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ABSTRACT

Rodopi Kosteli, M.Sc. in Computer Science, Department of Computer Science and
Engineering, School of Engineering, University of Ioannina, Greece, 2025.
Adaptive Memory Reclamation in Multitenant Cloud Systems.
Advisor: Stergios V. Anastasiadis, Professor.

The rapidly growing memory demands of modern data-intensive applications,
such as data analytics and machine learning, coupled with the rising costs of dynamic
random-access memory prices, have made physical memory a significant infrastruc-
ture expense in multitenant cloud environments. This observation highlights the need
for efficient dynamic memory allocation to optimize resource utilization and decrease
operational costs. However, this is a challenging problem due to the unpredictable
variation of the memory requirements over time. Cloud tenants often resort to over-
provisioning memory for accommodating peak application demands. Unfortunately,
this approach leads to significant memory waste, as resources are allocated for peak
demand but remain underutilized during normal operation.

In the present thesis, we introduce an automated approach to reclaim the under-
utilized memory of data-intensive applications by leveraging the page reclamation
method of the Linux kernel. Our approach monitors several metrics offered by the
system kernel to detect underutilized pages across the running applications. Subse-
quently, we implement a Contention Service to generate controlled memory pressure
and enforce the return of the underutilized pages from the application back to the
system.

We regard MapReduce as a representative framework commonly deployed on
cloud environments and evaluate both synthetic and real-world MapReduce appli-
cations. Our results demonstrate that the Contention Service efficiently identifies and
reclaims underutilized memory. In comparison to a state-of-the-art approach from

x



the industry, the Contention Service tracks the actual memory demands of the appli-
cations over time with higher accuracy and releases up to 36% more memory with
negligible overhead on the containers running the applications.
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ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Ροδόπη Κωστέλη, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημά-
των, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, 2025.
Προσαρμοστική Ανάκτηση Μνήμης σε Πολυμισθωτικά Συστήματα Νέφους.
Επιβλέπων: Στέργιος Β. Αναστασιάδης, Καθηγητής.

Οι ταχέως αυξανόμενες απαιτήσεις μνήμης των σύγχρονων εφαρμογών, όπως
η ανάλυση δεδομένων και η μηχανική μάθηση, σε συνδυασμό με το αυξανόμενο
κόστος των τιμών της μνήμης τυχαίας προσπέλασης, καθιστούν τη φυσική μνήμη
σημαντικό κόστος υποδομής στα πολυμισθωτικά συστήματα υπολογιστικής νέφους.
Η παραπάνω παρατήρηση αναδεικνύει την ανάγκη για αποτελεσματική δυναμική
κατανομή μνήμης για τη βελτιστοποίηση της χρήσης των πόρων και τη μείωση του
λειτουργικού κόστους. Ωστόσο, η σχεδίαση μεθόδων για δυναμική κατανομή μνήμης
αποτελεί πρόκληση, καθώς οι απαιτήσεις των εφαρμογών σε μνήμη παρουσιάζουν
ασταθή και απρόβλεπτη συμπεριφορά με την πάροδο του χρόνου. Συχνά, οι χρή-
στες υπερεκτιμούν την ποσότητα μνήμης που απαιτεί η ορθή εκτέλεση εφαρμογών
με υψηλές απαιτήσεις σε μνήμη προκειμένου να καλύψουν τη μέγιστη ζήτηση. Αυτή
η προσέγγιση έχει ως συνέπεια να παραμένει αδρανής μια ποσότητα δεσμευμέ-
νης μνήμης, καθώς οι πόροι διατίθενται για τη ζήτηση αιχμής, αλλά παραμένουν
ανεκμετάλλευτοι κατά τη διάρκεια της κανονικής λειτουργίας.

Στην παρούσα εργασία στοχεύουμε στην επίλυση του παραπάνω προβλήματος
και προτείνουμε μια αυτοματοποιημένη προσέγγιση για την ανάκτηση της αδρα-
νούς μνήμης των εφαρμογών με υψηλές απαιτήσεις σε μνήμη. Η προσέγγισή μας
αξιοποιεί την υπηρεσία ανάκτησης σελίδων του πυρήνα του λειτουργικού συστή-
ματος Linux. Πιο συγκεκριμένα, παρακολουθεί μετρικές που παρέχει ο πυρήνας
με στόχο να ανιχνεύσει σελίδες που παραμένουν αναξιοποίητες από τις εφαρμογές
που εκτελούνται στο σύστημα.
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Υλοποιούμε μια υπηρεσία, η οποία δημιουργεί ελεγχόμενη πίεση στη μνήμη, δε-
σμεύοντας την κατάλληλη ποσότητα μνήμης, με στόχο την αφύπνιση του μηχανισμού
ανάκτησης αδρανών σελίδων του πυρήνα του Linux για την επιστροφή των σελίδων
που δεν χρησιμοποιούνται ενεργά από την εφαρμογή πίσω στο σύστημα.

Θεωρούμε το MapReduce ως ένα αντιπροσωπευτικό μοντέλο εφαρμογών που
εκτελούνται σε περιβάλλοντα υπολογιστικής νέφους και αξιολογούμε τόσο συνθετι-
κές, όσο και πραγματικές εφαρμογές MapReduce. Τα αποτελέσματα δείχνουν ότι η
προσέγγισή μας αναγνωρίζει αποτελεσματικά την αδρανή μνήμη και την επιστρέφει
στο σύστημα. Σε σύγκριση με μια λύση αιχμής για το πρόβλημα της αναγνώρισης
αδρανούς μνήμης, η προσέγγισή μας εντοπίζει με υψηλότερη ακρίβεια τις πραγ-
ματικές απαιτήσεις μνήμης των εφαρμογών κατά τη διάρκεια εκτέλεσής τους και
επιστρέφει εώς και 36% περισσότερη αδρανή μνήμη στο σύστημα με ελάχιστη επι-
βάρυνση στη εκτέλεση των εφαρμογών.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

1.2 Motivation

1.3 Contributions

1.4 Thesis Organization

The rapid development of data-intensive applications, such as big data analytics,
machine learning, and databases in cloud computing, necessitates efficient memory
management to handle large-scale data operations. Applications often require sub-
stantial memory resources, leading to frequent triggering of page reclamation algo-
rithms. Both background and foreground reclamation can degrade performance, as
the former consumes system resources and the latter causes application stalls [4, 5].

Resource allocation in cloud environments is typically static and overprovisioned
due to difficulties in predicting memory needs. Applications may allocate large mem-
ory objects that are infrequently accessed, resulting in low average memory utilization
(40%-60%) [6]. This necessitates a method to release idle memory without impact-
ing application performance in order to optimize resource usage and support more
tenants in a containerized cloud environment.
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1.1 Problem Statement

The focus of this thesis is to study and improve the management of memory in
datacenter servers that host applications from different tenants. Modern datacenters
host diverse workloads, such as web services, data analytics, and artificial intelligence.
These workloads often vary significantly in their memory usage patterns making the
management of memory a complex task. Moreover, memory is inherently constrained
by physical hardware limits, making its effective utilization a top priority for the
datacenter [7, 8].

Application and DevOps engineers cannot estimate the actual resource require-
ments of the applications that they deploy in the datacenter. Applications often expe-
rience dynamic and unpredictable workload patterns. For instance, a web application
might experience sudden surges in traffic during specific events, while a batch pro-
cessing job might require additional memory only at certain computation stages. To
account for such variability, engineers typically overprovision memory by reserving
a larger amount than the application’s average consumption. This approach is de-
signed to mitigate the risk of memory exhaustion during peak loads, which could
lead to performance degradation or out-of-memory killing. However, the memory
allocation for the peak load leads to the underutilization of the memory resource,
as most applications use only a fraction of the total reserved memory during their
lifecycle, leaving large portions of memory idle and unavailable for other uses.

We define the portion of physical memory that the tenants reserve for their ap-
plications but remains unused for a long period of time as underutilized memory. The
problem that we try to solve in this thesis is to automatically identify and reclaim the
underutilized memory, in order to make it available for use by tenant applications
that need it.

1.2 Motivation

In modern cloud environments, resource allocation and memory management are
critical challenges, particularly when managing applications from multiple tenants
with varying memory usage patterns. Applications often allocate memory in advance
to ensure sufficient resources during peak loads, which leads to large portions of
memory being reserved but not actively used. This idle memory, although reserved
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Figure 1.1: The memory footprint trace of Hadoop MapReduce applications [1].

for future use, represents an inefficiency in resource management, as it stays unused
while other applications or tenants could benefit from it.

To emphasize the relevance of the above problem, we analyze the memory de-
mands introduced by MapReduce application workloads [1], as illustrated in Figure
1.1. Observations from the CloudScale system show that these workloads exhibit al-
ternating phases of high and low memory consumption, often leading to inefficient
memory allocation. Both high and low memory demand last approximately 10-15s.
To accommodate peak demand, memory is often over-allocated, even though the
actual usage fluctuates significantly throughout the application’s lifecycle. Such vari-
ations expose the limitations of static provisioning strategies, which fail to dynamically
adapt to changing resource needs.

A small portion of memory, known as the working set, is accessed frequently
by applications. However, there are also temporary bursts where applications utilize
significantly larger amounts of memory for short durations. Since these bursts involve
memory that is unlikely to be accessed again soon, static allocation strategies result
in suboptimal resource utilization.

The above behavior underscores the need for an adaptive approach for reclaim-
ing underutilized memory in cloud environments, in order to reduce the impact of
overprovisioning and achieve more efficient utilization of resources.

As applications in cloud datacenters grow in size and complexity, the ability to
dynamically manage memory resources becomes increasingly important. For instance,
web applications, databases, and machine learning systems often make use of caching
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mechanisms or store intermediate results to avoid redundant computations. These
practices can be considered forms of ”soft state”, where memory is allocated for data
that is not actively being used but has the potential to improve performance if accessed
in the future.

Overprovisioning memory to hold the soft state can waste system resources, while
underprovisioning can cause performance bottlenecks when applications experience
sudden spikes in load or require more resources than anticipated. Additionally, dif-
ferent applications benefit from caching and memory allocation to varying degrees,
making it difficult to find a one-size-fits-all solution.

This problem is compounded in multitenant cloud environments where multi-
ple applications, often with diverse resource requirements, are hosted on a shared
infrastructure. Without efficient memory management mechanisms, memory alloca-
tion becomes wasteful, limiting the efficiency of cloud systems. Therefore, there is
a need for a dynamic and elastic memory management scheme that can effectively
reclaim underutilized memory, optimize resource usage, and minimize performance
degradation.

In this thesis, we aim to address this problem by proposing a system that au-
tomatically detects and reclaims underutilized memory in cloud environments. Our
approach ensures that allocated memory that is not actively used by applications
is adaptively reclaimed following their real-time needs. We focus on the efficient
identification and reclamation of the underutilized memory without impacting the
performance of applications.

1.3 Contributions

In this thesis, we examine approaches for efficiently identifying and reclaiming un-
derutilized memory in containerized environments. We focus on leveraging existing
kernel mechanisms and computing techniques to dynamically optimize memory us-
age while minimizing the impact on application performance.

We can summarize our contributions as follows:

• We provide a review of related research on memory management, idle-page
tracking and memory reclamation techniques used in cloud environments, high-
lighting their strengths and limitations.
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• We introduce the architecture of the Contention Service (CS), that identifies
the underutilized memory allocated by applications based on system metrics.
Through the Memory Stresser (MS) component, it generates controlled memory
pressure, in order to enable the background reclamation process of the Linux
kernel to release the underutilized memory.

• We implement a prototype of the Contention Service that monitors several met-
rics offered by the Linux kernel and applies the required pressure through stan-
dard memory allocations, in order to initiate background reclamation. Thus, our
approach does not require modifications to the user applications or the under-
lying kernel.

• We perform an experimental evaluation of the Contention Service, demonstrat-
ing its effectiveness in reclaiming underutilized memory without excessive per-
formance degradation. Using synthetic and real-world applications, we demon-
strate the effectiveness of our system, highlighting its ability to identify under-
utilized memory with better accuracy and reclaim it faster than state-of-the-art
approaches. Our results show that the Contention Service incurs minimal over-
head and can effectively optimize memory utilization in a multitenant environ-
ment.

• Finally, we highlight future research opportunities and propose potential im-
provements to further enhance the system’s utilization, efficiency, and elasticity
in managing resources within virtualized environments.

1.4 Thesis Organization

The rest of this thesis is organized as follows.
Chapter 2 provides a detailed analysis on Linux memory management. It begins

by explaining the fundamental aspects of memory management, including the organi-
zation of virtual and physical memory. It then delves into Linux memory reclamation
techniques, focusing on mechanisms such as the page cache, LRU lists, and the Out
of Memory (OOM) killer for efficient resource management.

Chapter 3 explores resource management in modern computing systems, focusing
on elasticity and resource monitoring mechanisms. It begins by explaining the feature
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of elasticity and its importance in cloud environments. The chapter then discusses
resource monitoring through the Linux control groups (cgroups) and Pressure Stall
Information (PSI) interfaces. Finally, it examines the cgroup-specific metrics, and the
system-wide metrics, which provide valuable insights into the system state and help
identify potentially underutilized memory pages.

Chapter 4 outlines the design of the proposed system, starting with the design
goals and challenges in detecting and removing idle memory. Then, it describes key
components such as the Metrics Collector, Resource Controller, and Memory Stresser,
along with the synthetic workload generator used to evaluate the system.

Chapter 5 details the implementation of the proposed system, focusing on the
Metrics Collector, Resource Controller, and Memory Stresser. It explains the proto-
type’s functionality, including thread management, tenant container handling, and
protecting the Memory Contention service from swapping, to ensure robust memory
contention management.

Chapter 6 evaluates the proposed system through experiments conducted in var-
ious scenarios. It examines the Memory Stresser’s performance with one and two
tenants, its effectiveness with MapReduce applications, and its comparison with exist-
ing approaches. The evaluation emphasizes its efficiency in identifying and managing
idle memory, as well as its impact on system performance.

Chapter 7 presents a review of the existing literature on memory management,
idle-page detection, and memory reclamation techniques. It examines the current
state-of-the-art approaches, highlighting their strengths and limitations. Additionally,
the chapter compares these methods with the proposed approach, positioning its
contributions within the broader context of the field to demonstrate its advantages.

Finally, Chapter 8 highlights opportunities for future research and summarizes
the conclusions of our work.
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CHAPTER 2

MEMORY MANAGEMENT IN THE LINUX
KERNEL

2.1 Virtual Memory

2.2 Physical Memory

2.3 The Page Cache

2.4 Page Frame Reclamation

2.5 Memory Reclamation

2.6 Summary

Memory is a critical resource for computing systems due to its limited amount and
its importance for system performance and functionality. Hence, memory should be
managed conservatively. In modern computing systems, the demand for memory is
continuously growing, driven by factors such as the increasing complexity of software,
the resource-intensive tasks, and the rise of big data applications.

Memory management is one of the most complex activities in an operating sys-
tem. The efficient handling of the physical and virtual memory resources plays a
fundamental role in ensuring the reliable and secure operation of software applica-
tions. This is especially crucial in multiprogramming systems, where memory must
be optimally allocated among processes.
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The goal of efficient memory management is to optimize the system performance,
enhance stability, and mitigate risks such as crashes, data corruption, or security
vulnerabilities. To achieve this, operating systems employ various techniques to man-
age memory properly, including allocation strategies, caching mechanisms [9, 10],
swapping policies, and memory protection mechanisms [11].

In time-sharing systems, the available main memory is shared among various
processes. Having multiple processes in memory at once, means that as long as some
processes use the processor, there are other processes waiting for I/O to finish. Thus,
there is an ever-increasing need for efficient resource allocation to individual processes
to ensure the efficient utilization of system resources [11].

This section introduces the key concepts of memory management, laying the foun-
dation for the subsequent discussions on specific techniques and strategies that the
Linux kernel employs to manage memory effectively.

2.1 Virtual Memory

Modern systems provide a mechanism called virtual memory, that allows a process to
address more memory than the amount of physical memory [12]. More specifically,
virtual memory manages the content of the main memory when the combined size
of the program, data, and stack of a process exceeds the available physical memory
capacity.

Most systems implement virtual memory using paging, a memory management
approach in which a process address space is organized into fixed-sized units which
are called pages. Similarly, physical memory is divided into corresponding fixed-sized
chunks called page frames [13]. Both pages and page frames have the same size in
order to achieve optimum utilization of the main memory.

Overall, virtual memory provides several advantages as it increases memory ca-
pacity and allows memory protection because each virtual address is translated to a
physical address.

2.1.1 Demand Paging

Demand paging is a memory management strategy where pages are only loaded into
physical memory when they are accessed for the first time. Unlike preloading all
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pages into RAM, demand paging defers memory allocation, reducing memory usage
and increasing efficiency.

When a program accesses a memory page that is not currently stored in RAM
and needs to bring it from the secondary storage, the system responds to the un-
mapped reference with an exception referred as page fault. In the event of a page
fault, the operating system retrieves the contents of the required page from the sec-
ondary memory, picks a less frequently used loaded page frame to evict and fetches
the referenced page into the discarded page frame. This process is known as page
replacement. Various algorithms like Least Recently Used (LRU), which replaces the
page that has been unused for the longest time, or First-In-First-Out (FIFO), which
replaces the oldest loaded page, are used to decide which page to replace [13].

Once the required page is brought into memory, the page table is updated to reflect
the new mapping. Demand paging, while efficient, introduces overhead due to page
faults.

2.1.2 Swapping

Swapping is a similar approach to demand paging, which is used to relieve the memory
pressure. Swapping is an essential technique to manage memory when the main
memory capacity is not enough to hold all the currently active processes, by swapping
out to disk the inactive pages in order to free up space for active processes. Swapping
involves anonymous pages, which require swap partitions for storage. The pages
swapped out from memory are stored in the swap area, which may be implemented
either as a separate disk partition or as a file.

The swap cache is a temporary storage area used to facilitate the swapping process.
It acts as an intermediary between system memory and disk storage, temporarily
backing up anonymous and shared memory pages during the swapping process in
order to make it easier to swap them back into memory when needed. It helps coor-
dinate the swap-in and swap-out operations and ensures synchronization, preventing
conflicts. When pages are swapped out from memory, the swap cache stores them
until they are swapped back into memory when needed. This improves the overall
performance of memory management during swap operations.

The Linux kernel provides the swappiness parameter that determines how aggres-
sively the kernel will swap out anonymous pages relative to file pages [14]. The
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parameter takes values from 0 to 200. The default value is 60. Table 2.1 shows how
the parameter of swappiness determines the LRU lists sizes. The higher the swappi-
ness value, the more likely the kernel to move anonymous pages out of memory to
the swap area.

Table 2.1: Control of swapping out anonymous memory pages in Linux kernel.

Swappiness parameter Effect at memory shortage

swappiness=0 The kernel avoids swapping out anonymous
memory pages and discards only file pages.

swappiness=60 The kernel reclaims both anonymous and file
pages but prefers to discard file pages first (de-
fault).

swappiness=100 The kernel treats anonymous and file pages
equally when reclaiming memory.

swappiness=200 The kernel avoids reclaiming file pages and
swaps out only anonymous memory pages.

While swapping ensures memory availability, the excessive swapping between disk
and memory can lead to severe performance degradation, a phenomenon known as
thrashing [11]. Several sophisticated algorithms, such as the working set policy [15],
are designed based on the notion of the principle of locality [16] to prevent thrashing.

2.2 Physical Memory

Physical memory refers to the actual hardware memory, typically in the form of
Random Access Memory (RAM), installed in a computer system. The Linux kernel
employs a page-based memory organization, wherein physical memory is divided
into page frames. Each page frame, typically 4 KB on x86 architectures, serves as the
fundamental unit for memory allocation and management. These pages are allocated
either to user mode processes or kernel tasks.

Each page frame has a page descriptor that holds flags indicating whether the page
is locked, dirty, active/inactive, or has been reclaimed, which facilitates the kernel to
keep track of its status. It also includes a reference counter that counts how many
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page tables belong to that page [17].
To address the growing complexity of modern systems, Linux organizes physi-

cal memory into multiple layers and components. For large-scale systems, the Non-
Uniform Memory Access (NUMA) model is used to optimize the memory access across
multiple processors and nodes. Memory is further divided into zones to address hard-
ware limitations and enable architecture-independent memory management. Addi-
tionally, the kernel employs mechanisms like the memory watermarks (described in
section 2.2.3) to monitor the free memory levels and trigger actions like the page
frame reclamation (described in section 2.5) when necessary.

2.2.1 Memory Nodes

A memory node is a software abstraction in Linux that represents the physical mem-
ory attached either to all processors in a Symmetric Multi-Processing (SMP) system
or to a group of processors in a Non-Uniform Memory Access (NUMA) system. In an
SMP system, all processors are connected to a single, shared physical memory and can
access any memory block in the same amount of time. This uniform memory access
ensures consistent performance across all processors. On the other hand, in a NUMA
system, physical memory is divided into multiple nodes, each connected to a specific
group of processors. While each processor can access both its local memory and the
memory associated with other processors groups, the access time varies depending
on the distance between the processor and the memory location. As a result, memory
access latency increases when accessing remote memory nodes [17]. This architecture
reduces memory latency and improves scalability in multi-processor systems.

2.2.2 Zones

The Linux operating system organizes the memory of each node into zones in order
to provide an architecture-independent memory description to make the memory
accessible to hardware devices. The kernel uses zones to group pages of similar
properties, for instance, their physical address into memory.

More specifically, some hardware devices are capable of performing direct data
transfer between memory and peripheral devices, a feature called Direct Memory Ac-
cess (DMA), to only certain memory addresses, while some architectures are capable
of physically addressing larger amounts of memory than they can virtually address.
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Consequently, some memory is not permanently mapped into the kernel address
space. The hierarchical design of nodes and zones helps Linux to handle memory
efficiently, regardless of the underlying hardware architecture.

Zones in the Linux kernel are categorized into three types [2], DMA, Normal,
and High Memory. The DMA zone includes memory frames in the lower regions of
physical memory, required by a number of legacy hardware devices. The memory
frames within the Normal zone represent directly addressable memory to the kernel.
This is where most kernel operations occur, for instance, the allocation of kernel
data structures. Finally, the memory frames within the High Memory zone refer to
memory which is not directly addressable by the kernel, but it is used for user-space
allocations.

2.2.3 Memory Watermarks

Each zone has a zone descriptor that keeps track of the page usage statistics in the
zone, including important information for page frame reclamation such as the deter-
mination of the memory watermarks. Each memory zone has defined three watermark
levels, the minimum, low and high, which are thresholds used to manage memory
pressure and availability.

The minimum watermark (wm_min) is a minimum number of free pages that the
system must keep available in the zone (min_free_kbytes) in order to satisfy allocations
of kernel data structures without significant performance degradation. The low wa-
termark (wm_low) is slightly higher than the min watermark and defines an amount
of memory to satisfy allocations while the background memory reclaim operations are
triggered. The high watermark (wm_high) is an amount of memory above the low
watermark, indicating a healthy level of free pages that allows the system to handle
the peak allocations.

The watermarks are a proportion of the total memory pages managed by the zone,
called zone_managed_pages. The distance between the low and high watermarks, called
wm_distance changes based on the watermark scale factor (wsf) parameter.

The watermark scale factor defines the amount of memory remaining in the system
before the kernel needs to start reclaiming memory and the amount of memory that
should be reclaimed.

Table 2.2 provides more details about the formulas used for the calculation of
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watermarks by the Linux kernel. We further describe how these watermarks trigger
the Linux page frame reclamation in section 2.4.

Table 2.2: The formulas used for calculating the three watermarks in Linux kernel
[2].

Watermark Formula

wsf 10 (Default)

wm_distance (zone_managed_pages * wsf) / 10000

wm_min min_free_kbytes

wm_low wm_min + wm_distance

wm_high wm_min + 2*wm_distance

2.3 The Page Cache

The Linux kernel implements a page cache in main memory to store frequently used
data and reduce disk I/O operations. The page cache consists of physical pages re-
quested for reading or writing using the system read() and write() calls, or file system
data mapped to virtual memory with the mmap() system call [18].

When performing an I/O operation, the kernel first checks the cache for the data.
In the event that the requested data is available within the cache, the kernel promptly
retrieves it from memory without necessitating a read from the disk. Conversely, in
the absence of data within the cache, the kernel initiates a read from the disk and
subsequently stores the data within the cache for expedited access in the future.

Regarding write operations, the kernel employs two distinct strategies: the write-
through strategy and the write-back strategy. The write-through strategy updates both
the page in the page cache and the file on the disk with each write operation. In
contrast, the write-back strategy performs write operations directly in the page cache
and incrementally writes changes to disk [19].

The Linux kernel maintains multiple flusher threads that are responsible for flush-
ing the dirty pages of the disks assigned to them. This feature enables data to be
flushed to multiple disks at varying rates. The kernel oversees the per-backing device
info (BDI) structure, which includes disk-specific details such as the list of dirty pages,
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Total Memory (kernel/process/page cache)

Used Page Cache (clean/dirty)
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Used Page Cache (clean/dirty)

Figure 2.1: Linux Memory Management.

the amount of memory that can be prefetched into memory (read ahead), and flags.
There are several parameter that can be used for cache tuning through userspace
interfaces [18].

Although the utilization of page cache enhances the overall performance of the
system, it is derived from the same memory pool that is utilized by the remainder of
the system. The kernel allocates all currently free memory to the page cache as shown
in Figure 2.1. As the kernel is required to allocate additional memory for other tasks,
it is able to reclaim pages from the page cache, as the contents of the page cache can
be restored from disk blocks when necessary.

2.4 Page Frame Reclamation

The Linux Page Frame Reclamation Algorithm (PFRA) is responsible for selecting old
pages that can be freed and reclaiming them when almost all free memory is allocated
to processes or caches. The objective of the PFRA algorithm is to evict from memory
allocated page frames that are not frequently used, thus freeing memory for reuse by
other processes. The pages selected by the PFRA algorithm are page frames that can
be freed, so the selection of candidates for eviction considers the page type.

The Linux Page Frame Reclamation Algorithm (PFRA) is initiated when there is
a shortage of free memory. The physical memory recovery process is performed by
page reclamation, the process of evicting idle memory pages to disk.

2.4.1 Page Types

A physical page can be used for storing different types of data, such as kernel data
structures, buffers for device drivers, data from a filesystem, or memory allocated by
user space processes.

Memory pages are categorized into unreclaimable and reclaimable. Unreclaimable
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pages are pages pinned in memory by a process, temporarily locked pages, or pages
used by the kernel for specific purposes, such as kernel mode stacks. Reclaimable
pages are pages that can be freed at any time, for instance, anonymous pages that can
be moved between physical memory and disk, parts of files on disk that are mapped
to memory using the mmap system call, or unused pages in the page allocator [19].

Two distinct types of userspace pages are the anonymous pages and the file pages.
Anonymous pages are not associated with any files on disk and are used by user
space programs. When an anonymous page is reclaimed, the kernel must store its
contents in a disk partition or file called swap space. File pages, on the other hand,
are brought into memory by buffered I/O operations or memory mapping of part of
a file. These pages can be discarded immediately if they are considered clean, or after
writing their contents to the appropriate disk file if they are considered dirty [19].

2.4.2 Page Frame Reclaim Initiation

The Linux Page Frame Reclaiming Algorithm (PFRA) is activated under specific
circumstances to manage memory efficiently and prevent system performance degra-
dation. These scenarios can be broadly categorized into low memory conditions, hi-
bernation, and periodic maintenance [19].

Firstly, background or periodic reclaiming occurs as part of the regular maintenance
to ensure the system remains healthy and responsive. The kernel employs dedicated
threads for this purpose, called kswapd. The kswapd threads monitor the memory
zones and initiate reclamation when the number of free pages falls below the low
watermark.

Secondly, the direct or low-on-memory reclaiming is triggered when the kernel detects
that memory resources are critically low. This occurs in situations where functions
responsible for memory allocation fail to secure the necessary resources. These failures
prompt the PFRA to reclaim memory urgently to meet the allocation demands.

Lastly, the hibernation reclaiming is activated when the system is preparing to enter
a suspend-to-disk state, saving the contents of RAM to storage and restoring them
when the system is resumed.
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Figure 2.2: The Zone Watermarks [2].

2.5 Memory Reclamation

The Linux kernel relies on page frame reclaiming to address the memory pressure.
The PFRA ensures that the Linux kernel maintains a balance between resource avail-
ability and system performance across diverse workloads.

When the amount of free memory falls below the low watermark, memory pages
are asynchronously reclaimed in the background by the kswapd thread. The kswapd
thread goes back to sleep when the number of free pages reaches the high watermark.
The Linux kernel uses the watermark scale factor to control the execution of kswapd
by defining the distance between the low and high watermark [14].

On loaded systems where the memory page allocations are performed faster than
page reclamation by the kswapd threads, the amount of free memory continues to
fall below the min watermark. In the above situation, each memory allocation re-
quest forces the kernel to perform a synchronous reclamation before the request can
be satisfied. The synchronous method is considerably slower due to the blocking
caused by waiting for memory to be released. Figure 2.2 illustrates the memory zone
watermarks that trigger the actions described above for memory reclaiming.

The Linux kernel tries to load as much data as possible into memory for an appli-
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cation. Consequently, the available memory is exhausted due to caching file contents
(page cache) as well as kernel objects, for faster access. During page frame recla-
mation, the Linux kernel tries to evict a mix of userspace pages and kernel objects.
Anonymous pages are swapped out, while file pages cached in page cache must be
written back to disk if they are dirty or immediately discarded when they are clean.
Historically, file pages have been prioritized for reclaiming over anonymous pages.

Eventually, reclaiming a page frame executes disk I/O operations resulting in the
increase of latency and application performance degradation. Therefore, it is advan-
tageous for the PFRA to steal pages that are unlikely to be accessed again in the near
future. Predicting the probability that a page will be accessed again in the near future
is a challenging operation. The Linux PFRA algorithm uses temporal locality, which
assumes that recently accessed pages are more likely to be accessed again.

2.5.1 The Least Recently Used (LRU) Lists

The Linux kernel uses a set of Least-Recently-Used (LRU) lists as core data structures
for implementing its page replacement policy and prioritizing pages for eviction dur-
ing memory reclaim. These lists are organized within a data structure called lruvec
[3].

The kernel maintains two linked LRU lists: the inactive list and the active list. Pages
in the active list are recently accessed (”hot”), while those in the inactive list have
not been accessed for a certain period of time (”cold”). The page frame reclaiming
algorithm primarily targets pages in the inactive list for removal. Pages can transition
between these lists based on access patterns, they may be moved, remain on the same
list, or be evicted during reclamation.

Separate active and inactive LRU lists are maintained for file and anonymous
memory pages, reflecting their distinct properties [3]. In addition, a separate list is
maintained for unevictable pages, which cannot be reclaimed. Each NUMA node and
memory cgroup maintains its own lruvec, along with a dedicated kswapd thread for
memory reclamation.

The Linux kernel uses a number of page flags, as shown in Table 2.3, to determine
whether a page frame should be activated or deactivated [19, 3]. Pages are dynami-
cally moved between the active and inactive lists based on their access patterns. For
instance, intermittently accessed pages may oscillate between the two lists, making it
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Table 2.3: Page states relevant to reclaim [3].

Page Flag Page State

LRU Page is on any LRU list.

Active Page is on active list.

Referenced Inactive page has been accessed
recently.

Workingset Page is considered part of active
userspace’s workingset.

challenging to predict behavior. To address this, the kernel uses the referenced flag to
track recent accesses. Multiple accesses within a defined interval are required to move
a page from the inactive list to the active list. Similarly, the referenced flag increases
the tolerance for missed accesses before moving a page from the active list to the
inactive list.

Page frames are initially stored in the inactive list with their active and referenced
flags set to 0. When a page is accessed, its referenced flag is set to 1, but the page
remains in the inactive list. If the page is subsequently accessed again, it is moved to
the active list with its active flag set to 1 and its referenced flag reset to 0. Conversely,
if the page in the inactive list is not accessed within a time frame, its referenced flag
is reset to 0. Similarly, a subsequent access of a page that is recently moved to the
active list sets its referenced flag to 1. Thus, the active list ends up containing pages
of the working set, and the inactive list contains pages that are candidates for eviction.

In more detail, the kernel provides a number of key functions involved in man-
aging pages in the LRU lists. The functions mark_page_accessed(), page_referenced(), and
refill_inactive_zone() handle transitions between the LRU lists by evaluating the active
and referenced flags.

The mark_page_accessed() function is called whenever the kernel determines that a
page has been accessed, such as demand paging, file reads, or buffer cache lookups.
The function moves the page to the active LRU list by invoking activate_page() and
clears its referenced flag if is already set. Otherwise, it marks the page as referenced.

The refill_inactive_zone() function is triggered when memory is under pressure and
caches need to shrink. It moves pages from the active list to the inactive list to balance
the length of both lists. Initially, the function scans a small number of pages in the
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active list, but as memory pressure increases, it scans more pages. Pages are taken
from the end of the active list. If the referenced flag is set, the flag is cleared, and the
page is moved to the top of the active list as it is still ”hot”. If the flag is not set, the
page is moved to the inactive list, and the referenced flag is set for quick promotion to
the active list if the page is accessed again.

The page_referenced() function assesses whether a page has been recently accessed
by checking the referenced flag. Pages with this flag set remain in the active list, while
others are moved to the inactive list by the refill_inactive_zone() function.

2.5.2 The Out Of Memory Killer

The Out of Memory (OOM) Killer is a mechanism in the Linux kernel designed to
handle extreme memory pressure situations where the system runs out of available
memory. Despite the Page Frame Reclaiming Algorithm (PFRA) efforts to free up
memory, there are cases where all swap space is full, and disk caches have been
completely shrunk, leaving the system unable to allocate memory. In such scenarios,
the system could freeze entirely as processes compete for memory without success.

To prevent a complete system halt, the OOM Killer intervenes by forcibly termi-
nating one or more processes. It selects a “victim” process to kill based on specific
criteria to minimize disruption to the system. The chosen process is usually one that
uses a large amount of memory, has low priority or is less critical, to avoid leaving
the system in an unstable state.

The OOM Killer uses an internal scoring system to evaluate processes and identify
the best candidate for termination. Once a victim is selected, the kernel sends a
termination signal (typically SIGKILL) to that process, freeing up its memory. This
drastic action ensures that other processes and the system itself can continue to
function, even in the face of severe memory shortages.

2.6 Summary

Memory management ensures efficient resource utilization and system stability. Tech-
niques like virtual memory, demand paging, and swapping optimize memory usage,
while strategies such as page replacement and swappiness help balance resources and
prevent thrashing.
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Linux organizes physical memory into page frames, memory nodes, and zones
for efficient management. The page cache reduces disk I/O, and memory watermarks
regulate memory reclamation to maintain system stability.

The Page Frame Reclamation Algorithm (PFRA) in Linux is responsible for freeing
up memory during periods of memory pressure. Linux uses an LRU-like approach to
manage physical memory by organizing pages into active and inactive lists for both
anonymous and file cache pages. The active lists contain recently used pages, while
the inactive lists store less frequently accessed pages.

When the system experiences memory pressure, the kernel scans these lists, up-
dates the page flags, and moves pages between the lists to identify which pages
to reclaim. Memory reclamation is triggered by three watermarks: high, low, and
minimum. When memory falls below the low watermark, the kernel initiates a back-
ground reclamation process, where the kswapd thread wakes up to free pages until
the memory reaches the high watermark. If memory drops below the minimum wa-
termark, the system forces each memory allocation request through a synchronous
reclamation process before proceeding with the allocation. If PFRA is unable to free
enough memory, the Out of Memory (OOM) Killer is invoked to terminate processes
and prevent a system crash.
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CHAPTER 3

RESOURCE MONITORING AND METRICS

3.1 Elasticity

3.2 Resource Monitoring

3.3 Summary

Resource management is a core function of computer systems. Its primary goal is to
efficiently allocate resources such as CPU, memory, storage, and network bandwidth
to maximize performance and stability.

Three objectives in resource management are the achievement of high resource
utilization, system performance and fairness among competing users. Resource man-
agement dynamically observes and adjusts resource allocations to avoid bottlenecks,
reduce contention, and handle workload variations. This is particularly important
in modern computing paradigms like cloud platforms, where multiple tenants and
applications share resources.

3.1 Elasticity

Elasticity is a core feature of cloud computing, which refers to the ability of cloud
services to provision, deprovision and reconfigure computing resources on demand.
Efficient resource handling is a key aspect to make providers improve their resource
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utilization which allows the serving of more users on each machine, increase the
return on investment using the same hardware, and reduction of the need to expand
their infrastructure.

Cloud resource elasticity can be achieved either through vertical scaling (scaling
up/down) or horizontal scaling (scaling out/in) [17]. Vertical scaling means scaling the
capacity of a single server by changing the resources assigned to an already running
instance, such as allocating processor cores or memory to a running virtual machine
or container. Horizontal scaling means scaling by adding or removing instances based
on load, either increasing or decreasing the number of virtual machines or containers
as demand changes.

In cloud memory management, auto-scaling systems help optimize resource uti-
lization by dynamically adjusting the allocated resources based on workload demands.
These systems rely on predefined policies, adjusting resources through either hori-
zontal or vertical scaling. However, auto-scaling faces challenges such as underpro-
visioning, overprovisioning, and resource waste.

Overprovisioning occurs when more resources are allocated than the actual work-
load demands, leading to applications consuming more memory than the number of
pages actually needed resident for their normal operation.

Thus, there is a need to prevent issues such as overprovisioning, which can lead to
inefficient resource utilization and unnecessary costs. To achieve this, it is essential to
identify and reclaim the underutilized resources effectively. Accurate and appropriate
resource monitoring is crucial for making informed decisions on when and how to
reclaim resources, ensuring high system performance.

3.2 Resource Monitoring

In this section, we explore the Linux kernel interfaces, Control Groups and Pressure
Stall Information, that provide various statistic information about the system state
and the system resources utilization.

3.2.1 Control Groups (Cgroups)

Control groups (cgroups) [20] is a kernel mechanism that limits, accounts for, and
isolates the resource usage of a collection of processes. A cgroup is a collection of
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subsystems or controllers, that each one controls a single type of resource, such as CPU,
memory, disk IO, and network devices.

The cgroups mechanism allows processes to be organized into hierarchical groups,
where child cgroups inherit certain attributes from their parent cgroup. Cgroups can
be used for a wide range of tasks, including isolating resources for specific applica-
tions, managing the resources consumed by users, and controlling the overall perfor-
mance of the system.

The kernel’s cgroup interface is provided through a pseudo-filesystem called
cgroupfs. This filesystem is used to export the control group hierarchy and the as-
sociated settings and statistics as a set of virtual files and directories.

The version 1 of cgroups (cgroups v1) [20] organizes processes into multiple
hierarchies and attaches controllers separately to each hierarchy. Consequently, one
can create a hierarchy and attach the memory controller to it. Another hierarchy can
be created for the CPU controller, which could contain the same processes as the
first hierarchy. However, it is expensive for the kernel to track the controllers that
apply to processes that are assigned to multiple hierarchies. Moreover, controllers
cannot effectively cooperate with each other, since they typically operate on different
hierarchies.

Version 2 of cgroups (cgroups v2) [21] introduces a unified hierarchy for all
controllers. Controllers can be enabled or disabled separately for specific subtrees of
the single hierarchy. Processes can be attached only as leaves to each subtree of the
hierarchy. Below, we provide a brief description of the most important controllers
available in cgroups v2.

Cpu. This controller manages how the scheduler shares CPU time among differ-
ent process groups and can be used to limit or prioritize the CPU usage of specific
processes or groups of processes.

Cpuset. This controller pins a subset of processors and memory nodes to the
processes in a cgroup. This binds each process in a group to run and allocate memory
on this subset of CPUs and memory nodes.

Memory. The memory controller is responsible for setting limits on memory usage
by processes in a cgroup. Keeping track of which areas of memory are in use and
which are not, the memory controller also provides automatic reports on memory
resources used by those processes. Currently, the following types of memory usages
are tracked: i) userspace memory - page cache and anonymous memory, ii) kernel
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data structures such as dentries and inodes, and iii) TCP socket buffers.
The memory controller [22] relies on four interface files to control memory limits.

The memory.low is the best-effort memory protection, a “soft guarantee” that if the
memory usage of the cgroup is below this threshold, the cgroup’s memory will not
be reclaimed unless memory can’t be reclaimed from any unprotected cgroups. The
memory.min specifies hard memory protection, a minimum amount of memory the
cgroup must always retain, i.e., memory that can never be reclaimed by the system.
If the memory usage of a cgroup reaches this limit and can’t be increased, the system
OOM killer is invoked. The memory.high is the main mechanism to control the memory
usage of a cgroup, a memory usage throttle limit that if a cgroup’s memory use goes
over this boundary, the cgroup’s processes are throttled by the kernel and put under
heavy reclaim pressure. The default value is max, which means there is no limit.
The memory.max is the final protection mechanism, a memory usage hard limit that if
a cgroup’s memory usage reaches this limit and can’t be reduced, the system OOM
killer is invoked on the cgroup. Under certain circumstances, usage may go over
the memory.high limit temporarily. Cgroup v2 also introduce two new parameters,
memory.swap.max and memory.swap.high, to limit swap memory usage.

Io (Blkio in cgroups v1). The IO controller regulates the distribution of IO re-
sources. It can set both weights and absolute bandwidth limits for each disk or block
device. It also allows the rate of I/O operations for each process group, by limiting
the number of read/write operations and bytes.

Pid. This controller limits the number of processes that can be created by a specific
process group. This is useful in a situation where a group of tasks are potentially
running infinite loop, causing a fork bomb attack.

3.2.2 Cgroup Metrics

Cgroup metrics provide a detailed view of memory pressure within a container, but
they do not directly indicate memory that is allocated but underutilized. We analyze
the metrics provided by the memory.current and memory.stat files of the Linux cgroup
v2 interface [21] that help to identify the underutilized memory pages. Table 3.1
summarizes these metrics.

The memory.current file represents the total memory currently used by the cgroup
and its descendants, including the page cache size. This metric accounts for the phys-
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Table 3.1: Metrics provided by the cgroup v2 interface.

Metric Description

memory.currect (RSS) The total physical memory actively used by processes
executing in the cgroup.

active LRU list size The size of memory pages currenlty in use by pro-
cesses within the cgroup.

inactive LRU list size The size of memory pages accessed less frequently by
the processes within the cgroup.

swapcached The anonymous memory pages that have been
swapped out to disk but also cached in memory.

workingset_refault_anon The number of anonymous memory pages that were
previously swapped out and then requested again.

workingset_refault_file The number of file pages that were previously evicted
to disk and then requested again.

pgscan The number of pages scanned from the inactive LRU
list.

pgsteal The number of pages reclaimed from the inactive
LRU list.

pgscan_kswapd The number of pages scanned from the inactive LRU
list by the kswapd thread.

pgsteal_kswapd The number of pages reclaimed from the inactive
LRU list by the kswapd thread.

pgscan_direct The number of pages scanned from the inactive LRU
list through direct reclamation.

pgsteal_direct The number of pages reclaimed from the inactive
LRU list through direct reclamation.

page faults A page fault occurs when a process accesses memory
that is not currenlty mapped to its address space in
RAM.

major page faults A major page fault occurs when the program attempts
to access a page that is not in RAM, requiring the
kernel to fetch it from disk.
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ical memory actively used by processes, including their Resident Set Size (RSS), which
refers to the portion of memory held in RAM. In addition to RSS, memory.current
also includes in-kernel data structures, and network buffers. Changes in this statistic
can indicate new activity within the cgroup, such as increased memory usage, or
alterations in the application’s working set.

The memory.stat file provides detailed memory-related statistics for the cgroup.
Among these, specific metrics offer insights into underutilized memory within the
cgroup and potential indications of memory pressure.

In particular, monitoring the size of the Least Recently Used (LRU) lists maintained
by the operating system for each cgroup can help identify potentially idle memory
pages. The active LRU list contains pages currently in use by tasks within the container,
while the inactive list holds pages accessed less frequently and prioritizes them for
eviction if the system runs low on memory. File-backed memory pages are moved
to the active list as soon as they are accessed, even if the container is not under
memory pressure. In contrast, anonymous pages remain on the inactive LRU list
until the container’s memory limit is reached. When this limit is reached, the page
reclamation process triggers, and the kernel moves a portion of pages marked with
the active flag to the active LRU list.

The swapcachedmetric refers to anonymous memory pages that have been swapped
out to disk but are also cached in memory. The kernel keeps a number of swapped-
out pages into memory to save I/O operations on subsequent access to those pages by
applications. An increased swapcached value indicates that memory pressure occurred
previously, but the system had already swapped out and cached these pages to avoid
further I/O.

The workingset_refault_anon statistic represents the number of anonymous pages
that were previously swapped out and then requested again. Similarly, the work-
ingset_refault_file statistic represents the number of file pages that were previously
evicted to disk and then requested again. Thus, refaulted back in pages are useful
pages for the application that the kernel pushed out of memory and accessed again.
These metrics can provide an indication that the system has already removed the
idle memory pages. We use these metrics to measure the performance degradation
occurred after the kswapd reclamation has started to reclaim memory pages.

Statistics such as pgscan, pgsteal, pgscan_kswapd, pgsteal_kswapd, pgscan_direct, and
pgsteal_direct provide insights into into memory pressure within a container. These
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metrics track the total number of pages scanned and reclaimed from the inactive
LRU list, distinguishing between pages handled by the kswapd thread and those man-
aged by direct reclamation. More specifically, pgscan and pgsteal measure the total
number of scanned pages and reclaimed pages, respectively. The pgscan_kswapd and
pgsteal_kswapd statistics track the amount of scanned and reclaimed pages by the
kswapd thread when the background VM’s memory reclaim logic is triggered due
to a memory shortage in a zone. Conversely, pgscan_direct and pgsteal_direct track
the amount of scanned and reclaimed pages through direct reclamation when the
memory cgroup reaches its memory limit. Together, these counters signal the onset
of memory pressure and reflect the additional memory the application may require.
However, these metrics capture past memory events rather than predicting future
needs.

Other event counters provided by Linux cgroup v2 include counts for page faults
and major page faults. A page fault occurs when a program accesses memory that is not
currently mapped to its address space in RAM. Page faults can be further categorized
into minor and major faults. A minor page fault can occur when a process accesses
either a shared memory page or a newly allocated page using malloc or mmap. In
the first case, the faulted page is already loaded into physical memory by another
process but has not yet been mapped to the address space of the faulting process.
In the second case, the page has not been allocated by the kernel yet, as the kernel
defers the allocation of each page until it is first accessed (demand paging [19]). A
major page fault occurs when the program attempts to access a page that is not in
RAM, requiring the system to fetch it from secondary storage, such as a disk or swap
space. Major page faults can significantly impact performance, as accessing data from
disk is much slower than retrieving it from RAM.

The major page fault count, along with the workingset_refault count (which tracks
pages that were swapped out and later accessed again) can indicate memory pages
that the kernel fetches from disk and are parts of an application’s working set. These
metrics are useful for identifying performance degradation, especially if a significant
number of major page faults occur, indicating that the system is struggling to maintain
enough pages in physical memory for active processes.
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3.2.3 System Metrics

The kernel maintains system-wide metrics in the procfs filesystem. These metrics are
essential for monitoring memory usage and the overall state of a system. Key system-
wide metrics from the /proc/meminfo file include, the MemTotal, the MemFree, and the
MemAvailable.

MemTotal represents the total amount of physical memory (RAM) that is usable
by the system.

MemFree indicates the amount of memory left unused by the system. However,
this metric does not include memory allocated to caches and buffers, which can be
reclaimed if necessary. This may cause MemFree to underestimate the actual available
memory for new workloads.

MemAvailable provides an estimate of the total memory available for allocation
to new processes, without invoking swapping. This metric accounts for free memory
pages, reclaimable memory used by caches and buffers, kernel-managed memory
pages, including slabs and memory watermarks.

3.2.4 Pressure Stall Information (PSI)

Pressure Stall Information (PSI) [23] is a feature of the Linux kernel’s scheduler that
provides pressures metrics that represent the amount of lost work due to the lack of
a system resource (memory, CPU, and IO).

PSI in conjunction with cgroup v2 metrics allows the detection of resource short-
ages. When resources are depleted, processes start to compete for them and resource
contention scenarios occur. PSI metrics can enable immediate reactions, including the
pause or kill of non-essential processes, reallocation of memory among different tasks
of the system, load scheduling, or other actions.

PSI can be calculated for a single process, a container, or the entire system. It
introduces two pressure indicators. The “some” indicator tracks the percentage of
time when at least one process is stalled for a resource, while the “full” indicator
tracks the percentage of time when all processes are delayed simultaneously.

PSI tracks memory pressure by recording specific events that occur when there is
a shortage of memory. These events include i) reclaiming pages when memory is full
and attempting to allocate new pages, ii) reclaiming pages when a limit is reached
on the memory controller of a cgroup, iii) waiting for IO after a major fault against
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a page that was recently evicted from the page cache, and iv) blocking on reading a
page from the swap device.

Calculating IO stalls on block devices accurately is challenging due to lack of device
contention measurements from existing hardware. Therefore, any process waiting on
block IO completion is considered stalled due to increased storage I/O response times.

CPU stalls are accounted for as the periods when a process is runnable but needs
to wait for an idle CPU. CPU full pressure metric indicates that none of the processes
can execute due to external competition or configured CPU cycle limits in the cgroup.

While PSI provides valuable insights into resource contention and the overall
system pressure, a more granular view of resource utilization and management can
be obtained through cgroup metrics provided through the memory.stat file described
in section 3.2.2. By analyzing metrics specific to control groups, administrators can
not only understand the broader resource pressure but also pinpoint the performance
and resource consumption patterns of individual containers or processes.

3.2.5 The Senpai user‐space agent of PSI

Senpai [23] is a user-space agent designed by Meta to manage memory pressure
adaptively, aiming to maintain a low PSI (Pressure Stall Information) threshold. The
design of Senpai focuses on dynamically determining how much memory to reclaim
based on workload demands and hardware characteristics.

The first version of Senpai, available as open-source software [24], runs as a dae-
mon at the host and continuously monitors the memory pressure of a target cgroup.
Based on the memory pressure statistics it dynamically adjusts the cgroup high mem-
ory limit to control memory reclamation. Lowering the limit forces the kernel to
reclaim memory, while increasing it relieves pressure and allows the workload to
expand. However, this approach introduces issues with dynamic workloads, because
the processes of a container may become blocked if their memory usage grows faster
than the rate at which Senpai increases the limit.

To address this limitation, TMO [23] introduces the memory.reclaim cgroup con-
trol file to direct the kernel’s reclamation algorithm to request specific amounts of
memory to be reclaimed while leaving the kernel to decide which pages to release.
This stateless mechanism enables precise memory reclamation without modifying the
memory limit, ensuring that expanding workloads are not unintentionally stalled
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while still allowing efficient memory management.
The second version of Senpai monitors the memory pressure of a cgroup. When

it reaches a threshold, it calculates the amount of memory that should be reclaimed
and performs a reclamation request to the kernel. The kernel responds to the request
by reclaming the requested amount of memory. Senpai determines the amount of
memory to reclaim by using a formula that considers the current memory usage, the
memory pressure, and a reclaim ratio [23]. It calculates the memory to reclaim based
on the pressure stall information (PSI), which measures how much time processes are
waiting for memory. The formula compares the current PSI value (psi_some) with
a predefined threshold (psi_threshold) to assess memory pressure. If the pressure
is high, Senpai reclaims less memory, while if the pressure is low, it reclaims more
memory, adjusted by the reclaim_ratio. This approach allows Senpai to reclaim mem-
ory dynamically, scaling the amount of memory to be freed based on the system’s
memory pressure and the configured reclaim ratio.

3.3 Summary

Resource management strategies like task scheduling, load balancing, and dynamic
scaling are essential for optimizing resource usage while preventing resource bot-
tlenecks and contention. In cloud computing, elasticity, through both vertical and
horizontal scaling, enables cloud providers to provision and adjust resources on de-
mand.

Resource monitoring plays a key role in managing elasticity. The Control Groups
(Cgroups) and Pressure Stall Information (PSI) kernel mechanisms help to track
resource utilization and detect contention. Cgroups enable fine-grained control over
CPU, memory, and IO resources by organizing processes into groups and applying
limits, while PSI quantifies resource pressure by monitoring stalls in CPU, memory,
and IO.

More specifically, cgroup metrics provide detailed insights into memory usage and
resource pressure, such as memory reclaim events, page faults, and swap activity. Sys-
tem metrics, including total, free, and available memory, offer a comprehensive view
of the system’s memory state. Besides, both cgroup and system-wide metrics feature
potentially underutilized memory resources that could be reclaimed. Overall, effi-
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cient resource management and monitoring are fundamental for maintaining system
performance, optimizing resource usage, and responding to changing workloads.
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CHAPTER 4

DESIGN

4.1 Design Goals

4.2 Challenges in Detecting and Removing Idle Memory

4.3 Metrics

4.4 Contention Service Overview

4.5 Metrics Collector

4.6 Resource Controller

4.7 Memory Stresser

4.8 Memory Stresser Threads

4.9 Memory Stresser Termination

4.10 Tenant Containers

4.11 Synthetic Workload Generator

4.12 Summary

Efficient memory management is critical in containerized environments, especially
in data centers where resources are shared among multiple applications. Traditional
methods, such as direct memory reclamation, often lead to performance issues because
they block application execution while freeing memory. To address this challenge,
we propose the Contention Service, a tool that proactively reclaims unused memory
without causing delays for applic«ations.
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The Contention Service monitors the memory usage in the containers and triggers
the kernel’s background memory reclamation process, kswapd, to free up memory
that is no longer actively used. By generating controlled memory contention, the
system ensures that memory reclamation does not interrupt the running applications.
It operates transparently, requiring no modifications to the applications themselves,
and incurs minimal overhead during operation.

In this chapter, we describe the design of the Contention Service, detailing how
it utilizes the memory statistics from the Linux kernel to identify and release idle
memory. We also explain how its key components, the Metrics Collector and Re-
source Controller, work together to monitor memory usage. Furthermore, we outline
the conditions under which the Resource Controller triggers the Memory Stresser
component to generate the necessary contention into memory in order to activate the
kernel’s reclamation process and how it terminates the process to prevent adverse
effects on application performance.

4.1 Design Goals

We set the following goals to the design of our system:

1. Utilization. Increase useful utilization and reduce overprovisioning to achieve
lower cost of ownership of the infrastructure.

2. Efficiency. Identify opportunities for reducing the resident resources from run-
ning applications without excessive cost for statistics gathering and resource
reclamation.

3. Compatibility. Reclaim resources without requiring modifications of the ap-
plications or the underlying system kernel. Additionally, there should be no
requirement for explicit interaction with the applications regarding the moni-
toring of the utilized resources or their return back to the system.

4. Elasticity. Dynamically adjust the resident resources of each application accord-
ing to the current real needs rather than those reserved.

5. Performance. Resource reclamation should not negatively affect the measured
performance of an application in comparison to the default system operation.
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4.2 Challenges in Detecting and Removing Idle Memory

Reviews of profiled memory usage in data center applications [25, 23, 6] reveal that
the memory usage of a container process is typically below the assigned memory to
the container. This indicates that the applications running in the tenant containers
may allocate a large amount of memory that is potentially idle. The removal of idle
memory can be a challenging task, as it may result in severe performance degradation.

Existing solutions identify and reclaim an application’s idle memory pages using
techniques that require kernel modifications [25, 26, 27, 28] to track the age of pages.
A widely adopted approach among existing solutions is the idle page tracking tech-
nique [28, 29] which detects the set of pages that are actively used by the workload
by frequently monitoring the accessed bit set in the page table entries. This technique
results in significant CPU and memory overheads.

Other approaches [23, 30, 6] add or remove memory from containers by resizing
their memory limits based on the memory needs. This technique triggers the kernel’s
direct reclamation process on each container upon memory limit shrinking to reclaim
the difference. The direct reclamation process stalls the applications execution due to
the lack of memory resources.

The key objective of our solution is to avoid direct memory reclamation, which
subjects containers to considerable memory pressure and results in memory thrashing,
thereby slowing down the applications response time. We propose the preemptive
triggering of the global reclamation process by applying pressure on the system. The
pressure that we apply causes the amount of free memory pages to drop below the
low memory watermark. The global reclamation process wakes up a kswapd thread
per container running on the system and scans pages in the inactive LRU lists to
reclaim memory pages. Moreover, unlike direct reclaim, the asynchronous reclaim
through kswapd allows the applications to continue running without being blocked
by the memory management tasks and leads to more balanced and effective memory
reclamation by taking into consideration the memory usage patterns of all processes.

4.3 Metrics

The identification of idle memory pages within a container is not a trivial task. Exist-
ing solutions rely on cgroup or system-wide metrics to detect and respond to memory
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pressure on a container. Common approaches include usage of the Pressure Stall In-
formation (PSI) feature [23], tracking the number of major page faults [25, 31] and
refaults [25] occurring within specified time frames, as well as monitoring tasks’
memory utilization statistics [32] and application-reported latency and throughput
metrics [33]. While these methods provide valuable feedback, they are primarily reac-
tive, focusing on addressing memory pressure after it occurs, rather than proactively
identifying and reclaiming underutilized memory.

Cgroup metrics offer a granular view of memory pressure events within a con-
tainer. Most memory statistics exposed through the cgroup interface begin counting
when a container reaches its high memory limit and starts experiencing memory
pressure. However, these metrics do not clearly indicate the amount of memory that
is allocated but not actively used during runtime.

To address this, we leverage specific statistics provided by the Linux cgroup v2 in-
terface [21] to identify potentially “cold” memory pages and manage memory pressure
effectively, aiming to prevent performance degradation in applications. By analyzing
these metrics, we can identify underutilized memory within a container and proac-
tively manage memory pressure. This approach optimizes the memory utilization
while minimizing the risk of application performance degradation.

4.4 Contention Service Overview

The Contention Service (CS) runs within a Linux container, with the primary objective
of releasing idle memory pages allocated by applications by proactively triggering the
Linux kernel’s memory reclaiming process. Figure 4.1 shows a high-level overview
of the Contention Service system.

Built on top of Linux Control Groups, the contention service includes the Met-
rics Collector (MC) component responsible for retrieving per-container memory us-
age statistics from the Linux cgroup interface files and system-wide memory usage
statistics through the proc filesystem. Measurements are taken on demand by the
Contention Service, which currently supports the release of underutilized memory
resources.

The Resource Controller (RC) module continuously monitors memory resource us-
age statistics provided by the MC component to activate the Memory Stresser (MS)
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Figure 4.1: An architectural overview of the Contention Service.

process. The MS allocates the necessary amount of memory, in order to prompt the
kernel to trigger the background memory reclamation process. The RC is also re-
sponsible for terminating the pressure activity if it begins to negatively impact the
application’s performance. The RC decides if the MS needs to be started by examining
the Resident Set Size (RSS) and the size of the inactive Least Recently Used (LRU)
lists of the tenant containers. More specifically, it tracks the sizes of the inactive LRU
lists of both anonymous and file-backed memory and compares them with the RSS
size. This helps the RC to identify changes in the working set of the tenant containers,
in order to spawn the Memory Stresser process.

The Memory Stresser (MS) is a multi-threaded process that allocates an adaptive
amount of memory, referred to as contention memory. We define the size of contention
memory as contention memory size. By default, the contention memory size is dynam-
ically updated based on the system memory usage and equals the difference between
the free memory and the low memory watermark. The purpose of contention mem-
ory is to create sufficient pressure to force the activation of the Linux kernel’s kswapd
page reclamation process. The MS continuously accesses this memory until a config-
urable number of refaults occur (by default 4% of the RSS). The memory contention
size refers to the total amount of allocated contention memory at any given time.
It represents the minimum free memory required to avoid triggering synchronous
direct page reclamation.

The Memory Stresser Threads (MSTs) are responsible for dynamically allocating
and repeatedly accessing the contention memory. The contention memory is initially
divided into equally sized portions, with each portion assigned to a separate thread.
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Each thread allocates its assigned portion of contention memory and activates it
by touching the first three bytes of each block. This action forces the kernel to mark
the page as referenced, setting the accessed bit in the page table entry. As a result,
the page remains in the active LRU list during the page frame reclamation process.
After completing this activation, the thread waits until all other threads have finished
their allocations and activations.

Once all threads have completed the initiation phase, each thread begins accessing
its assigned portion of memory in chunks (the size of each chunk is equal to the page
size of the system). This ensures that the memory remains active and is continually
recognized by the system.

To prevent performance degradation, the threads periodically assess the system’s
memory pressure. At regular intervals, after accessing a configurable number of
chunks (e.g., every 128 chunks), each thread checks the refaults counter of the ten-
ant containers. Refaults occur when recently used pages are reloaded into memory
after being evicted to disk. If the number of refaults exceeds a configurable thresh-
old (default: 4% of the RSS), the thread halts memory access immediately to avoid
overloading the system.

Once a thread completes accessing its assigned portion of memory, it evaluates the
amount of free memory in the system. If sufficient memory has been reclaimed by
the kernel, the thread expands its allocated portion of contention memory. The size
of this new allocation equals the difference between the current free memory and the
low memory watermark. If the system has not reclaimed enough memory, the thread
refrains from expanding its allocation to avoid further pressure.

Finally, when the thread detects high refault count based on the current system
conditions, indicating that the system is under significant memory pressure, it releases
the allocated contention memory and terminates execution.

4.5 Metrics Collector

The Metrics Collector (MC) is a component of the Contention Service that is re-
sponsible for collecting system usage statistics. It gathers both system-wide and per-
container statistics from the proc filesystem and the interface provided by the Linux
cgroup (v2). The MC currently aggregates statistics related to memory resource utiliza-
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tion and it is called by the contention service whenever it is necessary to determine
if memory contention should be applied. Data collection occurs in real time.

The MC collects both system-wide and per-container memory statistics, which are
used by the RC to make decisions about when to invoke the MS. By monitoring both
the system memory utilization and the memory consumption of the tenant containers,
the MC provides a comprehensive view of the memory state, which helps the RC to
determine the need for memory contention.

At the system level, the MC collects data about the amount of free physical mem-
ory in the system, which helps determine the intensity of the memory contention.
It also gathers statistics from the memory zones, including thresholds and scaling
factors, which are used to assess the system’s memory availability. Additionally, the
memory zone statistics, including memory thresholds and scaling factors, are collected
to calculate the available memory for contention and estimate the amount of memory
that should be reclaimed.

The MC also collects critical per-container metrics to monitor the status and the
memory utilization of the tenant containers. These metrics include the total memory
in use (RSS) by each container, the number of the processes running within the tenant
containers, and key memory statistics such as the sizes of the active and inactive LRU
lists, the page faults, and the working set refaults.

4.6 Resource Controller

The Resource Controller (RC) is responsible for proactively directing the Linux kernel
LRU-based mechanism to release the underutilized memory pages allocated by the
tenant applications. It achieves this by proactively generating controlled memory
contention in order to trigger the wake up of the kswapd thread, which asynchronously
reclaims memory. The asynchronous page reclamation minimizes the execution of
costly direct reclaim, thus preventing the application performance degradation.

To initiate the Memory Stresser (MS), the RC first confirms that there is a quantity
of memory allocated to the tenant containers that is currently not in active use by the
applications. The RC aggregates information from the MC regarding (a) the amount
of memory allocated to the applications running in the tenant containers and held in
RAM, (b) the amount of memory actively used by the application during runtime, and
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(c) the amount of memory likely to be transferred to the tail of the inactive LRU lists
and ultimately reclaimed. The RC uses these statistics as indicators of underutilized
memory pages allocated by the tenant containers in order to trigger the MS.

The RC monitors the node’s memory usage through the MC component. After
evaluating the statistics it receives, the RC decides whether memory contention should
be applied and instructs the MS to start. The RC is implemented as an iterative loop
that tracks the following key metrics for each cycle: the number of inactive pages, the
number of active and inactive file pages, the current Resident Set Size (RSS), and the
count of currently running processes within the container. By comparing these statistics
across cycles, the RC detects changes in the workload patterns and determines whether
enough underutilized memory pages are present in RAM. This assessment enables
the RC to decide if intervention is necessary.

In particular, the RC relies on several configurable parameters to make its deci-
sions:

1. List Size Ratio (LSR): The proportion of inactive RSS pages to the total RSS
pages in the tenant containers.

2. List Size Difference (LSD): The percentage growth in the inactive LRU list sizes
between consecutive cycles.

3. File List Size (FLS): The minimum number of file memory pages that must be
maintained in the active and inactive LRU lists.

Using the above parameters, the RC evaluates the current memory usage. It first
verifies whether the RSS page count, along with the number of processes executing
in the tenant containers, has changed since the last cycle, indicating the emergence of
new activity within the container. If a change is detected, the RC examines whether
the number of RSS pages in the inactive LRU lists exceed the List Size Ratio (LSR)
threshold of the total RSS pages of the tenant containers. This would indicate that a
significant portion of memory is occupied by inactive pages, potentially signaling a
presence of underutilized memory. Additionally, an increase in the sizes of the inactive
LRU lists for both anonymous and file pages, beyond the List Size Difference (LSD) of
their sizes in the previous cycle, can indicate changes in workload patterns.

When handling file-backed pages, where the accessed pages are immediately
moved to the active file LRU list, the RC checks if the active or inactive LRU list
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size exceeds the File List Size (FLS) threshold. This criterion is essential to detect
high file-related memory activity, as tenant containers may already have loaded ap-
plication binaries and shared libraries in RAM.

If all the conditions to initiate the MS are satisfied, the RC creates a child process
to run the MS in order to apply memory contention on the containers. The MS
temporarily consumes memory to encourage the system to free up unused or less
critical pages allocated by the tenant applications.

4.7 Memory Stresser

The Memory Stresser (MS) is a multi-threaded process executed in a dedicated cgroup,
which is configured with unbounded memory limits. The MS is responsible for en-
abling the asynchronous background memory reclamation on the system by allocating
a specific amount of memory, referred to as contention memory size. This amount
is determined by calculating the difference between the node’s free memory and its
low memory watermark. MS continuously accesses the contention memory until a
configurable number of refaulted pages is reached. During each memory contention
cycle, the service checks if the total number of freed pages has reached the high mem-
ory watermark in order to adjust the memory contention size based on the current
memory usage statistics.

Below we explain the characteristics of the Memory Stresser in terms of the mem-
ory contention size, the type of the contention memory pages it accesses, the number
of threads used, the memory access pattern, and the termination conditions.

Memory Contention Size. The memory contention size is determined by leverag-
ing the Linux memory watermarks presented in Figure 4.2, with the goal of proac-
tively activating the kswapd thread to reclaim pages by swapping out anonymous
memory or flushing the page cache. The memory contention size is calculated as the
amount of free memory required to be allocated in order to bring the system to the
low memory watermark. This represents a safe amount of free memory needed by
the system to operate, before synchronous direct page reclamation is activated.

We anticipate kswapd will reclaim at least the watermark distance amount of mem-
ory at each step. If this amount of memory is freed in a cycle, the MS redefines the
memory contention size to prompt kswapd to reclaim more pages.
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Figure 4.2: Linux Kernel Page Frame Reclamation (background/foreground) activa-
tion based on memory watermarks.

Type of Contention Memory. The MS prefers the allocation of anonymous mem-
ory pages over file-backed pages during memory contention, based on the following
considerations.

Using file-backed memory to induce contention would result in the eviction of
page cache to disk, rather than anonymous memory, when available memory is low.
Moreover, workloads relying on file-backed memory require continuous read and
write operations to disk, leading to higher disk utilization and potential performance
degradation, especially during prolonged or intense memory contention. Additionally,
excessive memory contention would cause file-backed pages to be evicted to disk,
further increasing disk I/O activity as these pages must be reloaded from storage
when accessed again.

Furthermore, the pages of the contention memory should remain in RAM rather
than being swapped out to disk. Using anonymous memory instead of file-backed
memory simplifies their management through the Linux cgroup interface.

Parallelism in the Memory Stresser. While adding threads usually speeds up
processing, increasing the number of threads that allocate and access the contention
memory can cause severe delays to the MS service. Therefore, we configure the num-
ber of MS threads to match the number of cores assigned to the cgroup running the
Memory Stresser process. In section 4.8, we further describe how MS threads allocate
and access the contention memory.
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4.8 Memory Stresser Threads

The Memory Stresser Threads (MSTs) are responsible for introducing short periods
of memory contention by dynamically allocating and accessing memory. Each thread
begins by allocating and initializing its assigned portion. To ensure that the memory
pages remain active and are not paged out to disk, the thread touches a configurable
number of bytes of each memory page within its allocated range. This configurable
number of accesses on each page guarantees that the pages stay in memory.

Once all threads have initialized their portions, they enter a continuous loop, peri-
odically accessing their assigned memory chunks. This repeated access helps simulate
sustained memory usage and creates controlled memory contention.

As each thread accesses its allocated memory, it periodically checks if the system’s
memory usage exceeds certain thresholds. To do this, the thread interacts with the
MC component, which tracks key memory metrics, such as the working set refaults
(ws_refaults) and the Resident Set Size (RSS) of the tenant containers. The number of
working set refaults measures the recently accessed pages that are paged out and then
reloaded, which indicates potential memory inefficiency. By comparing the number
of refaults to the RSS, each thread assesses if the system is under significant memory
pressure. If the refaults exceed a threshold relative to the RSS of the container, referred
to as the refault ratio threshold (RRT), the thread concludes that further memory access
is inefficient and initiates the termination process. This termination condition helps
prevent excessive memory usage and protects the system performance.

4.9 Memory Stresser Termination

The termination process is initiated when a thread detects that the performance
degradation exceeds the defined threshold. At this point, all threads proceed with
their own process termination. This ensures that no thread continues its memory
accesses once the system has reached a state of high memory contention.

If the termination condition is not met, each thread reviews the system’s memory
availability by requesting the current memory usage from the MC component. If
enough memory has been released and the current free memory in the system reaches
the high memory watermark, each thread attempts to expand its allocated contention
memory by acquiring additional memory chunks. The memory contention size is
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recalculated based on the updated memory usage statistics. One of the threads will
successfully increase its portion of allocated contention memory making the total
allocated contention memory to reach the updated memory contention size. As a
result, the other threads will not increase their contention memory at this point.

4.10 Tenant Containers

Tenants request certain memory resources to run their applications in common Linux
containers. Estimating the amount of memory resources the workloads will need is a
difficult task. Therefore, we provide the tenants with the resources they request even
if this decision leads in resource overprovisioning.

We rely on Linux cgroups to manage the resources of tenant containers. Each con-
tainer is assigned to its own cgroup. To collect and aggregate statistics from individual
cgroups, we use an aggregation cgroup, which resides directly under the root cgroup.
The tenant containers are organized as sub-cgroups under the aggregation cgroup.
The hierarchical setup simplifies the collection of statistics, as the aggregation cgroup
automatically combines metrics from the sub-cgroups into cumulative counters.

We leverage the cgroup memory controller interface files to control the memory
limits, setting the memory.high limit equal to the requested memory resources. The
high limit is a soft limit of memory usage. If a cgroup’s memory usage goes over
this boundary, the kernel throttles the processes of the cgroup and puts them under
heavy reclaim pressure.

4.11 Synthetic Workload Generator

This section outlines the development of a synthetic workload generator, designed
to emulate the memory usage patterns commonly observed in MapReduce appli-
cations [1], as illustrated in Figure 1.1 of Chapter 1. The generator emulates the
fluctuating memory demands of MapReduce applications by creating periodic spikes
in the amount of accessed memory across multiple tenants and distributing memory
access across multiple threads.

Memory allocation. We have implemented the workload generator to perform
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anonymous or file memory accesses.
In the case of anonymous memory accesses the workload generator preallocates

a large contiguous memory pool of parameterized size (1 GB in our experiments),
designated as allocated memory (in Bytes), which serves as the workspace for memory
operations performed by the application. Throughout the execution, the allocated
memory pool remains constant, and all memory accesses are confined to this region.

In contrast, in the case of file memory accesses the workload generator does not
allocate anonymous memory but allocates a small memory buffer of configurable size
(4KB default) per thread to read data from a file of predefined size (1GB).

Access patterns. In CloudScale [1], the memory usage patterns of MapReduce
applications exhibit two primary behaviors: steady memory consumption with minor
variations (e.g., Word Count) and periodic bursts alternating between high and low
memory demands (e.g., Grep). These fluctuations are influenced by workload phases,
such as data processing and computation. For instance, in Grep, the high memory
demand lasts approximately 10–15 seconds, followed by low memory demand for a
similar duration, reflecting its alternating workload phases.

The synthetic workload generator emulates these patterns by dynamically alter-
nating the memory demand between configurable high and low memory access sizes
over adjustable demand durations, effectively capturing the key characteristics of real
MapReduce applications observed in CloudScale. The high memory demand (hmd) pa-
rameter corresponds to phases of increased amount of accessed memory, wherein a
considerable proportion of the allocated memory is accessed. The low memory demand
(lmd) parameter is used to describe periods of reduced amount of accessed memory,
whereby only a limited portion of the memory is accessed.

Timing intervals and spike generation. The workload generator introduces
spikes in memory usage by controlling the duration of each memory access phase
through intervals of configurable memory demand. The high demand duration (hdd)
defines the duration for which the program accesses the high memory demand, which
corresponds to periods of higher memory usage. The low demand duration (ldd) de-
fines the duration for which the program accesses the low memory demand, which
corresponds to periods of low memory usage.

Thread‐based execution. The workload generator supports multi-threaded exe-
cution to emulate the concurrent nature of distributed MapReduce applications. In
the anonymous memory test, each thread is responsible for accessing a portion of the
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allocated memory pool in fixed-size blocks (4 KB) using a memory read operation.
In the file-based memory test, we split the file into fixed-size chunks of contiguous
blocks, and we assign each chunk to a thread. Each thread allocates a small memory
buffer of configurable size and continuously reads its assigned blocks.

4.12 Summary

In this chapter, we introduced the Contention Service, a solution that enhances mem-
ory management in systems with containerized applications by automatically re-
claiming underutilized memory. Unlike traditional memory reclamation methods, this
mechanism works in the background, freeing memory without blocking or slowing
down applications.

The Metrics Collector gathers memory usage data, which is then analyzed by the
Resource Controller to determine when to trigger the Memory Stresser to provoke the
underutilized memory reclamation. The Memory Stresser generates contention into
memory in order to activate the kernel’s background reclamation process, ensuring
that idle memory is freed efficiently without impacting system performance.

The Contention Service is lightweight, application-agnostic, and optimizes the sys-
tem memory usage. It offers an effective solution for containerized environments,
where efficient resource allocation is essential, and applications must run without
disruption.

45



CHAPTER 5

IMPLEMENTATION

5.1 Prototype Implementation

5.2 Metrics Collector

5.3 Resource Controller

5.4 Memory Stresser

5.5 Summary

This chapter provides a detailed explanation of the implementation of the Contention
Service (CS) prototype. The CS releases underutilized memory pages allocated by
tenant applications in a containerized, multi-tenant system.

5.1 Prototype Implementation

We implement a prototype of the CS in 963 lines of C code, excluding commented
or black lines. We use the Linux cgroup (v2) interface to configure the memory limits
through the memory controller and the CPU cores through the cpuset controller for
the tenant containers and the Memory Stresser container. Additionally, we use the
cgroup (v2) interface files to gather detailed memory usage metrics from the containers.
Finally, we rely on the kernel proc filesystem to read system-wide statistics.
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5.2 Metrics Collector

The Metrics Collector (MC) retrieves both system-wide and per-container metrics.
For system-wide memory metrics, the MC collects statistics from the /proc inter-
face. The MC reads the /proc/meminfo file to retrieve the MemFree statistic, which
represents the amount of physical memory not used by the system. This statistic
is used to determine the intensity of the memory contention. Another /proc file
used is the /proc/zoneinfo, which aggregates information about the memory shared
among different memory zones and calculates the high, low, and minimum memory
watermarks. These statistics, along with the watermark_scale_factor received from the
/proc/sys/vm/watermark_scale_factor file, are used to calculate the wm_distance. This
value, together with the memory watermarks, define the amount of memory released
by the contention service.

For container-specific metrics, the MC uses the cgroup v2 interface. The MC also
collects statistics from the cgroups to monitor the tenant containers’ status. It tracks
the number of processes currently running by the tenants, the total amount of memory
in use by the cgroups (from the memory.current file), and several useful statistics, such
as the sizes of the active and inactive LRU lists, the number of page major faults, and
the number of working set refaults (from the memory/stat file). These statistics are
all used to determine the conditions under which the contention service should be
applied.

5.3 Resource Controller

The Resource Controller (RC) ensures efficient memory reclamation by forcing the
LRU-based kernel page management system to reclaim underutilized memory pages
allocated by the tenant applications. The primary objective of the RC is to trigger the
kernel’s kswapd reclaimer by inducing controlled memory contention, thus preventing
performance degradation caused by excessive memory usage.

Initiation. The RC uses a list of variables to monitor the memory state of both the
containers and the system. These include variables for tracking the Resident Set Size
(RSS) and the number of the active and inactive memory pages. These variables serve
as baseline, for comparing changes in the memory usage across monitoring cycles to
detect memory usage patterns and deciding whether to initiate memory contention
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(lines 1-5 of Algorithm 5.1).

Algorithm 5.1: Resource Controller
Input: the aggregation cgroup name in the hierarchy of the tenant containers

cgrp, the number of threads thrnum to generate the memory
contention

// LSR: The proportion of inactive RSS pages to the total RSS pages in

the tenant containers.

// LSD: The percentage growth in the inactive LRU list sizes between

consecutive cycles.

// FLS: The minimum number of file memory pages that must be maintained

in the active and inactive LRU lists.

1 inactive_pages← mcget(cgrp, inactive_pages)
2 active_file_pages← mcget(cgrp, active_file_pages)
3 inactive_file_pages← mcget(cgrp, inactive_file_pages)
4 rss← mcget(cgrp, rss)
5 running_procs← mcget(cgrp, running_procs)
6 while (True) do
7 if (rss ̸= prev_rss and running_procs > prev_running_procs) then
8 if ((inactive_pages > LSR × rss or
9 active_file_pages > FLS or

10 inactive_file_pages > FLS) and
11 inactive_pages > LSD × prev_inactive_pages) then
12 ms← fork(MS(cgrp, thrnum))
13 wait(ms)
14 sleep(SEC)

15 end

16 end
17 update_statistics(prev_rss, prev_running_procs, prev_inactive_pages)
18 sleep(SEC)

19 end

Monitoring Loop. After the initiation step, the RC enters a continuous monitoring
loop (line 6 of Algorithm 5.1) to evaluate the memory usage. Each cycle involves calls
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to the MC component in order to gather the latest memory statistics for the containers.
These metrics are aggregated at the parent cgroup level, encompassing the memory
usage of all child containers.

Before evaluating the conditions to initiate the memory contention, the controller
inspects the tenant containers for new activity by comparing the current RSS (rss)
metric and the current number of running processes (running_procs) of the tenant
containers with the respective metrics from the previous cycle of the monitoring
loop (line 7 of Algorithm 5.1). By doing this, the controller delays the inspection
of the conditions to generate memory contention until a tenant container executes
a new workload. This is necessary, as the kernel does not zero the page activity
statistics when a workload terminates, and as a result the controller may evaluate
these conditions as true, even though no workload is running.

Memory Contention Trigger Conditions. The RC evaluates a number of condi-
tions to determine whether to initiate memory contention (lines 8-11 of Algorithm
5.1). First, it verifies if the number of inactive pages exceeds a configurable propor-
tion (LSR) of the RSS, initially set to 40% (inactive_pages > LSR × rss). This factor
helps to determine if the system has accumulated a significant number of potentially
underutilized pages.

For the file-backed pages, the system monitors changes in the size of the active
file LRU list. It also checks if there are enough pages in the active or inactive file LRU
lists that exceed a minimum size, set by default to 100 MB (active_file_pages > FLS or
inactive_file_pages > FLS). We consider a memory amount below 100 MB for the FLS
parameter to be too small to justify enabling the Contention Service. Additionally, the
RC evaluates whether the ratio of inactive pages between two cycles surpasses the
LSD threshold (inactive_pages > LSD × prev_inactive_pages), which is set by default to
105%.

If these conditions are met, the system creates a child process (line 12 of Algorithm
5.1) to apply memory contention through the Memory Stresser (MS). When the MS
returns, the RC pauses briefly (2 seconds) before resuming its monitoring loop (line
14 of Algorithm 5.1). This pause allows the kernel sufficient time to perform the
memory reclamation before the next monitoring cycle.

State Update. After the MS terminates, the system updates the memory statis-
tics (prev_rss and prev_inactive_pages) to reflect the current system state (line 17 of
Algorithm 5.1).
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5.4 Memory Stresser

The MS function (Algorithm 5.2) creates controlled memory contention. The MS is a
multi-threaded process executed in a dedicated container whose cgroup is set to have
unlimited memory. The MS cooperates with the MC component to receive memory
usage statistics from the system and the tenant containers. Several parameters, such
as the memory free space, the memory watermarks, and the working set refaults
count are needed to apply controlled memory contention to the system.

Initialization. The MS starts by calling the wait_pageload() routine (Algorithm 5.3)
in order to delay the execution of the MS until the working set pages are loaded
into RAM. The loop continues as long as the number of occurring refaults or major
page faults between two consecutive cycles drops below a number of pages (RE-
FLT_MINPG), configured to 1000 pages (lines 3-6 of Algorithm 5.3).

Memory Stresser Loop. The MS then enters a loop where it continuously applies
memory contention until at least one MST detects performance degradation (line
3 of Algorithm 5.2). First, it calculates the memory contention size, which is deter-
mined as the difference between the free memory (mem_free) and the low watermark
(wm_low). The memory contention size (line 9 of Algorithm 5.2) represents the mini-
mum amount of memory needed to be allocated, in order to reduce the system’s free
memory pages to the low memory watermark, which triggers the kswapd thread to
begin reclaiming less recently used pages. Then, the MS creates a number of MSTs
(line 10-13 of Algorithm 5.2) to gradually create memory contention in the system.

Memory Contention Service Loop Termination. The MS loop continues to run,
as long as the sum of the working set refaults (ws_refault_sum) from each cycle is less
than a configurable proportion of the RSS (refault_ratio_threshold (RRT)) (line 18 of
Algorithm 5.2). We use the pids.current file of the parent cgroup in the hierarchy
of the tenant cgroups to get the currently running processes. In each cycle, the MS
waits for all threads to finish (lines 14-16 of Algorithm 5.2) their task and updates
the memory usage statistics.
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Algorithm 5.2: Memory Stresser
Input: the aggregation cgroup name in the hierarchy of the tenant containers

cgrp, the number of threads thrnum to generate the memory
contention

// RRT: a configurable threshold representing the ratio of the sum of

working set refaults to the RSS, by default set to 0.04

1 pthread_t thread[thrnum] // Wait workload to be loaded

2 wait_pageload(cgrp)
// Main loop for the Memory Stresser

3 do
// Gather current memory statistics

4 ws_refaults← mcget(cgrp, ws_refaults)
5 mem_free← mcget(cgrp, mem_free)
6 rss← mcget(cgrp, rss)
7 wm_low ← mcget(cgrp, wm_low)
8 wm_dist← mcget(cgrp, wm_dist)

// Calculate the memory contention size

9 mc_size ← mem_free - wm_low
// Create threads to apply memory contention

10 for (i = 0 to thrnum− 1) do
11 thread_args[i] = set(mc_size, ws_refaults, wm_low, wm_dist, cgrp)
12 new_thread(thread[i], MST, thread_args[i])

13 end
// Wait for all threads to complete

14 for (i = 0 to thrnum− 1) do
15 wait_thread(thread[i])
16 end

// Update memory statistics after memory contention

// (ws_refault_sum, rss)

17 update_statistics(ws_refaults_sum, rss)

18 while (ws_refaults_sum < RRT * rss);
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Figure 5.1: The interaction between the Resource Controller (RC) and the Memory
Stresser (MS) components.

Algorithm 5.3: Wait for Page Load
Input: the aggregation cgroup name in the hierarchy of the tenant containers

cgrp, the number of threads thrnum to generate the memory
contention

// REFLT_MINPG: a minimum number of refaults between consecutive cycles,

by default set to 1000

1 ws_refaults← mcget(cgrp, ws_refaults)
2 pg_majfaults← mcget(cgrp, pg_majfaults)
3 while (calculate_ws_refault_diff(cgrp, ws_refaults) > REFLT_MINPG or

calculate_pgmajfault_diff(cgrp, pg_majfaults) > REFLT_MINPG) do
4 ws_refaults← mcget(cgrp, ws_refaults)
5 pg_majfaults← mcget(cgrp, pg_majfaults)
6 sleep(SEC)

7 end

Figure 5.1 illustrates the interaction between the Resource Controller (RC) and
the Memory Stresser (MS) components. The Resource Controller gathers the memory
statistics from the system and the tenant containers, checks for underutilized memory,
and determines when to activate the Memory Stresser. Once activated, the Memory
Stresser applies memory contention by creating threads based on the available mem-
ory. The process terminates after a configurable number of refaults is reached. In

52



Per thread 

Contention 

Memory

Per thread 

Contention 

Memory

MCL

Read 3 times

MCL MCL MCL

Phase 1: Allocate Phase 2: Access Phase 3: Expand Phase 4: Free

refaults ≥ RRT * rss

refaults ≥ RRT * rss

Read whole MCL

Memory Stresser Thread (MST)

Per thread 

Contention 

Memory

MCL

Read 3 times

MCL MCL MCL

Phase 1: Allocate Phase 2: Access Phase 3: Expand Phase 4: Free

refaults ≥ RRT * rss

refaults ≥ RRT * rss

Read whole MCL

Memory Stresser Thread (MST)

Figure 5.2: Operation stages of each Memory Stresser Thread and management of
contention memory using a per-thread Memory Contention List (MCL).

section 5.4.1, we delve deeper into the implementation of memory contention by the
stresser threads and describe the core operations performed by each thread to create
controlled memory contention.

5.4.1 Memory Stresser Threads

The primary goal of the MSTs is to generate contention into memory, in order to
allow the system to release underutilized memory pages. To achieve this, each MST
first allocates an equal portion of the contention memory and then continuously
accesses its portion until it observes a number of refaults. If the required amount of
memory is reclaimed by the kernel, then each thread can try to dynamically expand
the contention memory in order to force the kernel to reclaim more memory. We use
a linked list data structure to manage the allocated contention memory area of each
thread by keeping track of the memory allocated and accessed by each thread. This
structure facilitates the deallocation of memory upon thread termination. Figure 5.2
describes the key operation stages of a MST.
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Algorithm 5.4: Allocate Contention Memory
Input : a per-thread memory contention list MCL, the size mc_size of

per-thread memory contention portion
Output: the initialized per-thread memory contention list

// PG_ACC_TIMES: The number of accesses needed to set a page active (by

default set to 3)

1 buffer ← alloc_aligned(mc_size, BLOCK_SIZE)
2 node← create_node(buffer)
// Initialize each memory chunk of the MCL node PG_ACC_TIMES times to

keep it active

3 for (i← 0 to node.size()/BLOCK_SIZE) do
4 chunk ← i× BLOCK_SIZE

// Write each memory chunk of the MCL node PG_ACC_TIMES times to keep

it active

5 for (i← 1 to PG_ACC_TIMES) do
6 write_access_chunk(node, chunk)
7 end

8 end
9 MCL.add(node)

10 return MCL

Memory Allocation. Each MST initially invokes the memory_contention_alloc() func-
tion (Algorithm 5.4) to allocate and initialize the memory chunks assigned to it
aligned to BLOCK_SIZE (by default 4 KB). Upon initialization, the entire contention
memory is represented as a single node in the linked list.

Each thread allocates a portion of the total contention memory as a memory node
in a per-thread memory contention list (MCL). The allocation is performed using
a buffer, which is then initialized by accessing the first three bytes of each memory
chunk (lines 3-7 of Algorithm 5.4) in order to ensure that the pages are marked
as active preventing them from being reclaimed by the kswapd page reclamation
process. The newly created MCL node is subsequently added to the head of the list
(line 9 of Algorithm 5.4). Finally, the function returns the updated MCL (line 10 of
Algorithm 5.4), which includes the new node.
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Algorithm 5.5: Access Contention Memory
Input: a per-thread memory contention list MCL, a pointer thrargs to the

struct thread arguments

// MIN_CHUNKS: the minimum number of accessed chunks required for a

subsequent refault check, by default set to 128

1 while (node←MCL.get_next()) do
2 for (i← 0 to node.size()/BLOCK_SIZE) do
3 chunk ← i× BLOCK_SIZE

// Access each memory chunk of the MCL node PG_ACC_TIMES times to

keep it active

4 for (i← 1 to PG_ACC_TIMES) do
5 read_access_chunk(node, chunk)
6 end

// Check refaults every MIN_CHUNKS chunks

7 if (i mod MIN_CHUNKS == 0) then
// Request metrics from the metrics collector

8 ws_refaults← mcget(thrargs.cgrp,
thrargs.ws_refaults-thrargs.rss)

9 if (ws_refaults ≥ RRT × thrargs.rss) then
10 break // Exit the loop when condition is met

11 end

12 end

13 end

14 end

Memory Access. Each thread invokes the memory_contention_access() function to
access its MCL. This function iterates over the memory nodes of the MCL, accessing
the first three bytes (PG_ACC_TIMES) of each chunk in the buffer of the node (lines 2-
6 of Algorithm 5.5). During this process, the thread monitors key metrics, such as the
number of working set refaults and the RSS, to ensure that memory contention does
not negatively impact performance. Every MIN_CHUNKS chunks, the thread checks
the number of working set refaults (ws_refaults) and compares it with the current RSS.
If the ratio of ws_refaults to RSS exceeds a threshold (refault ratio threshold (RRT)),
which is set to 4% by default, the function breaks out of the loop (lines 9-11 of
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Algorithm 5.5), effectively stopping memory accesses for that thread.
Algorithm 5.6: Memory Stresser Thread
Input: a pointer to the struct thrargs thread arguments, the size mc_size of

per-thread memory contention portion

// RRT: a configurable threshold representing the ratio of the sum of

working set refaults to the RSS, by default set to 0.04

1 stop_memory_contention← 0
2 MCL← memory_contention_alloc(NULL, thrargs.mc_size/thrnum)
3 while (stop_memory_contention ̸= 1) do
4 memory_contention_access(MCL, thrargs)
5 ws_refaults = mcget(thrargs.cgrp, ws_refaults -

thrargs.ws_refaults_before)
6 rss← mcget(thrargs.cgrp, rss)
7 if (ws_refaults ≥ RRT × rss) then
8 stop_memory_contention ← 1

9 break

10 end
11 mem_free← mcget(thrargs.cgrp, mem_free)
12 if (mem_free > (thrargs.wm_dist + thrargs.wm_low)) then
13 mc_size← mem_free− thrargs.wm_low
14 MCL← memory_contention_alloc(MCL, mc_size)

15 end

16 end
17 memory_contention_free(MCL)

Memory Expansion. Before the next cycle, each thread recalculates the memory
contention size if an appropriate amount of memory is freed during page reclamation
and additional nodes are added to the list (line 12-15 of Algorithm 5.6). In particular,
if at least wm_dist pages are freed on a thread cycle, which means that the free memory
in the system has reached the high memory watermark, the memory contention size
is updated based on the current system state.

Thread Termination. However, when memory contention starts to negatively im-
pacting the application’s performance (ws_refaults >= RTT × RSS), the thread signals
its intent to stop by setting a shared flag, referred to as stop_memory_contention, frees
the allocated memory chunks, and terminates. Each thread continuously monitors the
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shared stop_memory_contention flag. Once one thread sets the flag, all the other threads
detect the signal and proceed with their own process termination. If at any point, the
number of refaults exceeds the RTT of the RSS within the containers, the thread sig-
nals for termination by setting the stop_memory_contention flag (lines 7-10 of Algorithm
5.6). Once the thread determines that it should stop, either due to excessive refaults
or a manual stop request, it frees the memory pool using the memory_contention_free()
function.

Memory Deallocation. The contention_memory_free() function is invoked after all
threads terminate in order to free all memory associated with the memory contention
linked list. The function iterates through the MCL nodes, starting from the given
contention memory pointer. For each node, it frees the memory buffer and then the
MCL node itself.
Algorithm 5.7: Free Memory Contention
Input: a per-thread memory contention list MCL

// MCL: per-thread memory contention list

// Free each node in the memory contention list

1 for (node ∈MCL) do
2 free(node) // Release memory of the node

3 end

5.4.2 Protect Memory Contention Service From Swapping

Under conditions of excessive memory contention, Linux by default allocates equal
swapping opportunities to each container. In Linux cgroup (v1), the swappiness pa-
rameter is used to regulate the extent to which the system prioritizes reclaiming
anonymous memory pages over page cache. However, this swappiness parameter
has been removed from the memory controller in cgroup (v2). Instead, cgroup (v2)
introduces alternative mechanisms for controlling memory usage through the con-
figuration of memory limits within the cgroup. These controls include parameters
such as memory.min, memory.low, memory.high, and memory.max, which set thresholds for
memory utilization, as well as memory.swap.max and memory.swap.high, which limit the
usage of swap memory.

Our objective is to activate the memory contention service to remove the under-
utilized memory pages from the applications running within tenant containers. To
achieve this, it is necessary to guide the Linux kernel to retain the memory allocated
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by the contention activity service in memory. One approach involves configuring the
memory.swap.max parameter within the cgroup to a minimal value (e.g., 100 MB),
effectively limiting the amount of anonymous memory that can be swapped out.
However, this method leads to the activation of the Out-Of-Memory (OOM) killer,
resulting in the near-immediate termination of the contention service process.

To address this issue, we configure the memory.low limit for the container hosting
the contention service to match the total available system memory. This configuration
helps prioritize memory residence for the cgroup, making it less likely to be reclaimed
unless other cgroups have no reclaimable memory. The memory.low limit ensures that
the memory allocated to the contention service remains in memory during periods
of high memory contention.

5.5 Summary

This chapter delves into the implementation details of the Contention Service (CS)
components and their interactions.

The Resource Controller (RC) monitors the memory usage statistics of the con-
tainers and applies the Memory Stresser (MS) when workloads are running in the
containers or there are changes in the working sets.

The MS generates contention memory to trigger the kswapd thread to initiate page
reclamation. The MS determines the memory contention intensity based on the mini-
mum amount of memory required to reach the low memory watermark in the system,
which activates the asynchronous Linux page reclamation process.

We use a per-thread linked list structure to manage the contention memory. The
MSTs handle portions of the total memory contention size and adjust their allocations
when the page reclamation process successfully frees enough pages to reach the high
memory watermark. The MSTs also monitor the memory usage statistics in the con-
tainers in order to terminate when their accesses negatively impact the performance
of the applications running in the containers. Similarly, the MS stops the memory
contention when it detects performance degradation.
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CHAPTER 6

EXPERIMENTAL EVALUATION

6.1 Methodology

6.2 Memory Stresser with a Single Tenant

6.3 Memory Stresser with Multiple Tenants

6.4 Memory Stresser with MapReduce Applications

6.5 Comparison with other approaches

6.6 Sensitivity Analysis

6.7 Summary

In this chapter, we first assess the efficacy of the Memory Contention mechanism
using synthetic workloads generated by a custom workload generator. This generator
emulates memory access patterns of MapReduce applications as observed in [1], which
are widely used in cloud environments. The evaluation is conducted on a single
machine under two scenarios: single-tenant and multi-tenant configurations.

Next, we validate the effectiveness of the CS by executing real-world MapReduce
applications, such as Grep and KMeans. These benchmarks provide practical insights
into the CS mechanism’s performance in realistic scenarios. Finally, we compare our
solution against a similar approach, Facebook’s Senpai [24]. This comparative anal-
ysis highlights the strengths of our mechanism related to state-of-the-art solutions.

Our evaluation focuses on answering the following questions: (1) what percent-
age of unused memory is successfully released, (2) to what extent does the CS affect
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application performance, (3) how much system memory remains available after mem-
ory release, (4) how our solution compares to alternative approaches, such as those
modifying cgroup limits or those involving direct memory reclaim.

6.1 Methodology

This section describes the methodology and setup used for evaluating the Contention
Service.

Servers. Our experimental environment consists of two rack-mounted nodes. Both
nodes are equipped with two 4-core x86-64 processors and 11 GB of RAM. The first
node contains one 2 TB Western Digital WD2001FASS SATA hard disk and one 500
GB Crucial MX500 SATA SSD. The second node contains two 2 TB Western Digital
WD2002FAEX-0 SATA hard disks. Both nodes run Debian 11 with Linux Kernel
version 6.6.52.

Configuration. We assign 2 CPU cores on the task that we use to collect resource
usage statistics. This task runs for the whole duration of each experiment and collects
resource usage statistics every second. We configure two containers using cgroup v2.
In the first container we execute the experimental applications. We configure this
container with 4 CPU cores by default using the cpuset controller, but we also test
different numbers of CPU cores in some of the experiments. We also set the following
memory limits using the memory controller: a) 50 MB minimum memory, b) 100
MB low memory, c) 5.1 GB high memory and d) 5.3 GB maximum memory. In the
second container we run the CS. We configure the CS container with 2 CPU cores by
default (we also tested different numbers of CPU cores in some of the experiments).
At the memory side, we set the low, high and maximum limits equal to the total
memory of the system. By setting the low memory limit to match the total memory
of the system we advise the kernel to try not to reclaim memory from this container,
unless it cannot reclaim memory from other containers. We also tested alternative
methods as we explain below. Table 6.1 summarizes our setup. We perform each
experiment three times and report the average values obtained from these runs.
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Table 6.1: Container configuration.

Container Assigned
Cores

Minimum
memory

Low mem‐
ory

High mem‐
ory

Maximum
memory

Application 4 50 MB 100 MB 5.1 GB 5.3 GB

CS 2 50 MB 11 GB 11 GB 11 GB

6.2 Memory Stresser with a Single Tenant

We evaluate the MS on a single node with one tenant container to assess its effective-
ness in reclaiming underutilized memory pages allocated by the applications running
within the tenant containers. We use synthetic workloads generated by the workload
generator described in section 4.11, testing both anonymous memory and file-backed
memory working sets. In these tests, we fix the allocated memory at 1024 MB, while
the high and low memory demand are generally set to 500 MB and 100 MB, re-
spectively, or ranging from 400-600 MB and 200-400 MB. Below, we examine the
impact of high and low memory demand duration and concurrency on the efficacy
of the MS.

6.2.1 Memory demand durations

We examine various combinations of the high memory and low memory demand
duration, as shown in Table 6.2. For each combination, we present the memory
access patterns of the workload and the RSS of the tenant container resulting from
the activation of the MS. The experiments include tests for both anonymous memory
and file-backed memory workloads, each with specific low and high demand duration
configurations.

In all cases of high and low memory demand ratios examined for the anony-
mous memory workload, applying memory contention consistently reclaimed 500MB
of memory that was initially allocated but never accessed again by the application
throughout the experiment.

We choose to present the case where the HDD is set to 10 seconds and the LDD
is set to 40 seconds because it provides a representative example of how the memory
usage adapts to the applications demands. Figure 6.1 illustrates the Resident Set Size
(RSS) of the tenant container during the activation of the MS. A consistent pattern of
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Table 6.2: Combinations of high and low demand duration values that were tested.

LMD: Low
Memory Demand
(MB)

HMD: High
Memory Demand
(MB)

LDD: Low De‐
mand Duration
(s)

HDD: High De‐
mand Duration
(s)

100 500 [1, 2, 4, 8]×HDD [1, 2, 4, 8]

100 500 [1, 2, 4, 8] [1, 2, 4, 8]×LDD

100 500 [1, 2, 4, 8]×HDD 10

100 500 10 [1, 2, 4, 8]×LDD

200-400 400-600 60 10

200-400 400-600 10-60 10-60

memory usage is observed across all tested combinations of low and high demand
durations with the LDD equal to 10 seconds (shown in Table 6.2). The MS is triggered
upon detecting a change in RSS, aiming to align the RSS of the tenant container with
the application’s actual memory access patterns.

In particular, we observe that the execution of the MS allows the RSS of the
tenant container to closely match the application’s memory access size. The RSS first
decreases to the low memory demand, and then, it increases back to the high memory
demand when the application requires it.

While the MS attempts to identify and respond to changes in the application’s
workload, it reduces the RSS below the low memory demand before it stabilizes near
this value. This temporary reduction results in the eviction of anonymous memory
pages, which are then immediately accessed by the application, and they are brought
back into memory. A configurable number of refaults (by default 4% of RSS) termi-
nates the MS.

When the low demand duration ends, the workload shifts from low to high mem-
ory demand. The MS identifies the increase in memory usage and is activate in order
to force the kernel to reclaim newly underutilized memory pages. When the MS is
activated, it waits for the application to load the necessary data into memory before it
starts the application of memory contention. As long as the amount of high memory
demand pages are actively in use by the application, the MS stops the application of
memory contention, allowing the RSS to stabilize at the high memory demand level
until the workload changes again.
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Figure 6.1: Emulation of the memory usage for a MapReduce-like application us-
ing the synthetic workload generator with the following parameter settings: allo-
cated memory=1GB, LMD=100MB, HMD=500MB, LDD=40s, HDD=10s, and run-
time=600s.

The RSS of the tenant container keeps switching between the high and low mem-
ory demand due to the repeated use of the MS. The same pattern of memory adjust-
ment is observed across all combinations of high demand duration (HDD) with low
demand duration (LDD) set to 10 seconds. With the MS active, the average memory
utilization closely aligns with the actual memory accessed for each workload of the
application.

Table 6.3 provides an overview of the average total allocated memory by the
application (in MB), the memory actually accessed by the application (in MB), and
the Resident Set Size (RSS) (in MB) of the tenant container throughout the exper-
imental runtime of the anonymous memory workloads. When the high demand
duration (HDD) increases, the MS observes more frequent periods of high memory
demand (HMD). The MS treats this memory as part of the working set, which leads
to higher average memory utilization. We notice that as the low demand duration
(LDD) increases, the accessed memory amount decreases because the application
spends longer periods of low memory demand (LMD). This also causes the RSS of
the tenant container to decrease, indicating that the MS can adjust the RSS in line
with the application’s memory access patterns.

We conduct another experiment with random values for the low and high memory
demand sizes, while keeping the low and high duration constant. In this setup, the
high MS size ranges from 400 MB to 600 MB, and the low memory demand ranges
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Table 6.3: Average memory accessed by the workload, Resident Set Size (RSS) of the
tenant container, and total allocated memory by the anonymous memory workload
in MB across different high and low demand durations tested.

LMD
(MB)

HMD
(MB)

LDD (s) HDD (s) Accessed
(MB)

RSS
(MB)

Allocated
(MB)

100 500 10 10 299.67 293.40 1024

100 500 10 20 366.22 379.95 1024

100 500 10 40 419.46 523.39 1024

100 500 10 80 453.41 364.21 1024

100 500 20 10 233.10 234.40 1024

100 500 40 10 179.87 186.20 1024

100 500 80 10 139.94 169.51 1024

200-400 400-600 60 10 322.06 315.26 1024

200-400 400-600 1-10 20-100 319.16 319.13 1024

from 200 MB to 400 MB, with the low and high demand duration set to 60 seconds
and 10 seconds, respectively.

Results in Table 6.3 show that the MS dynamically responds to fluctuations in the
application’s memory needs, quickly reclaiming temporary underutilized memory
when it is no longer required. The MS adjusts the Resident Set Size (RSS) to match
high memory access phases and scales it down as the application shifts to lower
memory demands. This approach minimizes memory waste while ensuring sufficient
memory availability during active periods, demonstrating flexibility of the MS in
adapting to changing memory requirements.

The MS demonstrates the same effectiveness in adjusting RSS as in the scenario
where only the low and high memory demand durations (LDD and HDD) vary. The
RSS aligns closely with the actual memory usage, scaling up during high memory
demand phases and reducing during low-demand periods.

We further observe the adaptability of the MS when we conduct an experiment
where both the memory demand sizes, and the memory demand durations vary. As
shown in Table 6.3, the high memory demand fluctuates between 400 MB and 600
MB, while the low memory demand ranges from 200 MB to 400 MB. Additionally,
the high and low demand durations range from 20 to 100 seconds and 1 to 10
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seconds, respectively. The average RSS (319.13 MB) of the tenant container is almost
equal to the average accessed memory (319.16 MB).
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Figure 6.2: The RSS/Accessed ratio for anonymous memory workloads under dif-
ferent low and high demand durations. The experiments were conducted us-
ing the following parameter settings: LMD=100MB, HMD=500MB, HDD=[1,2,4,8]s,
LDD=[1,2,4,8]×HDDs, and runtime=600s.

We evaluate scenarios where the high demand duration (HDD) takes values of 1,
2, 4, and 8 seconds, while the low demand duration (LDD) is defined as a multiple
of the HDD by factors of 1, 2, 4, and 8. Additionally, we examine cases where the
LDD takes values of 1, 2, 4, and 8, with the HDD scaling proportionally to the
LDD. Figures 6.2 and 6.3 illustrate the RSS/Accessed ratio for anonymous memory
workloads managed by the MS under these scenarios.

In Figure 6.2, the results indicate that when the low demand duration (LDD) is
significantly longer than the high demand duration (HDD), the RSS of the tenant
container closely aligns with the actual memory access patterns of the application.
More specifically, the RSS/Accessed ratio approaches the optimal value of 1 in sce-
narios where (HDD:8, LDD:HDD×4), and (HDD:8, LDD:HDD×8). This shows that
prolonged periods of low memory demand allow the MS to efficiently reclaim under-
utilized memory pages and track the memory usage patterns of the workload.

Conversely, more frequent fluctuations between the high memory demand (HMD)
and low memory demand (LMD) reduce the ability of the MS to adapt the RSS of the
container to the actual accessed memory, as indicated by the increasing RSS/Accessed
ratios.
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Figure 6.3: The RSS/Accessed ratio for anonymous memory workloads under dif-
ferent low and high demand durations. The experiments were conducted us-
ing the following parameter settings: LMD=100MB, HMD=500MB, LDD=[1,2,4,8]s,
HDD=[1,2,4,8]×LDDs, and runtime=600s.

Similarly, in Figure 6.3 when the HDD increases proportionally to the LDD,
the RSS/Accessed ratio decreases. Scenarios such as (LDD:1, HDD:LDD×4), (LDD:1,
HDD:LDD×8), (LDD:2, HDD:×4), (LDD:2, HDD:LDD×8), (LDD:8, HDD:LDD×4),
and (LDD:8, HDD:LDD×8) exhibit RSS/Accessed ratios that approximate the optimal
value of 1. This behavior occurs because the memory accessed during high demand
periods becomes the working set, reducing the MS’s effectiveness in reclaiming mem-
ory as underutilized. Prolonged HMD relative to LMD ensures that the memory
associated with high demand is retained in memory, as it is frequently accessed and
classified by the system as critical to the workload.

To maintain consistency with the case used for the anonymous memory workload,
we selected the same high and low demand duration values for the file-backed mem-
ory workloads. Figure 6.4 illustrates a representative case under these conditions. We
observe that the RSS of the tenant container when the MS is activated can track the
actual application memory accesses even for quick changes from high to low memory
access sizes. The MS achieves the same adaptive behavior in the RSS of the container
across all tested combinations of low and high demand duration.

More specifically, the application of memory contention results in reductions in
the RSS when there is low memory demand and increases in the RSS when there is
high memory demand. Overall, memory usage follows the access patterns observed
throughout the experimental execution. However, for small low and high demand
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Figure 6.4: Spiky file accesses using the synthetic workload generator with the fol-
lowing parameter settings: LMD=100MB, HMD=500MB, LDD=40s, HDD=10s, and
runtime=600s.

duration ratios, memory contention seems to decrease the application’s RSS in an
attempt to catch up with the low memory demand, but it cannot actually reach or
exceed it immediately. This behavior is attributed to the Linux kernel’s handling of
file pages, which moves accessed file pages to the active LRU list and keeps them
active as long as they are accessed. Meanwhile, the MS primarily tracks the inactive
LRU list size as an indication of sufficient idle memory pages in the container.

Moving to larger ratios between the low and high demand duration, the applica-
tion’s RSS increases from low memory demand to high memory demand when the
access pattern of the workload changes. After the RSS increases to the high mem-
ory access size and a subsequent change in the working set is observed by the MS,
the RSS may decrease in a lower value and then increase again to a value near the
high memory demand before decreasing to reach the low memory demand of the
workload. When the workload accesses the low memory amount, due to contention
in memory, the RSS decreases to reach the low memory demand and may even drop
instantly below this value during the adaptation process.

In the experiments, where we randomly vary either the memory demand alone
or both the memory demand and the memory demand duration, as results in Table
6.4 indicate, the MS responds to the application’s changing memory needs, but the
frequency of these changes influences its effectiveness.

When the time between low and high memory phases is short, the RSS may
slightly lag behind or undershoot the actual memory needs, as it struggles to keep
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Table 6.4: Average memory accessed by the workload, Resident Set Size (RSS) of the
tenant container, and total allocated memory by the file-backed memory workload in
MB across different high and low demand durations.

LMD
(MB)

HMD
(MB)

LDD (s) HDD (s) Accessed
(MB)

RSS
(MB)

100 500 10 10 299.67 446.84

100 500 10 20 366.23 485.16

100 500 10 40 419.46 464.93

100 500 10 80 453.41 478.52

100 500 20 10 233.11 427.30

100 500 40 10 179.86 265.73

100 500 80 10 133.27 190.40

200-400 400-600 60 10 322.07 358.54

200-400 400-600 20-100 1-10 319.16 347.73

up with rapid changes in demand. This delay likely occurs because the MS requires
time to detect shifts in memory usage and adjust accordingly by releasing memory.

In the file-backed memory workload experiments, memory reads are performed
in chunks of a configurable size. While we tested the buffer size with configurations
larger (1 MB) than the default 4 KB, we primarily use the default value in our
experiments. However, the larger sizes showed no difference in terms of memory
reclaiming efficiency.

In Table 6.4, we observe that the RSS of the tenant container closely aligns with the
application’s actual memory access patterns as we move from smaller to larger ratios
between the low and high demand duration. Regarding smaller LDD/HDD ratios, the
RSS/Accessed ratio increases because the Linux kernel requires time to move pages
from the active to the inactive LRU list. This delay in moving pages between the two
lists affects the activation of MS, which relies on the size of the inactive LRU lists.

In scenarios where the high demand duration (HDD) increases compared to the
low demand duration (LDD), the RSS and the accessed memory tend to be close
to the high memory demand. This occurs because the memory accessed during the
high demand periods is frequently used, making it part of the working set rather
than underutilized memory. As a result, the MS is unable to reclaim these memory
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Figure 6.5: The RSS/Accessed ratio for file-backed memory workloads under dif-
ferent low and high demand durations. The experiments were conducted us-
ing the following parameter settings: LMD=100MB, HMD=500MB, HDD=[1,2,4,8]s,
LDD=[1,2,4,8]×HDDs, and runtime=600s.

pages effectively, as they are actively accessed by the application. This behavior reflects
the MS’s design to avoid reclaiming frequently accessed memory to ensure sufficient
memory availability during high demand phases.

The RSS of the tenant container closely approximates the memory accessed by
the application. Additionally, the difference between the container’s RSS and the
application’s accessed memory diminishes as the demand durations ratios increase.
More specifically, the difference between the RSS and the accessed memory in the
container ranges from 147 MB to 30 MB as the ratio between the low and high
memory demand increases.

Similarly to the evaluation of anonymous memory workloads, we examine sce-
narios where the high demand duration (HDD) takes values of 1, 2, 4, and 8, while
the low demand duration (LDD) is defined as a multiple of the HDD by factors of 1,
2, 4, and 8. Additionally, we explore cases where the LDD takes values of 1, 2, 4, and
8, with the HDD scaling proportionally to the LDD. Figures 6.5 and 6.6 summarize
the RSS/Accessed ratio for file-backed memory workloads managed by the MS under
these scenarios.

The results show that when the LDD increases, the greater the difference between
the LDD and HDD, the RSS/Accessed ratio is lower to the optimal value. For example,
in cases where (HDD:8, LDD:HDD×4), and (HDD:8, LDD:HDD×8) the RSS/Accessed
ratio is equal to 1.57 and 1.51, respectively. In contrast, when the LDD is closer to
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Figure 6.6: The RSS/Accessed ratio for file-backed memory workloads under dif-
ferent low and high demand durations. The experiments were conducted us-
ing the following parameter settings: LMD=100MB, HMD=500MB, LDD=[1,2,4,8]s,
HDD=[1,2,4,8]×LDDs, and runtime=600s.

the HDD, the system struggles to identify which memory demand size is part of the
working set due to the frequency with which the memory is accessed. In these cases,
we observe that the RSS/Accessed ratio ranges from 1.64 to 2.88.

In scenarios where the HDD increases relative to the LDD, the average accessed
memory stabilizes near the high memory demand (HMD). This indicates that the
MS mechanism successfully retains the HMD in memory, identifying it as critical due
to its frequent access. The system correctly classifies the HMD as active, avoiding its
reclamation as underutilized.

6.2.2 Concurrency

To examine the impact of concurrency on the reclamation of idle memory pages,
we conduct a series of experiments with varying levels of container concurrency
between the container running the MS process and the container running the tenant
application. Table 6.5 outlines the different cases that we tested.

Testing different degrees of container concurrency, as shown in Figure 6.7, we
observe that changing the number of cores (#threads = #cores) used by the MS
does not lead to more aggressive memory reclamation on the anonymous memory
workloads. Despite the high initial memory allocations, only a small fraction is ac-
tively accessed, indicating potential over-allocation. This over-allocation appears to
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Table 6.5: Different degrees of concurrency for the application and MS tested, where
#threads = #cores.

Cases Application Cores MS Cores
Case 1 (default) 4 2

Case 2 2 4

Case 3 6 1

Case 4 2 2
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Figure 6.7: MapReduce-like anonymous memory workload with different degrees of
container concurrency for both the application and the MS, where #threads = #cores.

be efficiently managed by the MS. The combination of high RSS and low accessed
memory suggests that the MS optimizes the memory usage by dynamically adjusting
the memory allocations based on the actual access patterns.

For file-backed workloads, the system maintains efficient memory usage without
excessively retaining memory, as shown by the close alignment of RSS and accessed
memory values. As shown in Figure 6.8, increasing concurrency does not affect these
metrics significantly, suggesting that file-backed memory is efficiently managed, al-
lowing the system to dynamically adjust and reclaim memory as needed based on
the actual access patterns.

In a sensitivity analysis focusing on data access speed, we evaluate the Memory
Stresser (MS) effectiveness under varying physical core allocations and threading
levels, as shown in Table 6.6. The experiments are conducted with fixed low and
high memory demands of 100 MB and 500 MB, respectively, each lasting for 40 and
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Figure 6.8: Spiky file accesses with different degrees of container concurrency for
both the application and the MS, where #threads = #cores.

Table 6.6: Thread and core allocation configurations for application and Memory
Stresser, where the #application cores = #MS cores. The experiments were conducted
using the following parameter settings: LMD=100MB, HMD=500MB, LDD=10s,
HDD=10s, and runtime=600s.

#Application Cores =
#MS Cores

Application
Threads

MS Threads

1 1 MS cores×[1,2,4]

2 2 MS cores×[1,2,4]

3 3 MS cores×[1,2,4]

10 seconds. The number of physical cores allocated to both the application container
and the MS container increases from 1 to 3 in the tested scenarios. The number of
application threads is equal to the number of application cores (1thread/core). For
the MS threads, multiple configurations are tested, with the number of threads per
MS core scaling as MS cores multiplied by factors 1, 2, and 4. This setup enables
an analysis of how thread concurrency affects the effectiveness of the MS in memory
reclamation.

Figure 6.9 represents the effectiveness of the Memory Stresser (MS) under differ-
ent configurations of physical cores and threads for both the application (App) and
Memory Stresser (MS). The y-axis represents the ratio of the RSS (Resident Set Size)
to the accessed memory, which indicates the efficiency of the MS.
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Figure 6.9: Impact of thread and core configuration on the MS effectiveness in a
MapReduce-like application, where #application cores = #MS cores.

The results show that the RSS/Accessed ratio tends to decrease as the number of
cores and threads increases in a balanced manner (e.g., matching cores and threads).
The lowest ratio is observed for the configuration where 2 cores and 2 threads are
used, indicating the highest memory efficiency. As the number of threads increases
beyond the number of cores (e.g., 1 core with 2 or 4 threads), we observe higher
RSS/Accessed ratios. Similarly, for higher core counts (3 cores), increasing the threads
gradually impacts efficiency, with notable inefficiency occurring when threads signif-
icantly exceed cores (e.g., 12 threads). These results underscore the importance of
balancing the number of cores and threads to optimize memory access and usage.

6.3 Memory Stresser with Multiple Tenants

We evaluate the MS using the synthetic workloads on two tenant containers. Each
tenant container and the MS container is assigned 2 CPU cores, while 2 additional
CPU cores are dedicated to the task that collects the resource usage statistics. The
experimental applications running within the containers are configured with the fol-
lowing memory limits: 50 MB minimum memory, 100 MB low memory, 5.1 GB
high memory limit, and 5.3 GB maximum memory limit for one tenant container.
The second tenant container is set with a 2.1 GB high memory limit and 2.3 GB
maximum memory limit. The third container, running the MS, is configured with the
low, high, and maximum memory limits set equal to the total memory of the system.
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Figure 6.10: Performance of MS with two tenants running anonymous MapReduce-
like workloads with the following parameter settings: HMD=500MB, LMD=100MB,
HDD=20s, LDD=20s, and runtime=600s.

Initially, we examine the efficiency of the MS for both anonymous and file-backed
workloads, where the high and low memory demands, as well as the demand dura-
tions, remain constant. Figures 6.10 and 6.11 demonstrate that the RSS (Resident Set
Size) of the tenant containers closely follows the accessed memory, indicating that the
MS efficiently releases idle memory pages. During transitions between low and high
memory demand periods, the MS successfully adapts by aligning the RSS with the
accessed memory, highlighting its ability to respond promptly to workload changes
and ensure minimal memory waste.

The ratio of the average RSS to the average accessed memory provides further
insights into the MS’s efficiency in managing idle memory. For anonymous work-
loads, this ratio is approximately 0.92, indicating that the RSS is slightly below the
accessed memory. This reflects the MS effectiveness in minimizing memory overhead
while ensuring adequate memory allocation for application demands. In contrast,
for file-backed workloads, the ratio is approximately 1.31, indicating that file-backed
workloads tend to keep more idle pages in memory. However, the excess does not
exceed 200 MB, demonstrating the capability of the MS to efficiently reclaim idle
memory while maintaining performance stability.

We tested the MS with two tenant containers running file-backed workloads con-
figured as follows: high memory demand ranging from 400–600 MB, low memory
demand ranging from 200–400 MB, high demand duration ranging from 20–100
seconds, and low demand duration ranging from 1–10 seconds. As shown in Fig-
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Figure 6.11: Performance of MS with two tenants running file-backed MapReduce-
like workloads with the following parameter settings: HMD=500MB, LMD=100MB,
HDD=20s, LDD=20s, and runtime=600s.
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Figure 6.12: Performance of MS with two tenants running file-backed MapReduce-
like workloads with the following parameter settings: HMD=400-600MB, LMD=200-
400MB, HDD=20-100s, LDD=1-10s, and runtime=600s.

ure 6.12, the MS effectively adapts to the dynamic memory demand changes of the
workload. Despite the fluctuating nature of the memory demands, the RSS of the
containers closely tracks the accessed memory, demonstrating that the MS efficiently
releases idle memory pages. The average ratio of RSS to accessed memory for this
workload is approximately 1.19, indicating that the RSS is slightly higher than the ac-
cessed memory. This ratio is close to the ideal value of 1. The MS efficiently balances
the aggressiveness of releasing unused memory pages to ensure optimal performance
and utilization throughout the workload runtime.
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6.4 Memory Stresser with MapReduce Applications

We evaluate the effectiveness of the Memory Stresser (MS) using real-world MapRe-
duce applications that process large datasets and are commonly executed in multi-
tenant cloud environments [1]. We focus on two representative MapReduce appli-
cations: Grep and KMeans. Each application is executed within a container with a
memory limit of 5GB. For each application, we test two scenarios: (a) the execu-
tion of the MapReduce application without MS enabled, and (b) the execution of the
MapReduce application with the MS enabled.

6.4.1 Setup and Datasets

We utilize two machines: one is configured with the HDFS file system, while the
other hosts Hadoop [34], enabling the execution of MapReduce applications. We run
Hadoop and HDFS 3.4 version. The HDFS file system stores data in a 2 TB Western
Digital WD2002FAEX-0 SATA hard disk.

For the Grep application, we use the Wikipedia dataset (50GB) [35]. For the
KMeans application, we employ the 20_Newsgroups dataset [36]. In all scenarios,
we monitor the memory usage of each application and the execution time of the
map-reduce operations. Table 6.7 summarizes the datasets used.

Table 6.7: Summary of the datasets used as input to the MapReduce applications.

Dataset Structure Record Size Total Size

Wikipedia XML format
with records
for articles,
revisions,
and users

Variable
(256 KB to 1
GB)

50 GB (8 GB subset used)

20 Newsgroups Subdirectories
with text
files, one per
document

Variable (425
B to 158 KB)

91 MB

The Wikipedia dataset consists of data files extracted from Wikipedia articles. The
data is structured in XML format, with individual records for articles, revisions, and
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Figure 6.13: Grep MapReduce application memory usage with and without the use
of the MS.

users. The size of each file ranges from 256 KB to 1 GB. For our experiments, we
extract a random subset of files from the 50 GB dataset, which is equal to 8 GB. This
dataset is typically used for tasks like text mining, topic modeling, and clustering.

The 20 Newsgroups dataset consists of approximately 20,000 newsgroup docu-
ments, distributed across 20 different topics, such as comp.graphics, rec.autos, and
soc.religion.christian. The data is organized into subdirectories, each representing
a newsgroup, with each file containing a single document. The documents vary in
length, ranging from 425 B to 158 KB. We use the original unmodified dataset,
whose total size is 91 MB, and it is widely used for text classification and clustering
experiments.

6.4.2 Experiments Results

Figure 6.13 illustrates the memory usage of the Grep application. We run the Grep
application with four different patterns in the dataset. We observe that without the MS
enabled, memory usage remains almost constant during the application’s execution,
ranging from 280 MB to 380 MB, with occasional spikes and drops in memory usage,
falling below 100 MB when the pattern changes.

When the MS is enabled, the kernel reclaims an amount of underutilized memory
from the container running the Grep application. This results in small fluctuations in
memory usage, caused by the mechanism’s efforts to free the underutilized memory,
combined with the continuous loading of new data into memory by the MapReduce
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Figure 6.14: KMeans MapReduce application memory usage with and without the
use of the MS.

process. We observe that the RSS of the container decreases and aligns with the mem-
ory usage patterns of the executing Grep application. More specifically, the average
memory usage during execution with the MS enabled is 167.53 MB, compared to
297.16 MB when the MS is disabled.

Figure 6.14 shows the memory usage of the container over time during the ex-
ecution of the KMeans application, which we configure to run for three iterations.
Without the MS enabled, the memory usage remains relatively stable, fluctuating be-
tween approximately 280 MB and 380 MB throughout the runtime, with minimal
variations. When the MS is enabled, the memory usage is reduced to about 170 MB.
The memory usage exhibits noticeable fluctuations, with periodic slight drops in the
RSS. This behavior occurs intermittently, and the RSS tends to increase at the begin-
ning of each iteration as the application loads new data into memory, peaking at 170
MB. The MS forces the container to release unused memory, reducing the memory
usage to 100 MB.

In Figure 6.15, we observe the performance of the Grep and KMeans MapReduce
applications, which is minimally affected by the MS initiation. Without the MS en-
abled, the Grep application completes in 932s, while with the MS enabled, it completes
in 917s. Additionally, we observe that the performance of the KMeans application re-
mains nearly constant, with a slight delay when the MS is enabled. More specifically,
the completion time of the application increases from 502.33s (without the MS) to
515.67s (with the MS).
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Figure 6.15: Performance of MapReduce applications without and with the use of the
MS.
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Figure 6.16: Grep MapReduce application memory usage alone, with MS, and with
Senpai.

6.5 Comparison with other approaches

We further compare our Contention Service solution to a similar user-space mech-
anism called Senpai [23, 24]. Senpai runs as a user-space agent and aims to detect
cold pages in local memory and move them to swap space by triggering memory
reclamation. It determines the amount of memory to reclaim based on PSI (as de-
scribed in Section 3.2.5) and aims to maintain a low memory pressure threshold. We
use the open-source implementation of Senpai that adjusts the cgroup high mem-
ory limit during execution within a cgroup. Senpai dynamically adjusts a cgroup’s
memory range between MIN_SIZE and MAX_SIZE, based on PSI memory pressure
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Table 6.8: Grep and KMeans MapReduce applications memory usage Alone, with the
MS, and the Senpai.

MapReduce Application Alone with MS with Senpai
Grep 240.70 MB 148.98 MB 231.41 MB

KMeans 179.55 MB 83.76 MB 118.15 MB

information, as outlined in [24].
Figure 6.16 illustrates the RSS (Resident Set Size) of the container during the run-

time of the Grep MapReduce application under three scenarios: no external mecha-
nism intervention, with MS enabled, and with Senpai enabled. More specifically, in
the case where there is no intervention, the application runs without any memory-
saving mechanisms like MS or Senpai. The memory usage remains relatively high and
stable throughout the runtime, without significant fluctuations, as it can fully utilize
the allocated memory, which exceeds its peak memory demands, without constraints.

With Senpai, the memory usage shows noticeable drops at periodic intervals. The
memory starts at a higher memory usage demand, which periodically decreases.
This indicates that Senpai forces the container to release the underutilized memory
back to the system. The drops in memory usage occur as Senpai directs the kernel
to perform memory reclamation and move the cold pages to disk. Senpai achieves
average memory usage equal to 231.41 MB, compared to the execution of the Grep
application without an external mechanism intervention, which achieves an average
memory usage of 240.7 MB, helping to conserve memory system resources.

When the MS is enabled, we observe lower average memory usage in comparison
to Senpai. The RSS exhibits sharper and more frequent drops, showing the MS’s
aggressive memory management, which triggers the memory reclamation process that
releases the memory that is no longer actively in use by the application. The average
memory usage during runtime is equal to 148.98 MB and smaller than when we use
Senpai. The MS ensures that the application operates with minimal memory overhead,
likely targeting the underutilized or redundant memory pages for reclamation more
frequently than the Senpai.

Figure 6.17 depicts the RSS of the container while executing the KMeans MapRe-
duce application under the three scenarios. When no external mechanism intervenes,
the application’s memory usage is 179.55 MB. With Senpai’s intervention, the mem-
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Figure 6.17: KMeans MapReduce application memory usage alone, with MS, and with
Senpai.
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Figure 6.18: Performance of Grep and KMeans MapReduce application alone, with
MS, and with Senpai.

ory resident in the cgroup is reduced to 118.15 MB, while our approach achieves a
further reduction to 83.76 MB. In overall (table 6.8), the MS tracks the actual mem-
ory demands of the applications over time with higher accuracy and releases up to
36% more underutilzed memory than Senpai.

Figure 6.18 presents the completion time of the Grep and KMeans MapReduce
applications when there is no mechanism intervention, with MS enabled, and with
Senpai enabled. The completion time of the Grep application when a mechanism is
applied to release underutilized memory decreases compared to the case where no
external mechanism intervention is applied. More specifically, the application com-
pletion time is 886.24 seconds without any intervention, 956.91 seconds with MS
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Table 6.9: Memory pressure on the Grep and KMeans MapReduce applications under
MS.

MapReduce Application PSI (s) with MS PSI (s) with Senpai
Grep 2 1.58

KMeans 1.13 0.40

enabled, and 935.32 seconds with Senpai enabled. While enabling the MS introduces
a slight overhead (7.9%), our focus is on how much memory is released. In compar-
ison to Senpai, which adds 5.5% overhead, our approach efficiently reclaims more
underutilized memory. We prioritize memory savings and optimize resource utiliza-
tion by reducing the number of machines required for a given number of tenants.
Our approach allows for the support of more tenants without significant overhead.
The trade-off between overhead and the resulting benefits is minimal, making our
approach efficient.

The completion time of the KMeans application for the three scenarios demon-
strates the performance differences introduced by memory management mechanisms.
More specifically, the completion time is 437.42 seconds without any intervention,
439.32 seconds with MS enabled, and 438.48 seconds with Senpai enabled. The
results indicate that a slight overhead introduced by the memory management mech-
anisms when reclaiming underutilized memory.

To track memory pressure, PSI records the time spent on events that occur ex-
clusively when there is a shortage of memory. The memory.pressure ”some total”
metric provides an aggregate measure of memory pressure over time, indicating how
frequently and for how long processes experience memory delays due to contention.
We measure the PSI metric provided by the memory.pressure file in cgroup v2 for both
the MS and Senpai mechanisms when running the Grep and KMeans MapReduce
application.

The results in Table 6.9 indicate that with MS enabled, the application experiences
a total of 2 seconds of stalls during runtime, compared to 1.58 seconds with Senpai.
While our approach introduces slightly more overhead, it prioritizes the proactive
reclaim of underutilized memory to improve memory usage efficiency. By generating
controlled memory contention, our approach adapts the RSS of the container to the
application’s changing demands, ensuring that underutilized memory is released with
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minimum impact on performance.
In contrast, Senpai periodically adjusts the amount of memory to be reclaimed

to match the application’s peak demand. However, it fails to dynamically align the
container’s RSS with the application’s memory patterns over time, leading to fewer
delays but reclaiming less underutilized memory.

Overall, our approach achieves lower memory usage compared to Senpai without
adversely affecting application performance. It also performs more efficient memory
reclamation by reclaiming idle memory faster, as shown in Figures 6.16 and 6.17.

6.6 Sensitivity Analysis

We conduct a sensitivity analysis to evaluate how the configurable parameters, such
as the Refault Ratio Threshold (RRT), the MIN_CHUNKS, and the memory contention
size (mc_size) influence the performance of both synthetic and real-world applications,
aiming to iteratively optimize the Contention Service configuration.

We conduct the experiments using a synthetic workload generated by the work-
load generator described in Section 4.11. The workload is configured with a high
memory demand (HMD) of 500 MB, a low memory demand (LMD) of 100 MB, a
high demand duration (HDD) of 40 seconds, and a low demand duration (LDD) of
10 seconds, with a total runtime of 600 seconds.

More specifically, we examine a range of values for the Refault Ratio Threshold
(RRT), the MIN_CHUNKS, and the mc_size parameters, which primarily influence the
termination of memory contention, and the intensity of memory contention, which
consequently affects the application’s performance.

Table 6.10: Synthetic application performance achieved under various values of the
MIN_CHUNKS parameter, with Accessed=420 MB, and RRT=0.04.

MIN_CHUNKS RSS (MB) PSI (s) RSS/Accessed

128 453.21 11.78 1.08

256 400.14 12.60 0.95

512 387.45 18.33 0.92

1024 370.51 21.92 0.88
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Table 6.11: Synthetic application performance achieved under various values of the
RRT parameter, with Accessed=420 MB, MIN_CHUNKS=128 and LSR=0.4.

RRT RSS (MB) PSI (s) RSS/Accessed

0.01 643.23 4.10 1.53

0.02 515.80 4.87 1.23

0.03 476.19 6.65 1.13

0.04 453.21 11.78 1.08

0.05 404.11 40.14 0.96

Table 6.12: Synthetic application performance impact under different intensities of
the memory contetion, with Accessed=420 MB, and MIN_CHUNKS=128.

mc_size PSI (s)

mem_free - wm_low 0.4

mem_free - wm_min 18.83

Table 6.10 shows that the optimal configuration is achieved when the value of the
MIN_CHUNKS parameter balances reduced PSI (Pressure Stall Information) with effi-
cient memory usage, indicated by the lowest RSS/Accessed ratio. As theMIN_CHUNKS
value decreases, the PSI value decreases, indicating reduced stalls caused by memory
contention. However, the RSS/Accessed ratio slightly increases but remains close to
the optimal value of 1. An RSS/Accessed value below 1 suggests that memory pages
belonging to the application’s working set are reclaimed by the Memory Stresser.
The optimal configuration is observed when refaults are checked every 128 memory
chunks, where PSI is minimized, and average memory usage aligns closely with the
application’s actual memory demands.

Table 6.11 presents the impact of varying the RRT (Refault Ratio Threshold) on
memory contention performance. The results indicate that as the RRT value increases,
the RSS/Accessed ratio tends to be closer to the optimal value of 1, reflecting more
efficient utilization of memory. However, higher RRT values are also associated with
increased PSI values, which signal for increased memory pressure due to contention.
The balance point, where PSI is reduced while keeping memory usage close to the
application’s actual demands, occurs when the RRT is equal to 0.04. For values larger
than 0.04, we observe that the memory pressure increases to 40s.
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Table 6.13: Contention Service Configuration.

Parameter Setting

List Size Ratio (LSR) 0.4

List Size Difference (LSD) 1.05

File List Size (FLS) 100 MB

Refault Ratio Threshold (RRT) 0.04

MIN_CHUNKS 128

Memory Contention Size (mc_size) mem_free - wm_low

The memory contention size (mc_size) is a critical parameter, as it represents the
minimum amount of memory that must be allocated to trigger the kernel’s back-
ground page reclamation process in order to reclaim the underutilized memory and
avoid degrading the performance of the applications.

We examine the impact of the memory contention size on application performance
by analyzing two scenarios, as shown in table 6.12. The results indicate the corre-
sponding stalls the application experiences during each scenario. When the memory
contention size is sufficient to touch the low watermark (mem_free - wm_low), the
application experiences 0.4 seconds of stalls due to memory contention. However,
when the memory contention size is increased to reach the minimum watermark
(mem_free - wm_min), the stalls increase to 18.83 seconds. Therefore, it is necessary
to define the appropriate memory contention size that leads to reclaiming as much
underutilized memory as possible without significantly impacting the performance of
the applications.

Table 6.13 summarizes the chosen configuration of the Contention Service, pre-
senting the parameter settings that increase the memory reclamation efficiency while
minimizing the application performance impact. Note that we set the List Size Ratio
(LSR) and List Size Difference (LSD) parameters empirically in order to activate the
Contention Service when there is new application activity on the system or there is a
transition in the workload of the application. However, we leave further experimen-
tation to identify the optimal values for these parameters as a future work.
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6.7 Summary

The evaluation of the Memory Stresser (MS) mechanism in both single-tenant and
multi-tenant scenarios demonstrates its effectiveness in managing memory contention
in cloud environments. The MS is capable of dynamically adapting to changes in
memory demand, effectively reclaiming the underutilized memory and ensuring mini-
mal memory waste. In a multi-tenant environment, the MS activates the Linux kernel
page reclamation process, in order to release the underutilized memory from one
tenant and provide sufficient resources to other tenants.

By closely tracking the memory access patterns of the applications, the MS aligns
the Resident Set Size (RSS) of the containers with the actual memory requirements
of the workloads. This results in eliminating memory over-provisioning and ensures
that containers receive the memory they need while the underutilized memory is
reclaimed.

The results also highlight that the MS’s ability to free up the underutilized memory
while maintaining steady the application’s performance, even during the execution
of real-world MapReduce tasks such as Grep and KMeans.

Compared to Senpai, the MS consistently achieves better results, significantly re-
ducing the memory usage. The MS reduces the average Resident Set Size (RSS) to
148.98 MB for Grep and approximately 83.76 MB for KMeans, outperforming Sen-
pai’s average memory usage of 231.41 MB and 118.15 MB. Additionally, the MS has
a minimal impact on performance, with only a slight increase in completion time for
KMeans. Overall, the MS reclaims underutilized memory more quickly than Senpai,
conserving more memory resources
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CHAPTER 7

RELATED LITERATURE

7.1 Memory management

7.2 Idle‐page detection

7.3 Comparison with related work

7.4 Summary

In this chapter, we review comparative studies addressing dynamic memory man-
agement in containerized environments, focusing on methods to optimize resource
allocation and prevent memory pressure. We also discuss significant works aimed at
enhancing idle-page detection and reclamation of underutilized memory allocated
by applications. Finally, we compare our proposed solution, the Contention Ser-
vice, which identifies underutilized memory pages and applies controlled memory
contention to activate the Linux kernel memory reclamation mechanism, enabling
efficient memory recovery without performance degradation, to related research.

7.1 Memory management

Chen et al. introduce Pufferfish [30], an elastic memory manager that dynamically
adjusts the memory limits of containers on-the-fly to accommodate data-intensive
applications. Pufferfish returns memory to the system by first verifying that enough
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memory is available on the node before launching new containers. If memory is
insufficient, it reclaims memory from low-priority containers that experience memory
pressure, starting with the lowest priority to minimize impact on critical applications.
It uses a lazy approach, delaying reclamation until necessary, and in extreme cases, it
terminates the lowest-priority containers to quickly free up resources and prevent out-
of-memory (OOM) errors. By using CPU and CPUSET files from the cgroup interface,
it reallocates CPU resources and sets CPUSET to a single core, enabling direct memory
reclamation. However, this method cannot free unused memory from already running
containers, potentially leading to memory waste. Pufferfish aims to improve flexibility
in memory allocation among tasks and reduce out-of-memory (OOM) errors.

Autopilot uses the Borg [37] scheduler to dynamically resize the memory lim-
its of container instances based on time-series measurements of CPU and memory
usage, with the goal of minimizing the slack between the allocated and used mem-
ory. It leverages historical usage data and an ensemble of machine learning models
to recommend optimal resource limits, optimizing cost functions based on job and
infrastructure goals. Autopilot uses statistics, such as the peak usage, the weighted
average resource usage, and a specific percentile of usage in order to ensure efficient
resource utilization. The resource requirements of some applications may not always
well captured by these statistics, leading to potential over-provisioning. Another limi-
tation of Autopilot is that it is mainly designed and tuned for predicting the Google’s
workload needs [38].

Pi et al. develop Hermes [32], a mechanism that focuses on fast memory allocations
for latency-critical services that use C libraries. Hermes addresses the inefficiencies in
memory allocation by reserving resource slacks for latency-critical services, maintain-
ing dedicated memory pools for each service, and advising the Linux OS to release
file cache pages occupied by batch jobs. Hermes triggers memory reclamation when
memory usage surpasses a predefined threshold. This approach focuses on proac-
tive reclaiming file-backed pages trying to reduce the execution of direct memory
reclamation.

Charon [31] is a cluster scheduling system that aims to detect and eliminate mem-
ory pressure caused by memory oversubscription. This approach activates the out-of-
memory killer by examining memory pressure in terms of the major page faults and
page evictions that occur within a specified time frame and aims to prevent memory
thrashing by preemptively terminating processes. While this can prevent prolonged
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thrashing, it can also lead to the abrupt killing of containers, which may not be
desirable by tenants.

Laniel et al. introduce Memory Optimization Light (MemOpLight) [33], a system
designed to reallocate memory from containers with lower resource requirements to
those that are underperforming. MemOpLight dynamically adjusts memory alloca-
tions using application throughput and performance states, categorized into green,
yellow, and red. When memory is scarce, it reclaims memory from green (fully satis-
fied) and yellow (adequately performing) containers, redistributing it to red containers
that fail to meet their SLOs. This approach ensures critical containers receive neces-
sary resources while minimizing system performance impact. However, MemOpLight
requires kernel modifications and has only been evaluated with synthetic workloads,
not real-world applications.

Weiner et al. propose Transparent Memory Offloading (TMO) [23], Meta’s data
center solution, which focuses on offloading unused memory pages allocated by the
applications from main memory to heterogeneous devices through direct reclaim.
They introduce a new metric called Pressure Stall Information (PSI) to measure the
impact of memory pressure in the applications performance and a userspace agent
called Senpai to decide how much memory to offload based on workload and hard-
ware characteristics. Senpai proactively activates Linux kernel direct reclamation when
the PSI metric exceeds a predefined threshold value by dynamically resizing container
limits.

Maruf et al present MemTrade [6], a system that removes and distributes memory
among tenants. Memtrade achieves the above by dynamically resizing the cgroup
memory limits considering the degradation of the applications performance, using
refault statistics as a key metric. It focuses on reclaiming idle memory pages from
applications through direct reclaim, which can provide free memory pages quickly,
but at the cost of disrupting application performance.

7.2 Idle‐page detection

In their work, Maruf et al. propose a Transparent Page Placement (TPP) mecha-
nism [25] for CXL-tiered memory subsystems, which seeks to optimize memory usage
by identifying and placing cold pages efficiently in slower memory tiers. Their ap-
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proach involves cold page detection and proactive page reclamation using the Linux
kernel LRU-based age management mechanism. Their approach requires kernel mod-
ifications.

Lagar-Cavilla et al. in [26] leverage the idle-page tracking method [29] to track
the age of pages. Their approach uses a machine learning technique to tune the idle
age threshold aiming to achieve a stable page swapping rate. Pages older than this
threshold are marked as eviction candidates.

Multi-Generational LRU (MGLRU) [27] and Data Access MONitoring (DAMON) [28]
frameworks track page activity over multiple generations to identify and reclaim un-
used pages. Both require kernel modifications and aim to optimize memory manage-
ment by analyzing detailed page access patterns.

Idle page tracking-based approaches [29, 27, 28] require kernel or hypervisor
modifications, along with the CPU and memory overhead. Identifying idle pages
based on the accessed bits in page table entry (PTE) needs continuous access bit
monitoring, which results in increasing slowdowns with the application’s memory
footprint. This approach cannot accurately track the memory access patterns, as soon
as this mechanism cannot consider multiple accesses within a certain period of time
or catch the reuses of one physical page by multiple virtual pages.

7.3 Comparison with related work

In contrast to the above works, our method reacts preemptively without requiring
kernel modifications, by enabling the existing Linux kernel LRU-based memory recla-
mation process to remove idle memory pages by monitoring the size of the inactive
LRU lists and the number of swap-in events. We dynamically adjust the intensity of
an external pressure activity to wake the kswapd thread and terminate the memory
pressure when significant amount of memory is reclaimed, such that the free mem-
ory in the system reaches the high watermark. Our approach avoids direct reclaim
on tenant containers, reclaiming memory with minimum performance degradation
without altering container memory limits. We aim to prevent memory thrashing and
remove underutilized memory allocated by the applications running in the tenant
containers.
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7.4 Summary

The related literature on memory management highlights various strategies to ad-
dress dynamic memory allocation, contention, and idle-page detection. One group of
approaches focuses on dynamically adjusting container memory limits and reclaiming
resources based on priority or usage patterns. Methods such as Pufferfish [30] and
Autopilot [37] dynamically reallocate memory to prevent out-of-memory (OOM)
errors or optimize utilization. While Pufferfish reclaims memory from low-priority
containers or terminates them as a last resort, Autopilot uses machine learning and
historical data to resize memory limits, albeit with limitations in handling diverse
workloads and statistical inefficiencies.

Another set of methods aims to improve memory allocation for specific workload
requirements. Solutions like Hermes [32] prioritize latency-critical services by reserv-
ing memory pools and proactively reclaiming file cache pages. Similarly, Charon [31]
addresses memory pressure by preemptively terminating processes based on page
faults and evictions to prevent thrashing, though at the cost of abrupt container ter-
minations. Techniques like MemOpLight [33] dynamically reallocate memory across
containers based on performance metrics, while solutions such as TMO [23] and Mem-
Trade [6] employ advanced metrics like PSI and refault statistics to optimize memory
usage and reclaim idle pages. However, these approaches often rely on mechanisms
like direct reclaim, which can lead to application performance degradation.

For idle-page detection [29], techniques such as Transparent Page Placement
(TPP) [25] and frameworks like MGLRU [27] and DAMON [28] track page access
patterns and identify cold pages for reclamation. These methods enhance memory
utilization by moving idle pages to slower memory tiers or reclaiming unused pages.
However, they generally require kernel modifications, incur monitoring overhead,
and may fail to capture the memory access patterns, especially with large application
footprints.

In contrast, the proposed method introduces a preemptive approach that leverages
the Linux kernel’s existing LRU-based reclamation process to remove idle pages
without modifying the kernel. By dynamically adjusting external pressure to trigger
memory reclamation, the method avoids the need for direct reclaim and prevents
excessive tenant container performance degradation. This approach uniquely balances
proactive memory management with minimal system disruptions.
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CHAPTER 8

CONCLUSIONS

8.1 Concluding Remarks

8.2 Future Work

In this chapter, we outline directions in which our work could be extended in the
future and conclusions that we received during the research of this thesis.

8.1 Concluding Remarks

In this study, we address the problem of the inefficient utilization of memory in
multitenant cloud environments. This problem is caused by static resource allocation
and overprovisioning to accommodate peak loads, which leaves large portions of
reserved memory idle and unavailable for other applications. Our objective is to
design a solution that efficiently identifies and reclaims underutilized memory, in
order to optimize the usage of system resources and reduce waste, without affecting
the application performance.

We propose Contention Service (CS), an application-agnostic user-space agent,
which autonomously detects and reclaims the underutilized memory in container-
ized, multitenant cloud environments by relying on system metrics. CS employs con-
trolled memory pressure to trigger the background memory reclamation mechanism
of the Linux kernel, in order to identify and release idle memory without degrading
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application performance. Our system leverages existing kernel interfaces, ensuring
compatibility with existing applications and avoiding modifications to applications or
the underlying kernel.

We evaluate our solution using both synthetic workloads and real-world MapRe-
duce applicaitons like Grep and KMeans. We also evaluate the CS mechanism in both
single-tenant and multi-tenant cloud scenarios. Our experiments assess the MS’s abil-
ity to dynamically adapt to memory demands, reclaim the underutilized memory, and
align the container Resident Set Size (RSS) with the actual application needs. More-
over, the MC in comparison to Senpai, the user-space agent introduced by Meta [23],
reclaims up to 36% more memory without affecting the application performance.
Overall our approach demonstrating effective memory management with minimal
performance overhead in diverse workloads.

8.2 Future Work

In this thesis, we have proposed the Contention Service, a mechanism that proactively
reclaims underutilized memory to enable memory saving and, in parallel, achieve
minimum performance impact by applying the appropriate memory pressure ac-
cording to the workload memory needs.

There are several directions for future work that could extend our system and im-
prove our implementation. In this section, we list a number of interesting topics that
need further research. Our experimental results are based on both synthetic work-
loads generated through a workload generator designed for emulating the memory
access patterns of the MapReduce applications, and real-world MapReduce applica-
tions, such as Grep and KMeans. We also provide a comparison of our solution with
a similar approach, Senpai introduced by Μeta, which demonstrates that our solution
faster reclaims the underutilized memory with minimum stalls in the application’s
execution. Further experimentation using benchmarks on diverse datacenter work-
loads (e.g., Redis, and Memcached) would be necessary to generalize our findings
and validate the applicability of our approach across a broader range of scenarios.

In addition to controlled experiments, a crucial next step is the deployment and
evaluation of our system in a real datacenter environment. Testing our approach
on a large-scale infrastructure with production workloads would provide valuable
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insights into its scalability, robustness, and real-world effectiveness. Such an environ-
ment would also reveal practical challenges, such as integration with existing resource
management frameworks and handling diverse workload patterns.

One potential improvement is to dynamically adjust the configurable parameters
based on the specific needs of each tenant. One approach to accomplish this is to rely
on machine learning models to tune the parameters.

Last but not least, another potential topic of interest is to explore the energy
efficiency of our solution. We expect that we can save memory resources through the
reclaim of the underutilized memory, as fewer machines would be needed to support
more tenants. This reduction in resource consumption can enhance the overall energy
efficiency, particularly in large datacenter environments where energy costs are a
critical factor.
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