and (b) is successful, then starting a single local

optimization from each cluster would determine the local minima and thus also the global

minimum. Step (a) consists of a sampling step and a grouping step. The sampling can

either be deterministic, using a grid, or random. The main idea is to cover the whole A

in some uniform manner.

For grouping points around minima two strategies have been used. The �rst is based on

the idea that retaining only points with relatively low function values these points would

form groups around some of the local minima [6, 150]. The second strategy is to push

each point towards a local minimum by performing a few steps of a local minimizer[150].

This latter technique with its double e�ect of removing high value points and creating low

value points is then expected to produce groups around all local minima detected during

the sampling phase. The clustering methods in the �rst published compared

144

Most of the algorithms presented can be put into the form of the following general

algorithm. In this Chapter we describe our approach on recognizing the group of sampled

Algorithm 10.27 General Clustering Algorithm

GA1 Sample points in the region of interest :The goal for this step is to explore the whole

region of interest in order to �nd a point leading to the global minimum. In accor-

dance with this, all the methods use uniform sampling, and in one method (Torn)

also strati�ed sampling may be used.

GA2 Concentrate the sample to obtain groups around the local minima:The goal for this

step is to concentrate the points around the local minima so that they can be

recognized by a clustering algorithm. Two pure strategies and some combinations

of these are used.

(a) Retain a prede�ned portion of the lowest points.

(b) Displace the points by some steps of a local minimizer.

GA3 Recognize these groups by the aid of a clustering method : The goal for this step is

to identify points bound for a certain minimum. Our work proposes an alternative

method for this step.

GA4 If a stopping condition is met, stop.

GA5 Transform, sample for the next iteration, go to step 2.

points into clusters (S3). We also address the problem of concentrating the initial sampled

points to obtain the groups around local minima. We propose the Spectral Clustering

technique for grouping start points into clusters.

10.2 Clustering techniques

Clustering is normally applied to a given distribution of N objects, in our case points in

Rd, with normally d = n. We assume that these points represent regions of attraction

of local minima. The task of the clustering procedure is to recognize the regions of

attraction by forming clusters corresponding to these regions. A central problem when

applying cluster analysis techniques is the problem to choose the proper distance function

D(-, ï¿½), i.e., a function that de�nes the distance between any two given points. One

possible distance function to use is the usual Euclidean distance. The results obtained

with this distance function is sensitive to the scaling of the coordinates and if used the

optimization problem variables should therefore be scaled so that the contribution from

each variable to the distance is proportional to its importance in separating the points.

We will not further discuss this problem here and if nothing else is said it will be assumed

145

that the Euclidean distance will be used as the distance function. A second important

problem in cluster analysis is to �x some threshold distances to determine if a point is near

enough to be included into a particular cluster. The choice of such thresholds will highly

a�ect the number of resulting clusters. If chosen too small each point would form its own

cluster and if chosen too large a single cluster containing all points could be obtained.

We will comment on the choice of thresholds in connection with the detailed description

of proposed global optimization methods.

The context in which clustering is used here makes it possible to perform auxiliary

computations if needed to make the right decision in the clustering process. The function

values corresponding to the points are available and contains important information. It

is possible check if the direction of the gradient in a point points towards a cluster center.

By using a local optimizer a point may be moved towards its cluster center. It is also

possible to compute the function value in points between some given points, a possibility

that can be important for correct classi�cation.

Methods for cluster analysis may be divided into hierarchical and non-hierarchical

(partitional methods [Anderberg 1973; Dubes and Jain 1980]. A hierarchical clustering is

a nested sequence of groupings, whereas a partitional clustering is a particular partitioning

of the objects.

10.2.1 Hierarchical Clustering

Hierarchical clustering can either be agglomerative or divisive. In agglomerative clustering

clusters are hierarchically merged two and two starting with one point in each cluster.

In divisive clustering the clusters are hierarchically divided, each into two new clusters

starting with a single cluster containing all points.

Single Linkage

The simplest of all agglomerative hierarchical clustering techniques is single linkage clus-

tering. In this technique the next two clusters to be merged are those for which the

distance between the nearest points (one point belonging to one cluster and the other to

the other) is the smallest. When this distance becomes larger than the threshold distance

the procedure is stopped. By considering other measures of similarity between clusters

other hierarchical methods are obtained. Starting with each point in a separate cluster

the points at distances less than the threshold distance are linked. A cluster is recognized

as a set of points linked together.

Density Linkage

Density linkage refers to a class of clustering methods using nonparametric probability

density estimates [SAS 1985]. It consists of two steps:

1. A new dissimilarity measure D∗ based on density estimates and adjacencies is com-
puted.

146

2. Single linkage is performed using D*.

The k−th nearest neighbor method [Wong and Lane 1983] uses k−th nearest neighbor

density estimates. Let dk(xi) be the k−th nearest neighbor distance of xi and D be the

Euclidean distance function. Then

D∗(xi; xj) =

{
dk(xi)+dk(xj)

2
; If D(xi; xj) < dk(xi) or dk(xi)

∞ otherwise
(10.1)

Based on empirical data a possible choice for ? is 2 log2 N for N ranging from 50 to 500

points.

10.2.2 Partitional Clustering

Most of the partitional clustering techniques grow clusters starting from so called seed

points.

Growing Clusters from Seed Points

One way of creating clusters, given a set of points, is to use a seed point to initiate a

cluster and add nearby points as long as they are near enough. This is sometimes applied

recursively so that each added point also becomes a seed point. The cluster is closed when

no new point can be added.

It is obvious that a seed point ideally should be a point in the center of the underlying

cluster. In cluster analysis such a seed point is normally not directly available.

In global optimization the transformed sample can be expected to contain points

located around the local minima, with the minimizer somewhere in the middle of each

cluster. This means that the minimizer should be a good seed point to use when forming

a cluster. For each cluster one can therefore single out a point, the one with the lowest

function value (i.e. an estimate of the corresponding local minimizer) which can be used

as a seed point for the cluster. This means that in the global optimization setting natural

seed points are easily recognizable by utilizing the function values corresponding to the

given points.

Mode-seeking Algorithms

Another clustering method used for global optimization is the mode-seeking technique. In

this the points to be clustered x1; x2; : : : ; xN are used to estimate a point density function

 . The idea is to identify local maxima or modes in the density function and use them as

cluster centers. The number of nodes in the estimate of the density function indicates the

number of clusters present in the data. The clustering procedure is �nished by assigning

each point xi; i = 1; : : : ; N to its closest center.

The mode-seeking algorithms need a large ratio of sample size to dimensionality for

accurately estimating the density function. For large N these algorithms are not feasible,

147

owing to the amount of computation needed to estimate the density function [Dubes and

Jain 1980].

10.3 Clustering in Global Optimization

In this section, the clustering methods proposed for global optimization are described

essentially as they are presented by the authors in the papers referenced.

10.3.1 Existing Algorithms

The Algorithm of Becker and Lago

This was the �rst work, where a clustering technique comes to aid a global optimization

algorithm. The steps of the algorithm are presented in Algorithm 10.28:

Algorithm 10.28 Clustering 1: Becker and Lago Algorithm

S1 Sample points : Perform simple random search (random sampling) over the entire

region A, giving N∗ trial points.

S2 Reduce sample: Retain a predetermined number M of points with the lowest values

of f (These are expected to form clusters about the minima of f in A).

S3 Cluster : Group the retained points into clusters by a mode-seeking algorithm.

S4 Sort clusters : Rate the clusters according to the lowest function value in each cluster,

the best cluster being the one with the lowest f .

S5 Construct subregions : Construct subregions A1; A2; : : : containing all of the retained

points of each cluster.

S6 Treat subregions : Treat each subregion as in steps 1 − 5 starting with the best

cluster, then taking the second best cluster and so on.

Clustering algorithm A mode-seeking technique with an nonparametric density func-

tion is used. The cluster centers are determined in the following way. Let r1 be the

average distance for nearest neighbor and r2 be the average distance between the points

x1; x2::; xM to be clustered. Take x1 and locate the hyperspheres of radii r1 and r2 cen-

tered at x1. If xk; k = 2; : : : ;M lies within the r1 hypersphere it is averaged with x1.

This average becomes the centre of the cluster. If xk lies between the two hyperspheres

it is returned. If xk lies outside the r2 hypersphere, then two more hyperspheres of radii

r1 and r2 are located with xk as the center. This gives a number of cluster centra. The

148

remaining points are then assigned to the clusters according to some nearest neighbo r

rule.

T�orn's Algorithm The main steps of T�orn' s algorithm are given in Algorithm 10.29.

Algorithm 10.29 Clustering 2: Torn's Algorithm

S1 Sample points: Sample N points in A.

S2 Concentrate: Concentrate the points about the minima.

S3 Cluster Identify the resulting clusters by a clustering analysis technique.

S4 Test for stop: If a stopping condition (e.g. only one point left in each cluster, or

the same number of clusters in two consecutive clusterings) is met, go to step 6.

S5 Reduce sample Rate the clusters and the points in a cluster according to the lowest

f value. Retain every m'th point in each cluster. Go to step 2.

S6 Find local minima: Determine the minima starting from the best point in each

cluster.

Concentrating Points Two approaches were tried:

(a) retain a prede�ned number of points with the lowest f

(b) for each point perform a number of steps of a local optimizer.

Based on the outcomes of some experiments, method (b) was deemed more successful in

concentrating the points and method (a) was not further considered.

Clustering Algorithm A cluster is grown about a seed point by adding all unclustered

points lying in successively larger hyperspheres centred at the current seed point, as long

as the point density in the volume between the successive hyperspheres remains greater

than the average density in the region of reference. The radii of the successively larger

hyperspheres are determined so that a single point between successive hyperspheres is

enough to guarantee this limiting density. Natural seed points are used. The region of

reference S ∈ Rn is the region spanned by the points, and its volume V is given by:

V =
n′∏
i=1

4
√
�i

where �1 ≤ �2 ≤ : : : �d are the roots of equation (C − �I) = 0 where C is the covariance

and I is the identity matrix. The quantity d is either n or n+1, with f(x) as the n+1-th

149

coordinate. The value of n′ ≤ d, determined by the clustering algorithm, may disclose

that the minima are contained in a lower space (Rn′
; n′ ≤ d) which in some cases can be

valuable information about the problem.

Spircu's Algorithm

The main steps of this algorithm are presented in Algorithm 10.30:

Algorithm 10.30 Clustering 3: Spircu's Algorithm

S1 Sample points: Generate N∗ points, uniformly distributed in A.

S2 Concentrate, reduce sample: Transform the sample by performing some steps of a

local optimizer from these points and by retaining a fraction of the best points

(= :25) S3.

S3 Find modes : Estimate the density function determined by z1; : : : ; zM and calculate

the modes m1; : : : ;mK If K = 1, go to step 5, otherwise go to step 4.

S4 Reduce points, generate new points : Generate N ′ = (NïK)=2 points, uniformly

distributed in A. Modify N∗ = K +N ′ and take as the current sample the modes

plus the new points. Continue with step 2.

S5 Find local minimum: Perform a �nal local optimization starting from m1.

Clustering The clustering method used is a mode-seeking technique. The explicit den-

sity function is statistically estimated as sum of M so called �-generating sequences. It

is pointed out that this gives a consistent, asymptotically normal, unbiased estimate of

 . The modes are determined by starting a local algorithm for the estimated density

function from each point zi; i = 1; : : :M . In Spircu's method only the modes are used and

no assignment of points to the cluster centers or modes is performed.

The Algorithm of Boender et al

In their paper [Boender et al 1982], the authors describe their method as a stochastic

method involving a combination of sampling, clustering and local search, terminating

with a range of con�dence intervals on the value of the global minimum.

Clustering algorithm Two methods were developed. Both methods use local infor-

mation about the objective function (the Hessian in the corresponding local minimum)

and rely on properties of the sampling distribution. The �rst method is a re�nement of

the clustering idea of Torn. Instead of using successively larger hyper spheres the succes-

sively larger sets are approximations of the level sets around a seed point (local minimum)

giving ellipsoids.

150

Algorithm 10.31 Clustering 4: Boender et al Algorithm

B1 Initialize: Choose values for N∗ and . x∗ is the set of local minima found so far

and X(1) is the set of sample points leading to a minimum x∗ ∈ X∗.

B2 Sample points: Draw N∗ points and add them to the sample.

B3 Reduce, concentrate sample: Construct the transformed sample by taking the frac-

tion lowest points of the current sample and by performing a steepest descent step

from each of these points.

B4 Cluster : Apply a clustering procedure to the transformed sample. The elements of

X∗ are �rst chosen as seed points followed by the elements of X(1). If all points of

the transformed sample can be assigned to a cluster, go to step 6.

B5 Find local minimum, cluster : Among the points not yet clustered, let x(1) be the

point with the lowest function value. Apply the local search procedure to x(1) to

�nd a local minimum x∗. If x∗ =∈ X∗, add x∗ to X∗ and choose it as the next seed

point. If x∗ ∈ X∗, add x(1) to X(1) and choose x(1) as the next seed point. Repeat

step 5 until all points have been assigned to a cluster. If a new point has been added

to X∗, go to step 2.

B6 Stop: Determine y*, the smallest local minimum value found, and stop.

The second method is a partitional application of the single linkage method where

unclustered points x are added to a cluster, initiated by a seed point either in X∗ or X(l)

as long as the distance

D(x; x′) =
[
(x− x′)TH(x∗i)(x− z′)

]1=2
to the nearest neighbor x′ in the cluster is less than a threshold distance r. The threshold

distance is computed using an approximation of the probability distribution of the nearest

neighbour statistic within a set of uniformly distributed points, giving

r =

[
Γ(1 + n=2)|H(x∗i)|1=2�(A)

�n=2
(1− �1=(N−1))

]1=n
,where ? corresponds to the probability of type 1 error. In preliminary experiments this

method was found to be more accurate than density clustering and was therefore chosen.

A further check is made before a point is added to a cluster, it is checked that the negative

gradient points in the direction of x∗, or, if the seed point is a member of X(1) that the

gradient points in the same direction as in the seed point. This modi�cation proved very

useful for detecting close minima.

151

The Algorithm of Betro and Rotondi

A Bayesian nonparametric approach to global optimization is presented in [Betro and

Rotondi 1984]. The aim of the algorithm is to quickly and inexpensively �nd an im-

provement of the best sampled value hopefully su�cient to decide that, on the bases of

estimating the probability P (F (f̃) < �|F̃ = f̃), that the required accuracy �{Lj} < e has

been achieved, rather than to identify all relevant regions of attraction of local minima.

Algorithm 10.32 Clustering 5: Betro and Rotondi Algorithm

BR1 Initialization: Choose values for N∗, M , f0 a guess for f∗,� and �. X∗ is the set
of local minima found so far and Xs the set of starting points for these minima.

Initially these sets are empty.

BR2 Initial sampling estimate f̃∗, test for stop: Sample M points. Start a local search

from best point in sample obtaining f̃ . Set N = 0. If P
(
F (f̃) < �|F = f̃

)
> �

then accept f̃∗ as the �nal estimate and stop.

BR3 Sample points, reduce sample: Sample N∗ points in A. Retain the N∗ best. Set

N = N +N∗.

BR4 Cluster : A cluster is formed taking as seed point the best point xb in the sample.

Possibly existing subclusters within this cluster are identi�ed. The best point within

each cluster is retained as a possible starting point for a local search, together with

the radius of the cluster.

BR5 Find local minimum? : Compare the information retained from the present clustering

with information gathered during previous stages. If it seems possible that the region

of attraction of a new local minimum has been identi�ed start a local search from

xb and adjust X∗ and Xs accordingly.

BR6 Test for stop If P (Ff (f̃) < �|y1; : : : ; yN ; F = f̃) > � then accept f̃∗ as the �nal

estimate and stop, otherwise go to step 3.

The Algorithm of Timmer

The algorithm of Boender et al has been modi�ed by Timmer [Timmer 1984]. Timmer

considered several clustering methods. Based on experiments, a method, miil� level single

linkage, was deemed most accurate.

The Algorithm of Rotondi

Rotondi's clustering technique is based on the concept of the k-th nearest neighbour

[Rotondi 1978]. In order for the problem to be solvable in a �nite number of steps, it is

152

Algorithm 10.33 Clustering 6: Timmer's Algorithm

T1 Initialize: Choose values for N∗, and �. X∗ is the set of local minima found so

far.

T2 Sample, reduce sample Draw N∗ points at random and transform the sample by

taking the fraction lowest points of these N∗ points. Set k = N∗.

T3 Find local minimum: Start a local optimizer from each new point xi except if there

is a sample point xj with f(xj) < f(xi) and ||xjïxi|| < rk. Add new stationary

points encountered during the local search to X∗.

T4 Test for stop: If the expected number of minima w̃ exceeds the number of di�erent

minima found w by less than 0:5 stop, else sample a new point, set k = k + 1 and

go to step 3.

assumed that there exists a positive constant �, such that the distance between any two

local minima exceeds �. The algorithm is presented in Algorithm 10.34.

Clustering Algorithm Natural seed points are used to initiate clusters. The critical

distances rj; j = l; : : : ; k are determined based on k-th nearest neighbour statistics for

uniformly sampled points giving rj = (
�j;1−�
�

)1=n, where �j;1−� is the (1− �)-quantile of
the beta distribution Be(j;Nïj) and N is the sample size. The type I error under the

null-hypotesis H0 is approximately equal to � for the choice of rj.

10.4 A new Clustering Approach for Global Optimization

We mentioned already that clustering methods have proved very successful in tackling the

global optimization problem. One reason is that they make it possible to very e�ciently

combine global and local search.

Motivated by the strong theoretical and practical properties of the general clustering

method for global optimization we present a new technique for creating clusters around

minima. Our approach address the clustering problem of sampled points around minima

using components form:

1. Spectral clustering a promising alternative that has recently emerged in a number

of �elds, that works in the eigenspace of a matrix derived from the points to be

clustered,

2. Global k-Means a hierarchical clustering technique that address the problem directly

at the input space.

153

Algorithm 10.34 Clustering 7: Rotondi's Algorithm

R1 Sample, reduce sample: Sample N∗ points uniformly in A and add them to the

N sampled points (initially N = 0), take the N ones with the smallest function

values.

R2 Choose seed : If all reduced sample points have been clustered, go to step 5. Else

choose as seed point and possible "father" the best remaining point.

R3 Grow cluster about seed : Build successively larger hyperspheres Sii with radii ri; i =

l; : : : ; k around the "father" as long as the hypersphere contains at least one new

reduced sample point having larger function value than the "father" (Function value

test). Let the last such hypersphere be SL Assign all unclustered points in SL passing

the function value test to the cluster (and call them "sons"). Complete the cluster

by letting each "son" in turn become the "father" and repeat the procedure until

each "son" has become "father", then go to step 2.

R4 Merge clusters Let x1 be a point rejected by the Function Value Test in cluster

Ca, which becomes a seed point for a new cluster Cb. If an element x2 of Ca is

within distance 2r1 of x1 and the middle point z of the segment (x1; x2) is such that

f(x2) < f(z) < f(x1) then the clusters Ca and Cb merge.

R5 Find local minimum: A local search from the seed point of a new cluster is started

only if (a) the number of points in the cluster is at least two, and (b) no local search

has been started from points in the cluster.

R6 Test for stop: If in two cycles no new minimum is found stop, otherwise go to step

1.

These two powerful clustering tools are employed for the �rst time in the global opti-

mization framework. We prefer Spectral Clustering analysis for two reasons. Firstly, it

is based on pairwise a�nities between points, which in standard clustering applications

are calculated using Euclidean distances. However in the optimization framework both

function and gradient values at points are available. We will show that this extra infor-

mation can be essential in associating or disassociating concentrated points. The second

reason is that using a simple eigenvalue analysis we can calculate a surprisingly accurate

estimate for the number of clusters.

On the other hand the Global k-means algorithm, although an expensive procedure, is

classi�ed among the best clustering techniques in the bibliography. Moreover, it can be

straightforwardly modi�ed to take into account a�nity information from spectral cluster-

ing analysis. More speci�cally global k-means algorithm is based on successively applying

the simple k-means algorithms which, in turn, is based on Euclidean distance between

points and the introduction of new points that represent the cluster (means). Instead of

154

the Euclidian distance one can use the pairwise a�nities between the concentrated sam-

pled points, and instead of new points one can de�ne an existing point as representative

for a cluster (medoids). We attempt to get the most out of these two methodologies

combining them using:

• Function and/or gradient information in addition to Euclidean distance between

points

• Global k-means variation that operates on these a�nities and uses existing repre-

sentatives, namely global k-medoids.

Recall the general clustering algorithm presented in Algorithm 10.27. Following the

same general scheme we present a �rst sketch of our clustering algorithm

Algorithm 10.35 The proposed method { Outline

S1 Sample points in the region of interest : For this step we use two alternatives:

(a) Uniform random sampling

(b) Quasi{uniform sampling (Halton sequence)

S2 Concentrate the sample to obtain groups around the local minima: We prefer T�orn's

alternative to concentrate the sample around minima, by displacing it using a frac-

tion of the negative gradient or few steps of a local optimizer.

S3 Recognize these groups by the aid of a clustering method : In general out clustering

method consists on two main steps (which will be thoroughly analyzed later):

(a) Estimate the number of clusters k formed by the concentrated sampled points

(b) Apply global k-means (or a proposed variation) seeking k clusters.

S4 Stopping condition: Any stopping criterion from the bibliography can be used.

10.4.1 Step 1: Sampling methodology

In order to explore the whole region of interest, we chose to apply uniform sampling.

However by using quasi{random sequence of number (like Halton sequence) we witnessed

an improvement especially in low dimensional problems. Quasi{random sequences are

sequences of n-tuples that �lls n-dimensional space more uniformly than uncorrelated

random points. The nature of quasi-random sequences, o�ers a better coverage for the

search space because they are constructed so that their discrepancy would be low. The

application of quasi{random sequence enables our methodology to retrieve the same num-

ber of local minima by sampling less points than uniform random sequence. This becomes

155

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Halton sequence

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Uniform random

Figure 10.1: Sampling 500 points

more obvious for low dimensional problems. In Figure 10.1 we illustrate the di�erence

between sampling 500 points using a Halton sequence and a uniform number generator.

Notice, the \clusters" formed by the 500 uniform random numbers.

10.4.2 Step 2: Concentrate samples around minima

For the concentration step we use two alternatives. The �rst, and more straightforward,

is to allow each sampled point to move for a fraction of the negative gradient direction.

xs ← xs − �∇f(xs)

This give rise to a very important parameter � which controls the step that will be taken

in this direction. One cannot �nd a unique value for � that would produce reasonable

concentration for every objective function, and this parameter a�ects greatly the �nal

outcome. On the other hand one can utilize a local optimization method and apply it

for a few iterations for every sample point. The main defect for this approach is that

local optimizers also produce \jumps" at the search space, meaning that a starting point

may converge to a local minimizer far away, that does not belong to the same region

of attraction. This problem is handled by a local{local optimization algorithm that is

presented in the next chapter of this thesis. In Figure 10.2 we illustrate an example of

poor choice of � parameter opposed to an example of good choice of �. We also present

the application of a local search from each sample point1.

10.4.3 Step 3: Clustering

We are now ready to present the basic contribution of our work in the clustering global

optimization framework. In order to solve the clustering around minima phase, we utilize

spectral information of the concentrated sample with the Global k-means algorithm (and

1The same overall cost

156

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Three iterations using � = 0:01

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Three iterations using � = 0:1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) Three iterations of a local search

Figure 10.2: Sampling 200 points, concentrating using a step on negative gradient

its median modi�cation). The clustering procedure is rather straightforward and we can

distinguish two phases:

C1 Estimate the number of clusters k formed by the concentrated sampled points.

C2 Apply global k-means (or a proposed variation) seeking k clusters.

In the �rst phase the main computational task is to calculate the eigenvalues o� a sym-

metric association matrix based (a) on the positions of the reduced sample and (b) on the

information we provide to associate/disassociate two samples. By analyzing the eigen-

values we can derive an extremely accurate approximation of the number of clusters

(hopefully the number of minima). We can also use this association matrix as an input

for the second phase. The second phase is essentially the Global k-means algorithm in

his original form, utilizing Euclidean distances, and with one modi�cation, operating on

association matrix.

In the next paragraphs we will analyze the basic components of out clustering ap-

proach.

Spectral estimation of the number of clusters { The eigengap

Spectral clustering is a recently emerged clustering technique that has its origins in spec-

tral graph partitioning. We will present the basic algorithm as it was presented in [Ng,

157

Jordan] although we only use the �rst three steps in our method. In these steps we

present the calculation of the association (from now on similarity) matrix. A short listing

of the estimation of the number of cluster algorithm using spectral information, is shown

in Algorithm 10.36. The estimated number of cluster using the eigengap heuristic has

Algorithm 10.36 Spectral Clustering

Input: A set of points X = x1; x2; : : : ; xN ; xi ∈ Rd

A small number �

Output: The estimated number of clusters k.

1. Form the a�nity matrix A ∈ RN×N de�ned by Aij = exp(−||xi−xj||2=2�2) if i ̸= j,

and Aii = 0

2. De�ne D to be the diagonal matrix whose (i; i)-element is the sum of A's i-th row,

and construct the matrix L = D−1=2AD−1=2

3. Calculate and sort decreasingly the eigenvalues of L. Let e1; e2; : : : ; eN be the sorted

eigenvalues.

4. Calculate the di�erences �i = ei+1 − ei; i = 1; : : : ; N − 1.

5. Find the maximum eigengap: k = argmaxk=1;:::;N−1�i

its origins in graph theory and especially in graph partitioning theory. There are several

justi�cations for this procedure. The �rst one is based on perturbation theory, where

we observe that in the ideal case of k completely disconnected clusters, the eigenvalue 0

has multiplicity k, and then there is a gap to the (k + 1)-th eigenvalue �k+1 > 0. Other

explanations can be given by spectral graph theory. Here, many geometric invariants

of the graph can be expressed or bounded with the help of the �rst eigenvalues of the

graph Laplacian. In particular, the sizes of cuts are closely related to the size of the �rst

eigenvalues.

In Figure 10.3 we present a simple application of the eigengap heuristic. The orig-

inal clustering problem is presented in Figure 10.3(a), where we can clearly distinguish

three clusters. After calculating the matrix L and its eigenvalues we obtain the plot of

Figure 10.3(b) that shows the eigenvalues in decreasing order as well as their di�erences.

Calculation of �

One of the most important parameters for the calculation of the a�nity matrix is the

denominator � in expression exp(−||xi − xj||2=2�2). An inappropriate choice for this

parameter may a�ect the ability to distinguish clusters and hence determine their number

k. In essence this quantity identi�es a distance threshold that separates clusters, hence

controlling the width of the neighborhoods. Small values of � dictate that cluster points

158

3 4 5 6 7 8 9 10 11
4

5

6

7

8

9

10

11

(a) Sample toy problem

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2
Eigenvalues

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

X: 3
Y: 0.7593

Eigengap

(b) Sorted eigenvalues of the a�nity matrix

and eigengap

3 4 5 6 7 8 9 10 11
4

5

6

7

8

9

10

11

(c) Calculated cluster centers (Simple k-

means algorithm)

3 4 5 6 7 8 9 10 11
4

5

6

7

8

9

10

11

(d) Final clustering

Figure 10.3: Number of cluster estimation using spectral information, on a simple example

must be closer together than large values. Essentially, the value of � de�nes the magnitude

of scaling the input data. Consider the example in Figure 10.4 where the same data set

is presented with two di�erent scales (zoom levels). In Figure 10.4(a) the cluster inside

the dashed rectangle is obvious. On the other hand, in Figure 10.4(b) we draw the same

cluster using di�erent scaling. In this way we can visualize the way the parameter �

a�ects the clustering algorithm.

In order to automatically select an appropriate value for � we calculate the distances

for every data point to it's k-nearest neighbors. We then average these k distance for every

point to obtain the mean distance from it's k-snearest neighbors. Finally, we average the

mean distance over all data points and obtain the �. The algorithm for � calculation is

shown in Algorithm 10.37.

From the Algorithm 10.37 we introduce the value of Inei as the basic parameter of

our clustering approach. The �nal value of � depends solely on the quantity Inei. In

Figure 10.5 we present 200 sampled points well concentrated around the local minima

of Ackley's function. We have applied our clustering method (Algorithm 10.35) on this

example for Inei = 2; 3; 4; 5, and study the impact of this parameter on the �nal clustering

159

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Normal scale

0.25 0.3 0.35 0.4 0.45 0.5
0.55

0.6

0.65

0.7

0.75

0.8

(b) Zoom-in one cluster

Figure 10.4: A sample dataset

Algorithm 10.37 The calculation of �

Input: D : NxN matrix containing the distance between sampled points, N : Sample size,

Inei : Number of neighbors for the calculation of �

Output: �

1. For i=1 to N do

For j=1=1 to N do

dis(j) = Di;j

End For

dissort ← sort(dis)

m(i)← 1

Inei

Inei∑
k=1

dissort(k)

End For

� =
1

N

N∑
k=1

m(i)

outcome. Notice that, out main interest here is the ability to obtain the number of clusters

by just examining the eigenvalues of the a�nity matrix. Since the clusters are well

separated and many starting-sampled points have reached each minimum (approximately

8 points per local minimum), all choices of Inei lead to reasonable estimates to the number

of clusters (and hence minima). Choosing Inei = 2 results in 44 clusters (Figure 10.6),

where with Inei = 3 the number of predicted clusters is reduced to 30(Figure 10.7).

Averaging among the 4-th and 5-th nearest neighbors though, produces the correct number

of clusters which is 25 (Figures 10.8 and 10.9). It is obvious that when the clusters are

properly distinguished, and a modest number of sampled points are concentrated around

each minimum, choices Iner = 4 and Inei = 5 produce the best results.

On the other hand, we have studied the case that the sampled points are not well

concentrated around local minima. This case is shown in Figure 10.10. In this setting we

160

have slightly transformed the initial sample, so the clusters are not yet formed. In this

case choosing Inei = 2 or Inei = 3 lead to an exact estimation of the number of clusters

(Figures 10.11, 10.12), where averaging for 4 and above nearest neighbors concludes to

the poor choice of one cluster (Figures 10.13, 10.14). We can expect that kind of behavior,

due to the almost uniform distribution of the sampled points.

As a rule of thumb we state that when we have an a-priory knowledge for the ratio of

the sampled points to number of local minima, we can use it to de�ne a proper value for

Inei. In most cases though a value of 3 seems adequate.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 10.5: Ackley's function 200 starting points well concentrated around minima

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Eigenvalues

20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06
X: 44
Y: 0.06002

Eigengap

(a) Sorted eigenvalues, eigengap

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:5091

(b) Final clusters

Figure 10.6: Using 2 neighbors for a�nity matrix (k = 44)

Including gradient information

Clustering points around possible minima of a multimodal function, provides a signi�-

cant source for information: the objective function itself. By this we mean that we do

not just identify groups of points in n-dimensional Euclidean space, but we seek rela-

tionships between sample points, that eventually will lead to the same local minimum.

Both the function values and the gradient vectors can assist in an attempt to associate

or disassociate sample points in addition to their Euclidean distance.

161

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Eigenvalues

20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08 X: 30
Y: 0.09035

Eigengap

(a) Sorted eigenvalues, eigengap

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:3414

(b) Final clusters

Figure 10.7: Using 3 neighbors for a�nity matrix (k = 30)

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Eigenvalues

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15
X: 25
Y: 0.1966

Eigengap

(a) Sorted eigenvalues, eigengap

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:2747

(b) Final clusters

Figure 10.8: Using 4 neighbors for a�nity matrix (k = 25)

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Eigenvalues

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

Eigengap

(a) Sorted eigenvalues, eigengap

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:2747

(b) Final clusters

Figure 10.9: Using 5 neighbors for a�nity matrix (k = 25)

Consider a local minimum and the corresponding region of attraction. Also consider

two points inside the region of attraction and near the speci�c minimum. Their negative

gradient directions, will point to that minimum and by following it they will both approach

the local minimum. On the other hand consider two that points belong to di�erent regions

of attraction but their Euclidean distance is small. In this case their negative gradient

directions will draw that points apart, each one near the corresponding minimum. This

is depicted in Figure 10.15, where the points x1 and x2 belong to the same region of

162

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 10.10: Ackley's function 200 starting points. Slightly transformed sample

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Eigenvalues

20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

X: 25
Y: 0.02866

Eigengap

(a) Sorted eigenvalues, eigengap

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:3079

(b) Final clusters

Figure 10.11: Using 2 neighbors for a�nity matrix (k = 25)

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Eigenvalues

20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06
X: 25
Y: 0.0634

Eigengap

(a) Sorted eigenvalues, eigengap

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:3079

(b) Final clusters

Figure 10.12: Using 3 neighbors for a�nity matrix (k = 25)

attraction, and their negative gradient directions (green arrows), drive them near the

same minimum. This is not the case considering the pairs x1 with y1 and x2 with y2. It

is clear from the �gure that following the negative gradient, will lead them to di�erent

minima.

The idea is simple: Two points are associated if following the negative gradient, reduces

their distance.

Consider two transformed points x1 and x2. For each point, perform an in�nitesimal

163

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Eigenvalues

20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06
X: 1
Y: 0.07797

Eigengap

(a) Sorted eigenvalues, eigengap

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:114

(b) Final clusters

Figure 10.13: Using 4 neighbors for a�nity matrix (k = 1)

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Eigenvalues

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1
X: 1
Y: 0.1207

Eigengap

(a) Sorted eigenvalues, eigengap

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:114

(b) Final clusters

Figure 10.14: Using 5 neighbors for a�nity matrix (k = 1)

x

y

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

y1

y2

x2

Figure 10.15: Example of gradient association criterion

step along the negative gradient direction and obtain y1 ← x1 − �∇f(x1) and y2 ←
x2 − �∇f(x2). If the distance ||y2 − y1|| < ||x2 − x1|| then points x1 and x2 tend to

approximate each other by following the negative gradient direction. On the other hand,

if ||y2− y1|| > ||x2−x1|| then a small step along the negative gradient dissociates the two

164

points.

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

x

y

(a) Without gradient information

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

x

y

(b) With gradient information: Green

color denotes ampli�cation, red color de-

notes reduce

Figure 10.16: A plot of pairwise a�nities between samples using Rastrigin's function

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x

y

(a) Without gradient information

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x

y

(b) With gradient information: Green

color denotes ampli�cation, red color

denotes reduce

Figure 10.17: A plot of pairwise a�nities between samples using Ackley's function

Global k-means Algorithm

Global k-means algorithm [?] is an incremental approach to clustering that dynamically

adds one cluster center at a time through a deterministic global search procedure con-

sisting of N (with N being the size of the data set) executions of the k-means algorithm

from suitable initial positions. Global k-means attempts to �nd the global minimum of

the clustering error metric.

E(m1;m2; : : : ;mM) =
N∑
i=1

M∑
k=1

I(xi ∈ Ck)||xi −mk||2; (10.2)

165

Figure 10.18: Sorted eigenvalues of the a�nity matrix and the corresponding eigengap,

without gradient information

Figure 10.19: Sorted eigenvalues of the a�nity matrix and the corresponding eigengap

using the gradient information

Figure 10.20: Gradient vector plot of the concentrated sampled points

where I(Cond) = 1 if Cond is true and X = x1; x2; : : : ; xN ; xi ∈ Rd is the data set

that is going to be partitioned into M disjoint clusters C1; C2; : : : ; CM with centers

m1;m2; : : : ;mM respectively.

More speci�cally, to solve a clustering problem with M clusters the method proceeds

as follows. The method starts with one cluster (k = 1) and �nd its optimal position

166

Figure 10.21: Positional plot of the concentrated sampled points

which corresponds to the centroid of the data set X. In order to solve the problem with

two clusters (k = 2) N executions of the k-means algorithm are performed from the

following initial positions of the cluster centers: the �rst cluster center is always placed at

the optimal position for the problem with k = 1, while the second center at execution n

is placed at the position of the data point xn(n = 1; : : : ; N). The best solution obtained

after the N executions of the k-means algorithm is considered as the solution for the

clustering problem with k = 2.

In general, once the solution for the (k−1)- clustering problem is found, the algorithm

attempts to �nd the solution of the k-clustering problem by performing N runs of the

k-means algorithm with k clusters where each run n starts from the initial state (m∗
1(k−

1); : : : ;m∗
(k−1)(k − 1); xn)

2. The best solution obtained from the N runs is considered as

the solution (m∗
1(k); : : : ;m

∗
k(k)) of the k-clustering problem. By proceeding in the above

fashion a solution with M clusters is �nally obtained having also found solutions for all

k-clustering problems with k < M .

Global k-means algorithm main advantage is that is independent of any parameter

initialization. Also it is stated by its authors that is experimentally optimal, in a sense

that is equivalent to numerous random restarts of k-means.

10.5 The proposed algorithm

The proposed algorithm is presented in a complete form in Algorithm 10.38. The user

must set the switches that de�ne the sample strategy, the concentrating method, whether

or not to use gradient information.

2m∗
j (k) is the j-the center computed when the k−clustering problem is solved

167

Algorithm 10.38 Proposed clustering algorithm

Input: f : Minimizing function, xl, xu: Problem's bounds, N : Sample size,

Isampl: De�nes sample strategy,

Ired : Switches between the concentrating method,

Iuseg: Use gradient information,

Iclust : Switches between global kmeans/kmedoids,

Inei : Number of neighbors to calculate �

S1: If Isampl = 1 Then { Sample N starting points }
X ← Uniform(N; xl; xu)

Else

X ← Halton(N; xl; xu)

End If

S2: If Ired = 1 Then { Concentrate sample points }
For i=1 to N

X(i)← Local(X(i); iter)

End For

Else

For i=1 to N

For k=1 to iter

X(i)← X(i)− �∇f(X(i))

End For

End For

End If

S3: A← A�nity(X; Iuseg; Inei)

[e1; : : : ; en]← Eigenvalues(A)

Sort [e1; : : : ; en] in decreasing order and calculate maximum eigengap at k

If Iclust = 1 Then { Apply global k-means/medoids }
[M;Dis]← Gkmeans(X; k)

Else

M ← Gkmedoids(A; k)

End If

168

Algorithm 10.39 Algorithm A�nity

Input: f : Minimizing function, X : Sampled points, N : Sample size,

Iuseg : Use gradient information

Inei : Number of neighbors for the calculation of �

Output: A: A�nity matrix

S1: For i=1 to N do

For j=1=i to N do

Di;j = ||Xi −Xj||2
End For

End For

S2: For i=1 to N do

For j=1=1 to N do

dis(j) = Di;j

End For

dissort ← sort(dis)

m(i)← 1

Inei

Inei∑
k=1

dissort(k)

End For

� =
1

IN

N∑
k=1

m(i)

169

Figure 10.22: An illustration of our approach for Ackley's test function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) 500 random starting points

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Eigenvalues

50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1
Eigengap

(b) Estimate k without gradient infor-

mation (k = 8)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:1018

(c) Apply global k-means using k = 8

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Eigenvalues

50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

Eigengap

(d) Estimated k using gradient infor-

mation (k = 32)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:3985

(e) Apply global k-means using k = 32

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:3712

(f) Apply global k-medoids using k =

32

10.6 Implementation and numerical experiments

We have implemented our clustering approach along with the overall global optimiza-

tion framework in Matlab. We used the Global K-means algorithm implementation from

http://lear.inrialpes.fr/~verbeek/code/ and modi�ed the source code to imple-

ment the medoid modi�cation.

170

Figure 10.23: An illustration of our approach for random quadratics test function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) with 500 random starting points

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Eigenvalues

50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

Eigengap

(b) Estimate k without gradient infor-

mation (k = 8)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:607

(c) Apply global k-means using k = 5

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Eigenvalues

50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

Eigengap

(d) Estimated k using gradient infor-

mation (k = 32)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:1424

(e) Apply global k-means using k = 10

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Total fun calls:1187

(f) Apply global k-medoids using k =

10

171

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(g) iter 1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(h) iter 5

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(i) iter 10

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(j) iter 15

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Eigenvalues

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

Eigengap

(k) Eigenvalues

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(l) Clustering

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(m) Minima retrieved

172

Chapter 11

A Local Search with \Strictly"

Monotonic Descent and its Application

in Global Optimization

11.1 Introduction

Stochastic methods based on multistart, that employ a clustering scheme to separate

di�erent regions of attractions have proven to be quite successful. The research in this

direction was pioneered by Rinnoy Kan and its group in a series of articles eg.[]. Various

authors followed up this line, see for example Torn and Viitanen, Schoen and Locatelli,

Aliand Storey and a host of methods and software implementations have appeared in the

literature. A common feature of these methods is the use of a local search (LS), i.e. a

procedure for locating a local minimum. The characteristics of this procedure play an

important role as far as the performance and the e�ectiveness of the global method is

concerned. If by x∗ = L(x) we denote that a local search started at point x, will end up

�nding the local minimizer x∗, then the region of attraction of a minimizer x∗ may be

de�ned as the set A(L; x∗) = {xi; x∗ = L(xi)} and depends in addition to the position of

the minimum x∗, on the LS procedure.

If x∗ and y∗ are distinct local minima A(L; x) ∩ A(L; y) ̸= Ø provided that the local

search is deterministic. Stochastic LS procedures create overlapping regions of attraction

a fact that in the framework is rather undesirable. Also regions of attraction may be

contiguous or not. Evidently a non{contiguous region can not be described by a single

cluster, and hence the existence of such regions may inuence the performance of the

method negatively. So a proper LF for clustering should be such that the regions of

attraction that it creates are contiguous. Vrahatis et al have provided a tool for visualizing

the regions of attraction. An interesting fact is that all of the most successful LS search

create disjoint regions. Hence a LS with contiguous regions of attraction would be very

useful for clustering methods.

173

Find all x∗i ∈ S ⊂ Rn that satisfy:

x∗i = argmin
x∈Si

f(x); Si = S ∩ {x; ||x− x∗i || < �} (11.1)

S is considered to be a bounded domain of �nite measure and � a positive in�nitesimally

small number. This problem appears frequently as a subproblem in a variety of scienti�c

applications. Local search procedures play important role in most of the robust global

optimization algorithms.

11.2 Motivation towards a new local search

In their seminal paper Kan and Timmer [133] introduced two local searches mostly for

theoretical reasons. The �rst one was called strictly local search that generates sequences

of points xk and descent directions pk such that

xk+1 = xk + akpk (||pk|| = 1; ak > 0) (11.2)

which converges to a stationary point and moreover

f(xk + �pk) ≤ f(xk + �pk) (11.3)

for all k and all �; �. In order to derive a more tractable local search, since strictly

local search cannot be veri�ed computationally, they de�ned an �-descent procedure that

satisfy (11.2) and moreover

f(xk + i�pk) ≤ f(xk + (i− 1)�pk)
(
i = 1; 2; : : : ;

[�k
�

])
(11.4)

The authors use this �-descent procedure in order to prove that this local search when

started from a point inside the proper level set that contains the minimum should always

converge to that minimum (see Theorem 6 in [133]). When the authors present their

computational results in [134] they apply a local search with practically far behavior

from the �-descent procedure. However to our knowledge this is the only reference in the

bibliography that reveals the need (theoritical) to de�ne a strictly descent local search

algorithm.

In the spirit of [133], we present a special local search which we are going to call

In�nitesimal gradient descent and is equivalent to the �-descent procedure.

We indent to use Algorithm 11.40 as a model local search with speci�c properties, in

conjuction with a common local search that combines quasi{Newton updates (speci�cally

BFGS) with a simple backtracking local search. For demonstration we will use the well

known Ackley's function [] inside the bounds [−1:5; 1:5]2 where nine minima exist. We

have chosen uniformly random some starting points inside [−1:5; 1:5]2 and performed

local searched using in�nitesimal gradient descent and the common BFGS{backtracking

174

Algorithm 11.40 In�nitesimal gradient descent
Let xk the current iterate and � > 0 a small number:

1. Set pk = −∇f(xk)

2. Set xk+1 = xk + �pk

3. If termination criteria are met stop else goto 1.

scheme. In Figures 1(c) and 1(d) we present contour drawing of Ackley function where

the starting points are connected with a blue line to the ending points (minima). It is

obvious from Figure 1(c), were the in�nitesimal gradient descent was applied, that all

local searches ended up to the minimum in the same basin, whereas in Figure 1(d) we

can clearly see jumps from one basin to another. Also the fraction of starting points

that resulted in the minimum of the same basin, to the total number of minima is in

direct correspondence to the relative size of the basin itself when in�nitesimal local search

is applied. Another observation is that the mean distance from starting points to the

minimum, which is shown in Figures 1(c), 1(d) using red cycles is also is also proportional

to the relative size of the basin of the speci�c minimum. Hence, we can easily deduce that

the application of a strictly local search, allows a better \topographical" mapping of the

underlying function.

Another advantage of a strictly local search is displayed in Figures 1(e), 1(f). In these

�gures we attempt a cartography of the regions of attraction using the aforementioned lo-

cal search procedures. It is clear that the strictly local search produces contiguous regions

of attractions which approximate very closely the basins of attraction of the corresponding

minima, whereas common local search result in discontiguous regions of attraction.

In order to illustrate the signi�cance of a strictly local search in a global framework

consider the case where for each local minimum we create a gaussian function that de-

scribes the region of attraction. Let x1; x2; : : : ; xm the starting points that a local search

L maps to a minimum x∗. Then the gaussian can be de�ned as:

N(x;�;Σ) =
1

(2�)n=2
1√
|Σ|

exp(−0:5 (x− �)TΣ(x− �));

where Σ = 1
m

∑m
i=1(xi − x∗)T (xi − x∗) and � = 1

m
xi. We have performed di�erent local

searches from random initial points, recorder the minima obtained and constructed the

gaussians per minimum. In Figure 11.2 we present plots of these gaussians for di�erent

local searches: (i) classical BFGS, (ii) steepest descent with very small step, (iii) the

proposed methodology.

175

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

(n) Ackley's function contour

−2
−1

0
1

2

−2

−1

0

1

2
−78

−76

−74

−72

−70

−68

(o) Ackley's function surface

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

(p) Steepest descent + In�nitesimal

step

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

(q) BFGS + Armijo backtracking

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

(r) Steepest descent + In�nitesimal

step

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

(s) BFGS + Armijo backtracking

Figure 11.1: Regions of attraction

11.3 Description of the new local search

The local search presented in this work belongs to the line search framework. The choice

of the search direction will be determined be the algorithm used (gradient descent, New-

ton, Quasi-Newton) and it is not discussed here. It is the line search part that produces

su�cient descent for the local search that has to be modi�ed in order ti match the re-

quirements imposed in previous section. In this section we will present the necessary

modi�cation of the line search step, so that the overall local search algorithm (regardless

the search direction selection) will lead to the \nearest minimum".

176

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) BFGS + Armijo back-

tracking

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) In�nitesimal gradient de-

scent

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) Proposed local search

Figure 11.2: Contour plot of the gaussians around minima

11.3.1 Original idea

Suppose that s is a descent direction at x, i.e. sT∇f(x) < 0. We want to minimize

f(x + �s) with respect to �, in such a way that the minimum is the same with the one

that would be found via a steepest descent with in�nitesimal step. In addition we do not

want to take in�nitesimal steps, since convergence will be deteriorated and of course we

want to avoid large steps, since otherwise distant local minima may be recovered. The

Armijo condition:

f(x+ �s) < f(x) + ��sT∇f(x)

bounds the step from above, and guarantees su�cient descent. We will not use the Wolfe

condition to bound the step from below since this bound may force a too high lower

bound. Instead make a grid on the permissible values of � as follows:

�i =
�i − 1

�� − 1
min(1;

max(1; |x|)
|s|

)

where � is the number of allowed values of �, and � > 1. Both �; � are set by the user.

Typical values are � = 10; � = 1:8. The min(1; max(1;|x|)
|s|) part is to adjust to the problem's

typical size. This choice guarantees that �nite steps are taken, and preference is given to

the area close to x. This is illustrated in Figure 11.3, where on the left side we see the

points along the direction without the scaling factor and on the left side the scaling factor

is applied. It is obvious from observing the �gures that

The �rst �i that meets the Armijo condition may be taken. Alternatively, more steps

satisfying Armijo may be taken, as long as no increase in the function's value is observed.

It is implicitly assumed that this line-search will be used in conjunction with a Newton

type of method, where � = 1 is a useful choice. The grid suggested above for � takes on

as the nth value min(1; max(1;|x|)
|s|) which guarantees that � ≤ 1. If Armijo condition is not

satis�ed for all i = 1; : : : ; � then we scale the maximum step to �i−1
�n−1

min(1; max(1;|x|)
|s|), and

repeat the process. Keeping in mind the above analysis a �rst algorithm is presented in

Algorithm 11.42.

Figure 11.4 illustrates the behavior of Algorithm 11.42 in two cases. In the �rst case

the desired minimum is missed. We also present the line search at the �rst iterate.

177

x

y

−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

(a) No scaling factor: Contour

x

y

−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

(b) With scaling factor: Contour

0 0.2 0.4 0.6 0.8 1
−100

−95

−90

−85

−80

−75

−70

−65

−60

(c) No scaling factor: Along search direction

0 0.05 0.1 0.15 0.2
−100

−95

−90

−85

−80

−75

−70

(d) With scaling factor: Along search direction

Figure 11.3: The signi�cance of scaling factor min(1; max(1;|x|)
|s|)

178

Algorithm 11.41 New local search: Version 1
Input:

x: Current iterate

f : Function to be minimized

d: Descent direction from the outer Newton{like local search

�: Armijo rule parameter

�; � > 0: Method's parameters

Output:

x′: Next iterate, �: Line search step , fc: Function calls

1. Initialize:

scale← 1; fc← 0; term← false

2. Main Step:

while term=true do

for i=1, � do

�i ← scale · �i−1
��−1

·min
(
1; max(1;||x||))

||d||

)
if f(x+ �id) < f(x) + ��i · dT∇f(x) then { Bellow � line }

if f(x+ �id) > f(x+ �i−1d) then { No improvement }
�← �i−1

x′ ← x+ �d

term ← true, break

end if

else { Above � line }
�← �i−1

x′ ← x+ �d

term ← true, break

end if

fc← fc+ 1

end

scale← scale �
i−1

��−1
·min

(
1; max(1;||x||))

||d||

)
end

179

X: 1.4
Y: 1.2

x

y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.5

0

0.5

1

1.5

2

(a) Algorithm 11.42 unable to locate

the desired minimum

X: 1.2
Y: 1.2

x

y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.5

0

0.5

1

1.5

2

(b) Algorithm 11.42 locates the desired

minimum

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−78

−77

−76

−75

−74

−73

−72

−71

−70

−69

−68

−67

a

b

c
d

e

PSfrag replacements

f1

f2

f3

f4

f5

(c) Decreasing sequence f1 > f2 > f3 >

f4 > f5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−78

−77

−76

−75

−74

−73

−72

−71

−70

−69

−68

−67

a

b c

d

d

PSfrag replacements

f1

f2

f3

f4

f5

(d) The algorithm stops at x3 because

f3 < f4

Figure 11.4: Illustrative behavior of Version 1

11.3.2 Including gradient information

In the case o� di�erentiable objective function, gradient information can be used to stop

the forward looking line search even though the function values are decreasing. Gradient

information provide the necessary conditions to stop even in the bad case presented in

Figure 11.4.

The idea is simple and is illustrated in Figure 11.5. Compare the dot product of the

search direction to the starting point with the dot product of the search direction to every

trial point on the line. The intuition is that if a trial point overpass a local minimum

the gradient vector will still point to its direction. In Figure 11.5 the 7-th trial point is

the �rst trial point that the dot product of its gradient to the search direction is positive

(�rst red line). All trial points before that have negative corresponding dot product (green

lines). In this way even though a decrease in function value is achieved, the algorithm is

stopped from considering further points.

The modi�cation of the gradient criterion is shown in Algorithm 11.42.

180

Algorithm 11.42 New local search: Version 2 with gradient information (Main Step)

1. Main Step:

while term=true do

for i=1, � do

�i ← scale · �i−1
��−1

·min
(
1; max(1;||x||))

||d||

)
if f(x+ �id) < f(x) + ��i · dT∇f(x) then { Bellow � line }

if f(x+ �id) > f(x+ �i−1d) then { No improvement }
�← �i−1

x′ ← x+ �d

term ← true, break

else { Bellow � line and improving }

gi ← ∇f(xi)

gc← gc+ 1

if gTi d > 0 then

�← �i−1

x′ ← x+ �d

term ← true, break

end if

end if

else { Above � line }
�← �i−1

x′ ← x+ �d

term ← true, break

end if

fc← fc+ 1

end

scale← scale �
i−1

��−1
·min

(
1; max(1;||x||))

||d||

)
end

181

x

y

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Figure 11.5: Illustration of the gradient information

11.3.3 Accelerating: A way of choosing �

In the above analysis we chose a constant value for �. This value plays important role

regarding the e�ciency of the line search. Keep in mind that the proposed algorithm

performs up to � function evaluation per iteration. The upper bound of � function calls

is reached when taking the full step. Experience from line search algorithms, especially of

the Newton class, suggest that when close to the minimum the line search usually takes

full steps.

In order to avoid the further computational cost, we devised another way of optimally

choosing the value of �. This estimation is based on the magnitude of the derivative at

the starting point of the local search and signi�cantly reduces the value of � when close

to minimum. The requirement that large derivatives should correspond to small steps,

may be expressed as:

h =
1

1− sT∇f(x)
Note that as sT∇f(x) → ∞; h → 0 and that as sT∇f(x) → 0; h → 1 Then we may

demand that �1 = h, i.e.

�− 1

�n − 1
min(1;

max(1; |x|)
|s|

) =
1

1− sT∇f(x)

from which we may determine n. In addition we must safeguard n so that n ∈ [1; 10], the

upper bound (10) being there for both numerical and reasons of e�ciency.

All the above are displayed in Algorithm 11.43.

11.4 Experiments and comparison

In order to estimate the e�ciency of the proposed line search both in terms of (a) quality of

the solution and (b) function calls, we conducted a plethora of experimental comparisons.

182

Algorithm 11.43 New local search: Version 3 choosing � (Initialize)

1. Initialize:

scale← 1; fc← 0; gc← 0

h← 1
1−dT∇f(x)

sc← min
(
1;max

(
1; ||x||

||∇f(x)||

))
� ′ ← � , � ←

⌊
min

(
� ′;

log(1+(�−1) sc
h
)

log(�)

)⌋
� = max

(⌊
(� ′ − �) · e0:1(−iter+1) + �

⌋
; 1
)

2. Main Step:

11.4.1 E�ciency vs. Cost

First, we compared a classical backtracking algorithm to the proposed methodology, on

several test functions and random starting points. For all experiments BFGS update

was used to obtain the hessian approximation. The goal for each algorithm is to obtain,

from the same starting point, the same minimum that the in�nitesimal gradient descent

would. We measure the starting points that lead to the correct minimum, and also the

total number of iterations (line search iterations) and the total number of function calls.

Table 11.1 holds the results for the Armijo type backtracking local search. Notice that

almost half of the starting points fail to lead to the correct minimum, by the application

of the local search. On the other hand it took 498111 total function evaluations to locate

these minima. In Table 11.2 we present the same results for the case of our proposed line

search methodology. We can see that the percentage of correct classi�ed starting points,

is equal to 88.9%, much more improved than the previous case. The price we pay for

this performance is a total of 1294234 function calls which is more than double from the

Armijo case. We must comment here that the criterion for selecting starting � worked

very well since we expect almost ten times the cost of the Armijo case.

11.4.2 The proposed search in a global framework

Density Clustering

Typical Distance Clustering

183

Table 11.1: Results for the armijo type backtracking line search

Armijo Type Local Search

Function Correct Error Iters. Fun. Calls % Success

Ackley 555 445 15704 24978 55,50%

Giunta 588 442 12013 15855 57,09%

Guillin 477 523 17764 29974 47,70%

Levy3 1285 715 20783 31624 64,25%

Rastrigin 599 401 9240 12822 59,90%

Griewank 695 305 10244 13422 69,50%

Bird 704 296 14104 19960 70,40%

Levy5 1272 728 21476 31377 63,60%

Rot. Quad 539 461 12001 18408 53,90%

Holder 597 403 12235 17430 59,70%

Liang 561 439 11671 18912 56,10%

Piccioni 726 274 24874 44702 72,60%

Shekel 145 155 3757 7493 48,33%

M0 717 1283 132739 142455 35,85%

Lager 581 419 11342 16537 58,10%

Tube 727 273 10034 13719 72,70%

Mich 178 322 11472 16222 35,60%

Dejong 301 199 18417 22221 60,20%

Sum / Ave. 11247 8083 369870 498111 57.8%

Table 11.2: Results the proposed line search, � = 10, � = 1:1

Proposed local Search n=10, m=1.1

Function Correct Error Iters. Fun. Calls %

Ackley 878 122 12498 63081 87,80%

Giunta 905 95 10647 71457 90,50%

Guillin 891 109 11276 69199 89,10%

Levy3 1901 990 20619 145414 95,48%

Rastrigin 1000 0 9187 56269 100,00%

Griewank 996 4 9785 69632 99,60%

Bird 910 90 11907 76377 91,00%

Levy5 1811 189 20220 31377 90,55%

Rot. Quad 908 92 10884 68136 90,80%

Holder 993 7 11739 73539 99,30%

Liang 698 301 11660 78622 69,87%

Piccioni 996 4 8914 77807 99,60%

Shekel 246 54 3407 20818 82,00%

M0 1188 812 20659 132656 59,40%

Lager 884 116 11226 71135 88,40%

Tube 1000 0 9040 60031 100,00%

Mich 355 145 12706 56807 71,00%

Dejong 484 16 17469 71877 96,80%

Sum / Ave 17044 3146 223843 1294234 88.90 %

184

Table 11.3: Results the proposed line search, � = 20, � = 1:1

Local Local Search n=20, m=1.1

Function Correct Error Iters. Fun. Calls %

Ackley 763 237 11928 100858 76,30%

Giunta 911 89 9981 120457 91,10%

Guillin 992 8 10566 115394 99,20%

Levy3 1987 13 19312 205563 99,35%

Rastrigin 973 27 8567 94587 97,30%

Griewank 908 20 9288 116712 97,84%

Bird 915 85 11145 120009 91,50%

Levy5 1949 51 19064 203544 97,45%

Rot. Quad 911 89 10260 111870 91,10%

Holder 958 42 11092 121370 95,80%

Liang 914 85 10971 113345 91,49%

Piccioni 749 251 8991 108966 74,90%

Shekel 249 51 3170 32622 83,00%

M0 1683 317 20388 224573 84,15%

Lager 939 61 10651 109857 93,90%

Tube 1000 0 8565 102273 100,00%

Mich 382 118 12543 89934 76,40%

Dejong 472 28 17070 117007 94,40%

Sum / Ave 17655 1572 213552 2208941 90,8%

Table 11.4: Results the proposed line search, � = 30, � = 1:1

Local Local Search n=30, m=1.1

Function Correct Error Iters. Fun. Calls %

Ackley 733 267 13462 46754 73,30%

Giunta 910 90 9744 171806 91,00%

Guillin 1000 0 10261 162841 100,00%

Levy3 1982 18 18675 281502 99,10%

Rastrigin 973 27 8265 135661 97,30%

Griewank 980 20 9078 166388 98,00%

Bird 916 84 10802 167742 91,60%

Levy5 1953 47 18252 279071 97,65%

Rot. Quad 909 91 9943 158114 90,90%

Holder 957 43 10828 171573 95,70%

Liang 923 76 10634 150537 92,39%

Piccioni 265 735 8597 143226 26,50%

Shekel 249 51 3066 45994 83,00%

M0 1692 308 19803 224573 84,60%

Lager 942 58 10298 153491 94,20%

Tube 1000 0 8362 146565 100,00%

Mich 397 103 11092 258622 79,40%

Dejong 473 27 16717 162302 94,60%

Sum / Ave. 17254 2045 207879 3026762 88,92 %

185

Table 11.5: Results the proposed line search, � = 10, � = 1:3

Local Local Search n=10, m=1.3

Function Correct Error Iters. Fun. Calls %

Ackley 874 126 11555 61583 87,40%

Giunta 912 95 12891 83760 90,57%

Guillin 896 109 10211 55838 89,15%

Levy3 1910 90 19882 139418 95,50%

Rastrigin 1000 0 9031 58571 100,00%

Griewank 998 2 9403 72245 99,80%

Bird 913 87 10782 78446 91,30%

Levy5 1811 189 19282 21956 90,55%

Rot. Quad 903 97 9964 69611 90,30%

Holder 995 5 10554 63490 99,50%

Liang 702 298 11782 87584 70,20%

Piccioni 997 3 9021 81703 99,70%

Shekel 250 50 3783 24281 83,33%

M0 1200 800 19826 132526 60,00%

Lager 901 99 10435 69524 90,10%

Tube 1000 0 8991 50724 100,00%

Mich 356 144 11282 55817 71,20%

Dejong 489 12 16822 53632 97,60%

Sum / Ave 17107 2206 215497 1260710,6 89,23%

Table 11.6: Results from density clustering global optimization algorithm

Backtracking + Armijo Proposed Local Search

nloc nliter funcalls nloc nliter funcalls

Ackley 6206 84678 154830 5746 63368 345122

Giunta 2399 30741 46645 1818 21133 143252

Guillin Hills 124908 2166570 3927158 111144 1269789 7909498

Levy3 23184 254416 459374 17628 188569 1362860

Rastrigin 34684 381181 659551 14600 141949 967831

Griewank 21428 240413 411082 16921 180315 1277663

Levy5 44963 520083 867921 52824 563539 3933380

Rotated 7206 91897 158144 6007 69330 444215

Holder 642 9382 17492 507 6996 42525

Bird 8780 139203 212122 8140 111726 734121

Piccioni 22619 481950 946957 13924 127377 1109969

Shekel 401 5335 13284 415 5268 36305

297420 4405849 7874560 249674 2749359 18306741

186

Table 11.7: Results from typical distance clustering global optimization algorithm

Backtracking + Armijo Proposed Local Search

nloc nliter funcalls nloc nliter funcalls

Ackley 1482 17721 105300 1253 11621 134148

Giunta 1754 22627 101070 1018 11597 114404

Guillin Hills 7833 135865 246273 6712 116422 295439

Levy3 7550 76766 491131 5811 58747 687385

Rastrigin 8655 90680 635306 5807 52862 628857

Griewank 9254 94480 578331 7975 77468 903184

Levy5 8628 94510 648951 7255 73603 935423

Rotated 4046 52795 262429 3666 43508 418137

Holder 469 8547 39160 300 5324 46395

Bird 6928 109437 476559 7266 87867 907879

Piccioni 13208 287511 1230074 11839 106798 1525484

Shekel 490 6551 44156 357 4397 50250

DeJong 51333 1896462 4443491 6787 240666 1856475

Lagermann 20697 234094 1103016 24797 281443 2453179

Tube1 max 9664392 38755168 max 8835538 84807362

Michalewicz 420440 9803089 24960763 420901 1,1E+07 59374939

562767 22595527 74121178 511744 20790077 155138940

187

Chapter 12

Stopping rules

For a broad class of global optimization problems, it can never be veri�ed in �nite time that

the global optimum is identi�ed with certainty. Therefore a need emerges for stopping

rules which decide if the expected bene�t of further searching outweighs the required

computational e�ort.

Stopping rules have to decide for the path between the Scylla of computational e�-

ciency and the Charybdis of the completeness warranty. In other words their objective

is to collect the complete set of the existent local minima with the least computational

e�ort. The ideal case would be to stop the search as soon as all the minima have been

discovered. Since this is not possible, further searching is necessary to ensure that there

are no left{out minima, a fact that inevitably leads to a compromise. So the stopping

rules, depending on the speci�c problem at hand, negotiate either for e�ciency or for a

degree of completeness.

Some of the desirable properties of stopping rules ([Boender, Rinnooy Kan and Ver-

cellis]) are:

1. Sample dependent: The actual objective function values and their location, or the

number of times that local optima are identi�ed by a local search procedure, should

be taken into account by a decision rule to terminate a search.

2. Problem dependent: Maximal use should be made of available prior information.

This information may concern, for instance, the number of local optima and the

size of the regions of attraction, or the tail of the distribution of function values.

3. Method dependent: If some general algorithmic properties of the applied method are

known, these should be incorporated in the stopping rule.

4. Loss dependent: Stopping rules should take into account the seriousness of the cost

incurred if the search is terminated before the global optimum is identi�ed.

5. Resource dependent: Evidently the computational e�ort should be kept as small as

possible.

188

The above requirements can be met by postulating an appropriate probabilistic model of

the sampling information.

12.1 Stopping rule for multistart-like algorithms

The task of locating all the local minima of a continuous function inside a box-bounded

domain, is frequently required in several scienti�c as well as practical problems. We are

interested in stochastic methods based on Multistart, a brief review of which follows.

The Multistart Algorithm

Step{0: Set i = 0 and X∗ = ∅

Step{1: Sample x at random from S

Step{2: Apply a deterministic local search procedure (LS) starting at x and concluding

at a local minimum x∗.

Step{3: Check if a new minimum is discovered

If x∗ =∈ X∗ then

increment: i← i+ 1

set: x∗i = x∗

add: X∗ ← X∗ ∪ {x∗i }
Endif

Step{4: If a stopping rule applies, STOP

Step{5: Go to Step-1

Good stopping rules (Step{5)are important and should combine reliability and economy.

A reliable rule is one that stops only when all minima have been collected with certainty.

An economical rule is one that does not waste a large number of local searches to detect

that all minima have been found. Several stopping rules have been developed in the past,

most of them based on Bayesian considerations ([166, 12, 10, 14]) and they have been

successfully used in practical applications. A review analyzing the topic of stopping rules

is given in the book by T örn and Žilinskas ([149]). We refer also to Hart ([68]) noting

however that his stopping rules aim to terminate the search as soon as possible once

the global minimum is found and they are not designed for the retrieval of all the local

minima. In this chapter we present a new stopping rule based on an a-priori hypothesis

concerning local minima. This hypothesis render the stopping criterion most suitable for

stochastic clustering global optimization methods. It would be helpful at this point to

189

state a few de�nitions and terms to be used in the rest of the article. Let w be the number

of minima of a given function, k be the number of local searches of a multistart-like (i.e.

clustering) algorithm and m be the number or recovered minima up to the k−th local

search.

12.2 Widely used Stopping Rules

If by w we denote the number of recovered local minima after having performed a number

of t local searches, then the estimate of the fraction of the uncovered space is given by

([166]):

P (w) =
w(w + 1)

t(t− 1)
: (12.1)

The corresponding rule is then:

Stop when P (w) ≤ � (12.2)

� being a small positive number. Boender et al [12] showed that the estimated number of

local minima is given by:

west =
w(t− 1)

t− w − 2
(12.3)

and the associated rule becomes:

Stop when west − w ≤
1

2
(12.4)

In another rule ([14]), the probability that all the local minima have been observed is

given by:
w∏
i=1

(
t− 1− i
t− 1 + i

)
(12.5)

leading to the rule:

Stop when
w∏
i=1

(
t− 1− i
t− 1 + i

)
> � (12.6)

� tends to 1 from below.

12.2.1 Recent Stopping rules [85]

Double-box stopping rule The covered portion of the search domain is a key element

in preventing wasteful applications of the local search procedure. A relative measure for

the region that has been covered is given by:

C =
w∑
i=1

m(Ai)

m(S)
(12.7)

where w is the number of the local minima discovered so far. The rule would then instruct

to stop further searching when C → 1.

190

The quantity m(Ai)
m(S)

is not known and generally cannot be calculated, however asymp-

totically it can be approximated by the fraction Li
L
, where Li is the number of points,

started from which, the local search led to the local minimum x∗i , and L =
∑w

i=1 Li,

is the total number of sampled points (or equivalently, the total number of local search

applications). An approximation for C may then be given by:

C ≃ C̃ =
w∑
i=1

Li

L
(12.8)

However the quantity
∑w

i=1
Li
L
is by de�nition equal to 1, and as a consequence the covered

space can not be estimated by the above procedure. To circumvent this, a larger box S2

is constructed that contains S and such that m(S2) = 2 × m(S). At every iteration, 1

point in S is collected, by sampling uniformly from S2 and rejecting points not contained

in S. Let the number of points that belong to A0 ≡ S2 − S be denoted by L0. The total

number of sampled points is then given by L = L0 +
∑w

i=1 Li and the relative coverage

may be rewritten as:

C =

∑w
i=1m(Ai)

m(S)
= 2

w∑
i=1

m(Ai)

m(S2)
(12.9)

The quantity m(Ai)
m(S2)

asymptotically is approximated by Li
L
, leading to:

C ≃ C̃ = 2
w∑
i=1

Li

L
(12.10)

After k iterations, let the accumulated number of points sampled from S2 be Mk,

k of which are contained in S. The quantity then: �k ≡ k
Mk

has an expectation value

< � >k=
1
k

∑k
i=1 �i that asymptotically, i.e. for large k, tends to

m(S)
m(S2)

= 1
2
.

The variance is given by �2
k(�) =< �2 >k − < � >2

k and tends to zero as k →∞. This

is a smoother quantity than < � >k), and hence better suited for a termination criterion.

We permit iterating without �nding new minima until �2(�) < p�2
last(�), where �last(�) is

the standard deviation at the iteration during which the most recent minimum was found,

and p ∈ (0; 1) is a parameter that controls the compromise between an exhaustive search

(p→ 0) and a search optimized for speed (p→ 1). The suggested value for general use is

p = 0:5. Hence the algorithm may be stated as :

1. Initially set � = 0.

2. Sample from S2 until a point falls in S as described above.

3. Calculate �2(�).

4. Apply an iteration of Multistart (i.e. steps 2 and 3).

5. If a new minimum is found, set: � = p�2(�) and repeat from step 2.

6. STOP if �2(�) < �, otherwise repeat from step 2.

191

The Observables Stopping Rule This scheme is based on probabilistic estimates

for the number of times each of the minima is being rediscovered by the local search.

Let L1; L2; · · · ; Lw be the number of local searches that ended{up to the local minima

x∗1; x
∗
2; · · · ; x∗w (indexed in order of their appearance). Let m(A1);m(A2); · · · ;m(Aw) be

the measures of the corresponding regions of attraction, and let m(S), be the measure

of the bounded domain S. x∗1 is discovered for the �rst time with one application of

the local search. Let n2 be the number of the subsequent applications of the local search

procedure spent, until x∗2 is discovered for the �rst time. Similarly denote by n3; n4; · · · ; nw
the incremental number of local search applications to discover x∗3; x

∗
4; · · · ; x∗w, i.e., x∗2 is

found after 1 + n2 local searches, x
∗
3 after 1 + n2 + n3, etc. n2; n3; · · · are counted during

the execution of the algorithm, i.e. they are observable quantities. Considering the above

and taking into account that we sample points using a uniform distribution, the expected

number L(w)
J of local search applications that have ended{up to x∗J at the time when the

wth minimum is discovered for the �rst time, is given by:

L(w)
J = L(w−1)

J + (nw − 1)
m(AJ)

m(S)
: (12.11)

The apriori probability that a local search procedure starting from a point sampled at

random, concludes to the local minimum x∗J is given by the ratio m(AJ)=m(S), while

the posteriori probability (observed frequency) is correspondingly given by LJ=
∑w

i=1 Li.

On the asymptotic limit the posteriori reaches the apriori probability, which implies

m(Ai)=m(Aj) = Li=Lj, which in turn permits substituting in eq. (12.11) Li in place

of m(Ai) leading to:

L(w)
J = L(w−1)

J + (nw − 1)
LJ∑w
i=1 Li

= L(w−1)
J + (nw − 1)

LJ∑w
i=1 ni

(12.12)

with n1 = 1; J ≤ w − 1 and L(w)
w = 1. Now consider that after having found w minima,

an additional number of K local searches are performed without discovering any new

minima. We denote by L(w)
J (K) the expected number of times the J th minimum is found

at that moment. One readily obtains:

L(w)
J (K) = L(w)

J (K − 1) +
LJ

K +
∑w

i=1 ni
(12.13)

with L(w)
J (0) = L(w)

J .

The quantity

E2(w;K) ≡ 1

w

w∑
J=1

(
L(w)
J (K)− LJ∑w

l=1 Ll

)2

(12.14)

tends to zero asymptotically, hence a criterion based on the variance �2(E2) may be stated

as:

192

Stop if �2(E2) < p�2
last(E2)

where �2
last(E2) is the variance of E2 calculated at the time when the last minimum

was retrieved. The value of the parameter p has the same justi�cation as in the Double

Box rule and the suggested value is again p = 0:5, although the user may choose to modify

it according to his needs.

The Expected Minimizers Stopping Rule This technique is based on estimating

the expected number of existing minima of the objective function in the speci�ed domain.

The search stops when the number of recovered minima, matches this estimate. Note

that the estimate is updated iteratively as the algorithm proceeds. Let P l
m denote the

probability that after m draws, l minima have been discovered. Here by \draw" we mean

the application of a local search, initiated from a point sampled from the uniform distri-

bution. Let also �k denote the probability that with a single draw the minimum located

at x∗k is found. This probability is apriori equal to �k =
m(Ak)

m(S)
. The P l

m probability can

be recursively calculated by:

P l
m =

(
1−

l−1∑
i=1

�i

)
P l−1
m−1 +

(
l∑

i=1

�i

)
P l
m−1 (12.15)

Note that P 0
1 = 0; and P 1

1 = 1. Also P l
m = 0 if l > m, P 0

m = 0; ∀m ≥ 1. The rational for

the derivation of eq. (12.15) is as follows. The probability that at the mth draw l minima

are recovered, is connected with the probabilities at the level of the (m− 1)th draw, that

either l − 1 minima are found (and the lth is found at the next, i.e. the mth, draw) or l

minima are found (and no new minimum is found at the mth draw). The quantity
∑l

i=1 �i
is the probability that one of the l minima is found in a single draw, likewise the quantity

1 −
∑l−1

i=1 �i is the probability that none of the l − 1 minima is found in a single draw.

Combining these observations the recursion above is readily veri�ed. Since P l
m denote

probabilities they ought obey the closure:

m∑
l=1

P l
m = 1: (12.16)

To prove the above let us de�ne the quantity sl =
∑l

i=1 �i. Perform a summation over l

on both sides of eq. (12.15) and obtain:

m∑
l=1

P l
m =

m∑
l=1

P l−1
m−1 −

m∑
l=1

sl−1P
l−1
m−1 +

m∑
l=1

slP
l
m−1 (12.17)

Note that since P 0
m−1 = 0 and Pm

m−1 = 0 the last two sums in eq. (12.17) cancel, and

hence we get:
∑m

l=1 P
l
m =

∑m−1
l=1 P l

m−1. This step can be repeated to show that

m∑
l=1

P l
m =

m−1∑
l=1

P l
m−1 = : : : =

m−k∑
l=1

P l
m−k =

1∑
l=1

P l
1 = P 1

1 = 1

193

The expected number of minima after m draws is then given by:

< L >m≡
m∑
l=1

lP l
m

and its variance by:

�2(L)m =
m∑
l=1

l2P l
m −

(
m∑
l=1

lP l
m

)2

(12.18)

The quantities �i are unknown apriori and need to be estimated. Naturally the estimation

will improve as the number of draws grows. A plausible estimate �(m)
i for approximating

�i after m draws, may be given by:

�(m)
i ≡ L(m)

i

m
→ m(Ai)

m(S)
= �i (12.19)

where L(m)
i is the number of times the minimizer x∗i is found after m draws. Hence eq.

(12.15) is modi�ed and reads:

P l
m =

(
1−

l−1∑
i=1

�(m−1)
i

)
P l−1
m−1 +

(
l∑

i=1

�(m−1)
i

)
P l
m−1 (12.20)

The expectation < L >m tends to w asymptotically. Hence a criterion based on the

variance �2(L)m, that asymptotically tends to zero, may be proper. Consequently, the

rule may be stated as:

Stop if �2(L)m < p�2(L)last,

where again �2(L)last is the variance at the time when the last minimum was found

and the parameter p is used in the same manner as before. The suggested value for p is

again p = 0:5.

12.3 Proposed stopping rule idea

Suppose that one can calculate theoretically the relation between the number of recovered

minima m and the number of local searches k for a problem that has w distinct local

minima. Suppose that this is a relation of the sort

N ≡ N (k)(w); N → w as k →∞ (12.21)

Imagine now that one applies multistart-based algorithm and plots the number of recov-

ered minima versus the number of local searches.

One then at the k0-th local search, may compare the experimental curve with the

theoretical one and �nd which w is the one that produces the best match. If this is

possible then at k0-th local search we will now the number of expected local minima and

hence a very e�cient stopping rule may emerge.

194

12.3.1 Setting up the problem

Initially we will consider the multistart process. Then the results will generalize with

any multistart-like global optimization algorithm. A point is sampled from a uniform

distribution and a local search follows that concludes to a local minimum. We model this

problem of trying to collect all the local minima inside e region with the following one:

Consider a box containing w di�erent balls. The balls are numbered sequentially

1; 2; 3; : : : ; w. We pick a ball at random examine its number, and we put it back in

the box. This is one iteration1. If the ball number has not been drawn previously we

update the distinct ball count m, otherwise we don't.

This problem is direct analogy to our original one. Suppose that at iteration k, the

probability that m balls (minima) are found is denoted by p(k)m . Then the expected

number of distinct balls is given by:

< N >(k)=
k∑
i=1

i · p(k)i = p(k)1 + 2p(k)2 + · · ·+ kp(k)k (12.22)

Naturally p(k)i depends on w (the number of balls) and hence so will < N >(k).

The rule to estimate the expected number of balls then would be

min
w

k1∑
k=k0

(
N (k)
exp −N (k)

w

)2 → w∗ (12.23)

It remains to �nd a way to calculate p(k)i .

12.3.2 Calculation of probabilities p
(k)
i

We will now switch to the original global optimization problem and try to develop a

recursion for the calculation of p(k)i . The most obvious relation would be:

p(k+1)
i = �p(k)i + �p(k)i−1 (12.24)

The above translates as: The probability that at the (k + 1)−th local search i minima

are recovered is related to

• the probability that in the previous iteration (k−th), i minima were already re-

covered and in the (k + 1)−th no new minimum is found (this is with probability

�),

• the probability that in the k−th iteration (i − 1) minima were found and in the

(k + 1)−th iteration one more minimum (new) is found (with probability �).

1Local search in global optimization framework

195

The task of calculating p(k)i is now reduced to the task of de�ning the probabilities �

and �. The most simple and straightforward way is to make the following assumption.

The probability of locating a local minimum, among the w distinct ones, by applying

a local search is p = 1
w
.

or in more simple words

All minima are retrieved (by applying a local search) with uniform probability.

The above assumption although it seems irrational in the multistart framework, it

makes sense in the concept of stochastic clustering algorithms were we (optimally) aim

to perform one local search per minimum.

Using then the uniform assumption we derive the following probabilities:

• � = i
w

• � = w−(i−1)
w

12.3.3 An illustration of the criterion

We will present a simple run of the multistart algorithm involving our stopping criterion

to show how the expected number of minima found coincides to the real number of distinct

minima found. We use the Ackley'a function with 121 minima for this illustration. The

expected number of minima found is calculated every nchunk = 100 iterations. Every nchunk
iterations, we calculate the mean square error of the real number of distinct minima found

at the i-th iteration vs. the expected number of minima. That is

dMSE =
1

iter

iter∑
i=0

(
< N (i) > −N (i)

found

)2
The iterations are shown in Table 12.1:

An illustration of the above is shown in Figure 12.1. Real number of minima is

plotted using the continuous line and the expected number of minima using the dotted

line. Observe that at the 800-th an 900-th iteration the two curves begin to �t perfectly.

12.4 Experimental evaluation

In order to test the e�ciency of our proposed stopping criterion we have test it against

three well established rules: Zielninksi's rule presented in Equation 12.2, Rinnoy-Kan rule

in Equation 12.4 and Tsoulos-Lagaris double box rule.

All rules were implemented in Matlab and tested in a simple multistart framework. We

expect better behavior when the proposed stopping rule would be included in a method

that tries to equalize the probabilities of �nding a minimum such as Min�nder or Adapt.

The rules were tested using their default parameters,

196

Table 12.1: The MSE of the expected number of minima vs. the real minima found and

its variance

Iteration Minima Found MSE Variance

100 64 78.949828 205.044716

200 94 72.086818 3 6.688531

300 110 52.139962 9.248131

400 116 28.281410 2.063600

500 119 10.676961 0.443810

600 121 9.770836 0.095597

700 121 5.789973 0.018181

800 121 2.525016 0.003458

900 121 1.101163 0.000658

Figure 12.1: Illustration of the approximation of the expected number to the real number

of minima

0 20 40 60 80 100
0

10

20

30

40

50

60

70

(a) Iter 100

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

(b) Iter 200

0 50 100 150 200 250 300
0

20

40

60

80

100

120

(c) Iter 300

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

(d) Iter 400

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

(e) Iter 800

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

140

(f) Iter 900

The test-best consists of 18 highly multimodal test functions that are commonly used in

the bibliography. Each, experiment was conducted twenty times and the mean numbers of

local minima, of local searches and total function calls is reported. First order derivatives

are employed and are included in the total function call counter. The results are reported

in Table 12.2. It is clear from the results that for the function with uniformly distributed

minima of equal regions of attraction (Ackley, Rastrigin, Griewank, Tube, Holder, Piccioni

etc.) our stopping rule is superior, since it performs the minimum number of local searches.

197

On the other hand, from the results of Rastrigin and Griewank, it is also obvious that

the proposed stopping rule depends solely on the distribution and the number of local

minima. Since the number of minima was almost equal for these functions and they are

distributed uniformly in the search space, our stopping rule reached exactly 1500 local

searches for both cases.

198

T
ab
le
12
.2
:
S
to
p
p
in
g
ru
le
re
su
lt
s

F
u
n
ct
io
n

Z
ie
li
n
sk
i

R
in
n
oy
-K

an
T
so
u
lo
s-
L
ag
ar
is

P
ro
p
os
ed

R
as
tr
ig
in
(1
21
)

12
1

38
43

66
86
3

12
1

14
88
6

25
44
12

12
1

21
29

36
90
3

12
1

15
00

25
90
5

A
ck
le
y
(4
9)

49
15
66

42
49
8

49
25
02

67
68
6

48
.6

10
79

29
08
1

48
.6

61
5

16
45
7

G
ri
ew

an
k
(1
23
)

12
3

39
06

66
43
6

12
3

15
37
8

26
18
01

12
3

18
42

31
41
4

12
3

15
00

25
74
2

L
ev
y
3(
13
0)

13
0

41
28

79
33
0

13
0

17
16
3

32
99
56

13
0

20
78

40
04
3

13
0

16
05

30
87
7

L
ev
y
5(
13
0)

13
0

41
28

92
64
2

13
0

17
16
3

38
32
16

13
0

22
06

49
07
5

13
0

16
05

35
71
8

L
ag
er
m
an
n
(6
4)

63
.8

20
35

39
80
7

64
42
27

82
40
1

63
.9
5

28
59

55
80
3

62
.8

84
5

16
60
7

R
-G

au
ss
ia
n
s(
94
)

92
.6
5

29
47

78
02
3

93
.2

88
75
.8

23
50
69

92
.6

45
03

11
90
98

91
.6
5

11
85

31
34
0

G
iu
n
ta
(3
6)

36
11
55

17
00
7

36
13
71

20
20
8

35
.9
5

43
2

64
05

36
50
0

73
24

G
u
il
li
n
H
il
ls

30
3.
45

96
12

19
08
30

36
9.
9

20
00
0

39
68
69

37
1

20
00
0

39
69
51

36
9.
7

20
00
0

39
69
51

M
0(
15
2)

15
1.
45

48
06

71
88
5

15
4.
45

20
00
0

29
96
74

15
2.
55

11
26
5

16
87
60

15
2

19
20

28
98
9

M
5(
44
1)

44
0.
9

13
95
9

12
15
76
3

44
0.
85

20
00
0

17
42
05
2

44
0.
85

18
62
3

16
21
51
8

43
9

58
00

50
50
57

S
h
ek
el
(1
0)

10
33
3

10
18
3

10
12
3

37
76

10
15
8.
2

48
08
,2
5

10
20
0a

60
64

B
ir
d
(2
5)

24
.9
5

80
5

22
76
4

24
.8

66
8

19
01
9

22
.8

65
9

18
63
9

24
.8
5

42
0

12
02
5

T
u
b
e1
(4
5)

45
14
40

18
45
7

45
21
18

27
14
0

45
48
3

61
74

45
60
0

78
63

D
ej
on
g(
64
)

62
.6
5

19
97

10
31
42

63
40
99

21
19
41

62
.2

11
34

58
70
1

63
80
0

41
50
8

H
ol
d
er
(1
80
)

18
0

57
09

11
17
33

18
0

20
00
0

39
14
59

18
0

28
81

56
35
7

18
0

23
00

45
05
2

P
ic
ci
on
i(
37
)

37
11
87

25
79
2

37
14
46

31
47
2

37
10
36

22
45
7

37
52
0

10
99
7

a
T
h
e
m
in
im
u
m

n
u
m
b
er

of
lo
ca
l
se
ar
ch
ed

n
ee
d
ed

to
st
ar
t
ev
al
u
at
e
ou
r
st
op
p
in
g
ru
le

199

Chapter 13

Appendix - Test Functions

13.1 Ackley's test function ([1])

The number of existing minima in [−5; 5]2 is 121.

f(x) = −�e−b
√

1
n

∑n
i=1 x

2
i − e

1
n

∑n
i=1 cos(cxi) − �e1

gi(x) =
@f(x)

@xi
=
� b xi e

−b
√

1
n

∑n
i=1 x

2
i

n
√

1
n

∑n
i=1 x

2
i

+
c sin(cxi)e

1
n

∑n
i=1 cos(cxi)

n

13.2 Bird's test function ([104])

This function has 173 minima in [−50; 50]2.

f(x1; x2) = sin(x1) e
(1−cos(x2))2 + cos(x2) e

(1−sin(x1))2 + (x(1)− x(2))2

g1(x) =
@f(x)

@x1
= cos(x1) e

(1−cos(x2))2 − 2cos(x2)(1− sin(x1))cos(x1)e(1−sin(x1))
2

+ 2(x1 − x2)

g2(x) =
@f(x)

@x2
= 2sin(x1)(1− cos(x2))sin(x2)e(1−cos(x2))

2 − sin(x2)e(1−sin(x1))
2 − 2(x1 − x2)

13.3 Bohachevsky 's test function ([15])

This function has 25 minima in [−10; 10]2

f(x1; x2) = x21 + 2x22 − 0:3 cos(3�x1)− 0:4 cos(4�x2) + 0:7

g1(x) =
@f(x)

@x1
= 2x1 +

9 �

10
sin(3 �x1)

g2(x) =
@f(x)

@x2
= 4x2 +

8 �

5
sin4 �x2

200

(g) Surface plot (h) Contour plot

Figure 13.1: Ackley's test function

(a) Surface plot (b) Contour plot

Figure 13.2: Birds's test function

(a) Surface plot (b) Contour plot

Figure 13.3: Bohachevsky's test function

201

13.4 Carrom table test function ([104])

This function has 169 minima in [−5; 5]2

f(x1; x2) = −
1

30

cosx1 cos x2 e

1−
(x21+x22)

0:5

�

2

g1(x) =
@f(x)

@x1
=

cos x1 cos
2 x2

15

sin x1 e

1−
(x21+x22)

0:5

�

2

+
cosx1 e

1−
(x12+x22)

0:5

�

2

� x1
√
x21 + x22

g2(x) =
@f(x)

@x2
=

cos x2 cos
2 x1

15

sin x2 e

1−
(x21+x22)

0:5

�

2

+
cosx2 e

1−
(x12+x22)

0:5

�

2

� x2
√
x21 + x22

13.5 Giunta's test function ([54])

This test function has 196 minima inside [−20; 20]2.

f(x1; x2) = 0:6 + sin y1 + sin2 y1 +
1

50
sin 4y1 + sin y2 + sin2 y2 +

1

50
sin 4y2

where y1 =
16

15
x1 − 1 and y2 =

16

15
x2 − 1.

g1(x) =
@f(x)

@x1
=

16

15
cos y1 +

32

15
sin y1 cos y1 +

32

375
cos 4y1

g2(x) =
@f(x)

@x2
=

16

15
cos y2 +

32

15
sin y2 cos y2 +

32

375
cos 4y2

where y1 =
16

15
x1 − 1 and y2 =

16

15
x2 − 1.

13.6 Griewank's test function ([63])

This function has 529 minima inside [−100; 100]2.

f(x) =
1

200

n∑
i=0

x2i −
n∏
i=1

cos
xi√
i
+ 1

gi(x) =
@f(x)

@x1
=

2 xi
4000

+
1√
i
sin

(
xi√
i

) n∏
k=1;k ̸=i

cos
xk√
k

202

(a) Surface plot (b) Contour plot

Figure 13.4: Carrom table test function

(a) Surface plot (b) Contour plot

Figure 13.5: Giunta's test function

(a) Surface plot (b) Contour plot

Figure 13.6: Griewanks's test function

203

13.7 Guillin Hills's test function ([151])

This test function possesses 25 minima inside [0; 1]2.

f(x) = 3 +
n∑
i=1

ci(xi + 9)

xi + 10
sin

(
�

1− xi + 1
2k

)
where ci = 2; i = 1; : : : ; n and k = 5.

gi(x) =
@f(x)

@xi
=

ci
xi + 10

sin

(
�

1− xi + 1
2k

)
− ci(xi + 9)

(xi + 10)2
sin

(
�

1− xi + 1
2k

)
+

ci(xi + 9)

xi + 10

�(
1− xi + 1

2k

)2 cos(�

1− xi + 1
2k

)
where ci = 2; i = 1; : : : ; n and k = 5.

13.8 Holder test function ([104])

This function has 85 minima inside [−20; 20]2.

f(x1; x2) = − cosx1 cosx2e
1−

√
x21+x

2
2

�

g1(x) =
@f(x)

@x1
= sin x1 cosx2 e

1−

√
x21+x

2
2

�

+ cos x1 cosx2
x1e

1−

√
x21+x

2
2

�

�
√
x21 + x22

g2(x) =
@f(x)

@x2
= cos x1 sinx2 e

1−

√
x21+x

2
2

�

+ cos x1 cosx2
x2e

1−

√
x21+x

2
2

�

�
√
x21 + x22

13.9 Langermanns's test function ([122])

This test function has 270 minima inside [0; 7]2.

f(xi) =
5∑

k=0

cke
�k cos�k

204

(a) Surface plot (b) Contour plot

Figure 13.7: Guillin Hills test function

(a) Surface plot (b) Contour plot

Figure 13.8: Holder-like test function

205

In current implementation a = (3; 5; 2; 1; 7)T , c = (1; 2; 5; 2; 3)T

gi(x) =
@f(x)

@xi
=

5∑
k=0

(
−2ck(xi − ak)

�
e�k cos�k − 2ci�(xi − ak) e�k sin�k

)

where �k =
n∑
i=1

−(xi − ak)2

�
and �k =

n∑
i=1

�(xi − ak)2.

13.10 Levy's 3rd test function ([88])

This test function has 527 minima inside [−10; 10]2.

f(x1; x2) =
5∑

k=1

k cos ((k − 1)x1 + k)
5∑

k=1

k cos ((k + 1)x2 + k)

g1(x) =
@f(x)

@x1
=

5∑
k=1

−k(k − 1) sin ((k − 1)x1 + k)
5∑

k=1

k cos ((k + 1)x2 + k)

g2(x) =
@f(x)

@x2
=

5∑
k=1

−k(k + 1) sin ((k + 1)x2 + k)
5∑

k=1

k cos ((k − 1)x1 + k)

13.11 Levy's 5th test function ([88])

This test function has 508 minima inside [−10; 10]2.

f(x1; x2) = fLevy3(x1; x2) + (x1 + 1:42513)2 + (x2 + 0:80032)2

g1(x) =
@f(x)

@x1
=

@fLevy3(x)

@x1
+ 2(x1 + 1:42513)

g2(x) =
@f(x)

@x2
=

@fLevy3(x)

@x2
+ 2(x2 + 0:80032)

13.12 Liang's test function [90]

This test function has 236 local minima inside [1; 4]2.

f(x1; x2) = − (x1 sin(20x2) + x2 sin(20x1))
2 cosh (sin(10x1)x1)

− (x1 cos(20x2)− x2 sin(10x1))2 cosh (cos(10x2)x2)

206

(a) Surface plot (b) Contour plot

Figure 13.9: Lagermanns's test function

(a) Surface plot (b) Contour plot

Figure 13.10: Levy's No 3 test function

(a) Surface plot (b) Contour plot

Figure 13.11: Levy's No 5 test function

207

g1(x) =
@f(x)

@x1
= −2(x1 sin(20x2) + x2 sin(20x1)) cosh(sin(10x1)x1) (sin(20x2) + 20x2 cos(20x1))

− (x1 sin(20x2) + x2 sin(20x1))
2 sinh(sin(10x1)x1)(10 cos(10x1)x1 + sin(10x1))

− 2(x1 cos(10x2)− x2 sin(10x1)) cosh(cos(20x2)x2)(cos(10x2)− 10x2 cos(10x2))

g2(x) =
@f(x)

@x2
= −2(x1 sin(20x2) + x2 sin(20x1)) cosh(sin(10x1)x1)(20x1 cos(20x2) + sin(20x1))

− 2(x1 cos(10x2)− x2 sin(10x1)) cosh(cos(20x2)x2)(−10x1sin(10x2)− sin(10x1))
− (x1 cos(10x2)− x2 sin(10x1))2 sinh(cos(20x2)x2)(−20 sin(20x2)x2 + cos(20x2))

13.13 Piccioni's test function ([94])

This test function has 28 minima inside [−5; 5]2.

f(x) = −10 sin(�x1)2 −
n−1∑
i=1

(xi − 1)2(1 + 10 sin(�xi+1))− (xn − 1)2

g1(x) =
@f(x)

@x1
= −20� sin(�x1) cos(�x1)− 2(x1 − 1)

gi(x) =
@f(x)

@xi
= −2(xi − 1)(1 + 10 sin(�xi+1))− (xi−1 − 1)210� cos(�xi); i = 2 : : : n− 2

gn(x) =
@f(x)

@xn
= −(xn−1 − 1)210� cos(�xn)− 2(xn − 1)

13.14 Rastrigin's test function ([130])

This test function has 49 minima inside [−1; 1]2.

f(x) = 10n+
n∑
i=1

(
x2i − 10 cos(2�xi)

)
gi(x) =

@f(x)

@xi
=
@f(x)

@xi
= 2xi + 20� sin(2�xi)

13.15 Voglis's Test Function

This test function has 61 minima inside [−25; 25]2.

f(x) = �0

(
1

2
xTQ0x+ xTd0

)
+

80∑
i=1

�ke
− 1

2
xTQkx+x

T dk

208

(a) Surface plot (b) Contour plot

Figure 13.12: Liangs's test function

(a) Surface plot (b) Contour plot

Figure 13.13: Piccioni's test function

(a) Surface plot (b) Contour plot

Figure 13.14: Rastrigin's test function

209

gi(x) =
@f(x)

xi
= �0 (Q0x+ d0) +

80∑
i=1

�k (−Qkx+ dk) e
− 1

2
xTQkx+x

T dk

Function dimension n = 2, Qj speci�c positive de�nite 2x2 matrices, dj 2-dimensional

vectors and �j appropriate scaling constants.

13.16 Scha�er's Test Function ([104])

This test function has 95 minima inside [−3; 3]2.

f(x1; x2) = 0:5 +
sin(x21 + x22)

2 − 0:5

(1 + 0:001(x21 + x22))
2 + 0:1 sin(10x1) + 0:1 sin(10x2)

g1(x) =
@f(x)

@x1
= 4x1

sin(x21 + x22) cos(x
2
1 + x22)

(1 + 0:001x21 + 0:001x22)
2
− 0:004x1

sin(x21 + x22)
2 − 0:5

(1 + 0:001x21 + 0:001x22)
3

g2(x) =
@f(x)

@x2
= 4x2

sin(x21 + x22) cos(x
2
1 + x22)

(1 + 0:001x21 + 0:001x22)
2
− 0:004x2

sin(x21 + x22)
2 − 0:5

(1 + 0:001x21 + 0:001x22)
3

13.17 Shubert's Test Function ([142])

This test function has 400 minima inside [−10; 10]2.

f(x) = −
n∑
i=1

5∑
j=1

j sin((j + 1)xi + j)

gi(x) =
@f(x)

@xi
= −

5∑
j=1

j(j + 1) cos((j + 1)xi + j)

13.18 M0 Test Function ([142])

This test function has 66 minima inside [−5; 1]2.

f(x) = sin(2:2�x1 +
�

2
)
2− x2

2

3− x1
2

+ sin(
�

2
x22 +

�

2
)
2− x2

2

3− x1
2

gi(x) =
@f(x)

@xi
= −

5∑
j=1

j(j + 1) cos((j + 1)xi + j)

210

(a) Surface plot (b) Contour plot

Figure 13.15: Voglis 's test function

(a) Surface plot (b) Contour plot

Figure 13.16: Scha�er's test function

(a) Surface plot (b) Contour plot

Figure 13.17: Shubert's test function

211

13.19 M3 Test Function ([142])

This test function has 26 minima inside [−2; 2]2.

f(x) = −(x22 − 4:5x22)x1x2 − 4:7 cos(3x1 − x22(2 + x1)) sin(2:5� ∗ x1) + (0:3 ∗ x1)2

gi(x) =
@f(x)

@xi
= −

5∑
j=1

j(j + 1) cos((j + 1)xi + j)

13.20 Siam Problem 4 Function ([143])

This test function has 600 minima inside [−1; 1]2.

f(x) = exp(sin(x1))+sin(60 exp(x2))+sin(70 sin(x1))+sin(sin(80x2))−sin(10(x1+x2))+
x21 + x22

4
;

gi(x) =
@f(x)

@xi
= −

5∑
j=1

j(j + 1) cos((j + 1)xi + j)

212

(a) Surface plot (b) Contour plot

Figure 13.18: M0 test function

(a) Surface plot (b) Contour plot

Figure 13.19: M3 test function

(a) Surface plot (b) Contour plot

Figure 13.20: Siam Problem 4 test function

213

Bibliography

[1] D.H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic

Publishers, 1987.

[2] M. Al-Baali and R. Fletcher. An e�cient line search for nonlinear least squares.

Journal of Optimization Theory and Applications, 48(3):359{377, 1986.

[3] MM Ali and C. Storey. Topographical multilevel single linkage. Journal of Global

Optimization, 5(4):349{358, 1994.

[4] T. B�ack. Evolutionary algorithms in theory and practice. Oxford University Press

New York, 1996.

[5] M.S. Bazaraa, H.D. Sherali, and CM Shetty. Nonlinear programming: theory and

algorithms. Wiley-Interscience, 2006.

[6] RW Becker and GV Lago. A global optimization algorithm. In Proceedings of the

8th Allerton Conference on Circuits and Systems Theory, pages 3{12, 1970.

[7] D.P. Bertsekas. Constrained Optimization and Lagrange Multipliers. Academic

Press, 1982.

[8] D.P. Bertsekas. Nonlinear programming. 1995.

[9] D. Bertsimas, C. Darnell, and R. Soucy. Portfolio construction through mixed-

integer programming at Grantham, Mayo, Van Otterloo and Company. Interfaces,

pages 49{66, 1999.

[10] B. Betro and F. Schoen. Optimal and sub-optimal stopping rules for the Multistart

algorithm in global optimization. Mathematical Programming, 57(1):445{458, 1992.

[11] A. Bjorck and G. Dahlquist. Numerical methods. Prentice Hall Professional Tech-

nical Reference, 1990.

[12] C.G.E. Boender and A.H.G. Rinnooy Kan. Bayesian stopping rules for multistart

global optimization methods. Mathematical Programming, 37(1):59{80, 1987.

[13] CGE Boender, AHG Rinnooy Kan, GT Timmer, and L. Stougie. A stochastic

method for global optimization. Mathematical programming, 22(1):125{140, 1982.

214

[14] C.G.E. Boender and H.E. Romeijn. Stochastic methods. Handbook of global opti-

mization, pages 829{869, 1995.

[15] I.O. Bohachevsky, M.E. Johnson, and M.L. Stein. Generalized simulated annealing

for function optimization. Technometrics, pages 209{217, 1986.

[16] Schutte J. F. Bolton, H. P. J. and Groenwold A. A. Multiple Parallel Local Searches

in Global Optimization. Mathematical Programming, 1908:88{95, 2000.

[17] P. Brachetti, M. De Felice Ciccoli, G. Di Pillo, and S. Lucidi. A new version

of the Price's algorithm for global optimization. Journal of Global Optimization,

10(2):165{184, 1997.

[18] S. Breedveld, P.R.M. Storchi, M. Keijzer, and B.J.M. Heijmen. Fast, multiple

optimizations of quadratic dose objective functions in IMRT. Physics in Medicine

and Biology, 51(14):3569{3580, 2006.

[19] R.P. Brent. Algorithms for Minimization Without Derivatives. Prentice Hall, 1973.

[20] CG Broyden. The convergence of a class of double-rank minimization algorithms 1.

general considerations. IMA Journal of Applied Mathematics, 6(1):76{90, 1970.

[21] H.M. Bucker, A. Rasch, and A. Vehreschild. Automatic generation of parallel code

for Hessian computations. Lecture Notes in Computer Science, 4315:372, 2008.

[22] U. Burkert and N.L. Allinger. Molecular mechanics. An American Chemical Society

Publication, 1982.

[23] D.R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman Pub-

lishing Co., 1997.

[24] Dutta P. Bandyopadhyay P. Sarkar P. Chaudhury, P. and S.P. Bhattacharyya. A

random walk to local minima and saddle points on a potential energy surface. a

strategy based on simulated annealing. Chemical Physics Letters, 1996.

[25] M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and convergence

in amultidimensional complex space. IEEE transactions on Evolutionary Compu-

tation, 6(1):58{73, 2002.

[26] T.F. Coleman and J. Liu. An interior Newton method for quadratic programming.

Mathematical Programming, 85(3):491{523, 1999.

[27] A.R. Conn and N.I.M. Gould. Trust-region methods. Society for Industrial Mathe-

matics, 2000.

[28] A.R. Conn, N.I.M. Gould, and P.L. Toint. LANCELOT: a Fortran package for

large-scale nonlinear optimization (Release A). Springer, 1992.

215

[29] M. D Apuzzo, M. Marino, P.M. Pardalos, and G. Toraldo. A parallel implementa-

tion of a potential reduction algorithm for box-constrained quadratic programming.

Lecture notes in computer science, pages 839{848, 2000.

[30] L. Dagum, R. Menon, and S.G. Inc. OpenMP: an industry standard API for shared-

memory programming. IEEE Computational Science & Engineering, 5(1):46{55,

1998.

[31] W.C. Davidon. Variable Metric Method For Minimization. Technical report, ANL-

5990, Argonne National Lab., Lemont, Ill., 1959.

[32] L. Davis et al. Handbook of genetic algorithms. Van nostrand reinhold New York,

1991.

[33] Weintraub H.J.R. Demeter, D.A. and J.J. Knittel. The local minima method (lmm)

of pharmacophore determination: A protocol for predicting the bioactive conforma-

tion of small, conformationally exible molecules. Journal of Chemical Information

and Computer Sciences, 1996.

[34] J.E. Dennis and H.H.W. Mei. Two new unconstrained optimization algorithms

which use function and gradient values. Journal of Optimization Theory and Ap-

plications, 28(4):453{482, 1979.

[35] J.E. Dennis, R.B. Schnabel, and J.E. Dennis. Numerical methods for unconstrained

optimization and nonlinear equations. Prentice-Hall Englewood Cli�s, NJ, 1983.

[36] R.A. Ding, Z.; Kennedy. On the whereabouts of local minima for blind adaptive

equalizers. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, 1992.

[37] LCW Dixon and M. Jha. Parallel algorithms for global optimization. Journal of

Optimization Theory and Applications, 79(2):385{395, 1993.

[38] RC Eberhart and Y. Shi. Comparing inertia weights and constriction factors in

particleswarm optimization. In Evolutionary Computation, 2000. Proceedings of

the 2000 Congress on, volume 1, 2000.

[39] R. Fletcher. A new approach to variable metric algorithms. The Computer Journal,

13(3):317{322, 1970.

[40] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, Second Edition,

1987.

[41] R. Fletcher and M.J.D. Powell. A rapidly convergent descent method for minimiza-

tion. The Computer Journal, 6(2):163, 1963.

216

[42] R. Fletcher and CM Reeves. Function minimization by conjugate gradients. The

computer journal, 7(2):149{154, 1964.

[43] R. Fletcher and C. Xu. Hybrid methods for nonlinear least squares. IMA Journal

of Numerical Analysis, 7(3):371{389, 1987.

[44] C.A. Floudas. Deterministic global optimization: theory, methods and applications.

Kluwer Academic Pub, 2000.

[45] C.A. Floudas and P.M. Pardalos. A collection of test problems for constrained global

optimization algorithms. Springer, 1990.

[46] C.A. Floudas and P.M. Pardalos. Optimization in computational chemistry and

molecular biology: local and global approaches. Kluwer Academic Pub, 2000.

[47] D.B. Fogel. Evolutionary computation: toward a new philosophy of machine intel-

ligence. Wiley-IEEE Press, 2006.

[48] Message Passing Interface Forum. MPI: A message-passing interface standard. In-

ternational Journal of Supercomputer Applications, 8:159{416, 1994.

[49] A. Friedlander and J.M. Mart��nez. On the maximization of a concave quadratic

function with box constraints. SIAM Journal on Optimization, 4:177, 1994.

[50] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi.

GNU scienti�c library. Network Theory Ltd., 2002.

[51] P. Gilbert and Varadhan R. The numderiv package. http://cran.r-

project.org/web/packages/numDeriv/, 2006.

[52] P.E. Gill and W. Murray. Newton-type methods for unconstrained and linearly

constrained optimization. Mathematical Programming, 7(1):311{350, 1974.

[53] P.E. Gill, W. Murray, and M.H. Wright. Practical optimization. Academic Press

San Diego, 1981.

[54] A.A. Giunta. Aircraft multidisciplinary design optimization using design of exper-

iments theory and response surface modeling methods. PhD thesis, virginia poly-

technic institute and state university, 1997.

[55] D.E. Goldberg. Genetic algorithms in search, optimization and machine learning.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1989.

[56] D. Goldfarb. A family of variable-metric methods derived by variational means.

Mathematics of Computation, pages 23{26, 1970.

[57] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly

convex quadratic programs. Mathematical Programming, 27(1):1{33, 1983.

217

[58] S.M. Goldfeld, R.E. Quandt, and H.F. Trotter. Maximization by quadratic hill-

climbing. Econometrica: Journal of the Econometric Society, pages 541{551, 1966.

[59] A.A. Goldstein. On steepest descent. J. Soc. Ind. Appl. Math., Ser. A: Control,

3:147{151, 1965.

[60] J. Greenstadt. On the relative e�ciencies of gradient methods. Mathematics of

Computation, pages 360{367, 1967.

[61] A. Griewank and G.F. Corliss. Automatic Di�erentiation of Algorithms: Theory.

Implementation, and Application, SIAM, Philadelphia, Penn, 1991.

[62] Andreas Griewank and George F. Corliss, editors. Automatic Di�erentiation of

Algorithms: Theory, Implementation, and Application. SIAM, 1991.

[63] AO Griewank. Generalized descent for global optimization. Journal of optimization

theory and applications, 34(1):11{39, 1981.

[64] S.R. Gunn. Support vector machines for classi�cation and regression. ISIS technical

report, 14, 1998.

[65] PE Hadjidoukas. A Lightweight Framework for Executing Task Parallelism on Top

of MPI. Lecture notes in computer science, pages 287{294, 2004.

[66] C.G. Han, P.M. Pardalos, and Y. Ye. Computational aspects of an interior point

algorithm for quadratic programming problems with box constraints. Large-Scale

Numerical Optimization, pages 92{112, 1990.

[67] W.E. Hart. Adaptive global optimization with local search. PhD thesis, UNIVER-

SITY OF CALIFORNIA, SAN DIEGO, 1994.

[68] W.E. Hart. Sequential stopping rules for random optimization methods with ap-

plications to multistart local search. Siam Journal on Optimization, 9:270{290,

1998.

[69] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear

systems. J. Res. Nat. Bur. Stand, 49(6):409{436, 1952.

[70] D.M. Himmelblau. Applied Nonlinear Programming. McGraw-Hill Companies, 1972.

[71] J.H. Holland. Adaptation in natural and arti�cial systems. MIT Press Cambridge,

MA, USA, 1992.

[72] R. Hooke and TA Jeeves. Direct Search Solution of Numerical and Statistical Prob-

lems. Journal of the ACM (JACM), 8(2):212{229, 1961.

[73] R. Horst and H. Tuy. Global optimization: Deterministic approaches. Springer,

1996.

218

[74] Voessner S. Iglehart, D. L. Optimization of a trading system using global search

techniques and local optimization. Journal of Computational Intelligence in Fi-

nance.

[75] M. IMSL. LIBRARY User's Manual. FORTRAN Subroutines for Mathematical

Applications, IMSL Inc., Houston TX, 1991.

[76] F. Jensen. Introduction to Computational Chemistry. John Wiley & Sons, 2006.

[77] Aaron Masino Justin D. Mansell1 and Brian Henderson. Study of local minima in

metric adaptive optics. Active Optical Systems, 2004.

[78] C.T. Kelley. Iterative methods for optimization. Society for Industrial Mathematics,

1999.

[79] I.R. Khan and R. Ohba. New �nite di�erence formulas for numerical di�erentiation.

Journal of Computational and Applied Mathematics, 126(1-2):269{276, 2000.

[80] K. Kunisch and F. Rendl. An Infeasible Active Set Method for Quadratic Problems

with Simple Bounds. SIAM Journal on Optimization, 14:35, 2003.

[81] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Arti�cial neural network methods in

quantum mechanics. Computer Physics Communications, 104(1-3):1{14, 1997.

[82] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Arti�cial neural networks for solving

ordinary and partialdi�erential equations. IEEE Transactions on Neural Networks,

9(5):987{1000, 1998.

[83] I.E. Lagaris, A. Likas, and D.G. Papageorgiou. Neural-network methods for bound-

ary value problems with irregularboundaries. IEEE Transactions on Neural Net-

works, 11(5):1041{1049, 2000.

[84] IE Lagaris and VR Pandharipande. Phenomenological two-nucleon interaction op-

erator. Nuclear Physics, Section A, 359(2):331{348, 1981.

[85] I.E. Lagaris and I.G. Tsoulos. Stopping rules for box-constrained stochastic global

optimization. Applied Mathematics and Computation, 197(2):622{632, 2008.

[86] A. Leshem and A.-J. van der Veen. Blind source separation: The location of lo-

cal minima in the case of �nitely many samples. IEEE Transactions on Signal

Processing, 2008.

[87] K. Levenberg. A method for the solution of certain non-linear problems in least

squares. Q. Appl. Math, 2(2):164{168, 1944.

[88] A.V. LEVY and A. MONTALVO. The tunneling algorithm for the global minimiza-

tion of functions. SIAM journal on scienti�c and statistical computing, 6(1):15{29,

1985.

219

[89] J. Li. General explicit di�erence formulas for numerical di�erentiation. Journal of

Computational and Applied Mathematics, 183(1):29{52, 2005.

[90] J.J. Liang and P.N. Suganthan. Dynamic multi-swarm particle swarm optimizer.

In Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE, pages

124{129, 2005.

[91] K.H. Liang, X. Yao, and C. Newton. Combining landscape approximation and local

search in global optimization. In Proceedings of the 1999 Congress on Evolutionary

Computation, volume 2, pages 1514{1520. New York: IEEE Press, 1999.

[92] M. Locatelli. On the multilevel structure of global optimization problems. Compu-

tational Optimization and Applications, 30(1):5{22, 2005.

[93] M. Locatelli and F. Schoen. Random Linkage: a family of acceptance/rejection al-

gorithms for global optimisation. Mathematical Programming, 85(2):379{396, 1999.

[94] S. Lucidl and M. Piccioni. Random tunneling by means of acceptance-rejection

sampling for global optimization. Journal of Optimization Theory and Applications,

62(2):255{277, 1989.

[95] JN Lyness and CB Moler. Numerical di�erentiation of analytic functions. SIAM

Journal on Numerical Analysis, pages 202{210, 1967.

[96] J.N. Lyness and G. Sande. Algorithm 413: ENTCAF and ENTCRE: evaluation of

normalized Taylor coe�cients of an analytic function. 1971.

[97] K. Madsen, H.B. Nielsen, and M.C� . P�nar. Bound constrained quadratic program-

ming via piecewise quadratic functions. Mathematical Programming, 85(1):135{156,

1999.

[98] JS Maltz, E. Polak, and TF Budinger. Multistart optimization algorithm for joint

spatial and kinetic parameter estimation from dynamic ECT projection data. In

Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf, volume 3, pages 1567{73, 1998.

[99] C.D. Maranas and C.A. Floudas. Global minimum potential energy conformations

of small molecules. Journal of Global Optimization, 4(2):135{170, 1994.

[100] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear parame-

ters. Journal of the Society for Industrial and Applied Mathematics, pages 431{441,

1963.

[101] J.H. Mathews and J.H. Mathews. Numerical methods for mathematics, science, and

engineering. Prentice Hall Englewood Cli�s, NJ, 1992.

[102] I. MathWorks and I. MathWorks.MATLAB: The Language of Technical Computing.

MathWorks, 2005.

220

[103] Z. Michalewicz. Genetic algorithms+ data structures= evolution programs. Springer,

1996.

[104] SK Mishra. Some New Test Functions for Global Optimization and Performance of

Repulsive Particle Swarm Method.

[105] J.J. Mor. The Levenberg-Marquardt algorithm: implementation and theory. Lecture

notes in mathematics, 630:105{116, 1977.

[106] J.J. Mor�e and G. Toraldo. On the solution of large quadratic programming problems

with bound constraints. SIAM J. Optim., 1(1):93{113, 1991.

[107] P.M. Murphy and D.W. Aha. UCI repository of machine learning databases, 1995.

[108] S. G. Nash and A. Sofer. Practical optimization. McGraw{Hill, 1996.

[109] JA Nelder and R. Mead. A simplex method for function minimization. The computer

journal, 7(4):308, 1964.

[110] JA Nelder and R. Mead. A simplex method for function minimization. The computer

journal (Errata), 8(4):27, 1965.

[111] J. Nocedal and S.J. Wright. Numerical optimization. Springer, 1999.

[112] J. Oliver. Numerical di�erentiation of analytic functions. Journal of Computational

and Applied Mathematics, 6(2):145{160, 1980.

[113] E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and appli-

cations. 1997.

[114] DG Papageorgiou, IN Demetropoulos, and IE Lagaris. Merlin-3.0 A multidi-

mensional optimization environment. Computer Physics Communications, 109(2-

3):227{249, 1998.

[115] DG Papageorgiou, IE Lagaris, NI Papanicolaou, G. Petsos, and HM Polatoglou.

Merlin a versatile optimization environment applied to the design of metallic al-

loys and intermetallic compounds. Computational Materials Science, 28(2):125{133,

2003.

[116] P.M. Pardalos, H.E. Romeijn, and H. Tuy. Recent developments and trends in

global optimization. Journal of Computational and Applied Mathematics, 124(1-

2):209{228, 2000.

[117] KE Parsopoulos and MN Vrahatis. Modi�cation of the particle swarm optimizer for

locating all the global minima. In Arti�cial Neural Nets and Genetic Algorithms:

Proceedings of the International Conference in Prague, Czech Republic, 2001, page

324. Springer Verlag Wien, 2001.

221

[118] KE Parsopoulos and MN Vrahatis. Recent approaches to global optimization prob-

lems through particle swarm optimization. Natural Computing, 1(2):235{306, 2002.

[119] KE Parsopoulos and MN Vrahatis. On the computation of all global minimizers

through particle swarm optimization. IEEE Transactions on Evolutionary Compu-

tation, 8(3):211{224, 2004.

[120] A.F. Perold. Large-scale portfolio optimization. Management Science, pages 1143{

1160, 1984.

[121] J. Phillips. The NAG Library: a beginners guide. Oxford University Press, Inc. New

York, NY, USA, 1987.

[122] H. Pohlheim. GEATbx: Genetic and evolutionary algorithm toolbox for use with

matlab-documentation. Technical University Ilmenau, Germany, 1996.

[123] E. Polak and G. Ribiere. Note sur la convergence de methodes de directions con-

juguees. Revue Francaise d�Informatique et de Recherche Operationnelle, 16:35{43,

1969.

[124] M.J.D. Powell. Rank One Methods For Unconstrained Optimization. Technical

report, TP{372, Atomic Energy Research Establishment, Harwell (England), 1969.

[125] MJD Powell. A new algorithm for unconstrained optimization. Nonlinear Program-

ming, pages 31{65, 1970.

[126] M.J.D. Powell. A view of unconstrained optimization. Optimization in Action,

London, 1976.

[127] M.J.D. Powell. TOLMIN: A Fortran Package for Linearly Constrained Optimization

Calculations. University of Cambridge, Department of Applied Mathematics and

Theoretical Physics, 1989.

[128] WL Price. A controlled random search procedure for global optimisation. The

Computer Journal, 20(4):367{370, 1977.

[129] Deepa-G. Namboori K. Ramachandran, K. I. Computational Chemistry and Molec-

ular Modeling. Springer, 2008.

[130] LA Rastrigin. Statistical search methods, 1968.

[131] G.J.E. Rawlins. Foundations of genetic algorithms. Morgan Kaufmann, 1991.

[132] T.A. Rijken, VGJ Stoks, RAM Klomp, J.L. de Kok, and JJ De Swart. The Nijmegen

NN phase shift analyses. Nuclear Physics, Section A, 508:173{183, 1990.

[133] A.H.G. Rinnooy Kan and G.T. Timmer. Stochastic global optimization methods

part I: Clustering methods. Mathematical Programming, 39(1):27{56, 1987.

222

[134] A.H.G. Rinnooy Kan and G.T. Timmer. Stochastic global optimization methods

part II: Multi level methods. Mathematical Programming, 39(1):57{78, 1987.

[135] R.T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal

of Risk, 2:21{42, 2000.

[136] K. Schittkowski. QLD: A Fortran Code for Quadratic Programming, User's Guide.

Mathematisches Institut, Universitat Bayreuth, Germany, 1986.

[137] F. Schoen. Two-phase methods for global optimization. Handbook of global opti-

mization, 2:151{178, 2002.

[138] JF Schutte, JA Reinbolt, BJ Fregly, RT Haftka, and AD George. Parallel global

optimization with the particle swarm algorithm. International journal for numerical

methods in engineering, 61(13), 2004.

[139] H.P. Schwefel. Evolution and optimum seeking. Wiley New York, 1995.

[140] DF Shanno. Conditioning of quasi-Newton methods for function minimization.

Mathematics of Computation, pages 647{656, 1970.

[141] Y. Shi and R.C. Eberhart. Parameter selection in particle swarm optimization.

Lecture notes in computer science, pages 591{600, 1998.

[142] B.O. Shubert. A sequential method seeking the global maximum of a function.

SIAM Journal on Numerical Analysis, pages 379{388, 1972.

[143] SIAM. http://www.siam.org/siamnews/01-02/challenge.pdf.

[144] W. Spendley, GR Hext, and FR Himsworth. Sequential application of simplex

designs in optimisation and evolutionary operation. Technometrics, pages 441{461,

1962.

[145] R. Srinivasan. RPC: Remote procedure call protocol speci�cation version 2, 1995.

[146] WH Swann. Direct search methods. Numerical Methods for Unconstrained Opti-

mization, W. Murray, ed., Academic Press, London and New York, pages 13{28,

1972.

[147] X. Tian, J.P. Hoeinger, G. Haab, Y.K. Chen, M. Girkar, and S. Shah. A compiler

for exploiting nested parallelism in OpenMP programs. Parallel Computing, 31(10-

12):960{983, 2005.

[148] A. T�orn and S. Viitanen. Topographical global optimization using pre-sampled

points. Journal of Global Optimization, 5(3):267{276, 1994.

[149] A. Torn and A. Zilinskas. Global optimization. Springer Lecture Notes In Computer

Science; Vol. 350, page 255, 1989.

223

[150] A.A. T�orn. A search-clustering approach to global optimization. �Abo Swedish Uni-

versity School of Economics, 1977.

[151] I.G. Tsoulos and I.E. Lagaris. MinFinder: Locating all the local minima of a

function. Computer Physics Communications, 174(2):166{179, 2006.

[152] W. Tu and RWMayne. An approach to multi-start clustering for global optimization

with non-linear constraints. Int. J. Numer. Meth. Engng, 53:2253{2269, 2002.

[153] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti. Scatter Search

and Local NLP Solvers: A Multistart Framework for Global Optimization. IN-

FORMS Journal on Computing, 19(3):328, 2007.

[154] H. van de Waterbeemd, D.A. Smith, K. Beaumont, and D.K. Walker. Property-

based design: optimization of drug absorption and pharmacokinetics. J. Med. Chem,

44(9):1313{1333, 2001.

[155] C. Voglis and I. E. Lagaris. A rectangular trust-region approach for unconstrained

and box-constrained optimization problems. In International Conference of Com-

putational Methods in Sciences and Engineering, 2004.

[156] Lagaris I.E.-Lekala M.L. Rampho G.J. Voglis, C. and S.A. So�anos. Global mini-

mization in few-body systems. Nuclear Physics, 2007.

[157] J. Waite. Routines for numerical interpolation, with �rst and second order di�er-

entiation, having non-uniformly spaced points, out to three dimensions. Comput.

Phys. Commun., 46:323, 1987.

[158] D.J. Wales and H.A. Scheraga. Global optimization of clusters, crystals, and

biomolecules. Science, 285(5432):1368, 1999.

[159] L.D. Whitley. Foundations of genetic algorithms 2. Morgan Kaufmann, 1993.

[160] L.D. Whitley and Vose M. Foundations of genetic algorithms 3. Morgan Kaufmann,

1995.

[161] P. Wolfe. Convergence conditions for ascent methods. SIAM review, pages 226{235,

1969.

[162] S. Wolfram. The mathematica book. Cambridge university press, 1999.

[163] S.N. Wood. Minimizing model �tting objectives that contain spurious local minima

by bootstrap restarting. Biometrics, 2004.

[164] S.J. Wright. Primal-dual interior-point methods. Society for Industrial Mathematics,

1997.

[165] S. (ed) Yip. Handbook of Materials modelling. Springer, 2005.

224

[166] R. Zieli�nski. A statistical estimate of the structure of multi-extremal problems.

Mathematical Programming, 21(1):348{356, 1981.

[167] W.T. Ziemba and R.G. Vickson. Stochastic optimization models in �nance. World

Scienti�c, 2006.

225

Author's Publications

Journal Papers

1. C. Voglis and I.E. Lagaris, A Global Optimization Approach to Neural Network

Training, Neural, Parallel & Scienti�c Computations 14:231{240, 2006.

(Global Optimization Application)

2. M.G. Tsipouras, C. Voglis and D.I. Fotiadis, A Framework for Fuzzy Expert Sys-

tem Creation�Application to Cardiovascular Diseases, IEEE Transactions on Biomed-

ical Engineering, (54):2089{2105, 2007.

(Global Optimization Application)

3. C.Papadopoulos and C. Voglis, Drawing Graphs using Modular Decomposition,

Journal of Graph Algorithms and Applications 11(2): 481{511, 2007.

(Global Optimization Application)

4. C. Voglis, I.E. Lagaris, M.L. Lekala, G.J. Rampho and S.A. So�anos, Global min-

imization in few-body systems, Nuclear Physics 790:655{658, 2007.

(Global Optimization Application)

5. C. Voglis and I. E. Lagaris, Towards \Ideal Multistart". A stochastic approach for

locating the minima of a continuous function inside a bounded domain, Applied

Mathematics and Computation, 2009

(Presented in Chapter 8)

6. C. Voglis P. Hadjidoukas, D. Papageorgiou and I. E. Lagaris, A Numerical Di�er-

entiation Library Exploiting Parallel Architectures, Computer Physics Communica-

tions, 2009.

(Presented in Chapter 6)

Conference Papers

7. C. Voglis and S. A. Paschos, A Study on Intrusion Detection Techniques in a

TCP/IP Environment, 3th WSEAS International Multiconference on Circuits, Sys-

tems, Communications and Computers, Athens, Greece, 1999.

8. C. Voglis and I.E. Lagaris, A Hybrid method for neural network training, 6th Inter-

national Workshop on Mathematical methods in Scattering Theory and Biomedical

Engineering, Tsepelovo, Greece, 2004.

(Presented in Chapter 5)

9. C. Voglis and I. E. Lagaris, A Rectangular Trust Region Dogleg Approach for Un-

constrained and Bound Constrained Nonlinear Optimization, WSEAS International

Conference on Applied Mathematics, Corfu, Greece, 2004.

(Presented in Chapter 4)

10. C. Voglis and I. E. Lagaris, A Rectangular Trust-Region Approach for Uncon-

strained and Box-Constrained Optimization Problems, International Conference of

Computational Methods in Sciences and Engineering, Athens, Greece, 2004.

(Presented in Chapter 4)

11. C. Voglis and I. E. Lagaris, BOXCQP: An Algorithm for Bound Constrained Con-

vex Quadratic Problems , 1st International Conference \From Scienti�c Computing

to Computational Engineering", Athens, Greece, 2004.

(Presented in Chapter 3)

12. M.G. Tsipouras, C. Voglis, I.E. Lagaris and D.I. Fotiadis, A Framework for Fuzzy

Expert System Creation, 7th International Workshop on Mathematical Methods in

Scattering Theory and Biomedical Technology, Nymfaio, Greece, 2005.

(Global Optimization Application)

13. C. Papadopoulos and C. Voglis Drawing Graphs using Modular Decomposition,

13th Symposium on Graph Drawing GD2005, Springer LNCS 3843:343{354, 2005.

(Global Optimization Application)

14. M.G. Tsipouras, C. Voglis, I.E. Lagaris, D.I. Fotiadis, Cardiac arrythmia classi-

�cation using support vector machines, The 3rd European Medical and Biological

Engineering Conference, Prague, 2005.

(Application of method described in Chapter 3)

15. C. Voglis and I. E. Lagaris, Smeenos: A Clustered Particle Swarm Algorithm for

Recovering the Local Minima of a Function, Optimization 2007, Porto, Portugal,

2007.

(Presented in Chapter 10)

16. C. Voglis and I. E. Lagaris, Global Optimization by Adaptively Estimating the

Probability for Local Search, Optimization 2007, Porto, Portugal, 2007.

(Presented in Chapter 8)

17. N. Kyrgios, C. Voglis and I. E. Lagaris, Multistart Optimization with a Trainable

Decision Maker for Avoiding High Valued Local Minima, 4th IC-EpsMsO, Athens,

2009.

227

Short Vita

Costas Voglis

Personal information

Date of birth: 22 March, 1978 Telephone-

2:

+30 26510 63301

Place of birth: Ioannina Email: voglis@cs.uoi.gr

Telephone-1: +30 6977053095 Homepage: www.cs.uoi.gr/∼voglis
Marital status: Single Nationality: Greek

Current Status: PhD Candidate in Computer Science, University of Ioannina

Education

3/2003{6/2010 Ph.D in Computer Science, University of Ioannina

Ph.D Dissertation: Methods for Local and Global Optimization

Thesis Advisor: Isaac E. Lagaris

09/1999{09/2001 M.Sc in Computer Science, University of Ioannina

M.Sc Dissertation: Model Based Intrusion detection

08/1995{08/1999 B.Sc in Computer Science,University of Ioannina

B.Sc Dissertation: Intrusion Detection in TCP/IP Networks

Grants{Funts

1995 Scholarship from the Department of Computer Science , University of

Ioannina for the undergraduate programme.

1999{2001 Scholarship from the Department of Computer Science , University of

Ioannina for the graduate programme.

9/2004{8/2005 Scholarship supported by the European Union in the framework of the

project "Support of Computer Science Studies in the University of Ioan-

nina" of the 3rd Community Support Framework of the Hellenic Ministry

of Education

Research Interests

• Development and implementation of Global and Local Optimization methods.

• Implementation of parallel algorithms (MPI, OpenMP)

• Simulation of classical systems with the Molecular Dynamics techniques

• Neural Networks for pattern recognition and function approximation.

• Optimization in Inverse Scattering problems.

• Graph Drawing.

Research Activities

• Publications in International Scienti�c Journals and Conferences.

• Member of IPAN (Information Processing and Analysis Research Group) in the

Dept. of Computer Science, University of Ioannina.

Working Experience

2006{2007 Collaborator in the EU Program entitled Open Source.

5/2008{7/2008 External Collaborator of Unisystems S.A. on the project Service provider

for the production of cards for Digital Tachographs, Hellenic Ministry of

Transport and Communications.

Teaching Experience

10/1999{6/2007 Teaching assistant in undergraduate courses in Dept. of Computer Sci-

ence, University of Ioannina.

10/2006{6/2007 Laboratory Assistant, Department of TeleInformatics & Management,

Technological Educational Institute of Epirus.

2006 Teaching assistant in the graduate course of Nonlinear Optimization

229

2007 Teaching assistant in the graduate course of Continuous Global Opti-

mization

9/2007 Assistant supervisor for B.Sc Dissertation entitled Global Optimization

Using Bee Colonies

11/2007 Assistant supervisor for B.Sc Dissertation entitled Particle Swarm Global

Optimization

3/2008 Assistant supervisor for B.Sc Dissertation entitled Global Optimization

Using Interval Analysis

5/2008 Assistant supervisor for M.Sc Dissertation entitled An Application of

Normal Distribution Sampling in Global Optimization

Graduate Courses

⋄ Topics on Database Systems: Models, Languages and Architecture.

⋄ Topics on Neural Networks and Fuzzy Logic.

⋄ Optimization.

⋄ Computer Aided Design: Algorithms and Systems.

⋄ Topics on Computers Network and Network Programming.

⋄ Topics on Biomedical Informatics

⋄ Semantics of Programming Languages.

⋄ Machine Learning.

Programming Skills

• Programming in C, Fortran, C++, Java

• Parallel implementation libraries MPI, OpenMP

• Experienced Matlab Development/Modelling

• ASP, PHP

Languages

Greek Native language

English Very good
230

Hobbies

• Music, Travelling, Soccer.

231

