
Οργάνωση και Αναζήτηση σε Βάσεις Υπηρεσιών Διαδικτύου

Η

 ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

Υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Πληροφορικής

Εξεταστική Επιτροπή

από τον

Δημήτριο Πήλιο

ως μέρος των Υποχρεώσεων

για τη λήψη

του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ

Ιούνιος 2014

ii

INDEX OF CONTENTS

Page

INDEX OF CONTENTS………………………………………………………………………ii

INDEX OF TABLES………………………………………………………………………….iv

INDEX OF FIGURES………………………………………………………………………….v

ΠΕΡΙΛΗΨΗ…………………………………………………………………………………..vii

ABSTRACT…………………………………………………………………………………viii

CHAPTER 1. INTRODUCTION………………………………………………………………1

 1.1 Objectives………………………………………………………………………………...1

 1.2 Thesis Structure…………………………………………………………………………..3

CHAPTER 2. RELATED WORK……………………………………………………………...5

CHAPTER 3. BACKGROUND - BASELINE………………………………………………...9

 3.1 Overview…………………………………………………………………………………9

 3.2 Main Memory model……………………………………………………………………11

 3.2.1 Service Conceptual Model…………………………………………………………..11

 3.2.2 Abstraction Conceptual Model……………………………………………………...11

 3.3 Database Model…………………………………………………………………………14

 3.3.1 Service Storage Model………………………………………………………………14

 3.3.2 Abstraction Storage Model………………………………………………………….14

 3.4 Service Base Query Language (SBQL)…………………………………………………17

 3.4.1 Basic Concepts - Generalized Trees for Querying Services…………………………17

 3.4.2 SBQL Syntax………………………………………………………………………..19

 3.4.3 SBQL Semantics…………………………………………………………………….21

3.5 Mining Service Abstractions……………………………………………………………...23

 3.5.1 Basic Concepts………………………………………………………………………..24

 3.5.2 Agglomerative Clustering……………………………………………………………..26

CHAPTER 4. DISTRIBUTED ABSTRACTIONS MINING………………………………...29

 4.1 Overview………………………………………………………………………………..29

 4.2 General Idea……………………………………………………………………………..30

 4.3 Phase 1. Standalone Subsystem: Service Collection Splitting………………………….32

iii

 4.4 Phase 2. Standalone Subsystem: Pass Subcollections to Master Node………………….41

 4.5 Phase 3. Master Node: Distribute Subcollections to Leaf Nodes………………………...41

 4.6 Phase 4. Each Leaf Node: Mine Abstractions Hierarchy, Prune it & Call Parent

Node…………………………………………………………………………………….41

 4.6.1 Important aspects regarding the abstractions mining algorithm of [6]………………42

 4.6.2 The concept of pruning……………………………………………………………...43

 4.6.3 Our pruning algorithm………………………………………………………………45

 4.7 Phase 5. Each Internal Node: Get Independent Abstractions from Children Nodes, Join

them, Mine Abstractions Hierarchy Over them, Prune it & Call Parent

Node…………………………………………………………………………………….49

 4.8 Phase 6. Standalone Subsystem: Call Root Node to Get Final Result………………….49

 4.9 Software Components and their Interaction…………………………………………….51

 4.10 Data transmission and optimization……………………………………………………53

 4.11 Random Choice Technique For Name Extraction……………………………………..55

CHAPTER 5. QUERY ENGINE……………………………………………………………...57

 5.1 Query Engine…………………………………………………………………................57

 5.2 Service Lookup over the Service Model…………………………………….……….…59

 5.3 Service Lookup over the Abstractions Model………………………………………..…63

CHAPTER 6. EVALUATION………………………………………………………………..73

 6.1 Overview……………………………………………………………………………..…73

 6.2 Performance and Quality Assesment……………………………………………………74

 6.2.1 Description of the Input Data Set……………………………………………………74

 6.2.2 Description of the Input Queries………………………………………………….…76

 6.2.3 Experimental Setup………………………...………………………………………..78

 6.2.4 Findings……………………………………………………………………..………80

 6.3 Scalability Assessment………………………………………………………………….96

 6.4 Conclusion………………………………………………………………………………99

CHAPTER 7. CONCLUSION AND ADDITIONAL CHALLENGES……………………..103

 7.1 Conclusion………………………………………………………………......................103

 7.2 Additional Challenges………………………………………………………………....104

REFERENCES……………………………………………………………………………....107

APPENDIX……………………………………………………………………………….....111

iv

INDEX OF TABLES

Page

Table 6.1 Experimental setup for query execution performance towards scaling……………..97

v

INDEX OF FIGURES

Page

Figure 2.1 Standard service interaction model………………………………………………….6

Figure 3.1 Overall architecture of the Abstraction-oriented Service Base Management……..10

Figure 3.2 Service conceptual model………………………………………………………….12

Figure 3.3 Abstraction conceptual model……………………………………………………..13

Figure 3.4 Service storage model……………………………………………………………...15

Figure 3.5 Abstraction storage model…………………………………………………………16

Figure 3.6 The basic database relations concerning abstractions and their hierarchies……….17

Figure 3.7 The tree that abstracts the structure of functional abstractions at the Schema Level.18

Figure 3.8 A SBQL query example……………………………………………………………19

Figure 3.9 The general syntax of a SBQL query………………………………………………20

Figure 3.10 Definitions of basic concepts……………………………………………………..24

Figure 3.11 Distance formulas between service constituents………………………………….25

Figure 3.12 The standard XML type hierarchy [24]…………………………………………..26

Figure 4.1 General architecture of distributed abstractions mining facility……………………32

Figure 4.2 An example of a user-defined file of available nodes……………………………..33

Figure 4.3 Comparing two different tree configurations for seven software nodes……………35

Figure 4.4 Configuration for four hardware components……………………………………..36

Figure 4.5 Configuration for four hardware components, based on Figure 4.2……………….36

Figure 4.6 The structure used for software components tree node……………………………37

Figure 4.7 The software components tree configuration in pseudocode………………………38

Figure 4.8 Configuration for seven hardware components, in 7 steps………………………..40

Figure 4.9 A possible abstractions hierarchy over thirteen services…………………………..42

Figure 4.10 The mappings aspect of the abstraction structure…………………………………43

Figure 4.11 The three different types of abstractions regarding the objects they abstract……45

Figure 4.12 Our pruning algorithm in pseudocode - pruning the set of hierarchies…………..47

Figure 4.13 Our pruning algorithm in pseudocode - pruning an hierarchy……………………47

Figure 4.14 An example of our pruning algorithm applied to a hierarchy, with retNum = 6 and

disThres=0.2……………………………………………………………………………..........50

vi

Figure 4.15 Distributed abstractions mining: software components and their interaction…….54

Figure 5.1 Design of the QueryEngineService………………………………………………..58

Figure 5.2 Lookup operations over the service model…………………………………………59

Figure 5.3 Executing a simple query over the service model………………………………….61

Figure 5.4 Executing an advanced query over the service model……………………………..64

Figure 5.5 Lookup operations over the abstractions model……………………………………65

Figure 5.6 Executing a SBQL query over the abstractions model…………………………….66

Figure 5.7 Executing a simple query over the abstractions model…………………………….70

Figure 5.8 Executing an advanced query over the abstractions model………………………..71

Figure 6.1 Example of a WSDL document……………………………………………………75

Figure 6.2 Example of an operation’s definition in a OWLS document……………………….76

Figure 6.3 The advanced query corresponding to the example of Figure 6.2, in plain text

form…………………………………………………………………………………..……….77

Figure 6.4 A representation of the advanced queries produced from text query of Figure 6.3.77

Figure 6.5 The impact of the number of nodes on the abstractions mining execution time…..84

Figure 6.6 The impact of the number of nodes on the precision of the query results…………84

Figure 6.7 The impact of the number of nodes on the recall of the query results…………….84

Figure 6.8 The impact of the number of nodes on query execution time……………………..85

Figure 6.9 The impact of the abstractions retention threshold on the abstractions mining

execution time………………………………………………………………………………...88

Figure 6.10 The impact of the abstractions retention threshold on the precision of the query

results…………………………………………………………………………………………88

Figure 6.11 The impact of the abstractions retention threshold on the recall of the query

results…………………………………………………………………………………………88

Figure 6.12 The impact of the abstractions retention threshold on query execution time……89

Figure 6.13 The impact of the distance threshold on the abstractions mining execution time..92

Figure 6.14 The impact of the distance threshold on the precision of the query results………92

Figure 6.15 The impact of the distance threshold on the recall of the query results………….92

Figure 6.16 The impact of the distance threshold on query execution time……………………93

Figure 6.17 Comparing the pure search time with the total time consumed for querying……94

Figure 6.18 The quotient of the non-search time / total time, in the two querying cases……….95

Figure 6.19 Querying over abstractions vs. querying over instances…………………….…..98

Figure A.1 A detailed version of our algorithm for pruning an abstractions hierarchy……..111

vii

ΠΕΡΙΛΗΨΗ

Δημήτριος Πήλιος του Πέτρου και της Ιουλίας. MSc, Τμήμα Μηχανικών Η/Υ και

Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Ιούνιος, 2014. Οργάνωση και Αναζήτηση σε Βάσεις

Υπηρεσιών Διαδικτύου. Επιβλέποντας: Απόστολος Ζάρρας.

Η ανάπτυξη υπηρεσιο-κεντρικού λογισμικού, παρά την αρχικά υποσχόμενη εξέλιξη της, δεν

έχει καταφέρει να αναδειχθεί σε μια ευρέως χρησιμοποιούμενη τεχνολογία. Κύρια αιτία γι αυτό

αποτελεί η περιορισμενη αποτελεσματικότητα και αποδοτικότητα των χρησιμοποιούμενων

τεχνικών αναζήτησης: δεν προσφέρονται τρόποι αναζήτησης σχετικά με τη δομή των

υπηρεσιών, για το οποίο ενδιαφέρονται περισότερο οι προγραμματιστές, ενώ και ο χρόνος

αναζήτησης είναι υψηλός, γιατί απαιτείται έρευνα κάθε υπηρεσίας, οπότε ο χρόνος αναζήτησης

είναι ανάλογος με τον αριθμό των υπηρεσιών.

Το σύστημα AoSBM (Abstraction-Oriented Service Base Management), ένα λογισμικό

ανοικτού κώδικα, εισάγει μια τεχνική ομαδοποιήσης. Κάθε ομάδα χαρακτηρίζεται από μια

σύνοψη, που λέγεται αφαίρεση υπηρεσιών. Μια αφαίρεση υπηρεσιών αντιπροσωπεύει μια

ομάδα υπηρεσιών με παρόμοιες λειτουργίες (μεθόδους, παραμέτρους εισόδου/εξόδου, κτλ.).

Οι ερωτήσεις αναζήτησης ερευνούν κάθε αφαίρεση υπηρεσιών, οπότε ο χρόνος αναζήτησης

είναι ανάλογος με τον αριθμό των αφαιρέσεων υπηρεσιών, και όχι με τον αριθμό των

υπηρεσιών.

Βασισμένοι στη έννοια της αφαίρεσης υπηρεσιών και στον αλγόριθμο εξαγωγής αφαιρέσεων

υπηρεσιών που χρησιμοποιεί το AoSBM, διευκολύναμε την οργάνωση μεγάλων αδόμητων

συλλογών υπηρεσιών καθώς και την αναζήτηση υπηρεσιών. Συγκεκριμένα, προτείνουμε ένα

σύστημα αναζήτησης υπηρεσιών, το οποίο ονομάζουμε βάση υπηρεσιών. Τα κύρια συστατικά

της βάσης υπηρεσιών είναι μια κατανεμημένη λειτουργία εξαγωγής αφαιρέσεων υπηρεσιών, η

οποία κάνει εφικτή την εφαρμογή της ομαδοποιήσης σε μεγάλο αριθμό υπηρεσιών και μια

φιλική προς τον προγραμματιστή μηχανή αναζήτησης υπηρεσιών, η οποία διενεργεί την

αναζήτηση με βάση τις αφαιρέσεις υπηρεσιών. Επιπρόσθετα, αναπτύξαμε μια υπηρεσία η

οποία δίνει πρόσβαση στη μηχανή αναζήτησης, επιτρέποντας έτσι τη χρήση της βάσης

υπηρεσιών σε μια κατανεμημένη τοποθέτηση.

viii

ABSTRACT

P, D. MSc, Department of Computer Science and Engineering, University of Ioannina, Greece.

June, 2014. Organization and Search in Web Service Bases. Thesis Supervisor: Zarras,

Apostolos.

Service-Oriented Computing (SOC), despite emerging as a very promising trend for application

development, has failed to be widely used. The main reason for that is the limited efficiency

and effectiveness of the current search technologies; structured queries, which mainly concern

a developer, are not offered, while search time is high, since answering a query requires

matching it against all the services, thus meaning that search time scales with the number of

services.

Abstraction-Oriented Service Base Management (AoSBM) is an open source software that

introduces a clustering technique; the summaries that characterize the clusters are called service

abstractions. A service abstraction represents a group of services that have similar functional

properties (operations, inputs, outputs, etc.). The lookup queries are matched against service

abstractions, thus the query execution time scales with the number of services abstractions,

instead of scaling with the number of service descriptions.

We build upon the notion of service abstractions and the abstractions mining algorithm offered

by AoSBM to enable the organization of large unstructured collections of service descriptions

and the execution of service lookup queries. More specifically, we propose a service discovery

facility that we call service base. The main constituents of the service base are a distributed

abstractions mining facility that enables the clustering of large collections of service

descriptions, and a developer-friendly query engine facility that enables the execution of service

lookup queries over abstractions. Moreover, we developed a Web service that provides access

to the query engine and allows using the service base in a distributed setting.

1

CHAPTER 1. INTRODUCTION

1.1 Objectives

1.2 Thesis Structure

1.1 Objectives

The faster and cheaper Internet becomes, the more intriguing Internet Computing gets. Service-

Oriented Computing (SOC) is the most widely acknowledged paradigm for Internet Computing

[22]. Using services as reusable software components makes application development faster,

easier and cheaper. More than that, a great opportunity for distributed applications development

is emerging, as one does not need to own vast computational facilities in order to execute heavy-

weighted processes. In fact, such a process can be substituted by a distributed one which can be

executed even in heterogeneous environments.

Although much attention has been focused on services over the last few years, both in terms of

research and technology, the expectations that SOC would serve as a major medium for

Business to Business (B2B) and Business to Consumer (B2C) interaction has not been fulfilled.

As the authors in [7] denote, the business applications using third party web services as part of

their functionality are very few. Rather than that, businesses prefer to develop their applications

from scratch and, therefore, web services remain much more a convenient wrapping

technology, than a basic construct for serious enterprise applications. To deal with this, there is

a need for efficient and effective service discovery facilities.

The typical service discovery approaches involve two key actors; the service providers who

register information about the services they provide in a service registry (centralized, or

2

distributed) and the service consumers who perform lookup queries over the contents of the

registry. To enable efficient and effective querying the information that is stored in the service

registries is typically organized according to a particular classification schema that is exploited

by the providers towards the registration of the services that they provide.

Recently the availability of service crawlers that crawl the web and collect information about

large collections of services introduced a shift in the conventional service discovery paradigm

[1, 7, 25]. A large collection of services that is returned by the crawler is stored in the registry.

By default the information is not structured in any way. The implication of this is that

answering a query requires matching it against all the services, which in turn means that the

query execution time scales with the number of services.

A possible solution to this problem is to treat service descriptions as documents and employ

typical document indexing techniques for efficient information retrieval. Another possible

solution is to employ typical clustering techniques that group similar services and construct a

summary for each group (e.g. , tags). The main drawback of these solutions is that they only

support keyword based querying, which may be adequate in the case of the retrieval of

documents, but really unsuitable in the case of services. In the case of services we have to keep

in mind that the typical query author is a developer. The main concern of the developers is to

ask structured queries for services that offer certain operations, which have certain inputs,

outputs, etc. To cover such requirements we need a clustering technique that not only groups

similar services, but also summarizes each group in a form that can support the matching of

structured queries.

Athanasopoulos et al. [6] proposed such a clustering technique; they call the summaries that

characterize the clusters service abstractions. A service abstraction represents a group of

services that have similar functional properties (operations, inputs, outputs, etc.). Moreover, a

service abstraction is characterized by an abstract interface and a set of mappings between the

abstract interface and the concrete interfaces of the represented services. The original purpose

of this technique was to be executed over a small set of services, so as to find groups of similar

services that can substitute each other. Nevertheless, the concept of service abstraction can also

be applied to enable the execution of efficient service lookup queries. The main idea in this

case is to group similar service descriptions with respect to service abstractions and match

3

lookup queries against service abstractions, instead of matching them against service

descriptions. Doing so implies that the query execution time would scale with the number of

service abstractions, instead of scaling with respect to the number of service descriptions.

Unfortunately, the main problem with this approach is that the algorithm that mines service

abstractions is computationally and resource demanding. Hence, it does not scale for large

collections of service descriptions. As stated in [13], a significant growth in the number of

available service descriptions is anticipated. According to [1, 11, 14, 15], from 2003 till 2009,

the amount of available service descriptions progressively increased from few hundreds to

thousands. Moving on to the future, as documented in the EU FI Assembly vision document

[12], from 2010 to 2015, the number of available service descriptions is expected to scale up to

millions, while beyond 2015, this number is expected to grow up to billions, trillions and so on.

In this thesis, we build upon the notion of service abstractions and the abstractions mining

algorithm proposed in [6] to facilitate the organization of large unstructured collections of

service descriptions and the execution of service lookup queries. More specifically, we propose

a service discovery facility that we call service base. The main constituents of the service base

are the following;

 A novel, scalable, distributed abstraction mining facility that makes the clustering of large

collections of service descriptions feasible. The proposed facility is part of a relational

storage facility that stores service abstractions along with the collections of service

descriptions that are represented by the service abstractions.

 A query engine facility that enables the execution of service lookup queries over

abstractions. Moreover, we developed a Web service that provides access to the query

engine and allows using the service base in a distributed setting.

1.2 Thesis Structure

We organize the rest of this thesis in six chapters; Chapter 2 probes further into the ideas beyond

the existing Web services search systems, by analyzing the way they collect, organize, classify

and retrieve Web services. Chapter 3 details the system proposed by [6], AoSBM, which served

as the basis for our development. Chapters 4 and 5 present our contribution; in particular,

4

Chapter 4 presents our distributed version of the AoSBM’s abstractions mining process, while

Chapter 5 comprises our developed query engine. In Chapter 6, we present our experiments on

the distributed abstractions mining process, measuring its execution time, as well as the

execution time and the quality of the results for specific query workloads posed to the service

base produced by our distributed abstractions mining process. Finally, Chapter 7 concludes this

thesis, and sets a number of significant challenges concerning Web services organization and

retrieval.

5

CHAPTER 2. RELATED WORK

The baseline approach adopted for the interaction between service providers and consumers is

based on the idea of a public service registry, acting as the broker who brings together providers

and users, as illustrated in Figure 2.1, while the data model mostly used is the one that has been

proposed in the Universal Description Discovery and Integration (UDDI) specification.

According to this, service providers who want to publish and advertise their services, must

provide appropriate meta-data to the registry. These meta-data can be divided in three

categories, (a) white pages, where businesses express their identity, (b) yellow pages, where

they categorize their services and (c) green pages, where technical description for the services

invocation is provided. For the technical description, UDDI proposes the use of tModels

(technical models), while mappings to corresponding WSDL documents are also supported.

Then, developers interested in finding useful web services as components for their applications,

can search for them in two ways; either by browsing the registry, or via keyword (or value) -

based search facilities. The most well-known attempt to provide such a public repository was

the UDDI Business Registry (UBR) supported by IBM, Microsoft and SAP. The big drawback

of such attempts, however, is the fact that they rely almost exclusively on human maintenance,

i.e. on providers, without making any attempt of periodical checking for invalid or outdated

services. Consequently, either the quality of their contents quickly degrades and becomes

unusable, or, if maintenance is employed, the overhead of maintening is so large that far

outweighs the benefits.

Search engines emerged as the newer trend for finding services, starting from the big search

engine corporations, like Google, Amazon and Yahoo, who decided to publish their Web

services through their own websites instead of using public registries. This enables developers

to discover web services using a search engine model. Additionally, these sites generally exploit

6

their web page crawling technology by using it to capture WSDL documents, since nowadays

there are plenty of WSDL documents publicly accessible. These crawlers also apply some kind

of automatic maintenance, by periodically updating their contents and removing invalid

services. Al-Masri et al. [1] show that services registered in public registries are decreasing in

contrast with services crawled by search engine’s crawlers. In addition to this, more than 53%

of the UDDI business registry registered services are invalid, while 92% of Web services

cached by Web service search engines are valid and active. Thus, it is more effective, and has

become more common, to use search engines to discover Web services, in comparison with

UDDI registries.

 Figure 2.1 Standard service interaction model.

Atkinson et al. [7] created a crawler which crawls source code along with service desriptions,

testing four different retrieval techniques. The two of them were signature matching and

keyword searching, based on source code. The other two were name matching and abstraction

matching, based on the service interface. The experiments showed that name and interface-

driven forms of search provide significantly better precision than simple text-based approaches.

Indexing and managing Web services in the same manner as Web pages, though, results in very

limited searching choices offered to users, specifically keyword matching on names, locations,

businesses, and buildings defined in the Web service description file. This happens because

typical search engines indexing processes do not take into consideration the semantic structure

of a Web service description, which is the most essential conception regarding the user. For

instance, a developer would like to search for a service that offers a function with 2 input

parameters, both of type String, and 2 output parameters, one of type Double and one of type

Integer. This kind of queries are not supported by search engines. In addition to this, the search

7

terms entered by the user must partially match those indexed by the search engine for a specific

service, i.e. if the query term does not contain at least one exact word such as the service name,

the service is not returned. The user must, therefore be aware of the concise keywords in order

to retrieve the most relevant services that match the request, however, most developers are

mainly concerned with functionality rather than exact naming. A user may not even retrieve

services with synonyms on their descriptions, which often leads to low recall. For example, a

query looking for “city” may fail to return a service containing “town” in the results.

A naïve approach to confront this problem is to perform a broad matching process which would

return a large number of services, most of which may not be of interest to the user. This method

would increase the recall but would also decrease the precision of the query results. Another

approach that has been proposed is to annotate Web services descriptions with tags coming

from a reference ontology. Using tools that exploit the semantic relationships of the ontology’s

terms, like synonyms, would take advantage of semantic information contained in services

descriptions [18, 21, 23]. Nevertheless, such an approach would be an obstacle towards

scalability.

A newer approach attempting to overcome these drawbacks is clustering Web services into

semantically similar groups. This would dramatically reduce the search space while at the same

time improving the matching process, leading to a much better trade-off between query

execution time, precision and recall. The main idea is that each cluster has a representative (like

summary tags), which is one of its contained services or an abstract one, and a query will search

only representatives. If a representative matches the query terms, all the services of the cluster

are returned as result, as all these similar services may be of user’s interest. Regarding this

approach, various methods have been proposed, which either employ well-known clustering

algorithms [10, 20, 25] or classification techniques [16].

Authors in [10] presented a clustering approach that uses five key features extracted from

WSDL documents in order to group Web services into clusters of functionally similar services.

These features are service name, content, types, messages and ports. For the content extraction,

they initially parse the whole WSDL document, remove tags and apply word stemming (for

example, “connect”, “connected”, “connecting”, “connection” all have the same stem

“connect”). Afterwards, they remove function words using a Poisson distribution to model word

8

occurrence in the document, thus distinguishing function words from content words. Then, k-

means algorithm with k = 2 is applied to the extracted words, in order to distinguish general

computing words, like “data”, “web”, “port”, etc. from the actual content words. The distance

measure that is used between words is Normalized Google Distance (NGD) [8], which is also

used to measure the distance between the names of the services. Quality Threshold (QT)

clustering algorithm is used to cluster services, with a similarity function that counts for the

five aforementioned features. The authors experimented on 400 services gathered from real-

world service providers. They applied their approach as well as a similar one, presented in [17].

The latter approach differs only in that it counts for service context and service host name as

well. They evaluated the two approaches by measuring the precision and recall of the clusters

created. The comparison base was the clusters that the authors manually extracted. Experiments

showed that their approach improves the quality of the retrieval, compared with the other

approach.

The main drawback of these solutions is that they only support keyword based querying, which,

as mentioned before, is not adequate for developers who want to ask structured queries. Taking

a step further, in [6], the authors proposed a clustering method that could be used for more

advanced queries. The authors of [6] were mainly concerned about the development of an

adaptation middleware that provides an abstract level of service reuse, hiding the details of

various alternative design options, i.e. the different services with similar functionality. The

adaptation takes place, by substituting the concrete services that are hidden behind the

composed service abstractions. For that, a systematic approach for extracting service

abstractions out of the vast amount of services that are available all over the web, is analysed.

The core of this approach is an agglomerative clustering algorithm that takes as input Web

service descriptions gathered by crawling the Web, and constructs a hierarchy of service

abstractions. The similarity function used for the clustering accounts for names of service,

operations, messages and parameters, as well as the types of parameters. Finally, the woogle

data set is used for the evaluation of this approach [9]. There were found relatively high

percentages of useful abstractions, meaning those that actually represent semantically

compatible services.

9

CHAPTER 3. BACKGROUND - BASELINE

3.1 Overview

3.2 Main Memory model

3.3 Database Model

3.4 Service Base Query Language (SBQL)

3.5 Mining Service Abstractions

3.1 Overview

The authors in [6] propose the idea of an Abstraction-Oriented Service Base Management

(AoSBM), a stand-alone system designed to facilitate service discovery and adaptation, relying

on the concept of service abstractions. The AoSBM is available as open-source software under

GPL License1.

Intuitively, a service abstraction represents a group of services that offer similar functional

properties; it is characterized by an abstract interface, i.e, a service interface constructed to

represent the interfaces of the group of services, and a mapping between the abstract interface

and the interfaces of the represented services. The system manages a database in which both

information concerning services and abstractions is stored and retrieved via the AoSBM’s

facilities. To assist in efficient and structured querying, a major need for programmers, the

authors of [6] proposed a specific query language called Service Base Query Language (SBQL),

a language tailored to the concept of abstractions. The SBQL query is matched against

abstractions, instead of being matched against service descriptions of concrete services.

1 http://www.choreos.eu/bin/view/Documentation/Abstraction_Oriented_Service_Base_Management

10

Therefore, the query execution time scales up with the number of abstractions, instead of scaling

up with the number of available services. Figure 3.1 provides an overview of the main AoSBM

facilities.

Figure 3.1 Overall architecture of the Abstraction-oriented Service Base Management2.

 The ServiceRegistration facility is responsible for populating the AoSBM with

information about services, gathered from collections of service descriptions. The

collections of service desriptions are provided by the end-user of the AoSBM. The

collections of service descriptions are given as input to the ServiceRegistration

facility, then they are parsed and transformed to objects that comply with the service

model, which we detail later.

 The Abstraction-driven Service Organization facility realizes the main

algorithms that construct hierarchically structured abstractions for the service model

that resulted from the registration of a collection of service descriptions to the

ServiceRegistration facility. The abstractions comply with the abstractions

model, which we detail later. In particular, the Abstraction-driven Service

Organization facility comprises a hierarchical clustering algorithm that produces

2 http://www.choreos.eu/bin/download/Share/Deliverables/CHOReOS_WP02_D2.3_CHOReOS-dyn-develop-

process-meth-and-tools_V3.0.pdf

11

clusters of service descriptions, which provide similar functional properties. For each

cluster, the hierarchical clustering algorithm constructs a corresponding functional

abstraction.

 The AbstractionBase is the relational store (developed over MySQL) that is used

to store information about service descriptions and service abstractions. The schema of

the relational store, which mainly mirrors the service model and the abstractions model,

is defined later.

The ServiceDiscovery facility provides the basic means for exploring the information

that is stored in the AbstractionBase. In particular, the QueryEngine accepts as input

SBQL queries, which are matched against the information that is stored in the

AbstractionBase, and provides as output service and abstraction related information that

satisfies the issued queries.

3.2 Main Memory Model

3.2.1 Service Conceptual Model

Figure 3.2 depicts the representation of the service model concepts that concern services,

including service interfaces, service instances, messages and their structure. The center of the

service model is the notion of ServiceInterface which comprises a collection of

ServiceOperation objects. The ServiceOperation concept comprises information

regarding input and output messages. The Message concept carries a set of types

parameters/fields (coded as message types and components in the Web service model). The

ServiceInterface concept is further associated with ServiceInstance objects that

represent information concerning the actual service endpoints (URIs). The

ServiceCollection concept groups service information that comes from a specific

provenance.

3.2.2 Abstraction Conceptual Model

Figure 3.3 depicts the representation of abstractions, in terms of a class diagram. Abstractions

form hierarchies that include FunctionalAbstraction objects. The

12

FunctionalAbstraction concept contains information concerning a set of structurally

similar interfaces. More specifically, the FunctionalAbstraction concept is

characterized by (a) the set of the interfaces that are represented by the functional abstraction,

and, (b) an abstract interface, which stands out as a representative for the represented interfaces.

The represented interfaces have been described in the service model of the previous subsection;

the representative interface is similarly characterized by ServiceOperation, Message

and Parameter objects. The interesting part is that we record the mappings among

represented and representative interface (also keeping trace of their similarity in the form of a

distance attribute); this happens for interfaces, operations and messages. Abstractions form tree-

like hierarchies with abstractions at higher levels being composed as the “union” of a set of

abstractions at the lower level.

 Figure 3.2 Service conceptual model.

13

Figure 3.3 Abstraction conceptual model.

14

3.3 Database Model

We briefly describe the database model concerning the representation of services, service

interfaces and their components, service instances and abstractions inside the Service Base

that is used for persistent storage. The authors in [6] employed a relational DBMS, namely

MySQL, for the storage and ultimate querying of the Service Base. They stressed that they

employed typical and standard features of practically all mainstream relational DBMSs both in

terms of representation and querying; therefore the usage of other DBMSs as persistent storage

and querying engines is straightforward. Roughly, the database model comprises relations (a.k.a

tables) that correspond directly to the concepts of the service representation model. In order to

distinguish between the concepts of the service representation model and the relations of the

database model, we employ a different naming convention for the relations; relations are named

with lowercase letters.

3.3.1 Service Storage Model

Figure 3.4 depicts the part of the database model that concerns services and their internal

structure. The notion of aggregation in the object oriented paradigm is modeled via foreign key

relationships in the relational paradigm. Observe the upper middle part of the figure; there is a

1:M relationship between relations serviceinterfaces and serviceoperations,

representing the fact that a serviceinterface object encompasses one or more

serviceoperation objects. This is modeled via a foreign key from relation

serviceoperations to the primary key of relation serviceinterfaces; specifically,

attribute OP_SI_ID in serviceoperations is a foreign key (and thus, a subset of)

attribute SI_ID in relation serviceinterfaces. The same pattern appears consistently

throughout the database schema. In Figure 3.4, starting from right to left, service interfaces

include operations that include messages that include parameters (relation message types).

Service instances (bottom of the figure) are also linked to their respective service interfaces for

a foreign key.

3.3.2 Abstraction Storage Model

Figure 3.5 depicts the part of the database model that concerns abstractions and how they are

related to services. A functional abstraction includes several interfaces that it represents via

relation representedinterfaces. A representative interface of a functional abstraction

15

is captured via relation representativeinterfaces. A representative interface's

decomposition in its parts is captured via the line of relations

representativeoperations and representativemessages. The mappings

between the parts of the abstraction's represented interfaces and the respective parts of the

components of the representative interface of the functional abstraction are depicted in the

middle “line” of the Figure 3.5.

Figure 3.4 Service storage model.

Finally, in Figure 3.6 we give the part of the database schema that concerns the abstractions,

their properties and inter-relationships. As one can see, service collections include hierarchies

that, in turn, include abstractions. The abstractions form hierarchies and relation hierEdges

captures the mother-child ancestor-descendant relationship.

16

Figure 3.5 Abstraction storage model.

17

Figure 3.6 The basic database relations concerning abstractions and their hierarchies.

3.4 Service Base Query Language (SBQL)

Hereafter, we present the Service Base Query Language (SBQL). We begin with the main

concepts of the language. Then, we give the syntax and the semantics of the SBQL language.

3.4.1 Basic Concepts - Generalized Trees for Querying Services

The querying of the Service Base requires the query author to think of the database as a

generalized tree. As we will describe later, a generalized tree is a graph that resembles a tree a

lot; however there are nodes that break the fundamental property that a tree's non-root node has

exactly one father, and consequently, we use the -hopefully intuitive- term generalized trees.

To query the abstraction's part of the Service Base schema (i.e., to retrieve abstractions),

we think of this part of the schema as a tree. The model that the query author has to keep in

mind is depicted in Figure 3.7. We call this tree the Generalized Tree of the Service Base at the

Schema Level and we textually detail the parts right away.

 A service collection contains several hierarchies of abstractions

 A hierarchy contains several abstractions.

 Functional abstractions have representative interfaces.

 These representative interfaces have operations.

 Each operation has input and output messages.

 Each message has a set of parameters.

18

Figure 3.7 The tree that abstracts the structure of functional abstractions at the Schema Level.

19

let $db = db(‘localhost/mySB’)

for $c in $db/servicecollections

for $fa in $c/hierarchies/abstractions

for $if in $fa/representativeinterfaces

for $o1 in $if/representativeoperations

for $o2 in $if/representativeoperations

for $p1 in $o1/representativemessages/representativemessagetypes

for $p2 in $o2/representativemessages/representativemessagetypes

for $p3 in $o3/representativemessages/representativemessagetypes

where

 $if/rsi_name like ‘%SMSSend%’ and

 $op1/rop_name like ‘%sendMe%’

 $op2/rop_name = ‘exactSearch’ and

 $p1/rmt_name = ‘Sender’ and

 $p1/rmt_type = ‘String’ and

 $p2/rmt_name = ‘IP’ and

 $p3/rmt_name = ‘text’

return

 Abstractions.representativeInfo

Figure 3.8 A SBQL query example.

Except for the Generalized Tree of the Service Base at the Schema Level, the Service Base

involves service instances too. Instances are represented via the Generalized Tree of the Service

Base at the Instance Level. As the abstraction part of the Service Base obeys the schema

of the Generalized Tree of the Service Base at the Schema Level, its contents can form the

Generalized Tree of the Service Base at the Instance Level.

3.4.2 SBQL Syntax

Figure 3.8 gives an example of an SBQL query that queries the Service Base for functional

abstractions that are characterized by the following characteristics:

The abstractions that belong to the result of the query:

 have a representative interface whose name includes ‘SMSSEND’

 have two operations with the following characteristics

 The first operation has

20

 a name which include the text ‘sendMe’

 an input message with two parameters: (a) a parameter with type ‘String’

and name ‘Sender’ and (b) a parameter with name ‘IP’

 The second operation has an output message with a parameter with name ‘text’

The query returns to the user all the information concerning the functional abstractions that

fulfill the aforementioned criteria.

The general syntax of a SBQL query is given in Figure 3.9.

let databaseSpecifier

 variableDefinitionArea

[where filterList]

return returnExpression

Figure 3.9 The general syntax of a SBQL query.

As can be seen, the syntax of the language largely follows XQuery. The reserved words that

distinguish the different parts of an SQBL query are presented with underlined format. We

discuss each of these parts separately in the sequel, after we have formally defined their

constituent elements. These are:

 Variables. A variable is an alphanumeric string that begins with a dollar sign ‘$’.

 Path Expressions. A path expression is of the form

variable0/edge1/…/edgen

A path expression is well-defined if the sequence of edge names creates a linear path in

the generalized tree of Figure 3.7.

 Variable Definition. A variable definition is of the form

for variable in pathExpression,

i.e., for variable in variable0/edge1/…/edgen

It is worth noting here that variables have a type, defined by the last edge of their path

expression. In our abstract notation, variable0 has type edgen.

 Filters. A filter is an expression of the form

variable/field Θ value, Θ ∈ { =, LIKE, <, >, <=, >=, <>}

21

 Database Specifier. A database specifier characterizes which database we will query.

The syntax of a database specifier is

databaseVariable = db(database)

where databaseVariable is going to be used in subsequent variable definitions

and database is a string with the name of the database that we query (as understood

by the underlying DBMS).

 Variable Definition Area. A list of variable definitions. Variable definitions are

separated by newlines in the variable definition area.

 Filter List. A list of filters. More than one filters are connected by and connectors in

the filter list. The where clause is optional and consequently, the list may be empty; in

this case we assume that a filter with semantics true is implicitly implied.

 Return Type. The return type dictates what the ultimate result will be in terms of main-

memory representation and it is an expression of the form

Abstractions.returnType

where:

 returnType ∈ {RepresentativeInfo, fullObject}

3.4.3 SBQL Semantics

The semantics of the query language are largely based on the correct definitions of the

individual parts of a SBQL query. We will employ the term well defined to refer to the

individual parts whose declaration by the user makes sense.

 Well Defined Variables. Every variable definition in the variable definition area

involves two variables, specifically, (a) the declared variable at the beginning of the

definition and (b) an auxiliary variable at the beginning of the involved path

expression.Then, every variable has

 An abbreviated path, which is the one appearing in the variable definition area

 A full path that is produced if we replace the auxiliary variable in the path

expression with its own full path

For this recursive definition to work, we need to define the full path for the auxiliary

variable(s) that appear in the database specifier, which is the empty set.

22

A variable is well defined if its full path is a continuous path in the Generalized tree of

the Service Base at the Schema level, starting at collections and ending at the type of

the variable, as a simple line.

 Well Defined Filters. A filter is a triple of the form

variable/field Θ value, Θ ∈ { =, LIKE, <, >, <=, >=, <>}

Assuming the variable to be of type T, filter is well defined if the field appearing in the

filter’s expression belongs to type T.

In the sequel we assume that all variables and filters are well defined; if not, the query

returns an error code and an empty result set.

 Query semantics. The semantics of a query, i.e., the list of returned objects that

correspond to the application of the query expression over an arbitrary service base are

defined via the sequence of the following four steps.

1) The query takes as input the Generalized tree of the Service Base at the Instance

Level.

2) Each node is intended to be annotated with a variable as prescribed in the let

clause of the query. For every abstraction appearing in the let clause of the

query, all possible clones of its subtree with all the applicable combinations of

variable assignments are produced.

3) Every such clone is passed via the set of filters prescribed in the where clause

of the query. The semantics of the filter list are conjuctive; in other words, for a

subtree to become part of the result, all the filters of the filter list must evaluate

to true (see next). These subtrees are called survivor subtrees.

4) For every survivor subtree, its return graph of objects is computed, as prescribed

from the return clause of the query.

 Filter Semantics. The semantics of a filter are as follows:

23

 The input to the filter is a subtree of an abstraction as previously defined.

 The filter annotates a node in the tree. The node which is annotated is the one

resulting from the full path of the variable.

 The variable/field part of the filter’s expression is replaced with the

respective value of the node.

 If the resulting expression evaluates to true then the input path is added to the

result of the filter, i.e., its output; else nothing is added to the output.

A filter list is the conjunction of filters and each of them is applied to the appropriate

node. A subtree survives if all its filters evaluate to true. If the filter list of a query is

empty, we assume that a single filter with semantics true is added; thus all subtrees

evaluate to true without further checking.

 Query Completion for the Return Type. After all survivors have been computed as

mentioned before, the part of their information that will constitute the final result

depends on the result type of the query. Specifically, for every survivor the following is

returned:

 If the return type is RepresentativeInfo, the information returned is the

one related to the representativeInterface attribute of the

FunctionalAbstraction class. What is returned is actually the full

ServiceInterface object that stores the information about the

representative interface of the functional abstraction, and its components,

belonging to classes Operation, Message and MessageType.

 If the return type is fullObject, the full FunctionalAbstraction

object is returned.

3.5 Mining Service Abstractions

24

3.5.1 Basic Concepts

Figure 3.10 defines the basic concepts regarding services, their components and service

functional abstractions.These have already been depicted in the previous section, however a

more formal view is utilized here, for the needs of the abstractions mining specification.

ServiceInterface = (n : String, O)

O = {opi : Operation}

Operation = (n : String, In : Message, Out : Message)

Message = (n : String, Ps)

Ps = {pi : MessageType}

MessageType = (n : String, type : XMLDataType)

XMLDataType = Builtin | Complex

Abstraction = (I : ServiceInterface, D, M)

D = {si : ServiceInterface}

M = {mSi : I.O → si.O}

Figure 3.10 Definitions of basic concepts.

A service interface is specified in terms of a name and a set of operations, O. Each operation is

characterized by a name, an input message, In, and an output message, Out. In general, a

message is hierarchically structured, consisting of a number of message types (also called

“elements” or “parts”), characterized by their names and their XML data types. The data type

of a particular message type could be either built-in or complex (i.e., a hierarchically structured

element, consisting of further built-in or complex data types). In their mining process, the

authors in [6] consider only the leaf elements of the message type’s hierarchical structure. The

reason for this choice is that the particular structure of the input and output data of an operation

adds further complexity, while not providing much useful information to the mining process.

Ideally, a service abstraction should represent a set of available services that have in common

a certain set of semantically compatible functionalities, realized by corresponding sets of

operations, which most possibly would be syntactically different. Finding within a given set of

services that were gathered by crawling the Web, services that provide common semantically

compatible functionalities is very hard. However, is has been empirically observed that it is

very frequently encountered to have semantically compatible services that provide syntactically

similar interfaces.

25

Figure 3.11 Distance formulas between service constituents.

Then, to assess the similarity between two service interfaces, the authors in [6] rely on a distance

metric DI , which is defined as follows (Figure 3.11). Given two interfaces si, sj and a mapping

Mopij ⊂ si.O × sj.O between the most similar operations of the interfaces, the distance DI(si, sj)

is defined as the average of the Normalized Edit Distance (NED) between the names of the

interfaces, and the average of the distances between the mapped operations. The distance

Dop(opi, opj) between two operations opi, opj is defined as the average of the normalized edit

distance between the names of the operations and the average of the distances of their input and

output messages. Given a mapping Mmij ⊂ mi × mj between the most similar parts of two

messages mi, mj , the distance between the messages is defined as the average of the distances

between the mapped parts. Finally, the distance between two message parts is defined as the

average of the normalized edit distance between their names and the normalized distance

between their build-in types NDT(typei, typej); if these types are in the same branch of the

standard XML type hierarchy, then NDT(typei, typej) is the absolute difference of their depths,

divided by the maximum height of the XML type hierarchy (see Figure 3.12), otherwise it is

assumed that the types are incompatible and NDT (typei, typej) = ∞.

Based on the previous concepts, a service abstraction is defined as a tuple that consists of: an

abstract interface I and a set of represented service interfaces D (Figure 3.10). Each operation

26

of the abstract interface I is mapped, through a set of mappings M, to a set of operations,

provided by the represented interfaces. Specifically, for each service interface si of D, M

comprises a one-to-one function mSi between the operations of I and the operations of si.

Finally, it should be noted that, in general, the interface a.I of a service abstraction a may be

included in the set of interfaces a΄.I of another service abstraction a΄. In other words, it is

possible to define a hierarchy that consists of higher level service abstractions, which represent

lower level service abstractions.

Figure 3.12 The standard XML type hierarchy [24].

3.5.2 Agglomerative Clustering

The ultimate goal of the mining process is to construct the interfaces of service abstractions,

along with mappings between these interfaces and the interfaces of the represented services.

Following, we discuss the core steps of the proposed algorithm, while the interested reader may

27

refer to the technical report [4] for further technical details. The mining algorithm accepts as

input a set of interfaces S = {si : ServiceInterface}. The output of the algorithm is a set of

hierarchically structured service abstractions A = {ai : Abstraction}. To this end, the algorithm

iteratively performs the following steps:

Step 1: For every pair of interfaces si ∈ S, sj ∈ S the algorithm finds the distance DI (si, sj). To

this end, the most similar pairs of operations (opi, opj) ∈ si.O × sj.O (i.e., the mapping Mopij -

Subsection 3.5.1) are found by solving the maximum weighted matching problem in a bipartite

graph [19]. The nodes of the graph correspond to the operations of si and sj , while the edges

correspond to the distances between the operations. Finding the distances between two

operations opi ∈ si.O and opj ∈ sj.O involves finding the most similar pairs of elements for the

input messages (respectively the output messages) of the operations (i.e., the mapping Mmij -

Subsection 3.5.1). This problem is also solved by solving the maximum weighted matching

problem in a bipartite graph that represents the input messages (respectively the output

messages). Note that in this step it is possible to calculate a distance between two interfaces that

equals to ∞. This case may come up in two circumstances:

 The first possibility occurs if the best possible matching between messages results in at

least one pair of incompatible types. In such a case, it is considered that it is not possible

to create an abstraction out of the two interfaces.

 The second possibility occurs if the distance calculated exceeds a threshold that authors

in [6] have set.

Step 2: Based on the calculated distances the most similar pair of interfaces (si, sj) is selected

and an abstraction a is constructed as follows: By convention, the name of a.I is the longest

common substring of the names of si, sj. For every pair of matched operations (opi, opj) found

in the previous step, a.I comprises a corresponding operation opa, named by following the same

convention. The input (respectively output) message of opa, contains a message part pa for every

matched pair (pi, pj) of elements of the input (respectively output) messages of opi, opj.

Concerning the type of the input (respectively, output) element pa, we have pa.type = pi.type if

pi.type is higher (respectively lower) than pj.type in the standard XML type hierarchy;

otherwise, pa.type = pj.type.

28

Step 3: The abstraction a is included in the result, i.e., A = A ∪ {a}. Moreover, the services that

are represented by a are removed from the input set, i.e., S = S - a.D. Finally, a.I is included in

S, i.e., S = S ∪ {a.I}, so as to serve for the construction of higher level abstractions.

Step 4: The mining process repeats steps (1) to (3), until the input set comprises only one

element, namely, the root abstraction of the resulting abstraction hierarchy A, which generalizes

all the available service interfaces, or until no further abstractions can be recovered.

29

CHAPTER 4. DISTRIBUTED ABSTRACTIONS

MINING

4.1 Overview

4.2 General Idea

4.3 Phase 1. Standalone Subsystem: Service Collection Splitting

4.4 Phase 2. Standalone Subsystem: Pass Subcollections to Master Node

4.5 Phase 3. Master Node: Distribute Subcollections to Leaf Nodes

4.6 Phase 4. Each Leaf Node: Mine Abstractions Hierarchy, Prune it & Call Parent Node

4.7 Phase 5. Each Internal Node: Get Independent Abstractions from Children Nodes,

Join them, Mine Abstractions Hierarchy Over them, Prune it & Call Parent Node

4.8 Phase 6. Standalone Subsystem: Call Root Node to Get Final Result

4.9 Software Components and their Interaction

4.10 Data transmission and optimization

4.11 Random Choice Technique For Name Extraction

4.1 Overview

AoSBM posed some serious challenges towards, mainly, computational resources consumption

and scalability. The process of functional abstractions mining that the authors in [6] proposed

is not aimed at service discovery and cannot support large collections of services. Specifically,

using a conventional personal computer, we found that the process is feasible only for a few

hundreds of services, before the main memory is exhausted and the algorithm crashes. Even if

we tackle this by providing much more memory in some way, the process is also very time

30

consuming, so that the number of services it could manipulate would not exceed a few

thousands.

Our contribution is facilitating the organization of large unstructured collections of service

descriptions, building upon the AoSBM’s conceptional models and its abstractions mining

algorithm. In particular, we have developed a distributed facility for abstractions mining, which

can be executed in a set of computers (nodes) and exploits the proposed abstractions mining

algorithm, extended with a pruning technique that retains only a part of the most useful

abstractions, thus improving the effectiveness and feasibility of the overall abstractions mining

process.

4.2 General Idea

Figure 4.1 illustrates a coarse-grained aspect of the architecture of our distributed abstractions

mining facility. The rectangle at the bottom represents our extension to AoSBM, i.e., a

standalone component which also uses remote software components to carry out its

functionality. The elliptical objects represent the software components installed at the

computational nodes that are to participate in the distributed process execution. These

components form a tree structure. Intense consecutive arrows represent a call to the respective

software component (the one at the arrow’s target), while numbers on them correspond to the

phase they are activated. The overall process comprises the following basic phases, which we

briefly mention here and further detail in the following subsections.

Phase 1: The input collection of service descriptions is divided into a number of subcollections,

equal to the number of leaf nodes. This phase is executed at the standalone component.

Phase 2: Subcollections resulting from Phase 1 are passed to a master node, which acts as the

connector between the standalone component and the remote software components.

Phase 3: The master node distributes the subcollections to the leaf nodes, by calling the

respective software component.

Phase 4: Each software component of a leaf node executes the following process (also depicted

by the brief textual description beside the respective elliptical objects): Firstly, it mines

31

abstractions out of the subcollection of services, by employing the local algorithm proposed in

[6], thus producing a hierarchy of functional abstractions. Then, by employing a pruning

technique that we analyze later on, it retains a part of the abstractions of the initial hierarchy,

thought to be the most useful ones. No hierarchical structure is formed between the retained

abstractions. Next, the retained abstractions are passed to the parent node, which is an internal

node, via a call to the respective software component.

Phase 5: Each software component of an internal node executes the following process (as

depicted by the brief textual description beside the respective elliptical objects): Firstly, it gets

the abstractions from the two child nodes and produces their union, i.e., a single collection of

abstractions. Then, it mines abstractions out of this collection, by employing the algorithm

proposed in [6], thus producing a hierarchy of functional abstractions. Then, by employing the

pruning technique we mentioned before, it retains a part of the abstractions of the initial total

hierarchy (forming no hierarchy). Finally, the retained abstractions are passed to parent node,

via a call to the respective software component. This phase is executed repeatedly, starting from

the leaves of the first category tree and ending to its root.

Phase 6: The initiator standalone component calls root node to get the final result.

As can be deduced from Figure 4.1, the software components that must be installed to the

depicted tree’s computational nodes so that the proposed architecture functions, should offer

two functionalities, one that executes the abstractions mining algorithm proposed in [6], and

one that executes our pruning technique. As for the master node, here there is a need for a

functionality that serves for the master’s broker facilities, i.e., calling the leaf nodes by also

passing them the subcollections, getting final results fron the root node and sending them to the

standalone component.

We deployed these functionalities as services, which offer respective methods. As our

architecture dictates, the execution of our distributed abstractions mining facility forms a

choreography, with one service calling another, until the standalone component gets the final

results from the root node.

32

Figure 4.1 General architecture of distributed abstractions mining facility.

4.3 Phase 1. Standalone Subsystem: Service Collection Splitting

As we mentioned in the previous subsection, at Phase 1, our standalone AoSBM component

divides the input service collection into a number of subcollections, equal to the number of leaf

nodes. The purpose of this step is that each subcollection will later be passed, via the master

node, to a leaf software node. At this point one would wonder how this function is aware of the

33

available master node, the rest software nodes, and their exact tree structure, so as to know what

the leaves are. The fact is that the available nodes and the master node are provided as input by

the user, which must define this input with a simple text file, as the one presented in Figure 4.2;

The information needed for each available node is its binding URI, i.e., the URI at which the

respective service is deployed. Each URI must be written in a separate line, starting from the

first line, with no blank lines between URIs. The first line is where the master node’s URI is

provided, whereas the other lines are for the tree’s computational nodes.

http://192.168.20.0:8082

http://171.1.30.1:8083

http://192.168.20.3:8082

http://155.161.27.2:8088

http://90.151.20.1:8090

http://192.172.10.5:8082

http://192.12.20.4:8082

http://92.128.34.1:8092

Figure 4.2 An example of a user-defined file of available nodes.

An issue that we must make clear is that the URIs in the text file correspond to the hardware

components (real computers) that are available to the user. The hypothesis is that each URI

provided by the user, corresponds to a service deployer (server), which can serve all services

we have mentioned, i.e., services for abstractions mining and pruning, so all services must be

bound to this server. This means that each node appearing in the hierarchy of Figure 4.1 regards

a specific role (service), i.e., regards a software and not a hardware component. Therefore, a

hardware component may correspond to more than one nodes in the nodes hierarchy, each time

with a different service. Later on this subsection, we analyze how our system automatically

configures the tree of software components, by taking as input this text file, and another input,

specifically, the number of hardware components that will be used.

It is possible that the user may not want all components in the text file to be used (e.g., for

experimental purposes or because some of them are not on line any more, etc.). Let c be the

number of components, excluding the first component that regards the master node, and p be

the user-defined preferable number of components to be used in our facility. If p <= c, then the

first p components of the text file (excluding the very first one) are going to be used, otherwise

34

an error message is thrown. Of course, the very first component is used in any case, as it regards

the master node, but if this component is supplied with other services too, besides the master

service, then it can also play a role in the nodes hierarchy and, if the user wants so, he must

include one more copy of its URI in the text file.

Phase 1 starts by reading the text file of available nodes. Based on that, as well as on the input

number of nodes to use, a software components tree, like the one in Figure 4.1, is constructed.

A valid number of nodes to be used, must be equal to or bigger than 2. The tree structure

constructed is a full, balanced, binary tree, i.e., each internal node has exactly two children, and

balanced, as, for each internal node, its children’s depths differ by at most one. A valid number

of service descriptions contained in the input collection, must be equal to or bigger than the

number of nodes that are dictated to be used. Subsequently, the input collection of service

descriptions is divided in as many equal parts as the number of leaves in the nodes tree. This

means that each part (subcollection) consists of the same number of service descriptions, except

for the case in which the division leaves a remainder; in such case, the remaining service

descriptions are inserted to some of the created subcollections arbitrarily. The division takes

place in random manner.

The reason why we chose a balanced tree can be inferred from Figure 4.3, in which two different

tree configurations are compared, with the textual descriptions beside the nodes indicating the

data inputs and outputs to and from the nodes, during execution. For ease of presentation, Figure

4.3 does not take into consideration the pruning facility. The fact that Phase 1 divides the input

service descriptions collection randomly into equal-size groups leads to the fact that the leaf

nodes, that work concurrently, consume approximately the same time for their processing. Left-

deep alternative shows a non-balanced tree, whereas balanced alternative shows a balanced one.

The hypothesis is that in both occasions, each leaf node takes 10 service desriptions as input.

At time t1 all leaves have (approximately) concurrently finished their processing. Similarly, at

time t2 nodes 5 on both occasions along with node 6 of balanced alternative, finish concurrently.

But then we observe that in left-deep alternative, two serial activities remain, one with an input

of 26 abstractions and one with an input of 34 abstractions, whereas in balanced alternative,

only one activity with an input of 34 abstractions remains. The conclusion is that the balanced

tree configuration leverages more parallelism of activities.

35

Another issue concerning the configuration is how the input nodes the user defined via

providing the text file along with the number of nodes he prefers to be used, are configured. A

straightforward solution one could imagine is simply using each software component provided

by the user, to be represented by one hardware component in the tree configuration. For

example, if a user defined that 7 hardware components should be used, namely 1, 2,…, 7, then

we could use the exact configuration illustrated in balanced alternative of Figure 4.3, i.e., having

the hardware components forming this hierarchy, each participating with its respective role

(service), as depicted in Figure 4.1.

Figure 4.3 Comparing two different tree configurations for seven software nodes.

Instead, we chose to spend computational resources more effectively, by having some hardware

components assigned to more than one software component node in the tree configuration. For

example, in balanced alternative of Figure 4.3, for the bottom level of nodes we should use four

different hardware components to exploit the fact that they work concurrently, however, for the

above level it would be a waste to use other hardware components, since the hardware

components that correspond to their children are free of work at this point, so they can be reused.

Figure 4.4 shows how our facility would assign hardware components to the configuration of

software components for the balanced alternative of Figure 4.3. Only four computational

sources would be needed. Figure 4.5 illustrates a realistic example of the configuration our

36

system would produce in case the user defines the text file of Figure 4.2 as the available nodes,

and number 4, as the number of nodes to be used by our facility.

Following, we detail the algorithm we use to configure the user-input hardware components,

i.e., to produce the corresponding software components tree. Figure 4.6 presents our Node

class, which serves for the basic construct of our tree. It has four attributes, namely url, for

the respective service’s url, parent, for the node’s ancestor in the tree’s hierarchy, and

child1, child2, for the node’s descendants in the tree’s hierarchy. The class constructor

does not set the parent attribute, as parent value is not known at the point the constructor is

used in our tree construction algorithm. Actually, the setParent() operation is used for this

purpose, later on. Ancestor information is necessary for finding the path from the leaf nodes to

the root. As we mentioned before, this path is passed by the master node to the leaf nodes, so

that they become aware of the service calls chain till the completion of the distributed

abstractions mining process.

 Figure 4.4 Configuration for four hardware components.

Figure 4.5 Configuration for four hardware components, based on Figure 4.2.

37

Figure 4.7 presents the algorithm, in pseudocode, that constructs the software components tree.

Function createSoftwareComponentsTree() takes as input a list containing the URLs

of the software components which the user demands to be used, by providing the

aforementioned file and the number of components to be used. Produces as output a Node

object, standing for the root of the tree, from which we can navigate through the entire tree.

Generally, the tree is constructed bottom-up, starting from the leaf nodes and creating ancestors

till the root is created. The construction is done by levels, each one in an iteration of the while

loop.

 Figure 4.6 The structure used for software components tree node.

Initially the function fills two queues. The currentLevel queue represents the upper tree

level constructed for the moment and, initially, at the first foreach loop, it is filled with the

leaf nodes that are created. The internalNodesURLs queue stores the URLs of the internal

software components and, initially, it is filled with all URLs in

softwareComponentsURLs, but the first; this can be deduced from the fact that we reuse

components, and since such a tree like ours would always have one less internal node than the

number of leaf nodes. However, the choice to leave out the first service of the list is arbitrary,

i.e., we could choose any other as well. Each time an ancestor is constructed, an element of this

list is removed.

The while loop’s functionality is as follows:

 The nested while loop removes currentLevel nodes per pair, constructing an

ancestor over them, whose URL is obtained by removing an element from

internalNodesURLs queue. Ancestors are inserted in nextLevel queue.

38

 The if clause deals with the rest one node of currentLevel node that could

probably remain. In such case, an ancestor is constructed over the remaining node from

currentLevel and one node from nextLevel. This way we achieve the tree to be

balanced.

 Finally, nextlevel becomes the currentLevel and the loop is going for a new

repetition, until no more elements remain in internalNodesURLs.

At the end, the function returns the only element of currentLevel at that point, which is the

tree root node.

Node createSoftwareComponentsTree(List<String> softwareComponentsURLs) {

 Queue<Node> currentLevel = new LinkedList<Node>();

 Queue<String> internalNodesURLs = new LinkedList<String>();

 foreach scURL in softwareComponentsURLs

 currentLevel.add(new Node(scURL, null, null));

 foreach scURL in softwareComponentsURLs except for the first

 internalNodesURLs.add(scURL);

 while (internalNodesURLs is not empty) {

 Queue<Node> nextLevel = new LinkedList<Node>();

 while (currentLevel.size() >= 2) {

 Node node1 = currentLevel.remove();

 Node node2 = currentLevel.remove();

 Node internalNode = new Node(internalNodesURLs.remove(), child1, child2);

 nextLevel.add(newInternalNode);

 }

 if (currentLevel.size() == 1) {

 Node node1 = currentLevel.remove();

 Node node2 = nextLevel.remove();

 Node internalNode = new Node(internalNodesURLs.remove(), child1, child2);

 nextLevel.add(newInternalNode);

 }

 currentLevel = nextLevel;

 }

 Node rootNode = currentLevel.remove();

 return (rootNode);

}

Figure 4.7 The software components tree configuration in pseudocode.

39

Figure 4.8 presents an example of an application of this algorithm to a set of seven service

URLs, hypothetically the user dictates to be used. The figure is divided in 7 frames (steps), each

one illustrating the tree’s part constructed (at the left side) and the queues’ contents (at the right

side) up to the step’s start, while the circular and rectangular drawings around queues’ elements

stand for the removals of these elements from the queues, during the step. After a removal of

three elements (i.e., two children and a future ancestor), the ancestor is constructed over the two

children, which is illustrated in the next frame’s left side.

In Figure 4.8, we suppose that the two foreach loops of the algorithm of Figure 4.7 have

constructed the leaf nodes and have set the queues, as presented in frame 1. The shaped

drawings in frame 1, as well as the rest of the frames detail the actions performed by the external

while loop of the algorithm. Below we give a concise description of these actions:

 1st iteration of external while loop (steps 1-4)

 Step 1: Ancestor 2 is constructed over the leaf nodes 1 and 2.

 Step 2: Ancestor 3 is constructed over the leaf nodes 3 and 4.

 Step 3: Ancestor 4 is constructed over the leaf nodes 5 and 6.

 Step 4: Ancestor 5 is constructed over the leaf node 7 and the internal node 2.

 2nd iteration of external while loop (steps 5-6)

 Step 5: Ancestor 6 is constructed over the internal nodes 3 and 4.

 Step 6: Ancestor 7 is constructed over the internal nodes 5 and 6.

 3rd iteration of external while loop (step 7)

 Step 7: loop terminates

When the configuration is completed, the standalone component not only is aware of the exact

path of calls for each leaf-to-root choreography, but also knows which the root is, so that it can

call it at the end (phase 6) to get the final result.

40

Figure 4.8 Configuration for seven hardware components, in 7 steps.

41

4.4 Phase 2. Standalone Subsystem: Pass Subcollections to Master Node

When our standalone AoSBM component finishes Phase 1, it makes a call to the master node’s

service, which is responsible for distributing the subcollections to service nodes. The input data

that come along with this call, are not only the subcollections but also information regarding

the configuration of nodes. In fact, Phase 2 constructs:

 A mapping that assigns a subcollection to each leaf node (URI). The assignment of

subcollections to leaf nodes is random.

 A mapping that assigns to each leaf node (URI) the path to the root of the tree, i.e., a list

of URIs of the nodes comprising the path from the leaf to the root, at the nodes tree.

These two mappings comprise the input data passed to master node. Thus, the master node is

aware of the addresses of the leaf nodes, with which it must communicate, which subcollection

to pass to each of them, and, finally, which calls path to pass to each of them. The technique of

passing to a node the rest of the calls path is applied to the entire choreography, in particular,

each node, when called, takes as an input the rest of the calls path to the root, and, when calling

the next node in the path, it abstracts the first node from the calls path list and passes the list as

input to the calling node.

4.5 Phase 3. Master Node: Distribute Subcollections to Leaf Nodes

At this phase, the master node calls each leaf node by passing input data consisting of:

 a subcollection of service descriptions

 a calls path (the path from this node to the root of the nodes tree).

4.6 Phase 4. Each Leaf Node: Mine Abstractions Hierarchy, Prune it & Call Parent Node

 During this phase, each leaf node called by the master node, mines an abstractions hierarchy

out of the subcollection of service descriptions using the algorithm proposed in [6].

Subsequently, a pruning technique is applied towards the produced hierarchy, with the purpose

of retaining only a part of the most informative - representative abstractions.

Prior to further analyzing our pruning approach, we first have to examine some important

aspects regarding the algorithm of [6].

42

4.6.1 Important aspects regarding the abstractions mining algorithm of [6]

First of all, the hierarchy produced over a set of services. Figure 4.9 illustrates a realistc example

of a possible outcome of the application of this algorithm to a set of 13 services. The squared

objects represent concrete services, while the circular ones represent functional abstractions.

Solid arrows represent the parent - child relationships between objects, and one can use them

to deduce the intermediate steps followed by the algorithm to come to this result. Dashed arrows

also indicate steps of the abstractions hierarchy production process, but they refer to concrete

services that are abstracted, which are not part of the abstractions hierarchy. As we can see,

there is not a singlehierarchy produced over the 13 services, but there are actually three

independent hierarchies. As we have mentioned in subsection 3.5.2, there are two circumstances

in which the distance calculated between two interfaces is set to ∞. In such a case, an abstraction

over these two interfaces cannot be constructed in any case, i.e., even if their distance (∞) is the

lower among all pairs’ distances. This can lead to a final result of having more than one

independent hierarchies constructed, as depicted in Figure 4.9.

Figure 4.9 A possible abstractions hierarchy over thirteen services.

Another aspect we must clarify concerns the mappings part of an abstraction’s structure. Figure

4.10 illustrates an example of an abstraction’s mappings data and how they are related to the

representative interface data, which are also part of an abstraction. The

InterfacesMapping field of FunctionalAbstraction consists of information about

the two mapped interfaces which are abstracted, and information about the mapped operations

of the two interfaces, namely OperationsMappings. In particular, the

OperationsMappings field contains OperationsMapping objects. Each such object

is much like the InterfacesMapping object, i.e., consists of the two mapped operations,

etc. This nested mappings structure finishes at message types mappings. For reasons of clarity,

43

Figure 4.10 presents a simplified view that stops at mapped operations’ names. The dashed lines

represent the mappings between operations. As we see, each operation in the

RepresentativeInterface field is positioned relatively to the respective pair of mapped

operations that abstracts (depicted by the numbering at the left and also by the consecutive

lines).

 Figure 4.10 The mappings aspect of the abstraction structure.

4.6.2 The concept of pruning

Our pruning algorithm retains only a part of the constructed abstractions, on the purpose of

reducing the number of abstractions that will be sent to the next software component. Thus, it

has to retain the most informative abstractions whereas throwing out the less

informative/useless ones.

The major concept is that, for each abstraction, either itself or its children should be retained,

but not both of them. The criterion we use for this choice is the calculated distance between the

two interfaces which an abstraction abstracts, compared to a user-given threshold. Let A be an

abstraction over two interfaces, namely A1 and A2, d(A) = d(A1, A2) the distance between the

two interfaces, and disThres the distance threshold defined by the user. Then:

44

 If d(A) < disThres, only the parent is retained.

 If d(A) >= disThres, only the children are retained.

Moreover, the algorithm has to take care of the mappings between the interfaces of the

abstractions, and how this will be sustained during the pruning process. For this reason we have

inserted a new field to the FunctionalAbstraction object, namely

interfacesMappings, which is a list of InterfacesMapping objects. To sustain

compatibility with the adaptation facility of the AoSBM, we kept the standard existing

interfacesMapping field, but, after the termination of our algorithm, the only actually

valid field regarding interfaces mappings is interfacesMappings. In case children

abstractions are pruned, the sustained parent abstraction has its interfacesMappings field

filled with all the mappings between the concrete interfaces that are abstracted by it. The

association between the representative interface of the parent and the mappings, regarding the

places of the corresponding matched operations, is kept as described, for all mappings.

Yet, as indicated in Figure 4.11, there are different types of abstractions, regarding the children

they do or do not have, with our pruning algorithm performing a different series of actions for

each of them. Following, we examine the three types of abstractions along with the respective

actions performed when the criterion mentioned before is applied to them:

a) Abstraction having no children (Figure 4.11, shape (a)). This is a leaf of the abstractions

hierarchy. It abstracts concrete services. Since it has no children we cannot apply the

aforementioned criterion, thus the abstraction is retained anyway. No change in

interfaces mapping information (interfacesMapping field) is needed, except for

it is added to interfacesMappings list.

b) Abstraction having a single child (Figure 4.11, shape (b)). It abstracts a concrete service

and an abstract one. In this case the criterion is applied, considering the concrete service

as a child too. We distinguish between two cases:

1) If d(A) < disThres, the child is pruned. We construct and add to abstraction’s

interfacesMappings list an InterfacesMapping object that maps the

45

concrete service’s interface to itself. We also add the single child’s

interfacesMapping field.

2) If d(A) >= disThres, we cannot prune the parent, because it holds information for

the concrete service object, which won’t be stored in any other abstraction retained

(since the retained abstractions do not form a hierarchy). Thus, both abstractions

are retained. Concerning the parent abstraction retained, all information about the

single child is abstracted from it, relieving it of redundant data. The eliminated

information contains the interfacesMapping object and the record in

representedInterfaces object that respects to the single child. We

construct and add to parent abstraction’s interfacesMappings list an

InterfacesMapping object that maps the concrete service’s interface to itself.

c) Abstraction having two children (Figure 4.11, shape (c)). It abstracts two abstract

services. In such case the criterion is applied with the standard actions taking place:

1) If d(A) < disThres, children are pruned. The InterfacesMapping objects that

correspond to all the abstracted concrete services are added to parent’s

interfacesMappings list.

2) If d(A) >= disThres, the parent is pruned.

 Figure 4.11 The three different types of abstractions regarding the objects they abstract.

4.6.3 Our pruning algorithm

As mentioned, the application of the abstractions mining algorithm proposed in [6] may lead to

more than one hierarchies produced. We prune each one of them, with the goal of retaining only

a part of the initially produced abstractions. We give the user the choice of defining how big

this part will be, by providing as input the proportion of the abstractions to be retained, with

46

respect to the total number of initially produced abstractions. Thus, we apply to each abstraction

in the hierarchy, a technique which decides whether this abstraction will be retained or not,

according to the previously described criteria (cases (a), (b), (c)) and according to one more

criterion, the user-input number of abstractions that should be retained.

Our dicision to apply both the two aforementioned criteria in the pruning process, and not just

one of them, lies on the fact that the two criteria’s roles are supplementary. The idea behind this

is that we need to retain only a part of the initial mined hierarchy of abstractions, but that part,

instead of being chosen arbitrarily, it could be chosen by the application of a quality criterion,

like the distance threshold. In this way we retain few but informative abstractions.

Figures 4.12 and 4.13 present our pruning algorithm in pseudocode. For briefness, we use the

abbreviations H, for the Hierarchy class and FA, for the FunctionalAbstraction

class.

Function prune() is the main function of our approach, taking as input three arguments, a list

of abstraction hierarchies and the aforementioned two thresholds, namely the retention

threshold and the distance threshold. The hierarchies argument contains the complete

result of the application of [6]’s abstractions mining technique, i.e., a list of abstraction

hierarchies. The other two arguments, that represent a proportion, must be in the form of a real

number between 0 and 1. The output of the function is a list of functional abstractions, i.e., the

retained abstractions, which do not form a hierarchy, but just a list of independent elements.

The reprIfacesNum variable stores the total number of represented interfaces of all

hierarchies. The foreach loop prunes each hierarchy, and adds the respective retained

abstractions to result variable, which is returned as a result when the function terminates.

The loop calculates the number of abstractions that are going to be retained for a specific

hierarchy (retNum) and calls pruneHier() function to prune the hierarchy.

Because pruneHier() prunes recursively, per level of the abstractions hierarchy, it is called

each time taking as input a hierarchy’s level of abstractions, so the first time it is called takes

as input the first level, which has only one element; the root. Also, retNum is decreased by

one, as we consider that the root abstraction has already been retained.

47

List<FA> prune(List<H> hierarchies, double retThres, double disThres) {

 List<FA> result = new List<FA>();

 int reprIfacesNum = getNumberOfRepresentedInterfaces(hierarchies);

 foreach h in hierarchies {

 int retNum = (int) ((h.reprIfacesNum / reprIfacesNum) * retThres);

 List<FA> firstLevel = new List<FA>();

 firstLevel.add(h.root);

 retNum --;

 List<FA> retainedFAs = pruneHierarchy(h,firstLevel,retNum,disThres);

 result.add(retainedFAs);

 }

 return result;

}

Figure 4.12 Our pruning algorithm in pseudocode - pruning the set of hierarchies.

List<FA> pruneHier(H h, List<FA> level, double retNum, double disThres) {

 if(level is empty) return h.toList(); // termination condition

 else {

 List<FA> nextLevel = new List<FA>();

 foreach fa in level {

 List<FA> children = fa.children();

 double distance = fa.distance();

 if(retNum == 0 || distance < disThres)

 children are pruned

 else {

 fa is pruned

 retNum --;

 nextLevel.add(children);

 }

 }

 pruneHier(h, nextLevel, retNum, disThres); //recursive call

 }

}

Figure 4.13 Our pruning algorithm in pseudocode - pruning an hierarchy.

The pruneHier() function prunes a hierarchy and works, as said, recursively, taking as

input, each time it is called, the hierarchy itself and a specific level of the hierarchy, i.e., a list

of abstractions of the same level. The other inputs are the number of abstractions to be retained

48

(retNum) and the distance threshold (disThres). The function’s output is a list of

independent functional abstractions. The function checks each abstraction of the level’s list and

prunes it or its children, depending on the values of the two thresholds, retNum and

disThres (Figure A.1 in Appendix contains a more detailed view of the algorithm; the

function calls indicated by b1(), b2(), c1() and c2(), represent the respective actions

described by the three cases (a), (b), (c) previously in this subsection). In cases children are

retained, they are added to the nextLevel list. After all abstractions of the level are examined,

pruneHier() is recursively called by passing nextLevel as argument. Recursion is

terminated when the level list is empty. At this point, the hierarchy h consists of abstractions

having no bonds between them, i.e. it is just a set of independent abstractions. This is converted

to a list and returned.

Figure 4.14 depicts an example of our pruning algorithm applied to a functional hierarchy like

the one in the figure, which abstracts 15 services. It consists of 8 basic steps, illustrating the

algorithm’s steps. The numbers below the abstractions’ circles stand for the distance between

their children’s interfaces. We consider that retNum=6 and disThres=0.2. The grayed

circles imply that the respective abstractions are retained for the time being, while the

intersected gray lines represent abstractions that have been pruned. Unlike grayed circles, which

do not represent something permanent (as at a next step the abstraction may be pruned), the

intersected gray lines stand for permanent deletion of the respective abstractions. A call to the

pruneHier() function and 3 recursive calls of it will take place till the process terminates.

Hereafter, we analyse each step of the application of our algorithm to the hierarchy of the Figure

4.14, in a brief form. Specifically, we mention the operation that is called, i.e,. pruneHier(),

the input level, which is a list of abstractions that will be processed, eg [h, i, j], and the number

of retained abstractions, which is set to 6, thus before the first call of pruneHier(), it will

be reduced to 5, and each time an abstractions is retained, it will be reduced by one. The steps

that we mention, correspond to the ones illustrated in Figure 4.14.

 pruneHier() call, input level: [n], retNum: 5

step 2: check n → 0.38 > 0.2, thus n is pruned, retNum = 4

49

 pruneHier(), 1st recursive call, input level: [l, m], retNum: 4

step 3: check l → 0.30 > 0.2, thus l is pruned, retNum = 3

step 4: check m → 0.33 > 0.2, thus m is pruned, retNum = 2

 pruneHier(), 2nd recursive call, input level: [h, i, j, k], retNum: 2

step 5: check h → 0.28 > 0.2, retNum = 1

step 6: check i → 0.11 < 0.2, thus b, c are pruned

step 7: check j → 0.22 > 0.2, thus j is pruned, retNum = 0

step 8: check k → retNum == 0, thus f, g are pruned

 pruneHier(), 3rd recursive call, input level: [a], retNum: 0

check a → has no children, thus nothing happens

 pruneHier(), 4th recursive call, input level: [], retNum: 0

level is empty, thus return list of abstractions

4.7 Phase 5. Each Internal Node: Get Independent Abstractions from Children Nodes,

Join them, Mine Abstractions Hierarchy Over them, Prune it & Call Parent Node

This phase is executed by the internal nodes of the software components tree. The first internal

nodes entering this phase are those having children that are leaves. When these leaves finish

their processing, they call their parent nodes, also passing them the results of their processing,

i.e, a list of independent abstractions. Thus, the internal node’s service deployed for our

distributed organization, takes as input two lists of independent abstractions, each one from the

respective child node. It also takes as input the two thresholds used in our approach, namely the

retention threshold and the distance threshold.

During this phase, the two input lists are simply merged into their union, which is the input to

the abstractions mining algorithm of [6]. From this point, the steps followed are mainly the

same as those followed by leaf nodes at phase 4. The only difference is that the input to the

algorithm of [6] is not a list of services but a list of abstractions.

4.8 Phase 6. Standalone Subsystem: Call Root Node to Get Final Result

The standalone component calls a specific method of the root node and gets the final result. The

standalone component is not triggered by the root to do that, on the contrary, it periodically

checks if the root has finished, and, when it finds that the root has finished, it calls the root and

gets the result.

50

Figure 4.14 An example of our pruning algorithm applied to a hierarchy, with retNum=6

and disThres=0.2.

51

4.9 Software Components and their Interaction

Hereafter, we summarize the software facilities we had to develop for our approach, and present

the corresponding classes and the interaction between them. We also describe the structure of

the data transmitted in this interaction.

Mainly, the developed facilities include (Figure 4.15):

1) A standalone facility which takes the user-inputs, such as the available hardware

components, the number of available hardware components to be used, the services

collection to be registrated in service base and abstracted, the proportion of functional

abstractions to be retained and the distance threshold between the interfaces an

abstraction abstracts, that will be used in the distributed abstractions mining process.

The standalone facility firstly configures the components tree. Secondly, it registrates

the service collection and stores it into the service base. Subsequently, it divides the

collection into a list of subcollections (they are equal-sized and the division is done

arbitrarily), and calls the master components, passing it the subcollections. The master

component distributes the subcollections to the tree’s leaf components. The tree

components perform the distributed abstractions mining and, when they have finished,

the resulted list of functional abstractions lies in the hardware component that respects

to the root software component of components’ tree. This software component offers an

operation which just returns the final result. That operation is called by the standalone

facility, the result is obtained and stored in the abstractions base. Class

DistributedFAMiningLauncher represents the standalone component, which

offers launchDistributedFAMining() operation, with the functionality that

was described.

2) A master facility, responsible for the distribution of the subcollections to the leaf

components. This facility is developed as a service, named MasterService, which

offers a respective operation, manageDistributedFAMining(). The operation is

called by the launchDistributedFAMining() operation of

52

DistributedFAMiningLauncher component and takes as input a MasterData

object, which includes:

 A list of the subcollections of the initial service collection, as divided by the

standalone component.

 An integer, representing the number of abstractions that should be retained.

 A real number, representing the distance threshold between the children of an

abstraction.

The operation calls the LeafService service of every leaf node, passing it a

respective subcollection of service interfaces.

3) A leaf facility which executes the abstractions mining algorithm of [6] and then applies

our pruning algorithm, thus retaining a list of independent abstractions. This facility is

developed as a service, namely LeafService, offering a respective operation,

mineAndPruneFunctionalHierarchy(), which performs the aforementioned

steps. The operation takes as input a LeafData object, which includes:

 A list of service interfaces (subcollection).

 An integer, representing the number of abstractions that should be retained.

 A real number, representing the distance threshold between the children of an

abstraction.

 A list of component URLs, standing for the rest of the calls path till the root of

the tree.

The operation is called by the MasterService’s operation. When it finishes, it calls

the next service in the calls list, passing it the list of independent abstractions. This next

service is an InternalService, and the operation of it that is called is the

mergeFAsAndMineAndPruneFunctionalHierarchy() operation.

4) An internal facility which merges the two lists of independent functional abstractions

that takes as input from the respective leaf facilities. Following, it performs what the

leaf facility performs, i.e., mining an abstractions hierarchy over the list of abstractions

53

and then prune it. The only difference is that the leaf facility starts mining abstractions

over concrete interfaces, whereas the internal facility starts mining abstractions over

abstractions. To apply this facility, we developed a service named

InternalService, which offers two operations:

 The mergeFAsAndMineAndPruneFunctionalHierarchy()

operation performs the aforementioned steps. It takes as input two

InternalData objects, each one from the respective child component. An

InternalData object comprises:

 A list of independent functional abstractions.

 An integer, representing the number of abstractions that should be

retained.

 A real number, representing the distance threshold between the children

that an abstraction abstracts.

 A list of component URLs, standing for the rest of the calls path till the

root of the tree.

When finished, the operation calls the next service in the calls list, specifically

the mergeFAsAndMineAndPruneFunctionalHierarchy() method

of the next service. This process is repeated till the component called is the root

of the tree. When the operation of the root component finishes, it stores the result

in a structure that getFinalResult() operation can access.

 The getFinalResult() operation is called to return the final result

4.10 Data transmission and optimization

The technology we chose to use for the services’ implementation, deployment and call leaded

to a serious issue concerning the efficiency of the overall process. Specifically, the data

transmitted during a service call, i.e., the arguments to the respective operation called, are

wrapped into an XML structure. This results to large XML structures being constructed and

54

transmitted, because in an XML structure, the net information (excluding tags) is many times

less than the total one.

Figure 4.15 Distributed abstractions mining: software components and their interaction.

The impact of this is a significant memory waste in both sides of caller and called services.

Also, there is a time overhead concerning the coding and decoding information into XML

structures, as well as a time waste in transmitting all this information.

An action we take for this is to adapt the specifical part of our code which transforms our

structures into XML form, so that small XML tags be formed.

Another action is to eliminate redundant information from data structures before they are

wrapped and transmitted. Specifically:

55

 The standalone component, just before calling the master component and pass it the list

of subcollections of service interfaces, eliminates every service interface structure from

service instances objects; since the registration and storage of the initial collection of

services has already been done at that point, the information concerning the service

instances can be retrieved from the service base anyway.

 A leaf component, after mining and pruning a functional hierarchy over the concrete

service interfaces passed to it by the master node, has to call an internal component (its

parent) and pass it the list of independent abstractions it has retained. Just before passing

the list, it scans every functional abstraction object and performs the following

eliminations:

 From every represented interface object, only data base key information is kept;

represented interfaces are concrete interfaces, which are stored in the service

base, thus only their data base keys are needed to retrieve them.

 From every mappings object, i.e., interfaces/operations/messages/messagetypes

mappings, the respective mapped elements objects, i.e, mapped

interfaces/operations/messages/messagetypes, are eliminated from everything

else but their data base key, for the same reason as mentioned before.

4.11 Random Choice Technique For Name Extraction

We added an extra option on the abstractions mining algorithm of [6]. The extra option regards

the technique used by the algorithm to extract the name of a representative object, i.e., a

representative interface, operation, message or message type, out of the names of the

represented objects that it abstracts. Specifically, the algorithm exploits the Longest Common

Substring (LCS) technique for this, i.e., the representative name is constructed from the longest

common substring of the names of the two represented objects. Our added technique sets the

representative name by randomly choosing between the two represented names (RC). In our

experiments we applied both techniques.

56

57

CHAPTER 5. QUERY ENGINE

5.1 Query Engine

5.2 Service Lookup over the Service Model

5.3 Service Lookup over the Abstractions Model

We developed a query engine, to serve as a more developer-friendly tool for querying the

service base, than SBQL was. Additionally, we developed a Web service that provides access

to the query engine, allowing the service base to be used in a distributed setting.

5.1 Query Engine

As presented, AoSBM provides a query language, named SBQL, and a corresponding facility,

which executes SBQL queries using the mined abstractions stored in the abstractions base.

Based upon this facility, we developed a more friendly one, which simplifies querying. Also,

we made all querying facilities available in a distributed setting by designing and realizing a

REST API, named QueryEngineService, which exposes them as a service. Following, we

provide further details concerning the design and the functionalities offered by the

QueryEngineService.

Overall, the QueryEngineService API provides several operations that can be used for

service lookup (Figure 5.1). In general, these operations accept as input constraints that should

be satisfied by the discovered services and produce as output information concerning the

discovered services. In general, we divide the operations that are offered by the

QueryEngineService API in two different categories:

58

 The operations of the first category allow to use the AoSBM as a typical service registry

that does not employ abstractions in the service lookup process. Specifically, the first

category consists of operations for which the input constraints are matched against the

service model information that is stored in the AoSBM.

 The operations of the second category enable abstraction-driven service discovery. In

particular, the second category comprises operations for which the input constraints are

matched against the abstractions model information that is stored in the AoSBM. To

support typical and more experienced developers, each category provides operations for

simple and more advanced lookup queries.

Figure 5.1 Design of the QueryEngineService.

59

5.2 Service Lookup over the Service Model

To enable service lookup over the service model information that is stored in the AoSBM we

provide the following alternative options:

 Figure 5.2 Lookup operations over the service model.

1) The executeSimpleQueryOverInstances, takes as input a SimpleQuery object

and produces as output a QueryEngineServiceResponse object. The code snippet

in Figure 5.3 gives an example of how to call the

executeSimpleQueryOverInstances and navigate through the results. The

SimpleQuery object contains the following information:

 A list of operation names that should match with corresponding names of the

operations of the services that will be returned as a result. Specifically, for each

60

required operation name, a discovered service must provide at least one operation,

whose name comprises the required operation name.

 A specification of requirements that concern the services that are used by the

discovered services. These requirements may comprise, for instance, the names of

the operations that are called by the discovered services.

The QueryEngineServiceResponse object that is produced as output includes a list

of ConcreteService objects. Each ConcreteService object contains information

about a discovered service. Specifically, a ConcreteService object includes:

 The list of the required operation names of the input SimpleQuery object.

 The full specification of the ServiceInterface that is offered by the

discovered service.

 A mapping between the required operations and the operations of the interface that

is offered by the discovered services.

To facilitate the work of the developer the ConcreteService object provides operations

that provide easy access to the URIs of the discovered services and to the behavioral

specification of the discovered services. These operations reveal the developer from the

need to navigate in the ServiceInterface object structure.

The execution of the executeSimpleQueryOverInstances operation takes place

in three main steps (Figure 5.2 (A)):

 Based on the given SimpleQuery object, an SQL query is generated over the

relations of the AoSBM service model.

 The generated query is executed and a list of ServiceInterface objects is

reconstructed, based on the information that is retrieved from the AoSBM relational

store.

61

 Finally, the QueryEngineServiceResponse that encapsulates the

reconstructed ServiceInterface objects is constructed and returned to the

developer.

List<String> operations = new ArrayList<String>();

operations.add(”request”);

operations.add(”get”);

String RQs = null;

SimpleQuery simpleQuery = new SimpleQuery(operations, RQs);

Response response = client.executeSimpleQueryOverInstances(simpleQuery);

QueryEngineServiceResponse qeResponse = null;

try {

 InputStream in = (InputStream) response.getEntity();

 JAXBContext context = JAXBContext.newInstance(QueryEngineServiceResponse.class);

 Unmarshaller unmarshaller = context.createUnmarshaller();

 qeResponse = (QueryEngineServiceResponse) unmarshaller.unmarshal(in);

} catch (WebApplicationException e) { e.printStackTrace(); }

 catch (JAXBException e) { e.printStackTrace(); }

List<ConcreteService> queryResults = qeResponse.getConcreteServices();

for(int i = 0; i < queryResults.size(); i++) {

 ConcreteService concService = queryResults.get(i);

 String LTS_URI = concService.getBehavioralSpecificationURI();

 String ENC_URI = concService.getEnactementURI();

 List<String> queryOperations = simpleQuery.getOperationNames();

 for(int j = 0; j < queryOperations.size(); j++) {

 String queryOp = queryOperations.get(j);

 List<Operation> retrievedOpers = concService.getRetrievedOperations(queryOp);

 if (retrievedOpers != null) {

 for(int k = 0; k < retrievedOpers.size(); k++)

 String retrievedOperName = retrievedOpers.get(k).getName();

 }

 }

 List<String> retrievedURIs = concService.getServiceInstancesURIs();

 for(int j = 0; j < retrievedURIs.size(); j++)

 String URI = retrievedURIs.get(j);

}

Figure 5.3 Executing a simple query over the service model.

62

2) The executeAdvancedQueryOverInstances, takes as input an

AdvancedQuery object and produces as output a QueryEngineServiceResponse

object. The code snippet in Figure 5.4 gives an example of how to call the

executeAdvancedQueryOverInstances. The AdvancedQuery object contains

the following information:

 A list of OperationConstraints objects, which contain functional constraints

that should be satisfied by the discovered services. Specifically, an

OperationConstraints object contains the following information:

 An operation name that should match with corresponding names of the

operations of the services that will be returned as a result. Specifically, a

discovered service must provide at least one operation, whose name

comprises the required operation name.

 A list of input (resp. output) parameter names that should match with

corresponding input (resp. output) parameter names that should match with

corresponding input (resp. output) parameter names of the operations of the

discovered services. For each required input (resp. output) parameter name,

a discovered service must provide at least one operation with an input (resp.

output) parameter name that includes the required input (resp. output)

parameter name.

 A list of input (resp. output) parameter types that should match with

corresponding input (resp. output parameter types of the operations of the

discovered services. For each required input (resp. output) parameter type, a

discovered service must provide at least one operation with an input (resp.

output) parameter type that matches with the required input (resp. output)

patameter type.

We assume that the lists have equal number of elements and that elements

stored in the same list position correspond to the same required parameter.

63

A list element may be null in case there are no requirements on the name, or

the type of the parameter.

 A specification of requirements that concern the services that are used by the

discovered services. These requirements may comprise, for instance, the names of

the operations that are called by the discovered services.

As in the case of the executeSimpleQueryOverInstances, the

QueryEngineServiceResponse object that is produced as output from the

executeAdvancedQueryOverInstances includes a list of ConcreteService

objects. The execution of the operation takes place as follows (Figure 5.2(B)):

 Based on the given AdvancedQuery object, an SQL query is generated over the

relations of the AoSBM service model.

 The generated query is executed and a list of ServiceInterface objects is

reconstructed, based on the information that is retrieved from the AoSBM relational

store.

 Finally, the QueryEngineServiceResponse that encapsulates the

reconstructed ServiceInterface objetcs is constructed and returned to the

developer.

5.3 Service Lookup over the Abstractions Model

To enable service lookup over the abstractions model information that is stored in the AoSBM

we provide the following alternatives:

1) The executeSBQLQuery, takes as input a SBQL query and produces as output a

QueryEngineServiceResponse object. The code snippet in Table 5.3 gives an

example of how to call the executeSBQLQuery and navigate through the results.

The QueryEngineServiceResponse object that results from the operation

contains a list of FunctionalAbstraction objects that contain information

regarding the discovered functional abstractions that satisfy the given SBQL query. The

developer may navigate through the information that is included in each

64

FunctionalAbstraction object to get the specification of the abstract interface

that characterizes the functional abstraction, the specification of the represented service

interfaces, the mappings between the abstract interface and the represented service

interfaces, etc.

String opN1 = ”request”;

List<String> iN1 = new ArrayList<String>();

iN1.add(”parameters”);

List<String> iT1 = new ArrayList<String>();

iT1.add(”string”);

List<String> oN1 = new ArrayList<String>();

oN1.add(”parameters”);

List<String> oT1 = new ArrayList<String>();

oT1.add(”string”);

String opN2 = ”get”;

List<String> iN2 = new ArrayList<String>();

iN2.add(”parameters”);

List<String> iT2 = new ArrayList<String>();

iT2.add(”string”);

List<String> oN2 = new ArrayList<String>();

oN2.add(”parameters”);

List<String> oT2 = new ArrayList<String>();

oT2.add(”string”);

OperationConstraints opC1 = new OperationConstraints(opN1, iN1, iT1, oN1, oT1);

OperationConstraints opC2 = new OperationConstraints(opN2, iN2, iT2, oN2, oT2);

List<OperationConstraints> operConstraints = new ArrayList<OperationConstraints>();

operConstraints.add(opC1);

operConstraints.add(opC2);

AdvancedQuery advancedQuery = new AdvancedQuery(operConstraints, null, null);

Response response = client.executeAdvancedQueryOverInstances(advancedQuery);

QueryEngineServiceResponse qeResponse = null;

try {

 InputStream in = (InputStream) response.getEntity();

 JAXBContext context = JAXBContext.newInstance(QueryEngineServiceResponse.class);

 Unmarshaller unmarshaller = context.createUnmarshaller();

 qeResponse = (QueryEngineServiceResponse) unmarshaller.unmarshal(in);

} catch (WebApplicationException e) { e.printStackTrace(); }

 catch (JAXBException e) { e.printStackTrace(); }

List<ConcreteService> queryResults = qeResponse.getConcreteServices();

Figure 5.4 Executing an advanced query over the service model.

65

2) The executeSBQLQuery, takes as input a SBQL query and produces as output a

QueryEngineServiceResponse object. The code snippet in Figure 5.6 gives an

example of how to call the executeSBQLQuery and navigate through the results.

The QueryEngineServiceResponse object that results from the operation

contains a list of FunctionalAbstraction objects that contain information

regarding the discovered functional abstractions that satisfy the given SBQL query. The

developer may navigate through the information that is included in each

FunctionalAbstraction object to get the specification of the abstract interface

that characterizes the functional abstraction, the specification of the represented service

interfaces, the mappings between the abstract interface and the represented service

interfaces, etc.

 Figure 5.5 Lookup operations over the abstractions model.

The execution of the executeSBQLQuery operation takes place in three main steps

(Figure 5.5 (A)):

66

 Based on the given SBQL query, an SQL query is generated over the relations

of the AoSBM abstraction model.

 The generated query is executed and a list of FunctionalAbstraction

objects is reconstructed, based on the information that is retrieved from the

AoSBM relational store.

 Finally, the QueryEngineServiceResponse that encapsulates the

reconstructed FunctionalAbstraction objects is constructed and

returned to the developer.

String sbqlQuery =

” let $db = db(’localhost/mySB’)” + ”\n\n” +

” for $c in $db/servicecollections” + ”\n\n” +

” for $fa in $c/hierarchies/abstractions” + ”\n\n” +

” for $ri in $fa/representativeinterfaces” + ”\n\n” +

” for $nfa in $c/hierarchies/abstractions” + ”\n\n” +

” for $pr1 in $nfa/qproperty” + ”\n\n” +

” where $ri/rsi name like ’%forecast%’ and” + ”\n\n” +

” $pr1/qp name = ’Availability’ and” + ”\n\n” +

” $pr1/qp value = ’High’” + ”\n\n”

” return Abstractions.fullObject”;

Response response = client.executeSBQLQuery(sbqlQuery);

QueryEngineServiceResponse qeResponse = null;

try {

 InputStream in = (InputStream) response.getEntity();

 JAXBContext context = JAXBContext.newInstance(QueryEngineServiceResponse.class);

 Unmarshaller unmarshaller = context.createUnmarshaller();

 qeResponse = (QueryEngineServiceResponse) unmarshaller.unmarshal(in);

} catch (WebApplicationException e) { e.printStackTrace(); }

 catch (JAXBException e) { e.printStackTrace(); }

List<FunctionalAbstraction> abstractions = qeResponse.getFunctionalAbstractions();

if (abstractions != null && abstractions.size() != 0) {

 for(int i = 0; i < abstractions.size(); i++)

 String representativeName = abstractions.get(i).getInterface().getName();

}

Figure 5.6 Executing a SBQL query over the abstractions model.

3) The executeSimpleQueryOverAbstractions, takes as input a

SimpleQuery object and produces as output a

67

QueryEngineServiceResponse object. The code snippet in Figure 5.7 gives an

example of how to call the executeSimpleQueryOverAbstractions and

explore the results. The SimpleQuery object contains the following information:

 A list of operations names that should match with corresponding names of

abstract operations (i.e., the operations of the abstract interfaces that characterize

the discovered functional abstractions), offered by the discovered functional

abstractions. For each required operation name, a discovered functional

abstraction must provide at least one operation, whose name comprises the

required operation name.

 A specification of requirements that concern the services that are used by the

services that are represented by the functional abstractions. These requirements

may comprise, for instance, the names of the operations that are called by the

represented services.

The QueryEngineServiceResponse object that is produced as output includes a

list of ConcreteService objects. Each ConcreteService object contains

information about the services that are represented by the discovered functional

abstractions. Specifically, a ConcreteService object includes:

 The list of the required operation names of the input SimpleQuery object.

 The full specification of the ServiceInterface that is offered by the

represented service.

 A mapping between the required operations and the operations of the interface

that is offered by the represented service.

The execution of the executeSimpleQueryOverAbstractions operation

takes place as follows (Figure 5.5(B)):

 Based on the given SimpleQuery object, a SBQL query is generated over the

relations of the AoSBM abstractions model.

68

 The generated query is executed and a list of FunctionalAbstraction

objects is reconstructed, based on the information that is retrieved from the

AoSBM relational store.

 The ConcreteService objects that contain information about the services

that are represented by the reconstructed FunctionalAbstraction objects

are created and encapsulated in the QueryEngineServiceResponse

object.

4) The executeAdvancedQueryOverAbstractions, takes as input an

AdvancedQuery object and produces as output a

QueryEngineServiceResponse object. The code snippet in Figure 5.8 gives an

example of how to call the executeAdvancedQueryOverAbstractions. The

AdvancedQuery object contains the following information:

 A list of OperationConstraints objects, which contain functional

constraints that should be satisfied by the abstract interfaces of the discovered

functional abstractions. Specifically, an OperationConstraints object

contains the following information:

 An operation name that should match with corresponding names of the

abstract operations, offered by the discovered functional abstractions.

Specifically, a functional abstraction must provide at least one abstract

operation, whose name comprises the required operation name.

 A list of input (resp. output) parameter names that should match with

corresponding input (resp. output) parameter names of the abstract

operations of the discovered functional abstractions. For each required

input (resp. output) parameter name, a discovered functional abstraction

must provide at least one operation with an input (resp. output) parameter

name that includes the required input (resp. output) parameter name.

69

 A list of input (resp. output) parameter types that should match with

corresponding input (resp. output) parameter types of the abstract

operations of the discovered functional abstractions. For each required

input (resp. output) parameter type, a discovered functional abstraction

must provide at least one operation with an input (resp. output) parameter

type that matches with the required input (resp. output) parameter type.

 A specification of requirements that concern the services that are used by the

services that are represented by the discovered functional abstractions. These

requirements may comprise, for instance, the names of the operations that are

called by the represented services.

The QueryEngineServiceResponse object that is produced as output includes a

list of ConcreteService objects that contain information about the services that are

represented by the discovered functional abstractions.

The execution of the executeAdvancedQueryOverAbstractions operation

takes place as follows (Figure 5.5(C)):

 Based on the given AdvancedQuery object, a SBQL query is generated over

the relations of the AoSBM abstractions model.

 The generated query is executed and a list of FunctionalAbstraction

objects is reconstructed, based on the information that is retrieved from the

AoSBM relational store.

 The ConcreteService objects that contain information about the services

that are represented by the reconstructed objects are created and encapsulated in

the QueryEngineServiceResponse object.

70

List<String> operations = new ArrayList<String>();

operations.add(”request”);

operations.add(”get”);

String RQs = null;

SimpleQuery simpleQuery = new SimpleQuery(operations, RQs);

Response response = client.executeSimpleQueryOverAbstractions(simpleQuery);

QueryEngineServiceResponse qeResponse = null;

try {

 InputStream in = (InputStream) response.getEntity();

 JAXBContext context = JAXBContext.newInstance(QueryEngineServiceResponse.class);

 Unmarshaller unmarshaller = context.createUnmarshaller();

 qeResponse = (QueryEngineServiceResponse) unmarshaller.unmarshal(in);

} catch (WebApplicationException e) { e.printStackTrace(); }

 catch (JAXBException e) { e.printStackTrace(); }

List<ConcreteService> queryResults = qeResponse.getConcreteServices();

for(int i = 0; i < queryResults.size(); i++) {

 ConcreteService concService = queryResults.get(i);

 String LTS_URI = concService.getBehavioralSpecificationURI();

 String ENC_URI = concService.getEnactementURI();

 List<String> queryOperations = null;

 if (simpleQuery != null)

 queryOperations = simpleQuery.getOperationNames();

 for(int j = 0; j < queryOperations.size(); j++) {

 String queryOp = queryOperations.get(j);

 List<Operation> retrievedOpers = concService.getRetrievedOperations(queryOp);

 if (retrievedOpers != null) {

 for(int k = 0; k < retrievedOpers.size(); k++)

 String retrievedOperName = retrievedOpers.get(k).getName();

 }

 }

 List<String> retrievedURIs = concService.getServiceInstancesURIs();

 for(int j = 0; j < retrievedURIs.size(); j++)

 String retrievedURI = retrievedURIs.get(j);

}

Figure 5.7 Executing a simple query over the abstractions model.

71

String opN1 = ”request”;

List<String> iN1 = new ArrayList<String>();

iN1.add(”parameters”);

List<String> iT1 = new ArrayList<String>();

iT1.add(”string”);

List<String> oN1 = new ArrayList<String>();

oN1.add(”parameters”);

List<String> oT1 = new ArrayList<String>();

oT1.add(”string”);

String opN2 = ”get”;

List<String> iN2 = new ArrayList<String>();

iN2.add(”parameters”);

List<String> iT2 = new ArrayList<String>();

iT2.add(”string”);

List<String> oN2 = new ArrayList<String>();

oN2.add(”parameters”);

List<String> oT2 = new ArrayList<String>();

oT2.add(”string”);

OperationConstraints opC1 = new OperationConstraints(opN1, iN1, iT1, oN1, oT1);

OperationConstraints opC2 = new OperationConstraints(opN2, iN2, iT2, oN2, oT2);

List<OperationConstraints> opConstraints = new ArrayList<OperationConstraints>();

opConstraints.add(opC1);

opConstraints.add(opC2);

AdvancedQuery advancedQuery = new AdvancedQuery(opConstraints, null, null);

Response response = client.executeAdvancedQueryOverAbstractions(advancedQuery);

QueryEngineServiceResponse qeResponse = null;

try {

 InputStream in = (InputStream) response.getEntity();

 JAXBContext context = JAXBContext.newInstance(QueryEngineServiceResponse.class);

 Unmarshaller unmarshaller = context.createUnmarshaller();

 qeResponse = (QueryEngineServiceResponse) unmarshaller.unmarshal(in);

} catch (WebApplicationException e) { e.printStackTrace(); }

 catch (JAXBException e) { e.printStackTrace(); }

List<ConcreteService> queryResults = qeResponse.getConcreteServices();

Figure 5.8 Executing an advanced query over the abstractions model.

72

73

CHAPTER 6. EVALUATION

6.1 Overview

6.2 Performance and Quality Assessment

6.3 Scalability Assessment

6.4 Conclusion

6.1 Overview

This chapter presents the results of the experiments we have performed in order to evaluate our

distributed service base system.

We have performed experiments with our distributed service base system, based on real data.

Using a set of hardware components and various inputs to our algorithm, we executed a set of

experiments so as to evaluate both the performance and the quality of our method.

We have also performed a set of experiments to measure the mined abstractions’ impact on the

queries’ execution time, in relation to the scaling of the number of services and abstractions.

These experiments are not based on any abstractions mining technique, neither on the algorithm

of [6] nor on our distributed one, but, on the contrary, we loaded synthetic data in the service

base, i.e., synthetically created services and abstractions. In this way we managed to scale up

to rather large number of services/abstractions, so as to be able to evaluate the actual scalability

of abstractions-based querying in general, related to the queries execution time.

74

6.2 Performance and Quality Assessment

To evaluate our approach we used the OWLS-TC benchmark3, which is a collection of services

annotated with OWL-S semantic descriptions. The benchmark also contains a set of queries.

The OWLS-TC benchmark was the source of our experimental data set, i.e., we used our system

to registrate the benchmark’s service descriptions and mine abstractions with our distributed

approach. The OWLS-TC benchmark was also the source of our queries set, which was the

means to evaluate the query execution performance and the quality of the answers returned.

 We chose the latest version, 4.0, of OWLS-TC. We did not exploit the OWL-S semantic

descriptions, on the contrary, we isolated the two folders, containing the WSDL service

descriptions and the queries.

 For the input data set, we isolated the htdocs->wsdl folder, which contains 1076 WSDL

files, each one specifying a service description.

 For the queries data set, we isolated the htdocs->queries folder, which contains 42

queries over the described services. We used the 1.1 version of the set of queries. The

queries are in the form of OWLS files, i.e., files describing the desirable features of the

services.

6.2.1 Description of the Input Data Set

The benchmark’s service descriptions cover a wide thematical domain. In particular, there are

descriptions for services referring to communication, economy, education, food, geography,

medicine, simulation, travel and weapon.

We had to modify the service descriptions slightly, so that they could be parsed by the AoSBM’s

WSDL parser. Figure 6.1 depicts a WSDL snippet comprising some type declarations and a

message. We present this snippet to illustrate the issues that made the initial WSDL files

unsuitable for being parsed by the AoSBM’s parser. Mainly, there were two issues:

 Self-nesting for complex types is not supported. As an example, the complex type

PersonType in Figure 6.1 contains an element of the same type, i.e., PersonType,

which cannot be parsed.

3 http://www.semwebcentral.org/projects/owls-tc

75

 To refer to a declared type from outside the <wsdl:types> declaration element, this

type must be declared, apart from its <xsd:complexType> or

<xsd:simpleType> declaration element, also in a <xsd:element> element. For

example, in the message declaration (<wsdl:message> element), the first part refers

to a Person type, for which there is a corresponding <xsd:element> element. On

the other side, the second part refers to a CompanyType type, for which there is no

such element.

To make the document of Figure 6.1 parsable we had to substitute the PersonType type of

the third element of the declared complex type, with another type, e.g., xsd:string. Also,

we had to add the following <xsd:element> declaration line:

<xsd:element name = “Company” type = “CompanyType”/>

For all the 1076 WSDL files that we used, we had to perform such modifications for making

the files parsable.

<wsdl:types>

 <xsd:element name = “Person” type = “PersonType”/>

 <xsd:complexType name = “PersonType”>

 <xsd:sequence>

 <xsd:element name = “name” type = “xsd:string”/>

 <xsd:element name = “age” type = “xsd:integer”/>

 <xsd:element name = “wife” type = “PersonType”/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:simpleType name = “CompanyType”>

 <xsd:restriction base = “xsd:string”/>

 </xsd:simpleType>

</wsdl:types>

<wsdl:message name = “sendInfo”>

 <wsdl:part name = “person” type = “Person”/>

 <wsdl:part name = “company” type = “CompanyType”/>

</wsdl:message>

Figure 6.1 Example of a WSDL document.

76

6.2.2 Description of the Input Queries

The benchmark, as mentioned, contains a set of OWLS queries. The notion of these queries is

to combine naming, structural and behavioral properties of the searched services, however our

query engine is not tailored to that. Thus, we had to adjust the queries to our query engine

abilities, i.e., form queries into structures that could be passed as input to our query engine

service’s operations. We used the AdvancedQuery structure to form each query, and the

respective operation to execute the queries. Below we detail the process we followed to produce

the advanced queries.

Foreach OWLS query file, we formed a text file containing information able to form an

advanced query. Each OWLS document of the queries folder describes a service offering a

single operation, with a number of input and output parameters and this information is included

in a compact form in the <process:AtomicProcess> element of the OWLS document.

Figure 6.2 presents an example of such a query definition. For each OWLS document, we

extracted the <process:AtomicProcess> element and wrote a text file serving as a form

of advanced query. This was done automatically by an application we developed for this

purpose, however we manually applied an additional modification over the text file. We

illustrate our preprocessing with an example: Figure 6.3 shows an advanced query in text form,

particularly the query derived from Figure 6.2 definition, after the manual modification phase.

As can be inferred, the purpose of our manual intervention, was to keep only meaningful words,

i.e, throw out parts such as “#_” and common words, such as “PROCESS” (or “METHOD”,

”OPERATION”, ”RETURN”, ”GET”, ”SET”, etc in other circumstances). We also separate

the semantical terms by adding an underscore (“_”) character between them. Thus, each

operation or parameter name consists of a set of semantical terms.

<process:AtomicProcess rdf:ID="DVDPLAYERMP3PLAYER_PRICE_PROCESS">

 <service:describes rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_SERVICE"/>

 <process:hasInput rdf:resource="#_MP3PLAYER"/>

 <process:hasOutput rdf:resource="#_PRICE"/>

 <process:hasInput rdf:resource="#_DVDPLAYER"/>

</process:AtomicProcess>

Figure 6.2 Example of an operation’s definition in a OWLS document.

77

Operation:

PLAYERS_PRICES

Input Message Types (2)

MP3_PLAYER

DVD_PLAYER

Output Message Types (1)

PRICE

Figure 6.3 The advanced query corresponding to the example of Figure 6.2, in plain text form.

Based on such a query in text form, we produce a series of advanced queries, each one

corresponding to a combination of elements. Each advanced query comprises two elements; an

operation name and a parameter name (either input or output, but not both). Specifically, each

advanced query comprises, as the operation name, a term of the actual operation name and, as

the input (resp. output) parameter name, a term of the actual input (resp. output) parameter

name. Additionally, we produce advanced queries, each one comprising just the operation name

(a term of the actual operation name) and nothing else. In every produced advanced query, the

parameter’s type is set to null. Figure 6.4 shows the set of advanced queries produced from

Figure 6.3 in text form. Each line represents an advanced query in a brief form, in particular,

the word in the left stands for the operation name, while the word in the right stands for the

message type name (inpur or output). Each line represent an advanced query. The first two

advanced queries comprise only the operation name, while the others comprise the operation

name and a parameter name.

PLAYERS

PRICES

PLAYERS – MP3

PLAYERS – PLAYER

PLAYERS – DVD

PLAYERS – PLAYER

PLAYERS – PRICE

PRICES – MP3

PRICES – PLAYER

PRICES – DVD

PRICES – PLAYER

PRICES – PRICE

Figure 6.4 A representation of the advanced queries produced from text query of Figure 6.3.

78

6.2.3 Experimental Setup

We executed our standalone component on an Intel Dual-Core, 2.00 GHz, 3 GB RAM. The

operating system was Windows 7 Professional. For the service base we employed MySQL

Server 5.5.

For our distributed approach, we used as hardware components the nodes of a cluster of AMD

Dual-Core, 2.2 GHz, 4 GB RAM computers, running Ubuntu 13.04.

In our experiments, we used our distributed abstractions mining tool to produce abstractions

over the 1076 service descriptions that we mentioned before. Note that our algorithm takes four

inputs, apart from the collection of service descriptions and the available nodes:

 the number of available nodes to be used

 the retention threshold

 the distance threshold

 the name extraction technique (LCS or RC)

We experimented on a big variety of combinations of the input values, and chose to present the

most representative ones. We organized our presentation in three sets. For each set, we executed

our tool by keeping constant the two of the first three inputs listed above, while varying the

other two. Thus, each time, a different database instance was produced. Subsequently, we posed

queries over these instances, using our query engine service. We measured our system’s mining

and querying efficiency, as well as the quality of the retrieved answers.

Measurement of the quality of the query results

 We analysed how, based on a OWLS query, we extract a set of advanced queries, like the one

depicted in Figure 6.4. For each OWLS query, we posed all these advanced queries to the

system, using the executeAdvancedQueryOverAbstractions() operation of our

query engine service. We also posed the same queries using the

executeAdvancedQueryOverInstances() operation, reminding that this operation

matches queries against concrete services instead of service abstractions. In both cases, we

collected the answers from each advanced query and formed a union of them. Let

retrievedAnswers be the union of the answers returned by the

79

executeAdvancedQueryOverAbstractions() operation, and relevantAnswers be

the union of the answers returned by the executeAdvancedQueryOverInstances()

operation. We calculated the precision and recall values, as the measures of quality of the

answers to the OWLS query. In particular, we applied the following well-known formulas:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∣ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ∣

∣ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ∣

𝑅𝑒𝑐𝑎𝑙𝑙 =
∣ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ∣

∣ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ∣

We applied the steps mentioned in the previous paragraph to each of the 42 OWLS queries

using a tool we developed for this purpose. Finally, we aggregated all queries measurements,

producing an average value and a standard deviation of them, which are the values we actually

present in this chapter. In some cases, the value of a query’s quality metric is not defined

mathematically, thus leading us to exclude this value from the calculation of the average value

and the standard deviation.

Measurement of the query execution time

Similar to our query results quality presentation, we present the average execution time of the

42 queries, as a representative value for the entire query workload. Additionally, we present the

measurements of what we call the “search” time, which is a part separated from the total query

execution time. Basically, the query execution consists of two discrete phases:

 In case of querying over abstractions it comprises, in the following time order:

 the phase of SQL querying, till the abstractions’ table keys are found, i.e.,

the relevant functional abstractions are found

 the phase of SQL table joining to compose the FunctionalAbstraction

objects, that will be finally returned.

 In case of querying over instances (concrete services), it comprises, in the following

time order:

80

 the phase of SQL querying till the serviceinterfaces’ table keys are

found, i.e., the relevant concrete service interfaces are found

 the phase of SQL table joining to compose the ServiceInterface objects,

that will be finally returned.

In both cases, we call “search” time, the time consumed for the first phase, while we call “non

search” time, the time consumed for the second phase.

The presented time durations were calculated in the following way: we executed our distributed

abstractions mining tool once per case, as we relied on an experiments-dedicated Ubuntu

computers cluster. On the other side, we executed the 42 queries 20 times per case, and present

the average query time, as we relied on a typical Windows platform.

6.2.4 Findings

Hereafter, we present our experimental findings. For each investigated impact (set of

experiments), we give the results of the two different representative name extraction techniques

by presenting a pair of charts, namely:

a) for the technique which uses the longest common substring, (LCS), and

b) for the technique which just picks randomly one of the names of the two abstracted

interfaces, (RC)

For each technique, we measured the distributed abstractions mining execution time, the

precision and recall of the query results, as well as the query execution time.

1st set of experiments: the impact of the number of nodes

We investigated the impact of the number of hardware components participating in the

distributed approach. We fixed the abstractions retention threshold to 0.9 and the distance

threshold to 0.2. For the number of hardware components to be used, we gave the values 2, 4,

8.

 Figure 6.5 depicts the impact of the number of nodes on the abstractions mining

execution time.

81

The findings show that the time decreases when the number of nodes increases, almost

proportionally. An increase in the number of used nodes reduces proportionally the time

spent by the leaf nodes, but on the other hand, introduces more steps (tree nodes) to the

root. However, the additional steps are not so much, so as to overturn the time gained

during the leaf level processing.

We also clearly observe that LCS is much faster than RC. A fact regarding the two

methods, LCS and RC, is that LCS extracts rather small representative names. On the

contrary, RC retains the names intact, this causing a serious delay in the name distance

calculations.

 Figure 6.6 depicts the impact of the number of nodes on the precision of the query

results.

For RC, we observe that the precision decreases when the number of nodes increases.

An increase in the number of used nodes introduces more pruning steps, this causing

less abstractions retained. Thus the quality of the results degrades. For LCS, a constant

absolute precision is observed, with its values being equal to 1. We would expect it to

decrease, however, this finding may be due to our small data set.

Comparing the precision values for the two methods, we find, as expected, that LCS

gives better results. This happens beacause the names of all the represented objects

(interfaces, operations, e.g.) of the abstractions that are mined using LCS, are relevant

to the respective representative objects’ names. RC extracts the representative name by

randomly choosing one of the two represented ones, thus meaning that, if an abstraction

matches a user’s query, not all of its represented interfaces, which will be also retrieved,

are relevant to the query.

 Figure 6.7 shows the impact of the number of nodes on the recall of the query

results.

82

Quite medium recall values, as well as a values’ decrease with the increase of the

number of nodes is observed for both methods. As also mentioned in the case of

precision values, the results quality is expected to degrade as the number of nodes

increases, due to the introduction of more pruning steps, which causes less abstractions

to be retained.

We also find that RC’s values are generally bigger than those of LCS; LCS extracts too

cropped representative names, that cannot be easily matched with the names the user

includes in his query. On the contrary, RC does not crop the initial names, therefore,

despite the small relativeness of some of the represented services with the representative

one, it gives more chances to query-relevant services for being retrieved.

Regarding LCS, we see that the recall values in cases of 4 and 8 used nodes do not much

differ. An explanation for this could be that the numbers of retained abstractions in cases

of 4 and 8 nodes used, do not much differ, and, particularly they are both quite small (if

they were both big, they would probably differ more). This is also justified by the query

execution time behavior, which we discuss in the next paragraph. Since we expect LCS

to mine abstractions with quite low children distance threshold, we conclude that most

of the abstractions mined by LCS have a distance threshold value which is smaller than

the 0.2 value that we set.

 Figure 6.8 shows the impact of the number of nodes on the query execution time.

We generally observe the time values decreasing with the increase in the number of

nodes; less abstractions retained means less time consumed for searching, as the

searching is applied to the abstractions and not to the concrete services.

We also find LCS faster than RC. Actually, LCS should be faster, due to the small

extracted names; it should be faster in terms of search time, because sql name

comparisons will delay, and it should be quicker also in terms of the non-search time,

i.e., the composition time, because smaller names would need to be retrieved from the

database.

83

We find RC leading to rather expected results, with the time values almost constantly

decreasing with the increase in the number of nodes. Nonetheless, LCS would behave

the same, if it was not for the observed misconduct in the case of 8 nodes used and,

actually, this is confirmed by all the three presented charts; even the search time chart

shows a decrease, but not to the expected degree. This probably relates to the previous

paragraph’s respective finding, which, as explained, may occur due to the little

difference between the retained abstractions, in cases of 4 and 8 used nodes.

84

(a) LCS (b) RC

Figure 6.5 The impact of the number of nodes on the abstractions mining execution time.

(a) LCS (b) RC

Figure 6.6 The impact of the number of nodes on the precision of the query results.

(a) LCS (b) RC

Figure 6.7 The impact of the number of nodes on the recall of the query results.

8150

3823

1818

0

2000

4000

6000

8000

10000

2 4 8

ti
m

e
(s

ec
o

n
d

s)

of nodes

12618

6945

3789

0

5000

10000

15000

2 4 8

ti
m

e
(s

ec
o

n
d

s)

of nodes

1,00 1,00 1,00

0,00

0,20

0,40

0,60

0,80

1,00

2 4 8

P
re

ci
si

o
n

of nodes

0,89
0,82

0,75

0,00

0,20

0,40

0,60

0,80

1,00

2 4 8

P
re

ci
si

o
n

of nodes

0,49
0,38

0,35

0,00

0,20

0,40

0,60

0,80

1,00

2 4 8

R
ec

al
l

of nodes

0,58
0,49

0,38

0,00

0,20

0,40

0,60

0,80

1,00

2 4 8

R
ec

al
l

of nodes

85

(a1) LCS (b1) RC

(a2) LCS (b2) RC

(a3) LCS (b3) RC

Figure 6.8 The impact of the number of nodes on query execution time.

2nd set of experiments: the impact of the abstractions retention threshold

We investigated the impact of the abstractions retention threshold. We fixed the number of

nodes to 8 and the distance threshold to 0. Actually, the two thresholds interact during the

overall distributed mining process and the pure impact of each of them is affected by the other.

Setting the distance threshold to 0 leads to the distance threshold not affecting the overall

3,52

2,79 2,80

2,99

0,00

1,00

2,00

3,00

4,00

2 4 8

A
vg

 q
u

er
y

ti
m

e
(s

ec
o

n
d

s)

of nodes

over abstractions over instances

0,40

0,79 0,81

0,00

0,50

1,00

2 4 8

of nodes

Percentage of queries faster executed
over abstractions than over instances

43,78
26,03 23,62

138,01

0,00

50,00

100,00

150,00

2 4 8

A
vg

 s
ea

rc
h

 q
u

er
y

ti
m

e
(m

ill
is

ec
o

n
d

s)

of nodes

over abstractions over instances

4,55
3,81

2,70

2,99

0,00

1,00

2,00

3,00

4,00

5,00

2 4 8

A
vg

 q
u

er
y

ti
m

e
(s

ec
o

n
d

s)

of nodes

over abstractions over instances

0,21
0,33

0,76

0,00

0,50

1,00

2 4 8

of nodes

Percentage of queries faster executed
over abstractions than over instances

49,32
32,27 20,92

138,01

0,00

50,00

100,00

150,00

2 4 8

A
vg

 s
ea

rc
h

 q
u

er
y

ti
m

e
(m

ill
is

ec
o

n
d

s)

of nodes

over abstractions over instances

86

distributed mining process, since every time the distance between the two abstracted interfaces

of an abstraction is examined, it will be found equal or bigger than 0, thus the child abstractions

will be retained and the parent abstraction will be thrown away. For the retention threshold, we

gave the values 0.33, 0.50, 0.66, 0.83, 1.00.

 Figure 6.9 shows the impact of the abstractions retention threshold on the

abstractions mining execution time.

There is found an increase in the consumed time as the abstractions retention threshold

increases. For our distributed process, bigger proportion of abstractions’ retention

means more abstractions retained at each node, thus more abstractions passed to the

parent node. This results to each node having to process more abstractions, i.e., the

overall processing time increases.

Another point is that the curves’ gradient is not proportional to the increase of the

abstractions retention threshold, and this can be due to the fact that a part of the

consumed time regards the initial abstractions mining performed by the leaf nodes,

which is the same in all cases. Also, the pruning process adds an overhead, thus in cases

of smaller retention threshold, i.e, more pruning, the overhead will be bigger.

LCS is much faster than RC, for the reasons we mentioned earlier.

 Figure 6.10 depicts the impact of the abstractions retention threshold on the

precision of the query results.

In case of RC, we observe a slight increase in the precision values, as the retention

threshold increases. This happens because, bigger proportion of abstractions retention

means more abstractions retained, thus the results’ quality upgrades.

We find again LCS giving better results than RC, in particular, the observed precision

values are equal to 1, independently of the change in the value of the abstractions

retention threshold.

87

 Figure 6.11 depicts the impact of the abstractions retention threshold on the recall

of the query results.

The two methods’ behavior is much similar in this occasion; as explained in the previous

bullet, an increase in the number of retained abstractions means better quality of the

query results, the recall values increase with the increase of the retention threshold.

The precision values in case of RC are generally bigger than those in case of LCS, an

expected finding that we explained earlier..

 Figure 6.12 shows the impact of the abstractions retention threshold on the query

execution time.

First of all, we observe that, for both methods, the pure search query time behaves in a

rather expected manner, increasing, at an almost constant rate, as the retention

threshold’s value increases. This is explained by the fact that there are more abstractions

retained, thus more abstractions to be searched.

Secondly, the indicated by the (b3) chart change rate, is confirmed by the (b2) one but

not quite confirmed by the (b1) chart. Additionally, the (a3) chart is not quite confirmed

by neither the (a1) chart nor the (a2) chart. Another point is that, according to (b1) and

(b2) charts, when the threshold’s value exceeds 0.33, the query execution time exceeds

the respective one consumed by querying over instances. Later on, we explain some of

the reasons that cause this kind of findings.

Another finding is that, as expected, LCS leads to a considerably faster query execution

time than RC, both in terms of total time and search time.

88

(a) LCS (b) RC

Figure 6.9 The impact of the abstractions retention threshold on the abstractions mining

execution time.

(a) LCS (b) RC

Figure 6.10 The impact of the abstractions retention threshold on the precision of the query

results.

(a) LCS (b) RC

Figure 6.11 The impact of the abstractions retention threshold on the recall of the query

results.

1513
1715 1844

2015 2036

0

500

1000

1500

2000

2500

0.33 0.50 0.66 0.83 1.00

ti
m

e
(s

ec
o

n
d

s)

abstractions retention threshold

2840
3631

4289
4814 5086

0

2000

4000

6000

0.33 0.50 0.66 0.83 1.00

ti
m

e
(s

ec
o

n
d

s)

abstractions retention threshold

1,00 1,00 1,00 1,00 1,00

0,00

0,20

0,40

0,60

0,80

1,00

0.33 0.50 0.66 0.83 1.00

P
re

ci
si

o
n

abstractions retention threshold

0,69 0,70 0,70
0,81

0,73

0,00

0,20

0,40

0,60

0,80

1,00

0.33 0.50 0.66 0.83 1.00

P
re

ci
si

o
n

abstractions retention threshold

0,11
0,30 0,28

0,37 0,39

-0,20

0,00

0,20

0,40

0,60

0,80

1,00

0.33 0.50 0.66 0.83 1.00

R
ec

al
l

abstractions retention threshold

0,20
0,37 0,34 0,34

0,46

0,00

0,20

0,40

0,60

0,80

1,00

0.33 0.50 0.66 0.83 1.00

R
ec

al
l

abstractions retention threshold

89

(a1) LCS (b1) RC

(a2) LCS (b2) RC

(a3) LCS (b3) RC

Figure 6.12 The impact of the abstractions retention threshold on query execution time.

3rd set of experiments: the impact of the distance threshold

We investigated the impact of the represented interfaces distance threshold. We fixed the

number of nodes to 8 and the abstractions retention threshold to 0.83. For the distance threshold,

we gave the values 0.00, 0.16, 0.33, 0.50, 0.66.

1,63

2,94 2,46 2,75

3,09

2,99

0,00

1,00

2,00

3,00

4,00

0,33 0,50 0,66 0,83 1,00

A
vg

 q
u

er
y

ti
m

e
(s

ec
o

n
d

s)

abstractions retention threshold

over abstractions over instances

2,14

3,45 3,42 3,39
4,04

2,99

0,00

2,00

4,00

6,00

0,33 0,50 0,66 0,83 1,00

A
vg

 q
u

er
y

ti
m

e
(s

ec
o

n
d

s)

abstractions retention threshold

over abstractions over instances

0,88

0,55 0,50 0,43 0,40

0,00

0,50

1,00

0,33 0,50 0,66 0,83 1,00

abstractions retention threshold

Percentage of queries faster executed
over abstractions than over instances

0,93
0,74

0,90
0,71 0,69

0,00

0,50

1,00

0,33 0,50 0,66 0,83 1,00

abstractions retention threshold

Percentage of queries faster executed
over abstractions than over instances

14,16 17,13 20,87 22,97 27,11

138,01

0,00

50,00

100,00

150,00

0,33 0,50 0,66 0,83 1,00

A
vg

 s
ea

rc
h

 q
u

er
y

ti
m

e
(m

ill
is

ec
o

n
d

s)

abstractions retention threshold

over abstractions over instances

18,97 21,78 25,79 28,58 33,04

138,01

0,00

50,00

100,00

150,00

0,33 0,50 0,66 0,83 1,00

A
vg

 s
ea

rc
h

 q
u

er
y

ti
m

e
(m

ill
is

ec
o

n
d

s)

abstractions retention threshold

over abstractions over instances

90

 Figure 6.13 depicts the impact of the distance threshold on the abstractions mining

execution time.

Both methods behave normally; the execution time decreases as the distance threshold

increases. An increase in the distance threshold’s value causes more children

abstractions being pruned (or else, more parents retained), thus meaning less

abstractions retained.

Again, we find that LCS is significantly faster than RC.

A more close look at the findings concerning LCS reveals that, above a specific value

of the distance threshold, no significant changes in the time values happen. Actually,

this is expected to be observed not only in case of the abstractions mining execution

time, but in all cases of our metrics. The reason for that is that there should normally be

a limit in the distance threshold’s value, above which almost all parent-children

abstraction structures will have their children pruned. This, in conjunction with the fact

that there is a priority in the application of the two thresholds criteria, i.e., the distance

threshold is firstly applied, leads, especially in cases of big distance threshold values, to

the pruning of an abstractions hierarchy terminate, even if the number of retained

abstractions is not even close to the number of abstractions that are dictated to be

retained. Thus, when the distance threshold’s value reaches that limit, the number of

retained abstrations will be abruptly reduced to a very small number, not likely changed

any more.

We observe, as we would expect, that this limit is lower for LCS than for RC; RC

chooses entire names as representative names, and this leads to more heterogeneous

abstractions, as the abstractions mining process goes on to higher levels, i.e.,

abstractions not actually representing the services they are supposed to represent. On

the contrary, LCS uses parts of all services’ (and operations’, messages’, etc.) names to

compose representative names, thus mining more homogeneous abstractions. Therefore,

most abstractions mined by LCS have a lower children distance threshold, than those

mined by RC.

91

 Figure 6.14 depicts the impact of the distance threshold on the precision of the query

results.

Concerning RC, we observe a small decrease in the precision values, as the distance

threshold increases, which is an expected finding.

Again, we observe the precision values for LCS being constantly 1, not affected by the

change in the distance threshold.

 Figure 6.15 depicts the impact of the distance threshold on the recall of the query

results.

The two methods behave quite differently in this case; while for RC we observe a slight

decrease in the recall values as the distance threshold increases, for LCS we observe a

significant decrease. Moreover, for LCS, we observe that when the distance threshold’s

value reaches a limit, around 0.50, there is an abrupt reduction of the recall values to a

disappointing level. We also see that, above this limit, no significant changes to the

recall values happen. This phenomenon, regarding the distance threshold’s limit and

why it is lower for LCS, was explained earlier.

 Figure 6.16 shows the impact of the distance threshold on the query execution time.

We find that, for both methods, the pure search query time behaves as expected,

decreasing as the retention threshold’s value increases. The (a3) and (b3) charts’

indications are almost confirmed by the rest of the charts, except for the fact that the

little changes in (a3) and (b3), correspond to practically no changes in the other charts.

Concerning LCS, we observe that, above value 0.50 of the distance threshold, all

metrics’ values are only slightly affected by the threshold’s further increase. This is not

observed in RC’s charts, confirming our expectations regarding the distance threshold’s

limit and why it is lower for LCS. In this case we conclude that, for LCS, this limit must

92

be inside the distance threshold values’ range that we experimentally used, while, for

RC, must be outside.

(a) LCS (b) RC

Figure 6.13 The impact of the distance threshold on the abstractions mining execution time.

(a) LCS (b) RC

Figure 6.14 The impact of the distance threshold on the precision of the query results.

 (a) LCS (b) RC

Figure 6.15 The impact of the distance threshold on the recall of the query results.

2015 1912 1731
1520 1488

0

500

1000

1500

2000

2500

0.00 0.16 0.33 0.50 0.66

ti
m

e
(s

ec
o

n
d

s)

distance threshold

1,00 1,00 1,00 1,00 1,00

0,00

0,20

0,40

0,60

0,80

1,00

0.00 0.16 0.33 0.50 0.66

P
re

ci
si

o
n

distance threshold

0,81 0,77 0,79 0,77 0,73

0,00

0,20

0,40

0,60

0,80

1,00

0.00 0.16 0.33 0.50 0.66

P
re

ci
si

o
n

distance threshold

0,37
0,29

0,27

0,05 0,04

-0,20

0,00

0,20

0,40

0,60

0,80

1,00

0.00 0.16 0.33 0.50 0.66

R
ec

al
l

distance threshold

0,34 0,35 0,37 0,31 0,30

0,00

0,20

0,40

0,60

0,80

1,00

0.00 0.16 0.33 0.50 0.66

R
ec

al
l

distance threshold

4814
3825 3581 3167

2588

0

2000

4000

6000

0.00 0.16 0.33 0.50 0.66

ti
m

e
(s

ec
o

n
d

s)

distance threshold

93

(a1) LCS (b1) RC

(a2) LCS (b2) RC

(a3) LCS (b3) RC

Figure 6.16 The impact of the distance threshold on query execution time.

Additional explanations concerning the experimental findings

We have mentioned that the query process can be divided in two phases, the search and the

non-search (composition) phase.

Thus, the main difference between the two querying methods is the additional composition of

the representative interface and the interfaces mappings, in the case of querying over

3,24

2,54
2,42

1,30 1,28

2,99

0,00

1,00

2,00

3,00

4,00

0 0,16 0,33 0,5 0,66

A
vg

 q
u

er
y

ti
m

e
(s

ec
o

n
d

s)

distance threshold

over abstractions over instances

0,60
0,83 0,81

0,93 0,93

0,00

0,50

1,00

0 0,16 0,33 0,5 0,66

distance threshold

Percentage of queries faster executed
over abstractions than over instances

3,13 3,06

2,74
2,25

2,50

2,99

0,00

1,00

2,00

3,00

4,00

0 0,16 0,33 0,5 0,66

A
vg

 q
u

er
y

ti
m

e
(s

ec
o

n
d

s)

distance threshold

over abstractions over instances

0,55
0,71 0,71

0,86 0,90

0,00

0,50

1,00

0 0,16 0,33 0,5 0,66

distance threshold

Percentage of queries faster executed
over abstractions than over instances

26,08 22,82 19,40 15,06 13,31

138,01

0,00

50,00

100,00

150,00

0 0,16 0,33 0,5 0,66

A
vg

 s
ea

rc
h

 q
u

er
y

ti
m

e
(m

ill
is

ec
o

n
d

s)

distance threshold

over abstractions over instances

29,70 26,46 22,30 16,17 16,25

138,01

0,00

50,00

100,00

150,00

0 0,16 0,33 0,5 0,66

A
vg

 s
ea

rc
h

 q
u

er
y

ti
m

e
(m

ill
is

ec
o

n
d

s)

distance threshold

over abstractions over instances

94

abstractions. Approximately, this time overhead is proportional to the total number of concrete

services that the returned abstractions represent.

In the small-scale experiments performed with OWL-TC benchmark, we found that, in both

querying cases, the proportion of the time consumed during the first phase is quite small,

compared with the overall consumed time. We measured these proportions for all queries in all

experiments, and we present the average values. As Figure 6.17 points out, only a 4.6% of the

overall time is consumed during the first phase in case of querying over instances. An even

much smaller percentage, 0.8% of the overall time, is consumed during the first phase in case

of querying over abstractions. As we can see, the first phase, in case of querying over instances,

proportionally lasts almost 6 times more than the respective one in case of querying over

abstractions. Figure 6.18 depicts how many times bigger the non-search time is, than the search

time, in the two querying cases.

All the aforementioned findings show that, the quicker search time that we expect for the

querying over abstractions method, comes along with an overhead to the non-search time. This

implies that the clear difference observed in search times, between the two querying methods,

may not be observed in total times, and perhaps, in some cases, the total time consumed by the

querying over abstractions method may exceed the total time consumed by the querying over

instances method.

Figure 6.17 Comparing the pure search time with the total time consumed for querying.

0,8

4,6

100

100

0 20 40 60 80 100

querying over abstractions

querying over instances

total time

search time

95

Figure 6.18 The quotient of the non-search time / total time, in the two querying cases.

In our experiments, we observed some unexpected findings, e.g., querying over abstractions

being slower than querying over instances. The explanation of these phenomena lies in the

combination of three main facts:

 The time overhead of the querying over abstractions method, which we described

earlier.

 The high deviation of the number of services returned by each query. For instance, the

querying over instances method returns 161 services on average, with a standard

deviation of 283 services.

 The fact that not all 42 queries are uniformly affected by a change in a threshold’s value

of our experiments. By this we mean that the proportion of resulted services that each

query produces, can significantly change, owing to a change in a threshold’s value. The

problem for us is that, measuring the mathematical average query execution time of the

42 queries, we consider each query execution having the same importance, not taking

into consideration the very different number of services each query returns. The 42

queries are not equally affected, in fact, what the most affected queries are, plays a

critical role; if the queries that usually (in executions with other threshold values)

retrieve big numbers of services are affected the most, this may lead to unexpectable

findings. Thus, the average value can be easily affected by a few overweighted queries.

 The small scale of our data set. An important issue comes from the experiments towards

scalability, presented in section 6.3. We observe that, no matter what the

abstractions/services ratio is, the more the number of registered services decreases, the

124

21

0 20 40 60 80 100 120 140

querying over abstractions

querying over instances

non-search time / search time

96

much closer the querying over abstractions time becomes to the corresponding time of

querying over instances. This implies that, in the case of the 1076 services, which we

use in these experiments, the difference in the two querying methods’ execution times

could be quite small or non-existent.

6.3 Scalability Assessment

Description of the Input Data Set

The input data we have used in these sets of experiments were synthetically produced data. We

developed a data generator for this purpose. The generator takes as input the number of services

and the number of abstractions, and creates, for each of our service base’s relations, a text file

consisting of synthetic records, according to the input parameters. We also manually changed

some records to fit our query needs. Specifically, in the ServiceInterface’s text file, we

changed some records’ name to weather, in Operation’s text file we changed some records’

name to getHumidity some others’ to getTemperature. We did so because, the query we used

for our experiments comprises the aforementioned terms.

Description of the Input Queries

We used our SimpleQuery class to query the service base. In particular, we created a simple

query to search for services offering 2 operations, one whose name contains the term

getTemperature and one whose name contains the term getHumidity.

Experimental Setup and Findings

We executed our experiments on an Intel Dual-Core, 2.00 GHz, 3 GB RAM. The operating

system was Windows 7 Professional. For the service base we employed MySQL Server 5.5.

We organized our experiments in two sets, which are briefly described below. In both sets we

compare querying over service abstractions with querying over concrete service descriptions,

while varying different parameters. Further details concerning the experiment setup for each

set of experiments (operations per service, in/our parameters per operation, required disk space)

are given in Table 6.1. We performed each experiment 10 times and we report the average

97

execution times. Figure 6.19 gives the results that we obtained; the reported numbers are the

average values.

 1st set of experiments: The impact of scaling the number of services and the number

of abstractions

We varied the number of service abstractions from 5 * 103 to 106 and the number of

service descriptions from 5 * 104 to 107; hence, each service abstraction represented 10

services.

 2nd set of experiments: The impact of scaling the number of services

The number of stored abstractions was 104, while the number of service descriptions

ranged from 5 * 104 to 107; thus, the number of represented services per abstraction

varied from 5 to 1000.

Table 6.1 Experimental setup for query execution performance towards scaling.

1st set of experiments data set properties

service abstractions 5 * 103 104 5 * 104 105 5 * 105 106

concrete services 5 * 104 105 5 * 105 106 5 * 106 107

represented services per abstraction 10

operations per service 3

in parameters per operation 2

out parameters per operation 2

overall disk space (MB) 159 325 1700 3451 17920 37478

2nd set of experiments data set properties

service abstractions 104

concrete services 5 * 104 105 5 * 105 106 5 * 106 107

represented services per abstraction 5 10 50 100 500 1000

operations per service 3

in parameters per operation 2

out parameters per operation 2

overall disk space (MB) 171 325 1587 3205 16486 33382

Concerning the query over concrete services, in both sets of experiments (Figure 6.19 (a) and

(b)), we observe that the execution time increases with the number of concrete service

descriptions stored in the service base. Concerning the query over abstractions, in the 1st set of

98

experiments, the execution time increases with the number of stored service abstractions. On

the other hand, in the 2nd set of experiments, the execution time increases with the size of the

result; the number of represented services for the service abstractions that are returned by the

query varies from 5 to 1000. In both sets of experiments querying over service abstractions is

much faster than querying over concrete service descriptions. More specifically, in the 1st set

of experiments, querying over service abstractions is 88% to 99% faster than querying over

concrete service descriptions. Similarly, in the 2nd set of experiments, querying over service

abstractions is 90% to 99% faster than querying over concrete service descriptions.

Figure 6.19 Querying over abstractions vs. querying over instances.

99

6.4 Conclusion

Performance and Quality

There normally exists an inherent trade-off in trying to improve the consumed time, both in

cases of abstractions mining execution and query execution, while retaining the quality of the

query results in a satisfying level. Our experimental findings quite justify our efforts to confront

this issue.

In general, we found that we can tune the three inputs of our tool, namely the number of nodes,

the abstractions retention threshold and the distance threshold, so as to reduce the abstractions

mining and query execution times, while obtaining query results of good quality. In fact, the

abstractions mining execution time significantly decreases, the query execution time generally

decreases, and the query results quality is bearably degraded. Some observed unexpected

findings, mainly regarding the query execution time values, are due to the limited number and

variety of our input service descriptions, and most of all, the high diversity of the applied

queries.

We briefly denote the three thresholds’ impact:

 Number of nodes

An increase in the number of used nodes:

 enhances parallelism, thus the abstractions mining execution time is

significantly reduced

 introduces more pruning steps, which causes less abstractions being retained,

thus

 the query execution time decreases

 the query results’ quality decreases

 Abstractions retention threshold:

An increase in the abstractions retention threshold:

 retains more abstractions to be processed by each internal node, so the

abstractions mining execution time increases

100

 increases the final number of retained abstractions, thus

 the query execution time increases

 the query results’ quality increases

 Distance threshold:

An increase in the distance threshold’s value

 retains less abstractions to be processed by each internal node, so the

abstractions mining execution time decreases

 decreases the final number of retained abstractions, thus

 the query execution time decreases

 the query results’ quality decreases

However, there is normally a limit in the distance threshold’s value, above which, no

significant changes happen.

Based on the aforementioned findings, we come to the conclusion that, given a fixed number

of nodes, the combination of values of the two thresholds, that should be specified in order to

achieve better results, has to be quite small for the distance threshold, preferably in the range

[0.1, 0.3], and quite high for the abstractions retention threshold, preferably in the range [0.7,

0.9]. The exact values’ specification depends a lot on the collection of service descriptions that

have to be processed, especially on the level of thematical diversity among services. A practical

approach to this issue, is that the administrators create a sample collection out of their entire

collection of service descriptions. As a preprocessing step, our system could be tried with the

sample data set and using a set of different combinations of input values, thus finding the

combination which best fits the administrators’ needs.

We briefly denote the differences between the LCS and the RC method:

 Distributed abstractions mining execution time:

The critical part concerns the names’ distance calculations. The LCS method extracts

smaller names, thus the mining process is quicker than the RC method. Moreover, the

more calculations are executed, the bigger the difference between the two methods’

execution time becomes. We have more calculations when the number of nodes

101

increases, the abstractions retention threshold increases and the distance threshold

decreases.

 Query results precision:

The LCS method mines abstractions with their representative names being more

relevant to the corresponding represented ones, than in case of RC method happens.

Thus, an application of the LCS method leads to a better precision of the query results,

in fact, a constant absolute precision is observed.

 Query results recall:

The LCS method extracts too cropped representative names, that cannot be easily

matched with the names the user includes in his query. The RC method, when applied,

leads to a better recall of the query results since, despite the small relativeness of some

of the represented services with the representative one, it gives more chances to query-

relevant services for being retrieved.

 Query execution time:

Because of the small representative names, the LCS method leads to quicker query

execution, than the RC method does.

Additionally, the two methods differ in that the aforementioned limit in the distance threshold

value, will generally be smaller in the case of LCS method. That happens because the

abstractions mined by the LCS method are more homogeneous, i.e., there is a bigger relevance

between the representative and the represented interfaces.

Overall, we find the LCS method much more efficient that the RC method. In particular, the

RC method gives better results only in terms of the recall of the query results, while the LCS

method leads to much quicker execution times and much better precision of the query results.

102

Scalability

Our substantial experimental finding is that, the more the number of registrated services

increases, the much more quicker querying over abstractions becomes, compared with querying

over concrete services. Regarding an ultra large scale of services, the results are rather

impressive.

103

CHAPTER 7. CONCLUSION AND ADDITIONAL

CHALLENGES

7.1 Conclusion

7.2 Additional Challenges

7.1 Conclusion

Service-Oriented Computing (SOC), despite emerging as a very promising trend for application

development, has failed to be widely used. The main reason for that is the limited efficiency

and effectiveness of the current search technologies; structured queries, which mainly concern

a developer, are not offered, while search time is high, since answering a query requires

matching it against all the services, thus meaning that search time scales with the number of

services.

Abstraction-Oriented Service Base Management (AoSBM) introduces a clustering technique;

the summaries that characterize the clusters are called service abstractions. A service

abstraction represents a group of services that have similar functional properties (operations,

inputs, outputs, etc.). The lookup queries are matched against service abstractions, thus the

query execution time scales with the number of service abstractions, instead of scaling with the

number of service descriptions.

We built upon the notion of service abstractions and the abstractions mining algorithm used in

AoSBM to facilitate the organization of large unstructured collections of service descriptions

and the execution of service lookup queries. More specifically, we developed a service

104

discovery facility that we called service base. The main constituents of the service base are the

following;

 A novel, scalable distributed abstractions mining facility that makes the clustering of large

collections of service descriptions feasible.

 A user-friendly query engine facility that enables the execution of service lookup queries

over abstractions. Moreover, we developed a Web service that provides access to the

query engine and allows using the service base in a distributed setting

We experimentally tested our system for scalability, performance and quality of query results.

 For scalabilty, using an ultra large scale of synthetic data, we found that, the more the

number of registrated services increases, the much faster the querying over abstractions

is, than querying over concrete services.

 For performance and quality of query results, using a benchmark of 1076 real-world

service descriptions, we found that our approach suggests a considerable solution to the

aforementioned issues, besides the normal trade-off in trying to improve both

performance and quality.

7.2 Additional Challenges

The baseline system (AoSBM) accompanied with our distributed abstractions mining approach

is aimed at improving the overall process of organizing Web services on the purpose of quicker

and qualitative service retrieval. This approach, as illustrated in our experiments, improves the

query execution time, while returning satisfactory results in terms of their quality. However,

our experimental findings reveal a number of challenges and potential future improvements

regarding the abstractions mining execution time, the query execution time and the quality of

the query results. Hereafter, we present some of them, starting from the more straightforward

ones, i.e., those that can be realized without radical changes.

The division of the services collection into subcollections, prior to their distribution to the

computer nodes during the distributed abstractions mining process, could not be arbitrary.

105

Specifically, a fast clustering technique could be applied to the initial collection, which would

divide it into clusters of similar services. There are many chances that this will improve the

quality of the retrieved query results, both in terms of precision and recall, since it would

increase the homogeneity of the abstractions mined by the leaf computer nodes.

A challenge for improving the query execution time comes from the experimental findings; As

indicated in the evaluation chapter, the pure search query time metric, behaves as expected; in

all sets of our experiments, the querying over abstractions method’s values have an almost

constant rate of increase or decrease, and are many times less than the respective values of the

querying over instances method. However, the behavior of the total query execution time

metric, is not enough tailored to this. We explained that this misconduct is due to the additional

load of the querying over abstractions method, which is the composition of the representative

interface and the interfaces mappings. Thus, for users not concerning about software component

adaptation, and moreover, can search themselves to find the results’ elements mapping their

query elements, this additional load could be alleviated.

Moreover, the querying over abstractions method has the load of the composition of the

represented interfaces, i.e., the interfaces of the concrete services, stored in the service base

after the service descriptions are parsed. We could additionally store the entire WSDL

documents as plain text, so that we could retrieve them, rather than reconstructing them, i.e.,

the abstraction object could be composed of a string, representing the WSDL file, instead of the

represented interfaces’ list.

Another challenge emerges from the storage architecture of our system. We employed a

standalone database for storing both services and abstractions. We could make this architecture

distributed. In this way, a set of computational nodes would be utilized to store the mined

abstractions to their own instances of the database. This would decrease the distributed

abstractions mining execution time, because it would eliminate the time it is currently consumed

for the storage of the mined abstractions to the standalone database. However, the main reason

for such an approach, is a possible great improvement in the query execution time, since the

distribution of a query, as well as the results’ joining, is quite easy; the same query will be posed

to each node, and the final result would simply be the union of the individual ones.

106

An important aspect we should also consider, is the calculation of the distance between two

service interfaces, proposed by the authors in [6], and particularly, the part that calculates the

distance between the two names, either regarding interfaces names, operations names, messages

names or message types names; it relies on the syntactical diferrence between the two words,

based on experimental findings showing that such a syntactical difference usually indicates a

respective semantical difference. However, we could even improve the algorithm by calculating

the semantical difference between the two words. A simple approach comprises a database

storing information about words, their synonyms and antonyms, and perhaps a ranking of them.

Then, the names distance calculation could leverage this information to calculate the semantic

distance between the two names. Of course, a name usually contains not a single, but several

semantically different words, so a preprocessing step which separates them would be needed.

In cases one or more words of a name are not contained in the database, the syntactical

difference calculation could be additionally applied. Another solution similar to this, comprises

service descriptions containing semantic information, as have been proposed in [18, 21, 23].

Another approach based on the proposal of the previous paragraph, regards the representative

name extraction. As the names would consist of a number of separated words, the pairs having

the biggest semantical similarity could be chosen as constructs for the representative name; for

each pair, the one of the two words could be finally chosen, or perhaps none of them would be

chosen, but their synonym which best expresses their meaning, and could be found in the

aforementioned database.

107

REFERENCES

[1] Al-Masri, E., Mahmoud, Q.H.. “Investigating Web services on the World Wide Web”. 17th

International Conference on World Wide Web (WWW). 2008

[2] Athanasopoulos, D., Zarras, A., Issarny, V.. “Service substitution revisited”. 24th

IEEE/ACM International Conference on Automated Software Engineering (ASE). 2009

[3] Athanasopoulos, D., Zarras, A., Issarny, V.. “Towards the maintenance of service oriented

software”. 3rd CSMR Workshop on Software Quality and Maintenance (SQM). 2009

[4] Athanasopoulos, D., Zarras, A., Issarny, V., Vassiliadis, P.. “Hiding Design-Decisions in

Service-Oriented Software via Service Abstraction Recovery”. Technical Report inria-

00491349 - version 2. INRIA, 2010. Available HTTP://HAL.ARCHIVES-OUVERTES.FR/.

[5] Athanasopoulos, D., Zarras, A., Vassiliadis, P.. “Service Selection for Happy Users: Making

User-Intuitive Quality Abstractions”. ACM SIGSOFT Symposium on the Foundations of

Software Engineering (FSE). 2012

[6] Athanasopoulos, D., Zarras, A., Vassiliadis, P., Issarny, V.. “Mining Service Abstractions

(NIER Track)”. 33rd International Conference on Software Engineering (ICSE). 2011

[7] Atkinson, C., Bostan, P., Hummel, O., Stoll, D.. “A Practical Approach to Web Service

Discovery and Retrieval”. 29th International Conference on Software Engineering (ICSE).

2007

[8] Cilibrasi, R.L., Vitnyi, P.M.B.. “The Google Similarity Distance”. IEEE Transactions on

Knowledge and Data Engineering. Vol. 19, No. 3, pp. 370-383. March 2007

[9] Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.. “Similarity Search for Web

Services”. Proceedings of VLDB. 2004

http://hal.archives-ouvertes.fr/

108

[10] Elgazzar, K., Hassan, A.E., Martin, P.. “Clustering WSDL documents to bootstrap the

discovery of Web services”. IEEE International Conference onWeb Services (ICWS). 2010

[11] Fan, J., Kambhampati, S.. “A Snapshot of Public Web Services”. SIGMOD Record 34(1).

24-32. 2005

[12] FIA. “The Cross-ETP Vision Document. Technical Report”. Future Internet Assembly.

2009

[13] Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadis, P., Autili, M., Gerosa,

M.A., Hamida, A.B.. “Service-Oriented Middleware for the Future Internet: State of the Art

and Research Directions”. Journal of Internet Services and Applications 2, 1. 23-45. 2011

[14] Kim, S.M., Rosu, M.C.. “A Survey of Public Web Services”. Proceedings of the 13th

International World Wide Web Conference (WWW). 312-313. 2004

[15] Li, Y., Liu, Y., Zhang, L.J., Li, G., Xie, B., Sun, J.. “An Explaratory Study of Web Services

on the Internet”. Proceedings of the IEEE International Conference on web Services (ICWS).

380-387. 2007

[16] Liang, Q.A., Lam, H.. “Web service matching by ontology instance categorization”. IEEE

International Conference on Services Computing (SCC). 2008

[17] Liu, W., Wong, W.. “Web service clustering using text mining techniques”. International

Journal of Agent-Oriented Software Engineering. Vol. 3, No. 1, pp. 6-26. 2009

[18] Luo, J., Montrose, B.E., Kim, A., Khashnobish, A., Kang, M.H.. “Adding OWL-S support

to the existing UDDI infrastructure”. IEEE International Conference on Web Services (ICWS).

2006

[19] Munkres, J.. “Algorithms for the Assignment and Transportation Problems”. Journal of

the Society for Industrial and Applied Mathematics. 5(1):32-38. 1957.

109

[20] Nayak, R., Lee, B.. “Web service discovery with additional semantics and clustering”.

IEEE / WIC/ ACM International Conference on Web Intelligence (WI). 2007

[21] Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.. “Importing the semantic web in

UDDI”. Revised Papers for International Workshop on Web Services, EBusiness, and the

Semantic Web (WES 2002), in conj. with CAiSE 2002, LNCS 2512. 2002

[22] Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.. “Service-oriented computing:

State of the art and research challenges”. IEEE Computer 40(11). 2007

[23] Sivashanmugam, K., Verma, K., Sheth, A.P., Miller, J.A.. “Adding semantics to Web

services standards”. IEEE International Conference on Web Services (ICWS). 2003

[24] W3C. “XML Schema Part 2: Datatypes Second Edition”. W3C, Technical Report. October

2004. Available at HTTP://WWW.W3.ORG/TR/XMLSCHEMA-2/.

[25] Wu, J., Chen, L., Xie, Y., Zheng, Z.. “Titan: a System for Effective Web Service

Discovery”. 21st International Conference on World Wide Web (WWW). 2012

http://www.w3.org/TR/xmlschema-2/

110

111

APPENDIX

List<FA> pruneHier(H h, List<FA> level, double retNum, double disThres) {

 if(level is empty) return h.toList(); // termination condition

 else {

 List<FA> nextLevel = new List<FA>();

 foreach fa in level {

 List<FA> children = fa.children();

 double distance = fa.distance();

 if(children.size() == 1) {

 if(retNum == 0) b1();

 else {

 if(distance < disThres) b1();

 else {

 retNum --;

 b2();

 nextLevel.addAll(children);

 }

 }

 }

 else if(children.size() == 2) {

 if(retNum == 0) c1();

 else {

 if(distance < disThres) c1();

 else {

 retNum --;

 c2();

 nextLevel.addAll(children);

 }

 }

 }

 }

 pruneHier(h, nextLevel, retNum, disThres); //recursive call

 }

}

Figure A.1 A detailed version of our algorithm for pruning an abstractions hierarchy

