
Inventory Optimization Under Uncertainty:
Adaptive Decision-Making with Reinforcement
Learning in the Quality-Dependent Newsvendor

Problem

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Nefeli Eleftheria Sextou

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina 2025



Examining Committee:

• Kostantinos Parsopoulos, Professor, Department of Computer Science and En-
gineering, University of Ioannina (Advisor)

• Konstantina Skouri, Professor, Department of Mathematics, University of Ioan-
nina

• Ioannis Konstantaras, Associate Professor, Department of Business Adminis-
tration, University of Macedonia



ACKNOWLEDGEMENTS

I would like to begin by expressing my deepest gratitude to my advisor, Professor
Konstantinos Parsopoulos, whose guidance, encouragement, and insight have been
invaluable throughout this thesis. Beyond supporting this work, he first introduced
me to the field of optimization and operations research during my undergraduate
studies and thesis, providing guidance that shaped my approach to research and laid
the foundation for my continued academic interests.

I am also grateful to Professor Konstantina Skouri for her valuable insight, partic-
ularly during the early stages while I was learning about newsvendor and inventory
problems, and to her PhD candidate, Eirini Tziora, for extending that support.

Moreover, I am especially thankful to PhD candidate Dimitra Triantali, who has
been both a mentor and a friend. Her advice, feedback, and generous willingness to
share knowledge have greatly enriched my work and perspective.

As a source of enduring inspiration, I wish to express my appreciation to Professor
Isaac Lagaris, whose experience, mentorship, thoughtful perspectives, and expansive
curiosity have continually encouraged me to broaden my thinking and interests.

My acknowledgements extend to the other members of our lab, Professor Gerasi-
mos Meletiou, PhD candidate Adam Kypriadis, and MSc candidate Spyros Motseni-
gos, for contributing to an engaging and dynamic research environment.

Finally, I am profoundly grateful to my family and friends, whose encouragement,
patience, and unwavering support have been a constant source of strength throughout
this journey.



TABLE OF CONTENTS

List of Figures iv

List of Tables vi

List of Algorithms viii

Abstract ix

Εκτεταμένη Περίληψη xi

1 Introduction 1
1.1 Scope and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Information 6
2.1 The Newsvendor Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Fundamental Concepts of RL . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Taxonomy of RL Algorithms . . . . . . . . . . . . . . . . . . . . 12

3 Problem Description 13
3.1 A Quality-Dependent Newsvendor Problem . . . . . . . . . . . . . . . . 13
3.2 Mathematical Formulation of QDNP . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Quality Deterioration . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Demand Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Proposed Non-Parametric Extension of the QDNP Model . . . . . . . . 20

i



4 Reinforcement Learning Framework 23
4.1 Soft Actor-Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 The Soft Actor-Critic Algorithm . . . . . . . . . . . . . . . . . . . 25

4.2 Proposed SAC Environment for QDNP . . . . . . . . . . . . . . . . . . . 27

5 Experimental Methodology 31
5.1 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Tuning and Evaluating SAC . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Hyperparameter Settings . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Evaluating SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 Comparison Against Analytical and Monte Carlo Benchmarks . 35
5.2.4 Transfer Capabilities of SAC on QDNP . . . . . . . . . . . . . . . 36

5.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Experimental Results 38
6.1 SAC Tuning Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Zero-Shot Policy Transfer Results . . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusion 50

Bibliography 52

A SAC Training Tracking 57
A.1 Store 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.2 Store 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.3 Store 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.4 Store 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B SAC (KDE‐QDNP) Training Tracking 70
B.1 Store 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.2 Store 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.3 Store 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.4 Store 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ii



C Descriptive Statistics 83
C.1 SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.2 SAC (KDE-QDNP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

D Statistical Testing Results: t‐test 86
D.1 SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
D.2 SAC (KDE-QDNP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

E Boxplots 89
E.1 SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
E.2 SAC (KDE-QDNP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

F Runtime Tables 94

G Zero‐Shot Policy Transfer: Complete Results Tables 95

iii



LIST OF FIGURES

3.1 QDNP sequence of events . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Linear quality deterioration in the selling season . . . . . . . . . . . . . 17

6.1 Tuning progress of best hyperparameterizations, per problem instance
(SAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Tuning progress of best hyperparameterizations, per problem instance
(SAC (KDE-QDNP)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.1 Store 1 - Hyperparameterizations (H): 1-1 . . . . . . . . . . . . . . . . . 57
A.2 Store 1 - Hyperparameterizations (H): 2-5 . . . . . . . . . . . . . . . . . 58
A.3 Store 1 - Hyperparameterizations (H): 6-9 . . . . . . . . . . . . . . . . . 59
A.4 Store 1 - Hyperparameterizations (H): 10-12 . . . . . . . . . . . . . . . 60
A.5 Store 2 - Hyperparameterizations (H): 1-1 . . . . . . . . . . . . . . . . . 60
A.6 Store 2 - Hyperparameterizations (H): 2-5 . . . . . . . . . . . . . . . . . 61
A.7 Store 2 - Hyperparameterizations (H): 6-9 . . . . . . . . . . . . . . . . . 62
A.8 Store 2 - Hyperparameterizations (H): 10-12 . . . . . . . . . . . . . . . 63
A.9 Store 3 - Hyperparameterizations (H): 1-1 . . . . . . . . . . . . . . . . . 63
A.10 Store 3 - Hyperparameterizations (H): 2-5 . . . . . . . . . . . . . . . . . 64
A.11 Store 3 - Hyperparameterizations (H): 6-9 . . . . . . . . . . . . . . . . . 65
A.12 Store 3 - Hyperparameterizations (H): 10-12 . . . . . . . . . . . . . . . 66
A.13 Store 4 - Hyperparameterizations (H): 1-1 . . . . . . . . . . . . . . . . . 66
A.14 Store 4 - Hyperparameterizations (H): 2-5 . . . . . . . . . . . . . . . . . 67
A.15 Store 4 - Hyperparameterizations (H): 6-9 . . . . . . . . . . . . . . . . . 68
A.16 Store 4 - Hyperparameterizations (H): 10-12 . . . . . . . . . . . . . . . 69

B.1 Store 1 - Hyperparameterizations (H): 1-1 . . . . . . . . . . . . . . . . . 70
B.2 Store 1 - Hyperparameterizations (H): 2-5 . . . . . . . . . . . . . . . . . 71

iv



B.3 Store 1 - Hyperparameterizations (H): 6-9 . . . . . . . . . . . . . . . . . 72
B.4 Store 1 - Hyperparameterizations (H): 10-12 . . . . . . . . . . . . . . . 73
B.5 Store 2 - Hyperparameterizations (H): 1-1 . . . . . . . . . . . . . . . . . 73
B.6 Store 2 - Hyperparameterizations (H): 2-5 . . . . . . . . . . . . . . . . . 74
B.7 Store 2 - Hyperparameterizations (H): 6-9 . . . . . . . . . . . . . . . . . 75
B.8 Store 2 - Hyperparameterizations (H): 10-12 . . . . . . . . . . . . . . . 76
B.9 Store 3 - Hyperparameterizations (H): 1-1 . . . . . . . . . . . . . . . . . 76
B.10 Store 3 - Hyperparameterizations (H): 2-5 . . . . . . . . . . . . . . . . . 77
B.11 Store 3 - Hyperparameterizations (H): 6-9 . . . . . . . . . . . . . . . . . 78
B.12 Store 3 - Hyperparameterizations (H): 10-12 . . . . . . . . . . . . . . . 79
B.13 Store 4 - Hyperparameterizations (H): 1-1 . . . . . . . . . . . . . . . . . 79
B.14 Store 4 - Hyperparameterizations (H): 2-5 . . . . . . . . . . . . . . . . . 80
B.15 Store 4 - Hyperparameterizations (H): 6-9 . . . . . . . . . . . . . . . . . 81
B.16 Store 4 - Hyperparameterizations (H): 10-12 . . . . . . . . . . . . . . . 82

D.1 Pairwise t-test results (1 = Significant difference: p-value<0.05): Stores
1-4 (SAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

D.2 Pairwise t-test results (1 = Significant difference: p-value<0.05): Stores
1-4 (SAC (KDE-QDNP)) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

E.1 Mean Return per hyperparameterization (Store 1) . . . . . . . . . . . . 89
E.2 Mean Return per hyperparameterization (Store 2) . . . . . . . . . . . . 90
E.3 Mean Return per hyperparameterization (Store 3) . . . . . . . . . . . . 90
E.4 Mean Return per hyperparameterization (Store 4) . . . . . . . . . . . . 91
E.5 Mean Return per hyperparameterization (Store 1) . . . . . . . . . . . . 91
E.6 Mean Return per hyperparameterization (Store 2) . . . . . . . . . . . . 92
E.7 Mean Return per hyperparameterization (Store 3) . . . . . . . . . . . . 92
E.8 Mean Return per hyperparameterization (Store 4) . . . . . . . . . . . . 93

v



LIST OF TABLES

5.1 Parameters per problem instance . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Fixed hyperparameter values . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Tested hyperparameter values . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 System characteristics and corresponding problem instances . . . . . . . 37

6.1 Legend for hyperparameterization labels . . . . . . . . . . . . . . . . . . 39
6.2 Best hyperparameterizations per problem instance, for SAC and SAC

(KDE-QDNP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Significance sums per hyperparameterization (SAC) . . . . . . . . . . . 42
6.4 Significance sums per hyperparameterization (SAC on KDE-QDNP) . . 42
6.5 Runtimes of best hyperparameterizations per SAC application and prob-

lem instance (seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.6 Aggregate (mean) results for all problem instances. . . . . . . . . . . . 45
6.7 Comparisons with the analytical solution (Ground Truth). . . . . . . . . 46
6.8 Expected profit relative error across parameter perturbations . . . . . . 48

C.1 Descriptive statistics per hyperparameterization: Store 1 (SAC) . . . . . 83
C.2 Descriptive statistics per hyperparameterization: Store 2 (SAC) . . . . . 83
C.3 Descriptive statistics per hyperparameterization: Store 3 (SAC) . . . . . 84
C.4 Descriptive statistics per hyperparameterization: Store 4 (SAC) . . . . . 84
C.5 Descriptive statistics per hyperparameterization: Store 1 (SAC (KDE-

QDNP)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
C.6 Descriptive statistics per hyperparameterization: Store 2 (SAC (KDE-

QDNP)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C.7 Descriptive statistics per hyperparameterization: Store 3 (SAC (KDE-

QDNP)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



C.8 Descriptive statistics per hyperparameterization: Store 4 (SAC (KDE-
QDNP)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

F.1 SAC runtime (seconds), per problem instance . . . . . . . . . . . . . . . 94
F.2 SAC (KDE-QDNP) runtime (seconds), per problem instance . . . . . . 94

G.1 Comparison of SAC performance with original and perturbed parame-
ter training: a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

G.2 Comparison of SAC performance with original and perturbed parame-
ter training: b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

G.3 Comparison of SAC performance with original and perturbed parame-
ter training: ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

G.4 Comparison of SAC performance with original and perturbed parame-
ter training: C0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

G.5 Comparison of SAC performance with original and perturbed parame-
ter training: Cd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

G.6 Comparison of SAC performance with original and perturbed parame-
ter training: Cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

G.7 Comparison of SAC performance with original and perturbed parame-
ter training: R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



LIST OF ALGORITHMS

4.1 Soft Actor-Critic (SAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Episode Structure for the QDNP Environment . . . . . . . . . . . . . . 29
5.1 Policy Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Monte Carlo BFGS Maximization Procedure . . . . . . . . . . . . . . . . 35

viii



ABSTRACT

Nefeli Eleftheria Sextou, M.Sc. in Data and Computer Systems Engineering, Depart-
ment of Computer Science and Engineering, School of Engineering, University of
Ioannina, Greece, 2025.
Inventory Optimization Under Uncertainty: Adaptive Decision-Making with Rein-
forcement Learning in the Quality-Dependent Newsvendor Problem.
Advisor: Kostantinos Parsopoulos, Professor.

The present thesis investigates the application of reinforcement learning (RL) to
stochastic inventory management, focusing on the Quality-Dependent Newsvendor
Problem (QDNP). Moreover, a data-driven variant incorporating kernel density esti-
mation (KDE) is considered. The QDNP models inventory decisions under uncertain
demand and product quality deterioration, integrating donation as a strategic de-
cision. Donations reduce waste by redirecting surplus products to food banks and
other charitable organizations, supporting social and environmental responsibility.
Also, they improve profits by leveraging corporate social responsibility (CSR) incen-
tives, which are appealing to socially and ecologically conscious consumers, and avoid
disposal costs.

To this end, a state-of-the-art deep reinforcement learning (DRL) approach, namely
the Soft Actor-Critic (SAC) algorithm, is employed to maximize expected profit by si-
multaneously optimizing decisions on order quantities, pricing, and donations across
multiple real-world store instances. In this context, SAC is introduced as an alter-
native to classical stochastic optimization methods, with the additional potential for
knowledge transfer. The results obtained indicate that SAC can closely approximate
the analytical solution, while maintaining practical accuracy. A KDE-based extension
is also studied, which empirically approximates the demand component distribution
instead of assuming full prior knowledge. The corresponding results showed slightly
increased approximation errors but remained within acceptable thresholds. Further-

ix



more, zero-shot policy transfer showed that pretrained SAC policies can adapt to
moderate changes in demand and cost parameters, although retraining is required
for larger deviations.

Using SAC within a controlled inventory problem, this study demonstrates how
sequential decision-making, and stochastic uncertainty can be addressed through RL.
The findings provide a concrete example of RL applied to inventory management
and contribute to the growing intersection of reinforcement learning and operations
management, assessing its potential for integrating data-driven components and dy-
namic decision-making methods.

Keywords: Quality-Dependent Newsvendor Problem, Deep Reinforcement Learning,
Soft Actor-Critic, Stochastic Optimization, Policy Transfer, Data-Driven Decision Mak-
ing, Inventory Management, Kernel Density Estimation
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ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Νεφέλη Ελευθερία Σέξτου, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών
Συστημάτων, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανε-
πιστήμιο Ιωαννίνων, 2025.
Βελτιστοποίηση Αποθεμάτων υπό Αβεβαιότητα: Προσαρμοστική Λήψη Αποφάσεων
με Ενισχυτική Μάθηση στο Πρόβλημα του Εφημεριδοπώλη με Εξάρτηση από την
Ποιότητα.
Επιβλέπων: Κωνσταντίνος Παρσόπουλος, Καθηγητής.

Η παρούσα διπλωματική εργασία διερευνά την εφαρμογή της ενισχυτικής μάθησης
(reinforcement learning, RL) στη διαχείριση αποθεμάτων, εστιάζοντας στο quality-
dependent newsvendor problem (QDNP) και σε μια παραλλαγή βασισμένη σε δε-
δομένα που ενσωματώνει εκτίμηση πυκνότητας πυρήνα (kernel density estimation,
KDE). Το QDNP μοντελοποιεί τις αποφάσεις αποθεμάτων υπό αβέβαιη ζήτηση και
υποβάθμιση ποιότητας προϊόντων, ενσωματώνοντας τις δωρεές ως στρατηγική επι-
λογή. Οι δωρεές μειώνουν τη σπατάλη με την ανακατεύθυνση των πλεονάζοντων
προϊόντων σε τράπεζες τροφίμων και άλλους φιλανθρωπικούς οργανισμούς, υπο-
στηρίζοντας την κοινωνική και περιβαλλοντική υπευθυνότητα, ενώ παράλληλα βελ-
τιώνουν τα κέρδη αξιοποιώντας τα κίνητρα εταιρικής κοινωνικής ευθύνης (corporate
social responsibility, CSR), προσελκύοντας καταναλωτές με κοινωνική και οικολογική
συνείδηση και αποφεύγοντας τα κόστη απόρριψης.
Μια προηγμένη προσέγγιση βαθιάς ενισχυτικής μάθησης (deep reinfocement learn-
ing, DRL), ο αλγόριθμος Soft Actor-Critic (SAC), χρησιμοποιήθηκε για τη μεγιστο-
ποίηση των αναμενόμενων κερδών, καθοδηγώντας ταυτόχρονα αποφάσεις σχετικά
με ποσότητες παραγγελίας, τιμολόγηση και δωρεές σε πολλαπλά πραγματικά κα-
ταστήματα. Η μελέτη εισάγει τον SAC ως εναλλακτική στα κλασικά μοντέλα στοχα-
στικής βελτιστοποίησης, με την επιπλέον δυνατότητα μεταφοράς γνώσης. Τα απο-
τελέσματα δείχνουν ότι ο SAC προσεγγίζει στενά την αναλυτική λύση, διατηρώντας
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πρακτική ακρίβεια. Η επέκταση του QDNP βασισμένη στο KDE, η οποία προσεγγί-
ζει εμπειρικά την κατανομή της τυχαίας συνιστώσας της ζήτησης αντί να υποθέτει
προϋπάρχουσα γνώση, οδήγησε σε ελαφρώς αυξημένα σφάλματα προσέγγισης αλλά
παρέμεινε εντός αποδεκτών ορίων. Επιπλέον, αξιολογήθηκε η ικανότητα γενίκευ-
σης και μεταφοράς των πολιτικών SAC μέσω zero-shot policy transfer, εφαρμόζο-
ντας εκπαιδευμένες πολιτικές σε παραλλαγμένες εκδοχές των προβλημάτων χωρίς
επαναεκπαίδευση, και συγκρίνοντας την απόδοσή τους με τη βέλτιστη εκ νέου εκ-
παίδευση.
Η μεθοδολογία της μελέτης βασίστηκε σε μια συστηματική πειραματική διαδικασία
σε τέσσερα προβλήματα καταστημάτων, χρησιμοποιώντας δεδομένα από σχετικές
μελέτες και προσομοιώσεις για περιπτώσεις όπου η κατανομή της τυχαίας συνι-
στώσας της ζήτησης δεν είναι γνωστή. Οι πολιτικές SAC εκπαιδεύτηκαν και αξιολο-
γήθηκαν με πολλαπλές επαναλήψεις για κάθε περίπτωση, παρέχοντας στατιστικά
σταθερές εκτιμήσεις των αναμενόμενων αποδόσεων. Η υλοποίηση έγινε σε Python,
αξιοποιώντας Stable-Baselines3, PyTorch και Gymnasium, διασφαλίζοντας αναπα-
ραγωγιμότητα και συνέπεια αποτελεσμάτων.
Εφαρμόζοντας τον SAC σε ένα ελεγχόμενο πρόβλημα αποθεμάτων, η μελέτη κα-
ταδεικνύει πώς η διαδοχική λήψη αποφάσεων και η στοχαστική αβεβαιότητα μπο-
ρούν να αντιμετωπιστούν μέσω της ενισχυτικής μάθησης. Τα ευρήματα παρέχουν
ένα συγκεκριμένο παράδειγμα εφαρμογής της ενισχυτικής μάθησης στη διαχείριση
αποθεμάτων και υπογραμμίζουν το γόνιμο έδαφος για περαιτέρω έρευνα στην εν-
σωμάτωση μοντελοποιητικών στοιχείων βασισμένων σε δεδομένα και δυναμικών
μεθόδων λήψης αποφάσεων.

Λέξεις‐Κλειδιά: Newsvendor Problem, Quality-Dependent Newsvendor Problem, Re-
inforcement Learning, Deep Reinforcement Learning, Soft Actor-Critic, Stochastic Op-
timization, Policy Transfer, Data-Driven Decision Making, Inventory Management,
Kernel Density Estimation
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CHAPTER 1

INTRODUCTION

1.1 Scope and Goals

1.2 Thesis Structure

1.1 Scope and Goals

Inventory theory is a central subfield of Operations Research (OR) and Operations
Management (OM), concerned with understanding and optimizing the tradeoff be-
tween supply and demand under uncertainty. The field emerged during the post-
World War II economic expansion, a period when science and industry collaborated
intensely to improve the efficiency of production and distribution systems. Seminal
publications from this era include Studies in the Mathematical Theory of Inventory and
Production by Arrow, Karlin and Scarf (1958) [1], and Analysis of Inventory Systems
by Whitin and Hadley (1963) [2]. These works laid the mathematical and concep-
tual foundations for the study of inventory systems, establishing the discipline as a
cornerstone of applied OR. Since then, inventory theory has evolved into a rich body
of models addressing increasingly complex and realistic supply chain phenomena.

Mathematical inventory models formalize the tradeoffs that firms face when man-
aging stock under various operational and environmental constraints. Depending on
the application, the relevant models incorporate diverse assumptions about key fac-
tors such as the nature of demand, cost structures, time efficiency, quality, production
rates, product scope, supply chain structure, and more. Each case and their combina-
tions lead to specialized models that reflect the operational particularities of different
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industries. A classic inventory model example is the Economic Order Quantity (EOQ)
model [3, 4], which yields closed-form expressions for optimal order size under deter-
ministic demand and instantaneous replenishment. Another model is the base-stock
model [5], which addresses stochastic demand in periodic review systems, outputting
inventory levels that minimize expected shortage and holding costs. These two mod-
els can be generalized into the classic inventory model called the (Q,R), policy which
specifies a fixed order quantity Q placed whenever the inventory level falls below a
reorder point R [2, 5].

Arguably, the most recognizable stochastic model within this family is the newsven-
dor problem, which captures inventory decision-making under demand uncertainty
during a single selling season with the goal of balancing inventory underage and
overage. The newsvendor model itself has been extended in numerous directions in
efforts to model the complexities of the real world. These variations may integrate
and refine price decisions, selling season breakdown into individual time periods,
operational costs and profits, quality modeling, demand modeling, and more

One such variation is the Quality Dependent Newsvendor Problem (QDNP) in-
troduced by Özbilge et al. [6], which builds upon Petruzzi and Dada’s [7] review
and model extensions on price effects within a newsvendor framework. The QDNP
is a two-period newsvendor problem, under demand uncertainty across the selling
horizon, which incorporates product quality deterioration within demand modeling.
It is framed as an expected profit maximization problem dependent on decisions re-
garding the initial order quantity, the pricing of the product within each time period
and the percentage of the product donated.

The problem, primarily addresses the operational objectives of maximizing the
expected profit and reducing disposal costs. Also, it has a broader social and envi-
ronmental responsibility dimension through the inclusion of donations. By redirecting
surplus to food banks and charities, a company contributes to tackling food waste,
which is a global challenge with significant economic and ecological consequences, as
well as food insecurity. Özbilge et al. [6] showed that, under certain conditions, re-
tailers may even improve profits by donating. This is achieved as government-backed
corporate social responsibility (CSR) incentives such as tax deductions, along with the
appeal to socially conscious consumers can offset revenue loss due to underage or
overage, while simultaneously reducing disposal costs.

The QDNP provides elegant analytical insights, showing that a retailer’s donation
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behavior for a product is shaped by the remaining shelf life, on-hand inventory, and
the per-unit reward from CSR incentives or consumer preferences. The numerical re-
sults in the original study further demonstrate that donation can consistently reduce
the expected waste compared to models without it, while the framework as a whole
outperforms both single-period and two-period benchmarks. Finally, its relative ad-
vantage is especially pronounced under high uncertainty or when the second period
is short [6] .

While the QDNP is typically solved analytically, its structure as a stochastic profit
maximization problem makes it equally compelling to examine through numeri-
cal methods. Classical approaches in stochastic optimization can be applied for this
purpose, yet reinforcement learning (RL) offers a particularly attractive alternative.
Building on W. Powell’s Reinforcement Learning and Stochastic Optimization: A Uni-
fied Framework for Stochastic Optimization (2022) [8], RL can be situated within the
broader stochastic optimization paradigm as a methodology for sequential decision-
making under uncertainty. In RL, an agent learns to make sequential decisions under
uncertainty, improving its policy through iterative interaction with the environment
rather than relying on explicit derivation. This aligns closely with the QDNP setting,
in which order quantities, pricing, and donation decisions evolve across time periods
under uncertain demand and quality dynamics within the selling horizon.

Exploring RL in this context not only provides a computational complement to
the analytical solution but also connects the problem to a rapidly advancing field
at the intersection of machine learning and operations management, where RL is
only beginning to gain traction in inventory and supply chain applications. Although
deep reinforcement learning (DRL) has achieved high-profile breakthroughs in other
domains, such as robotics, strategic games, and traffic optimization, its use in inventory
management has been more sporadic. Boute et al. [9] note in their review that practical
adoption is hampered by the complexity of algorithm design, the heavy computational
effort required, and sensitivity in training. Nonetheless, these same limitations have
sparked a wave of interest, with researchers increasingly treating RL as a promising
but still maturing approach to sequential decision-making under uncertainty.

Among RL algorithms, Soft Actor-Critic (SAC) represents a strong candidate for
solving the QDNP. According to its developers, Haarnoja et al. [10], SAC consistently
outperforms several strong baseline RL methods across both simple and complex
continuous tasks, and its performance is relatively insensitive to hyperparameter set-
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tings, making it practical for challenging real-world problems. Its properties, which
include high sample efficiency, stable learning, and robust policy generation are par-
ticularly valuable in the QDNP, where a stochastic demand component creates a highly
uncertain decision environment. Furthermore, its maximum entropy framework en-
courages exploration while avoiding unpromising paths, maximizing expected returns
and reducing the risk of convergence to suboptimal strategies.

The present work employs the Soft Actor-Critic (SAC) algorithm as a gradient-
free, stochastic optimization method, positioning it as an alternative to traditional
metaheuristic approaches for tackling the QDNP. The primary objective is to assess
whether SAC can effectively maximize the expected profit function when order, pric-
ing, and donation decisions are made under demand uncertainty. Beyond its role as
an optimizer, SAC can offer athe advantage of knowledge transfer, which is not ap-
plicable in classic stochastic optimization methods. Specifically, a learned policy can
be applied to modified instances of a problem, where customer-related parameters,
costs, or rewards are perturbed to reflect possible real-world fluctuations. The present
study examines the extent to which, such policy transfer is successful in the context
of a real-world problem instance of the QDNP.

A second contribution is the formulation of a data-driven variant of the QDNP
that relaxes the distributional assumptions of the original model. While the baseline
formulation presumes full knowledge distribution characteristics of the random de-
mand component, the proposed extension approximates the distribution using kernel
density estimation (KDE). SAC is individually tuned for both the original and the
data-driven model variants and applied on real-world problem instances using SAC,
enabling a direct comparison of performance across settings and assessing whether
the data-driven framework is a viable alternative for inventory management under
demand uncertainty.

1.2 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 provides background
information, introducing the Newsvendor Problem and fundamental concepts of re-
inforcement learning, including a taxonomy of RL algorithms. Chapter 3 presents
a detailed description of the Quality-Dependent Newsvendor Problem (QDNP), its
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mathematical formulation, and the proposed non-parametric extension. Chapter 4
focuses on the Soft Actor-Critic (SAC) algorithm and the proposed RL environment
setup for applying SAC to the QDNP. Chapter 5 escribes the experimental setup, cov-
ering the real-world problem instances that were used as benchmarks, the tuning of
algorithm parameters, and the overall methodology and implementation approach.
Chapter 6 reports the experimental results, while Chapter 7 concludes the study.
Comprehensive results are provided in the Appendices at the end of the thesis.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 The Newsvendor Problem

2.2 Reinforcement Learning

2.1 The Newsvendor Problem

The origins of the Newsvendor Problem trace back to the work of economist F.Y Edge-
worth in 1888, who applied an early version to optimize cash flow in banking opera-
tions [11]. The term “Newsvendor” gained prominence nearly a century later, in 1951,
when Morse and Kimball introduced it in their seminal work Methods of Operations
Research [12]. They presented an example of a newspaper vendor, referred to as a
“newsboy,” facing uncertain daily demand, where leftover newspapers (inventory)
would become worthless the next day. Their main goal was to illustrate the use of
the Poisson distribution in modeling stochastic demand.

The modern formulation of the Newsvendor Problem was developed by T.MWhitin
in 1955 [13]. He introduced key economic considerations like cost minimization and
profit maximization and integrated price effects into the model. In his framework,
selling price and stocking quantity are set simultaneously. He also expanded the
model to express demand as a probability distribution dependent on price, thereby
making price a decision variable. Mills [14, 15], as discussed in [7], further refined
this formulation by explicitly modeling the mean demand as a function of the selling
price .
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To provide a concrete illustration of the classical formulation, the following exam-
ple demonstrates the classical Newsvendor model using a basic single-period inven-
tory setting. It includes several common analytical perspectives, such as maximizing
expected profit, minimizing expected cost, and determining the optimal order quan-
tity using the critical ratio and the inverse of the demand distribution function.

Example 2.1. A newspaper vendor must decide how many newspapers Q to or-
der each morning. Each newspaper is purchased at a wholesale cost of Cw = $0.30

and sells each at a retail price of p = $1.00. The unsold newspapers have no sal-
vage value, i.e., v = $0.00. Demand D is uncertain and considered to follow a nor-
mal distribution N(100, 152). It is necessary to also define and compute the marginal
profit m = p − Cw = $0.70, the marginal loss l = Cw − v = $0.30, the underage cost
Cu = m = $0.70 and the overage cost Co = l = $0.30.

The problem can be modelled in different ways, depending on what information
the newspaper vendor needs to make managerial decisions.

1. Expected Profit Maximization Model

E[Π(Q)] =
∑
d

[min(d,Q) p−QCw] P(D = d) (2.1)

This formulation computes the average profit over all possible demand values
d. The term min(d,Q) reflects that no more than Q units can be sold, even if
demand exceeds supply. The expected value is found by weighting each profit
outcome by the probability of the corresponding demand level. The optimal
order quantity Q∗ maximizes this expected profit.

2. Expected Cost Minimization Model

E[C(Q)] = E
[
Co(Q−D)+ + Cu(D −Q)+

]
(2.2)

Here, the cost is modeled into two parts: overage and underage. The term
(Q − D)+ captures unsold inventory (when supply exceeds demand), while
(D−Q)+ captures lost sales (when demand exceeds supply). Each is multiplied
by its respective unit cost. The optimal order quantity Q∗ minimizes the expected
total cost across all possible demand outcomes.
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3. Optimal Solution Derived from the Critical Ratio

F (Q∗) =
Cu

Cu + Co
=

0.70

0.70 + 0.30
= 0.70 (2.3)

The critical ratio represents the optimal service level, which is the probability that
demand is less than or equal to the chosen order quantity Q∗. This probability
is given by the cumulative distribution function (cdf) F . The ratio balances the
underage and overage costs. In this example, the vendor should order enough
to satisfy demand for 70% of the time.

4. Optimal Solution Derived from the Quantile Function

Q∗ = F−1(0.70) = µ+ z0.70 ∗ σ = 100 + 0.524 ∗ 15 ≈ 107.86 (2.4)

Since demand D ∼ N(100, 152), the optimal order quantity can be computed
directly using the quantile function, the inverse cdf. The target service level 0.70
is determined by the critical ratio. The z0.70 value is the standard normal score
corresponding to the 70-th percentile. Multiplying it by the standard deviation
σ, and adding it to the mean µ, gives us the optimal order quantity Q∗ that
balances underage and overage costs.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is one of the three fundamental areas of machine learn-
ing, alongside supervised and unsupervised learning. Unlike supervised learning,
which relies on labeled datasets, or unsupervised learning, which discovers patterns
in unlabeled data, RL employs an agent that learns by interacting with a dynamic
environment. The agent receives feedback in the form of rewards or penalties, allow-
ing it to learn a policy, i.e., a strategy that maximizes its long-term cumulative reward
[16, 17, 18].

2.2.1 Fundamental Concepts of RL

RL problems are usually modeled as Markov Decision Processes (MDPs), a mathe-
matical framework for decision-making in environments that evolve over time. MDPs
provide a structured way to represent the interaction between an agent and its en-
vironment by defining a set of states, actions, transition probabilities, and rewards. They
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also have a remarkable mermoryless feature called the Markov Property, which states
that the future state depends only on the current state and action. MDPs are well
suited for RL because they can capture the sequential nature of decision-making as
well as the uncertainty in how actions influence future outcomes.

Formally, an MDP is defined as a 4-tuple (S,A, T,R), where S is the state space, a
set of possible states the environment can be in; A is the action space, a set of actions
the agent can take; T : S × A × S → [0, 1] is the transition probability function, where
T (s, a, s′) denotes the probability of moving to state s′ after taking action a in state s.;
and R : S × A × S → R is the reward function, where R(s, a, s′) denotes the reward
earned when moving to state s′ after taking action a in state s. This framework
supports both episodic and continuing tasks. In episodic tasks, the agent interacts with
the environment in episodes, which are subsequences of one or more time steps which
end once a terminal state is reached. On the other hand, in continuing tasks, the agent
interacts with the environment indefinitely [16, 17, 18, 19].

A policy defines how the agent behaves within an MDP. A deterministic policy
π : S → A maps each state to a specific action. A stochastic policy π : S × A → [0, 1]

specifies the probability of selecting action a in state s, such that the probabilities
over all actions adhere to

∑
a∈A π(s, a) = 1. When a policy is applied to an MDP,

it generates a sequence of state transitions and rewards. This sequence, called a
trajectory, is commonly denoted as τ = (s0, a0, r0, s1, a1, r1, . . . ). In practice, a policy
must also balance exploration, selecting actions that uncover new information about the
environment, with exploitation, choosing actions that are already known to produce
high rewards. This tradeoff is often managed by introducing randomness into action
selection and gradually reducing it as the agent gains more knowledge [16, 17, 18, 19].

The expected cumulative reward over this trajectory is known as the return. In
finite horizon tasks, the interaction between the agent and the environment lasts for a
fixed number of time steps T and the return is:

R(τ) =
T∑
t=0

rt . (2.5)

These tasks are usually episodic and have a clear endpoint. In infinite-horizon tasks, the
agent-environment interaction may continue indefinitely. The return in this scenario
is discounted and given by:

R(τ) =
∞∑
t=0

γtrt , (2.6)
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where γ ∈ [0, 1) is a discount factor. This allows for the rewards to be geometrically
distributed with immediate rewards contributing more to the return and being more
important than future rewards. This helps in bounding the return and ensures con-
vergence. Finally, a different formulation, utilized in continuing tasks without natural
episode terminal point, which is the average reward criterion. It is defined as:

R(τ) = lim
T→∞

1

T

T∑
t=0

rt . (2.7)

The agent here seeks to maximize the long-run average reward per time step and
treats all the rewards equally [16, 17, 18, 19].

The goal in RL is to find a policy that maximizes the expected return over all
possible trajectories the agent may experience. Since both the environment and the
policy can be stochastic, the trajectory is treated as a random variable. Therefore, the
probability of a trajectory under a stochastic policy π is given by:

P (τ | π) = ρ0(s0)
T−1∏
t=0

π(at | st)P (st+1 | st, at) , (2.8)

where ρ0(s0) is the distribution over initial states, π(at|st) is the probability of selecting
action at in state st, and P (st+1|st, at) is the probability of transitioning to state st+1.
The expected return over all trajectories generated by following policy π is expressed
as:

J(π) = Eπ[R(τ)] =
∫
τ

P (τ | π)R(τ) , (2.9)

and it captures both the randomness in the environment and the agent’s behavior. If
the policy is deterministic, π assigns probability 1 to a single action, while the trajectory
distribution still accounts for stochasticity in the environment. In either scenario, the
optimal policy is expressed as π∗ = argmaxπ J(π).

A policy defines the agent’s behavior. RL evaluates the effectiveness of that behav-
ior using value functions or action-value functions. Most MDP algorithms find optimal
policies by learning such functions. A value function is used to estimate the expected
return starting from a given state s and applying a policy π. It is defined as:

V π(s) = Eτ∼π(·|s)
[
R(τ)

∣∣∣∣ s0 = s

]
, (2.10)

where τ ∼ π(· | s) denotes the trajectories being sampled given the policy π. An
action-value function is used to calculate the expected return starting in a given state
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s, taking action a and following policy π. This is given by :

Qπ(s, a) = Eτ∼π(·|s)
[
R(τ)

∣∣∣∣ s0 = s, a0 = a

]
. (2.11)

If the policy followed was the optimal policy π∗, then the optimal value function and
the optimal action-value function are expressed as:

V ∗(s) = max
π

V π(s) , (2.12)

and:
Q∗(s, a) = max

π
Qπ(s, a) , (2.13)

respectively.
These functions are recursive and are most commonly used in their Bellman form,

which decomposes the value of a state or state-action pair into immediate reward plus
the discounted value of successor states. The on-policy Bellman expectation equations
can be written as:

V π(s) = E
a∼π(·|s)

[
E

s′∼T (·|s,a)

[
R(s, a, s′) + γV π(s′)

]]
, (2.14)

and:
Qπ(s, a) = E

s′∼T (·|s,a)

[
R(s, a, s′) + γ E

a′∼π(·|s′)

[
Qπ(s′, a′)

]]
. (2.15)

These are called on-policy because the inner action expectations are taken with respect
to the same policy π that generated the data. If π = π∗, then that results in the optimal
on-policy action-value equation. On the other hand, the optimal off-policy Bellman
equation for the action-value function is given by:

Q∗(s, a) = E
s′∼T (·|s,a)

[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
, (2.16)

where the inner expectation is replaced by maximization. The policy acts greedily
here. Focus is usually placed on action-value functions, also referred to as Q-functions
because they directly evaluate specific state-action pairs, providing an immediate crite-
rion for action selection, without requiring access to the transition model. In practice,
value and Q-functions are computed by several different approaches that include
dynamic programming, Monte Carlo estimation, temporal-difference methods, and
function approximation [16, 17, 18, 19].
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2.2.2 Taxonomy of RL Algorithms

Algorithms operating within an MDP framework can be broadly divided into model-
based and model-free methods. Model-based approaches are either given or learn the
model, the transition dynamics and reward function of the environment, and utilize
it to anticipate future states and rewards, enabling planning. However, the model
may be unavailable or prohibitively complex. In contrast, model-free approaches do
not require knowledge of the model, and they learn through experience acquisition.
This makes them easier to implement but potentially costly in real-world settings
[17, 18, 19].
Model-free methods are further categorized as either value-based and policy-based.

Value-based optimize the Q-function directly, learning the policy π∗ ≈ argmaxπQπ(s, a).
These methods are very sample-efficient, have small variance with respect to function
estimation and rarely get trapped in local minima. Their disadvantages lie in their
difficulty in capturing continuous action spaces and the ϵ-greedy strategy employed
in conjunction with the max operator often leading to overestimation. The ϵ-greedy
strategy is a method that balances exploration and exploitation by choosing a random
action with a probability ϵ (exploration) and a known seemingly good action with a
probability 1− ϵ (exploitation). Contrarily, policy-based approaches optimize the policy
directly by iteratively updating the policy until the expected cumulative return is
maximized. They offer simpler policy parameterization, handle continuous and high
dimensional action spaces well and tend to converge more easily [17, 18, 19].

Methods that combine characteristics of value-based and policy-based algorithms, are
called actor-critic algorithms. They use the value-based methods to learn a Q-function
(or value function) to achieve higher sample efficiency and leverage the policy-based
methods to learn the policy function regardless of action space characteristics. The
algorithms inherit the corresponding advantages and disadvantages. The model-free
family includes more specialized categorizations, which are not mentioned here to
maintain focus on the primary broad categories [16, 17, 18].

Finally, it must be noted that while most RL algorithms are MDP-based, there
exists a simpler class of methods called Bandit algorithms. They do not consider state
transitions and utilize repeated action selection and their immediate rewards. They
can be considered a special case of an MDP with a single state [16, 17, 18].
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CHAPTER 3

PROBLEM DESCRIPTION

3.1 A Quality‐Dependent Newsvendor Problem

3.2 Mathematical Formulation of QDNP

3.3 Proposed Non‐Parametric Extension of the QDNP Model

3.1 A Quality‐Dependent Newsvendor Problem

A recent extension of the classical Newsvendor Problem was introduced by Özbilge et
al. [6], namely the Quality Dependent Newsvendor Problem (QDNP). This problem
incorporates product perishability and consumer sensitivity to both price and quality,
offering a more realistic representation of food retail dynamics. It also integrates the
option of donation as a profitable socially and environmentally responsible decision-
making opportunity within the model’s temporal horizon.

The newsvendor component of the QDNP builds on the framework of Petruzzi and
Dada [7], who reviewed and extended the literature on price effects in the newsvendor
setting and used it to explore the interplay between operational and marketing con-
siderations in firm-level decision-making. Their analysis includes both single-period
and multi-period models, with demand represented using either additive or multi-
plicative forms.

The real-world problem that is modeled through the aforementioned QDNP is a
food retailer’s pricing and inventory management problem where the product deterio-
rates continuously. It is modeled as a two-period single-product newsvendor problem
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Figure 3.1: QDNP sequence of events

where demand is uncertain and constitutes a function of both price and quality. It
must be noted that the inclusion of quality as an integral component of demand is
why this variation of the newsvendor problem is deemed “quality dependent”.

The selling season is defined as the product’s shelf life T . It is broken down into
two periods, the beginning of each, marking a distinct decision-making opportunity.
The first decision point is time 0, i.e., the beginning of the first period. At that point,
the retailer must decide on the stocking quantity Q, as well as the initial selling
price p1. The second decision point is at time point T1, which can be any time point
within the selling horizon where the quality of the product remains high enough to
meet the donation recipient’s food safety constraints. This point is exogenous and
marks the beginning of the second period. Here, the retailer must decide whether
and what percentage of the inventory I will be donated, denoted as (1 − γ), where
γ expresses the percentage of inventory retained for sale. Also, the new selling price
p2 for each product unit shall be determined. This price update typically involves a
discount, which is a common policy for perishable products in supermarkets aiming
at increasing profit. Also it is dependent on the on-hand inventory and the remaining
shelf life. Price adjustments upwards of the original price are rare and may occur if
inventory is exhausted very early in the selling season [6]. Figure 3.1 depicts the
sequence of events for the QDNP through the relationship between inventory level I
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and time.
In both periods, demand is considered to be uncertain and it is henceforth ex-

pressed through a random component of demand ε, which follows the same distribu-
tion in each period. The distribution has a non-decreasing hazard rate, a finite mean
µ, and a standard deviation σ > 0. Its cdf F (.) is twice differentiable, invertible, and
defined on an interval [A,B].

The newsvendor model is considered suitable due to fresh food seasonality and
quality variation among harvests making it reasonable to consider each batch of
product units unique. It captures the challenge of ordering perishable items under
uncertain demand and limited selling horizons. However, it does not account for sub-
stitution effects or repurchases within the selling horizon. Furthermore, quality and
deterioration rates are assumed to be known at all times. This is deemed realistically
feasible through the use of reliable IoT technology, particularly time-temperature in-
dicators (TTIs). TTI data can be used to estimate the product shelf life and be input
to food science models for deriving quality deterioration rates [6].

Finally, donation is assumed to bring the retailer a reward R > 0 per donated
product unit. This reflects any manner in which donation is profitable for the retailer:
government incentives for waste reduction, including tax deductions for charitable ac-
tions, image improvement, and consumer preference due to social and environmental
responsibility. It also counteracts the disposal cost Cd > 0, which arises because most
municipalities in both Europe and North America enforce some form of a pay-as-
you-throw (PAYT) policy [6].

These assumptions above provide the basis for the modeling formulation pre-
sented in the following section.

3.2 Mathematical Formulation of QDNP

The mathematical formulation of the QDNP, as proposed by Özbilge et al. [6], incor-
porates models for quality loss, demand, and expected profit. This section outlines
these elements, with a focus on the modeling components adopted for the purposes
of the thesis.
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3.2.1 Quality Deterioration

Özbilge et al. [6] extended the quality-loss models of Bowman et al. [20] and Osvald
and Stirn [21]. Fresh food products have peak quality at the moment of harvest or
production. After that point, they start to lose nutritional value and their quality
decays with time. For example, a fruit ripens and eventually it spoils. These changes
are evident to the consumer, who usually accepts ripeness below a certain threshold.
This threshold is dependent on the chemical characteristics of each food product.
The deterioration rate and hence, the product lifetime, is also affected by changing
environmental conditions throughout the supply chain. For example, batches of fruit
are kept at optimal conditions at the supplier’s storage facility, but their quality decay
rates increase when they are loaded onto trucks and transported to a supermarket,
where they will also be on display. This is due to exposure to different temperatures as
well as inevitable human errors. Unforeseen events may also happen, despite the fact
that precautions are taken into consideration when designing the respective supply
chain.

It is assumed that at the supplier’s facility, the retailer observes an initial product
quality level q. The product’s effective quality et can be estimated from TTI data, since
it is not always externally observable. The quality of the product is assumed to drop d
units during transportation, depending on factors such as travel time and technologies
for maintaining optimal transport conditions, including temperature and humidity,
among others. This results in two categories of products: fresh products and aged
products. Fresh products have a quality level at or above the discernibility threshold
v, while aged products have a quality level below v, at time t0 when the product is
on the shelf and the selling season begins.

The retailer monitors the quality drop and can decide how to move forward.
The maximum quality is considered to be at 100%. If the product units are below
a minimum acceptable quality level η, they are considered unsellable because they
are too spoiled for consumption or unappealing to customers. Assume that t0 is the
intitial time, and that customers start noticing visible changes in quality at time t1.
Until time t1 > t0, quality is stable for a time interval k = t1 − t0. Quality remains
acceptable to customers but decays in the time interval from t1 to t2. Product quality
is unacceptable at any moment t ≥ t2. The product shelf life can be expressed as
T = t2 − t0 and depends on the quality level q − d upon arrival at the retailer, on
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Figure 3.2: Linear quality deterioration in the selling season

the minimum acceptable quality level η and, on the deterioration rate λ > 0 at the
retailer’s site.

In the case of linear quality deterioration, let δ(t) = min{v, et}, where:

et =

q − d− λt , if t ⩽ T

0 , otherwise.
(3.1)

An important assumption here is that customers are not accurate judges of quality,
and they perceive it as v for fresh products when q−d ≥ v, while they start perceiving
quality changes when et < v. Therefore, the modeling is dependent on product type.
The perceived linear quality deterioration function for fresh products at a single time
point can be expressed as follows:

δ(t) =

ν , if t ⩽ q−d−ν
λ

,

q − d− λt , if t > q−d−ν
λ

.
(3.2)

Since the QDNP is considered into two different selling periods, it is necessary to take
the average case, which for the first period can be expressed as:

δ̄1(T1) =

∫ T1

0

δ(t) dt

=
1

T1

[∫ k

0

ν dt+

∫ T1

k

(q − d− λt) dt
]

=
1

T1

{
kν +

[
q − d− λ(T1 + k)

2

]
(T1 − k)

}
, (3.3)
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where k ≡ q−d−v
λ
. It is assumed, without loss of generality, that quality decay becomes

apparent during this period because the retailer would not consider repricing unless
the quality is discernibly low. For the second period, only when t > q−d−ν

λ
, the average

quality loss is given by the form below:

δ̄2(T2) =
1

T2

∫ T

T1

(q − d− λt) dt = q − d− λ(2T − T2)
2

.

Figure 3.2 depicts all stages of the linear quality deterioration model within one
selling season.

3.2.2 Demand Modeling

Demand is sensitive to both price and quality. Assuming that quality is modeled as
a function of time, demand is expressed as a function of price, time, and a random
component that represents the uncertainty. Thus, its form for either selling period
becomes:

Di(pi, t, ε) = yi(pi, t) + ε, i = 1, 2 . (3.4)

The term yi(pi, t) represents the deterministic part of the demand, and it is a linear
function decreasing in price pi and increasing in perceived quality δ(t) ≥ 0. It is
defined as

yi(pi, t) = α + ϕδ(t)− bpi, i = 1, 2 , (3.5)

where α, ϕ, and b are constants. The parameter α describes market size, while ϕ > 0

and b > 0 model the customers’ sensitivity to quality and price, respectively.
The QDNP model considers two selling periods, namely Period 1 of length T1 and

Period 2 of length T2 while the selling season is T = T1 + T2. Random demand over
the selling season is formulated as:∫ T1

0

D1(p1, t, ε) dt+

∫ T

T1

D2(p2, t, ε) dt =
[
ȳ1(p1, T1) + ε

]
T1 +

[
ȳ2(p2, T2) + ε

]
T2 , (3.6)

where:
ȳ1(p1, T1) =

1

T1

∫ T1

0

y1(p1, t) dt = a− bp1 + ϕ δ̄1(T1) , (3.7)

and
ȳ2(p2, T2) =

1

T2

∫ T

T1

y2(p2, t) dt = a− bp2 + ϕ δ̄2(T2) (3.8)

represent the average deterministic demand over Period 1 and Period 2 respectively.
This formulation also enables the definition of an upper bound p̄i for the price, when
solving ȳi(pi, Ti) + A = 0 to find pi for i = 1, 2.
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3.2.3 Objective Function

The main objective of the QDNP, as defined in the original formulation [6], is to
maximize the retailer’s expected profit over the selling season. In our case, the closed-
form, constrained maximization approach is abstracted away in favor of a form that
is more suitable for reinforcement learning application. Nvertheless, the objective
function is preserved in its original form and continues to guide the optimization
process, while its structural properties remain consistent with the original model,
retaining all its mathematical properties.

Formally, the objective function can be expressed as follows,

V = E [Π1(z1, p1)] + αE [Π2(z2, p2)] , (3.9)

where the terms E [Π1(z1, p1)] and E [Π2(z2, p2)] describe the first and second period
expected profit respectively. The discount rate α is set to 1 but may also take different
values. The stocking factors z1 and z2 measure the deviation between the supply
rate and expected average demand in each period. They play a central role in profit
determination by shaping surplus and shortage costs within the QDNP framework,
and they are defined as:

z1 =
Q

T1
− ȳ1(p1, T1) , (3.10)

and:
z2 =

γI

T2
− ȳ2(p2, T2) , (3.11)

where Q is the initial inventory at the beginning of the first period and γI is the
portion of inventory retained for sale at the beginning of the second period. Positive
values of zi reflect overstocking as a buffer against uncertainty, while negative values
indicate an anticipated shortage. The inventory level for a given random component
of demand value is I = max(0, (z1 − ε)T1).

The expected profit in the first period is a newsvendor problem without disposal
cost Cd. This is defined as:

E [Π1(z1, p1)] = (p1−C0) [ȳ1(p1, T1) + µ]T1−C0 Λ(z1)T1−(p1+Cs−C0)Θ(z1)T1 , (3.12)

where Cs and C0 denote the salvage and purchasing cost per unit respectively. The
second period expected profit is a newsvendor problem that considers both disposal
cost and donation reward per unit R, and it is formulated as:

E[Π2(z2, p2)] =
[
(p2 −R)

(
ȳ2(p2, T2) + µ

)
− (R + Cd) Λ(z2)− (p2 + Cs −R)Θ(z2)

]
T2+RI.

(3.13)
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The terms Λ(zi) and Θ(zi) represent the expected surplus and shortage respectively,
playing a principal role in capturing the impact of demand uncertainty within the
profit functions. They are defined as:

Λ(z) =

∫ z

A

(z − u) dF (u) =
∫ z

A

(z − u)f(u) du , (3.14)

Θ(z) =

∫ B

z

(u− z) dF (u) =
∫ B

z

(u− z)f(u) du , (3.15)

where f(.) is the corresponding probability density function (pdf) of the random
demand component’s cdf F (.).

The expected profit functions E[Πi(zi, pi)] are concave with respect to each decision
variable, zi and pi, as proven in Petruzzi and Dada [7] and Ozblige et al. [6] works.
The total objective function V inherits this concavity. This means that each profit
function can be expressed with regard to only one of the variables by using the first-
order conditions to derive the other variable as a function of the chosen one. Thus,
the prices p1 and p2 are determined in terms of their respective stocking factors z1
and z2 as follows:

p1(z1) =
a+ ϕδ̄1(T1) + bC0 + µ

2b
− Θ(z1)

2b
, (3.16)

and:
p2(z2) =

a+ ϕδ̄2(T2) + bR + µ

2b
− Θ(z2)

2b
. (3.17)

These functions can replace p1 and p2 in Eqs. (3.7)-(3.11), (3.16) and (3.17). Thus
the maximization problem can be expressed as follows:

max
z1,z2

V (z1, z2) , (3.18)

s.t. max {A, −y2(p2, T2)} ⩽ z2 ⩽
I

T2
− y2(p2, T2) , (3.19)

where constraints on z2 are maintained as in the original formulation since the prob-
lem is solved with respect to (z1, z2), while no constraint is applied on z1.

3.3 Proposed Non‐Parametric Extension of the QDNP Model

The original QDNP framework assumes that the random shock of the demand follows
a known, well-behaved probability distribution. This is a distribution with finite mean
and variance, a non-decreasing hazard rate, and a twice differentiable and invertible
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cdf. However, in many real-world applications, this assumption may not hold. In
practice, the true distribution of demand shock is often unknown, and may be difficult
to validate.

Instead, firms can collect historical demand shock observations over time, resulting
in an empirical dataset. While this dataset can be used to fit a parametric distribution,
doing so imposes a specific functional form that may not accurately reflect the underly-
ing behavior of the random variable. The employment of a non parametric approach
like Kernel Density Estimation (KDE) can address this limitation while also pre-
serving the smoothness and differentiability properties required by the QDNP model
(given a sufficiently smooth kernel), allowing the integration of empirical uncertainty
without altering the mathematical structure of the original formulation[22, 23].

KDE is a non-parametric method for estimating the probability density function of
a random variable, based on observed data. Instead of assuming a specific distribution
form, KDE builds a smooth curve that reflects the shape of the data. It is closely related
to a histogram but with additional properties, such as continuity and smoothness,
depending on the kernel function used [22, 24, 25].

Let (x1, x2, . . . , xn) be a sample of independent and identically distributed observa-
tions drawn from an unknown continuous distribution with density f(x). The KDE
f̂h(x) of the probability density function is defined as:

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (3.20)

where K(.) is the kernel function and h > 0 is the bandwidth or smoothing parameter.
The kernel function determines the shape of the local contributions around each data
point. The bandwidth regulates how wide each kernel is spread, and controls the
smoothness of the estimated density. Furthermore, n is the number of data points
and xi represents a single data point [22, 24, 25].

The selected kernel function employed here is the standard Gaussian kernel, with
a zero mean and a standard deviation σ = 1. Given that it is smooth, symmetrical,
and infinitely differentiable, its properties are aligned with the analytical requirements
of the original QDNP, which are inherited by the KDE. The kernel is expressed as:

K(u) =
1√
2π
e−u

2/2 . (3.21)

It is worth noting that other kernel functions exist (e.g.,Epanechnikov, uniform, tri-
angular, biweight etc) and they all result in consistent estimators under appropriate
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circumstances. The final choice of the kernel function depends on theoretical or com-
putational requirements [26, 27].

The bandwidth is crucial in balancing the bias-variance tradeoff in the estimator.
An h value that is too small may lead to overfitting (high variability in the estimate),
while an h value that is too large may lead to underfitting (low variability in the
estimate). In practice, its value is determined using well known heuristics such as
Scott’s Rule or Silverman’s Rule. For the definitions to be compliant with the Python
SciPy library utilized for implementation in the present thesis, the multivariate version
of the rules are considered. Scott’s rule is expressed as h = n−1/d+4, while Silverman’s

Rule is defined as h =
(

4
n(d+2)

) 1
d+4 . The number of data points available is represented

by n, while d is the number of dimensions. All data points are considered to have
equal contribution to the estimate [28, 29, 30, 31].

The parts of the QDNP model that require the use of the KDE for approximating
the pdf of the unknown demand shock are primarily Eqs. (3.14) and (3.15). The
approximated expected surplus and shortage are then modeled as follows:

Λ̂h(z) =

∫ z

A

(z − u) dF̂h(u) =
∫ z

A

(z − u)f̂h(u) du , (3.22)

Θ̂h(z) =

∫ B

z

(u− z) dF̂h(u) =
∫ B

z

(u− z)f̂h(u) du , (3.23)

where f̂h(u) represents the pdf approximation using KDE as expressed in Eq. (3.20),
and F̂h(u) represents the approximation of the cdf using the KDE. The cdf is derived
by integrating over the pdf as follows:

F̂ (x) =

∫ x

−∞
f̂(t) dt (3.24)

Taken together, the KDE-based definitions and associated specifications presented in
this subsection provide a comprehensive non-parametric formulation of the QDNP
model, which incorporates empirical demand shock uncertainty while preserving its
original analytical structure.
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CHAPTER 4

REINFORCEMENT LEARNING FRAMEWORK

4.1 Soft Actor‐Critic

4.2 Proposed SAC Environment for QDNP

4.1 Soft Actor‐Critic

Soft Actor-Critic (SAC) is an off-policy, model-free deep reinforcement learning (DRL)
algorithm for continuous action spaces. It combines high sample efficiency with stable
learning. Its foundational innovation is the augmentation of the standard objective
of expected return maximization with an entropy term. This encourages the policy
being learned to act as randomly as possible while still achieving high rewards. Max-
imum entropy RL improves exploration, avoids premature convergence to suboptimal
strategies, and yields policies that are more robust to model and estimation errors.
SAC builds on the general principle of Q-learning, estimating the expected return
for each state-action pair and selecting actions that maximize this value, but inte-
grates a stochastic policy and entropy maximization into the actor-critic structure. It
is considered to be DRL due to the implementation being based on neural networks
[10].

In the original 2018 publication by Haarnoja et al. [10] the authors reported that
SAC outperforms several strong baseline RL approaches, such as Deep Deterministic
Policy Gradient (DDPG), Proximal Policy Optimization (PPO) and Twin Deep Delayed
Deterministic Policy Gradient (TD3), on a range of continuous action and state space
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benchmark problems, ranging from simple locomotion tasks to high-dimensional
humanoid control. In addition, it is very robust when it comes to hyperparameter
choices, making it easier to tune in comparison to other RL methods that require
meticulous hyperparameter tuning.

The characteristics above point to SAC being a promising and practical RL ap-
proach that can be applied to the QDNP, an inherently stochastic problem due to the
random component of demand.

4.1.1 Theoretical Foundations

Haarnoja et al [10], establish the modeling foundation of the method as an infinite-
horizon MDP (S,A, T,R), where S is the continous state space, A is the continuous
action space, T : S × S × A → [0,∞) is the unkown transition probability density
function and R : S × A → [Rmin, Rmax] is the bounded reward function. st ∈ S

represents the current state, at ∈ A represents the current action and Tπ(st) and
Tπ(st, at) are the state and state-action marginals of the trajectory distribution induced
by policy π(at|st) respectively.

The authors further enhance their approach by adopting an extension of the
standard RL objective that encourages stochastic policies, referred to as maximum
entropy RL. Instead of maximizing only the expected cumulative reward, the agent
also maximizes the expected entropy of its policy. For an infinite-horizon maximum
entropy objective under a stochastic policy, this is given by

J(π) =
∞∑
t=0

E(st,at)∼Tπ
[
R(st, at) + αH

(
π(· | st)

)]
(4.1)

where H(π(· | st)) = −Eat∼π [log π(at | st)] is the Shannon entropy and α > 0 is
the temperature parameter controlling the tradeoff between reward maximization and
entropy. For a→ 0 it is feasible to obtain the standard RL objective. This formulation
encourages wider exploration, avoids premature convergence to suboptimal policies,
allows the policy to represent multiple equally good ways of action choice and has
also been observed to be faster than others when applied to difficult tasks [10, 32].

As presented in the original publication [10], the SAC algorithm is derived starting
from a maximum entropy variation of policy iteration. Policy iteration is a method used
to find an optimal policy that alternates between two steps, policy evaluation and policy
improvement. The value of the current policy is estimated during the policy evaluation
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step while the policy is updated greedily, by choosing actions that yield the highest
expected reward based on current value estimates, during the policy improvement step.
The algorithm refines the policy by repeating these steps until convergence to an
optimal policy. This is based solely on a tabular setting for theoretical analysis and
proof of convergence [10, 32].

Here, this is achieved through the steps of soft policy evaluation and soft policy
improvement. In the evaluation step, the Q-value for a fixed policy is estimated via
repeated application of the soft Bellman backup operator. In the improvement step,
the policy is updated by minimizing the Kullback-Leibler (KL) divergence between
the policy distribution and a softmax distribution over Q-values, yielding a policy
that is closest to the optimal softmax distribution within the constraints of the chosen
policy class (e.g., Gaussian policies). [10, 32, 33].

4.1.2 The Soft Actor‐Critic Algorithm

Haarnoja et al. [10] expanded their formulation to one based on function approxima-
tors, with the purpose of handling large continuous state and action domains. They
considered a value function Vψ(st), a soft Q-function Qθ(st, at) and a policy πϕ(at|st),
where ψ, θ and ϕ are neural network parameters. The policy must be tractable, for
example a Gaussian with its mean and covariance produced by a neural network.

There are three error functions that are used within the algorithm. The first one
is related to the value function and given by the squared residual error:

JV (ψ) = Est∼D
[
1

2

(
Vψ(st)− Eat∼πϕ [Qθ(st, at)− log πϕ(at | st)]

)2]
, (4.2)

which is used to train the value network. This network predicts how good a state is
under the current policy by minimizing the regression loss between what the value
network predicts and what is estimated through Q-values and the policy. The states
st are sampled from the replay memory D, which contains states the agent has
encountered and stored for future exploitation. The corresponding gradient is given
as:

∇̂ψJV (ψ) = ∇ψVψ(st) (Vψ(st)− (Qθ(st, at)− log πϕ(at | st))) , (4.3)

and provides a step-by-step update rule for improving the value network parameters.
The second error function is the Q-function loss, given by

JQ(θ) = E(st,at)∼D

[
1

2
(Qθ(st, at)− Q̂(st, at))2

]
, (4.4)
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Algorithm 4.1 Soft Actor-Critic (SAC)
1: Initialize parameter vectors ϕ (policy), θ1, θ2 (Q-functions), and ψ (value function)
2: Initialize target parameters ψ̄ ← ψ

3: Initialize replay buffer D
4: for each iteration do
5: for each environment step do
6: Sample action at ∼ πϕ(· | st)
7: Observe st+1 ∼ p(· | st, at) and reward R(st, at)
8: Store new experience (st, at, R(st, at), st+1) in D
9: end for
10: for each gradient step do
11: Choose min(Q(θ1), Q(θ2)) for ∇̂ψJV (ψ)

12: ψ ← ψ − λV ∇̂ψJV (ψ) ▷ Value network update
13: θi ← θi − λQ ∇̂θiJQ(θi) for i = 1, 2 ▷ Q-network updates
14: ϕ← ϕ− λπ ∇̂ϕJπ(ϕ) ▷ Policy network update
15: ψ̄ ← τψ + (1− τ)ψ̄ ▷ Target value update
16: end for
17: end for

which trains the Q-network to predict a “target” value derived by taking the imme-
diate reward from the current state and adding the discounted predicted value of the
next state as follows

Q̂(st, at) = R(st, at) + γ Est+1∼T
[
Vψ̄(st+1)

]
. (4.5)

This target value is produced by leveraging a separate target value network Vψ̄, with
parameters ψ̄. This network is slowly updated, aiming to achieve more stable training.
The Q-loss gradient is given as follows:

∇̂θJQ(θ) = ∇θQθ(st, at)
(
Qθ(st, at)−

(
R(st, at) + γ Vψ̄(st+1)

))
. (4.6)

Finally, The third and final error is related to the KL divergence, and it is instrumental
in policy improvement. Its initial form is:

Jπ(ϕ) = Est∼D
[
DKL

(
πϕ(· | st)

∥∥∥ exp(Qθ(st, ·))
Zθ(st)

)]
. (4.7)

To minimize Jπ(ϕ), the policy is reparameterized using a neural network to produce
the action at as at = fϕ(ϵt; st) where ϵt is a noise vector sampled from a stationary
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distribution, such as an isotropic Gaussian. This enables the policy objective to be
rewritten and expressed by the error:

Jπ(ϕ) = E st∼D, ϵt∼N (0,I)

[
log πϕ

(
fϕ(ϵt; st) | st

)
− Qθ

(
st, fϕ(ϵt; st)

)]
, (4.8)

which expresses that the policy prefers actions that have both high Q-values and a
low log-probability penalty, thus maintaining sufficient randomness in the process.
The derivation of Eq. (4.8) results in the gradient

∇̂ϕJπ(ϕ) = ∇ϕ log πϕ
(
at | st

)
+
(
∇at log πϕ

(
at | st

)
−∇atQθ(st, at)

)
∇ϕfat (4.9)

where at = fϕ(ϵt; st). The gradient comprises two parts. The first part, namely∇ϕ log πϕ
(
at |

st
)
, corresponds to direct changes in the log-probability of actions. The second part

describes changes in the policy’s output affected by both the log-probability and the
Q-values of the actions.

It must be highlighted that, in the derivation, the temperature parameter α is
omitted from the formulas by absorbing it into the reward. Specifically, the reward
term in the theoretical expressions, denoted here as R(st, at), corresponds to the scaled
reward α−1r(st, at), where r(st, at) is the actual reward produced by the environment.

The pseudocode of the SAC algorithm is presented in Algorithm 4.1. Aiming to
alleviate positive bias and the consequent degradation of performance in value based
methods, as well as speed up the training process, the authors in [10] chose to employ
two Q-function networks with parameters θi and error functions JQ(θi), for i = 1, 2.
These two networks are trained independently. The minimum of the two Q-functions
is used in the value network update in step 11 of the pseudocode, as described by
Eq. (4.3). After initializing all parameter vectors and the replay memory (lines 1-3
of the pseudocode), the agent iteratively collects experiences from the environment
using the current policy in a single step (lines 5-9), and then, for one or multiple
gradient steps, it updates all neural networks via stochastic gradient descent using
batches sampled from the replay memory (lines 10-16).

4.2 Proposed SAC Environment for QDNP

To apply SAC to the QDNP, it is necessary to formalize the problem as an RL envi-
ronment. This process involves defining the state space, which captures the relevant

27



information available to the agent at each decision point, and is normalized to im-
prove learning stability; the action space, which specifies the set of possible decisions;
and the reward function, which provides feedback on the quality of those decisions. It
also requires establishing the episode structure, which determines how the decision-
making process unfolds over time and when an episode begins and ends.

The state space must contain the decision variables and other values that may be
useful to the agent. Here, the decision variables are z1 and z2. The state vector si,
however, also includes the current step index i, which indicates in which time step
within the episode the vector was produced, the random component of demand ε,
and the expected inventory level I at the end of the first period. The latter two are
crucial for allowing the agent to observe information related to the problem’s inherent
uncertainty at each time step. Furthermore, z2 must satisfy the bounds defined in the
maximization problem of Eq. (3.19) in Chapter 3. These bounds ensure feasible
solutions. In total, the state vector is five-dimensional and can be expressed as

si =
[
i, I, ε, z1, z2

]T
∈ R5 . (4.10)

When employing neural network-based approaches, it is standard practice to rescale
input vectors in order to stabilize training. Accordingly, the state vector si is rescaled
to lie within [−1, 1] at the end of each time step. All variables except for the discrete
time index i are standardized using the transformation: x̂ = x−µ

s
. The mean µ is either

derived from the known distributional properties of the variable (or from its feasible
bounds), or estimated empirically from data. The scale s is chosen as half of the
known feasible range of each state variable, ensuring that the transformed values lie
within [−1, 1]. This procedure ensures that the continuous features are centered and
scaled, yielding a symmetric and robust representation in which no single variable
dominates during policy or value network updates. The time index i is included
directly without rescaling, since it is discrete and confined to a small finite range
[34, 35].

The action space defines the set of possible decisions available to the agent at
each time step. In this application, actions correspond directly to assigning values
to the decision variables z1 and z2, which determine the stocking factors in the first
and second period, respectively. At each step, the policy outputs an action vector ai
containing the proposed values for these decision variables:

ai =
[
z1, z2

]T
∈ R2 . (4.11)
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Algorithm 4.2 Episode Structure for the QDNP Environment
1: Initialize step index i← 0

2: Initialize state vector si ∈ R5 ▷ Eq. (4.10)
3: Initialize action bounds for ai ▷ Eq. (4.11)
4: Initialize episode reward V ← 0

5: for i = 0 to 1 do
6: if i = 0 then ▷ Step 0: First period
7: Apply action a0 to z1: z1 ← a0

8: Sample random demand component ε
9: Estimate inventory level I = max(0, (z1 − ε)T1)
10: Set reward for first step R0 ← E[Π1(z1)]

11: Update state vector s0 with current step information
12: Rescale state vector s0 to [−1, 1]
13: done = False ▷ Non-terminal step
14: i← 1 ▷ Prepare for next step
15: return (s0, R0,done)
16: else ▷ Step 1: Second period
17: Apply action a1 to z2: z2 ← a1

18: Clip z2 to feasible bounds ▷ Eq. (3.19)
19: Set reward for second step R1 ← E[Π2(z2)]

20: Update state vector s1 with current step information
21: Rescale state vector s1 to [−1, 1]
22: Compute total episode reward V ← R0 +R1

23: done = True ▷ Terminal step
24: return (s1, V,done)
25: end if
26: end for

For implementation purposes, these actions are restricted within the bounds [A,B]

to ensure feasibility as well as maintain stable learning by preventing extreme ex-
ploration attempts. To complete the environment setup before describing the episode
structure, the reward function is the expected profit function given in Eq. (3.9) in
Chapter 3.

Finally, the episode structure is based on the concept of backwards induction,
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which is used in the analytical solution of the QDNP, as in [6]. In the analytical
solution, the second period problem is solved first under uncertainty, before moving
forward to the first period problem. Here, the opposite is utilized, resulting in an
episodic structure consisting of two time steps.

The episodic procedure is described in Algorithm 4.2. Lines 1-4 of the pseudocode
initialize the episode step index i, the state vector si, the action bounds for ai, and
the episode reward R, which is set to zero at the start. The step index i indicates the
current episode step and serves as a flag to ensure the second step follows the first.
The first episode step (lines 6-15) applies action a0 to z1, samples the random demand
component ε, and uses these values to estimate the inventory level I. The expected
profit for the first period, E[Π1(z1)], is computed and assigned as the step reward R0.
The state vector is then updated with the information from this step and rescaled to
[−1, 1]. The step is marked as non-terminal by setting done = False, the step index
is updated to i = 1, and the state vector, reward, and termination flag are returned.
This gives the agent intermediate information on the key variables associated with
uncertainty, ε and I , which, when combined with the reward signal, enable policy
refinement within the episode rather than than only at its conclusion.

The second episode step is described in lines 16-24. Action a1 is applied to z2

and clipped to its feasible bounds according to the constraints in Eq. (3.19). The
expected profit for the second period, E[Π2(z2)], is computed and assigned as the step
reward R1. The state vector is updated and rescaled, and the total episode reward is
calculated as V = R0 + R1. The termination flag is then set to done = True, marking
the step as terminal and signaling to SAC that the episode has ended. The updated
state vector, total reward, and termination flag are returned.

This two-step procedure is repeated from initialization to termination for each
episode. During training, the observed rewards are used to update the neural net-
work weights and improve SAC’s learned policy. During evaluation, the policy acts
according to the mean of the action distribution, producing episodes that reflect the
distribution of possible rewards under the uncertainty of ε.
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CHAPTER 5

EXPERIMENTAL METHODOLOGY

5.1 Test Data

5.2 Tuning and Evaluating SAC

5.3 Implementation Details

5.1 Test Data

The experimental evaluation employed the data used in the original study of Ozbilge
et al. [6], which in turn is based on the case study of Wang and Li [36]. The dataset
consists of parameters for four supermarket branches, with product quality modeled
as linearly degrading over time. The parameters and their values are reported in
Table 5.1 and correspond to those presented in Chapter 3, with Stores 1-4 denoting
unique problem instances.

The stochastic component of demand ε follows a uniform distribution with zero
mean, and it is bounded in [A,B] = [−2, 2]. The experiments were restricted to the
linear quality deterioration case across the four problem instances. In terms of product
type, the linear case corresponds to products such as vegetables.

As mentioned in Chapter 4, it must also be noted that, an additional variation
of the model was considered for scenarios in which, the distribution of the random
demand component is unknown. In this setting, the model estimates the distribution
empirically from data samples by computing descriptive statistics such as the mean
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Store a b ϕ q d v h λ/hr T1 (hrs) T (hrs) C0 Cd Cs R

1 7.92 4.86 4.86 0.90 0 0.8 0.2 0.009 48 78 1 0.05 0.05 0.8
2 6.73 4.13 4.13 0.92 0 0.8 0.2 0.009 48 80 1 0.05 0.05 0.8
3 10.30 6.32 6.32 0.83 0 0.8 0.2 0.009 48 70 1 0.05 0.05 0.8
4 6.34 3.89 3.89 0.85 0 0.8 0.2 0.009 48 72 1 0.05 0.05 0.8

Table 5.1: Parameters per problem instance

Hyperparameter Value

Discount factor (γ) 0.99

Replay memory size 106

Number of hidden layers 2

Number of nodes per layer 256

Batch size 256

Time steps 46000

Target update interval 1

Table 5.2: Fixed hyperparameter values

Hyperparameter Values

Learning rate 3× 10−4 3× 10−6 -

Gradient steps 1 4 -

τ 5× 10−3 5× 10−3 1

Table 5.3: Tested hyperparameter values

and standard deviation, and approximating the probability density and cumulative
distribution functions using KDE.

For testing purposes, the empirical dataset is generated from a uniform distribu-
tion with the same bounds [A,B] as above, but the implementation treats it as if it
were drawn from an unknown distribution with 100000 samples. In this case, the
clipping bounds are set to the data-driven range [A,B] = [min(Data),max(Data)],
where Data refers to the set of samples of the simulated unknown distribution.

5.2 Tuning and Evaluating SAC

5.2.1 Hyperparameter Settings

Two applications of SAC were examined. The first one refers to an environment that
assumes known characteristics of the random demand component distribution, while
the second one refers to an environment where these characteristics are estimated
from empirically collected data. A model name is omitted in the first case, as it refers
to the standard QDNP. In contrast, the second case employs kernel density estimation
and is referred to as KDE-QDNP to differentiate it from the baseline. These cases can
effectively asses SAC performance on the two QDNP modeling approaches. The same
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procedure is followed for hyperparameter tuning in both cases.
Hyperparameter values were initially set according to those reported in [10], for

tasks of varying difficulty. To further refine the implementation for the considered
problem instances, preliminary exploratory runs were conducted during the imple-
mentation phase. Observations from these runs were used to calibrate the hyper-
parameters toward ranges that produced responsive learning behavior. The Stable-
Baselines3 Python library implementation was used for SAC, while the Gymnasium
Python library was used for setting up the problem environment.

The hyperparameters that assumed fixed values for all experiments are listed in
Table 5.2. The discount factor γ controls the importance of the target Q-value in Eq.
(4.5). The replay memory size determines how much memory is available to store the
agent’s experiences. The number of hidden layers and number of nodes per layer define the
neural network architecture. The time steps correspond to the number of individual
iterations the agent is trained for. When translated into episodes of two time steps
each, the agent is trained for 46000

2
= 23000 episodes. Finally, the target update interval

specifies how frequently the target networks are updated after each gradient step.
The hyperparameters that were actively tuned are listed in Table 5.3. The learn-

ing rate determines the step size used by the optimizer to adjust network weights.
The gradient steps indicate the number of gradient updates performed per time step.
Lastly, the target smoothing coefficient τ controls the proportion of the current network
parameters mixed with the previous target network parameters during updates.

The optimizer and activation function were chosen as in [10], namely Adam and
ReLU, respectively. While SAC is generally robust to its hyperparameters, it is sensi-
tive to the reward scale, i.e., the entropy coefficient α. In the present setting, instead of
a fixed reward scale, the automatic reward scale update feature available in the Stable-
Baselines3 implementation was used. This feature optimizes an entropy loss function
to balance exploration and exploitation, with lower values favoring exploitation and
higher values favoring exploration [37]. It should also be noted that all other hyper-
parameters not explicitly listed here retained their default values in Stable-Baselines3,
as they do not significantly influence the algorithm’s behavior.

5.2.2 Evaluating SAC

The QDNP’s objective is to find decision variable values that lead to the maximization
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Algorithm 5.1 Policy Evaluation Procedure
1: Load trained SAC policy
2: Set policy to deterministic mode
3: for i = 1 to 100 do ▷ evaluation rounds
4: for j = 1 to 1000 do ▷ samples (rollouts)
5: for t = 1 to 2 do ▷ steps in episode
6: Generate action aj,t = µϕ(sj,t)

7: Observe reward rj,t and current state sj,t
8: end for
9: Collect total episode reward Rj = rj,1 + rj,2

10: end for
11: Compute mean total reward of round i: Ri =

1
1000

∑1000
j=1 Rj

12: end for
13: Compute overall mean of the 100 round means: Rtotal =

1
100

∑100
i=1Ri

of the expected profit. Following Haarnoja et al. [10], the trained SAC policy was
set to deterministic mode for evaluation, where the mean of the Gaussian action
distribution is chosen. To obtain a robust estimate of performance, the policy was
then evaluated over 100 evaluation rounds, each consisting of 1000 samples. The
mean return was computed for each round, and the overall evaluation result was
reported as the average across rounds. This approach provides a statistically stable
estimate of the policy’s expected return and was also employed for the variables z1,
z2, p1, p2, Q, and γ. The procedure is presented in the pseudocode in Algorithm 5.1.

Given that each data point corresponds to the mean return of 1000 rollouts, it was
expected to approximately follow a Gaussian distribution by virtue of the Central Limit
Theorem. This assumption was further confirmed empirically using the Shapiro-
Wilk normality test. Pairwise comparisons between hyperparameterizations were then
conducted using the Student’s t-test to identify statistically significant differences.
Additional insights were obtained through descriptive statistics and boxplots.

It should be noted that the variance within each rollout reflects the stochasticity
of the policy distribution, and it does not carry comparative meaning across hy-
perparameterizations. Instead, statistical comparisons rely on the variability of the
mean returns across repeated rollouts, which captures the stability and effectiveness
of each configuration. Likewise, differences in total training and evaluation runtime
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Algorithm 5.2 Monte Carlo BFGS Maximization Procedure
1: Fix random seed for reproducibility
2: for i = 1 to 10000 do ▷ Monte Carlo iterations
3: Sample random demand component ε ∼ U(A,B)

4: Initialize candidate solution x0 = (1.0, 1.0)

5: Apply BFGS to maximize objective function V ∗(x0; ε)

6: while BFGS does not converge do
7: Reinitialize x0 with random values in [A,B]

8: Retry BFGS
9: end while
10: Record optimized objective value V ∗

11: Compute and store decision variables z1, z2, p1(z1), p2(z2), Q, γ
12: end for

are considered at the level of hyperparameterizations rather than individual rollouts.
All of the insights above are examined in conjunction with each hyperparam-

eterization’s stability and output smoothness during training. These properties are
assessed via plots of the 100-point moving average of the total return and the evolu-
tion of the entropy coefficient throughout the duration of training.

The aforementioned procedures are applied individually for each problem in-
stance, comparing the different hyperparameterizations and concluding on which
ones perform best.

5.2.3 Comparison Against Analytical and Monte Carlo Benchmarks

After identifying the best-performing hyperparameterization(s) of SAC, the results,
comprising the overall mean total reward, the resulting means of the z1 and z2 decision
variables, the corresponding derivative prices p1 and p2, the initial inventory Q, and the
inventory retention percentage γ are compared against those reported in [6], as well as
against results obtained through the application of a Monte Carlo Broyden-Fletcher-
Goldfarb-Shanno (MC-BFGS) method to the analytical model described therein.

In this the MC-BFGS case, the random demand component ε is sampled 10000

times, with BFGS applied separately for each realization. This procedure yields a
Monte Carlo approximation of the expected profit over the distribution of ε, provid-
ing aggregate results that can be directly compared with those of SAC. The imple-
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mentation is summarized in Algorithm 5.2. It should be noted that while the point
(1, 1) was used as a consistent starting point for optimization, having been found to
perform reliably across all iterations, a fallback strategy for random restarts was also
included to handle potential convergence failures. However, further refinement of this
procedure was deemed outside the scope of the present thesis, as the specific solution
methodology was intended solely to serve as an alternative computational bench-
mark. The SciPy Python library implementation was used for the BFGS algorithm,
which is based on the typical algorithm due to Nocedal and Wright [38].

5.2.4 Transfer Capabilities of SAC on QDNP

To assess the generalization and transferability capabilities of a trained SAC agent on
the standard QDNP model, a dedicated evaluation procedure was designed. Specifi-
cally, the agent was trained on the Store 1 problem instance and then directly applied
to perturbed versions of the same instance without any further retraining. The per-
turbations were generated by modifying a single problem parameter by ±10%, ±20%,
and ±30% of its original value, while keeping all the other parameters fixed.

The performance of the transferred policy was compared against a ground-truth
baseline, achieved by retraining SAC from scratch under the perturbed parameter
setting. The parameters under investigation belong to two groups. The first group is
related to demand modeling and includes a, b, and ϕ. The second group refers to the
costs and donation reward and includes C0, Cd, Cs, and R. Therefore, a systematic
examination is made across the two most crucial parameter groups of the model,
with regard to how robustly a learned policy can generalize beyond its training
environment.

From a reinforcement learning formality perspective, following Lazaric’s frame-
work on knowledge transfer in reinforcement learning [39], this setup can be for-
mally described as a transfer problem between MDPs with a shared state and ac-
tion space S × A. The Store 1 problem instance defines the source task Msource =

(S,A, Tsource, Rsource), and each perturbed instance defines a corresponding target task
Mtarget = (S,A, Ttarget, Rtarget). Since the perturbations affect only the transition and/or
reward parameters while preserving the state and action spaces, this constitutes a case
of transfer with fixed S×A [39]. The knowledge transferred corresponds to the policy
πsource learned by SAC on the source task, which is then applied to the target tasks
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System CPU Model Threads/Core Cores/Socket RAM (GB) Problem Instance

PC1 Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz 2 4 8 1
PC2 Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz 2 4 8 2
PC3 Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 2 4 8 3
PC4 Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 2 4 8 4

Table 5.4: System characteristics and corresponding problem instances

without additional training. This form of transfer is commonly referred to as zero-
shot policy transfer [40]. The evaluation compares the expected return V πsource

Mtarget
of the

transferred policy against the optimal expected return V π∗
target

Mtarget
obtained by retraining

SAC on each target MDP, thereby quantifying any performance degradation under
structured environment perturbations.

5.3 Implementation Details

All experiments were implemented in Python 3.10.12, primarily relying on the Stable-
Baselines3 library for reinforcement learning and PyTorch as the underlying deep
learning framework. Environment modeling was supported through Gymnasium. Sup-
porting libraries included NumPy and SciPy for numerical computations, statistics and
optimization routines, Pandas for data handling, and Matplotlib for visualization.

Each problem instance was executed on a designated machine to ensure consis-
tency and to avoid confounding effects from varying system performance. The system
specifications per problem instance are reported in Table 5.4. This setup was main-
tained for both applications of SAC examined. The MC-BFGS and all result data
processing were implemented via Jupyter Notebook in Python 3.10.12, on an 8 GB
system with an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz CPU model, with 4
Cores and 8 threads. All random generators are initialized with a seed value of 190.
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CHAPTER 6

EXPERIMENTAL RESULTS

6.1 SAC Tuning Results

6.2 Comparative Analysis

6.3 Zero‐Shot Policy Transfer Results

6.1 SAC Tuning Results

The tuning of SAC required a careful evaluation framework as its performance de-
pends not only on the final returns but also on the stability of learning. The twelve
tested hyperparameterizations, labeled H1-H12, are shown in Table 6.1. The evalu-
ation of each candidate considered several aspects, including the learning dynamics
observed during training and the descriptive statistics that were computed from the
evaluation of the final learned policy. In addition, boxplots and statistical hypothesis
tests were employed to identify significant pairwise differences between hyperparam-
eterizations.

To determine the most suitable hyperparameterization for each problem instance,
learning curves were inspected through the 100-point moving average of the total
reward. Preference was given to runs in which the average return reached a stable
plateau within the computational budget. The behavior of the entropy coefficient
was also monitored, since it provides insight into the balance between exploration
and exploitation. Higher values, close to 1, indicate exploratory action choices, while
values below 0.5 correspond to increasingly exploitative policy behavior. Ideally, the
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Label Learning Rate τ Gradient Steps

H1 0.0003 0.005 1

H2 0.0003 0.005 4

H3 0.0003 0.05 1

H4 0.0003 0.05 4

H5 0.0003 1.0 1

H6 0.0003 1.0 4

H7 3e-06 0.005 1

H8 3e-06 0.005 4

H9 3e-06 0.05 1

H10 3e-06 0.05 4

H11 3e-06 1.0 1

H12 3e-06 1.0 4

Table 6.1: Legend for hyperparameterization labels

SAC SAC (KDE‐QDNP)

Problem Instance Store 1 Store 2 Store 3 Store 4 Store 1 Store 2 Store 3 Store 4
Smooth (H) 1,2,3,5,6 1,3,5,6 1,3,5,6 1,3,4,5 1,2,3,5,6 1,2,3,5,6 1,3,5,6 1,3,4,5,6

Top 5 (based on Mean) (H) 7,11,8,5,6 3,10,1,9,2 9,3,4,7,10 9,3,7,5,10 5,8,11,4,6 10,2,9,7,3 3,4,10,7,8 7,3,8,12,2

Smooth & Top 5 (H) 5,6 3,1 3 3,5 5,6 2,3 3,5 3

Best (H) 5 3 3 3 5 3 3 3

Table 6.2: Best hyperparameterizations per problem instance, for SAC and SAC (KDE-
QDNP)

entropy coefficient should decrease smoothly into the exploitation regime without
large oscillations. If oscillations occur, they should remain within stable bands such
as between 0.2 and 0.4, without abrupt jumps or drops. This pattern indicates that the
agent is transitioning consistently from exploration to exploitation and has therefore
learned a sufficiently stable policy.

The results of the comparison are summarized in Table 6.2. For each problem
instance, candidates with the smoothest entropy coefficient trajectories were identified
from Figures A.1-A.16 in Appendix A for the standard SAC implementation and
Figures B.1-B.16 in Appendix B for the SAC application on the KDE enhanced
QDNP. These figures also display the 100-point moving average of the total reward per
episode, where the hyperparameterizations with smooth entropy dynamics typically
coincide with runs that reach and maintain a stable plateau over most of the training
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(a) Reward progress per episode: Store 1 - H5 (b) Entropy coefficient per timestep: Store 1 - H5

(c) Reward progress per episode: Store 2 - H3 (d) Entropy coefficient per timestep: Store 2 - H3

(e) Reward progress per episode: Store 3 - H3 (f) Entropy coefficient per timestep: Store 3 - H3

(g) Reward progress per episode: Store 4 - H3 (h) Entropy coefficient per timestep: Store 4 - H3

Figure 6.1: Tuning progress of best hyperparameterizations, per problem instance
(SAC)
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(a) Reward progress per episode: Store 1 - H5 (b) Entropy coefficient per timestep: Store 1 - H5

(c) Reward progress per episode: Store 2 - H3 (d) Entropy coefficient per timestep: Store 2 - H3

(e) Reward progress per episode: Store 3 - H3 (f) Entropy coefficient per timestep: Store 3 - H3

(g) Reward progress per episode: Store 4 - H3 (h) Entropy coefficient per timestep: Store 4 - H3

Figure 6.2: Tuning progress of best hyperparameterizations, per problem instance
(SAC (KDE-QDNP))
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Problem Instance H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

Store 1 9 8 9 8 7 7 7 7 9 8 7 8

Store 2 6 6 6 10 10 9 6 9 6 6 9 11

Store 3 9 9 7 7 7 7 7 7 7 3 7 9

Store 4 10 5 5 10 5 11 5 10 5 5 11 4

Table 6.3: Significance sums per hyperparameterization (SAC)

Problem Instance H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

Store 1 9 8 9 8 8 8 11 8 9 8 8 8

Store 2 6 6 6 11 11 9 6 9 6 6 9 11

Store 3 9 9 8 4 11 5 4 5 5 4 5 9

Store 4 11 5 5 10 11 10 6 5 5 6 11 5

Table 6.4: Significance sums per hyperparameterization (SAC on KDE-QDNP)

horizon. In parallel, the top five candidates were selected according to the mean of
the performance distribution obtained from the evaluation of the final policy. This
information is reported in the descriptive statistics in Tables C.1-C.4 for standard
SAC and Tables-C.5-C.8 for the SAC on the KDE-QDNP application. These tables
are found in Appendix C and include unique rankings based on the mean total
reward achieved by each candidate, with higher values ranked first. Since the QDNP
is a maximization problem, the best hyperparameterizations are listed in descending
order in Table 6.2. The final selection corresponds to those that satisfy both criteria,
namely smooth entropy behavior and inclusion among the top five performers.

A Shapiro-Wilk normality test was applied to the distributions of mean total profit
obtained during the evaluation phase of both applications of SAC, where the final
learned policy is executed. All cases satisfied the test, indicating that the distributions
can be considered approximately normal.

Provided all distributions satisfied the normality assumption, pairwise t-tests were
applied to compare them and identify statistically significant differences. The detailed
results of these tests are reported in Appendix D for both SAC applications. For each
pairwise comparison, a value of 1 is assigned if the null hypothesis is rejected (indicat-
ing a statistically significant difference) and 0 if it is not rejected. The corresponding
significance sums represent the total number of null hypothesis rejections for each
candidate. They are summarized in Table 6.3 for the SAC application on the stan-
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Problem Instance Store 1 Store 2 Store 3 Store 4

Hyperparameterization H5 H3 H3 H3

SAC 1038.21 798.66 6910.44 2502.00

SAC (KDE‐QDNP) 1080.00 873.60 6949.44 2623.09

Table 6.5: Runtimes of best hyperparameterizations per SAC application and problem
instance (seconds)

dard QDNP and in Table 6.4 for the SAC application on the KDE-QDNP variant. The
higher the sum, the more frequently a given hyperparameterization differs signifi-
cantly from the others, whereas lower sums indicate candidates whose performance
is more statistically similar to the rest.

The best hyperparameterizations identified for each problem instance and each
SAC application were not unique in most cases. To resolve these ties, the results
from the boxplots and the t-tests were examined in order to determine whether
the competing candidates perform equivalently or if one can be considered clearly
superior.

For the standard SAC method, no statistical differences were observed between
any of the identified pairs of hyperparameterizations. The corresponding values in
Figure D.1 are all equal to 0, indicating that the resulting p-values were higher than
the considered significance level of 0.05. This conclusion is further supported by the
boxplots in Figures E.1, E.2, and E.4, in Appendix E, which show nearly identical
distributions for the compared candidates. Based on these results, hyperparameteri-
zation H5 was selected for Store 1, while hyperparameterization H3 was selected for
Stores 2-4, as summarized in Table 6.2.

For the KDE-QDNP SAC application, the pairwise t-test comparison for Store 1
showed a value of 1 between hyperparameterizations 5 and 6 in Table D.2, indicating
a p-value below 0.05 and thus a statistically significant difference. Hyperparameteri-
zation 5 emerged as the better choice, achieving a higher mean, which is also visually
supported by the boxplots in Figure E.5, where its distribution lies consistently higher.
A similar outcome was obtained for Store 3, where both the values in Table D.2 and
the boxplots in Figure E.7 point to hyperparameterization 3 as the superior candidate.
For Store 2, no significant difference was detected between hyperparameterizations 2
and 3, although Figure E.6 shows a slight displacement between their distributions.
To maintain consistency across SAC applications and among problem instances, hy-
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perparameterization 3 was selected for Store 2 as well. Finally, hyperparameterization
3 was the sole candidate for Store 4, making it the natural choice.

The tuning progress plots of the selected hyperparameterizations, showing the
100-point moving average of total reward and the entropy coefficient per timestep,
are provided in Figure 6.1 for the standard SAC application and Figure 6.2 for
the KDE-QDNP SAC application. These plots illustrate the learning dynamics of
the chosen finalists, highlighting the stable reward trajectories and smooth entropy
behavior observed during training.

Examining the boxplots and significance sums reveals that several hyperparame-
terizations perform at comparable levels in each scenario. In many cases, the medians
of several candidates are very close to, or even coincident with, those of the top per-
formers. These were nevertheless rejected due to insufficient stability or smoothness
during training. Notably, although instability during learning is observed in such
cases, the final policies they produce can still achieve results that are on par with the
more stable setups. When looking at the overall picture, only a few hyperparameteri-
zations in each problem instance appear to become trapped in what can be interpreted
as local maxima, yielding consistently lower outcomes than the best-performing runs.
This observation aligns with SAC’s resilience to variations in hyperparameter configu-
rations. All experiments were conducted with random generators seeded at 190. Each
evaluation consisted of 100 runs of 1000 samples, and all cases passed a normality
test. Given the large number of samples per run, the distribution of mean outcomes
is approximately normal according to the Central Limit Theorem. Therefore, while
different seeds could introduce minor variations, these are not expected to affect the
overall conclusions, making extensive retesting across multiple seeds unnecessary.

Finally, as an additional observation, the chosen hyperparameterizations for each
problem instance, besides Store 3, correspond to faster runtime implementations for
both SAC applications. The best runtimes are summarized in Table 6.5, while detailed
runtime information for all hyperparameterizations can be found in Tables F.1 and
F.2 in Appendix F.

6.2 Comparative Analysis

The results of the SAC applications are compared with that of the analytical solution
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Method Expected Profit z1 z2 p1 p2 Q γ 1− γ

Analytical 103.82 - - 1.65 - 236.79 - -
SAC 105.88 1.60 -1.08 1.65 1.25 229.17 0.85 0.15
SAC (KDE-QDNP) 108.62 1.67 -1.08 1.65 1.25 232.30 0.84 0.16
MC-BFGS 104.38 0.99 1.49 1.63 1.35 205.29 0.86 0.14

(a) Store 1

Method Expected Profit z1 z2 p1 p2 Q γ 1− γ

Analytical 87.17 - - 1.66 - 210.06 - -
SAC 89.38 1.56 -0.99 1.66 1.24 206.07 0.82 0.18
SAC (KDE-QDNP) 92.17 1.51 -0.99 1.66 1.25 203.44 0.84 0.16
MC-BFGS 91.61 1.04 3.01 1.63 1.34 185.72 0.83 0.17

(b) Store 2

Method Expected Profit z1 z2 p1 p2 Q γ 1− γ

Analytical 123.09 - - 1.62 - 273.88 - -
SAC 124.40 1.64 -1.27 1.62 1.25 267.40 0.82 0.18
SAC (KDE-QDNP) 126.41 1.95 -1.05 1.62 1.27 282.16 0.77 0.23
MC-BFGS 121.26 0.99 1.22 1.60 1.34 241.94 0.83 0.17

(c) Store 3

Method Expected Profit z1 z2 p1 p2 Q γ 1− γ

Analytical 69.29 - - 1.62 - 186.75 - -
SAC 67.99 1.30 -0.98 1.61 1.21 179.98 0.73 0.27
SAC (KDE-QDNP) 70.42 1.27 -1.06 1.61 1.21 178.53 0.73 0.23
MC-BFGS 75.37 1.01 0.66 1.60 1.31 171.66 0.70 0.3

(d) Store 4

Table 6.6: Aggregate (mean) results for all problem instances.

rreported in [6], as well as with the results of MC-BFGS for each problem instance.
The comparison includes the total expected profit, the decision variables z1 and z2,
the corresponding prices p1 and p2, the initial stocking quantity Q, and the inventory
retention and donation percentages γ and 1 − γ, respectively. All the information
is provided in Table 6.6. The analytical solution is considered as the ground truth.
Therefore, only the variables included in [6] can be directly compared with the results
obtained here. The differences for the expected profit, the price p1, and for Q are
reported in Table 6.7. In the difference tables (Tables 6.7a, 6.7c, and 6.7d), a plus sign
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Instance SAC SAC (KDE) MC‐BFGS
Store 1 +2.06 +4.80 +0.56

Store 2 +2.21 +5.00 +4.44

Store 3 +1.31 +3.32 −1.83
Store 4 −1.30 +1.13 +6.08

(a) Expected profit differences

Instance SAC SAC (KDE) MC‐BFGS
Store 1 1.98% 4.62% 0.54%
Store 2 2.54% 5.74% 5.09%
Store 3 1.06% 2.70% 1.49%
Store 4 1.88% 1.63% 8.77%

(b) Relative error w.r.t the expected profit

of the analytical solution

Instance SAC SAC (KDE) MC‐BFGS
Store 1 0.00 0.00 −0.03
Store 2 0.00 0.00 −0.03
Store 3 0.00 0.00 −0.02
Store 4 −0.01 −0.01 −0.02

(c) p1 differences

Instance SAC SAC (KDE) MC‐BFGS
Store 1 −7.62 −4.49 −31.50
Store 2 −3.99 −6.62 −24.34
Store 3 −6.48 +8.28 −31.94
Store 4 −6.77 −8.22 −15.09

(d) Q differences

Table 6.7: Comparisons with the analytical solution (Ground Truth).

indicates overestimation, a minus sign indicates underestimation, and zero denotes
exact agreement with the analytical solution. For the relative error table (Table 6.7b),
only absolute percentage values are reported.

Although the model is not time-series based, it estimates the expected profit over
a multi-hour selling period. The analytically derived value is treated as the reference
or “true” value, and the relative errors express the difference between this benchmark
and the approximated final expected profit produced by each implementation. This
is analogous to the concept of mean absolute percentage error (MAPE) applied to a
single observation, as discussed by Lewis [41], who considers forecasts with MAPE
below 10% to be highly accurate approximations.

The expected profit is the primary metric of interest, and the aforementioned
relative error is used to quantify deviations across implementations. According to
Table 6.7b, SAC achieved consistent results, with relative errors no greater than 2.54%
of the expected profit (Store 2), when compared to the analytical solution. Such errors
are small and unlikely to meaningfully affect decision-making in practice. For SAC
application on the KDE enhanced QDNP, relative errors increasd in all instances
except Store 4, with the largest difference being 5.75% for Store 2. Although higher,
the achieved error remains modest and unlikely to pose operational issues. Over the
78-hour selling horizon (see Table 5.1 in Chapter 5), this corresponds to an average
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misestimate of approximately 0.06 per hour. At the given disposal and salvage values
(Cd = Cs = 0.05), this is roughly equivalent to the value of one product unit per hour,
essentially the scale of a single salvage or disposal event. In contrast, MC-BFGS yields
inconsistent performance across problem instances. While errors are acceptable for
Stores 1-3, the deviation for Store 4 reaches 8.77%, which approaches a magnitude
that could be considered practically significant.

Tables 6.7c and 6.7d report the differences in p1 and Q, respectively, compared with
the analytical solution. For p1, the differences for both SAC applications are identical
and negligible, while MC-BFGS shows slightly larger but still manageable deviations
of 0.02 to 0.03. This suggests that SAC provides more reliable approximations. For
the stocking quantity Q, the deviations are notably higher for MC-BFGS, while SAC
applications remain closer to the analytical solution, regardless of QDNP modeling.

Looking at the broader results in Table 6.6, which also include the decision vari-
ables z1 and z2, as well as p2, γ, and 1− γ, both SAC applications produce consistent
results across Stores 1, 2, and 3, even when the pairs of z1 and z2 differ. Store 4
shows larger discrepancies across all variables, but the resulting expected profit re-
mains close to the analytical benchmark. It should be emphasized that all reported
values were rounded to two decimal places for comparability with [6] as well as to
reflect the level of precision used in managerial decision-making (e.g., supermarket
prices are typically expressed up to two decimals). As such, some values that appear
identical on the tables may in fact differ in finer detail, given the actual algorithm
output is of higher precision. Therefore, larger observed deviations in expected profit
are not necessarily inconsistent with seemingly identical intermediate variables.

Overall, the results demonstrate that SAC yields sufficiently accurate approxima-
tions across all four problem instances. Under SAC, the KDE enhanced version of the
QDNP model produces results that are systematically higher than the analytical so-
lution, as expected due to distributional approximation, but still within an acceptable
margin. In contrast MC-BFGS shows less consistent performance. It is noteworthy
that during experimentatino higher sensitivity to the choice of starting point was ob-
served, with some runs leading to convergence failures, was observed. This difficulty
is avoided with reinforcement learning, which does not require gradient information
or careful initialization.
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% of Original Value a b ϕ C0 Cd Cs R

-10 % 0.16% 0.25% 0.02% 0.13% 0.47% 0.02% 0.12%
+10 % 0.30% 0.54% 0.17% 1.09% 0.01% 0.01% 0.30%

-20 % 4.86% 0.89% 0.08% 1.12% 0.01% 0.04% 1.01%
+20 % 0.74% 1.32% 0.02% 3.68% 0.05% 0.11% 1.63%

-30 % 16.09% 1.60% 0.12% 2.38% 0.03% 0.00% 1.76%
+30 % 1.49% 5.25% 0.21% 15.13% 0.04% 0.07% 4.30%

Table 6.8: Expected profit relative error across parameter perturbations

6.3 Zero‐Shot Policy Transfer Results

The focus of this analysis is the expected profit, which is the central performance
metric since its maximization is the direct objective of the QDNP. To evaluate gen-
eralization performance, the relative error is measured, defined as the proportional
deviation between the expected profit obtained from a pretrained SAC policy on the
Store 1 problem instance (the source task) when directly applied to a perturbed ver-
sion of the same instance (a target task), and the corresponding ground truth. The
ground truth is defined as the expected profit achieved when SAC is retrained from
scratch under the perturbed parameter setting. Perturbations were introduced by ad-
justing each parameter individually across small, moderate, and large deviations from
its original value, while leaving all other parameters unchanged.

The results presented in Table 6.8 show that SAC exhibits strong transfer capa-
bilities in this task. For perturbations of 10%, relative errors remain negligible across
all parameters and consistently fall below 1%, indicating that the zero-shot trans-
ferred policy generalizes reliably to small environment variations. At perturbations of
20%, performance remains robust with relative errors generally below 5%, although
isolated increases such as a 20% reduction in a or a 20% increase in C0 approach
this threshold. At the largest perturbation level of 30%, most parameters still yield
moderate errors, but notable outliers emerge for a 30% reduction in a with an error
of 16.09% and a 30% increase in C0 with an error of 15.13%. These cases exceed
the 10% tolerance often cited for accurate approximations [41], suggesting that zero-
shot transfer becomes unreliable under substantial changes in the demand parameter
dependent on market size or in the per-unit purchasing cost.

The complete results, presented in AppendixG from Table G.1 to Table G.7, pro-
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vide further insight into the behavior of the decision variables z1 and z2 as well
as derived variables under each perturbation. While deviations are observable com-
pared to the retrained ground truth cases, the overall expected profits remain closely
aligned. This suggests that the transferred policy is able to exploit alternative deci-
sion pathways that yield near-equivalent returns, highlighting a degree of robustness
in policy behavior even under partial model mismatch. As noted in Section 6.2, all
reported values are rounded to two decimal places for comparability with [6] and to
reflect managerial decision-making precision. Consequently, some values that appear
identical may differ in finer detail, and observed deviations in expected profit can
arise even when intermediate decision variables are close.

Overall, the findings indicate that SAC can generalize effectively across a broad
range of individual parameter variations in the QDNP under zero-shot policy transfer.
For small to moderate changes in demand or cost parameters, the transferred policy
maintains near-optimal expected profit, reducing the need for frequent retraining
and saving computational resources. However, once perturbations become sufficiently
large in select parameters, retraining is required to recover near-optimal performance.
These results suggest that SAC’s zero-shot transferability can be leveraged to make
operational decisions without retraining the model, unless substantial deviations from
the source problem occur, highlighting SAC’s suitability for online systems capable
of accurate, real-time decision-making.
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CHAPTER 7

CONCLUSION

The focal point of the present thesis was the examination of the application of SAC,
an RL algorithm, to the QDNP and a data-driven KDE-based variant. The central
objective was to assess whether SAC can serve as an effective alternative to analytical
and classical optimization approaches, particularly under demand uncertainty, while
also exploring the potential of policy transfer to handle environmental changes.

The results show that SAC reliably approximates the analytical solution with small
errors across multiple real-world problem instances, remaining well within practical
tolerances for decision-making. The KDE-enhanced model introduced slight increases
in approximation error but remained within the same tolerance levels that deem
the framework successful in estimation. In comparison, the gradient-based MC-BFGS
method used as a baseline approach was less stable and more sensitive to initialization,
underscoring the robustness and flexibility of RL in this context.

Moreover, zero-shot policy transfer experiments showed that a pretrained SAC
policy can generalize effectively across changes in demand and cost parameters. For
small and medium perturbations, deviations from retrained ground truth solutions
were negligible, suggesting that SAC offers practical flexibility in dynamic environ-
ments. Significant performance degradation was only observed for larger pertrurba-
tions. In such scenarios, retraining is required to restore near-optimality.

The results add to the discussion on how RL can be applied in operations manage-
ment. Evidence from this study suggests that SAC can provide a stable and effective
way of solving the QDNP and its data-driven variant. The considered problem setting
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was shown to be a useful testbed as it offers an analytical benchmark for comparison,
it contains sequential decision-making embedded in its formulation, and the stochas-
tic component is isolated in a controlled and testable way. These features make it
possible to examine SAC’s behavior under clear conditions, while also pointing to its
potential in more dynamic, data-driven environments where adaptability and gener-
alization matter most.

Future work could extend the current experiments by incorporating a larger and
more diverse set of store instances and by exploring alternative quality deterioration
patterns, such as exponential decay relevant for products like meat. Additional oppor-
tunities include considering a wider range of demand distributions, evaluating policy
transfer under simultaneous changes in multiple parameters, and integrating more
data-driven components. Expanding along these directions would allow for a more
comprehensive understanding of SAC’s performance and generalization capabilities
in complex, real-world environments.

In conclusion, by applying SAC to the QDNP and its data-driven extension, this
thesis provides a focused example of RL within a well-structured inventory model and
lays the groundwork for extending such methods to more complex and data-driven
decision problems. The demonstrated accuracy, robustness, and zero-shot transfer-
ability of SAC suggest that the framework can support operational decision-making
in practice, enabling near-optimal stocking and pricing decisions even under chang-
ing demand and cost conditions. This highlights the potential of RL as a flexible tool
for firms seeking adaptive, data-driven inventory management strategies that reduce
reliance on frequent retraining or rigid analytical models.
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APPENDIX A

SAC TRAINING TRACKING

A.1 Store 1

A.2 Store 2

A.3 Store 3

A.4 Store 4

A.1 Store 1

(a) Reward progress per episode (H1) (b) Entropy coefficient per timestep (H1)

Figure A.1: Store 1 - Hyperparameterizations (H): 1-1
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(a) Reward progress per episode (H2) (b) Entropy coefficient per timestep (H2)

(c) Reward progress per episode (H3) (d) Entropy coefficient per timestep (H3)

(e) Reward progress per episode (H4) (f) Entropy coefficient per timestep (H4)

(g) Reward progress per episode (H5) (h) Entropy coefficient per timestep (H5)

Figure A.2: Store 1 - Hyperparameterizations (H): 2-5
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(a) Reward progress per episode (H6) (b) Entropy coefficient per timestep (H6)

(c) Reward progress per episode (H7) (d) Entropy coefficient per timestep (H7)

(e) Reward progress per episode (H8) (f) Entropy coefficient per timestep (H8)

(g) Reward progress per episode (H9) (h) Entropy coefficient per timestep (H9)

Figure A.3: Store 1 - Hyperparameterizations (H): 6-9
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(a) Reward progress per episode (H10) (b) Entropy coefficient per timestep (H10)

(c) Reward progress per episode (H11) (d) Entropy coefficient per timestep (H11)

(e) Reward progress per episode (H12) (f) Entropy coefficient per timestep (H12)

Figure A.4: Store 1 - Hyperparameterizations (H): 10-12

A.2 Store 2

(a) Reward progress per episode (H1) (b) Entropy coefficient per timestep (H1)

Figure A.5: Store 2 - Hyperparameterizations (H): 1-1
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(a) Reward progress per episode (H2) (b) Entropy coefficient per timestep (H2)

(c) Reward progress per episode (H3) (d) Entropy coefficient per timestep (H3)

(e) Reward progress per episode (H4) (f) Entropy coefficient per timestep (H4)

(g) Reward progress per episode (H5) (h) Entropy coefficient per timestep (H5)

Figure A.6: Store 2 - Hyperparameterizations (H): 2-5
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(a) Reward progress per episode (H6) (b) Entropy coefficient per timestep (H6)

(c) Reward progress per episode (H7) (d) Entropy coefficient per timestep (H7)

(e) Reward progress per episode (H8) (f) Entropy coefficient per timestep (H8)

(g) Reward progress per episode (H9) (h) Entropy coefficient per timestep (H9)

Figure A.7: Store 2 - Hyperparameterizations (H): 6-9
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(a) Reward progress per episode (H10) (b) Entropy coefficient per timestep (H10)

(c) Reward progress per episode (H11) (d) Entropy coefficient per timestep (H11)

(e) Reward progress per episode (H12) (f) Entropy coefficient per timestep (H12)

Figure A.8: Store 2 - Hyperparameterizations (H): 10-12

A.3 Store 3

(a) Reward progress per episode (H1) (b) Entropy coefficient per timestep (H1)

Figure A.9: Store 3 - Hyperparameterizations (H): 1-1
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(a) Reward progress per episode (H2) (b) Entropy coefficient per timestep (H2)

(c) Reward progress per episode (H3) (d) Entropy coefficient per timestep (H3)

(e) Reward progress per episode (H4) (f) Entropy coefficient per timestep (H4)

(g) Reward progress per episode (H5) (h) Entropy coefficient per timestep (H5)

Figure A.10: Store 3 - Hyperparameterizations (H): 2-5
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(a) Reward progress per episode (H6) (b) Entropy coefficient per timestep (H6)

(c) Reward progress per episode (H7) (d) Entropy coefficient per timestep (H7)

(e) Reward progress per episode (H8) (f) Entropy coefficient per timestep (H8)

(g) Reward progress per episode (H9) (h) Entropy coefficient per timestep (H9)

Figure A.11: Store 3 - Hyperparameterizations (H): 6-9
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(a) Reward progress per episode (H10) (b) Entropy coefficient per timestep (H10)

(c) Reward progress per episode (H11) (d) Entropy coefficient per timestep (H11)

(e) Reward progress per episode (H12) (f) Entropy coefficient per timestep (H21)

Figure A.12: Store 3 - Hyperparameterizations (H): 10-12

A.4 Store 4

(a) Reward progress per episode (H1) (b) Entropy coefficient per timestep (H1)

Figure A.13: Store 4 - Hyperparameterizations (H): 1-1
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(a) Reward progress per episode (H2) (b) Entropy coefficient per timestep (H2)

(c) Reward progress per episode (H3) (d) Entropy coefficient per timestep (H3)

(e) Reward progress per episode (H4) (f) Entropy coefficient per timestep (H4)

(g) Reward progress per episode (H5) (h) Entropy coefficient per timestep (H5)

Figure A.14: Store 4 - Hyperparameterizations (H): 2-5
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(a) Reward progress per episode (H6) (b) Entropy coefficient per timestep (H6)

(c) Reward progress per episode (H7) (d) Entropy coefficient per timestep (H7)

(e) Reward progress per episode (H8) (f) Entropy coefficient per timestep (H8)

(g) Reward progress per episode (H9) (h) Entropy coefficient per timestep (H9)

Figure A.15: Store 4 - Hyperparameterizations (H): 6-9
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(a) Reward progress per episode (H10) (b) Entropy coefficient per timestep (H10)

(c) Reward progress per episode (H11) (d) Entropy coefficient per timestep (H11)

(e) Reward progress per episode (H12) (f) Entropy coefficient per timestep (H21)

Figure A.16: Store 4 - Hyperparameterizations (H): 10-12
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APPENDIX B

SAC (KDE-QDNP) TRAINING TRACKING

B.1 Store 1

B.2 Store 2

B.3 Store 3

B.4 Store 4

B.1 Store 1

(a) Reward progress per episode (H1) (b) Entropy coefficient per timestep (H1)

Figure B.1: Store 1 - Hyperparameterizations (H): 1-1
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(a) Reward progress per episode (H2) (b) Entropy coefficient per timestep (H2)

(c) Reward progress per episode (H3) (d) Entropy coefficient per timestep (H3)

(e) Reward progress per episode (H4) (f) Entropy coefficient per timestep (H4)

(g) Reward progress per episode (H5) (h) Entropy coefficient per timestep (H5)

Figure B.2: Store 1 - Hyperparameterizations (H): 2-5
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(a) Reward progress per episode (H6) (b) Entropy coefficient per timestep (H6)

(c) Reward progress per episode (H7) (d) Entropy coefficient per timestep (H7)

(e) Reward progress per episode (H8) (f) Entropy coefficient per timestep (H8)

(g) Reward progress per episode (H9) (h) Entropy coefficient per timestep (H9)

Figure B.3: Store 1 - Hyperparameterizations (H): 6-9
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(a) Reward progress per episode (H10) (b) Entropy coefficient per timestep (H10)

(c) Reward progress per episode (H11) (d) Entropy coefficient per timestep (H11)

(e) Reward progress per episode (H12) (f) Entropy coefficient per timestep (H12)

Figure B.4: Store 1 - Hyperparameterizations (H): 10-12

B.2 Store 2

(a) Reward progress per episode (H1) (b) Entropy coefficient per timestep (H1)

Figure B.5: Store 2 - Hyperparameterizations (H): 1-1
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(a) Reward progress per episode (H2) (b) Entropy coefficient per timestep (H2)

(c) Reward progress per episode (H3) (d) Entropy coefficient per timestep (H3)

(e) Reward progress per episode (H4) (f) Entropy coefficient per timestep (H4)

(g) Reward progress per episode (H5) (h) Entropy coefficient per timestep (H5)

Figure B.6: Store 2 - Hyperparameterizations (H): 2-5
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(a) Reward progress per episode (H6) (b) Entropy coefficient per timestep (H6)

(c) Reward progress per episode (H7) (d) Entropy coefficient per timestep (H7)

(e) Reward progress per episode (H8) (f) Entropy coefficient per timestep (H8)

(g) Reward progress per episode (H9) (h) Entropy coefficient per timestep (H9)

Figure B.7: Store 2 - Hyperparameterizations (H): 6-9
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(a) Reward progress per episode (H10) (b) Entropy coefficient per timestep (H10)

(c) Reward progress per episode (H11) (d) Entropy coefficient per timestep (H11)

(e) Reward progress per episode (H12) (f) Entropy coefficient per timestep (H12)

Figure B.8: Store 2 - Hyperparameterizations (H): 10-12

B.3 Store 3

(a) Reward progress per episode (H1) (b) Entropy coefficient per timestep (H1)

Figure B.9: Store 3 - Hyperparameterizations (H): 1-1
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(a) Reward progress per episode (H2) (b) Entropy coefficient per timestep (H2)

(c) Reward progress per episode (H3) (d) Entropy coefficient per timestep (H3)

(e) Reward progress per episode (H4) (f) Entropy coefficient per timestep (H4)

(g) Reward progress per episode (H5) (h) Entropy coefficient per timestep (H5)

Figure B.10: Store 3 - Hyperparameterizations (H): 2-5
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(a) Reward progress per episode (H6) (b) Entropy coefficient per timestep (H6)

(c) Reward progress per episode (H7) (d) Entropy coefficient per timestep (H7)

(e) Reward progress per episode (H8) (f) Entropy coefficient per timestep (H8)

(g) Reward progress per episode (H9) (h) Entropy coefficient per timestep (H9)

Figure B.11: Store 3 - Hyperparameterizations (H): 6-9
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(a) Reward progress per episode (H10) (b) Entropy coefficient per timestep (H10)

(c) Reward progress per episode (H11) (d) Entropy coefficient per timestep (H11)

(e) Reward progress per episode (H12) (f) Entropy coefficient per timestep (H12)

Figure B.12: Store 3 - Hyperparameterizations (H): 10-12

B.4 Store 4

(a) Reward progress per episode (H1) (b) Entropy coefficient per timestep (H1)

Figure B.13: Store 4 - Hyperparameterizations (H): 1-1
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(a) Reward progress per episode (H2) (b) Entropy coefficient per timestep (H2)

(c) Reward progress per episode (H3) (d) Entropy coefficient per timestep (H3)

(e) Reward progress per episode (H4) (f) Entropy coefficient per timestep (H4)

(g) Reward progress per episode (H5) (h) Entropy coefficient per timestep (H5)

Figure B.14: Store 4 - Hyperparameterizations (H): 2-5
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(a) Reward progress per episode (H6) (b) Entropy coefficient per timestep (H6)

(c) Reward progress per episode (H7) (d) Entropy coefficient per timestep (H7)

(e) Reward progress per episode (H8) (f) Entropy coefficient per timestep (H8)

(g) Reward progress per episode (H9) (h) Entropy coefficient per timestep (H9)

Figure B.15: Store 4 - Hyperparameterizations (H): 6-9
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(a) Reward progress per episode (H10) (b) Entropy coefficient per timestep (H10)

(c) Reward progress per episode (H11) (d) Entropy coefficient per timestep (H11)

(e) Reward progress per episode (H12) (f) Entropy coefficient per timestep (H12)

Figure B.16: Store 4 - Hyperparameterizations (H): 10-12
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APPENDIX C

DESCRIPTIVE STATISTICS

C.1 SAC

C.2 SAC (KDE‐QDNP)

C.1 SAC

Hyperparameterization H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
Mean 94.914040 105.160780 94.931460 105.156053 105.871230 105.787896 105.900294 105.876871 94.904494 105.183404 105.896734 105.176055
Median 94.713588 104.955486 94.730840 104.948077 105.723738 105.622710 105.780687 105.751017 94.704251 104.977680 105.797274 104.970709
Std. Dev 1.580311 1.594083 1.580403 1.590601 1.595078 1.600612 1.587050 1.588341 1.580343 1.596268 1.582424 1.595093
Max 99.082860 109.372167 99.100522 109.358431 109.978907 109.943640 109.954304 109.946552 99.073303 109.399716 109.923573 109.390932
Min 91.191960 101.410906 91.208971 101.416251 102.099517 101.998907 102.191416 102.149159 91.182531 101.428708 102.247177 101.423698
Mean+Std. Dev 96.494351 106.754863 96.511863 106.746655 107.466308 107.388507 107.487344 107.465212 96.484838 106.779672 107.479159 106.771148
Mean‐Std. Dev 93.333729 103.566696 93.351056 103.565452 104.276152 104.187284 104.313244 104.288530 93.324151 103.587136 104.314310 103.580962
Median+Std. Dev 96.293899 106.549569 96.311243 106.538678 107.318816 107.223321 107.367737 107.339357 96.284594 106.573949 107.379699 106.565802
Median‐Std. Dev 93.133277 103.361402 93.150437 103.357475 104.128660 104.022098 104.193637 104.162676 93.123908 103.381412 104.214850 103.375616
Rank by Mean 11 8 10 9 4 5 1 3 12 6 2 7
Rank by Median 11 8 10 9 4 5 2 3 12 6 1 7

Table C.1: Descriptive statistics per hyperparameterization: Store 1 (SAC)

Hyperparameterization H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
Mean 89.363494 89.332251 89.410225 78.927438 78.836182 88.515556 89.223566 88.501943 89.334633 89.375508 88.519611 80.078872
Median 89.282998 89.206268 89.340100 78.826824 78.737488 88.334249 89.078234 88.320656 89.215858 89.263159 88.338569 79.951400
Std. Dev 1.501731 1.537974 1.508857 1.265769 1.262093 1.548331 1.546735 1.550059 1.535932 1.532776 1.550371 1.314090
Max 93.194261 93.284184 93.260922 82.111304 82.008266 92.604474 93.227208 92.600395 93.272845 93.296912 92.618132 83.398594
Min 86.093415 85.735547 86.074406 75.680272 75.596683 84.901075 85.582332 84.885125 85.759696 85.824104 84.900619 76.729759
Mean+Std. Dev 90.865225 90.870225 90.919082 80.193207 80.098274 90.063886 90.770302 90.052003 90.870565 90.908285 90.069981 81.392962
Mean‐Std. Dev 87.861764 87.794278 87.901367 77.661670 77.574089 86.967225 87.676831 86.951884 87.798700 87.842732 86.969240 78.764781
Median+Std. Dev 90.784729 90.744242 90.848957 80.092593 79.999581 89.882579 90.624969 89.870715 90.751791 90.795935 89.888940 81.265490
Median‐Std. Dev 87.781268 87.668295 87.831242 77.561055 77.475395 86.785918 87.531498 86.770596 87.679926 87.730383 86.788198 78.637310
Rank by Mean 3 5 1 11 12 8 6 9 4 2 7 10
Rank by Median 2 5 1 11 12 8 6 9 4 3 7 10

Table C.2: Descriptive statistics per hyperparameterization: Store 2 (SAC)
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Hyperparameterization H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
Mean 116.497372 116.436541 124.389348 124.381438 123.845801 123.763142 124.369607 123.828140 124.395936 124.083580 123.729592 116.620698
Median 116.287709 116.226804 124.262831 124.268349 123.629104 123.555800 124.283855 123.620195 124.253408 123.873136 123.523107 116.411209
Std. Dev 1.615521 1.613744 1.607706 1.604231 1.611321 1.611970 1.599203 1.613576 1.611727 1.617925 1.611069 1.618719
Max 120.765668 120.699360 128.499800 128.467064 128.090208 128.017833 128.433773 128.080805 128.533892 128.331676 127.981990 120.897764
Min 112.690909 112.633762 120.617212 120.652775 120.029826 119.950279 120.706588 120.006857 120.586723 120.237018 119.920847 112.808143
Mean+Std. Dev 118.112893 118.050285 125.997054 125.985668 125.457122 125.375112 125.968810 125.441716 126.007663 125.701505 125.340661 118.239418
Mean‐Std. Dev 114.881851 114.822798 122.781642 122.777207 122.234480 122.151172 122.770404 122.214564 122.784210 122.465655 122.118523 115.001979
Median+Std. Dev 117.903230 117.840548 125.870537 125.872580 125.240425 125.167770 125.883058 125.233771 125.865135 125.491061 125.134176 118.029928
Median‐Std. Dev 114.672188 114.613061 122.655124 122.664118 122.017784 121.943830 122.684652 122.006619 122.641681 122.255211 121.912038 114.792490
Rank by Mean 11 12 2 3 6 8 4 7 1 5 9 10
Rank by Median 11 12 3 2 6 8 1 7 4 5 9 10

Table C.3: Descriptive statistics per hyperparameterization: Store 3 (SAC)

Hyperparameterization H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
Mean 63.308824 67.902250 67.991940 63.071168 67.920361 63.735060 67.934852 67.500318 67.993033 67.912819 66.526275 67.853893
Median 63.161098 67.808534 67.907582 62.922482 67.803092 63.652081 67.819016 67.396872 67.910018 67.823024 66.540752 67.740167
Std. Dev 1.419390 1.385760 1.409574 1.416688 1.427971 1.454656 1.426953 1.462501 1.408112 1.388080 1.269699 1.375760
Max 67.052594 71.460906 71.605671 66.834534 71.580662 67.591527 71.592306 71.265132 71.603224 71.477583 69.690617 71.391747
Min 60.039279 65.086482 65.004244 59.819639 64.808639 60.471965 64.829364 64.143952 65.012880 65.079703 64.148482 65.116417
Mean+Std. Dev 64.728214 69.288010 69.401514 64.487855 69.348332 65.189716 69.361805 68.962819 69.401145 69.300899 67.795974 69.229653
Mean‐Std. Dev 61.889434 66.516491 66.582367 61.654480 66.492389 62.280404 66.507899 66.037818 66.584921 66.524739 65.256576 66.478133
Median+Std. Dev 64.580488 69.194294 69.317156 64.339169 69.231063 65.106737 69.245969 68.859372 69.318130 69.211105 67.810450 69.115927
Median‐Std. Dev 61.741708 66.422775 66.498008 61.505794 66.375121 62.197424 66.392063 65.934371 66.501906 66.434944 65.271053 66.364407
Rank by Mean 11 6 2 12 4 10 3 8 1 5 9 7
Rank by Median 11 5 2 12 6 10 4 8 1 3 9 7

Table C.4: Descriptive statistics per hyperparameterization: Store 4 (SAC)

C.2 SAC (KDE‐QDNP)

Hyperparameterization H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
Mean 97.560555 107.958187 97.579398 108.498560 108.646806 108.070201 107.074849 108.621817 97.595917 107.939310 108.598517 107.951473
Median 97.499423 107.912940 97.518363 108.445383 108.628776 108.075399 107.112320 108.574797 97.535430 107.893365 108.547034 107.905871
Std. Dev 1.400246 1.414297 1.400409 1.427434 1.426777 1.416955 1.393539 1.427764 1.399480 1.413647 1.427498 1.413685
Max 100.807574 111.206885 100.826148 111.678105 111.708137 111.005875 109.911941 111.739862 100.841999 111.194156 111.737746 111.193580
Min 93.887898 104.242834 93.905773 104.769163 104.952948 104.435091 103.501768 104.901861 93.925198 104.227019 104.873230 104.236766
Mean+Std. Dev 98.960802 109.372484 98.979807 109.925993 110.073583 109.487156 108.468388 110.049581 98.995398 109.352957 110.026015 109.365157
Mean‐Std. Dev 96.160309 106.543890 96.178989 107.071126 107.220030 106.653246 105.681311 107.194053 96.196437 106.525662 107.171018 106.537788
Median+Std. Dev 98.899669 109.327237 98.918772 109.872817 110.055553 109.492354 108.505859 110.002560 98.934910 109.307012 109.974532 109.319555
Median‐Std. Dev 96.099176 106.498644 96.117954 107.017949 107.201999 106.658444 105.718781 107.147033 96.135949 106.479717 107.119535 106.492186
Rank by Mean 12 6 11 4 1 5 9 2 10 8 3 7
Rank by Median 12 6 11 4 1 5 9 2 10 8 3 7

Table C.5: Descriptive statistics per hyperparameterization: Store 1 (SAC (KDE-
QDNP))
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Hyperparameterization H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
Mean 91.975033 92.123588 92.017680 86.529785 87.027662 91.161589 92.059398 91.262583 92.118421 92.169705 91.194830 87.407536
Median 91.925957 92.102042 91.967215 86.503886 87.010497 91.115600 92.108315 91.218008 92.168358 92.185192 91.146590 87.396448
Std. Dev 1.381943 1.379716 1.383427 1.301025 1.316347 1.376483 1.371801 1.377879 1.374346 1.376576 1.378007 1.326009
Max 95.023423 95.111325 95.074076 89.638581 90.172535 94.326073 94.917156 94.419470 94.990255 95.094186 94.366509 90.579475
Min 88.389859 88.576109 88.428043 83.164886 83.620216 87.572962 88.562620 87.673305 88.613970 88.641656 87.602399 83.967262
Mean+Std. Dev 93.356975 93.503304 93.401107 87.830810 88.344009 92.538072 93.431199 92.640462 93.492767 93.546281 92.572837 88.733545
Mean‐Std. Dev 90.593090 90.743872 90.634254 85.228760 85.711314 89.785107 90.687597 89.884704 90.744075 90.793129 89.816824 86.081526
Median+Std. Dev 93.307900 93.481758 93.350642 87.804911 88.326844 92.492083 93.480116 92.595887 93.542704 93.561768 92.524596 88.722458
Median‐Std. Dev 90.544015 90.722326 90.583789 85.202861 85.694150 89.739118 90.736513 89.840130 90.794012 90.808615 89.768583 86.070439
Rank by Mean 6 2 5 12 11 9 4 7 3 1 8 10
Rank by Median 6 4 5 12 11 9 3 7 2 1 8 10

Table C.6: Descriptive statistics per hyperparameterization: Store 2 (SAC (KDE-
QDNP))

Hyperparameterization H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
Mean 118.952844 118.994749 126.927676 126.790462 125.301610 126.403000 126.602872 126.430161 126.414917 126.625263 126.424856 119.000418
Median 118.895376 118.936690 126.905819 126.754432 125.330507 126.361421 126.561424 126.389994 126.368119 126.659560 126.384153 118.942570
Std. Dev 1.426470 1.427466 1.443317 1.438468 1.414173 1.428944 1.430552 1.428906 1.420955 1.442561 1.428323 1.427500
Max 122.264514 122.308992 130.011175 130.039281 128.183329 129.689955 129.892143 129.717937 129.723341 129.658412 129.717250 122.314380
Min 115.210970 115.250555 123.182958 123.020958 121.672739 122.663621 122.847381 122.690428 122.681140 122.915698 122.686430 115.255896
Mean+Std. Dev 120.379314 120.422215 128.370993 128.228930 126.715782 127.831944 128.033424 127.859067 127.835871 128.067824 127.853179 120.427918
Mean‐Std. Dev 117.526374 117.567283 125.484359 125.351994 123.887437 124.974057 125.172320 125.001255 124.993962 125.182702 124.996534 117.572918
Median+Std. Dev 120.321847 120.364156 128.349136 128.192900 126.744679 127.790365 127.991976 127.818901 127.789074 128.102121 127.812475 120.370070
Median‐Std. Dev 117.468906 117.509225 125.462502 125.315965 123.916334 124.932477 125.130872 124.961088 124.947165 125.216999 124.955830 117.515070
Rank by Mean 12 11 1 2 9 8 4 5 7 3 6 10
Rank by Median 12 11 1 2 9 8 4 5 7 3 6 10

Table C.7: Descriptive statistics per hyperparameterization: Store 3 (SAC (KDE-
QDNP))

Hyperparameterization H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
Mean 65.173086 70.188102 70.415985 65.675607 68.947855 65.664629 70.450820 70.395359 70.173253 70.063359 69.609051 70.209196
Median 65.152903 70.202278 70.452941 65.676691 69.020764 65.635785 70.504441 70.407746 70.174917 70.056503 69.647746 70.226581
Std. Dev 1.251242 1.307308 1.282185 1.258459 1.173657 1.256127 1.294996 1.268614 1.307999 1.311513 1.208535 1.306753
Max 68.116344 73.013481 73.046158 68.602083 71.336411 68.575800 73.183923 72.915970 73.007739 72.925833 72.081011 73.029867
Min 61.916669 66.868347 67.181262 62.357266 66.045447 62.358331 67.190121 67.189701 66.844140 66.719353 66.571009 66.892866
Mean+Std. Dev 66.424328 71.495410 71.698170 66.934066 70.121512 66.920756 71.745816 71.663973 71.481252 71.374872 70.817586 71.515949
Mean‐Std. Dev 63.921844 68.880794 69.133799 64.417149 67.774197 64.408503 69.155824 69.126744 68.865254 68.751846 68.400516 68.902444
Median+Std. Dev 66.404145 71.509586 71.735127 66.935150 70.194421 66.891912 71.799438 71.676361 71.482916 71.368016 70.856281 71.533334
Median‐Std. Dev 63.901661 68.894970 69.170756 64.418233 67.847106 64.379659 69.209445 69.139132 68.866918 68.744990 68.439211 68.919828
Rank by Mean 12 5 2 10 9 11 1 3 6 7 8 4
Rank by Median 12 5 2 10 9 11 1 3 6 7 8 4

Table C.8: Descriptive statistics per hyperparameterization: Store 4 (SAC (KDE-
QDNP))
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APPENDIX D

STATISTICAL TESTING RESULTS: t-TEST

D.1 SAC

D.2 SAC (KDE‐QDNP)
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D.1 SAC

Store 1 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 1H2

H1 - 1 0 1 1 1 1 1 0 1 1 1

H2 1 - 1 0 1 1 1 1 1 0 1 0

H3 0 1 - 1 1 1 1 1 0 1 1 1

H4 1 0 1 - 1 1 1 1 1 0 1 0

H5 1 1 1 1 - 0 0 0 1 1 0 1

H6 1 1 1 1 0 - 0 0 1 1 0 1

H7 1 1 1 1 0 0 - 0 1 1 0 1

H8 1 1 1 1 0 0 0 - 1 1 0 1

H9 0 1 0 1 1 1 1 1 - 1 1 1

H10 1 0 1 0 1 1 1 1 1 - 1 0

H11 1 1 1 1 0 0 0 0 1 1 - 1

H12 1 0 1 0 1 1 1 1 1 0 1 -

Store 2 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 1H2

H1 - 0 0 1 1 1 0 1 0 0 1 1

H2 0 - 0 1 1 1 0 1 0 0 1 1

H3 0 0 - 1 1 1 0 1 0 0 1 1

H4 1 1 1 - 0 1 1 1 1 1 1 1

H5 1 1 1 0 - 1 1 1 1 1 1 1

H6 1 1 1 1 1 - 1 0 1 1 0 1

H7 0 0 0 1 1 1 - 1 0 0 1 1

H8 1 1 1 1 1 0 1 - 1 1 0 1

H9 0 0 0 1 1 1 0 1 - 0 1 1

H10 0 0 0 1 1 1 0 1 0 - 1 1

H11 1 1 1 1 1 0 1 0 1 1 - 1

H12 1 1 1 1 1 1 1 1 1 1 1 -

Store 3 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 1H2

H1 - 0 1 1 1 1 1 1 1 1 1 0

H2 0 - 1 1 1 1 1 1 1 1 1 0

H3 1 1 - 0 1 1 0 1 0 0 1 1

H4 1 1 0 - 1 1 0 1 0 0 1 1

H5 1 1 1 1 - 0 1 0 1 0 0 1

H6 1 1 1 1 0 - 1 0 1 0 0 1

H7 1 1 0 0 1 1 - 1 0 0 1 1

H8 1 1 1 1 0 0 1 - 1 0 0 1

H9 1 1 0 0 1 1 0 1 - 0 1 1

H10 1 1 0 0 0 0 0 0 0 - 0 1

H11 1 1 1 1 0 0 1 0 1 0 - 1

H12 0 0 1 1 1 1 1 1 1 1 1 -

Store 4 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 1H2

H1 - 1 1 0 1 1 1 1 1 1 1 1

H2 1 - 0 1 0 1 0 1 0 0 1 0

H3 1 0 - 1 0 1 0 1 0 0 1 0

H4 0 1 1 - 1 1 1 1 1 1 1 1

H5 1 0 0 1 - 1 0 1 0 0 1 0

H6 1 1 1 1 1 - 1 1 1 1 1 1

H7 1 0 0 1 0 1 - 1 0 0 1 0

H8 1 1 1 1 1 1 1 - 1 1 1 0

H9 1 0 0 1 0 1 0 1 - 0 1 0

H10 1 0 0 1 0 1 0 1 0 - 1 0

H11 1 1 1 1 1 1 1 1 1 1 - 1

H12 1 0 0 1 0 1 0 0 0 0 1 -

Figure D.1: Pairwise t-test results (1 = Significant difference: p-value<0.05): Stores
1-4 (SAC)
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D.2 SAC (KDE‐QDNP)

Store 1 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 1H2

H1 - 1 0 1 1 1 1 1 0 1 1 1

H2 1 - 1 1 1 0 1 1 1 0 1 0

H3 0 1 - 1 1 1 1 1 0 1 1 1

H4 1 1 1 - 0 1 1 0 1 1 0 1

H5 1 1 1 0 - 1 1 0 1 1 0 1

H6 1 0 1 1 1 - 1 1 1 0 1 0

H7 1 1 1 1 1 1 - 1 1 1 1 1

H8 1 1 1 0 0 1 1 - 1 1 0 1

H9 0 1 0 1 1 1 1 1 - 1 1 1

H10 1 0 1 1 1 0 1 1 1 - 1 0

H11 1 1 1 0 0 1 1 0 1 1 - 1

H12 1 0 1 1 1 0 1 1 1 0 1 -

Store 2 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 1H2

H1 - 0 0 1 1 1 0 1 0 0 1 1

H2 0 - 0 1 1 1 0 1 0 0 1 1

H3 0 0 - 1 1 1 0 1 0 0 1 1

H4 1 1 1 - 1 1 1 1 1 1 1 1

H5 1 1 1 1 - 1 1 1 1 1 1 1

H6 1 1 1 1 1 - 1 0 1 1 0 1

H7 0 0 0 1 1 1 - 1 0 0 1 1

H8 1 1 1 1 1 0 1 - 1 1 0 1

H9 0 0 0 1 1 1 0 1 - 0 1 1

H10 0 0 0 1 1 1 0 1 0 - 1 1

H11 1 1 1 1 1 0 1 0 1 1 - 1

H12 1 1 1 1 1 1 1 1 1 1 1 -

Store 3 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 1H2

H1 - 0 1 1 1 1 1 1 1 1 1 0

H2 0 - 1 1 1 1 1 1 1 1 1 0

H3 1 1 - 0 1 1 0 1 1 0 1 1

H4 1 1 0 - 1 0 0 0 0 0 0 1

H5 1 1 1 1 - 1 1 1 1 1 1 1

H6 1 1 1 0 1 - 0 0 0 0 0 1

H7 1 1 0 0 1 0 - 0 0 0 0 1

H8 1 1 1 0 1 0 0 - 0 0 0 1

H9 1 1 1 0 1 0 0 0 - 0 0 1

H10 1 1 0 0 1 0 0 0 0 - 0 1

H11 1 1 1 0 1 0 0 0 0 0 - 1

H12 0 0 1 1 1 1 1 1 1 1 1 -

Store 4 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 1H2

H1 - 1 1 1 1 1 1 1 1 1 1 1

H2 1 - 0 1 1 1 0 0 0 0 1 0

H3 1 0 - 1 1 1 0 0 0 0 1 0

H4 1 1 1 - 1 0 1 1 1 1 1 1

H5 1 1 1 1 - 1 1 1 1 1 1 1

H6 1 1 1 0 1 - 1 1 1 1 1 1

H7 1 0 0 1 1 1 - 0 0 1 1 0

H8 1 0 0 1 1 1 0 - 0 0 1 0

H9 1 0 0 1 1 1 0 0 - 0 1 0

H10 1 0 0 1 1 1 1 0 0 - 1 0

H11 1 1 1 1 1 1 1 1 1 1 - 1

H12 1 0 0 1 1 1 0 0 0 0 1 -

Figure D.2: Pairwise t-test results (1 = Significant difference: p-value<0.05): Stores
1-4 (SAC (KDE-QDNP))
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APPENDIX E

BOXPLOTS

E.1 SAC

E.2 SAC (KDE‐QDNP)

E.1 SAC

Figure E.1: Mean Return per hyperparameterization (Store 1)
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Figure E.2: Mean Return per hyperparameterization (Store 2)

Figure E.3: Mean Return per hyperparameterization (Store 3)
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Figure E.4: Mean Return per hyperparameterization (Store 4)

E.2 SAC (KDE‐QDNP)

Figure E.5: Mean Return per hyperparameterization (Store 1)
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Figure E.6: Mean Return per hyperparameterization (Store 2)

Figure E.7: Mean Return per hyperparameterization (Store 3)
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Figure E.8: Mean Return per hyperparameterization (Store 4)
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APPENDIX F

RUNTIME TABLES

Hyperparameterization Store 1 (PC1) Store 2 (PC2) Store 3 (PC3) Store 4 (PC4)
H1 1026.68 791.20 1890.31 2468.13
H2 3395.56 2712.91 1883.10 8779.58
H3 1044.78 798.66 6910.44 2502.00
H4 3605.81 787.09 1918.75 2455.69
H5 1038.21 836.22 6910.14 9222.93
H6 3547.17 2620.56 6567.51 2492.48
H7 3650.55 2697.44 1908.35 2531.45
H8 1029.08 2642.24 6579.75 9233.74
H9 1017.06 2713.69 1923.09 2511.62
H10 3361.58 807.55 6938.04 8787.53
H11 1020.69 2619.64 6540.50 9220.67
H12 3355.51 816.31 1884.16 8807.38

Table F.1: SAC runtime (seconds), per problem instance

Hyperparameterization Store 1 (PC1) Store 2 (PC2) Store 3 (PC3) Store 4 (PC4)
H1 1088.53 860.69 1965.73 2591.83
H2 3419.20 2845.71 1963.73 8857.98
H3 1092.43 873.60 6949.44 2623.09
H4 3610.73 944.05 1969.11 2590.28
H5 1080.00 825.18 7013.16 9296.46
H6 3680.19 2659.64 6658.05 2595.47
H7 3644.58 2822.56 1997.88 2640.70
H8 1078.65 2612.62 6595.33 9317.48
H9 1084.40 2857.82 1979.68 2620.36
H10 3403.30 877.34 6996.39 8948.94
H11 1117.32 2672.80 6615.26 9385.38
H12 3354.88 849.54 1968.34 9012.11

Table F.2: SAC (KDE-QDNP) runtime (seconds), per problem instance
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APPENDIX G

ZERO-SHOT POLICY TRANSFER: COMPLETE
RESULTS TABLES

% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 74.51 1.47 -0.98 1.57 1.18 204.28 0.82 0.18
+10 % 141.38 1.57 -1.36 1.73 1.31 246.65 0.89 0.11
-20 % 46.16 1.64 -0.67 1.49 1.12 192.90 0.75 0.25
+20 % 180.76 1.62 -1.59 1.81 1.37 267.87 0.92 0.08
-30 22.16 1.65 -0.50 1.41 1.05 174.63 0.70 0.30
+30 % 223.22 1.59 -1.89 1.89 1.42 285.54 0.95 0.05

(a) SAC Pre-trained on original Store 1 parameters

% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 74.63 1.15 -1.27 1.56 1.16 190.41 0.84 0.16
+10 % 141.81 1.82 -1.12 1.73 1.33 258.40 0.87 0.12
-20 % 48.52 1.04 -1.26 1.48 1.08 166.67 0.78 0.22
+20 % 182.10 1.83 -1.24 1.81 1.39 277.75 0.92 0.08
-30 % 26.41 0.29 -1.34 1.37 0.99 117.60 0.82 0.18
+30 % 226.59 1.90 -1.36 1.90 1.46 300.04 0.95 0.05

(b) SAC Trained with the perturbed parameter

Table G.1: Comparison of SAC performance with original and perturbed parameter
training: a
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% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 142.56 1.60 -1.24 1.78 1.33 240.92 0.87 0.13
+10 % 77.04 1.62 -1.02 1.54 1.18 218.28 0.82 0.18
-20 % 189.97 1.58 -1.35 1.94 1.43 251.71 0.89 0.11
+20 % 54.64 1.46 -0.99 1.46 1.11 199.35 0.83 0.17
-30 % 252.78 1.60 -1.48 2.14 1.56 264.14 0.90 0.10
+30 % 36.12 1.54 -0.87 1.38 1.07 191.24 0.79 0.21

(a) SAC Pre-trained on original Store 1 parameters

% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 142.92 1.80 -1.02 1.78 1.35 249.91 0.86 0.14
+10 % 77.46 1.34 -1.25 1.54 1.16 206.05 0.85 0.15
-20 % 191.67 1.91 -0.90 1.94 1.47 266.86 0.88 0.12
+20 % 55.37 1.04 -1.42 1.45 1.09 181.31 0.84 0.16
-30 % 256.89 1.98 -0.84 2.14 1.63 282.03 0.91 0.09
+30 % 38.12 0.67 -1.50 1.37 1.03 154.38 0.86 0.14

(b) SAC Trained with the perturbed parameter

Table G.2: Comparison of SAC performance with original and perturbed parameter
training: b
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% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 94.18 1.60 -1.11 1.62 1.23 221.24 0.84 0.16
+10 % 117.97 1.44 -1.30 1.68 1.25 229.70 0.87 0.13
-20 % 83.02 1.58 -1.03 1.58 1.22 212.66 0.84 0.16
+20 % 131.01 1.57 -1.24 1.72 1.27 243.55 0.87 0.13
-30 % 72.58 1.43 -1.07 1.55 1.20 197.99 0.85 0.15
+30 % 144.29 1.54 -1.31 1.75 1.28 249.99 0.88 0.12

(a) SAC Pre-trained on original Store 1 parameters

% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 94.20 1.48 -1.18 1.61 1.23 215.75 0.85 0.15
+10 % 118.17 1.70 -1.08 1.68 1.27 241.40 0.85 0.15
-20 % 83.09 1.34 -1.22 1.58 1.21 201.69 0.86 0.14
+20 % 131.03 1.57 -1.18 1.72 1.27 243.62 0.88 0.12
-30 % 72.49 1.18 -1.29 1.54 1.18 186.88 0.87 0.13
+30 % 144.59 1.81 -1.04 1.75 1.30 262.31 0.86 0.14

(b) SAC Trained with the perturbed parameter

Table G.3: Comparison of SAC performance with original and perturbed parameter
training: ϕ

97



% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 129.67 1.67 -1.07 1.60 1.25 243.81 0.84 0.16
+10 % 83.57 1.60 -1.12 1.70 1.25 217.60 0.85 0.15
-20 % 154.96 1.71 -1.08 1.55 1.25 257.43 0.83 0.17
+20 % 63.37 1.49 -1.21 1.75 1.24 200.77 0.86 0.14
-30 % 179.95 1.60 -1.13 1.50 1.25 264.32 0.85 0.15
+30 % 42.57 1.59 -1.16 1.80 1.24 193.57 0.85 0.15

(a) SAC Pre-trained on original Store 1 parameters

% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 129.84 1.72 -1.06 1.60 1.25 246.39 0.83 0.17
+10 % 84.49 1.02 -1.47 1.69 1.22 192.03 0.92 0.08
-20 % 156.72 1.98 -0.90 1.55 1.27 270.18 0.80 0.20
+20 % 65.79 1.04 -1.49 1.74 1.21 181.37 0.91 0.09
-30 % 184.33 1.98 -0.91 1.50 1.27 281.93 0.80 0.20
+30 % 50.16 0.26 -1.92 1.76 1.18 138.60 0.98 0.02

(b) SAC Trained with the perturbed parameter

Table G.4: Comparison of SAC performance with original and perturbed parameter
training: C0
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% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 105.93 1.55 -1.17 1.65 1.24 226.84 0.85 0.15
+10 % 105.89 1.60 -1.13 1.65 1.25 229.31 0.85 0.15
-20 % 105.90 1.48 -1.21 1.65 1.24 223.66 0.86 0.14
+20 % 105.85 1.57 -1.13 1.65 1.25 227.93 0.85 0.15
-30 % 105.98 1.59 -1.07 1.65 1.25 228.90 0.86 0.14
+30 % 105.84 1.58 -1.14 1.65 1.25 228.16 0.85 0.15

(a) SAC Pre-trained on original Store 1 parameters

% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 105.43 1.88 -0.94 1.65 1.26 242.22 0.81 0.19
+10 % 105.88 1.62 -1.11 1.65 1.25 230.26 0.84 0.16
-20 % 105.91 1.52 -1.17 1.65 1.24 225.36 0.86 0.14
+20 % 105.80 1.50 -1.20 1.65 1.24 224.47 0.86 0.14
-30 % 105.95 1.50 -1.20 1.65 1.24 224.76 0.86 0.14
+30 % 105.80 1.51 -1.20 1.65 1.24 225.08 0.86 0.14

(b) SAC Trained with the perturbed parameter

Table G.5: Comparison of SAC performance with original and perturbed parameter
training: Cd
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% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 106.09 1.61 -1.11 1.65 1.25 229.63 0.85 0.15
+10 % 105.69 1.63 -1.11 1.65 1.25 230.73 0.84 0.16
-20 % 106.25 1.68 -1.06 1.65 1.25 232.64 0.84 0.16
+20 % 105.37 1.44 -1.23 1.65 1.24 221.80 0.87 0.13
-30 % 106.48 1.46 -1.21 1.65 1.24 222.99 0.87 0.13
+30 % 105.16 1.75 -1.07 1.65 1.25 235.89 0.83 0.17

(a) SAC Pre-trained on original Store 1 parameters

% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 106.11 1.52 -1.17 1.65 1.24 225.50 0.86 0.14
+10 % 105.68 1.61 -1.12 1.65 1.25 229.40 0.85 0.15
-20 % 106.21 1.70 -1.08 1.65 1.25 233.83 0.83 0.17
+20 % 105.49 1.64 -1.10 1.65 1.25 230.92 0.84 0.16
-30 % 106.48 1.49 -1.22 1.65 1.24 223.96 0.86 0.14
+30 % 105.09 1.80 -1.00 1.65 1.26 238.51 0.82 0.18

(b) SAC Trained with the perturbed parameter

Table G.6: Comparison of SAC performance with original and perturbed parameter
training: Cs
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% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 104.74 1.54 -1.26 1.65 1.19 226.44 0.88 0.12
+10 % 107.30 1.57 -1.05 1.65 1.29 227.65 0.83 0.17
-20 % 103.38 1.58 -1.38 1.65 1.14 228.07 0.89 0.11
+20 % 108.53 1.51 -0.98 1.65 1.34 225.08 0.82 0.18
-30 % 102.47 1.56 -1.49 1.65 1.09 227.37 0.91 0.09
+30 % 108.79 1.37 -0.91 1.65 1.38 218.84 0.82 0.18

(a) SAC Pre-trained on original Store 1 parameters

% of Original Value Expected Profit z1 z2 p1 p2 Q γ 1− γ

-10 % 104.87 1.49 -1.21 1.65 1.20 224.26 0.89 0.11
+10 % 107.62 1.75 -1.07 1.65 1.29 236.23 0.79 0.21
-20 % 104.44 1.19 -1.48 1.64 1.13 210.93 0.95 0.05
+20 % 110.33 1.97 -1.02 1.65 1.34 246.23 0.71 0.29
-30 % 104.31 1.03 -1.68 1.64 1.07 204.30 0.98 0.02
+30 % 113.68 1.98 -1.09 1.65 1.38 246.70 0.65 0.35

(b) SAC Trained with the perturbed parameter

Table G.7: Comparison of SAC performance with original and perturbed parameter
training: R
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