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ABSTRACT 
 

 

Kalliopi Basiakou, M.Sc. in Data Science and Engineering, Department of Computer 

Science and Engineering, School of Engineering, University of Ioannina, Greece, June 

2024 

Thesis Title: Explanatory Search and Exploration of Spatial Entities 

Advisor: Nikolaos Mamoulis, Professor 

 

When retrieving information based on geographic locations (location-based 

retrieval), it's important not just to consider where the objects are located but also to 

take into account additional descriptive information or context associated with those 

objects. This is especially important when the search results include a large number 

of objects, which can be overwhelming for the user.  

This research focuses on developing methods to find and extract geographical objects 

within specific regions, using object summaries constructed from large data 

collections. These object summaries, except from ids and names of objects (contextual 

data), contain detailed information about their locations (geospatial information). 

Points of interest (POIs) are examples of such spatial entities and can include 

locations like restaurants, parks, landmarks, or any other significant places. Further-

more, this project examines the challenge of selecting a subset of query results that 

best represents the entire set. We propose that objects with similar context and close 

proximity should be proportionally represented in the selection. The project focuses 

on selecting a smaller, more manageable group of results from the larger set. These 

selected results should be both relevant and proportionally distributed in terms of 

spatial and contextual attributes, ensuring they are meaningful and provide a 

balanced mix of different locations and descriptions. The ultimate goal is to display 

a diverse subset of objects on the map, enhancing the user's ability to see a varied 

and pertinent range of results. To achieve this, a grid-based algorithm is employed, 

optimizing the process of spatial proportionality by dividing the spatial domain into 

a grid. Additionally, a random sampling algorithm is used to select a representative 

subset of spatial objects, maintaining spatial and contextual diversity by leveraging 
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randomness. The project also utilizes two algorithms for result selection post-grid or 

baseline algorithms: Greedy and Greedy-DisC. The first ensures diversity and 

relevance through a greedy heuristic and the second ensures coverage and 

dissimilarity among selected items. These algorithms power a web application where 

users input queries into a search box, and relevant points are dynamically shown on 

a map. The object summary created, with the query as the root, dynamically updates 

based on the current map bounds, ensuring users always see the most pertinent 

information for their area of interest. This functionality combines user-friendly 

search capabilities with the powerful visualization features of Google Maps, providing 

an intuitive and interactive experience. Overall, this project significantly enhances 

the retrieval and visualization of spatial and contextual data, making it easier for 

users to find and understand relevant information. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 

 

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ  
 

Καλλιόπη Μπασιάκου, Μ.Δ.Ε. στην Επιστήμη Δεδομένων και Μηχανική, Τμήμα 
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Χωρικών Οντοτήτων. 

Επιβλέπων: Νικόλαος Μαμουλής, Καθηγητής 

 

Όταν ανακτούμε πληροφορίες με βάση γεωγραφικές τοποθεσίες είναι 

σημαντικό να λαμβάνουμε υπόψη όχι μόνο πού βρίσκονται τα αντικείμενα αλλά 

και τις επιπλέον περιγραφικές πληροφορίες ή το πλαίσιο που σχετίζεται με αυτά 

τα αντικείμενα. Αυτό είναι ιδιαίτερα σημαντικό όταν τα αποτελέσματα αναζήτησης 

περιλαμβάνουν μεγάλο αριθμό αντικειμένων, τα οποία μπορεί να είναι υπερβολικά 

για τον χρήστη. Με την ενσωμάτωση πληροφοριών σχετικά με το πλαίσιο στο οποίο 

ανήκει ένα ερώτημα, η διαδικασία ανάκτησης μπορεί να παρέχει πιο ουσιαστικά 

και διαχειρίσιμα αποτελέσματα, βελτιώνοντας την ικανότητα του χρήστη να βρει 

αυτό που ψάχνει αποδοτικά. 

Η έρευνα αυτή εστιάζει στην ανάπτυξη μεθόδων για την εύρεση και εξαγωγή 

γεωγραφικών αντικειμένων εντός συγκεκριμένων περιοχών, χρησιμοποιώντας 

περιλήψεις αντικειμένων (Object Summaries) που κατασκευάζονται από μεγάλες 

συλλογές δεδομένων. Αυτές οι περιλήψεις αντικειμένων, εκτός από τα 

αναγνωριστικά και τα ονόματα των αντικειμένων (περιγραφικά δεδομένα), 

περιέχουν λεπτομερείς πληροφορίες σχετικά με τις τοποθεσίες τους (γεωχωρικές 

πληροφορίες). Τα σημεία ενδιαφέροντος (POIs) είναι παραδείγματα τέτοιων 

χωρικών οντοτήτων και μπορούν να περιλαμβάνουν τοποθεσίες όπως εστιατόρια, 

πάρκα, αξιοθέατα ή άλλες σημαντικές τοποθεσίες.  

Επιπλέον, αυτό το έργο εξετάζει την πρόκληση της επιλογής ενός 

υποσυνόλου αποτελεσμάτων ερωτήματος, το οποίο αντιπροσωπεύει καλύτερα 

ολόκληρο το σύνολο. Προτείνουμε ότι τα αντικείμενα με παρόμοιο πλαίσιο και 

κοντινή απόσταση θα πρέπει να εκπροσωπούνται με ίδια αναλογία στην επιλογή. 

Η εργασία αυτή εστιάζει στην επιλογή μιας μικρότερης, πιο διαχειρίσιμης λίστας 
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αποτελεσμάτων από το μεγαλύτερο σύνολο. Αυτά τα επιλεγμένα αποτελέσματα 

πρέπει να είναι τόσο σχετικά όσο και αναλογικά κατανεμημένα, όσον αφορά τις 

χωρικές και περιγραφικές ιδιότητες, διασφαλίζοντας ότι έχουν κάποιο νόημα και 

παρέχουν ποικιλία διαφορετικών τοποθεσιών και περιγραφών. Με αυτό τον τρόπο 

μπορεί να αποφευχθεί η υπερβολική επιβάρυνση των χρηστών με πολλά παρόμοια 

αποτελέσματα, διευκολύνοντάς τους να βρουν ποικίλες και σχετικές με το ερωτημά 

τους πληροφορίες.   

Για να επιτευχθεί αυτό, χρησιμοποιείται ο αλγόριθμος Grid, 

βελτιστοποιώντας τη διαδικασία της χωρικής αναλογικότητας διαιρώντας τον 

χωρικό τομέα σε πλέγμα. Επιπλέον, χρησιμοποιείται ο Random Sampling 

αλγόριθμος με σκοπό την επιλογή αντιπροσωπευτικού υποσυνόλου χωρικών 

αντικειμένων, διατηρώντας τη χωρική και περιγραφική ποικιλία μέσω της 

τυχαιότητας. Στην εργασία χρησιμοποιούνται επίσης δύο αλγόριθμοι για την τελική 

επιλογή αποτελεσμάτων που θα εμφανιστούν στο χάρτη, οι οποίοι εφαρμόζονται 

μετά τους αλγόριθμους Grid ή Baseline, και είναι ο Greedy και ο Greedy-DisC. Ο 

πρώτος διασφαλίζει ποικιλία και συνάφεια μέσω μιας άπληστης ευρετικής μεθόδου 

και ο δεύτερος διασφαλίζει κάλυψη και ανόμοιότητα μεταξύ των επιλεγμένων 

αντικειμένων. 

Αυτοί οι αλγόριθμοι χρησιμοποιούνται σε μια διαδικτυακή εφαρμογή στην 

οποία οι χρήστες εισάγουν ερωτήματα σε ένα πλαίσιο αναζήτησης και τα σχετικά 

σημεία εμφανίζονται δυναμικά σε έναν χάρτη. Η περίληψη αντικειμένου (Object 

Summary) που δημιουργείται, με το ερώτημα ως ρίζα, ενημερώνεται δυναμικά με 

βάση τα τρέχοντα όρια του χάρτη, διασφαλίζοντας ότι οι χρήστες βλέπουν πάντα 

τις πιο σχετικές πληροφορίες για την περιοχή ενδιαφέροντός τους. Αυτή η 

λειτουργία συνδυάζει φιλικές προς τον χρήστη δυνατότητες αναζήτησης με τις 

ισχυρές δυνατότητες οπτικοποίησης των Χαρτών Google, παρέχοντας έτσι, μια 

διαδραστική εμπειρία. Εν κατακλείδι, αυτή η διπλωματική εργασία ενισχύει 

σημαντικά την ανάκτηση και οπτικοποίηση χωρικών και περιγραφικών δεδομένων, 

καθιστώντας ευκολότερο για τους χρήστες να βρίσκουν και να κατανοούν σχετικές 

πληροφορίες. 
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CHAPTER 1          

INTRODUCTION 

1.1 Goal 

1.2 Outline 

 

 

In the first section of this chapter, we present a brief description of our work and 

refer to the main directions and the main purpose of our research. In the second 

section of this chapter, we refer to the structure of this Thesis.  

1.1 Goal  

In the era of big data, the efficient retrieval and representation of information 

are critical for effective data management. With the increasing volume and 

complexity of data, particularly geospatial data, there is a growing need for methods 

that can provide users with clear and concise summaries of relevant information. 

This is especially pertinent in location-based retrieval systems where users search 

for information based on geographic locations. The challenge lies not only in 

considering the geographical locations of objects but also in accounting for the 

contextual information associated with these objects. When search results yield a 

large number of objects, it can overwhelm users, necessitating the development of 

methods that can distill and present the most pertinent information effectively. 

To address this challenge, this thesis introduces the concept of Object Summary (OS), 

a concise representation of data about a particular Data Subject (DS). By presenting 

a clear and efficient overview of relevant data, OS enables users to interact with and 

understand the underlying information without needing to examine its full, detailed 

description. Additionally, the OS are pruned depending on the region input, ensuring 
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that only the most relevant and contextually appropriate data is included based on 

the user's query and location. 

The goal of this project is to develop a novel exploration and explanatory 

paradigm for spatial data retrieval, specifically targeting the retrieval of places rele-

vant to a queried entity within a specified region. The motivation behind this study 

stems from the vast availability of public and private datasets associated with loca-

tions, such as semantic knowledge graphs (e.g., YAGO, DBpedia), geosocial networks 

(e.g., Facebook, Foursquare), and points of interest tagged with textual descriptions 

(e.g., Google Places). The output will be the k most relevant places about the queried 

entity within the specified region, incorporating relevant nodes surrounding the en-

tity node in the data graph. This approach will enhance usability by allowing users 

to explore important places that may not include the query keywords but are still 

highly relevant. 

Additionally, it is important that the retrieval of places considers their spatial 

distribution to provide a fair and representative subset of places within a region. 

This approach will address the issue of relevance-only based retrieval, which can 

sometimes lead to a less informative or biased representation of places. By imple-

menting proportionality techniques, the project seeks to facilitate regional fairness 

and prevent biases, ensuring a balanced representation of places from different areas. 

The baseline and grid algorithms discussed in this thesis are designed to achieve 

efficient and effective spatial proportionality. Moreover, selection algorithms play a 

critical role in enhancing user experience and maintaining clarity in data 

representation. By strategically displaying a subset of places on a map, we ensure 

that points are not clustered too closely together, reducing visual clutter and 

improving readability. The Greedy and Greedy-DisC algorithms discussed in this 

thesis are designed to ensure diversity and relevance, and construct a diverse subset, 

maximizing coverage and dissimilarity among the selected items.  

To demonstrate the practical application of the concepts and algorithms dis-

cussed in this thesis, a web application was developed. This tool allows users to 

enter a keyword and view relevant nodes displayed on a map. The nodes form an 

object summary, with the keyword as the root, and dynamically update based on 

the map's current view. The application utilizes the algorithms discussed in this 



 

15 

 

thesis to ensure the displayed results are relevant, diverse, and proportionally rep-

resentative of the spatial data. It features an intuitive interface that supports zooming, 

panning, and interactive markers, providing users with a comprehensive and engag-

ing way to explore data. The responsive design ensures accessibility across various 

devices, making it a versatile tool for visualizing and interacting with spatial infor-

mation.  

1.2 Thesis Structure  

This thesis is structured into eight chapters, each detailing different aspects of the 

research and development process: 

In section 2, we review the related work and provide the background necessary for 

understanding the context of this thesis. 

Section 3 delves into Object Summaries, explaining their concept, construction, and 

providing an algorithm for their creation. An example structure of a generated Object 

Summary is also presented. 

Section 4 focuses on Spatial Proportionality, introducing its concept and discussing 

various algorithms designed to achieve it. The Baseline Algorithm and Grid 

Algorithm are explained in detail, including their implementation and advantages. 

We also compare the Baseline with the Grid Algorithm and explore a Random 

Sampling Algorithm for spatial proportionality. 

Section 5 covers Selection Algorithms, emphasizing their importance and detailing 

the implementation of the Greedy Algorithm and Greedy-Disc Algorithm. An 

example use case is provided to illustrate the application of the Greedy-Disc 

Algorithm. 

In section 6, we present a comprehensive analysis of experiments conducted to 

evaluate the performance of the algorithms and parameters discussed.  

Chapter 7 describes the development and functionality of the web application that 

implements the work on spatial proportionality and diversity of results.  

Finally, Chapter 8 concludes the thesis, summarizing the findings and discussing 

potential future work.  
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CHAPTER 2          

RELATED WORK 

 

 

 

There is a variety of other related work on object (entity) summarisations. 

For example [1] addresses the challenge of information overload in entity linking by 

proposing a method to create compact, structured summaries of entity descriptions. 

To avoid overloading human users with too much information, the authors aim to 

substitute entire entity descriptions with concise, effective summaries that maintain 

the quality of entity linking. The paper introduces three summarization approaches: 

characteristic summaries, which select features based on their ability to uniquely 

characterize each candidate entity; differential summaries, which prioritize features 

that differentiate candidate entities from each other; and contextual summaries, 

which select features relevant to the context of the entity mention using a class vector 

model. These perspectives are combined into a comprehensive summarization 

method that balances various aspects of entity description. Experimental results 

showed that the combined approach allowed users to link entities with accuracy 

comparable to full descriptions but with reduced time, highlighting its effectiveness 

in facilitating user decisions. Another work [2] discusses object summaries in the 

context of interactive entity resolution, where the goal is to select a subset of critical 

features from entity descriptions to be shown and judged by human users. The 

proposed method, C3D+P, aims to generate these compact summaries effectively. 

The features preferred for selection in the summaries are those that reflect the most 

commonalities shared by and the most conflicts between the two entities, as well as 

those that carry the largest amount of characteristic and diverse information about 

them. The paper emphasizes that these selected features are then grouped and or-

dered to improve readability and speed up the judgment process. The experimental 
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results demonstrate that summaries generated by this method help users judge more 

efficiently and accurately compared to entire entity descriptions. The method also 

outperforms existing summarization techniques by specifically focusing on the re-

quirements of the entity resolution task, thus generating more useful and informative 

object summaries. Building on the concept of generating useful and informative ob-

ject summaries, another study, [3] introduces Object Summaries (OS) as a novel 

result format for keyword searches in relational databases. An OS is designed to 

provide a comprehensive summary of data related to a specific Data Subject (DS) by 

creating a tree structure with the keyword-containing tuple at the root and related 

tuples as children. The paradigm liberates users from the need to know database 

schemata or query languages, instead relying on the concept of Affinity to determine 

the relevance of surrounding data. Affinity scores for relations and attributes help 

decide what to include in the OS, ensuring that only semantically meaningful data 

is presented. The paper highlights that this approach produces more complete and 

useful search results compared to traditional relational keyword search (R-KwS) 

methods, which often return disjointed tuples or require multiple keywords to form 

meaningful associations. Experimental evaluations on databases like TPC-H and 

Northwind showed high precision and recall, validating the effectiveness of the pro-

posed method. The OS format was preferred by users for its self-contained and easily 

comprehensible presentation of information, making it a significant improvement 

over existing methods like précis queries, which can be harder to interpret due to 

their narrative presentation and lack of automated Affinity calculation. However, 

none of this work addresses spatial aspects of the data. 

To further enhance the utility of object summaries, [4] presents methods for 

ranking object summaries (OSs) in response to keyword searches in relational data-

bases. The authors propose a model that ranks OSs based on their relevance to 

thematic keywords, combining Information Retrieval (IR) properties, authoritative 

ranking using ObjectRank, and affinity, which measures the closeness of tuples to 

the data subject (DS) tuple. The thematic ranking is modeled as a top-k group-by 

join problem (kGBJ), which computes the join paths between identifying and the-

matic tuples without fully generating the OSs. Two main approaches are discussed: 

the Bi-Directional (BD) Approach, which computes complete OSs and ranks them, 
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and the Optimized kGBJ Approach, which focuses on relevant join paths and uses 

precomputed bounds to limit the search space. The methods were evaluated on 

DBLP and TPC-H datasets, demonstrating high precision and recall. The optimized 

kGBJ approach significantly outperformed the baseline BD method, showing up to 

180 times faster performance in some cases. This thematic ranking model effectively 

addresses the challenges of ranking OSs in large datasets and ensures that users 

receive the most relevant OSs in response to their queries, however, the plain use of 

IR has limitations when applied to data graphs in general. Namely, they miss rele-

vant nodes that are related to the keywords but they do not contain them [5]; e.g. 

the node Parthenon has relevance to Pericles although it does not include the word 

“Pericles”. Our work, by selecting places from the object summary, addresses this 

problem.  

 Shifting the focus to the spatial dimension of data retrieval, various types of 

spatial-keyword queries have been proposed before. Spatial keyword search on da-

tasets involves retrieving data objects based on both their geographical location and 

textual content. Such queries are Boolean kNN, top-k kNN, and Boolean range que-

ries. A Boolean kNN query retrieves the k nearest objects to a user's current location 

that contain all specified keywords. The top-k kNN query, on the other hand, re-

trieves the k objects with the highest ranking scores, considering both their distance 

to the query location and the relevance of their text descriptions to the query key-

words. Finally, the Boolean range query retrieves all objects within a specified spatial 

region whose text descriptions contain all the specified keywords. These indices typ-

ically use the R-tree or its variations, such as the R*-tree, to combine spatial and 

textual data efficiently for spatial keyword queries, where each minimum bounding 

rectangle keeps the textual information of all objects inside its bounds. However, 

these methods only search for individual objects that contain the specified keywords 

and do not retrieve relevant places that lack the keywords but are still pertinent to 

the query. Therefore, their direct application is not suitable in this context. 

 In addition to optimizing spatial keyword searches, numerous studies have 

explored different aspects of fairness. Spatial data fairness, as defined in the paper 

[6], addresses the unique challenges of ensuring equitable treatment in location-

based applications where decisions are influenced by individuals' whereabouts. This 
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concept aims to prevent discrimination based on location data, which often correlates 

with sensitive attributes like race, income, and education. The paper introduces two 

main types of spatial fairness: distance-based fairness, relevant in scenarios like lo-

cation-based advertising and ride-hailing, ensures individuals are not unfairly 

treated based on their proximity to a reference point, and zone-based fairness, which 

focuses on fairness in spatial coordinates, applicable in gerrymandering, loan analy-

sis, and insurance pricing. To achieve these fairness goals, the paper proposes "fair 

polynomials," which adjust decision-making processes to ensure equitable treatment 

without significantly sacrificing data utility. Expanding the scope of fairness in data, 

[7] explores the concept of fair clustering under the disparate impact doctrine, em-

phasizing the need for approximately equal representation of each protected class 

within every cluster. This approach addresses the potential for machine learning 

algorithms to amplify existing biases present in training data. The authors introduce 

the idea of fairlets, minimal sets that ensure fair representation while maintaining 

clustering objectives, and show that fair clustering problems can be decomposed into 

finding good fairlets followed by traditional clustering algorithms. Although finding 

optimal fairlets is NP-hard, efficient approximation algorithms based on minimum 

cost flow are proposed. The empirical results on real-world datasets demonstrate 

that traditional clustering methods often yield unfair clusters, while fair clustering 

methods, though potentially more costly, maintain balanced solutions. The document 

also highlights the computational challenges associated with fair clustering, indicat-

ing that ensuring fairness introduces a significant computational bottleneck. Appar-

ently, our work is different as we study the selection of a subset of objects instead 

of their clustering.  

Concerning result diversification in information retrieval, the [8] discusses vari-

ous methodologies aimed at enhancing the diversity and relevance of retrieved re-

sults. It highlights several algorithms, notably the Maximal Marginal Relevance 

(MMR) algorithm, which balances relevance and diversity by penalizing redundancy. 

Additionally, the Submodular Function Maximization method is examined for its 

efficient approach to diversification through submodular functions. The k-Nearest 

Neighbor (k-NN) approach is also mentioned, focusing on diversifying results by 

selecting items based on their dissimilarity to already chosen ones. These 



 

20 

 

comparisons provide a comprehensive understanding of the different strategies in 

result diversification. We used the greedy-disc algorithm because it effectively bal-

ances dissimilarity and coverage, offering a practical and robust solution for our 

specific diversification needs. 
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CHAPTER 3          

OBJECT SUMMARIES 

3.1 About Object Summaries 

3.2    Object Summary Construction 

3.3    Example Structure of Generated Object Summary 

 

Chapter 3 provides an in-depth exploration of Object Summaries. It begins with Sec-

tion 3.1, which introduces the concept of Object Summaries, detailing their purpose 

and significance. Section 3.2 discusses the process of constructing Object Summaries, 

including the specific algorithm used for their creation. Finally, Section 3.3 presents 

an example structure of a generated Object Summary, illustrating the practical ap-

plication of the concepts discussed in the chapter. 

3.1 About Object Summaries 

An Object Summary (OS) is a concise representation of all data held in a database 

about a particular Data Subject (DS). The purpose of an object summary is to provide 

a clear and efficient overview, allowing users to understand and interact with the 

object or entity without needing to examine its full, detailed description. It is 

generated as a response to a query search and is structured as a tree, with the DS as 

the root node and its related nodes as children. Given the input node (“Pericles”), 

we start traversing the dataset and add on the object summary as child nodes the 

nodes surrounding the entity node (via edges/links) (e.g. Wife: Aspasia, Built: 

Parthenon, etc). The OS paradigm is particularly user-friendly for those accustomed 

to web keyword searches, providing a comprehensive summary that aids in data 

exploration and schema extraction. 



 

22 

 

3.2 Object Summaries Construction 

To create an Object Summary, we first need to establish data structures to store and 

manage different types of data. Each map serves a specific purpose, facilitating the 

efficient creation of the OS: 

 

• nodeMap and nodeMapReverse: Map node IDs to names and vice versa for 

easy lookup. 

• keywordsMap and keywordsMapReverse: Map keyword IDs to keywords 

and vice versa for easy lookup. 

• edgesMap: Store the relationships between nodes. 

• keywordsListMap: Store lists of keywords associated with each node. 

• places: Store geographic information for place nodes. 

 
Using these mappings, we build the OS by traversing the relationships between 

nodes. We include nodes and their relationships up to three hops away from the 

root node. The OS is generated using a breadth-first traversal starting from the root 

node, adding nodes to the OS based on their relationships. The hierarchical structure 

is formed by enqueuing child nodes and adding them as children of the current 

node being processed. The tree structure ensures that the most important and 

representative nodes are included, maintaining the context and relationships between 

them. The importance and affinity of nodes are considered when constructing the 

tree, ensuring that nodes higher in the tree are more important and have a greater 

affinity to the root node.  

 
A node in the OS can either be a place or a node without latitude and longitude 

values. Only nodes with latitude and longitude values, designated as places, are 

displayed on the map. After constructing the tree, we perform a pruning step to 

ensure relevance and accuracy. Nodes that have latitude and longitude values outside 

the specified map bounds are removed. This pruning step helps in maintaining the 
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geographical relevance of the data and ensures that the final OS only includes nodes 

within the desired map bounds. 

This approach ensures that the OS provides a comprehensive and contextually rich 

summary of the data related to the DS, making it easier for users to explore and 

understand the underlying data structures. 

 

Here, we can see the Data structures we need in tables.    

 
Table 1: Node Mapping: Bidirectional Maps for Node IDs and Node Names 

nodeMap nodeMapReverse 
map node IDs to their corresponding 
names 

map node names to their 
corresponding IDs 

nodeMap<Integer, String>: nodeMapReverse<String, Integer>: 
• Key: Node ID (Integer) • Key: Node Name (String) 
• Value: Node Name (String) • Value: Node ID (Integer) 
• Function: This map is used to 
retrieve the name of a node given its 
ID. 

• Function: This map is used to 
retrieve the ID of a node given its 
name. 

 
Table 2: Keyword Mapping: Bidirectional Maps for Keyword IDs and Keywords 

keywordsMap keywordsMapReverse 
map keyword IDs to their 
corresponding keywords and vice 
versa. 

map keyword IDs to their 
corresponding keywords and vice 
versa. 

keywordsMap<Integer, String>: keywordsMapReverse<String, Integer>: 
• Key: Keyword ID (Integer) • Key: Keyword (String) 
• Value: Keyword (String) • Value: Keyword ID (Integer) 

• Function: This map is used to 
retrieve the keyword given its ID. 

• Function: This map is used to 
retrieve the ID of a keyword given its 
text. 

 
Table 3: Node Relationship Storage: Mapping Node IDs to Connected Node IDs 

edgesMap 
store the edges (relationships) between nodes. 
edgesMap<Integer, int[]>: 
• Key: Node ID (Integer) 
• Value: Array of connected node IDs (int[]) 
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• Function: This map is used to retrieve the IDs of nodes that are directly 
connected to a given node. 

 
Table 4: Keyword Association Storage: Mapping Node IDs to Lists of Keyword IDs 

keywordsListMap 
 store lists of keywords associated with each node. 
keywordsListMap<Integer, int[]>: 
• Key: Node ID (Integer) 
• Value: Array of keyword IDs (int[]) 
• Function: This map is used to retrieve the list of keywords associated with a 
given node. 

 
Table 5: Geographic Location Storage: Mapping Node IDs to Place Information 

places 
Purpose: To store place information for nodes that represent geographic 
locations. 
places<Integer, PlaceObject>: 
• Key: Node ID (Integer) 
• Value: PlaceObject instance 
• Function: This map is used to store and retrieve geographic information (like 
latitude and longitude) for nodes that represent places. 

 

3.2.1 Algorithm for Object Summary Creation 

In this section, we present Algorithm 3.2.1: Object Summary Creation, which outlines 

the process for creating an Object Summary (OS). The following pseudo details the 

steps required to traverse the dataset, identify relevant nodes, and construct the OS 

efficiently. 

 

Algorithm 3.2.1 Object Summary Creation 

1: Function CreateObjectSummary(keyword) 

2: Initialize tempNeighbors, tempNeighbors2, tempNeighbors3 as null 

3: Initialize neighbors, neighbors2, neighbors3 as null 

4: Initialize neighborsArray as empty ArrayList 

5: Set initialNode = nodeMapReverse.get(keyword) 

6: If initialNode is null 
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7:     Set initialNode = keywordsMapReverse.get(keyword) 

8:     If initialNode is null 

9:         Return 

10: If initialNode is a keyword 

11:     ProcessKeyword(initialNode) 

12: Else 

13:     ProcessNode(initialNode) 

14: Clear temporary maps: edgesMap, keywordsListMap, places 

15: Function ProcessKeyword(initialNode) 

16: Set nodeKeyword = keyword 

17: Set nodeId = initialNode 

18: Initialize neighborsArray 

19: For each entry in keywordsListMap 

20:     If entry contains nodeId 

21:         Add entry key to neighborsArray 

22: If neighborsArray is not empty 

23:     Initialize tempNeighbors as ObjectInterface[neighborsArray.size()] 

24:     For each parentNode in tempNeighbors 

25:         Set neighbors2 = edgesMap.get(parentNode) // second hop 

26:         ProcessSecondHopNeighbors(parentNode) 

27: Function ProcessSecondHopNeighbors(parentNode) 

28: Set nodeKeyword = keyword 

29: Set nodeId = initialNode 

30: Set neighbors = edgesMap.get(initialNode) // first hop 

31: If neighbors is not empty 

32:     Initialize tempNeighbors2 as ObjectInterface[neighbors.length] 

33:     For each neighborNode in neighbors 

34:         ProcessThirdHopNeighbors(neighborNode) 

35: Function ProcessThirdHopNeighbors(parentNode) 

36: Set nodeKeyword = keyword 

37: Set nodeId = initialNode 

38: Set neighbors = edgesMap.get(parentNode) // third hop 
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39: Initialize tempNeighbors3 as ObjectInterface[neighbors3.length] 

40: If neighbors is not empty 

41:     For each nodeObj in neighbors 

42:         If nodeObj is a place 

43:             PlaceObject placeObject = places.get(nodeId) 

44:             PlaceObject newPlaceObject = new PlaceObject(placeObject.getId(), 

new Point(coordinates.getPoint().getLat(), coordinates.getPoint().getLon()), 

placeObject.getName(), placeObject.getType(), nodeMap.get(initialNode), 3) 

45:             tempNeighbors3[i] = placeObject 

46:         Else 

47:             OtherObject otherObject = new OtherObject(parentNode2Id, temp-

Neighbors3, nodeKeywords, nodeMap.get(parentNode2Id), 2) 

48:             tempNeighbors3[i] = null 

49:     ProcessThirdHopNeighbors(parentNode) 

50: Function createRoot(initialNode, tempNeighbors) 

51: If nodeKeywords = keywordsListMap.get(initialNode) 

52:     PlaceObject coordinates = places.get(initialNode) 

53:     PlaceObject placeObject = new PlaceObject(initialNode, new Point(coordi-

nates.getPoint().getLat(), coordinates.getPoint().getLon()), placeObject.get-

Name(), placeObject.getType(), nodeMap.get(initialNode), 0) 

54:     objectSummary = placeObject 

55: Else 

56:     OtherObject otherObject = new OtherObject(initialNode, tempNeighbors, 

rootKeywords, nodeMap.get(initialNode), 0) 

57:     objectSummary = otherObject 

58: Return objectSummary 

59: End Function 

 

Algorithm 3.2.1 outlines the steps to create an Object Summary (OS) for a given 

keyword. The process begins by initializing necessary variables and retrieving the 

initial node corresponding to the keyword from the node and keyword maps. If the 

initial node is found, it is processed based on whether it is a keyword or a regular 
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node. The algorithm then traverses the dataset, processing neighbors through first, 

second, and third hops to construct the OS. Functions like ‘ProcessKeyword’, ‘Pro-

cessSecondHopNeighbors’ and ‘ProcessThirdHopNeighbors’ handle the traversal 

and neighbor processing. Finally, the ‘createRoot’ function assembles the OS from 

the processed data and returns it. This structured approach ensures a comprehensive 

and efficient summary of the data related to the specified keyword. 

3.3 Example Structure of a Generated Object Summary 

Assume the following data: 

• Node "Pericles" has neighbors "Athens", "Democracy", "Philosophy". 

• "Athens" has neighbors "Greece", "Sparta". 

• "Democracy" has neighbors "Government", "Elections". 

• "Philosophy" has neighbors "Socrates", "Plato". 

 

The resulting Object Summary (OS) would look like this: 

 

Pericles 

 ├── Athens 

 │   ├── Greece 

 │   └── Sparta 

 ├── Democracy 

 │   ├── Government 

 │   └── Elections 

 └── Philosophy 

     ├── Socrates 

     └── Plato 

Figure 1: Object Summary for ‘Pericles’ demonstrating hierarchical relationships 
with key associated entities. 

 

1. Initialization: initialNode is set to the ID corresponding to "Pericles". 
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2. First Hop Neighbors: Retrieve neighbors of "Pericles": "Athens", 

"Democracy", "Philosophy" and create PlaceObject or OtherObject instances 

for these neighbors. 

3. Second Hop Neighbors: 

For each first hop neighbor, retrieve their neighbors: 

• "Athens" -> "Greece", "Sparta" 

• "Democracy" -> "Government", "Elections" 

• "Philosophy" -> "Socrates", "Plato" 

Create PlaceObject or OtherObject instances for these second hop neighbors. 

4. Third Hop Neighbors: Since there are no further neighbors listed, this step 

might be skipped for this example. 

5. Construct Root Node: Create the root node "Pericles" with tempNeighbors as 

its children. 

6. Clean Up: Clear temporary maps: edgesMap, keywordsListMap, places. 
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CHAPTER 4          

SPATIAL PROPORTIONALITY 

4.1     Introduction to Spatial Proportionality 

 4.1.1 The Concept of Spatial Proportionality  

4.2     Baseline Algorithm 

         4.2.1   Implementation of Baseline Algorithm 

4.3     Grid Algorithm 

         4.3.1   Detailed Explanation of Algorithm 

         4.3.2   Advantages of Grid Algorithm  

         4.3.3   Implementation of Grid Algorithm  

4.4     Comparison of Baseline with Grid Algorithm 

4.5     Random Sampling Algorithm for Spatial Proportionality 

         4.5.1   Implementation of Random Sampling 

         4.5.2.  Advantages and Limitations of Random Sampling 

 

 

In this chapter, we delve into the realm of spatial proportionality and explore various 

algorithms designed to achieve this goal. We begin with an introduction to the 

fundamental concept of spatial proportionality, setting the stage for the algorithms 

that follow. Section 4.1 provides an overview of this concept, establishing a 

foundation for understanding the subsequent discussions. In Section 4.2, we present 

the Baseline Algorithm, detailing its implementation and functionality. This 

algorithm serves as a reference point for comparing more advanced methods. Next, 

in Section 4.3, we introduce the Grid Algorithm. We offer a comprehensive 

explanation of its workings, highlight its advantages, and describe its implementation 

in detail. This algorithm is examined for its efficacy and benefits over the Baseline 

Algorithm. Section 4.4 provides a comparative analysis of the Baseline and Grid 
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Algorithms, evaluating their respective strengths and weaknesses in achieving spatial 

proportionality. Finally, in Section 4.5, we explore the Random Sampling Algorithm 

for spatial proportionality. This section covers its implementation and discusses both 

the advantages and limitations of this approach, providing a balanced view of its 

practical applications. 

4.1 Introduction to Spatial Proportionality 

In the realm of spatial keyword search, where the goal is to retrieve and rank spatial 

objects based on their contextual and locational relevance, the concept of spatial 

proportionality emerges as a critical factor. Spatial proportionality aims to ensure 

that the retrieved subset of spatial objects represents the overall spatial distribution 

and contextual diversity of the original dataset. This concept not only enhances the 

quality of search results but also aids users in gaining a more comprehensive 

understanding of the spatial landscape. This report delves into the baseline and grid 

algorithms designed to achieve efficient and effective spatial proportionality. 

4.1.1 The Concept of Spatial Proportionality  

Spatial proportionality is a fundamental concept in spatial keyword search, aimed at 

ensuring that the subset of spatial objects retrieved is a representative sample of the 

entire dataset in terms of both spatial distribution and contextual relevance. This 

concept is crucial for providing users with search results that accurately reflect the 

geographic and thematic diversity of the dataset, thereby improving the usability 

and interpretability of the search outcomes. Spatial proportionality involves selecting 

a representative subset of spatial objects from a larger set, such that the chosen subset 

maintains the spatial and contextual distribution of the original dataset. This entails 

ensuring that the selected objects are proportionally spread out in the spatial domain 

and that they reflect the diversity of contexts present in the dataset. The challenge 

lies in balancing relevance, diversity, and proportional representation, which often 

requires sophisticated computational techniques. Proportionality with respect to 

context and location is essential to providing users with diverse and representative 

query results. Various proportionality scores are defined [9], such as spatial 
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proportionality 𝑝𝑆(𝑝!) and contextual proportionality 𝑝𝐶(𝑝!), which help measure 

how well the selected subset reflects the spatial and contextual distribution of the 

entire set. Spatial proportionality score 𝑝𝑆(𝑝!) of a place 𝑝! is the following: 

𝑝𝑆(𝑝!) = 𝑝𝑆𝑆(𝑝!) − 𝑝𝑆𝑅(𝑝!) 
Where: 

• 𝑝𝑆𝑆(𝑝!) is the sum of spatial similarities between 𝑠𝑆*𝑝! , 𝑝", and all other places 

in the set 𝑆. 

• 𝑝𝑆𝑅(𝑝!) is the sum of spatial similarities between 𝑆*𝑝! , 𝑝", and all other places 

in the subset 𝑅. 

The goal is to select places that are not only relevant to the query but also ensure 

that the overall set is spatially diverse and contextually representative. 

Note that here, 𝑠𝑆*𝑝! , 𝑝", stands for Ptolemy’s spatial similarity, defined as 1 −

𝑑𝑆*𝑝! , 𝑝",, where 𝑑𝑆*𝑝! , 𝑝", computes the spatial diversity between 𝑝! and 𝑝". The 

rationale behind 𝑝𝑆𝑆(𝑝!) is to favor places surrounded by numerous neighbors 

within set  concerning the query point. Conversely, 𝑝𝑆𝑅(𝑝!) favors places divergent 

from the remaining places in set 𝑅, thereby embracing spatial diversity. Importantly, 

both 𝑝𝑆𝑆(𝑝!) and 𝑝𝑆𝑅(𝑝!) pivot on the query location	𝑞. The score 𝑝𝑆(𝑝!) falls within 

the range [0, 𝐾 − 𝑘], akin to 𝑝𝐶𝑆(𝑝!). Notably, computing sS*𝑝! , 𝑝",for all pairs ne-

cessitates substantial computational effort. 

 

In large spatial datasets, such as geographic information systems (GIS), social media 

geotags, and points of interest (POI) databases, the number of relevant objects 

returned by a query can be overwhelming. Without spatial proportionality, the top 

results may be clustered in a specific area or dominated by a particular context, 

which can lead to biased and less informative search results. Spatial proportionality 

addresses this issue by ensuring that the selected subset maintains Geographic 

Diversity. This ensures that the spatial objects are well-distributed across the 

geographic area of interest, preventing clustering in specific regions. Moreover, it 

reflects Contextual Diversity, ensuring that the objects represent a variety of contexts 

or themes, such as different types of POIs, activities, or events. Finally, it enhances 

User Comprehension, providing users with a holistic view of the spatial landscape, 

aiding in better decision-making and understanding of the area. Achieving spatial 

S
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proportionality involves balancing three key factors: relevance, spatial distribution, 

and contextual diversity. This requires sophisticated algorithms that can evaluate 

and integrate these factors effectively. Relevance refers to the closeness of the spatial 

objects to the query in terms of geographic proximity and thematic content, ensuring 

that the selected objects are pertinent to the user's query. Spatial Distribution ensures 

that the selected objects are spread out geographically, preventing the selection from 

being concentrated in a small area, which could skew the representation of the 

dataset. Finally, Contextual Diversity ensures that the objects represent different 

contexts or themes, avoiding redundancy and enhancing the richness of the 

information provided to the user. Relevance scores and importance scores are 

examples of how spatial proportionality can be quantified. Relevance scores are 

obtained by summing up the spatial similarity scores for each object, indicating its 

overall relevance in the context of the entire dataset. Importance scores, which are 

used to rank the objects, are computed by combining relevance scores with contextual 

information (such as hierarchical levels). 

4.2 Baseline Algorithm 

The baseline algorithm for spatial proportionality involves calculating pairwise spa-

tial similarities between all objects, summing these similarities to get relevance scores, 

and then combining these scores with contextual information to get final importance 

scores. This approach, while accurate, can be computationally intensive, especially 

for large datasets. The Baseline Algorithm consists of these key steps: Initialization, 

Spatial Similarity Calculation, Proportionality Relevance Calculation, and Place Level 

Importance Calculation.  

The algorithm begins by initializing essential parameters, including the collection of 

places within the target region and the maximum distance allowed for spatial calcu-

lations. The next step involves computing the spatial similarity scores between all 

pairs of spatial objects using the Euclidean distance. The similarity score between all 

pairs of places within the region is determined based on the Euclidean distance 
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between the geographical coordinates of each pair of places. This score is normalized 

by dividing it by the maximum distance using the formula: 

𝑠𝑆(𝑝𝑖, 𝑝𝑗) =
maxDist− Euclidean Distance(𝑝𝑖, 𝑝𝑗)

maxDist  

Once the spatial similarities are computed, the algorithm calculates the proportion-

ality relevance score for each object. The proportionality relevance score for a spatial 

object is the sum of its spatial similarity scores with all other objects in the dataset, 

indicating the overall relevance of the object in the spatial context using the formula: 

𝑝𝑅(𝑝𝑖) = 	 : 𝑠𝑆(𝑝𝑖, 𝑝𝑗)
{"	%!}

 

The final step involves calculating the place level importance score for each object. 

This score is a combination of the proportionality relevance score and the hierar-

chical level of the object, using the formula: 

score(𝑝𝑖) =
pr[𝑖]

totalPlaces− 1 +
1

(level(𝑝𝑖) + 𝑎) 

where 𝑎	 is a smoothing factor to ensure proper weighting of objects at different 

levels. Finally, the algorithm executes the steps, that were previously described, in 

sequence and returns a list of places sorted by their calculated Place Level Im-

portance scores. 

The implementation details of the baseline algorithm for spatial proportionality in-

clude several key components. The algorithm utilizes a helper class to compute the 

Euclidean distance between pairs of geographical coordinates. It employs arrays and 

collections to manage and manipulate place objects and their associated scores effi-

ciently. Additionally, places are sorted based on their Place Level Importance scores 

in descending order to prioritize the most relevant and important places within the 

region.  

Concluding, the Baseline Algorithm provides a foundational approach for assessing 

the relevance and importance of places within a given geographical region. By 
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considering spatial similarity, pairwise relevance, and hierarchical importance, the 

algorithm offers valuable insights for various applications requiring spatial analysis 

and recommendation systems. The baseline algorithm, while effective in achieving 

spatial proportionality, can be computationally expensive due to the need for pair-

wise comparisons and extensive similarity calculations. 

4.2.1 Implementation of Baseline Algorithm 

Algorithm 4.2.1, outlines a method to rank spatial objects by evaluating their con-

textual and locational relevance within a specified region. The algorithm processes a 

list of PlaceObjects and a maximum distance for normalization to produce a sorted 

list of these objects based on their computed scores.	Below is the pseudocode for the 

algorithm. 

 

Algorithm 4.2.1 Baseline 

Input: 

    placesInRegion: List of PlaceObject 

    maxDist: Maximum distance for normalization 

Output: 

    List of PlaceObject sorted by their scores 

1: Initialize: 

2:     totalPlaces = size of placesInRegion 

3:     ss = array of size (totalPlaces * totalPlaces) 

4:     pr = array of size totalPlaces 

5:     pli = array of PlaceObject of size totalPlaces 

6:     a = 0.5 

7: // Step 1: Calculate Spatial Similarities 

8: Function calculateSS(): 

9:     for i from 0 to totalPlaces - 1: 

10:         for j from 0 to totalPlaces - 1: 

11:             distance = EuclideanDistance(placesInRegion[i].getPoint(), 

placesInRegion[j].getPoint()) 
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12:             ss[i * totalPlaces + j] = (maxDist - distance) / maxDist 

13: // Step 2: Calculate Proportionality Relevance 

14: Function calculatePR(): 

15:     for i from 0 to totalPlaces - 1: 

16:         sumOfSS = 0 

17:         for j from 0 to totalPlaces - 1: 

18:             if i != j: 

19:                 sumOfSS = sumOfSS + ss[i * totalPlaces + j] 

20:         pr[i] = sumOfSS 

21: // Step 3: Calculate Place Level Importance 

22: Function calculatePLI(): 

23:     for i from 0 to totalPlaces - 1: 

24:         node = placesInRegion[i] 

25:         score = pr[i] / (totalPlaces - 1) + 1 / (node.getLevel() + a) 

26:         node.setScore(score) 

27:         pli[i] = node 

28: // Main Execution 

29: calculateSS() 

30: calculatePR() 

31: calculatePLI() 

32: // Sort places by their scores in descending order 

33: sortedPLI = sort pli in descending order based on scores 

34: return sortedPLI 

 

Here is the explanation of the pseudocode for Algorithm 4.2.1, Baseline. The process 

begins by initializing necessary data structures, including arrays for spatial similari-

ties (ss), proportionality relevance (pr), and place-level importance (pli). The algo-

rithm then proceeds through three main steps: First, the ‘calculateSS’ function com-

putes the Euclidean distance between each pair of PlaceObjects. These distances are 

normalized using the maximum distance and stored in the spatial similarities array. 

Second, the ‘calculatePR’ function sums the spatial similarities for each PlaceObject, 

excluding itself, to determine its proportionality relevance. This sum represents how 
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each object is related to the others within the region. Third, the ‘calculatePLI’ func-

tion calculates a score for each PlaceObject by combining its proportionality relevance 

with a normalization factor based on its hierarchical level. This score is used to assess 

the overall importance of each PlaceObject. Finally, the PlaceObjects are sorted in 

descending order based on their scores, resulting in a ranked list that reflects both 

spatial distribution and contextual diversity. This method ensures that the most rel-

evant spatial objects are highlighted, enhancing the effectiveness of spatial keyword 

searches. 

4.3 Grid Algorithm 

To address the computational challenges of the baseline algorithm, we used an in-

novative grid-based algorithm that offers an optimized approach by leveraging spa-

tial partitioning techniques. Specifically, we delve into the optimization of Ptolemy's 

similarity computation by using an algorithm capable of accelerating the calculation 

of 𝑠'*𝑝! , 𝑝", for any given pair of places 𝑝! and 𝑝". Ptolemy’s similarity measure is a 

metric used to evaluate the similarity between pairs of spatial entities in the context 

of spatial keyword searches. This measure integrates both spatial and textual rele-

vance to provide a comprehensive similarity assessment. It leverages Ptolemy’s the-

orem, which involves the relationships between distances in a cyclic quadrilateral. 

Given two places 𝑝! and 𝑝" and a query point 𝑞, Ptolemy’s similarity measure 

𝑠'*𝑝! , 𝑝", is defined as: 

𝑠'*𝑝! , 𝑝", =
𝑑(𝑝! , 𝑞) ⋅ 𝑑*𝑝" , 𝑞, + 𝑑*𝑝! , 𝑝", ⋅ 𝑑(𝑞, 𝑞)

𝑑(𝑝! , 𝑞) + 𝑑*𝑝" , 𝑞,
 

where: 

• 𝑑(𝑝! , 𝑞) is the spatial distance between place 𝑝! and the query point 𝑞. 

• 𝑑*𝑝" , 𝑞,  is the spatial distance between place 𝑝" and the query point 𝑞. 

• 𝑑*𝑝! , 𝑝",  is the spatial distance between place 𝑝! and place 𝑝". 
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This measure balances the spatial proximity of the places to the query point with 

their direct spatial relationship. By considering these distances, the measure effec-

tively captures both the geographical closeness and the contextual relevance of the 

places concerning the query. 

The grid-based algorithm optimizes the process of achieving spatial proportionality 

by dividing the spatial domain into a grid. Each spatial object is assigned to a cell 

within this grid, and the algorithm approximates spatial similarities based on the 

cells rather than directly between all individual objects. This approach significantly 

reduces the number of pairwise comparisons needed, making it suitable for large-

scale applications. This algorithm is designed to operate on two distinct grid struc-

tures: a squared grid and a radial grid structure but we selected to use the squared 

grid. 

4.3.1 Detailed Explanation of Algorithm  

Now let's see more details on how grid partitioning and proportionality techniques 

enhance the efficiency and scalability of spatial keyword searches. First, we have the 

Grid Partitioning (step1). The spatial domain is divided into a grid of cells. Each 

spatial object is assigned to a cell based on its coordinates. This partitioning helps in 

reducing the number of pairwise comparisons by considering only the objects within 

the same cell or neighboring cells. More precisely, the algorithm is initiated by gen-

erating a structured grid, denoted as 𝐺, consisting of square cells. This grid is cen-

tered around a specified query location 𝑞 and effectively covers the spatial distribu-

tion of all places within the set . The dimensions of the grid, including the length 

of its sides and the number of cells it encompasses, are strategically determined to 

optimize computational efficiency. The center of the grid 𝐺( aligns with the query 

location 𝑞, while the length of each side (𝐺)) is set to twice the distance (𝑓*) between 

𝑞 and the farthest point in 𝑆. The grid size determines how finely the spatial domain 

is partitioned, directly impacting the number of comparisons and the level of detail 

captured.  

Here, we have an example of grid: 

S
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Consider a grid where cells are denoted as 𝑐+,- with 𝑥 and 𝑦 being the coordinates 

relative to the query point 𝑞. For example, 𝑐.,/ represents the cell at coordinates (1, 

2) from the center. Below is a representation of such a grid, to help visualize how 

the grid partitions the spatial domain around the query point. 

𝑐01,1 𝑐0/,1 𝑐0.,1 𝑐.,1 𝑐/,1 𝑐1,1 
𝑐01,/ 𝑐0/,/ 𝑐0.,/ 𝑐.,/ 𝑐/,/ 𝑐1,/ 
𝑐01,. 𝑐0/,. 𝑐0.,. 𝑐.,. 𝑐/,. 𝑐1,. 
𝑐01,0. 𝑐0/,0. 𝑐0.,0. c.,0. 𝑐/,0. 𝑐1,0. 
𝑐01,0/ 𝑐0/,0/ 𝑐0.,0/ 𝑐.,0/ 𝑐/,0/ 𝑐1,0/ 
𝑐01,01 𝑐0/,01 𝑐0.,01 𝑐.,01 𝑐/,01 𝑐1,01 

      

This approach simplifies and speeds up the process of spatial keyword search by 

reducing the computational load while maintaining accurate approximations of sim-

ilarity scores. The pre-computed cell center scores can be reused for various queries, 

making this method both efficient and scalable. 

The next step is the cell allocation (step 2), where we assign each place 𝑝 from the 

set 𝑆 to its corresponding grid cell. For each cell 𝑐! , we maintain a count (|𝑐!|) 

representing the number of places it contains. Additionally, we approximate the 

location of each cell’s center (c23), which serves as a proxy for the collective positions 

of all places within that cell. Next, we have the similarity score calculation (step 3). 

In this step, we calculate the Ptolemy’s similarity score (𝑝4) for each cell 𝑐!. Lever-

aging precomputed similarity scores 𝑠'*𝑐(! , 𝑐(", between the centers of every pair of 

cells (𝑐! , 𝑐"), stored in a matrix (𝑠'5), we employ a computation scheme that efficiently 

considers the cardinality of each cell (|𝑐! |) and the precomputed similarity scores.  

This computation, adapted from Equation: 𝑝'(𝑝!) = ∑ 𝑠'*𝑝! , 𝑝",*!∈',*"%*!  , involves 

summing the product of the cardinalities of 𝑐! and 𝑐" with their corresponding pre-

computed similarity scores, and then subtracting 1 to eliminate self-comparisons. So, 

instead of calculating the exact Euclidean distances between all pairs of objects, the 

grid-based algorithm approximates these distances by considering the distances 

between the centers of the grid cells.  
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Similar to the baseline algorithm, the grid-based algorithm calculates the 

proportionality relevance scores for each spatial object. The spatial similarity scores 

between objects within the same cell and neighboring cells are summed up to 

compute the proportionality relevance score for each object. The final place level 

importance score for each object is computed by combining its proportionality 

relevance score and its hierarchical level. The formula used is: 

𝑠𝑐𝑜𝑟𝑒(𝑝!) =
𝑝𝑟[𝑖]

(𝑡𝑜𝑡𝑎𝑙𝑃𝑙𝑎𝑐𝑒𝑠 − 1) +
1

(𝑙𝑒𝑣𝑒𝑙(𝑝!) + 𝑎)
 

This step ensures that the scores reflect both the spatial and contextual importance 

of each object. 

4.3.2 Advantages of Grid Algorithm 

The grid-based algorithm offers several advantages. One key advantage is computa-

tional efficiency. By reducing the number of pairwise comparisons through grid 

partitioning, the grid-based algorithm significantly lowers the computational cost. 

This efficiency makes it feasible to apply the algorithm to large-scale datasets, where 

the baseline algorithm would be too slow. Another advantage is scalability. The grid-

based algorithm scales well with the size of the dataset. As the dataset grows, the 

grid can be adjusted to maintain a balance between accuracy and computational 

efficiency. This allows the algorithm to handle a large number of spatial objects 

without a significant increase in computational complexity. Finally, the algorithm 

provides approximate similarity. While the grid-based algorithm uses approxima-

tions, it still maintains a reasonable level of accuracy in representing spatial propor-

tionality. The use of grid cells allows for a balance between exact calculations and 

computational feasibility, providing a practical solution for large datasets. 

4.3.3 Implementation of Grid Algorithm 

The following pseudocode outlines Algorithm 4.3.2 Grid Algorithm, which is de-

signed to rank Points of Interest (POIs) by leveraging grid partitioning and spatial 

similarity approximation. The algorithm operates through four main steps: grid par-

titioning, spatial similarity approximation, proportionality relevance calculation, and 
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place-level importance calculation. It follows with a detailed explanation of each step 

to provide a comprehensive understanding of the process. 

 

Algorithm 4.3.2 Grid Algorithm 

 Input: POIs, maxDist, gridSize 

 Parameters: gridSize 

1: // Step 1: Grid Partitioning 

2: for each POI in POIs: 

3:     cell_x = floor((POI.Latitude - minLatitude) / (maxLatitude - minLatitude) 

* gridSize) 

4:     cell_y = floor((POI.Longitude - minLongitude) / (maxLongitude - 

minLongitude) * gridSize) 

5:     grid[cell_x][cell_y].add(POI) 

6: // Step 2: Spatial Similarity Approximation 

7: for each cell_i in grid: 

8:     for each cell_j in grid: 

9:         distance = EuclideanDistance(center(cell_i), center(cell_j)) 

10:         similarity[cell_i][cell_j] = (maxDist - distance) / maxDist 

11: for each cell in grid: 

12:     for each POI in cell: 

13:         for each neighbor_cell in get_neighboring_cells(cell): 

14:             for each neighbor_POI in neighbor_cell: 

15:                 similarity_score = similarity[cell][neighbor_cell] 

16:                 ss[POI_i][POI_j] = similarity_score 

17: // Step 3: Proportionality Relevance Calculation 

18: for each POI in POIs: 

19:     sum_of_similarities = 0 

20:     for each neighbor_POI in get_neighboring_POIs(POI): 

21:         POI_i = neighbor_POI; 

22:         sum_of_similarities += ss[POI][neighbor_POI] 

23:     pr[POI] = sum_of_similarities 

24: // Step 4: Place Level Importance Calculation 
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25: a = 0.5 // Smoothing factor 

26: for each POI in POIs: 

27:     final_score = pr[POI] / (total_POIs - 1) + 1 / (POI.Level + a) 

28:     POI.set_score(final_score) 

29: // Sorting and Output 

30: sorted_POIs = sort(POIs, by=final_score, order=descending) 

31: return sorted_POIs 

 

The algorithm begins with grid partitioning, where the spatial domain is divided 

into a grid of cells. Each POI is assigned to a specific cell based on its latitude and 

longitude coordinates. This is done by calculating the cell's x-coordinate (‘cell_x’) by 

normalizing the POI's latitude within the grid size, and similarly, calculating the 

cell's y-coordinate (‘cell_y’) by normalizing the POI's longitude within the grid size. 

The POI is then added to the corresponding cell in the grid (‘grid[cell_x][cell_y]’). 

The second step approximates the spatial similarity between POIs by calculating the 

distances between the centers of the grid cells they belong to. For each pair of cells 

(‘cell_i’, ‘cell_j’) in the grid, the Euclidean distance between their centers is 

computed, normalized, and stored in a similarity matrix (‘similarity[cell_i][cell_j]’). 

For each POI in each cell, the algorithm retrieves the precomputed similarity score 

between the current cell and its neighboring cells, and stores the similarity score for 

the POI pair in the similarity score matrix (‘ss[POI_i][POI_j]’). The third step 

involves calculating the proportionality relevance (PR) score for each POI by 

summing its spatial similarities with neighboring POIs. For each POI, the algorithm 

initializes ‘sum_of_similarities’ to 0, then iterates through its neighboring POIs, 

adding the similarity score between the POI and each neighboring POI to 

‘sum_of_similarities’. The PR score for the POI (‘pr[POI]’) is then set to 

‘sum_of_similarities’. In the fourth step, the final importance score for each POI is 

calculated by combining its PR score with a factor based on its hierarchical level. 

This is done using the formula: ‘final_score = pr[POI] / (total_POIs - 1) + 1 / 

(POI.Level + a)’, where ‘a’ is a smoothing factor set to 0.5. The computed final score 

is then assigned to the POI. The final step involves sorting the POIs based on their 

computed scores in descending order and returning the sorted list. By following 
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these steps, the Grid Algorithm efficiently partitions the spatial domain, approximates 

spatial similarities, calculates relevance scores, and ranks POIs, ensuring both 

computational efficiency and effective spatial keyword search results. 

 

Concluding, the grid-based algorithm offers a practical and efficient approach to 

achieving spatial proportionality in large-scale spatial keyword search applications. 

By leveraging spatial partitioning techniques and approximate similarity calculations, 

it significantly reduces computational overhead while maintaining a reasonable level 

of accuracy. This makes the grid-based algorithm an essential tool for enhancing the 

relevance and usability of spatial search results in large datasets. 

4.4 Comparison of Baseline with Grid Algorithm 

The table below compares the Baseline Algorithm and the Grid-Based Algorithm 

across various aspects of their operation. It highlights differences in initialization, 

spatial similarity calculation, proportionality relevance calculation, place level im-

portance calculation, computational complexity, accuracy, and scalability. The Base-

line Algorithm uses direct pairwise comparisons, resulting in high accuracy but also 

high computational complexity. In contrast, the Grid-Based Algorithm partitions the 

spatial domain into a grid, approximating similarities using cell centers, which re-

duces computational complexity and enhances scalability, albeit with slightly lower 

accuracy. 

Table 6: Comparison of Baseline and Grid-Based Algorithms for Spatial Keyword 
Search 

Aspect Baseline Algorithm Grid Algorithm 

Initialization Directly uses all POIs 

Partitions spatial domain into a 

grid 

Spatial Similarity 

Calculation 

Exact pairwise similarity 

using Euclidean distance 

Approximate similarity using 

grid cell centers 



 

43 

 

Proportionality 

Relevance 

Calculation 

Sums exact similarities 

with all other POIs 

Sums approximate similarities 

within same/neighboring cells 

Place Level 

Importance 

Calculation 

Combines relevance score 

with hierarchical level 

Combines relevance score with 

hierarchical level 

Computational 

Complexity 

High, due to pairwise 

comparisons 

Lower, due to reduced number 

of comparisons 

Accuracy 

High, due to exact calcu-

lations 

Slightly lower, due to approxi-

mations 

Scalability 

Limited by high compu-

tational cost Scales well with large datasets 

 

4.5 Random Sampling Algorithm for Spatial Proportionality 

The Random Sampling Algorithm is a straightforward method used to select a rep-

resentative subset of spatial objects from a larger dataset. This approach leverages 

randomness to ensure that the selected subset maintains the spatial and contextual 

diversity of the entire dataset. More precisely, Random Sampling Algorithm is de-

signed to select a subset of places from a given region based on specific criteria. It 

initializes with parameters including the list of places in the region, maximum dis-

tance, desired number of results, and a distance percentage. The algorithm calculates 

a minimum distance threshold based on the provided parameters. It then randomly 

selects places from the region while ensuring they meet the distance criteria and 

have not been previously selected. The process continues until the desired number 

of results is obtained or there are no more places left to consider. Finally, it outputs 

the selected places sorted by score in descending order, along with their IDs and 

coordinates. This algorithm provides a systematic way to sample diverse locations 

from a region while maintaining spatial separation and potentially prioritizing places 

based on certain attributes. 
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4.5.1 Implementation of Random Sampling  

The following pseudocode details a method for selecting a specified number of Points 

of Interest (POIs) from a given region, based on distance constraints and scoring.  

 

Algorithm 4.5.2 Random sampling 

 Input: POIs, maxDist, numberOfRes, distPercentage 

1:     Initialize results array with size numberOfRes 

2:     Calculate minDist based on maxDist and distPercentage 

3:     while counterInResults < numberOfRes: 

4:         Randomly select a place objTemp from placesInRegion 

5:         Add objTemp to results if it satisfies distance constraints and is not 

already included 

6:         Increment counterInResults 

7:         Remove objTemp from placesInRegion 

8:     Sort results array in descending order by score 

9:     return results 

 

The algorithm begins by initializing an array named ‘results’ with a size equal to 

the desired number of results (‘numberOfRes’) to store the selected POIs. Next, the 

minimum distance (‘minDist’) is calculated based on the maximum distance 

(‘maxDist’) and a given distance percentage (‘distPercentage’). This step likely de-

termines the lower bound for distance constraints. The main part of the algorithm 

is a loop that continues until the ‘results’ array contains the specified number of 

POIs. Within this loop, a place (‘objTemp’) is randomly selected from the list of 

POIs (‘placesInRegion’). The selected place is added to the ‘results’ array if it meets 

the distance constraints and is not already included. The counter tracking the num-

ber of results (‘counterInResults’) is incremented, and the selected place (‘objTemp’) 

is removed from ‘placesInRegion’ to avoid duplicate selections. Once the desired 

number of POIs has been selected, the ‘results’ array is sorted in descending order 

based on the score of each POI. Finally, the sorted ‘results’ array is returned as the 

output of the algorithm. This method ensures that a specified number of POIs are 
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selected randomly, subject to distance constraints, and then sorted by their scores 

for final output. 

 

4.5.2 Advantages and Limitations of Random Sampling  

The algorithm has several advantages and limitations. Among the advantages are 

its simplicity, as it is easy to implement and understand, and its efficiency, since it 

is computationally efficient due to requiring only random selection. However, the 

algorithm also has limitations. It lacks control, as it does not guarantee proportional 

representation in terms of spatial distribution and contextual diversity. Additionally, 

there is significant variance in results between different runs due to the random 

nature of the selection process. Lastly, it may not always provide a representative 

subset, especially for datasets with clustered distributions. 

 

While the random sampling algorithm is useful for its simplicity and efficiency, it 

often serves as a starting point for more complex methods designed to ensure spatial 

proportionality. More sophisticated algorithms, such as the baseline and grid-based 

algorithms, provide better guarantees for maintaining spatial and contextual diver-

sity in the selected subsets. The random sampling algorithm, however, remains a 

valuable tool for quick approximations and baseline comparisons in the context of 

spatial keyword search. 
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CHAPTER 5          

SELECTION ALGORITHMS   

5.1 Importance of Selection Algorithms 

5.2 Greedy Algorithm for Selection 

         5.2.1   Implementation of Greedy Algorithm 

5.3 Greedy-Disc Algorithm 

         5.3.1   Implementation of Greedy-Disc Algorithm 

         5.3.2  Example Use Case: Diversifying Historical Places in Athens Related 

to Pericles   

 

 

In this chapter, we focus on the critical role of selection algorithms and their practical 

implementations. We start with Section 5.1, which discusses the importance of se-

lection algorithms, highlighting their significance in various computational and real-

world contexts. Section 5.2 delves into the Greedy Algorithm for selection, explaining 

its implementation in detail. This section serves as a foundation for understanding 

how simple, yet effective algorithms can solve selection problems efficiently. Follow-

ing this, Section 5.3 introduces the Greedy-Disc Algorithm. We provide a detailed 

explanation of its implementation and demonstrate its application through an exam-

ple use case. Specifically, Section 5.3.2 explores how the Greedy-Disc Algorithm can 

be used to diversify historical places in Athens related to Pericles, showcasing its 

practical utility. 

5.1 Importance of Selection Algorithms  

To enhance user experience and maintain clarity, we considered displaying a subset 

of the places of the object summary we got as result on the map. This strategic 
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selection aims to cover the map as evenly as possible, ensuring that the displayed 

points are not clustered too closely together. By implementing a greedy algorithm, 

we ensure that each chosen point maintains a minimum distance from the others. 

This approach reduces visual clutter and improves readability, allowing users to 

focus on key locations without being overwhelmed by too much information. Addi-

tionally, this method improves performance by reducing loading times, making the 

map more user-friendly and efficient. The result is a clean, aesthetically pleasing 

map that highlights significant points of interest, making it easier for users to interact 

with and analyse the displayed data.  

5.2 Greedy Algorithm for Selection 

Generally, a greedy algorithm is a problem-solving approach that makes the locally 

optimal choice at each stage with the hope of finding the global optimum. Greedy 

algorithms are typically used for optimization problems. The key characteristic of a 

greedy algorithm is that it builds up a solution piece by piece, always choosing the 

next piece that offers the most immediate benefit. We chose Greedy Algorithm to 

display K distinct objects from the list of all objects retrieved from the query after 

the algorithm's application (grid/baseline). The goal of this algorithm is to select a 

subset of spatial objects based on proportionality and relevance to a query context.  

Greedy Algorithm is designed to select up to K places from a list such that each 

selected place is sufficiently far from the others, ensuring diversity and relevance. It 

is a greedy heuristic algorithm that iteratively selects the next best object based on 

its contribution to the proportionality of the current result set. The algorithm starts 

with an empty result set and computes initial scores or distances. Then, it uses 

distance metrics to ensure selected objects are diverse. This involves pairwise com-

parisons and optimization to reduce computational complexity. We use the Euclid-

ean distance between places to ensure that each selected place is at least a minimum 

distance away from others. The algorithm selects objects that maximize the propor-

tionality score, ensuring they contribute positively to the overall diversity and rele-

vance, and iteratively adds them to the result set based on their contributions until 
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the desired number of objects (K) is reached. Finally, the algorithm returns a subset 

of objects that balance proportionality and relevance, ensuring diversity. 

 

5.2.1 Implementation of Greedy Algorithm 

Algorithm 5.2.1, the Greedy Algorithm, is designed to select a specified number of 

Points of Interest (POIs) based on distance constraints and scoring criteria. The al-

gorithm ensures that the selected POIs are randomly chosen, meet the defined dis-

tance criteria, and are subsequently sorted by their scores. The following pseudocode 

illustrates the detailed steps of this algorithm: 

 

Algorithm 5.2.1 Greedy Algorithm 

 Input: A list of PlaceObjectDistinct results, integer K, double maxDist, double 

distPercentage. 

 Output: A list of PlaceObjectDistinct resultsK that are selected. 

1: Initialize resultsK as an empty list. 

2: Calculate minDist as distPercentage * maxDist. 

3: Add the first place in results to resultsK and indexSet. 

4: for each place in results starting from the second place do 

5:      if place is not in indexSet then 

6:          if checkDistanceFromOtherPlacesInResults(place, counter) then 

7:             Add place to resultsK. 

8:              Add place to indexSet. 

9:              Increment counter. 

10:         end if 

11:     end if 

12:     if counter == K then 

13:         break 

14:     end if 

15: end for 

16: return resultsK 
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The algorithm starts by initializing the input parameters: the list of objects (results), 

the number of objects to select (K), the maximum distance (maxDist), and the dis-

tance percentage (distPercentage). It also initializes the result list (resultsK), which 

will store the selected objects, and an instance of the EuclideanDistance class for 

distance calculations. The method calculateMinDistBasedOnRegion computes the 

minimum allowable distance (minDist) between any two selected objects based on 

the given distPercentage of maxDist. The main selection happens in the exe-

cute method. It initializes a set to keep track of already selected object IDs to avoid 

duplicates. The first object from the list is always selected and added to resultsK. 

For each subsequent object, it checks if the object has not already been selected 

(using indexSet) and whether it maintains the minimum distance requirement from 

all previously selected objects (checkDistanceFromTheOtherPlacesInResults). If both 

conditions are satisfied, the object is added to resultsK and the ID is added to the 

index set. This process continues until K objects are selected or all objects are con-

sidered. The method checkDistanceFromTheOtherPlacesInResults iterates over the 

selected objects and calculates the distance between the current object and each of 

the already selected objects using the Euclidean distance formula. If any distance is 

found to be less than minDist, the object is rejected; otherwise, it is accepted. 

5.3 Greedy-Disc Algorithm 

The Greedy-DisC algorithm aims to construct a DisC diverse subset of a given set of 

query results, ensuring that this subset represents the entire set (coverage) while 

maintaining dissimilarity among the selected items. It is considered as a heuristic 

method designed to approximate a solution to an NP-hard problem. The goal of 

Greedy-DisC algorithm is to select a diverse subset of objects from a larger set such 

that the selected subset maximizes coverage and dissimilarity among its members. It 

does this by iteratively selecting the object with the largest "white neighborhood," 

which refers to the number of neighboring objects that have not yet been included 

in the diverse subset or marked as "covered." 
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We start with an empty subset (	𝑆	) and we color all objects in the set (	𝑃	) as white. 

Then there is the selection process. While there are still white objects we select the 

white object 𝑝! that has the largest white neighborhood  𝑁78(𝑝!). This is the set of 

white neighbors within a radius 𝑟 of  𝑝!. Then we add 𝑝! to the subset  𝑆, we color 

𝑝! black, indicating it has been added to 𝑆 and we color all white neighbors of 𝑝! 

(i.e., objects in 𝑁78(𝑝!)) grey, indicating they are now covered by 𝑝!. To efficiently 

implement the algorithm, we maintain a sorted list 𝐿′	 of all white objects based on 

the size of their white neighborhood. The object with the largest white neighborhood 

is always at the top of this list. 

When initializing 𝐿′, compute the size of the white neighborhoods for all objects. 

This is done by performing a range query 𝑄(𝑝! , 𝑟)  for each object 𝑝! 	and updating 

the neighborhood sizes accordingly. To reduce computational overhead, the algo-

rithm uses a pruning rule: A leaf node (in the tree structure used for range queries) 

that contains no white objects is colored grey. When all children of an internal node 

are grey, the internal node is also colored grey. During range queries, subtrees rooted 

at grey nodes are not searched, thus reducing the number of node accesses, and 

speeding up the algorithm. 

 

A key parameter in the Greedy-DisC algorithm is the radius 𝑟. The radius 𝑟 signifi-

cantly influences both the performance of the algorithm and the number of objects 

returned in the result subset. When 𝑟 is small, each selected object covers a smaller 

area and fewer neighbors, resulting in the need for more objects to achieve full 

coverage. This increases the computational cost as the algorithm performs more it-

erations and range queries. Conversely, a larger radius allows each selected object to 

cover a larger area and more neighbors, reducing the number of objects needed and 

potentially lowering the overall computational effort. For tightly clustered datasets 

with a smaller maximum diagonal distance, a moderate increase in 𝑟 can quickly 

reduce the number of objects required for coverage, enhancing performance and 

efficiency. In contrast, for widely spread datasets with a larger maximum diagonal 

distance, a significantly larger radius might be necessary to achieve similar reduc-

tions, though this could increase computational complexity due to larger range que-

ries. To optimize results, it's advisable to start with a moderate 𝑟 value and 
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incrementally adjust it, balancing the radius to effectively reduce the number of 

objects while managing computational costs. By fine-tuning 𝑟 according to the da-

taset's distribution and the desired subset size, you can maximize both the efficiency 

of the algorithm and the quality of the results. To determine the optimal radius for 

specific datasets, we will perform a series of experiments, varying 𝑟 and observing 

the resulting subset size and computational performance. These experiments will 

help identify the most effective radius values, ensuring that the algorithm performs 

optimally for different dataset characteristics. 

 

5.3.1 Implementation of Greedy-Disc Algorithm 

The following pseudo-code and its subsequent description detail the steps of the 

algorithm. 

 

Algorithm 5.3.1 Greedy-DisC  

 Input: A set of objects P and a radius r. 

 Output: An r-DisC diverse subset S of P. 

1:  S = ∅ 

2:  for all pi ∈ P do 

3:      Color pi white 

4:  end for 

5:  while there exist white objects do 

6:      Select the white object pi with the largest |𝑁𝑀7(𝑝𝑖)| 

7:      S = S ∪ {pi} 

8:      Color pi black 

9:      for all pj ∈ NM_r(pi) do 

10:         Color pj grey 

11:     end for 

12:  end while 

13:  return S 
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The Greedy-DisC algorithm begins by initializing an empty subset SS. All objects in 

the set PP are initially colored white, indicating that they have not been processed. 

The algorithm then enters a while loop that continues as long as there are white 

objects remaining. Within the loop, the algorithm selects the white object 𝑝! that has 

the largest number of white neighbors within a given radius 𝑟 (denoted as ∣

𝑁𝑟𝑊(𝑝𝑖) ∣). This object 𝑝! is added to the subset 𝑆, and its color is changed to black 

to indicate that it has been included in the subset. Next, all white neighbors of 𝑝!
 (objects within radius 𝑟) are colored grey, indicating that they are now covered 

by 𝑝! and should not be selected again. This process repeats until no white objects 

remain. Finally, the algorithm returns the subset 𝑆, which represents the rr-DisC 

diverse subset of 𝑃. 

 

5.3.2 Example Use Case: Diversifying Historical Places in Athens Re-

lated to Pericles 

Consider a scenario where a user wants to find a diverse set of historical places in 

Athens that are related to Pericles, such as museums, archaeological sites, and 

galleries. The goal is to provide a subset of attractions that cover different types of 

locations and are spatially distributed across the city, ensuring that the selected 

attractions are both representative of Pericles' era and diverse in nature. 

 

Scenario: A user queries, "Pericles" The objective is to present a diverse set of places 

that cover different aspects related to Pericles, including archaeological sites, 

museums, and galleries, ensuring they are spread out across the city. 

 

Initial Setup: Historical places related to Pericles include the Acropolis, Parthenon, 

Ancient Agora, National Archaeological Museum, Acropolis Museum, Stoa of Attalos, 

Theatre of Dionysus, Odeon of Herodes Atticus, Kerameikos, Pnyx Hill, Museum of 

Cycladic Art, and Benaki Museum. The radius 𝑟 is set to a value that ensures places 

within a 1 km radius are considered neighbors. 

 

Iteration Details:  
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In the first selection, Acropolis is chosen. The neighborhood covered includes the 

Parthenon, Theatre of Dionysus, and Odeon of Herodes Atticus. The subset 𝑆 

includes {Acropolis}. The status is: Acropolis (black), Parthenon, Theatre of 

Dionysus, and Odeon of Herodes Atticus (grey), others (white). In the second 

selection, Ancient Agora is chosen, covering central Athens with multiple historical 

elements. The neighborhood covered includes the Stoa of Attalos. The subset 𝑆 

includes {Acropolis, Ancient Agora}. The status is: Acropolis, Ancient Agora (black), 

Parthenon, Theatre of Dionysus, Odeon of Herodes Atticus, Stoa of Attalos (grey), 

others (white). In the third selection, National Archaeological Museum is chosen for 

its comprehensive coverage of artifacts from Pericles' era. The neighborhood covered 

includes adjacent museums and galleries. The subset SS includes {Acropolis, Ancient 

Agora, National Archaeological Museum}. The status is: Acropolis, Ancient Agora, 

National Archaeological Museum (black), nearby locations grey, others white. In the 

fourth selection, Acropolis Museum is chosen for its focus specifically on artifacts 

from the Acropolis. The neighborhood covered includes nearby attractions within 

the Acropolis vicinity. The subset 𝑆 includes {Acropolis, Ancient Agora, National 

Archaeological Museum, Acropolis Museum}. The status is: Acropolis, Ancient 

Agora, National Archaeological Museum, Acropolis Museum (black), covered places 

grey, others white. In the fifth selection, Kerameikos is chosen as an important 

archaeological site and ancient cemetery. The neighborhood covered includes nearby 

ancient ruins and sites. The subset 𝑆 includes {Acropolis, Ancient Agora, National 

Archaeological Museum, Acropolis Museum, Kerameikos}. The status is: all selected 

places (black), rest (grey). In the sixth selection, Benaki Museum is chosen for its 

coverage of a range of historical periods, including that of Pericles. The neighborhood 

covered includes surrounding historical and cultural sites. The subset SS includes 

{Acropolis, Ancient Agora, National Archaeological Museum, Acropolis Museum, 

Kerameikos, Benaki Museum}. The status is: all selected places (black), rest (grey). 

Concluding, after running the Greedy DisC algorithm, the final subset SS includes a 

diverse range of historical places related to Pericles, spread across Athens and 

representing various types of attractions such as archaeological sites, museums, and 

galleries. This approach ensures that users are presented with a varied set of options, 
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each providing unique insights into the era of Pericles and reducing redundancy. By 

using the Greedy DisC algorithm, the selection of historical places is efficiently 

diversified, balancing both the spatial distribution and the diversity of historical 

contexts offered, thus enhancing the user's exploration of Pericles' legacy in Athens. 
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CHAPTER 6          

EXPERIMENTS 

6.1 Experiments introduction 

6.2 Description of Dataset 

         6.2.1   Popular Subregions 

         6.2.2   Implementation of Algorithm for Popular Subregions Creation 

6.3 Experiment A – Object summary Creation 

6.4 Experiment B – Tuning parameter d in Random Sampling Algorithm 

6.5 Experiment C – Tuning parameter grid size in Grid Algorithm 

6.6 Experiment D – Tuning parameter radius (r) in Greedy-Disc Algorithm 

6.7 Experiment E – Comparison of Grid with Baseline Algorithm 

         6.7.1   Performance Comparison of Grid and Baseline Algorithm on Smaller 

regions with Numerous Nodes 

6.8 Experiment F – Selection Algorithms Comparison 

6.9 Conclusion of Experiments and Optimal model 

 

 

 

In this chapter, we present a comprehensive analysis of various experiments 

conducted to evaluate the performance of different algorithms and parameters. We 

begin with an introduction to the experiments in Section 6.1, outlining the objectives 

and significance of the experimental evaluations. Section 6.2 provides a detailed 

description of the dataset used in the experiments, including a focus on popular 

subregions. Subsections 6.2.1 and 6.2.2 cover the identification of these subregions 

and the implementation of the algorithm for their creation. We then delve into spe-

cific experiments: Section 6.3 describes Experiment A, which focuses on the creation 

of object summaries. Section 6.4 details Experiment B, involving the tuning of 
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parameter dd in the Random Sampling Algorithm. Section 6.5 covers Experiment C, 

where the grid size parameter is tuned in the Grid Algorithm. Section 6.6 discusses 

Experiment D, which involves tuning the radius parameter rr in the Greedy-Disc 

Algorithm. Section 6.7 presents Experiment E, comparing the Grid Algorithm with 

the Baseline Algorithm, with a specific performance comparison on smaller regions 

with numerous nodes in Subsection 6.7.1. Section 6.8 explores Experiment F, which 

compares different selection algorithms. Finally, Section 6.9 concludes the chapter 

by summarizing the findings from the experiments and identifying the optimal 

model based on the results. 

6.1 Experiments Introduction 

In our research, we conducted six distinct experiments to comprehensively evaluate 

and optimize various algorithms related to spatial data analysis. In our research, we 

conducted a series of six distinct experiments to comprehensively evaluate and opti-

mize various algorithms related to spatial data analysis. The primary objective of 

these experiments was to systematically investigate and improve the performance of 

algorithms used for data retrieval, quickly displaying objects on maps, and ensuring 

diversity in the presented data. By experimenting with different parameters and 

methods, we aimed to identify the most effective strategies and configurations, en-

suring that our findings contribute to more efficient and accurate spatial data anal-

ysis. In the first experiment, we measured the time required to create object sum-

maries by calculating the total time taken. The second experiment involved fine-

tuning a sampling algorithm by testing different distance values to determine the 

optimal configuration. In the third experiment, we ran Grid algorithm to identify the 

most suitable grid size that yields better results. The fourth experiment aimed at 

tuning the Greedy-disc algorithm by adjusting the radius value to enhance perfor-

mance. The fifth experiment compared the grid algorithm against a baseline algo-

rithm to assess relative effectiveness. Finally, our sixth experiment involved a com-

parative analysis of selection algorithms, specifically evaluating the performance of 

random sampling, greedy, and greedy-disc algorithms. These experiments 
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collectively aimed to optimize algorithmic performance and provide insights into 

their practical applications in spatial data analysis. 

6.2 Description of Dataset 

In our experiments, we utilized a comprehensive dataset derived from DBpedia, 

which encompasses various types of data relevant to spatial analysis. The dataset is 

composed of several files, each serving a specific purpose. The ‘node.txt’ file contains 

all the nodes with their respective IDs and names, totaling 8,099,956 nodes. A subset 

of these nodes, specifically representing places, is detailed in the ‘places.txt’ file, 

which includes 883,664 place nodes. The ‘pid.txt’ file provides the latitude and 

longitude coordinates for each place node, facilitating spatial mapping. For each 

node, the ‘keywordlist.txt’ file lists the related keyword IDs, while the ‘keyword.txt’ 

file maps each keyword ID to its corresponding keyword name. Additionally, the 

‘edges.txt’ file outlines the connections between nodes, with each line indicating a 

pair of connected nodes, encompassing a total of 6,799,279 connections. This rich 

dataset enabled us to perform detailed and diverse spatial data analyses, crucial for 

optimizing the algorithms under investigation. 

For the experiments that test the algorithms, we created the object summaries of the 

nodes. In total, our dataset comprises 1,059,011 object summaries (OS). For our 

experiments, we focused on a subset of these object summaries, specifically selecting 

those with a large number of distinct places. This subset allowed us to evaluate the 

algorithms' performance in handling complex and diverse spatial data, ensuring that 

our findings are robust and applicable to scenarios involving high variability and 

density of spatial information. Here are some statistics about the object summaries 

used as our dataset for the experiments. 

Table 7: Datset Statistics 

Avg Total Places of 

Subset’s Os 

Avg Distinct Places 

of Subset’s OS 

Max value of Total 

Places of an OS 

(Overall) 

Max value of Dis-

tinct Places of an 

OS (Overall) 

10939 2672 50188 7449 
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6.2.1 Popular Subregions  

 

Additionally, for each node within the small subset of summaries used in our ex-

periments, we identified smaller areas that contain a high concentration of places. 

This allowed us to test the efficiency of the algorithms in these densely populated 

regions. By focusing on areas where the maximum distance between objects is 

smaller compared to the initial dataset, we aimed to assess the algorithms' perfor-

mance in scenarios that simulate real-world conditions of high spatial density and 

local popularity. This approach ensured that our evaluation covered both broad and 

localized spatial contexts, providing a comprehensive analysis of the algorithms' ef-

fectiveness. 

 

6.2.2 Implementation of Algorithm for Popular Subregions Creation  

The following pseudocode outlines the steps taken to evaluate the algorithms in 

these concentrated regions. It encompasses the identification of densely populated 

nodes, the selection of smaller areas with maximum inter-object distances signifi-

cantly smaller than those in the initial dataset, and the subsequent performance 

testing of the algorithms.  

 

Algorithm 6.2.2 Popular Subregions Creation 

 Function createSubregion(objectsSummaryNode, nodId, placesInRegion, to-

talPlaces) 

1: Declare variables: 

2:     xmin, ymin, xmax, ymax as double, initialized to 0.0 

3:     subregionSize as double, initialized to 0 

4:     placesInSubregion as empty list 

5:     sizeOfPlacesInRegion as double, set to totalPlaces * 0.2 

6: while subregionSize < estimatedPlacesInRegion 

7:     If subregionSize == 0 

8:         Set ymin to latitude of the first place in placesInRegion 
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9:         Set xmin to longitude of the first place in placesInRegion 

10:         Increment subregionSize by 1 

11:         Add the first place from placesInRegion to placesInSubregion 

12:         Remove the first place from placesInRegion 

13:     Else if subregionSize == 1 

14:         Update ymin and xmin with latitude of the first place in placesInRegion 

15:         Update ymin and xmin with longitude of the first place in placesInRe-

gion 

16:         Increment subregionSize by 1 

17:         Add the first place from placesInRegion to placesInSubregion 

18:         Remove the first place from placesInRegion 

19:         Call insideBboxIntersectsCheck with current MBR and update 

placesInSubregion and placesInRegion 

20:         Update subregionSize with the size of placesInSubregion 

21:     Else if the first place in placesInRegion is within the current MBR 

22:         If the place is not already in placesInSubregion 

23:             Increment subregionSize by 1 

24:             Add the place to placesInSubregion 

25:             Remove the place from placesInRegion 

26:     Else 

27:         Update xmin, xmax, ymin, ymax with the coordinates of the first place 

in placesInRegion 

28:         If the place is not already in placesInSubregion 

29:             Increment subregionSize by 1 

30:             Add the place to placesInSubregion 

31:             Remove the place from placesInRegion 

32:         Call insideBboxIntersectsCheck with updated MBR and update 

placesInSubregion and placesInRegion 

33:         Update subregionSize with the size of placesInMBR 

34: End while 

35: End Function 
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36: Function insideBboxIntersectsCheck(xmin, xmax, ymin, ymax, placesInRe-

gion, placesInSubregion) 

37: Initialize placesInMBR as empty list 

38: For each place in placesInRegion 

39:     If place is not in placesInSubregion 

40:         If latitude of place is between xmin and xmax 

41:             If longitude of place is between ymin and ymax 

42:                 Add place to placesInMBR 

43: Return placesInMBR 

44: End Function 

 

The provided pseudocode describes a function named ‘createSubRegion’ which par-

titions a set of places into smaller subregions based on their geographic coordinates. 

The function initializes variables to track the minimum and maximum latitude and 

longitude (xmin, xmax, ymin, ymax), as well as lists to hold places within the current 

subregion. It iteratively processes places from ‘placesInRegion’, updating the bound-

ing box coordinates (MBR) as it adds places to the current subregion. The function 

checks if the subregion size reaches an estimated size (20% of the total places) and 

calls another function, ‘insideMBRObjectsCheck’, to verify and update places within 

the current bounding box. The ‘insideMBRObjectsCheck’ function identifies and re-

turns places within the specified bounding box, adding them to a list if their coor-

dinates fall within the bounds. This process continues until the subregion size meets 

the estimated number of places, ensuring each subregion contains places geograph-

ically close to each other. 

6.3 Experiment A – Object Summary Creation 

In this experiment, we aim to measure the average time required to construct an 

object summary using data from DBpedia. The process involves reading input ex-

periment parameters, creating necessary data structures, and generating object sum-

maries for each experiment. The experiment is conducted by measuring the time 

taken for the OS creation. The steps involved in the experiment are as follows: 
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1. Setup,Initialization and Reading Experimental Data: The experiment starts by 

initializing variables to record the start and end times for each object summary 

creation. It also sets up paths to the required DBpedia data files and reads 

the input experimental configurations from a specified file. Then, using the 

‘ReadInputData’ class, the experiment reads the input data which includes 

various experiment configurations such as object summary node, node ID, 

and query region. 

 

2. Object Summary Creation: For each experiment configuration, the script 

checks if the source data is from DBpedia. It initializes a ‘DBpediaSummary’ 

object with the required data file paths. The process involves creating struc-

tures necessary for the object summary, generating the object summary for 

the specified node, and retrieving the summary. 

 

3. Finding Relevant Places: After creating the object summary, the experiment 

uses the ‘FindRelevantPlaces’ class to find relevant places within the specified 

query region based on the generated object summary. 

 

4. Time Measurement and Calculation: The time taken for each object summary 

creation is measured using ‘System.nanoTime()’. This time is recorded and 

accumulated to calculate the total time taken for all experiments. The average 

time per experiment is computed and displayed after each iteration and at the 

end of the experiment. 

 

5. Output: The experiment prints the time taken for each object summary crea-

tion and the current average time in seconds. Finally, it prints the total aver-

age time for all experiments. 

 

Result: 

 

Average Time for OS creation: 74.653683055 sec 
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6.4 Experiment B – Tuning parameter d in Random Sampling Algo-

rithm 

In this experiment, we aim to evaluate the performance of a sampling algorithm 

using different maximum distances between results on a map. To achieve this, we 

compare the performance of the sampling algorithm against a baseline algorithm by 

tuning the parameter ‘d’. The parameter d represents a minimum distance threshold 

that dictates how close two selected objects can be to each other when displayed on 

the map. By adjusting d, we ensure that the objects shown in the results are suffi-

ciently spaced apart, thereby enhancing the clarity and usefulness of the spatial rep-

resentation on the map. This allows us to test and refine the algorithm's ability to 

maintain an optimal balance between object density and spatial distribution. After 

executing the experiments, we obtain the average execution time for both algorithms 

and the relative approximation error of the sampling algorithm compared to the 

baseline. The experiment involves the following steps: 

 

Setup, Initialization and Reading Experimental Data: The experiment initializes var-

iables to record execution times and scores for both the baseline and sampling algo-

rithms. It also sets up paths to the required DBpedia data files and reads the input 

experimental configurations from a specified file. Then, using the ‘ReadInputData’ 

class, the experiment reads the input data which includes various experiment con-

figurations such as object summary node, and query region. 

 

1. Object Summary Creation: For each experiment configuration, the script 

checks if the source data is from DBpedia. It initializes a ‘DBpediaSummary’ 

object with the required data file paths and generates the object summary for 

the specified node. 

 

2. Finding Relevant Places: After creating the object summary, the experiment 

uses the ‘FindRelevantPlaces’ class to find relevant places within the specified 

query region based on the generated object summary. 
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3. Maximum Distance Calculation: The experiment calculates the maximum dis-

tance within the query region using the ‘CalculateMaxDistRegion’ class. 

 

4. Executing Baseline Algorithm: The experiment runs the ‘Algorithm_sS_base-

line_DBpedia’ baseline algorithm and records its execution time. 

 

5. Executing Sampling Algorithm: The experiment iterates over different values 

of the parameter ‘d’ (distance percentage options) and runs the ‘Algo-

rithm_sampling_DBpedia’ sampling algorithm for each value, recording its 

execution time. 

 

6. Calculating Approximation Error: The experiment calculates the relative ap-

proximation error of the sampling algorithm compared to the baseline algo-

rithm using the ‘FindRelativeApproximationError’ class. This step involves 

comparing the scores of the top results from both algorithms. 

 

7. Output: The experiment records the execution times and approximation errors 

for each value of ‘d’ and calculates the average times and errors.  

 

Results: 
 

Table 8: Performance Metrics for various DistPercentage Values 

DistPercentage Average Relative 

Approximate Error 

(%) 

Average Time 

Sampling (sec) 

Average Time 

Baseline (sec) 

0,0005 17,60469078 0,006767489 11,20882603 

0,001 18,40003295 0,016682745 11,20882603 

0,002 19,02796759 0,020663199 11,20882603 

0,005 21,35887775 0,027228646 11,20882603 

0,01 23,30192525 0,02993709 11,20882603 

0,02 27,50947446 0,034960268 11,20882603 

0,05 35,47916029 0,040393139 11,20882603 
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Figure 2: Average Relative Approximation Error for Different DistPercentage values 

 
Figure 3:Average Time of Sampling for Different DistPercentage values 

The performance evaluation of the sampling algorithm reveals that as the distance 

threshold parameter d increases, the average relative approximate error also 
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increases. Starting from a distance percentage of 0.0005 with an error of 

approximately 17.6%, the error gradually rises to about 35.5% at a distance 

percentage of 0.05. This trend indicates that as the distance between selected objects 

increases, the sampling algorithm's accuracy relative to the baseline decreases, 

suggesting that the objects become more spaced apart, leading to less accurate 

representations compared to the baseline. In terms of average execution time, the 

sampling algorithm consistently demonstrates significantly lower execution times 

compared to the baseline algorithm across all distance thresholds. While the baseline 

algorithm takes around 11.21 seconds consistently, the sampling algorithm's 

execution time starts at approximately 0.0068 seconds for the smallest distance 

percentage (0.0005) and increases slightly to around 0.0404 seconds for the largest 

distance percentage (0.05). Despite this increase, the sampling algorithm remains 

substantially faster than the baseline.  
 

6.5 Experiment C – Tuning parameter grid size in Grid Algorithm 

In this experiment, we aim to evaluate the performance of a grid-based algorithm 

by tuning the grid size parameter and comparing its performance against a baseline 

algorithm. In this experiment, we aim to evaluate the performance of a grid-based 

algorithm by tuning the grid size parameter and comparing its performance against 

a baseline algorithm. We calculate the average execution time and the relative 

approximation error of the grid algorithm compared to the baseline. By adjusting 

the grid size, we seek to identify the optimal configuration that balances 

computational efficiency with accuracy, ensuring that the algorithm performs well 

under various conditions. The experiment involves the following steps: 

 

1. Setup, Initialization and Reading Experimental Data: The experiment 

initializes variables to record execution times and scores for both the baseline 

and grid algorithms. It also sets up paths to the required DBpedia data files 

and reads the input experimental configurations from a specified file. Then, 

using the ReadInputData class, the experiment reads the input data which 
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includes various experiment configurations such as diagonal distance flag, 

object summary node, and query region. 

2. Object Summary Creation, Finding Relevant Places and Maximum Distance 

Calculation: For each experiment configuration, the script checks if the source 

data is from DBpedia. It initializes a DBpediaSummary object with the 

required data file paths and generates the object summary for the specified 

node. Then, the experiment uses the FindRelevantPlaces class to find relevant 

places within the specified query region based on the generated object 

summary. Afterwards, the experiment calculates the maximum distance 

within the query region using the CalculateMaxDistRegion class, which is 

necessary for both algorithms. 

3. Executing Baseline Algorithm: The experiment runs 

the Algorithm_sS_baseline_DBpedia baseline algorithm and records its 

execution time. 

4. Executing Grid Algorithm: The experiment iterates over different grid sizes 

(e.g., 6x6, 8x8, 10x10, etc.) and runs the Algorithm_grid_DBpedia grid 

algorithm for each grid size, recording its execution time. 

5. Calculating Approximation Error: The experiment calculates the relative 

approximation error of the grid algorithm compared to the baseline algorithm 

using the FindRelativeApproximationError class. This step involves 

comparing the scores of the top results from both algorithms. 

6. Output: The experiment records the execution times and approximation errors 

for each grid size and calculates the average times and errors. The results are 

printed for each grid size, showing the average time for the grid algorithm, 

the average time for the baseline algorithm, and the average relative 

approximation error. 
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Table 9: Performance Metrics for different grid size values 

Grid Size Average Relative 

Approximate Error 

(%) 

Average Time 

Grid (sec) 

Average Time 

Baseline (sec) 

6x6 37,8912 0,0016 11,5633 

8x8 30,939 0,0011 11,5633 

10x10 30,7669 0,0006 11,5633 

12x12 23,6697 0,0007 11,5633 

14x14 22,0168 0,0007 11,5633 

20x20 19,6488 0,0029 11,5633 

30x30 12,0469 0,0036 11,5633 

40x40 9,1839 0,009 11,5633 

50x50 7,9788 0,0269 11,5633 

60x60 6,5882 0,0569 11,5633 

70x70 5,7652 0,0989 11,5633 
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Figure 4: Average Relative Approximation Error for Different grid size values 

 
Figure 5: Average Time Grid for Different grid size values 
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Based on the results of the experiment, several conclusions can be drawn regarding 

the performance of the grid-based algorithm. The evaluation demonstrates that as 

the grid size increases, the average relative approximation error decreases signifi-

cantly. Starting from a 6x6 grid with an error of approximately 37.9%, the error 

steadily decreases to about 8% with a 50x50 grid. This trend indicates that larger 

grid sizes enhance the accuracy of the grid-based algorithm compared to the baseline. 

In terms of computational efficiency, the grid-based algorithm consistently outper-

forms the baseline algorithm across all grid sizes. The average execution time for the 

grid algorithm ranges from 0.0006 seconds for a 10x10 grid to 0.0269 seconds for 

a 50x50 grid, which is significantly lower than the baseline algorithm's consistent 

execution time of around 11.56 seconds. These results highlight a clear trade-off 

between grid size and computational efficiency. Smaller grids are faster but less 

accurate, while larger grids provide higher accuracy at a marginally increased com-

putational cost.  

6.6 Experiment D – Tuning radius (r) in Greedy-Disc Algorithm 

In this experiment, we aim to determine the optimal radius value for the greedy-

disc algorithm by evaluating its performance across various radius settings. The 

greedy-disc algorithm is tested with the following radius values: 0.001, 0.0005, 

0.0001, and 0.00005. These values are multiplied by the maximum distance of ob-

jects in each object summary to derive the specific radius used in the experiment. 

For each radius value, we measure the time taken to execute the algorithm, providing 

insights into the computational cost associated with different radius sizes. Addition-

ally, we assess the approximate error by comparing the algorithm's outputs to those 

of a baseline algorithm known for its accuracy. By analyzing these two metrics—

execution time and approximate error—we aim to identify the radius value that 

offers the best trade-off between speed and precision, ultimately enhancing the prac-

tical utility of the greedy-disc algorithm. 

 

1. Read Experiment Data: Read experiment parameters from the input file and 

initialize necessary data structures and variables. 
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2. Create Object Summaries and Calculate Maximum Distance: Create object 

summaries, identify places in the query region and for the identified places, 

calculate the maximum distance (maxDist). 

3. Execute Baseline Algorithm: Run the baseline algorithm to get baseline 

results. Measure the execution time and store the results. 

4. Execute Grid Algorithm: Set up grid parameters, create a grid and execute 

the Grid algorithm to get grid-based results. Measure the execution time and 

store the results. 

5. Run Greedy-Disc Algorithm with Various Radius Values:  Iterate over the 

defined radius array: {0.001, 0.0005, 0.0001, 0.00005}. For each radius 

value: Calculate the specific radius as a fraction of maxDist. Execute 

the greedy-disc algorithm to get the results. Measure and store the execution 

time and calculate the relative approximation error compared to the baseline  

6. Output Results: For each radius value, aggregate the execution times and 

relative approximation errors and then calculate the average execution time 

and average relative approximation error for each radius. 

 

 

 

Results: 

 

Table 10: Performance Metrics for different r percentage values 

r_percentage 

radius greedyDisc +grid time Relative approximation 

error 

0.001 19,9657 209,3226 13,2511 

0.0005 9,9829 345,3922 10,8128 

0.0001 1,9966 994,0339 6,7853 

0.00005 0,9983 1288,931 5,7729 

0.00001 0.1996 1551.8521 4.93 

0.000005 0.0998 1572.2599 4.8279 
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Figure 6:Average Relative approximation Error for Different r_percentage values 

 
Figure 7: Average Greedy-Disc+Grid Time for Different r_percentage values 

 

 

The experiment results reveal a clear trade-off between the execution time of the 

greedy-disc algorithm combined with the grid approach and the relative approxima-

tion error. As the radius percentage decreases, the execution time for the greedy-disc 
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+ grid algorithm increases significantly, from 209.32 seconds at a 0.001 radius per-

centage to 1288.93 seconds at a 0.00005 radius percentage, while the baseline algo-

rithm's execution time remains constant at approximately 16.71 seconds. Concur-

rently, the relative approximation error decreases from 13.25% to 5.77% as the ra-

dius percentage decreases, indicating that smaller radius values yield more accurate 

results closer to the baseline algorithm. These findings highlight a trade-off between 

computational efficiency and accuracy: larger radius values (e.g., 0.001) offer faster 

results with higher approximation errors, whereas smaller radius values (e.g., 

0.00005) provide more accurate results at the cost of higher execution times. A 

balanced approach suggests the 0.0005 radius value as a good compromise, offering 

a relative approximation error of 10.81% with a moderate execution time of 345.39 

seconds. Ultimately, the choice of radius value should align with whether the priority 

is on faster computation or higher accuracy. 

6.7 Experiment E – Comparison of Grid with Baseline Algorithm  

In this experiment, we compare the performance of a grid-based algorithm with a 

baseline algorithm in terms of execution time and approximation error, using a grid 

size of 50x50 determined from previous experiments. The process involves reading 

input data that includes various experiment configurations, creating an object sum-

mary for each configuration, and finding relevant places within a specified query 

region. We then calculate the maximum distance within the query region, which is 

necessary for both algorithms. The baseline algorithm is executed first, and its exe-

cution time is recorded. Subsequently, the grid algorithm is executed with the spec-

ified grid size, and its execution time is also recorded. We calculate the relative 

approximation error of the grid algorithm compared to the baseline algorithm using 

the scores of the top results from both algorithms. Finally, we record and calculate 

the average execution times and approximation errors, presenting the results to eval-

uate the efficiency and accuracy of the grid-based approach. This comprehensive 

comparison enables us to evaluate the effectiveness of the grid algorithm in enhanc-

ing the efficiency and accuracy of spatial data analysis tasks. 
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Results: 

 

Table 11: Grid-Baseline Performance Comparison 

Avg nodes/OS=2672, 

grid size=50x50 

Grid Baseline Sampling 

Average Time (sec) 0,0269 12,4592 0,0236 

Relative Approximate Error (%) 7,9788 
 

15,7349 

 

 

6.7.1 Performance Comparison of Grid and Baseline Algorithm on 

Smaller Regions with Numerous Nodes 

Building on our previous experiment with a large subset of data, we have extended 

our investigation to a different dataset, focusing on popular subsets of each node 

where the region of each object summary is smaller. For this experiment, we utilized 

a smaller grid size of 20x20, reflecting the reduced complexity and size of the data 

regions. The objective remains the same: to measure and compare the execution time 

and approximation error of the grid-based algorithm against the baseline algorithm. 

By conducting this experiment with a different dataset and a smaller grid size, we 

aim to provide a more nuanced understanding of the grid-based algorithm’s 

performance across varying data scales and complexities. 

This study’s outcomes will help determine the adaptability and efficiency of the grid-

based algorithm in different spatial data scenarios, thereby offering insights into its 

practical applications for spatial data analysis tasks across diverse datasets. 

 



 

74 

 

 

All map 

Avg nodes/OS=2672, 

grid size=20x20 

Grid Baseline 

Average Time (sec) 0,0029 11,5633 

Relative Approximate Error (%) 19,6488 
 

 

Subregion  

Avg nodes/OS=1597, 

grid size=20x20 

Grid Baseline 

Average Time (sec) 0,002 5,3338 

Relative Approximate Error (%) 8,0141 
 

 

 

Figure 8: Grid-Baseline Performance Comparison in All map and Popular Subre-
gion 

 

The results indicate that for the entire map, the grid-based algorithm exhibited a 

significantly lower average execution time (0.0029 seconds) compared to the baseline 

algorithm (11.5633 seconds). Similarly, for subregions, the grid-based algorithm 

demonstrated a reduced execution time (0.002 seconds) compared to the baseline 

(5.3338 seconds). In terms of relative approximate error, the grid-based algorithm 

had a higher error (19.6488%) for the entire map compared to the baseline. How-

ever, this error reduced considerably when focusing on subregions (8.0141%), 

though no baseline error was provided for direct comparison. These findings suggest 

that the grid-based algorithm is significantly more efficient in terms of execution 

time across both the entire map and subregions. While it introduces a higher ap-

proximation error in larger, more complex data regions, its accuracy improves with 

smaller, less complex data regions. This efficiency and adaptability highlight the 

algorithm's potential for handling large datasets and complex spatial data scenarios 

quickly. Given its performance, the grid-based algorithm is particularly suited for 
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real-time spatial data analysis tasks where rapid processing is essential, and small 

approximation errors can be tolerated.  

6.8 Experiment F – Selection Algorithms Comparison 

In this experiment, we compare the performance of three selection algorithms: 

Greedy 1, Greedy Disc, and Random Sampling. We evaluate these algorithms by 

running them for the top 20, 50, 100, 200, and 300 results (‘k’). We then compare 

their results with those obtained from the baseline algorithm. First, the baseline 

algorithm is executed, and its execution time is recorded. Next, the grid algorithm is 

executed with the specified grid size equal to 50x50, and its execution time is also 

recorded. We use the grid algorithm because it demonstrated better performance in 

previous experiments. The results from the grid algorithm are then used as input 

for the Greedy 1 and Greedy Disc algorithms. The Random Sampling algorithm uses 

the list of relevant places within the specified query region based on the generated 

object summary as input (the grid algorithm is not run in this case). We add the 

execution time of these selection algorithms to the time of grid execution. Therefore, 

we have the time for grid+Greedy 1, the time for grid+Greedy Disc, and the time for 

Random Sampling. Finally, we calculate the approximation error by comparing the 

combined results of the grid and each selection algorithm and the ones from random 

sampling algorithm with the results of the baseline algorithm. This comparison al-

lows us to assess the efficiency and effectiveness of each algorithm in selecting the 

most relevant data points from the dataset, providing insights into their relative 

strengths and weaknesses across different result set sizes. 
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Results: 

Topk 20 Sampling Grid+Greedy Grid+greedyDisc 

Average Time 0,0075 0,0217 183,3711 

Relative Approxi-

mate Error 18,6618 4,0038 12,7394 

 

 

Topk 50 Sampling Grid+Greedy Grid+greedyDisc 

Average Time 0,0174 0.0177 179,9156 

Relative Approxi-

mate Error 17,8747 6,7433 14,2236 

 

 

Topk 100  Sampling Grid+Greedy Grid+greedyDisc 

Average Time 0,0236 0,0178 177,7771 

Relative Approxi-

mate Error 15,7349 6,1199 12,8638 

 

 

Topk 200  Sampling Grid+Greedy Grid+greedyDisc 

Average Time 0,0341 0,0194 176,7889 

Relative Approxi-

mate Error 14,5861 6,592 11,5350 

 

 

Topk 300  Sampling Grid+Greedy Grid+greedyDisc 

Average Time 0,0461 0,022 177,3524 

Relative Approximate 

Error 14,001 6,972 10,7188 
 

 

Figure 9: Selection Algorithms Comparison for different top k results 
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Figure 10:Average Approximate Error for Greedy+Grid and Random Sampling for 
different top k values 

 
Figure 11: Average Time for Greedy+Grid and random Sampling for different top k 
values 
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The experiment comparing the Sampling, Grid+Greedy, and Grid+GreedyDisc algo-

rithms across various ‘k’ values (20, 50, 100, 200, and 300) has provided valuable 

insights into their efficiency and accuracy. Each algorithm exhibits unique strengths 

and weaknesses, influencing their suitability for different applications. Following 

this, we see a detailed analysis of their efficiency, accuracy, and the overall implica-

tions of these results. 

 

The efficiency of the three algorithms was evaluated based on their average execution 

times across different ‘k’ values (20, 50, 100, 200, and 300). The Random Sampling 

algorithm consistently demonstrated superior efficiency, with the lowest execution 

times ranging from 0.0075 seconds for top k 20 to 0.0461 seconds for top k 300. In 

comparison, Greedy had slightly higher, but still relatively low, execution times, 

ranging from 0.0217 seconds for top k 20 to 0.022 seconds for top k 300. On the 

other hand, Greedy-Disc showed significantly higher execution times, consistently 

around 177 to 183 seconds, indicating a substantial computational cost. These results 

highlight Sampling as the most time-efficient algorithm, followed closely by Greedy, 

with Greedy-Disc being the least efficient. 

 

In terms of accuracy, measured by relative approximate error, the Greedy algorithm 

generally outperformed the other algorithms across all ‘k’ values. It achieved the 

lowest relative approximate errors, ranging from 4.0038 for top k 20 to 6.972 for 

top k 300, indicating high precision in selection. The Greedy-Disc algorithm also 

performed well, with errors decreasing as ‘k’ increased, from 12.7394 for top k 20 

to 10.7188 for top k 300, demonstrating better accuracy than Sampling but not as 

high as Greedy. Conversely, the Random Sampling algorithm had the highest relative 

approximate errors across all ‘k’ values, ranging from 14.001 for top k 300 to 

18.6618 for top k 20, reflecting its lower precision due to its random nature. 

 

Concluding, the experiment reveals distinct trade-offs between the three algorithms. 

Random Sampling is the most efficient in terms of execution time but sacrifices ac-

curacy. Greedy provides a balanced approach, offering good accuracy with moderate 
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efficiency, making it a strong candidate for tasks requiring both speed and precision. 

Greedy-Disc, while offering relatively good accuracy, particularly for higher ‘k’ val-

ues, is the least efficient due to its high computational cost. Therefore, the choice of 

algorithm should be guided by the specific requirements of the application: Sampling 

for speed, Greedy for a balance of speed and accuracy, and Greedy-Disc for accuracy 

when computational resources are not a constraint. 

 

Due to the vastly different ranges of execution times, particularly for the Greedy Disc 

algorithm, plotting the results would not provide a visually effective comparison. 

The large discrepancy in values would distort the visual representation, making it 

challenging to interpret the results accurately. Therefore, we opted not to plot the 

results of the Greedy Disc algorithm. 

 

6.8.1  Performance Evaluation of Greedy and Greedy Disc Algorithm 

on Smaller Regions with Numerous Nodes 

In this experiment, we run selection algorithms: Greedy and Greedy Disc using a 

subset with smaller regions containing numerous nodes. We evaluate these algo-

rithms by running them for the top 20, 50, 100, 200, and 300 results (‘k’). We then 

compare their results with those obtained from the baseline algorithm. The experi-

ment was conducted similarly to the one in the previous section. We have recorded 

the total average time taken for each algorithm and the approximation error by 

comparing the combined results of the grid and each selection algorithm with the 

results of the random sampling algorithm and the baseline algorithm. 

 

Table 12: Greedy-Disc Results for subset with Smaller Regions 

Top k 

Results 

Average Time Greedy-

Disc 

Average Relative 

Approximate Error 

20 61,2937 6,2907 

50 59,5522 5,7779 

100 60,8516 5,3338 
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200 61,332 4,472 

300 62,1185 3,7846 

 

Table 13: Greedy Results for subset with Smaller Regions 

Top k Results Average Time 

Greedy 

Average Relative 

Approximate Error 

20 0,0268 2,0626 

50 0,0225 2,9924 

100 0,0227 3,1142 

200 0,0244 3,6563 

300 0,0274 4,0104 

 

 

 
Figure 12: Comparison of Greedy and Greedy-Disc for subset with Smaller Regions 

 

After executing this experiment, we evaluated the performance of the Greedy and 

Greedy Disc algorithms using subsets with smaller regions containing numerous 

nodes and compared them to results from subsets with larger regions. The Greedy 

algorithm demonstrated significantly lower execution times across all tested scenarios 

but exhibited a higher approximation error as the size of the result set increased. In 

contrast, the Greedy Disc algorithm excelled in maintaining more consistent 
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execution times and showed a decreasing approximation error with larger result sets, 

making it particularly suitable for tasks requiring higher accuracy. Although its ex-

ecution times were considerably higher in larger regions, the Greedy Disc algorithm's 

accuracy improvement with increasing result set sizes highlights its advantage in 

scenarios where precision is paramount. Overall, the Greedy 1 algorithm is ideal for 

applications where speed is critical, while the Greedy Disc algorithm is better suited 

for tasks requiring higher accuracy, especially in smaller data regions. The selection 

of the appropriate algorithm should thus balance the trade-offs between execution 

time and accuracy based on the specific requirements of the application and the 

characteristics of the data regions. 

6.9 Experiments Conclusion and Optimal model 

After comparing the Grid, Baseline, and Random Sampling algorithms for spatial 

proportionality, and the Greedy and Greedy-Disc algorithms for selection, we have 

identified the optimal model for our purposes. Using the Grid algorithm for spatial 

proportionality is ideal because it is faster and maintains a relatively low approxi-

mation error. For displaying a subset of results on the map, the Greedy algorithm is 

the best choice due to its efficiency, lower approximation error, and acceptable exe-

cution time. 

 

Although the Sampling algorithm performs very quickly, it has a higher approxima-

tion error, making it suitable for scenarios where speed is prioritized over accuracy. 

The Greedy-Disc algorithm, while ensuring diversity in the results displayed on the 

map, has a significantly higher execution time. However, its approximation error is 

not excessively high, suggesting it could be efficient in smaller regions, such as when 

zooming in on a specific area on the map. This balance between execution time and 

error makes the Grid and Greedy combination the most effective overall, with the 

option to use Sampling for speed and Greedy-Disc for diversity in smaller regions. 
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CHAPTER 7          

DEVELOPMENT AND FUNCTIONALITY OF THE 

WEB APPLICATION 

7.1 Web Application Description 

7.2 Web Application Functionality 

         7.2.1 Use of @react-google-maps/api in our Project 

         7.2.2 Interactive Markers, Customization and User Interaction 

         7.2.3 Dynamic Marker Fetching Based on Map View and Search Keywords 

         7.2.4 MVC Model 

         7.2.5 Workflow 

  

In this chapter, we provide a detailed overview of our web application, starting with 

a short description in Section 7.1. This section sets the context for understanding the 

application's design and capabilities. Section 7.2 delves into the functionality of the 

web application. Subsection 7.2.1 explores the use of @react-google-maps/api in our 

project, highlighting its integration and benefits. Subsection 7.2.2 discusses the 

implementation of interactive markers, customization options, and user interaction 

features, showcasing how users can engage with the map. In Subsection 7.2.3, we 

explain the process of dynamic marker fetching based on the map view and search 

keywords, ensuring relevant and updated data display. Subsection 7.2.4 outlines the 

MVC (Model-View-Controller) model employed in the application, providing a clear 

understanding of its architecture. Finally, Subsection 7.2.5 presents the overall 

workflow of the application, detailing the processes from user input to data 

rendering. 
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7.1 Web Application Description 

This thesis involves creating a web application that allows users to enter a keyword 

in an input form, which then displays relevant nodes on a map. These nodes repre-

sent the object summary with the input keyword as the root. The nodes shown on 

the map dynamically update based on the current map bounds, ensuring that users 

always see the most pertinent information for their area of interest. This functionality 

combines user-friendly search capabilities with the powerful visualization features of 

Google Maps, providing an intuitive and interactive experience.  

 

The main goal of this project is to visualize an object summary (OS) on a map, where 

the summary is generated dynamically based on a user-provided keyword. The ap-

plication leverages advanced algorithms to determine the most relevant nodes to 

display, ensuring the results are both comprehensive and focused. The map interface 

supports zooming and panning, allowing users to explore different geographical ar-

eas and refine their search results in real-time. Additionally, the application includes 

interactive markers that users can click on to obtain more detailed information about 

each node. These markers are customizable, enabling the display of various types of 

data such as text and links. This enriches the user experience by providing multiple 

layers of information immediately. To enhance usability, the application features a 

responsive design that works seamlessly across different devices, including desktops, 

tablets, and smartphones. This ensures accessibility and convenience for users, re-

gardless of their preferred platform. Overall, the web application integrates sophis-

ticated data processing with a sleek and user-friendly interface, making it a valuable 

tool for visualizing and exploring object summaries based on user-defined keywords. 

7.2 Web Application Functionality 

The application consists of several key components and features that work together 

to deliver this functionality. To begin with, in the front page we have a search input 

form that allows users to input a keyword that serves as the root of the object 

summary. The SearchBar component captures the user's input and triggers the 
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creation of the object summary based on this keyword. On form submission, the 

application sends a request to the backend to fetch nodes related to the keyword, 

within the current map bounds. Next, we have the Map Component which displays 

the nodes of the object summary on a Google Map, providing a visual representation 

of the data. For the implementation we utilize @react-google-maps/api to render the 

map and manage map interactions. This app, also, provides dynamic Marker fetch-

ing. As the user zooms or pans the map, the application fetches and displays markers 

that fall within the new map bounds. Additionally, users can click on markers to 

view additional information in an InfoWindow. The purpose of Dynamic Marker 

Fetching is to ensures that only relevant nodes are displayed based on the current 

map view and search keyword. In this app Loading Indicators are also used to 

enhance user experience by indicating data loading processes. We use ClipLoader 

from react-spinners to show a spinner while fetching data. The spinner is displayed 

whenever a new fetch request is initiated and hides once the data is successfully 

loaded. Next, we have Marker Customization. The purpose is to differentiate nodes 

based on their hierarchical level within the object summary.Custom marker icons 

are used to represent different levels (yellow for level 0, red for level 1, blue for level 

2, and green for level 3).The getMarkerIcon function assigns appropriate icons to 

markers based on their level. This comprehensive approach ensures that users can 

efficiently explore and interact with data related to their chosen keyword, making 

the application both powerful and user-friendly. In the following sections, we will 

describe the key features in more detail to provide a deeper understanding of the 

application's functionality and implementation. 

 

7.2.1 Use of @react-google-maps/api in our Project 

In this thesis, we integrated the @react-google-maps/api library to leverage the robust 

mapping capabilities of Google Maps within a React application. This library is a 

well-maintained wrapper around the Google Maps JavaScript API, designed to work 

seamlessly with React. Our goal was to provide users with an interactive and intuitive 

map interface, and @react-google-maps/api proved to be an excellent tool for this 

purpose. The decision to use @react-google-maps/api was driven by several key 
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factors. First of all, the library is specifically designed for React applications, provid-

ing a straightforward and familiar API for React developers. It also, offers efficient 

and performant rendering of Google Maps, with optimizations to handle large data 

sets and complex map features. Moreover, the library supports a wide range of cus-

tomization options, allowing us to tailor the map's appearance and functionality to 

our specific needs. Finally, being widely used and actively maintained, @react-

google-maps/api benefits from extensive documentation, community support, and 

regular updates. As far as the implementation is concerned, the initial setup of @re-

act-google-maps/api was simple and well-documented. We installed the library via 

npm and configured it with our Google Maps API key. The library’s modular struc-

ture allowed us to import only the components we needed, optimizing our applica-

tion's performance.  

 
Figure 13: Web Application Home Page 

 

7.2.2 Interactive Markers, Customization and User Interaction 

Interactive markers were a crucial feature in our project, providing users with dy-

namic and engaging ways to interact with the map. These markers served as points 

of interest on the map, each capable of displaying additional information when 
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interacted with. We implemented interactive markers using the Marker and In-

foWindow components from @react-google-maps/api. Each marker was placed at a 

specific geographic location, and when clicked, it triggered an infowindow that dis-

played relevant of the representing node. To enhance user interaction, we customized 

the markers and infowindows in several ways. To begin with, we used custom 

marker icons to make different types of locations easily distinguishable. More spe-

cifically we used different colors depending on the level of marker in the object 

summary. So, we have yellow for level 0(the root of os) , red for level 1, blue for 

level 2 and green for level 3. This involved specifying an icon property for the 

Marker component, allowing for a more intuitive and visually appealing map inter-

face. Moreover, to enhance the dynamic content on the map, the content of the 

infowindows was generated dynamically based on the marker clicked. This allowed 

us to provide rich, location-specific information. 

 

 
Figure 14: Different color of Markers on map 
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Figure 15: Example of InfoWindow 

 

7.2.3 Dynamic Marker Fetching Based on Map View and Search Key-

words 

In our project, we implemented a dynamic marker fetching mechanism that updates 

the displayed markers based on the current viewport of the map and a keyword 

entered in the search bar. This ensures that users are always presented with the 

most relevant markers corresponding to their current area of interest and search 

criteria, enhancing both performance and user experience. The core idea is to fetch 

and display markers that fall within the bounds of the current map window and 

match the search keyword. As the user zooms or pans the map, or changes the 

search keyword, the latitude and longitude of the map's bounds change, triggering 

a fetch request to update the markers accordingly. Event handlers for onBound-

sChanged, onZoomChanged, and onDragEnd capture map movements and update 

the markers accordingly. This dynamic fetching approach ensures that only the 

markers relevant to the current view and search criteria are loaded, significantly 

improving performance. It avoids the need to load all markers at once, which can 

be resource-intensive and slow down the application. Additionally, by updating 
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markers in real-time as the user navigates the map and enters search keywords, we 

provide a more responsive and interactive user experience. From a user perspective, 

this method ensures that they always see the most pertinent information based on 

their current map view and search criteria. As users zoom in to focus on a smaller 

area, more detailed markers become visible. Conversely, zooming out provides a 

broader overview with fewer markers, preventing the map from becoming cluttered. 

The ability to filter markers by search keywords further refines the displayed results 

to match user interests. 
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Figure 16 : Example of Zooming-In result 

 

7.2.4 MVC Model 

The Model-View-Controller (MVC) architecture is a widely-used software design 

pattern that separates an application into three interconnected components: the 

Model, the View, and the Controller. This separation helps manage complex appli-

cations by isolating the internal representations of information from the ways that 

information is presented to and accepted from the user. Here’s how we implemented 

the MVC model in our project. The Model component represents the data and the 

business logic of the application. It is responsible for retrieving data, processing it, 

and storing it. In our project, the Model was responsible for retrieving marker data 

from the backend API based on the current map bounds and search keywords and 

storing and updating marker data in response to changes in the map view or search 

input. Also, the Model is responsible for the business Logic that means, filtering the 

markers based on the current search keyword and managing state related to the 

markers, such as which markers are selected or visible. The View component repre-

sents the UI of the application. It is responsible for rendering the data provided by 

the Model to the user and capturing user input. In our project, the View was re-

sponsible for rendering the Google Map component, displaying markers on the map 

based on data from the Model, capturing user interactions such as panning, zooming, 
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and clicking on markers and finally, displaying infowindows with additional marker 

information when a marker is clicked. The Controller acts as an intermediary be-

tween the Model and the View. It processes user inputs from the View, updates the 

Model, and then updates the View based on the new state of the Model. In our 

project, the Controller was responsible for handling User Input, for example, man-

aging state changes triggered by user interactions with the map and search bar, 

updating the Model with new map bounds or search keywords and updating the 

View. That means, the controller ensures that the View reflects the current state of 

the Model and coordinates the fetching and rendering of markers based on the 

current map bounds and search keyword. 

 

7.2.5 Workflow 

1. User Input:  

The user enters a keyword in the search input form and submits it.  

The handleForm2Submit function captures the keyword and initiates a fetch request 

to retrieve the object summary nodes related to the keyword. 

2. Data Fetching: 

The application constructs an API request with parameters including the keyword, 

current map bounds (northEast and southWest coordinates), and selected algorithms 

for filtering and selection. The backend processes this request, generates the object 

summary, and returns the relevant nodes.  

3. Map Rendering: 

The fetched nodes are stored in the application's state (markers). 

The map component renders these nodes as markers, updating them dynamically 

based on user interactions with the map. 

4. User Interaction: 

Users can zoom and pan the map, which triggers updates to the map bounds. 

The application fetches new nodes that fall within the updated bounds, ensuring 

that the map always displays relevant information. 
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Users can click on markers to open InfoWindows that provide additional information 

about each node. The application handles marker clicks by updating the selected-

Marker state and rendering the corresponding InfoWindow. 
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CHAPTER 8          

CONCLUSION 

This thesis set out to enhance the retrieval and visualization of spatial and contextual 

data, with a particular focus on achieving spatial proportionality and diversity in the 

displayed results. Through the development and testing of various algorithms, we 

aimed to identify the most efficient and effective methods for these tasks. After 

conducting comprehensive experiments comparing the Grid, Baseline, and Random 

Sampling algorithms for spatial proportionality, as well as the Greedy and Greedy-

Disc algorithms for result selection, we have identified the optimal model for our 

purposes. 

• Grid Algorithm for Spatial Proportionality: The Grid algorithm emerged as 

the ideal choice for achieving spatial proportionality. It provides a faster 

execution time compared to the Baseline algorithm and maintains a relatively 

low approximation error. This balance of speed and accuracy makes it highly 

suitable for large-scale applications where efficiency is crucial. 

• Greedy Algorithm for Result Selection: For displaying a subset of results on 

the map, the Greedy algorithm is the best choice. It is efficient, has a lower 

approximation error, and offers an acceptable execution time. This makes it 

ideal for providing users with a clear and concise set of results that are both 

relevant and proportionally representative of the overall data set. 

While the optimal model combines the Grid algorithm for spatial proportionality 

and the Greedy algorithm for result selection, alternative algorithms may be 

preferable in specific scenarios: 

• Random Sampling Algorithm: Although the Random Sampling algorithm 

operates very quickly, it has a higher approximation error. This makes it 

suitable for scenarios where speed is prioritized over accuracy, such as initial 

exploratory searches or real-time applications where rapid response is critical. 
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• Greedy-Disc Algorithm: The Greedy-Disc algorithm ensures diversity in the 

results displayed on the map but comes with a significantly higher execution 

time. Despite this, its approximation error is not excessively high, suggesting 

that it could be effective in smaller regions, such as when users zoom in on a 

specific area of the map. This makes it a valuable tool for applications 

requiring high diversity and detailed local analysis. 

The practical implementation of these findings is demonstrated through the devel-

opment of a web application. This application integrates the Grid and Greedy algo-

rithms to dynamically generate and display object summaries based on user queries. 

The application supports interactive map features, providing an intuitive and engag-

ing user experience. 

 

Future work could explore further optimization of the algorithms to reduce execution 

time and approximation error. Additionally, expanding the application to support 

more complex queries and integrating additional data sources could enhance its 

functionality. 

 

Overall, this thesis has demonstrated the effectiveness of combining the Grid and 

Greedy algorithms for spatial proportionality and result selection, respectively. By 

addressing the challenges of efficiently retrieving and visualizing spatial data, this 

work contributes to the field of data management and provides a robust foundation 

for future advancements. The development of the web application showcases the 

practical applicability of these findings, offering users a powerful tool for exploring 

and interacting with spatial data. 
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