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ABSTRACT 
 

In the present master thesis, we shall explore the design and implementation of 

an approximate Booth multiplier. The primary goal of this research is to 

investigate how approximate computing techniques can increase the efficiency of 

power intensive systems that are error tolerant. 

With the development of artificial intelligence and big data processing, an 

unprecedented problem has arisen. These new applications must process massive 

datasets using increasingly complex computing architectures, creating a critical 

demand for both energy-efficient systems and highly integrated circuitry. 

However, high-precision calculations are not always required.  

On the contrary, certain small errors can compensate for each other or do not 

significantly affect the result. Therefore, Approximate Computing (AC) has 

emerged as a new approach for an energy-efficient design, as well as for increasing 

the performance of a computing system, with limited loss of accuracy. 

Booth encoding is a well-established algorithm used to optimize binary 

multiplication by reducing the number of partial products generated and 

thereafter improving computational efficiency. By encoding the multiplier 

operand, Booth encoding enables the multiplier to handle multiple bits of the 

multiplicand simultaneously, thereby minimizing the number of operations 

required for multiplication. This reduction in operations translates to faster 

computation times, reduced hardware complexity, and lower power consumption, 

making the combination of Booth encoding with approximate computing an 

attractive choice for high-performance and error tolerant computing systems. 

Finally, the results of this thesis, demonstrate the effectiveness of the approximate 

Booth multiplier in improving efficiency. By strategically reducing bit precision, 

we achieved significant improvements in resource utilization, power efficiency, 

and processing speed, while remaining within acceptable error margins. These 

findings highlight the potential of approximate computing for designing efficient 

and high-performance systems, particularly in applications where minor errors 

are permissible. 
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ΠΕΡΙΛΗΨΗ 
 

Στην παρούσα διπλωματική εργασία θα διερευνήσουμε τη σχεδίαση και την 

υλοποίηση ενός προσεγγιστικού πολλαπλασιαστή Booth. Ο πρωταρχικός στόχος 

αυτής της έρευνας είναι να διερευνήσουμε πώς οι προσεγγιστικές τεχνικές 

υπολογισμού μπορούν να αυξήσουν την αποδοτικότητα των συστημάτων υψηλής 

έντασης ισχύος που είναι ανθεκτικά σε σφάλματα. 

Με την ανάπτυξη εφαρμογών όπως της τεχνητής νοημοσύνης και της 

επεξεργασίας δεδομένων μεγάλου όγκου, έχει προκύψει ένα άνευ προηγουμένου 

πρόβλημα. Οι νέες αυτές εφαρμογές αντιμετωπίζουν έναν τεράστιο όγκο 

δεδομένων χρησιμοποιώντας ολοένα και πιο πολύπλοκες αρχιτεκτονικές, 

απαιτώντας ενεργειακά αποδοτικά συστήματα καθώς και ισχυρά ενσωματωμένα 

κυκλώματα. Ωστόσο στην πράξη δεν χρειάζονται πάντα υπολογισμοί υψηλής 

ακρίβειας. 

Αντιθέτως, ορισμένα μικρά σφάλματα μπορούν εύκολα να αντισταθμίσουν το 

ένα το άλλο ή δεν επηρεάζουν σημαντικά το αποτέλεσμα. Ως εκ τούτου, οι 

προσεγγιστικοί υπολογισμοί (Approximate Computing, AC) έχουν αναδειχθεί ως 

μια νέα προσέγγιση για έναν ενεργειακά αποδοτικό σχεδιασμό, καθώς και για 

την αύξηση της απόδοσης ενός υπολογιστικού συστήματος, με περιορισμένη 

απώλεια ακρίβειας. 

Η κωδικοποίηση Booth είναι ένας καλά εδραιωμένος αλγόριθμος που 

χρησιμοποιείται για τη βελτιστοποίηση του δυαδικού πολλαπλασιασμού μέσω 

της μείωσης του αριθμού των παραγόμενων μερικών γινομένων και στη συνέχεια 

τη βελτίωση της απόδοσης. Με την κωδικοποίηση της πράξης του 

πολλαπλασιαστή, η κωδικοποίηση Booth επιτρέπει στον πολλαπλασιαστή να 

χειρίζεται ταυτόχρονα πολλά bits της πράξης του πολλαπλασιαστή, 

ελαχιστοποιώντας έτσι τον αριθμό των πράξεων που απαιτούνται για τον 

πολλαπλασιασμό. Αυτή η μείωση των πράξεων οδηγεί σε ταχύτερους χρόνους 

υπολογισμού, μειωμένη πολυπλοκότητα υλικού και χαμηλότερη κατανάλωση 

ενέργειας, καθιστώντας τον συνδυασμό της κωδικοποίησης Booth με τον 

προσεγγιστικό υπολογισμό μια ελκυστική επιλογή για υπολογιστικά συστήματα 

υψηλής απόδοσης με υψηλή ανοχή σε σφάλματα. 
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Τέλος, τα αποτελέσματα αυτής της διπλωματικής εργασίας αποδεικνύουν την 

αποτελεσματικότητα του προσεγγιστικού πολλαπλασιαστή Booth στην αύξηση 

της αποδοτικότητας. Αυξάνοντας τον αριθμό των bits που παραλείπονται, 

πετύχαμε μειώσεις στη χρήση πόρων, στην κατανάλωση ενέργειας και στο χρόνο 

εκτέλεσης , διατηρώντας μια αποδεκτή ανοχή σε σφάλματα. Τα αποτελέσματα 

αυτά αναδεικνύουν τις δυνατότητες του προσεγγιστικού υπολογισμού για τη 

σχεδίαση αποτελεσματικών και υψηλής επίδοσης συστημάτων, ιδίως σε 

εφαρμογές όπου επιδέχονται μικρά σφάλματα. 
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CHAPTER 1          

INTRODUCTION 

1.1 Objective 

1.2 Thesis outline 

 

1.1 Objective 

Over the last decades, the size of transistors has decreased exponentially, as 

predicted by Moore's law, leading to continuous improvements in the performance 

and power efficiency of integrated circuits. However, on the nanometer scale, the 

supply voltage cannot be further reduced, which has led to a significant increase 

in power density. Hence, a percentage of transistors in a circuit must be turned 

off to combat thermal problems. These deactivated transistors are called "dark 

silicon". The area of "dark silicon" can reach more than 50% of the initial area 

on a 8 nm technology. This indicates a growing challenge to improve circuit 

performance and power efficiency when using traditional technologies. To address 

this issue, new design methodologies have been explored, including multicore 

architectures, external integration, improved arithmetic algorithms and 

approximate computing(AC). 

In digital computing, arithmetic operations form the backbone of virtually all 

computational tasks, influencing everything from basic calculations to complex 

algorithmic processes. These operations, including addition, subtraction, 

multiplication, and division, are fundamental for executing algorithms and 

processing data. Innovations in arithmetic algorithms aim to streamline these 

operations, reducing both computation time and resource consumption. One such 

advancement is the Booth multiplier, which introduces Booth encoding to 

optimize binary multiplication. Booth's algorithm reduces the number of partial 
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products and simplifies the addition process, significantly enhancing both speed 

and hardware efficiency. 

AC is based on the fact that many applications, such as multimedia, identification, 

classification and machine learning, are tolerant of certain errors. Some errors do 

not cause a noticeable degradation in the quality of image, audio and video 

processing. In addition, the input data to a digital system usually contains noise 

and is quantized, so there is already a threshold in the accuracy and truth of 

representation of useful information. In the case of probabilistic computation, they 

remodel numerical functions into random binary bit streams using simple logic 

gates, where minor errors do not lead to a critically different result. Finally, many 

applications, including machine learning, rely on iterative tuning. This process can 

mitigate or compensate for the effects of trivial errors. Thus, AC is a promising 

technique that benefits multiple different fault-tolerant applications. 

The main objective of this thesis is to design and implement a novel approximate 

multiplier based on Booth encoding. Initially we evaluate its accuracy based on 

mean relative error distance, a metric commonly used in AC research. The 

multiplier is built on a Field-Programmable Gate Array (FPGA) platform and its 

performance was thoroughly evaluated using metrics such as latency, throughput 

and power efficiency. We then evaluate its performance in an error-tolerance 

application, a neural network framework. Specifically, we replace all multiplication 

operations in the training phase of a Multi-Layer Perceptron model and compare 

the model's accuracy when using our approximate multiplier and when the exact 

multiplication is performed. The MLP models were run an an ARM core present 

in the same FPGA platform used for evaluating the proposed aproximate 

multiplier and their practical performance is discussed. 

 

 

1.2 Thesis outline 

Chapter 2 provides a foundational background for understanding the key concepts 

and technologies fundamental to this thesis. It begins with a discussion on 

compute intensive applications, emphasizing the challenges and opportunities 

associated with processing and analyzing vast amounts of information. Following 

this, the chapter delves into multiplication encoders, exploring tools used to 
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optimize binary multiplication. This section will cover different encoding 

techniques, with a particular focus on Booth encoding. The chapter then 

introduces approximate computing, a calculation concept that allows for controlled 

inaccuracies to achieve faster and more efficient calculations. Then it examines 

various evaluation metrics, such as mean error and accuracy, which are essential 

for assessing the performance and reliability of these techniques. The chapter also 

discusses the rationale behind selecting the Multilayer Perceptron (MLP) as the 

neural network for this study. Finally, it highlights the necessity of explicitly 

handling floating-point operations, particularly the extraction of floating-point 

components to enable accurate multiplication between two float numbers. 

Chapter 3 focuses on the development of a novel algorithm designed to enhance 

computational efficiency. It introduces a new modified Booth encoding method 

aimed at improving the speed and efficiency of binary multiplication operations. 

Additionally, it explores the integration of this new Booth encoding with 

approximate computing, demonstrating how approximations can enable faster 

calculations and reduce computational demands while maintaining acceptable 

accuracy levels. It provides a detailed analysis of the new algorithm, explaining 

its design, implementation, and the thought process behind its development. This 

includes how the algorithm addresses specific challenges and leverages the 

strengths of both Booth encoding and approximate computing to achieve efficient 

and accurate results. Following this, it discusses the process of benchmarking the 

hardware using Vitis, highlighting the steps taken to evaluate performance and 

efficiency. The chapter also explores the application of a Multilayer Perceptron 

(MLP) in the experiments, explaining its role in testing the proposed algorithms 

Chapter 4 focuses on the evaluation of the implementation of the proposed 

algorithm. It begins with a detailed description of the hardware used in this thesis, 

specifically the Zynq-7000 FPGA on the PYNQ-Z2 board, outlining the 

components and configurations essential for supporting the new modified Booth 

encoder and approximate computing. The chapter then introduces the tools 

utilized for development and testing, providing an overview of their functionalities 

and relevance to the experiments. The experiments are divided into two main 

categories: Multiplier testing and MLP testing. Multiplier testing includes an 

analysis of LUT utilization, schematics complexity, medium error distance of a 
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multiplication (measured by MRED),  and on-chip power consumption, providing 

insights into the hardware's performance and resource usage. MLP testing focuses 

on evaluating accuracy, error tolerance , and time taken, demonstrating the impact 

of the new algorithms on computational efficiency and accuracy. This chapter 

provides a comprehensive evaluation of the practical implementation and 

effectiveness of the proposed methods. 

Chapter 5 summarizes the findings and contributions of this thesis while outlining 

potential directions for future research. It begins with conclusions that highlight 

the key outcomes of the experiments, focusing on the effectiveness of the modified 

Booth encoding and approximate computing techniques in improving 

computational efficiency, resource utilization, and accuracy. The chapter then 

transitions to future thoughts, suggesting opportunities for further exploration, 

such as testing on larger FPGA boards, investigating higher-radix designs, and 

integrating the algorithms into more complex neural networks and real-world 

applications. This chapter emphasizes the significance of the research and its 

potential to advance the field of approximate computing and hardware-accelerated 

machine learning. 
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CHAPTER 2          

BACKGROUND 

2.1 Approximate computing basics and applications   

2.2 Evaluation and metrics 

2.3 Multiplication Primitives  

2.4 Booth multiplication 

2.5 Approximate booth multiplier and error compensation 

2.6 Basics of neural networks 

2.7 Floating point extraction and multiplication 

 

2.1 Approximate computing basics and applications   

AC is considered suitable for many error-tolerant applications, such as image 

processing and machine learning, aiming to increase performance and energy 

efficiency. [1] 

Approximation techniques of algorithm, architecture and circuit level have been 

used collaboratively in the design of an energy-efficient programmable vector 

processor for recognition and data mining. These design techniques achieve a 

16.7%-56.5% reduction in power consumption compared to a traditional design 

without any loss of quality, and a 50.0%-95.0% with output quality insignificantly 

reduced. For example, in mainstream image processing applications, sharpening, 

smoothing and image multiplication are considered suitable for assessing the 

quality of approximate adders and unsigned multipliers [2] [3]. 

Approximate adders and multipliers have been integrated into deep learning 

accelerators to reduce latency and save energy. In large-scale convolutional neural 

network (CNN) and deep neural network (DNN) applications, 32-bit floating-point 

multipliers are used. In many applications these multipliers have now been 

replaced by 16-bit multipliers with constant error compensation. A reduction of 

up to 83.6% in circuit area and 86.4% in power consumption is  achieved. Also, 

in some applications the approximate adders and multipliers have been integrated 
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into a device with varying levels of accuracy for different configurations 

determined on the fly according to the application requirements. In this way, 

different performance and power improvements can be achieved by compensating 

for a variety of levels of processing quality [4] [5] [6]. 

An approximate computational circuit can be obtained by using the technique of 

Voltage Overscaling VOS, by redesigning a logic circuit to an approximate one and 

using a simplification algorithm [7]. Using VOS, a lower supply voltage is provided 

to reduce the power consumption of a circuit without having to change the circuit 

structure. However, the reduced voltage increases the critical path delay, 

potentially resulting in timing errors. Thus, the output may be incorrect due to 

timing constraints. Moreover, the error characteristics of such an approximate 

operation are non-deterministic, as they are affected by parametric variations. 

When the most significant bits (MSB) are affected, the output error could be 

larger. 

Usually, an approximate design is derived from an exact circuit by modifying, 

removing, or adding certain elements. For example, in a mirror adder, which is a 

type of full adder known for its symmetrical structure and efficient transistor 

usage, certain transistors can be removed to create an approximate version. The 

mirror adder typically consists of two mirrored halves that generate the sum and 

carry outputs simultaneously, making it faster and more power-efficient than 

traditional adder designs. By selectively removing transistors, the circuit becomes 

simpler, reducing power consumption and increasing speed at the cost of 

introducing minor errors in the output [8]. 

In addition, an approximate circuit can be obtained by simplifying the truth matrix 

or Karnaugh map (K-Map). This method leads to circuits with deterministic error 

characteristics. However, due to the same structure and basic design principles, 

hardware improvements are minimal, particularly when high accuracy is required.  

Compared to addition and subtraction, the multiplication, the division and the 

calculation of the square root are more complex. Hence, their operations can be 

converted into some simpler operations. Mitchell's algorithm, based on the binary 

logarithm, provides an efficient way to implement multiplication and division 

using only adders and subtractors. The algorithm approximates the logarithm of 

a number by interpreting its binary representation, allowing multiplication to be 
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performed as an addition of logarithms and division as a subtraction of 

logarithms. For multiplication, the algorithm computes the sum of the logarithms 

of the operands and then converts the result back to a linear value using an 

antilogarithm approximation. Similarly, for division, it subtracts the logarithms 

and converts the result back [7]. 

Mitchell's algorithm is the origin of most current simplification algorithms for 

approximate design of multipliers and divisors alongside functional iteration-

based algorithms for designing divisors. By using algorithmic simplification, the 

performance and energy efficiency of a numerical circuit can be significantly 

improved due to the simplification of the basic circuit structure. However, the 

accuracy of such a design is relatively low. Achieving high accuracy requires many 

boards, which can limit the efficiency of the hardware. In practice, several 

approximation techniques are used simultaneously in a hybrid approximation 

circuit [9]. 

 

2.2 Evaluation and metrics 

Later in this dissertation we will discuss approximate multipliers. Thus we need 

to analyze basic terminologies where they relate to error and their performance. 

Two basic error metrics are error rate (ER) and error distance (ED). ER indicates 

the probability of producing an incorrect result. ED shows the arithmetic 

difference between the approximate and the exact result. Given the approximate 

and the exact result M′ and M, respectively, the ED is calculated as follows: 𝐸𝐷 =

|𝑀′ − 𝑀| ER is calculated as :  
|𝑀′−𝑀|

𝑀
⋅ 100. Furthermore, the relative error distance 

(RED) shows the relative difference compared to the exact result, which is given 

by 𝑅𝐸𝐷 = |
𝐸𝐷

𝑀
|. For two sets of inputs that result in the same ED, the one that 

produces the least accurate result, M, will result in a larger RED. Similar to the 

mean values of all obtained EDs and REDs, called mean error distance (MED) 

and mean relative error distance (MRED) are often used to evaluate the accuracy 

of an approximate design. Here are the functions for calculating MED and MRED. 

𝑀𝐸𝐷 = ∑ 𝐸𝐷𝑖

𝑁

𝑖=0

⋅ 𝑃(𝐸𝐷𝑖) 
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𝑀𝑅𝐸𝐷 = ∑ 𝑅𝐸𝐷𝑖

𝑁

𝑖=0

⋅ 𝑃(𝑅𝐸𝐷𝑖) 

where N is the total number of input combinations for a circuit, and 𝐸𝐷𝑖 and 𝑅𝐸𝐷𝑖 

are ED and RED for the i-th input number, respectively. 𝑃(𝐸𝐷𝑖) and 𝑃(𝑅𝐸𝐷𝑖) are 

the probabilities of 𝐸𝐷𝑖 and 𝑅𝐸𝐷𝑖  occurring, which are the probabilities of the i-

th input combination. NMED is defined as the normalization of MED to the 

maximum output of the exact correct circuit. 

 

2.3 Multiplication Primitives 

Multiplication is less common than addition, but it is still necessary for 

microprocessors, digital signal processors and GPUs. The most basic form of 

multiplication consists of calculating the product of two unsigned (positive) binary 

numbers. This can be achieved using the conventional technique that is also taught 

in primary school. For example, the multiplication of two positive 6-bit positive 

binary integers, 25 and 39, is shown in Figure 1. 

 

Figure 1 Multiplication of 25 * 39 [10] 

 

The M × N-bit P = Y × X multiplication can be viewed as forming N partial sums 

of length M bits each, and then summing the appropriately shifted partial sums 

to produce an outcome P of length M + N bits. Binary multiplication is equivalent 

to a logical AND operation. Therefore, the creation of partial sums is the logical 

AND operation of the appropriate bits of the multiplier and the multiplicand. 

Each column of partial sums must then be added together and, if there are any 

carry-overs, they must be passed to the next column. We denote the multiplier as 
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Y={ΥM-1,ΥM-2,...,Υ1,Υ0}and the multiplicand X={ΧN-1,ΧN-2,...,Χ1,Χ0}.For unsigned 

multiplication, the product is given in Equation (2.1). Figure 2 illustrates the 

creation, shifting, and addition of partial sums in a 6 × 6 bit multiplier. 

P= (∑ yj

M-1

j=0
⋅2j) ⋅(∑ xi

N-1
i=0 ⋅2i)= ∑  N-1

i=0 ∑ xiyj2
i+j

M-1

j=0
       (2.1) 

 

 

 

 

Figure 2 Multiplication of 2 numbers with 6bit length each and the generation 

of their partial products [10] 

 

Larger multiplications can be better illustrated by using scatter plots. Figure 3 

shows a scatter plot of a 16 × 16 multiplier. Each dot represents one bit which 

can be 0 or 1. Partial products are represented by a horizontal row of cells 

arranged in a grid pattern, which are shifted according to their significance. The 

multiplier bits used to generate the partial sums are shown on the right. 
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Figure 3 Partial products represented by dots [10] 

 

There are several techniques that can be used for carry propagation. In general, 

the choice is based on factors such as delay, power, energy, area and complexity 

of the circuit design. An easy approach is to use an M+1-bit adder (carry-

propagate adder CPA) to add the first two partial sums, then another CPA to add 

the third partial sum to the current sum, and so forth. Such an approach requires 

N - 1 CPAs and is slow even if a fast CPA is used. There are more efficient parallel 

approaches available that use some kind of matrix or tree of complete adders to 

sum the partial products. We start with a simple matrix for unsigned multipliers 

and then modify the matrix to handle signed numbers of complement of 2 using 

the Baugh-Wooley algorithm [11]. The number of partial sums being added can 

be reduced using the Booth encoding, and the number of logical levels required 

to perform summation can be reduced with Wallace trees (Figure 4). 

Unfortunately, Wallace trees are complex to design and have long, uneven wires, 

so hybrid table/tree structures may be more attractive. For the sake of 

thoroughness, we consider a serial propagation architecture. This was once 

popular when gates were relatively expensive, but now it is scarcely useful. 
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Figure 4 Wallace tree with carry save adders 

 

 

2.4 Booth multiplication 

The original Booth's algorithm, introduced by Andrew D. Booth in his seminal 

work "A Signed Binary Multiplication Technique", was designed to reduce the 

number of partial products in signed binary multiplication. The key insight lies 

in recognizing that consecutive ones in the multiplier do not require individual 

partial products. Instead, they can be consolidated into fewer operations. For 

example, a sequence such as 0111...110 can be transformed into 1000...000 - 

000...10, effectively minimizing the required computations. 

In practice, the algorithm processes the multiplier bits from right to left, examining 

one bit at a time (radix-2 encoding) and generating partial products of ±Y or 0 

based on the current and previous bits(Figure 5). However, it comes with a trade-

off, since the number of partial products varies depending on the multiplier's 

value. This unpredictability presents significant challenges for hardware 

implementation. When designing critical components like Wallace tree adders, 

engineers must account for worst-case scenarios since the actual number of partial 

products cannot be predetermined. 
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Figure 5 Selection table of partial sums of radix 2  

Figure 6 demonstrates a radix-2 Booth encoded multiplication between two 

signed binary numbers Y=011001 and X=100111. At the right, X is aligned 

vertically from the LSB to the MSB for demonstration purposes. The 

multiplication process begins by analyzing pairs of bits starting from the implicit 

X₋₁ bit and moving through X₆. We must clarify that the X₋₁ and X₆ bit are always 

set to 0. Then each bit pair [Xᵢ Xᵢ₋₁] determines the new partial product of the 

multiplicand Y according to Booth's radix 2 encoding rules on Figure 5. Each 

partial product shifts left according to its bit position while sign extension 

preserves the correct two's complement representation throughout the calculation 

The complete set of generated partial products is then summed to produce the 

final multiplication result. 

For instance, when the algorithm detects a transition from 0 to 1 in the multiplier 

bits, it generates a negative partial product (-Y), while a transition from 1 to 0 

produces a positive partial product (+Y).  

 

Figure 6 Example of a booth encoder with radix-2 

 

 

 

 

Xi Xi—1 Operation
0 0 0
0 1 +Y
1 0 -Y
1 1 0



13 

 

Building upon the fundamental Booth algorithm, higher radix multipliers were 

introduced to further optimize binary multiplication by reducing the number of 

partial products. These advanced techniques examine multiple bits of the 

multiplier simultaneously. The most widely adopted is radix-4, which examines 

two bits plus an overlapping third bit from the previous step. This modification 

reduces the number of partial products to approximately N/2, where N is the bit-

width of the multiplier. The possible partial products in radix-4 are 0, ±Y, ±2Y, 

with 2Y easily implemented as a left shift. Crucially, the problematic 3Y multiple 

is avoided by leveraging signed arithmetic, where 3Y is expressed as 4Y - Y, 

shifting the complexity to the next higher-weight partial product. 

The selection of partial products in radix-4 Booth encoding follows a predefined 

table based on triplets of multiplier bits(Figure 7). Each partial product is shifted 

two positions to the left relative to the previous one, reflecting its fourfold increase 

in weight. Sign extension is applied for negative multiples, ensuring correct two’s 

complement representation. 

 

 

Figure 7 Selection table of partial sums of radix 4 

 

Figure 8 depicts a radix-4 Booth encoded multiplication between two signed 

binary numbers Y=011001 and X=100111. The multiplication iterates  overlapping 

3-bit windows of the multiplier [Xᵢ₊₁ Xᵢ Xᵢ₋₁] to determine the new partial product 

of the multiplicand Y .Each window selects from five possible actions according 

to the radix-4 Booth encoding rules as aforementioned(Figure 7). 

X2i+1 X2i X2i—1Operation
0 0 0 0
0 0 1 +Y
0 1 0 +Y
0 1 1 +2Y
1 0 0 -2Y
1 0 1 -Y
1 1 0 -Y
1 1 1 0
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Figure 8 Example of a booth encoder with radix-4 

 

In a common radix-4 Booth encoded multiplier design, each group of 3 bits (a 

pair, along with the most significant bit of the previous pair) is encoded in 

selection signals (SINGLE i, DOUBLE i, and NEG i, Figure 9) and connected to 

the partial product line, as shown in Figure 10. 

 

Figure 9 Selection table of partial sums [10] 

 

The Y multiplier is allocated to all rows. The selector signals control the Booth 

selectors that choose the appropriate multiple of Y for each partial product. The 

Booth selectors replace the AND gates of a simple matrix multiplier to compute 

the i-th partial product. Figure 10 shows a classic encoder design with a Booth 

selector. Y is expanded by M+1 bits with zeros. Depending on SINGLEi and 
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DOUBLEi, either 0, Y, or 2Y is selected. The negative partial products must be in 

the form of complement by two (i.e., invert and add 1). If NEGi is activated, the 

partial product is inverted. The extra ace can be added to the next row to avoid 

the need for CPA. 

 

Figure 10 Radix 4 booth encoder with selection signals 

 

Higher-radix versions, such as radix-8 or radix-16, further reduce the number of 

partial products but introduce more complex multiples (e.g., ±3Y, ±4Y), which 

often outweigh their benefits due to increased hardware overhead. 

In this work, we employ a modified version of the original Booth algorithm (radix-

2) rather than radix-4. Given that our primary focus is clarity and predictable 

hardware behavior, radix-2 provides a more straightforward solution.  
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2.5 Approximate booth multipliers and error compensation 

The modified (or radix-4) Booth encoder is commonly used in the design of 

approximate multipliers. Initially targeting a fixed-length signed multiplier, a 

widely used method is to cut off a chunk of the LSB's partial products (PPs) to 

create an output with the same width as the input. This truncation makes it easier 

to collect PPs but introduces a large error. Therefore, many error compensation 

schemes have been proposed. 

The Broken booth multiplier (BBM) skips the computational cells of the adder to 

the right of a VBL line (Vertical breaking line Figure 11), while truncating some 

k less significant bits of the input results in a k-Truncated booth multiplier (TBM-

k). The TBM is considered as a basic design for comparing booth multipliers. In 

the tests where they were performed, the value of k was approximated 

experimentally and ranged from 2 to 6. [12] 

 

 

Figure 11 Broken booth multipler [12] 

 

A fixed-width Booth multiplier divides the PP array into two regions: one 

containing the most significant bits (MSBs) called the Main Part (MP), and the 

other containing the LSBs called the Truncation Part (TP). The TP is further 

subdivided into TP_major and TP_minor. The final result is obtained by summing 

the MP and carry terms generated from the TP.  

 

Figure 12 8x8 fixed width modified booth multiplier 
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To mitigate truncation error, the BM04 architecture introduces a basic error 

correction mechanism by examining whether a partial product row is entirely zero 

or not. This is captured by a Boolean signal 𝑧𝑒𝑟𝑜i which equals 1 if the i-th row 

contains any non-zero bits. The compensation term is generated by summing 

selected 𝑧𝑒𝑟𝑜i  values, enabling lightweight correction without complex adders or 

predictors. The approximate partial product is generated by the equation: 

𝜎 = ⌊2−1 (∑  
𝑛/2−2
𝑖=0   zero 𝑖 + 1)⌋     (2.2) 

 

To enable tunable accuracy, BM07 allows adjusting the number of most significant 

PP columns retained via a parameter ω. Based on this, different thresholds are 

applied to determine whether and how to compensate the error induced by 

truncation. [13] 

BM11 introduces a new approach to error handling: instead of only estimating 

magnitude, it ensures that errors are centered around zero, eliminating systematic 

bias. This is achieved using an odd-even merge sorting network, where the carry 

signals from TP rows are ranked, and a central (e.g., median) signal is selected to 

represent the correction. 

 

Figure 13 Sorting network odd-even merge 

The aforementioned circuit sorts the inputs in ascending order from r3 to r0. 

According to the authors, utilizing the r2 output suffices to approximate the 
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presence of the carry signal. Following the removal of certain gates and 

subsequent partial simplification, the circuit assumes the form shown in Network 

2. This network is designated as the SC-generator. [14] 

 

 

Figure 14 Simplified sorting network with the use of gates 

Another Booth multiplier was designed in [15] based on a probabilistic error 

estimation approach, specifically addressing the discrepancy between estimated 

and actual values. This multiplier architecture is termed as Probability Estimation 

Bias Multiplier (PEBM). The number of accumulated partial product columns 

varies according to the desired hardware-accuracy trade-off ratio. The error 

compensation formula is derived through probability analysis rather than time-

consuming exhaustive simulation. The carry signal generated by the truncated 

portion (TP) is approximated as follows: 

𝜎 = ⌊2−1(∑  
𝑛/2−1−⌊𝜔/2⌋
𝑖=0   𝑧𝑖 − 1)⌋     (2.3) 

 

Zᵢ = Pₒ,ₙ/₂₋₁ + nₙ/₂₋₁ when i = n/2 - 1, otherwise Zᵢ = 𝑧𝑒𝑟𝑜 

 

Another multiplier variant specifically targets the computation of triple multiples 

(3Y). To mitigate the additional latency inherent in radix-8 Booth algorithms, the 

design employs an approximate adder for calculating these triple multiplicands 

[10]. This is achieved through strategic modifications to the Karnaugh map, which 

simplifies the logic function (Figure 15-16-17). The architecture subsequently 
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incorporates a Wallace tree structure combined with a truncation technique for 

partial product (PP) accumulation. [16] 

The most efficient approximate radix-8 Booth multiplier, designated ABM2_R15, 

implements a 15-bit truncation scheme to create a fixed-width multiplier. This 

optimized configuration is formally recognized and referenced as ABM2. 

 

Figure 15 Addition between 1Y and 2Y to calculate 3Y 

 

 

Figure 16 Truth table of a 2 bit adder 

 

 

Figure 17 Truth table of an approximate 2 bit adder 

 

Below are the Boolean functions derived from the Karnaugh map optimization 

shown in Figure 16  

𝐶out = ((𝑦𝑖−1 ∨ 𝑦𝑖+1 ∨ 𝐶𝑖𝑛) ∧ 𝑦𝑖)

 ∨ (𝐶𝑖𝑛 ∧ 𝑦𝑖+1 ∧ 𝑦𝑖−1),

𝑆𝑖+1 = (((𝑦𝑖 ∨ 𝑦𝑖−1) ∨ (𝐶𝑖𝑛 ∧ 𝑦𝑖−1)) ∧ 𝑦𝑖+1) ∨

(𝐶𝑖𝑛 ∧ 𝑦𝑖 ∧ 𝑦𝑖−1) ∨ (𝐶𝑖𝑛 ∧ 𝑦𝑖 ∧ 𝑦𝑖−1)) ∧ 𝑦𝑖+1) ,

𝑆𝑖 = 𝐶𝑖𝑛 ⊕ 𝑦𝑖 ⊕ 𝑦𝑖−1,
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And below Is the Karnaugh output for the simplified circuit in Figure 17 

𝐶𝑜𝑢𝑡 = 𝑦𝑖,
𝑆𝑖+1 = 𝑦𝑖+1,

𝑆𝑖 = 𝐶𝑖𝑛 ⊕ 𝑦𝑖 ⊕ 𝑦𝑖−1.
 

We can easily observe the simplification through the boolean functions. 

In this thesis, we adopt a modified approach based on the Broken Booth 

Multiplier architecture, deliberately omitting the multiplication of least significant 

bits as a strategic design choice. While various error compensation and 

approximation techniques exist in the literature, including probabilistic estimation, 

truncation methods, and hybrid exact-approximate circuits, our implementation 

focuses on computational efficiency through controlled precision reduction. 

 

2.6 Basics of neural networks  

One of the attractive features of artificial neural networks is their capability to 

adapt themselves to special environment conditions, by “training” their connection 

strengths (weights). Especially, feed-forward neural networks with neurons 

arranged in layers, are widely used in computational or industrial fields. 

Furthermore, as VLSI technology has developed, the interest in implementing 

them in hardware is growing.  

A Multilayer Perceptron (MLP) is a class of feedforward neural network that 

processes information through a series of interconnected layers. The network 

consists of an input layer that receives raw data, one or more hidden layers that 

transform the data through weighted connections and nonlinear activation 

functions, and an output layer that produces the final prediction. During 

operation, input signals propagate forward through the network, where each 

neuron computes a weighted sum of its inputs, applies an activation function, and 

passes the result to subsequent layers. The weights are iteratively adjusted during 

training via backpropagation, which minimizes prediction errors by propagating 

gradients backward through the network and updating parameters using 

optimization techniques such as stochastic gradient descent. 
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Figure 18 shows a multilayer perceptron (simply denoted as an “MLP” in the 

following). Each neuron in a layer is connected to all neurons in the adjacent 

layers through uni-directional links (synaptic weights). The first and the last 

layers are called the input and output layers respectively, and one between them 

is called a hidden layer. In this dissertation, we deal with only MLPs which have 

one hidden layer. The output of each neuron (𝑜𝑖) is given by: 

     𝑜𝑖 = 𝑓(𝑋𝑖)          (2.4) 

 

𝑋𝑖 = ∑ 𝑤𝑖𝑗

𝑁𝜌𝑟𝑒

𝑗=0
⋅ 𝑢𝑗     (2.5) 

where wij is the value of the synaptic weight from the j-th neuron in the preceding 

layer to the i-th neuron (i, j) is called to be the index of the weight while Npre is 

the number of the neurons in the preceding layer connected to the i-th 

 

 

neuron, uj is the output of the j-th neuron in the preceding layer (j is called to be 

the index of the neuron). The number of neurons in each layer is determined by 

the dimensionality of the input features and the complexity of the desired output, 

with wider layers typically required to model higher-dimensional transformations 

while balancing computational efficiency against representational capacity. This 

architectural choice reflects a trade-off between capturing sufficient nonlinear 

relationships in the data and avoiding excessive parameterization that could lead 

to overfitting. Finally, wi0 is the synaptic weight connected to the input u0 = 1 

corresponding to the threshold, Xi is called the “inner potential” of the i-th neuron, 

Figure 18 3-layer multilayer perceptron 
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and f is an activation function. For example, the sigmoid activation function of a 

neuron is defined by 

𝑓(𝑥) =
1

1+𝑒𝑥𝑝(−𝑥)
     (2.6) 

The choice of activation function (e.g., ReLU, sigmoid, tanh) determines the 

network's nonlinear modeling capability and training stability, with selection 

based on the gradient propagation needs and output range requirements for the 

specific task and dataset.  

The learning process called ”back-propagation” is a supervised learning method 

used to train MLPs by minimizing an error function through gradient descent. 

Let O be a set of indices of the neurons in the output layer, and let P be a set of 

indices of the learning input examples. The change of each weight for the p-th 

learning input example (named 𝑤𝑖𝑗
𝑝
 ) is done as follows: 

𝛥𝑤𝑖𝑗
𝑝 = −𝜂 ⋅

𝜕𝐸𝑝

𝜕𝑤𝑖𝑗
     (2.7) 

where 𝐸𝑝 = ∑  𝑖∈𝑂 (𝑡𝑖
𝑝 − 𝑜𝑖

𝑝)
2

/2  is the error rate function and 𝑡𝑖
𝑝(= 0 or 1) is the 

learning output example of the i-th neuron in the output layer for the p-th 

learning input example (i ∈ O and p ∈ P ), 𝑜𝑖
𝑝
 is the output of the i-th neuron in 

the output layer for the p-th learning input example, and η is a parameter of a 

positive real number (learning rate). Then, the weight modification is repeated 

until the following condition is satisfied 

 

max
𝑝∈𝑃,𝑖∈𝑂

 (𝑡𝑖
𝑝 − 𝑜𝑖

𝑝)
2

< 𝑒𝑜
2      (2.8) 

 

where eo is called the output error in learning phase. If an MLP obtained by a 

learning with P and eo satisfies this condition, the learning is said to have finished 

successfully. [17] 

 

2.7 Floating point extraction and multiplication 

The IEEE 754 standard is the most widely used standard for floating point 

computation, and is followed by many CPU implementation. The standard defines 

formats for representing floating point number (including + zero and  denormals) 
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and special values (infinities and NaNs) together with a set of floating point 

operations specifies four formats for representing floating point values: single- 

precision (32-bit), double-precision (64-bit), single-extended precision (≥ 43-bit, 

not commonly used) and double extended precision (≥ 79-bit, usually 

implemented with 80 bits) [18]. 

In single-precision number representation, a total of 32 bits is required. To ensure 

a bias is applied, the value 2𝑛−1 − 1 is added to the actual exponent to obtain the 

stored exponent. For an 8-bit exponent in the single-precision format, this bias 

equals 127. Adding this bias allows the exponent to range from -126 to +127. As 

a result, the single-precision format provides a numerical range from 2−126 to 

2+127. 

Figure 19 illustrates the IEEE 754 single-precision binary format. This format 

includes a 1-bit sign (S), an 8-bit exponent (E), and a 23-bit fraction (M), also 

referred to as the mantissa. An additional bit is appended to the fraction to form 

the significand. When the exponent lies between 0 and 255 and the most 

significant bit (MSB) of the significand is 1, the number is referred to as a 

normalized number. In this case, the real value of the number is represented as 

Equation (2.9). 

 

 

Figure 19 32 bit single precision number format by IEEE 

 

𝑍 = (−1S) ∗ 2(E−Bias) ∗ (1. M)     (2.9) 

 

Where 𝑀 = 𝑚222−1 + 𝑚212−2 + 𝑚202−3 + ⋯ + 𝑚12−22 + 𝑚02−23 with Bias=127. 

 

To multiply two numbers in floating-point format, the process involves the 

following steps: 

1. Add the exponents of the two numbers and then subtract the bias from the 

sum. 
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2. Multiply the significands (mantissas) of the two numbers. 

3. Determine the sign of the result by performing an XOR operation on the 

signs of the two numbers. 

To ensure the result is represented as a normalized number, the most significant 

bit (MSB) of the result must be a 1 (referred to as the leading one). A more 

detailed explanation of this process is provided in the following section. The 

floating point multiplication algorithm is shown in the below flowchart. 

 

Figure 20 Simplified Floating Point Multiplication 

As mentioned in the introduction, normalized floating-point numbers are 

represented in the format: 

𝑍 = (−1S) ∗ 2(E−Bias) ∗ (1. M)      (2.10) 

 

To multiply two floating-point numbers, the following steps are performed: 

• Multiply the significands (mantissas), which is represented as “1.M1×1.M2”. 

• Adjust the decimal point in the resulting value. 

• Add the exponents, calculated as “E1+E2−Bias”. 

• Determine the sign of the result by performing an XOR operation on the 

signs of the two numbers, “S1 XOR S2”. 

• Normalize the result so that the most significant bit (MSB) of the significand 

is 1. 

• Round the result to ensure it fits within the allocated number of bits. 
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Consider a floating-point representation similar to the IEEE 754 single-precision 

floating-point format, but with a reduced number of mantissa bits (only 4), while 

still retaining the hidden ‘1’ bit for normalized numbers: 

A = 0 10000100 0100 = 40, 

B = 1 10000001 1110 = -7.5 

To multiply A and B: 

1.Multiply the significand: 

     1.0100   

×    1.1110   

      00000   

    10100   

    10100   

   10100   

+ 10100   

   1001011000   

2.Place the decimal point: 

10.01011000 

3. Add exponents: 

  10000100  

       +10000001   

       100000101 

The exponent representing the two numbers is already shifted/biased by the bias 

value (127) and is not the true exponent.  

 

EA = EA_true + bias , 

EB = EB_true + bias ,  

EA + EB = EA_true + EB_true + 2*bias 

So we should subtract the bias from the resultant exponent otherwise the bias will 

be added twice 

 

100000101 

- 01111111 
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10000110 

 

Normalize the result so that there is a 1 positioned just before the decimal point 

(radix point). Shifting the decimal point one place to the left increases the 

exponent by 1, while shifting it one place to the right decreases the exponent by 

1. 

For example: 

a. Before normalization: 10000110 10.01011000 

b. After normalization:   10000111 1.001011000 

The final result, excluding the hidden bit, is: 

        1 10000111 00101100 

Since the mantissa contains more bits than the available 4-bit limit, rounding must 

be applied. After truncation rounding is used, the stored value will be: 

1 10000111 0010 

 

 

  



27 

 

CHAPTER 3          

BOOTH ENCODING APPLICATION 

3.1 Objective  

3.2 Application of booth encoding 

3.3 Booth multiplication of mantissas 

3.4 Benchmarking hardware with vitis 

3.5 Using a multilayer perceptron 

 

3.1 Objective 

The primary objective of this chapter is to detail the development and integration 

of a novel algorithm that combines Booth encoding with approximate computing 

techniques to improve the efficiency of neural network (NN) computations, 

particularly multiplication operations. The selected neural network for this study 

is a Multi-Layer Perceptron (MLP), chosen for its simplicity, widespread use, and 

suitability for foundational experiments. To validate the approach, we will 

implement the MLP on the PYNQ-Z2 hardware board, which features an 

embedded CPU and an FPGA [19]. Booth encoding will be applied to optimize 

the iterative multiplications involved in the weight calculations of the MLP. The 

goal of this experiment is to enhance the neural network's efficiency by reducing 

computational overhead, heat generation, power consumption, and overall 

computation time, while carefully examining the trade-offs between speed, 

accuracy, and error tolerance 

 

3.2 Booth multiplication of mantissas 

As stated in chapter 2.7, to multiply two float numbers we need to multiply their 

mantissas. A classic Booth multiplier operates by processing the bits of the 

multiplier in iterations, either one by one (radix-2), three by three (radix-4), and 

so on, starting from the least significant bit (LSB) and moving toward the most 
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significant bit (MSB). Based on the bit values, it performs additions or subtractions 

of the multiplicand to compute the final result. 

In our implementation, for the sake of simplicity, the Booth multiplier will iterate 

bit by bit (radix-2). However, unlike the traditional approach, the direction of 

iteration will be reversed — starting from the most significant bits (MSB) and 

moving toward the least significant bits (LSB). Additionally, by integrating this 

Booth multiplier with approximate computing techniques, we will deliberately 

skip the iteration of the X final bits based on our specific requirements, thus 

optimizing performance and reducing computation where precision is less critical 

as outlined in Chapter 2 . The aforementioned description of our algorithm is 

coded in Verilog. Verilog is used in FPGA development as it allows for precise 

control over hardware resources. By coding the Booth multiplier in Verilog, we 

can implement it directly onto the FPGA embedded in the PYNQ-Z2 board. This 

ensures that the multiplication operations are carried out at hardware-level speeds, 

leveraging the parallel processing capabilities of the FPGA. Furthermore, Verilog's 

ability to describe hardware behavior and architecture aligns with the 

requirements of our design, including bit-level manipulations and iterative 

computations. 

The module takes two mul_size-bit inputs, A and B, and produces a 2*mul_size-

bit output, out. A parameter “iterations” portrays how many bits of the input A 

we wish to incorporate into our multiplication. The algorithm iterates through the 

bits of A (from most significant to least significant), checking for transitions to 

identify when to add or subtract appropriately shifted versions of B to an 

accumulated result (temp_output). The first "1" in A triggers an addition, and a 

transition from "1" to "0" triggers a subtraction. The distinction between the 

subtraction and the addition will be executed with the help of the variable 

“first_ace”. The final result is assigned to the output wire after the computation. 

This approach reduces computational effort by ignoring the least significant bits, 

allowing for an approximate result with a trade-off between precision and 

efficiency. For a clearer understanding Figure 21 describes the algorithm, then 

Figure 22 depicts a flow diagram of the approximate booth multiplication between 

the numbers A and B when skipping X bits. 
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FUNCTION booth_multiplier(A, B) 

    SET iterations = mul_size-X 

    SET first_ace = 0 

    SET temp_output = 0 

    SET digit = mul_size 

 

    WHILE (iterations ≠ 0) DO 

        iterations=iterations-1 

        digit=digit-1 

        IF A[digit] == 1 THEN 

            IF first_ace == 0 THEN 

                temp_number = B SHIFT_LEFT (digit + 1) 

                temp_output = temp_output + temp_number 

                first_ace = 1 

            ENDIF 

        ELSE IF first_ace == 1 THEN 

            temp_number = -B SHIFT_LEFT (digit + 1) 

            temp_output = temp_output + temp_number 

            first_ace = 0 

        ENDIF 

    ENDWHILE 

    IF first_ace == 1 THEN 

        temp_number = -B SHIFT_LEFT (digit) 

        temp_output = temp_output + temp_number 

    ENDIF 

    RETURN temp_output 

END FUNCTION 

Figure 21 Pseudocode of the approximate booth multiplier 
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Figure 22 Flow diagram 

 

3.3 Implementation and design 

We implemented our Booth multiplier using Verilog, developed within the Vivado 

2024 environment. The verilog code contains a variable which represents the 

amount of least significant bits that are going to be skipped during the 

multiplication of the two inputs. Therefore, we can easily create all 32 possible 

multipliers (skipping 1 bit , 2 bits etc) and so simplifying the hardware design 

and the area occupation of the multiplier on an FPGA. Once we have all of the 
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32 multipliers synthesized, the hardware design was exported from Vivado as xsa 

files which the fpga can translate into hardware. These files were subsequently 

handled through Vitis 2024 and transferred to the FPGA via serial communication 

which was executed with the use of a usb to micro-usb cable. We must note that 

the exported design includes all the 32 versions of the multiplier, each 

corresponding to a different number of bits skipped during multiplication. 

Consequently, all 32 variants of the multiplier are simultaneously available on the 

FPGA and they can be used at anytime. 

The target platform for this implementation is the PYNQ-Z2 board. The CPU of 

this board, which supports the C programming language, includes a set of pre-

installed libraries that facilitate development. The next phase of the project 

involved developing a multilayer perceptron (MLP) within Vitis 2024. The MLP 

was deployed to the CPU of the board, and its performance was monitored via a 

serial interface. During operation, the MLP communicates with the FPGA, which 

houses the full set of Booth multipliers, through a wrapper(see Chapter 3.4). 

During the training phase of the MLP, every multiplication, whether related to 

output computation of a neuron or weight adjustment of an edge, is processed on 

the FPGA sequentially. Although a more optimized design would allow batch 

processing and concurrent weight updates, a sequential approach was adopted to 

maintain simplicity. The primary performance metric under investigation is the 

effect of bit-skipping during the training phase, particularly during feedforward 

and backpropagation stages of the neural network. The initial configuration uses 

no bit-skipping, with subsequent tests progressively increasing the number of 

skipped bits. Each experiment run corresponds to a fixed number of skipped bits 

and the same number of epochs, however, a dynamic bit-skipping approach which 

varies each epoch may be explored in future work. 

It is important to note that the testing phase of the MLP does not employ 

approximation, as this phase involves only a few multiplications and using 

approximation is not going to have an affect at the speed. All weights within the 

neural network are randomly initialized at the start of each run, and the number 

of training epochs and many other variables are all user-configurable(see Chapter 

3.5). The datasets used for training and testing is sourced from open sources.  
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The MLP is designed to address both classification and regression problems 

through supervised learning. Example classification problems include handwritten 

digit recognition, sentiment analysis, medical diagnosis based on symptom vectors 

and many more. The inputs to the network are supplied as static arrays, selected 

for their efficiency in memory usage and execution speed. This method leverages 

the stack, which offers optimal performance for handling large volumes of data 

rapidly. All classification outputs are represented as integer values, such as [0, 1, 

2, 3, ...], depending on the class labels assigned in the dataset. Additionally, each 

attribute of the dataset was normalized to the interval [-1, 1] using the following 

normalization formula: 

 

𝑥norm =
2(𝑥−𝑥min)

𝑥max−𝑥min
− 1        (3.1) 

 

where x is the number we are normalizing and xmin and xmax are the minimum 

and maximum values in each attribute. 

Custom serial printing functions were developed to accommodate the limitations 

of the lightweight Vitis libraries available on the CPU. These functions enable the 

display of floating-point results through serial monitoring. The final output 

includes the MLP performance metrics such as classification accuracy, execution 

time, and mean relative error (MRED), as detailed in earlier chapters.  

To efficiently perform floating-point operations, a custom casting method was 

employed. This method allows for the extraction of the sign bit, exponent, and 

mantissa from each floating-point number.  

However, a challenge emerged related to the clocking speed of the FPGA. The 

maximum allowable clock frequency of the FPGA is constrained on certain values 

and cannot be altered. So higher and more optimal clocking speeds could not be 

achieved. 

Notably, the transmission of data between the CPU and FPGA through the 

wrapper did not achieve sufficient speed to yield a noticeable performance benefit. 

While the use of Direct Memory Access (DMA) could resolve that issue, it was not 

incorporated into the current design for as we prioritise simplicity. Instead, a 

fallback approach involved executing the MLP multiplications on the CPU instead 

of the FPGA. This adjustment did not affect the error tolerance of the training 
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phase, and the results remained consistent with what would be obtained if the 

calculations were executed on the FPGA. 

A more sophisticated design would involve parallel execution, in which multiple 

FPGA multipliers with different bit-skip configurations would process arrays of 

multiplications concurrently. These arrays would be generated in batches by the 

CPU during parallelized weight adjustments in the MLP. This proposed 

enhancement, along with other optimizations, is left for future exploration. 

 

3.4 Benchmarking hardware with vitis 

In the context of deploying our design onto the Zynq-Z2 board, it is essential to 

create an HDL wrapper for the block diagram within the Vivado Design Suite. 

This wrapper serves as the top-level module, encapsulating the entire design and 

facilitating its integration into the FPGA fabric. 

The design comprises several interconnected components, each fulfilling a specific 

role in implementing the Booth multiplier on the FPGA. The ZYNQ7 Processing 

System serves as the main controller, integrating an ARM Cortex-A9 processor to 

manage software execution, system configuration, and communication with the 

FPGA fabric. It offers essential interfaces such as DDR for memory access, USB 

for external communication, and clock and reset signals for system 

synchronization, ensuring efficient operation and management of computational 

tasks. 

The Processor System Reset module ensures that all components initialize in a 

defined state by providing necessary reset signals, preventing errors due to 

uninitialized registers.  

The AXI Interconnect facilitates data transfer between the ARM processor and the 

programmable logic by efficiently managing multiple AXI peripherals, allowing 

seamless communication between software and hardware components. 

The AXI GPIO blocks provide a flexible interface for general-purpose input and 

output, enabling the processor to send and receive control signals to and from the 

FPGA. They are particularly useful in setting input values for the Booth multiplier 

and retrieving computed results.  

The Booth Multiplier module is the core computational unit, performing binary 

multiplication using the Booth algorithm, which optimizes signed multiplication 
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by reducing the number of partial products, allowing efficient hardware 

acceleration. 

The Slice blocks extract specific bit ranges from data signals, ensuring efficient 

data handling and precise bit-level manipulation, which is necessary for 

organizing and processing inputs and outputs within the FPGA.  

The DDR and FIXED IO interfaces enable access to external memory and 

peripheral communication, allowing the processing system to handle large datasets 

efficiently while ensuring stable data exchange with external components through 

USB. 

Here is a picture of the entire design block. 

 

Figure 23 Block design inside vivado’s inteface 

 

 

3.5 Using a Multilayer perceptron 

At this part of the thesis, we will describe some key components of the 

implementation of a Multilayer Perceptron (MLP) on the PYNQ-Z2 board. The 

file main.c implements a set of flexible and adjustable parameters that define the 

architecture and behavior of the network. These parameters can be customized by 

the user to tailor the model for specific requirements, such as optimizing accuracy, 

computational efficiency, or adapting to hardware constraints or data size. The 

following parameters define the structure and operation of the MLP: 
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#define __num_hidden_layers 3 

 

This parameter defines the number of hidden layers in the MLP. The user can 

adjust this number to modify the depth of the network, which in turn affects its 

capacity to learn from the data. A deeper network might capture more complex 

patterns but could also increase computational costs. 

 

#define __hidden_layers_neurons "12,10,8" 

 

This defines the number of neurons in each hidden layer. In this case, the first 

hidden layer has 12 neurons, the second has 10 neurons, and the third has 8 

neurons. Increasing the number of neurons in each layer lead to more accurate 

and distinct results but can cause the network to become more complex and 

therefore demand more computational resources 

 

#define __hidden_activ_func "tanh,tanh,tanh" 

 

This parameter specifies the activation functions used for each of the hidden 

layers. Many activation functions are available each with unique characteristics 

and use cases. The identity function outputs the input unchanged and is typically 

used in regression tasks. The sigmoid function squashes the input into a range 

between 0 and 1 and is commonly used in binary classification but suffers from 

the vanishing gradient problem. The tanh function outputs values between -1 and 

1, helping with faster convergence but still experiences vanishing gradients in deep 

networks. The ReLU function outputs the input if positive or zero if negative and 

is widely used in hidden layers for its computational efficiency and ability to avoid 

vanishing gradients, although it can suffer from the dying ReLU problem. The 

softmax function is used in the output layer for multi-class classification tasks, 

converting raw outputs into a probability distribution where the sum of all outputs  

is 1. 
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#define __output_size 7 

 

This defines the size of the output layer. In this case, the model has 7 output 

units, which is suitable for classification tasks with 7 possible categories. The 

user can modify this value for tasks with different numbers of classes. The 

classes on the dataset must be integers with the lowest value of 1. 

 

#define __out_activ_func "softmax" 

 

This parameter defines the activation function for the output layer. Users can 

replace this with any other activation functions that was mentioned previously 

depending on the classification problem. 

 

#define __learning_rate 0.01 

 

This parameter controls the learning rate during training. The learning rate 

determines the step size taken in the gradient descent optimization process. A 

higher learning rate can speed up convergence, but it may also cause instability, 

while a smaller learning rate will converge more slowly but more steadily. 

 

#define __skipped_bits 0 

 

This defines the number of bits that can be skipped in the computation for 

hardware optimizations. The user can adjust this parameter for trade-offs between 

computation precision and efficiency, particularly when implementing the model 

on embedded systems or FPGAs. 

 

#define __max_iterations 200  

 

This parameter defines the maximum number of iterations for the training process 

of the model. This value dictates how many times the model will cycle through 
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the entire training dataset during the learning process. The user can adjust this 

value depending on the complexity of the task, the size of the dataset, and the 

desired training time. Additionally, to prevent overfitting, the training process 

involves shuffling the data at the beginning of each epoch. Shuffling the data 

ensures that the model is not exposed to the data in a fixed sequence, which helps 

to avoid learning spurious patterns that may arise from the order of the dataset. 

To conduct an experiment , the user must also modify the data files, specifically 

the data.c and data.h files. The data used for training and testing are inserted into 

the neural network as arrays, which are defined in the data.c file. In this file, the 

arrays represent the input data, with each row containing the feature values for a 

given sample. Each row is separated by commas, and the last column in the array 

represents the class to which the sample is assigned. The class values must be 

integers starting from 1 (for example, 1, 2, 3, etc.), with each integer corresponding 

to a specific class label. 

In addition to modifying the data array in data.c, the data.h file contains the sizes 

of the training set(#define __train_sample_size) and test sets(#define 

__test_sample_size) as well as the number of features of the dataset including the 

class label(#define __features_size). These values must be updated accordingly to 

reflect the number of samples in the dataset. It is important that the user ensures 

the data dimensions, the number of features and the class labels are correctly 

defined to match the structure expected by the neural network. This allows the 

model to properly interpret the data and proceed with training and evaluation. 
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CHAPTER 4          

EVALUATION 

4.1 Introduction 

4.2 Tools 

4.3 Experiments 

 

4.1 Introduction 

This chapter covers experiments conducted on the PYNQ-Z2 board, focusing on 

the implementation and evaluation of our proposed design. The experiments 

involve deploying the Verilog-based Booth multiplier onto the FPGA embedded 

in the board, allowing us to analyze its performance in terms of efficiency, speed, 

and power consumption. Additionally, we explore the impact of approximate 

computing techniques on multiplication accuracy and resource utilization. 

Through these experiments, we aim to validate the effectiveness of our approach 

and demonstrate its advantages in hardware-based neural network acceleration. 

 

4.2 Tools 

In this study, Vivado 2023.2 was used for the design, synthesis, and analysis of 

the Booth multiplier. This tool enables precise evaluation hardware parameters, 

including circuit area, power consumption, and schematic visualization, which 

encompasses key processing components such as shifters, multiplexers, and 

adders. The hardware description language used for implementation is Verilog, 

facilitating efficient hardware modeling and synthesis for FPGA deployment. To 

integrate the Booth multiplier into a Multilayer Perceptron (MLP) network, Vitis 

2023.2 was employed. In Vitis, we materialized our MLP network using the C 

programming language and parameterized it to allow dynamic modifications of 

the Booth multiplier as well as the MLP. This flexibility enabled an evaluation of 

different multiplier configurations, allowing adjustments based on performance 

requirements. The bitstream file generated from Vivado was incorporated into 
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Vitis, where each multiplication operation was replaced with Booth multiplication. 

For output monitoring and analysis, serial monitoring was utilized. While various 

serial monitoring tools are available, Visual Studio Code was chosen due to its 

robust debugging capabilities, versatility, and reliability in handling serial data 

communication. 

Finally, we utilized the ZYNQ XC7Z020-1CLG400C which integrates a 650MHz 

ARM® Cortex®-A9 dual-core processor with programmable logic. The 

programmable logic consists of 13,300 logic slices, each containing four 6-input 

LUTs and 8 flip-flops, along with 630 KB of block RAM and 220 DSP slices. The 

FPGA programming and configuration were carried out using a USB Type-A to 

Type-B cable. Additionally, the system includes 512MB DDR3 memory with a 

16-bit bus, operating at 1050 Mbps. The ARM processor runs bare-metal (no OS) 

for deterministic low-latency control, avoiding the overhead of a full Linux stack. 

(Alternatively, if Linux were used, an SD card would be required for booting.) 

[19] 

 

4.3 Experiments 

4.3.1 Multiplier testing 

In this experiment, we evaluate the impact of approximate computing on the 

Booth multiplier using three key metrics: Look-Up Table (LUT) usage, schematics 

complexity, and on-chip power consumption. These metrics provide a 

comprehensive understanding of the trade-offs between computational precision 

and resource efficiency in FPGA-based designs. LUT usage reflects the logic 

resource utilization, schematics illustrate the structural complexity of the design, 

and on-chip power consumption quantifies the energy efficiency of the 

implementation. Together, these metrics offer valuable insights into the 

effectiveness of bit-skipping as an approximation technique for optimizing Booth 

multipliers in resource-constrained environments. 

Finally we must note that comparing our multiplier to the one embedded within 

Vivado and its compiler is not meaningful, as it is highly optimized through 

hardware-level enchantments like DSP slices and not LUTs. Therefore, we conduct 

our comparison against a manually implemented multiplier which follows the 
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conventional long multiplication algorithm which we were taught in elementary 

school. In all figures below this kind of multiplier is mentioned as normal 

multiplication. 

 

LUT utilization 

Look-Up Tables (LUTs) are the fundamental building blocks of FPGA logic, used 

to implement combinational functions. In the context of Booth multipliers, LUT 

usage is directly influenced by the complexity of partial product generation and 

accumulation. By skipping bits, we reduce the number of partial products, thereby 

simplifying the logic and decreasing the number of LUTs required. This metric is 

critical for assessing the resource efficiency of the design, as lower LUT usage 

allows for more compact implementations and frees up resources for other tasks. 

The following results demonstrate how LUT usage scales with the number of bits 

skipped, highlighting the potential for resource savings in approximate 

computing. The amount of LUTs on the board "stands at" 53,200. Here is a plot 

with the LUT utilization per bits skipped as well as a percentile representation. 

 

 

Figure 24 Lut utilization per bit skipped 
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Figure 25 Percentile Lut utilization per bits skipped 

 

Error tolerance/Mred 

Error tolerance in the context of approximate computing can be quantified using 

the Mean Relative Error Distance (MRED), which measures the average deviation 

of the approximate results from the exact results, normalized by the magnitude of 

the exact values. As the number of skipped bits increases, the precision of the 

computation decreases, leading to a corresponding incrementation in MRED. In 

this experiment we are generating 100000 random multiplications and then 

calculating the MRED as referenced in section 2.2. The following results 

demonstrate how MRED scales with the number of skipped bits, providing 

insights into the error tolerance of the system under varying levels of 

approximation. It is important to note that due to rounding, an average of 11 or 

12 bits (half the size of the mantissas) are cut off from the final output . As a 

result, the MRED for the first 15 bits appears to have minimal error, as the 

rounding effect dominates during the initial stages of approximation. Even though 

some bits are lost in single-precision mantissa multiplication, the mean relative 



42 

 

error remains very small in most cases, ensuring high reliability. 

 

Figure 26 MRED of 100000 random multiplications 

 

Schematics 

The schematics of a design provide a visual representation of its structural 

complexity, including the interconnections between logic elements and the overall 

organization of the circuit. In the case of Booth multipliers, bit-skipping reduces 

the number of partial products and simplifies the adder tree, leading to a less 

complex schematic. This reduction in complexity not only makes the design easier 

to analyze and debug but also improves routing efficiency on the FPGA. By 

examining the schematics at different levels of bit-skipping, we can observe how 

approximation techniques streamline the design, making it more suitable for 

applications where area and routing resources are limited. The following 

schematics illustrate the implementation of a approximate Booth multiplier 

designed to multiply two 4-bit numbers, A and B.  The design consists of 

interconnected components, including shifters, multiplexers, and adders. For 

reference, the schematic of a traditional 4x4 multiplier is included to provide a 

baseline comparison with the approximate Booth multiplier designs 
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Figure 27 4x4 Approximate booth multiplier,  0 bits skipped 

 

Figure 28 4x4 Approximate booth multiplier, 1 bit skipped 

 

Figure 29 4x4 Approximate booth multiplier,  2 bits skipped 
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Figure 30 4x4 Approximate booth multiplier,  3 bits skipped 

 

Figure 31 4x4 multiplier 

 

 

Power on chip 

On-chip power consumption is a critical metric for evaluating the energy efficiency 

of FPGA-based designs. It is influenced by both the dynamic power (due to 

switching activity) and static power (due to leakage currents). In Booth 

multipliers, skipping bits reduces the number of logic operations and the switching 

activity, thereby lowering dynamic power consumption. Additionally, the 

reduction in LUT usage and routing complexity contributes to lower static power. 

This metric is particularly important for energy-constrained applications, such as 

edge computing or IoT devices, where minimizing power consumption is a key 

design objective. The following analysis quantifies the power savings achieved 
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through bit-skipping, demonstrating the potential of approximate computing for 

energy-efficient implementations. 

 

 

Figure 32 Total on chip power 

 

Time taken per multiplication 

The time taken for each multiplication is a critical metric for evaluating the 

efficiency of the proposed approximate Booth multiplier. In this experiment, we 

aim to calculate the average time per multiplication using Vivado timing 

simulation. Vivado provides precise timing analysis, allowing us to measure the 

latency of each multiplication operation under varying levels of approximation. 

By generating a large number of random multiplications and analyzing their 

timing, we can determine how the time taken scales with the number of skipped 

bits. This analysis provides valuable insights into the trade-offs between 

computational speed and precision. 
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Figure 33 Timing simulation latency 

 

From Figure 33 we can produce the corresponding clocking speeds. These speeds 

represent the optimal clocking speeds of the FPGA as long as the available 

hardware supports them. 

 

Figure 34 Maximum clocking speed 
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4.3.2 MLP testing 

In the following section of the thesis, we will explore the integration of a Multi-

Layer Perceptron (MLP) with hardware-accelerated approximate computing on 

an FPGA. By replacing all multiplications contained inside the MLP with 

approximations using booth multipliers, we aim to accelerate the computation 

while leveraging the inherent error tolerance of neural networks to maintain 

acceptable accuracy. The MLP's ability to tolerate such errors makes it an ideal 

candidate for this approach, as it can often produce good results even with 

reduced computational precision due to its iterative nature. This experiment 

evaluates the trade-offs between speed, accuracy, and error tolerance when using 

approximate multiplication in an MLP, providing insights into the potential for 

hardware-accelerated machine learning in resource-constrained environments. 

Unfortunately, these tests cannot be conducted with complete exactitude, as the 

FPGA clock speed does not align with the ideal operating speed. Consequently, 

all tests will be performed using the board’s CPU. 

Finally we must note that comparing our multiplier to the one embedded within 

a C compiler compiler is futile, as it is highly optimized through software-level 

enchantments and loop accelerations. Therefore, we conduct our comparison 

against a manually implemented multiplier which follows the conventional long 

multiplication algorithm which we were taught in elementary school. In all figures 

below this kind of multiplier is mentioned as normal multiplication. 

 

Accuracy  

The accuracy of a classification Multilayer Perceptron (MLP) is a fundamental 

metric for assessing its performance in tasks such as pattern recognition, image 

classification, and decision-making. Accuracy measures the proportion of correctly 

classified instances out of the total number of instances, reflecting the MLP's ability 

to learn and generalize from training data after a certain amount of epochs. In 

the context of approximate computing, where precision is intentionally reduced to 

enhance computational efficiency, maintaining high accuracy becomes a significant 

challenge. However, the MLP's inherent error tolerance allows it to produce 

reliable classification results even with approximate computations, making it a 

strong candidate for hardware-accelerated implementations. This section examines 
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how the accuracy of the classification MLP is influenced by the integration of 

approximate computing techniques, such as the modified Booth multiplier, and 

evaluates the trade-offs between computational efficiency and classification 

performance. The following figures represents the accuracy of an MLP with the 

according characteristics. 

Feature size=5, Training set size =120, Test set size = 30,  Neurons Layers, 6,8,8, 

Activation functions: Tanh, Tanh, Tanh, Softmax , Epochs=100 

 

 

 

Figure 35 First dataset, accuracy per bit skipped 

The results from Figure 35 as observed, accuracy remains nearly constant and 

close to 100% for up to approximately 9 bits skipped. Beyond this threshold, a 

gradual decline in accuracy becomes evident, with more pronounced degradation 

occurring after skipping more than 14 bits. Notably, while some fluctuations 

appear, due to randomness, such as temporary increases at 18 and 20 bits, the 

general trend shows that accuracy diminishes as the level of approximation 

increases. At 24 bits skipped, the network's accuracy drops significantly to below 

40%. 
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Feature size=6, Training set size =200, Test set size = 26,  Neurons Layers, 12,10,8, 

Activation functions: Tanh, Tanh, Tanh, Softmax, 300 epochs 

 

Figure 36 Second dataset, accuracy per bit skipped 

The results presented in Figure 36 depict the accuracy of the multilayer 

perceptron on the second dataset as a function of the number of bits skipped 

during multiplication. It is evident that accuracy remains consistently high, 

approximately 96%. However, the sharp drop in accuracy beyond 16 bits skipped 

suggests a critical threshold, beyond which the model begins to lose essential 

information from the training data. This degradation may also be influenced by 

overfitting, where the model becomes too tightly adapted to the training set and 

fails to generalize under altered numerical conditions.  

 

 

Training time taken 

The time taken for all multiplications to be executed during the training phase of 

the MLP is significantly reduced when using Booth approximation compared to 

classic multiplication. Booth approximation simplifies the classic multiplication 

process by skipping bits and reducing the number of partial products, thereby 

decreasing latency of each multiplication and so the duration of the training phase. 

The following results depict the time taken of the NN to be trained and tested 

using the classic and Booth-approximated multiplication, demonstrating the 
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potential for faster processing in hardware-accelerated MLPs. It is also important 

to emphasize that the comparison was conducted between our custom Booth 

multiplier and the straightforward long multiplication algorithm, the same method 

typically taught in elementary school. As also mentioned before, using the highly 

optimized multiplication operations embedded within the C compiler would have 

rendered the comparison invalid. This baseline multiplier, like our Booth designs, 

was executed on the CPU (and is shown as "normal multiplication")  to ensure a 

fair and consistent evaluation environment. 

Feature size=5, Training set size =120, Test set size = 30,  Neurons Layers, 6,8,8, 

Activation functions: Tanh, Tanh, Tanh, Softmax , Epochs=100 

 

Figure 37 First dataset, time taken 

 

Feature size=6, Training set size =200, Test set size = 26,  Neurons Layers, 12,10,8, 

Activation functions: Tanh, Tanh, Tanh, Softmax, 300 epochs 

 

 

Figure 38 Second dataset, time taken 
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CHAPTER 5          

CONCLUSIONS AND FUTURE THOUGHTS 

5.1 Conclusions 

5.2 Future thoughts 

 

5.1 Conclusions 

This thesis presented the development and evaluation of a new approximate 

Booth multiplier designed to handle floating-point numbers and process bits from 

the most significant bit (MSB) to the least significant bit (LSB). Unlike traditional 

Booth multipliers, which process bits sequentially and focus on reducing the 

number of partial products through Booth encoding, our approach prioritizes the 

most significant bits first, enabling early termination and reducing computational 

complexity. This design choice, combined with approximate computing 

techniques, significantly improves efficiency while maintaining acceptable 

accuracy. The multiplier was implemented on the PYNQ-Z2 board, and its 

performance was evaluated across several key metrics, including LUT utilization, 

schematics complexity, on-chip power consumption, accuracy, error tolerance, and 

time taken. 

The approximate Booth multiplier demonstrated significant reductions in LUT 

utilization as the number of skipped bits increased. By simplifying the logic 

required for partial product generation and accumulation, the multiplier freed up 

valuable FPGA resources, enabling more compact designs and leaving room for 

additional functionality. This reduction in LUT usage is particularly beneficial for 

resource-constrained environments, where efficient resource allocation is critical. 

The schematics complexity of the multiplier also decreased as the number of 

skipped bits grew. By reducing the number of partial products and simplifying 

the adder tree, the design became more streamlined and easier to route on the 

FPGA. This reduction in complexity not only improved the scalability of the 
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design but also made it more suitable for applications where area and routing 

resources are limited. 

In terms of on-chip power consumption, the multiplier showed a decrease as the 

number of skipped bits increased, although the reduction was not as significant 

as expected. This is likely due to the limited resources and small scale of the 

PYNQ-Z2 board, which constrained the potential power savings. Nevertheless, the 

results suggest that approximate computing techniques can contribute to energy-

efficient designs, particularly when implemented on larger FPGAs with more 

resources.  

Furthermore as the number of skipped bits increases, the computational 

complexity decreases, allowing for faster multiplication operations. This reduction 

in complexity also enables the FPGA to operate at higher clocking speeds, as long 

as the rest of the system supports those speeds. 

Despite the reduction in precision caused by bit-skipping, the multiplier 

maintained acceptable accuracy levels, especially when integrated into the MLP. 

The MLP's inherent error tolerance allowed it to produce reliable results even 

with approximate computations, demonstrating the feasibility of using 

approximate multipliers in machine learning applications. 

The multiplier exhibited strong error tolerance, as quantified by the Mean Relative 

Error Distance (MRED). The results suggest that the approximate Booth 

multiplier is a suitable choice for applications where error tolerance is critical. 

Finally, the time taken for computations was significantly reduced, making it a 

viable option for real-time applications where speed is critical. 

 

5.2 Future thoughts 

To fully realize the potential of this approximate Booth multiplier, future work 

should focus on testing it on a larger FPGA board with more resources, such as 

increased LUTs, DSP slices, and memory bandwidth. A larger board would allow 

for more extensive experimentation, including the implementation of higher-radix 

designs (e.g., radix-2 or radix-4) and the evaluation of more complex neural 

networks. Additionally, a larger board would provide a better environment for 

analyzing power consumption, as the current results were limited by the small 

scale of the PYNQ-Z2. 
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Another promising direction is the parallelization of the hardware, which could 

enable even faster speeds by processing multiple operations simultaneously. This 

would be particularly beneficial for real-time applications where latency is critical. 

Furthermore, a larger board with fewer clocking restrictions would allow for 

experiments with faster clocks, enabling true hardware acceleration and providing 

a more accurate assessment of the multiplier's performance. 

Exploring error compensation techniques could further improve the multiplier's 

accuracy without sacrificing efficiency. Extending the multiplier's capabilities to 

handle larger datasets and more complex models, such as convolutional neural 

networks (CNNs) or recurrent neural networks (RNNs), would also provide 

valuable insights. Testing the multiplier in real-world applications, such as edge 

computing or IoT devices, would help assess its performance under practical 

constraints. 

By addressing these areas, future work can build on the foundation laid by this 

thesis to advance the field of approximate computing and hardware-accelerated 

machine learning, ultimately enabling more efficient and scalable implementations 

for a wide range of applications. The contrast between traditional Booth 

multipliers and our new approximate approach highlights the potential for 

innovation in this space, paving the way for future research and development. 
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