

Explanatory Search and Exploration of

Spatial Entities

Kalliopi Basiakou

M a s t e r T h e s i s

– ♦ –

Ioannina, June 2024

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIVERSITY OF IOANNINA

Explanatory Search and Exploration of Spatial Entities

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Kalliopi Basiakou

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina 2024

Examining Committee:

• Nikolaos Mamoulis, Professor, Department of Computer Science and Engi-

neering, University of Ioannina (Supervisor)

• Panos Vassiliadis, Professor, Department of Computer Science and Engineer-

ing, University of Ioannina

• Apostolos Zarras, Professor, Department of Computer Science and Engineer-

ing, University of Ioannina

DEDICATION

I would like to dedicate this thesis to my family.

ACKNOWLEDGMENTS

I would like to express my graditude to my advisor, Nikos Mamoulis, for giving me

this opportunity and the support, he offered me through all the time, as my super-

visor. I would also like to thank Dimitris Tsitsigkos for his support and encourage-

ment throughout the course of my research. I appreciate the time you dedicated to

providing thoughtful feedback and guidance, which has been incredibly beneficial

to my work. Additionally, I would like to like to extend my sincere thanks to George

Fakas, for his support and expertise. His strategic vision and organizational skills

were crucial in deciding what we needed to do and ensuring that the research pro-

gressed smoothly. I am also deeply grateful to my family for always supporting me

and having faith in me through all the years. Your unwavering belief in my abilities

has been a constant source of strength and motivation. To my friends, thank you

for always being there for me. Your companionship and encouragement have been

invaluable throughout this journey. Thank you all for your mentorship and for

believing in me. Your combined support has not only made this thesis possible but

has also equipped me with the knowledge and skills necessary for my future en-

deavors.

Ioannina, June 2024

Kalliopi Basiakou

4

CONTENTS
Dedication 2

Acknowledgments 3

Contents 4

List of Figures 7

List of Tables 8

Abstract 9

Εκτεταμένη περίληψη 11

CHAPTER 1 Introduction 13

1.1 Goal ... 13

1.2 Thesis Structure .. 15

CHAPTER 2 Related work 16

CHAPTER 3 Object Summaries 21

3.1 About Object Summaries ... 21

3.2 Object Summaries Construction ... 22

3.2.1 Algorithm for Object Summary Creation 24

3.3 Example Structure of a Generated Object Summary 27

CHAPTER 4 Spatial Proportionality 29

4.1 Introduction to Spatial Proportionality .. 30

4.1.1 The Concept of Spatial Proportionality ... 30

4.2 Baseline Algorithm .. 32

4.2.1 Implementation of Baseline Algorithm ... 34

4.3 Grid Algorithm .. 36

4.3.1 Detailed Explanation of Algorithm .. 37

4.3.2 Advantages of Grid Algorithm .. 39

5

4.3.3 Implementation of Grid Algorithm ... 39

4.4 Comparison of Baseline with Grid Algorithm ... 42

4.5 Random Sampling Algorithm for Spatial Proportionality 43

4.5.1 Implementation of Random Sampling ... 44

4.5.2 Advantages and Limitations of Random Sampling 45

CHAPTER 5 Selection Algorithms 46

5.1 Importance of Selection Algorithms .. 46

5.2 Greedy Algorithm for Selection .. 47

5.2.1 Implementation of Greedy Algorithm ... 48

5.3 Greedy-Disc Algorithm .. 49

5.3.1 Implementation of Greedy-Disc Algorithm 51

5.3.2 Example Use Case: Diversifying Historical Places in Athens Related

to Pericles .. 52

CHAPTER 6 Experiments 55

6.1 Experiments Introduction ... 56

6.2 Description of Dataset .. 57

6.2.1 Popular Subregions ... 58

6.2.2 Implementation of Algorithm for Popular Subregions Creation 58

6.3 Experiment A – Object Summary Creation .. 60

6.4 Experiment B – Tuning parameter d in Random Sampling Algorithm 62

6.5 Experiment C – Tuning parameter grid size in Grid Algorithm 65

6.6 Experiment D – Tuning radius (r) in Greedy-Disc Algorithm 69

6.7 Experiment E – Comparison of Grid with Baseline Algorithm 72

6.7.1 Performance Comparison of Grid and Baseline Algorithm on Smaller

Regions with Numerous Nodes .. 73

6.8 Experiment F – Selection Algorithms Comparison 75

6.8.1 Performance Evaluation of Greedy and Greedy Disc Algorithm on

Smaller Regions with Numerous Nodes .. 79

6.9 Experiments Conclusion and Optimal model .. 81

CHAPTER 7 Development and Functionality of the Web Application 82

7.1 Web Application Description ... 83

6

7.2 Web Application Functionality .. 83

7.2.1 Use of @react-google-maps/api in our Project 84

7.2.2 Interactive Markers, Customization and User Interaction 85

7.2.3 Dynamic Marker Fetching Based on Map View and Search

Keywords ... 87

7.2.4 MVC Model ... 89

7.2.5 Workflow .. 90

CHAPTER 8 Conclusion 92

References 1

Short Biography 3

7

LIST OF FIGURES

Figure 1: Object Summary for 'Pericles' demonstrating hierarchical relationships with

key associated entities. ... 27

Figure 2: Average Relative Approximation Error for Different DistPercentage values

 ... 64

Figure 3:Average Time of Sampling for Different DistPercentage values 64

Figure 4: Average Relative Approximation Error for Different grid size values 68

Figure 5: Average Time Grid for Different grid size values 68

Figure 6:Average Relative approximation Error for Different r_percentage values . 71

Figure 7: Average Greedy-Disc+Grid Time for Different r_percentage values 71

Figure 8: Grid-Baseline Performance Comparison in All map and Popular Subregion

 .. 74

Figure 9: Selection Algorithms Comparison for different top k results 76

Figure 10:Average Approximate Error for Greedy+Grid and Random Sampling for

different top k values ... 77

Figure 11: Average Time for Greedy+Grid and random Sampling for different top k

values .. 77

Figure 12: Comparison of Greedy and Greedy-Disc for subset with Smaller Regions

 ... 80

Figure 13: Web Application Home Page .. 85

Figure 14: Different color of Markers on map ... 86

Figure 15: Example of InfoWindow ... 87

Figure 16 : Example of Zooming-In result .. 89

8

LIST OF TABLES

Table 1: Node Mapping: Bidirectional Maps for Node IDs and Node Names 23

Table 2: Keyword Mapping: Bidirectional Maps for Keyword IDs and Keywords 23

Table 3: Node Relationship Storage: Mapping Node IDs to Connected Node IDs . 23

Table 4: Keyword Association Storage: Mapping Node IDs to Lists of Keyword IDs

 ... 24

Table 5: Geographic Location Storage: Mapping Node IDs to Place Information .. 24

Table 6: Comparison of Baseline and Grid-Based Algorithms for Spatial Keyword

Search ... 42

Table 7: Datset Statistics ... 57

Table 8: Performance Metrics for various DistPercentage Values 63

Table 9: Performance Metrics for different grid size values 67

Table 10: Performance Metrics for different r percentage values 70

Table 11: Grid-Baseline Performance Comparison .. 73

Table 12: Greedy Results for subset with Smaller Regions 79

Table 13: Greedy-Disc Results for subset with Smaller Regions 80

9

ABSTRACT

Kalliopi Basiakou, M.Sc. in Data Science and Engineering, Department of Computer

Science and Engineering, School of Engineering, University of Ioannina, Greece, June

2024

Thesis Title: Explanatory Search and Exploration of Spatial Entities

Advisor: Nikolaos Mamoulis, Professor

When retrieving information based on geographic locations (location-based

retrieval), it's important not just to consider where the objects are located but also to

take into account additional descriptive information or context associated with those

objects. This is especially important when the search results include a large number

of objects, which can be overwhelming for the user.

This research focuses on developing methods to find and extract geographical objects

within specific regions, using object summaries constructed from large data

collections. These object summaries, except from ids and names of objects (contextual

data), contain detailed information about their locations (geospatial information).

Points of interest (POIs) are examples of such spatial entities and can include

locations like restaurants, parks, landmarks, or any other significant places. Further-

more, this project examines the challenge of selecting a subset of query results that

best represents the entire set. We propose that objects with similar context and close

proximity should be proportionally represented in the selection. The project focuses

on selecting a smaller, more manageable group of results from the larger set. These

selected results should be both relevant and proportionally distributed in terms of

spatial and contextual attributes, ensuring they are meaningful and provide a

balanced mix of different locations and descriptions. The ultimate goal is to display

a diverse subset of objects on the map, enhancing the user's ability to see a varied

and pertinent range of results. To achieve this, a grid-based algorithm is employed,

optimizing the process of spatial proportionality by dividing the spatial domain into

a grid. Additionally, a random sampling algorithm is used to select a representative

subset of spatial objects, maintaining spatial and contextual diversity by leveraging

10

randomness. The project also utilizes two algorithms for result selection post-grid or

baseline algorithms: Greedy and Greedy-DisC. The first ensures diversity and

relevance through a greedy heuristic and the second ensures coverage and

dissimilarity among selected items. These algorithms power a web application where

users input queries into a search box, and relevant points are dynamically shown on

a map. The object summary created, with the query as the root, dynamically updates

based on the current map bounds, ensuring users always see the most pertinent

information for their area of interest. This functionality combines user-friendly

search capabilities with the powerful visualization features of Google Maps, providing

an intuitive and interactive experience. Overall, this project significantly enhances

the retrieval and visualization of spatial and contextual data, making it easier for

users to find and understand relevant information.

11

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ

Καλλιόπη Μπασιάκου, Μ.Δ.Ε. στην Επιστήμη Δεδομένων και Μηχανική, Τμήμα

Μηχανικών Πληροφορικής και Μηχανικών Υπολογιστών, Πολυτεχνική Σχολή,

Πανεπιστήμιο Ιωαννίνων, Ελλάδα, Ιούνιος 2024

Τίτλος Διπλωματικής Εργασίας: Επεξηγηματική Αναζήτηση και Εξερεύνηση

Χωρικών Οντοτήτων.

Επιβλέπων: Νικόλαος Μαμουλής, Καθηγητής

Όταν ανακτούμε πληροφορίες με βάση γεωγραφικές τοποθεσίες είναι

σημαντικό να λαμβάνουμε υπόψη όχι μόνο πού βρίσκονται τα αντικείμενα αλλά

και τις επιπλέον περιγραφικές πληροφορίες ή το πλαίσιο που σχετίζεται με αυτά

τα αντικείμενα. Αυτό είναι ιδιαίτερα σημαντικό όταν τα αποτελέσματα αναζήτησης

περιλαμβάνουν μεγάλο αριθμό αντικειμένων, τα οποία μπορεί να είναι υπερβολικά

για τον χρήστη. Με την ενσωμάτωση πληροφοριών σχετικά με το πλαίσιο στο οποίο

ανήκει ένα ερώτημα, η διαδικασία ανάκτησης μπορεί να παρέχει πιο ουσιαστικά

και διαχειρίσιμα αποτελέσματα, βελτιώνοντας την ικανότητα του χρήστη να βρει

αυτό που ψάχνει αποδοτικά.

Η έρευνα αυτή εστιάζει στην ανάπτυξη μεθόδων για την εύρεση και εξαγωγή

γεωγραφικών αντικειμένων εντός συγκεκριμένων περιοχών, χρησιμοποιώντας

περιλήψεις αντικειμένων (Object Summaries) που κατασκευάζονται από μεγάλες

συλλογές δεδομένων. Αυτές οι περιλήψεις αντικειμένων, εκτός από τα

αναγνωριστικά και τα ονόματα των αντικειμένων (περιγραφικά δεδομένα),

περιέχουν λεπτομερείς πληροφορίες σχετικά με τις τοποθεσίες τους (γεωχωρικές

πληροφορίες). Τα σημεία ενδιαφέροντος (POIs) είναι παραδείγματα τέτοιων

χωρικών οντοτήτων και μπορούν να περιλαμβάνουν τοποθεσίες όπως εστιατόρια,

πάρκα, αξιοθέατα ή άλλες σημαντικές τοποθεσίες.

Επιπλέον, αυτό το έργο εξετάζει την πρόκληση της επιλογής ενός

υποσυνόλου αποτελεσμάτων ερωτήματος, το οποίο αντιπροσωπεύει καλύτερα

ολόκληρο το σύνολο. Προτείνουμε ότι τα αντικείμενα με παρόμοιο πλαίσιο και

κοντινή απόσταση θα πρέπει να εκπροσωπούνται με ίδια αναλογία στην επιλογή.

Η εργασία αυτή εστιάζει στην επιλογή μιας μικρότερης, πιο διαχειρίσιμης λίστας

12

αποτελεσμάτων από το μεγαλύτερο σύνολο. Αυτά τα επιλεγμένα αποτελέσματα

πρέπει να είναι τόσο σχετικά όσο και αναλογικά κατανεμημένα, όσον αφορά τις

χωρικές και περιγραφικές ιδιότητες, διασφαλίζοντας ότι έχουν κάποιο νόημα και

παρέχουν ποικιλία διαφορετικών τοποθεσιών και περιγραφών. Με αυτό τον τρόπο

μπορεί να αποφευχθεί η υπερβολική επιβάρυνση των χρηστών με πολλά παρόμοια

αποτελέσματα, διευκολύνοντάς τους να βρουν ποικίλες και σχετικές με το ερωτημά

τους πληροφορίες.

Για να επιτευχθεί αυτό, χρησιμοποιείται ο αλγόριθμος Grid,

βελτιστοποιώντας τη διαδικασία της χωρικής αναλογικότητας διαιρώντας τον

χωρικό τομέα σε πλέγμα. Επιπλέον, χρησιμοποιείται ο Random Sampling

αλγόριθμος με σκοπό την επιλογή αντιπροσωπευτικού υποσυνόλου χωρικών

αντικειμένων, διατηρώντας τη χωρική και περιγραφική ποικιλία μέσω της

τυχαιότητας. Στην εργασία χρησιμοποιούνται επίσης δύο αλγόριθμοι για την τελική

επιλογή αποτελεσμάτων που θα εμφανιστούν στο χάρτη, οι οποίοι εφαρμόζονται

μετά τους αλγόριθμους Grid ή Baseline, και είναι ο Greedy και ο Greedy-DisC. Ο

πρώτος διασφαλίζει ποικιλία και συνάφεια μέσω μιας άπληστης ευρετικής μεθόδου

και ο δεύτερος διασφαλίζει κάλυψη και ανόμοιότητα μεταξύ των επιλεγμένων

αντικειμένων.

Αυτοί οι αλγόριθμοι χρησιμοποιούνται σε μια διαδικτυακή εφαρμογή στην

οποία οι χρήστες εισάγουν ερωτήματα σε ένα πλαίσιο αναζήτησης και τα σχετικά

σημεία εμφανίζονται δυναμικά σε έναν χάρτη. Η περίληψη αντικειμένου (Object

Summary) που δημιουργείται, με το ερώτημα ως ρίζα, ενημερώνεται δυναμικά με

βάση τα τρέχοντα όρια του χάρτη, διασφαλίζοντας ότι οι χρήστες βλέπουν πάντα

τις πιο σχετικές πληροφορίες για την περιοχή ενδιαφέροντός τους. Αυτή η

λειτουργία συνδυάζει φιλικές προς τον χρήστη δυνατότητες αναζήτησης με τις

ισχυρές δυνατότητες οπτικοποίησης των Χαρτών Google, παρέχοντας έτσι, μια

διαδραστική εμπειρία. Εν κατακλείδι, αυτή η διπλωματική εργασία ενισχύει

σημαντικά την ανάκτηση και οπτικοποίηση χωρικών και περιγραφικών δεδομένων,

καθιστώντας ευκολότερο για τους χρήστες να βρίσκουν και να κατανοούν σχετικές

πληροφορίες.

13

CHAPTER 1

INTRODUCTION

1.1 Goal

1.2 Outline

In the first section of this chapter, we present a brief description of our work and

refer to the main directions and the main purpose of our research. In the second

section of this chapter, we refer to the structure of this Thesis.

1.1 Goal

In the era of big data, the efficient retrieval and representation of information

are critical for effective data management. With the increasing volume and

complexity of data, particularly geospatial data, there is a growing need for methods

that can provide users with clear and concise summaries of relevant information.

This is especially pertinent in location-based retrieval systems where users search

for information based on geographic locations. The challenge lies not only in

considering the geographical locations of objects but also in accounting for the

contextual information associated with these objects. When search results yield a

large number of objects, it can overwhelm users, necessitating the development of

methods that can distill and present the most pertinent information effectively.

To address this challenge, this thesis introduces the concept of Object Summary (OS),

a concise representation of data about a particular Data Subject (DS). By presenting

a clear and efficient overview of relevant data, OS enables users to interact with and

understand the underlying information without needing to examine its full, detailed

description. Additionally, the OS are pruned depending on the region input, ensuring

14

that only the most relevant and contextually appropriate data is included based on

the user's query and location.

The goal of this project is to develop a novel exploration and explanatory

paradigm for spatial data retrieval, specifically targeting the retrieval of places rele-

vant to a queried entity within a specified region. The motivation behind this study

stems from the vast availability of public and private datasets associated with loca-

tions, such as semantic knowledge graphs (e.g., YAGO, DBpedia), geosocial networks

(e.g., Facebook, Foursquare), and points of interest tagged with textual descriptions

(e.g., Google Places). The output will be the k most relevant places about the queried

entity within the specified region, incorporating relevant nodes surrounding the en-

tity node in the data graph. This approach will enhance usability by allowing users

to explore important places that may not include the query keywords but are still

highly relevant.

Additionally, it is important that the retrieval of places considers their spatial

distribution to provide a fair and representative subset of places within a region.

This approach will address the issue of relevance-only based retrieval, which can

sometimes lead to a less informative or biased representation of places. By imple-

menting proportionality techniques, the project seeks to facilitate regional fairness

and prevent biases, ensuring a balanced representation of places from different areas.

The baseline and grid algorithms discussed in this thesis are designed to achieve

efficient and effective spatial proportionality. Moreover, selection algorithms play a

critical role in enhancing user experience and maintaining clarity in data

representation. By strategically displaying a subset of places on a map, we ensure

that points are not clustered too closely together, reducing visual clutter and

improving readability. The Greedy and Greedy-DisC algorithms discussed in this

thesis are designed to ensure diversity and relevance, and construct a diverse subset,

maximizing coverage and dissimilarity among the selected items.

To demonstrate the practical application of the concepts and algorithms dis-

cussed in this thesis, a web application was developed. This tool allows users to

enter a keyword and view relevant nodes displayed on a map. The nodes form an

object summary, with the keyword as the root, and dynamically update based on

the map's current view. The application utilizes the algorithms discussed in this

15

thesis to ensure the displayed results are relevant, diverse, and proportionally rep-

resentative of the spatial data. It features an intuitive interface that supports zooming,

panning, and interactive markers, providing users with a comprehensive and engag-

ing way to explore data. The responsive design ensures accessibility across various

devices, making it a versatile tool for visualizing and interacting with spatial infor-

mation.

1.2 Thesis Structure

This thesis is structured into eight chapters, each detailing different aspects of the

research and development process:

In section 2, we review the related work and provide the background necessary for

understanding the context of this thesis.

Section 3 delves into Object Summaries, explaining their concept, construction, and

providing an algorithm for their creation. An example structure of a generated Object

Summary is also presented.

Section 4 focuses on Spatial Proportionality, introducing its concept and discussing

various algorithms designed to achieve it. The Baseline Algorithm and Grid

Algorithm are explained in detail, including their implementation and advantages.

We also compare the Baseline with the Grid Algorithm and explore a Random

Sampling Algorithm for spatial proportionality.

Section 5 covers Selection Algorithms, emphasizing their importance and detailing

the implementation of the Greedy Algorithm and Greedy-Disc Algorithm. An

example use case is provided to illustrate the application of the Greedy-Disc

Algorithm.

In section 6, we present a comprehensive analysis of experiments conducted to

evaluate the performance of the algorithms and parameters discussed.

Chapter 7 describes the development and functionality of the web application that

implements the work on spatial proportionality and diversity of results.

Finally, Chapter 8 concludes the thesis, summarizing the findings and discussing

potential future work.

16

CHAPTER 2

RELATED WORK

There is a variety of other related work on object (entity) summarisations.

For example [1] addresses the challenge of information overload in entity linking by

proposing a method to create compact, structured summaries of entity descriptions.

To avoid overloading human users with too much information, the authors aim to

substitute entire entity descriptions with concise, effective summaries that maintain

the quality of entity linking. The paper introduces three summarization approaches:

characteristic summaries, which select features based on their ability to uniquely

characterize each candidate entity; differential summaries, which prioritize features

that differentiate candidate entities from each other; and contextual summaries,

which select features relevant to the context of the entity mention using a class vector

model. These perspectives are combined into a comprehensive summarization

method that balances various aspects of entity description. Experimental results

showed that the combined approach allowed users to link entities with accuracy

comparable to full descriptions but with reduced time, highlighting its effectiveness

in facilitating user decisions. Another work [2] discusses object summaries in the

context of interactive entity resolution, where the goal is to select a subset of critical

features from entity descriptions to be shown and judged by human users. The

proposed method, C3D+P, aims to generate these compact summaries effectively.

The features preferred for selection in the summaries are those that reflect the most

commonalities shared by and the most conflicts between the two entities, as well as

those that carry the largest amount of characteristic and diverse information about

them. The paper emphasizes that these selected features are then grouped and or-

dered to improve readability and speed up the judgment process. The experimental

17

results demonstrate that summaries generated by this method help users judge more

efficiently and accurately compared to entire entity descriptions. The method also

outperforms existing summarization techniques by specifically focusing on the re-

quirements of the entity resolution task, thus generating more useful and informative

object summaries. Building on the concept of generating useful and informative ob-

ject summaries, another study, [3] introduces Object Summaries (OS) as a novel

result format for keyword searches in relational databases. An OS is designed to

provide a comprehensive summary of data related to a specific Data Subject (DS) by

creating a tree structure with the keyword-containing tuple at the root and related

tuples as children. The paradigm liberates users from the need to know database

schemata or query languages, instead relying on the concept of Affinity to determine

the relevance of surrounding data. Affinity scores for relations and attributes help

decide what to include in the OS, ensuring that only semantically meaningful data

is presented. The paper highlights that this approach produces more complete and

useful search results compared to traditional relational keyword search (R-KwS)

methods, which often return disjointed tuples or require multiple keywords to form

meaningful associations. Experimental evaluations on databases like TPC-H and

Northwind showed high precision and recall, validating the effectiveness of the pro-

posed method. The OS format was preferred by users for its self-contained and easily

comprehensible presentation of information, making it a significant improvement

over existing methods like précis queries, which can be harder to interpret due to

their narrative presentation and lack of automated Affinity calculation. However,

none of this work addresses spatial aspects of the data.

To further enhance the utility of object summaries, [4] presents methods for

ranking object summaries (OSs) in response to keyword searches in relational data-

bases. The authors propose a model that ranks OSs based on their relevance to

thematic keywords, combining Information Retrieval (IR) properties, authoritative

ranking using ObjectRank, and affinity, which measures the closeness of tuples to

the data subject (DS) tuple. The thematic ranking is modeled as a top-k group-by

join problem (kGBJ), which computes the join paths between identifying and the-

matic tuples without fully generating the OSs. Two main approaches are discussed:

the Bi-Directional (BD) Approach, which computes complete OSs and ranks them,

18

and the Optimized kGBJ Approach, which focuses on relevant join paths and uses

precomputed bounds to limit the search space. The methods were evaluated on

DBLP and TPC-H datasets, demonstrating high precision and recall. The optimized

kGBJ approach significantly outperformed the baseline BD method, showing up to

180 times faster performance in some cases. This thematic ranking model effectively

addresses the challenges of ranking OSs in large datasets and ensures that users

receive the most relevant OSs in response to their queries, however, the plain use of

IR has limitations when applied to data graphs in general. Namely, they miss rele-

vant nodes that are related to the keywords but they do not contain them [5]; e.g.

the node Parthenon has relevance to Pericles although it does not include the word

“Pericles”. Our work, by selecting places from the object summary, addresses this

problem.

 Shifting the focus to the spatial dimension of data retrieval, various types of

spatial-keyword queries have been proposed before. Spatial keyword search on da-

tasets involves retrieving data objects based on both their geographical location and

textual content. Such queries are Boolean kNN, top-k kNN, and Boolean range que-

ries. A Boolean kNN query retrieves the k nearest objects to a user's current location

that contain all specified keywords. The top-k kNN query, on the other hand, re-

trieves the k objects with the highest ranking scores, considering both their distance

to the query location and the relevance of their text descriptions to the query key-

words. Finally, the Boolean range query retrieves all objects within a specified spatial

region whose text descriptions contain all the specified keywords. These indices typ-

ically use the R-tree or its variations, such as the R*-tree, to combine spatial and

textual data efficiently for spatial keyword queries, where each minimum bounding

rectangle keeps the textual information of all objects inside its bounds. However,

these methods only search for individual objects that contain the specified keywords

and do not retrieve relevant places that lack the keywords but are still pertinent to

the query. Therefore, their direct application is not suitable in this context.

 In addition to optimizing spatial keyword searches, numerous studies have

explored different aspects of fairness. Spatial data fairness, as defined in the paper

[6], addresses the unique challenges of ensuring equitable treatment in location-

based applications where decisions are influenced by individuals' whereabouts. This

19

concept aims to prevent discrimination based on location data, which often correlates

with sensitive attributes like race, income, and education. The paper introduces two

main types of spatial fairness: distance-based fairness, relevant in scenarios like lo-

cation-based advertising and ride-hailing, ensures individuals are not unfairly

treated based on their proximity to a reference point, and zone-based fairness, which

focuses on fairness in spatial coordinates, applicable in gerrymandering, loan analy-

sis, and insurance pricing. To achieve these fairness goals, the paper proposes "fair

polynomials," which adjust decision-making processes to ensure equitable treatment

without significantly sacrificing data utility. Expanding the scope of fairness in data,

[7] explores the concept of fair clustering under the disparate impact doctrine, em-

phasizing the need for approximately equal representation of each protected class

within every cluster. This approach addresses the potential for machine learning

algorithms to amplify existing biases present in training data. The authors introduce

the idea of fairlets, minimal sets that ensure fair representation while maintaining

clustering objectives, and show that fair clustering problems can be decomposed into

finding good fairlets followed by traditional clustering algorithms. Although finding

optimal fairlets is NP-hard, efficient approximation algorithms based on minimum

cost flow are proposed. The empirical results on real-world datasets demonstrate

that traditional clustering methods often yield unfair clusters, while fair clustering

methods, though potentially more costly, maintain balanced solutions. The document

also highlights the computational challenges associated with fair clustering, indicat-

ing that ensuring fairness introduces a significant computational bottleneck. Appar-

ently, our work is different as we study the selection of a subset of objects instead

of their clustering.

Concerning result diversification in information retrieval, the [8] discusses vari-

ous methodologies aimed at enhancing the diversity and relevance of retrieved re-

sults. It highlights several algorithms, notably the Maximal Marginal Relevance

(MMR) algorithm, which balances relevance and diversity by penalizing redundancy.

Additionally, the Submodular Function Maximization method is examined for its

efficient approach to diversification through submodular functions. The k-Nearest

Neighbor (k-NN) approach is also mentioned, focusing on diversifying results by

selecting items based on their dissimilarity to already chosen ones. These

20

comparisons provide a comprehensive understanding of the different strategies in

result diversification. We used the greedy-disc algorithm because it effectively bal-

ances dissimilarity and coverage, offering a practical and robust solution for our

specific diversification needs.

21

CHAPTER 3

OBJECT SUMMARIES

3.1 About Object Summaries

3.2 Object Summary Construction

3.3 Example Structure of Generated Object Summary

Chapter 3 provides an in-depth exploration of Object Summaries. It begins with Sec-

tion 3.1, which introduces the concept of Object Summaries, detailing their purpose

and significance. Section 3.2 discusses the process of constructing Object Summaries,

including the specific algorithm used for their creation. Finally, Section 3.3 presents

an example structure of a generated Object Summary, illustrating the practical ap-

plication of the concepts discussed in the chapter.

3.1 About Object Summaries

An Object Summary (OS) is a concise representation of all data held in a database

about a particular Data Subject (DS). The purpose of an object summary is to provide

a clear and efficient overview, allowing users to understand and interact with the

object or entity without needing to examine its full, detailed description. It is

generated as a response to a query search and is structured as a tree, with the DS as

the root node and its related nodes as children. Given the input node (“Pericles”),

we start traversing the dataset and add on the object summary as child nodes the

nodes surrounding the entity node (via edges/links) (e.g. Wife: Aspasia, Built:

Parthenon, etc). The OS paradigm is particularly user-friendly for those accustomed

to web keyword searches, providing a comprehensive summary that aids in data

exploration and schema extraction.

22

3.2 Object Summaries Construction

To create an Object Summary, we first need to establish data structures to store and

manage different types of data. Each map serves a specific purpose, facilitating the

efficient creation of the OS:

• nodeMap and nodeMapReverse: Map node IDs to names and vice versa for

easy lookup.

• keywordsMap and keywordsMapReverse: Map keyword IDs to keywords

and vice versa for easy lookup.

• edgesMap: Store the relationships between nodes.

• keywordsListMap: Store lists of keywords associated with each node.

• places: Store geographic information for place nodes.

Using these mappings, we build the OS by traversing the relationships between

nodes. We include nodes and their relationships up to three hops away from the

root node. The OS is generated using a breadth-first traversal starting from the root

node, adding nodes to the OS based on their relationships. The hierarchical structure

is formed by enqueuing child nodes and adding them as children of the current

node being processed. The tree structure ensures that the most important and

representative nodes are included, maintaining the context and relationships between

them. The importance and affinity of nodes are considered when constructing the

tree, ensuring that nodes higher in the tree are more important and have a greater

affinity to the root node.

A node in the OS can either be a place or a node without latitude and longitude

values. Only nodes with latitude and longitude values, designated as places, are

displayed on the map. After constructing the tree, we perform a pruning step to

ensure relevance and accuracy. Nodes that have latitude and longitude values outside

the specified map bounds are removed. This pruning step helps in maintaining the

23

geographical relevance of the data and ensures that the final OS only includes nodes

within the desired map bounds.

This approach ensures that the OS provides a comprehensive and contextually rich

summary of the data related to the DS, making it easier for users to explore and

understand the underlying data structures.

Here, we can see the Data structures we need in tables.

Table 1: Node Mapping: Bidirectional Maps for Node IDs and Node Names

nodeMap nodeMapReverse
map node IDs to their corresponding
names

map node names to their
corresponding IDs

nodeMap<Integer, String>: nodeMapReverse<String, Integer>:
• Key: Node ID (Integer) • Key: Node Name (String)
• Value: Node Name (String) • Value: Node ID (Integer)
• Function: This map is used to
retrieve the name of a node given its
ID.

• Function: This map is used to
retrieve the ID of a node given its
name.

Table 2: Keyword Mapping: Bidirectional Maps for Keyword IDs and Keywords

keywordsMap keywordsMapReverse
map keyword IDs to their
corresponding keywords and vice
versa.

map keyword IDs to their
corresponding keywords and vice
versa.

keywordsMap<Integer, String>: keywordsMapReverse<String, Integer>:
• Key: Keyword ID (Integer) • Key: Keyword (String)
• Value: Keyword (String) • Value: Keyword ID (Integer)

• Function: This map is used to
retrieve the keyword given its ID.

• Function: This map is used to
retrieve the ID of a keyword given its
text.

Table 3: Node Relationship Storage: Mapping Node IDs to Connected Node IDs

edgesMap
store the edges (relationships) between nodes.
edgesMap<Integer, int[]>:
• Key: Node ID (Integer)
• Value: Array of connected node IDs (int[])

24

• Function: This map is used to retrieve the IDs of nodes that are directly
connected to a given node.

Table 4: Keyword Association Storage: Mapping Node IDs to Lists of Keyword IDs

keywordsListMap
 store lists of keywords associated with each node.
keywordsListMap<Integer, int[]>:
• Key: Node ID (Integer)
• Value: Array of keyword IDs (int[])
• Function: This map is used to retrieve the list of keywords associated with a
given node.

Table 5: Geographic Location Storage: Mapping Node IDs to Place Information

places
Purpose: To store place information for nodes that represent geographic
locations.
places<Integer, PlaceObject>:
• Key: Node ID (Integer)
• Value: PlaceObject instance
• Function: This map is used to store and retrieve geographic information (like
latitude and longitude) for nodes that represent places.

3.2.1 Algorithm for Object Summary Creation

In this section, we present Algorithm 3.2.1: Object Summary Creation, which outlines

the process for creating an Object Summary (OS). The following pseudo details the

steps required to traverse the dataset, identify relevant nodes, and construct the OS

efficiently.

Algorithm 3.2.1 Object Summary Creation

1: Function CreateObjectSummary(keyword)

2: Initialize tempNeighbors, tempNeighbors2, tempNeighbors3 as null

3: Initialize neighbors, neighbors2, neighbors3 as null

4: Initialize neighborsArray as empty ArrayList

5: Set initialNode = nodeMapReverse.get(keyword)

6: If initialNode is null

25

7: Set initialNode = keywordsMapReverse.get(keyword)

8: If initialNode is null

9: Return

10: If initialNode is a keyword

11: ProcessKeyword(initialNode)

12: Else

13: ProcessNode(initialNode)

14: Clear temporary maps: edgesMap, keywordsListMap, places

15: Function ProcessKeyword(initialNode)

16: Set nodeKeyword = keyword

17: Set nodeId = initialNode

18: Initialize neighborsArray

19: For each entry in keywordsListMap

20: If entry contains nodeId

21: Add entry key to neighborsArray

22: If neighborsArray is not empty

23: Initialize tempNeighbors as ObjectInterface[neighborsArray.size()]

24: For each parentNode in tempNeighbors

25: Set neighbors2 = edgesMap.get(parentNode) // second hop

26: ProcessSecondHopNeighbors(parentNode)

27: Function ProcessSecondHopNeighbors(parentNode)

28: Set nodeKeyword = keyword

29: Set nodeId = initialNode

30: Set neighbors = edgesMap.get(initialNode) // first hop

31: If neighbors is not empty

32: Initialize tempNeighbors2 as ObjectInterface[neighbors.length]

33: For each neighborNode in neighbors

34: ProcessThirdHopNeighbors(neighborNode)

35: Function ProcessThirdHopNeighbors(parentNode)

36: Set nodeKeyword = keyword

37: Set nodeId = initialNode

38: Set neighbors = edgesMap.get(parentNode) // third hop

26

39: Initialize tempNeighbors3 as ObjectInterface[neighbors3.length]

40: If neighbors is not empty

41: For each nodeObj in neighbors

42: If nodeObj is a place

43: PlaceObject placeObject = places.get(nodeId)

44: PlaceObject newPlaceObject = new PlaceObject(placeObject.getId(),

new Point(coordinates.getPoint().getLat(), coordinates.getPoint().getLon()),

placeObject.getName(), placeObject.getType(), nodeMap.get(initialNode), 3)

45: tempNeighbors3[i] = placeObject

46: Else

47: OtherObject otherObject = new OtherObject(parentNode2Id, temp-

Neighbors3, nodeKeywords, nodeMap.get(parentNode2Id), 2)

48: tempNeighbors3[i] = null

49: ProcessThirdHopNeighbors(parentNode)

50: Function createRoot(initialNode, tempNeighbors)

51: If nodeKeywords = keywordsListMap.get(initialNode)

52: PlaceObject coordinates = places.get(initialNode)

53: PlaceObject placeObject = new PlaceObject(initialNode, new Point(coordi-

nates.getPoint().getLat(), coordinates.getPoint().getLon()), placeObject.get-

Name(), placeObject.getType(), nodeMap.get(initialNode), 0)

54: objectSummary = placeObject

55: Else

56: OtherObject otherObject = new OtherObject(initialNode, tempNeighbors,

rootKeywords, nodeMap.get(initialNode), 0)

57: objectSummary = otherObject

58: Return objectSummary

59: End Function

Algorithm 3.2.1 outlines the steps to create an Object Summary (OS) for a given

keyword. The process begins by initializing necessary variables and retrieving the

initial node corresponding to the keyword from the node and keyword maps. If the

initial node is found, it is processed based on whether it is a keyword or a regular

27

node. The algorithm then traverses the dataset, processing neighbors through first,

second, and third hops to construct the OS. Functions like ‘ProcessKeyword’, ‘Pro-

cessSecondHopNeighbors’ and ‘ProcessThirdHopNeighbors’ handle the traversal

and neighbor processing. Finally, the ‘createRoot’ function assembles the OS from

the processed data and returns it. This structured approach ensures a comprehensive

and efficient summary of the data related to the specified keyword.

3.3 Example Structure of a Generated Object Summary

Assume the following data:

• Node "Pericles" has neighbors "Athens", "Democracy", "Philosophy".

• "Athens" has neighbors "Greece", "Sparta".

• "Democracy" has neighbors "Government", "Elections".

• "Philosophy" has neighbors "Socrates", "Plato".

The resulting Object Summary (OS) would look like this:

Pericles

 ├── Athens

 │ ├── Greece

 │ └── Sparta

 ├── Democracy

 │ ├── Government

 │ └── Elections

 └── Philosophy

 ├── Socrates

 └── Plato

Figure 1: Object Summary for ‘Pericles’ demonstrating hierarchical relationships
with key associated entities.

1. Initialization: initialNode is set to the ID corresponding to "Pericles".

28

2. First Hop Neighbors: Retrieve neighbors of "Pericles": "Athens",

"Democracy", "Philosophy" and create PlaceObject or OtherObject instances

for these neighbors.

3. Second Hop Neighbors:

For each first hop neighbor, retrieve their neighbors:

• "Athens" -> "Greece", "Sparta"

• "Democracy" -> "Government", "Elections"

• "Philosophy" -> "Socrates", "Plato"

Create PlaceObject or OtherObject instances for these second hop neighbors.

4. Third Hop Neighbors: Since there are no further neighbors listed, this step

might be skipped for this example.

5. Construct Root Node: Create the root node "Pericles" with tempNeighbors as

its children.

6. Clean Up: Clear temporary maps: edgesMap, keywordsListMap, places.

29

CHAPTER 4

SPATIAL PROPORTIONALITY

4.1 Introduction to Spatial Proportionality

 4.1.1 The Concept of Spatial Proportionality

4.2 Baseline Algorithm

 4.2.1 Implementation of Baseline Algorithm

4.3 Grid Algorithm

 4.3.1 Detailed Explanation of Algorithm

 4.3.2 Advantages of Grid Algorithm

 4.3.3 Implementation of Grid Algorithm

4.4 Comparison of Baseline with Grid Algorithm

4.5 Random Sampling Algorithm for Spatial Proportionality

 4.5.1 Implementation of Random Sampling

 4.5.2. Advantages and Limitations of Random Sampling

In this chapter, we delve into the realm of spatial proportionality and explore various

algorithms designed to achieve this goal. We begin with an introduction to the

fundamental concept of spatial proportionality, setting the stage for the algorithms

that follow. Section 4.1 provides an overview of this concept, establishing a

foundation for understanding the subsequent discussions. In Section 4.2, we present

the Baseline Algorithm, detailing its implementation and functionality. This

algorithm serves as a reference point for comparing more advanced methods. Next,

in Section 4.3, we introduce the Grid Algorithm. We offer a comprehensive

explanation of its workings, highlight its advantages, and describe its implementation

in detail. This algorithm is examined for its efficacy and benefits over the Baseline

Algorithm. Section 4.4 provides a comparative analysis of the Baseline and Grid

30

Algorithms, evaluating their respective strengths and weaknesses in achieving spatial

proportionality. Finally, in Section 4.5, we explore the Random Sampling Algorithm

for spatial proportionality. This section covers its implementation and discusses both

the advantages and limitations of this approach, providing a balanced view of its

practical applications.

4.1 Introduction to Spatial Proportionality

In the realm of spatial keyword search, where the goal is to retrieve and rank spatial

objects based on their contextual and locational relevance, the concept of spatial

proportionality emerges as a critical factor. Spatial proportionality aims to ensure

that the retrieved subset of spatial objects represents the overall spatial distribution

and contextual diversity of the original dataset. This concept not only enhances the

quality of search results but also aids users in gaining a more comprehensive

understanding of the spatial landscape. This report delves into the baseline and grid

algorithms designed to achieve efficient and effective spatial proportionality.

4.1.1 The Concept of Spatial Proportionality

Spatial proportionality is a fundamental concept in spatial keyword search, aimed at

ensuring that the subset of spatial objects retrieved is a representative sample of the

entire dataset in terms of both spatial distribution and contextual relevance. This

concept is crucial for providing users with search results that accurately reflect the

geographic and thematic diversity of the dataset, thereby improving the usability

and interpretability of the search outcomes. Spatial proportionality involves selecting

a representative subset of spatial objects from a larger set, such that the chosen subset

maintains the spatial and contextual distribution of the original dataset. This entails

ensuring that the selected objects are proportionally spread out in the spatial domain

and that they reflect the diversity of contexts present in the dataset. The challenge

lies in balancing relevance, diversity, and proportional representation, which often

requires sophisticated computational techniques. Proportionality with respect to

context and location is essential to providing users with diverse and representative

query results. Various proportionality scores are defined [9], such as spatial

31

proportionality 𝑝𝑆(𝑝!) and contextual proportionality 𝑝𝐶(𝑝!), which help measure

how well the selected subset reflects the spatial and contextual distribution of the

entire set. Spatial proportionality score 𝑝𝑆(𝑝!) of a place 𝑝! is the following:

𝑝𝑆(𝑝!) = 𝑝𝑆𝑆(𝑝!) − 𝑝𝑆𝑅(𝑝!)
Where:

• 𝑝𝑆𝑆(𝑝!) is the sum of spatial similarities between 𝑠𝑆*𝑝! , 𝑝", and all other places

in the set 𝑆.

• 𝑝𝑆𝑅(𝑝!) is the sum of spatial similarities between 𝑆*𝑝! , 𝑝", and all other places

in the subset 𝑅.

The goal is to select places that are not only relevant to the query but also ensure

that the overall set is spatially diverse and contextually representative.

Note that here, 𝑠𝑆*𝑝! , 𝑝", stands for Ptolemy’s spatial similarity, defined as 1 −

𝑑𝑆*𝑝! , 𝑝",, where 𝑑𝑆*𝑝! , 𝑝", computes the spatial diversity between 𝑝! and 𝑝". The

rationale behind 𝑝𝑆𝑆(𝑝!) is to favor places surrounded by numerous neighbors

within set concerning the query point. Conversely, 𝑝𝑆𝑅(𝑝!) favors places divergent

from the remaining places in set 𝑅, thereby embracing spatial diversity. Importantly,

both 𝑝𝑆𝑆(𝑝!) and 𝑝𝑆𝑅(𝑝!) pivot on the query location	𝑞. The score 𝑝𝑆(𝑝!) falls within

the range [0, 𝐾 − 𝑘], akin to 𝑝𝐶𝑆(𝑝!). Notably, computing sS*𝑝! , 𝑝",for all pairs ne-

cessitates substantial computational effort.

In large spatial datasets, such as geographic information systems (GIS), social media

geotags, and points of interest (POI) databases, the number of relevant objects

returned by a query can be overwhelming. Without spatial proportionality, the top

results may be clustered in a specific area or dominated by a particular context,

which can lead to biased and less informative search results. Spatial proportionality

addresses this issue by ensuring that the selected subset maintains Geographic

Diversity. This ensures that the spatial objects are well-distributed across the

geographic area of interest, preventing clustering in specific regions. Moreover, it

reflects Contextual Diversity, ensuring that the objects represent a variety of contexts

or themes, such as different types of POIs, activities, or events. Finally, it enhances

User Comprehension, providing users with a holistic view of the spatial landscape,

aiding in better decision-making and understanding of the area. Achieving spatial

S

32

proportionality involves balancing three key factors: relevance, spatial distribution,

and contextual diversity. This requires sophisticated algorithms that can evaluate

and integrate these factors effectively. Relevance refers to the closeness of the spatial

objects to the query in terms of geographic proximity and thematic content, ensuring

that the selected objects are pertinent to the user's query. Spatial Distribution ensures

that the selected objects are spread out geographically, preventing the selection from

being concentrated in a small area, which could skew the representation of the

dataset. Finally, Contextual Diversity ensures that the objects represent different

contexts or themes, avoiding redundancy and enhancing the richness of the

information provided to the user. Relevance scores and importance scores are

examples of how spatial proportionality can be quantified. Relevance scores are

obtained by summing up the spatial similarity scores for each object, indicating its

overall relevance in the context of the entire dataset. Importance scores, which are

used to rank the objects, are computed by combining relevance scores with contextual

information (such as hierarchical levels).

4.2 Baseline Algorithm

The baseline algorithm for spatial proportionality involves calculating pairwise spa-

tial similarities between all objects, summing these similarities to get relevance scores,

and then combining these scores with contextual information to get final importance

scores. This approach, while accurate, can be computationally intensive, especially

for large datasets. The Baseline Algorithm consists of these key steps: Initialization,

Spatial Similarity Calculation, Proportionality Relevance Calculation, and Place Level

Importance Calculation.

The algorithm begins by initializing essential parameters, including the collection of

places within the target region and the maximum distance allowed for spatial calcu-

lations. The next step involves computing the spatial similarity scores between all

pairs of spatial objects using the Euclidean distance. The similarity score between all

pairs of places within the region is determined based on the Euclidean distance

33

between the geographical coordinates of each pair of places. This score is normalized

by dividing it by the maximum distance using the formula:

𝑠𝑆(𝑝𝑖, 𝑝𝑗) =
maxDist− Euclidean Distance(𝑝𝑖, 𝑝𝑗)

maxDist

Once the spatial similarities are computed, the algorithm calculates the proportion-

ality relevance score for each object. The proportionality relevance score for a spatial

object is the sum of its spatial similarity scores with all other objects in the dataset,

indicating the overall relevance of the object in the spatial context using the formula:

𝑝𝑅(𝑝𝑖) = 	 : 𝑠𝑆(𝑝𝑖, 𝑝𝑗)
{"	%!}

The final step involves calculating the place level importance score for each object.

This score is a combination of the proportionality relevance score and the hierar-

chical level of the object, using the formula:

score(𝑝𝑖) =
pr[𝑖]

totalPlaces− 1 +
1

(level(𝑝𝑖) + 𝑎)

where 𝑎	 is a smoothing factor to ensure proper weighting of objects at different

levels. Finally, the algorithm executes the steps, that were previously described, in

sequence and returns a list of places sorted by their calculated Place Level Im-

portance scores.

The implementation details of the baseline algorithm for spatial proportionality in-

clude several key components. The algorithm utilizes a helper class to compute the

Euclidean distance between pairs of geographical coordinates. It employs arrays and

collections to manage and manipulate place objects and their associated scores effi-

ciently. Additionally, places are sorted based on their Place Level Importance scores

in descending order to prioritize the most relevant and important places within the

region.

Concluding, the Baseline Algorithm provides a foundational approach for assessing

the relevance and importance of places within a given geographical region. By

34

considering spatial similarity, pairwise relevance, and hierarchical importance, the

algorithm offers valuable insights for various applications requiring spatial analysis

and recommendation systems. The baseline algorithm, while effective in achieving

spatial proportionality, can be computationally expensive due to the need for pair-

wise comparisons and extensive similarity calculations.

4.2.1 Implementation of Baseline Algorithm

Algorithm 4.2.1, outlines a method to rank spatial objects by evaluating their con-

textual and locational relevance within a specified region. The algorithm processes a

list of PlaceObjects and a maximum distance for normalization to produce a sorted

list of these objects based on their computed scores.	Below is the pseudocode for the

algorithm.

Algorithm 4.2.1 Baseline

Input:

 placesInRegion: List of PlaceObject

 maxDist: Maximum distance for normalization

Output:

 List of PlaceObject sorted by their scores

1: Initialize:

2: totalPlaces = size of placesInRegion

3: ss = array of size (totalPlaces * totalPlaces)

4: pr = array of size totalPlaces

5: pli = array of PlaceObject of size totalPlaces

6: a = 0.5

7: // Step 1: Calculate Spatial Similarities

8: Function calculateSS():

9: for i from 0 to totalPlaces - 1:

10: for j from 0 to totalPlaces - 1:

11: distance = EuclideanDistance(placesInRegion[i].getPoint(),

placesInRegion[j].getPoint())

35

12: ss[i * totalPlaces + j] = (maxDist - distance) / maxDist

13: // Step 2: Calculate Proportionality Relevance

14: Function calculatePR():

15: for i from 0 to totalPlaces - 1:

16: sumOfSS = 0

17: for j from 0 to totalPlaces - 1:

18: if i != j:

19: sumOfSS = sumOfSS + ss[i * totalPlaces + j]

20: pr[i] = sumOfSS

21: // Step 3: Calculate Place Level Importance

22: Function calculatePLI():

23: for i from 0 to totalPlaces - 1:

24: node = placesInRegion[i]

25: score = pr[i] / (totalPlaces - 1) + 1 / (node.getLevel() + a)

26: node.setScore(score)

27: pli[i] = node

28: // Main Execution

29: calculateSS()

30: calculatePR()

31: calculatePLI()

32: // Sort places by their scores in descending order

33: sortedPLI = sort pli in descending order based on scores

34: return sortedPLI

Here is the explanation of the pseudocode for Algorithm 4.2.1, Baseline. The process

begins by initializing necessary data structures, including arrays for spatial similari-

ties (ss), proportionality relevance (pr), and place-level importance (pli). The algo-

rithm then proceeds through three main steps: First, the ‘calculateSS’ function com-

putes the Euclidean distance between each pair of PlaceObjects. These distances are

normalized using the maximum distance and stored in the spatial similarities array.

Second, the ‘calculatePR’ function sums the spatial similarities for each PlaceObject,

excluding itself, to determine its proportionality relevance. This sum represents how

36

each object is related to the others within the region. Third, the ‘calculatePLI’ func-

tion calculates a score for each PlaceObject by combining its proportionality relevance

with a normalization factor based on its hierarchical level. This score is used to assess

the overall importance of each PlaceObject. Finally, the PlaceObjects are sorted in

descending order based on their scores, resulting in a ranked list that reflects both

spatial distribution and contextual diversity. This method ensures that the most rel-

evant spatial objects are highlighted, enhancing the effectiveness of spatial keyword

searches.

4.3 Grid Algorithm

To address the computational challenges of the baseline algorithm, we used an in-

novative grid-based algorithm that offers an optimized approach by leveraging spa-

tial partitioning techniques. Specifically, we delve into the optimization of Ptolemy's

similarity computation by using an algorithm capable of accelerating the calculation

of 𝑠'*𝑝! , 𝑝", for any given pair of places 𝑝! and 𝑝". Ptolemy’s similarity measure is a

metric used to evaluate the similarity between pairs of spatial entities in the context

of spatial keyword searches. This measure integrates both spatial and textual rele-

vance to provide a comprehensive similarity assessment. It leverages Ptolemy’s the-

orem, which involves the relationships between distances in a cyclic quadrilateral.

Given two places 𝑝! and 𝑝" and a query point 𝑞, Ptolemy’s similarity measure

𝑠'*𝑝! , 𝑝", is defined as:

𝑠'*𝑝! , 𝑝", =
𝑑(𝑝! , 𝑞) ⋅ 𝑑*𝑝" , 𝑞, + 𝑑*𝑝! , 𝑝", ⋅ 𝑑(𝑞, 𝑞)

𝑑(𝑝! , 𝑞) + 𝑑*𝑝" , 𝑞,

where:

• 𝑑(𝑝! , 𝑞) is the spatial distance between place 𝑝! and the query point 𝑞.

• 𝑑*𝑝" , 𝑞, is the spatial distance between place 𝑝" and the query point 𝑞.

• 𝑑*𝑝! , 𝑝", is the spatial distance between place 𝑝! and place 𝑝".

37

This measure balances the spatial proximity of the places to the query point with

their direct spatial relationship. By considering these distances, the measure effec-

tively captures both the geographical closeness and the contextual relevance of the

places concerning the query.

The grid-based algorithm optimizes the process of achieving spatial proportionality

by dividing the spatial domain into a grid. Each spatial object is assigned to a cell

within this grid, and the algorithm approximates spatial similarities based on the

cells rather than directly between all individual objects. This approach significantly

reduces the number of pairwise comparisons needed, making it suitable for large-

scale applications. This algorithm is designed to operate on two distinct grid struc-

tures: a squared grid and a radial grid structure but we selected to use the squared

grid.

4.3.1 Detailed Explanation of Algorithm

Now let's see more details on how grid partitioning and proportionality techniques

enhance the efficiency and scalability of spatial keyword searches. First, we have the

Grid Partitioning (step1). The spatial domain is divided into a grid of cells. Each

spatial object is assigned to a cell based on its coordinates. This partitioning helps in

reducing the number of pairwise comparisons by considering only the objects within

the same cell or neighboring cells. More precisely, the algorithm is initiated by gen-

erating a structured grid, denoted as 𝐺, consisting of square cells. This grid is cen-

tered around a specified query location 𝑞 and effectively covers the spatial distribu-

tion of all places within the set . The dimensions of the grid, including the length

of its sides and the number of cells it encompasses, are strategically determined to

optimize computational efficiency. The center of the grid 𝐺(aligns with the query

location 𝑞, while the length of each side (𝐺)) is set to twice the distance (𝑓*) between

𝑞 and the farthest point in 𝑆. The grid size determines how finely the spatial domain

is partitioned, directly impacting the number of comparisons and the level of detail

captured.

Here, we have an example of grid:

S

38

Consider a grid where cells are denoted as 𝑐+,- with 𝑥 and 𝑦 being the coordinates

relative to the query point 𝑞. For example, 𝑐.,/ represents the cell at coordinates (1,

2) from the center. Below is a representation of such a grid, to help visualize how

the grid partitions the spatial domain around the query point.

𝑐01,1 𝑐0/,1 𝑐0.,1 𝑐.,1 𝑐/,1 𝑐1,1
𝑐01,/ 𝑐0/,/ 𝑐0.,/ 𝑐.,/ 𝑐/,/ 𝑐1,/
𝑐01,. 𝑐0/,. 𝑐0.,. 𝑐.,. 𝑐/,. 𝑐1,.
𝑐01,0. 𝑐0/,0. 𝑐0.,0. c.,0. 𝑐/,0. 𝑐1,0.
𝑐01,0/ 𝑐0/,0/ 𝑐0.,0/ 𝑐.,0/ 𝑐/,0/ 𝑐1,0/
𝑐01,01 𝑐0/,01 𝑐0.,01 𝑐.,01 𝑐/,01 𝑐1,01

This approach simplifies and speeds up the process of spatial keyword search by

reducing the computational load while maintaining accurate approximations of sim-

ilarity scores. The pre-computed cell center scores can be reused for various queries,

making this method both efficient and scalable.

The next step is the cell allocation (step 2), where we assign each place 𝑝 from the

set 𝑆 to its corresponding grid cell. For each cell 𝑐! , we maintain a count (|𝑐!|)

representing the number of places it contains. Additionally, we approximate the

location of each cell’s center (c23), which serves as a proxy for the collective positions

of all places within that cell. Next, we have the similarity score calculation (step 3).

In this step, we calculate the Ptolemy’s similarity score (𝑝4) for each cell 𝑐!. Lever-

aging precomputed similarity scores 𝑠'*𝑐(! , 𝑐(", between the centers of every pair of

cells (𝑐! , 𝑐"), stored in a matrix (𝑠'5), we employ a computation scheme that efficiently

considers the cardinality of each cell (|𝑐! |) and the precomputed similarity scores.

This computation, adapted from Equation: 𝑝'(𝑝!) = ∑ 𝑠'*𝑝! , 𝑝",*!∈',*"%*! , involves

summing the product of the cardinalities of 𝑐! and 𝑐" with their corresponding pre-

computed similarity scores, and then subtracting 1 to eliminate self-comparisons. So,

instead of calculating the exact Euclidean distances between all pairs of objects, the

grid-based algorithm approximates these distances by considering the distances

between the centers of the grid cells.

39

Similar to the baseline algorithm, the grid-based algorithm calculates the

proportionality relevance scores for each spatial object. The spatial similarity scores

between objects within the same cell and neighboring cells are summed up to

compute the proportionality relevance score for each object. The final place level

importance score for each object is computed by combining its proportionality

relevance score and its hierarchical level. The formula used is:

𝑠𝑐𝑜𝑟𝑒(𝑝!) =
𝑝𝑟[𝑖]

(𝑡𝑜𝑡𝑎𝑙𝑃𝑙𝑎𝑐𝑒𝑠 − 1) +
1

(𝑙𝑒𝑣𝑒𝑙(𝑝!) + 𝑎)

This step ensures that the scores reflect both the spatial and contextual importance

of each object.

4.3.2 Advantages of Grid Algorithm

The grid-based algorithm offers several advantages. One key advantage is computa-

tional efficiency. By reducing the number of pairwise comparisons through grid

partitioning, the grid-based algorithm significantly lowers the computational cost.

This efficiency makes it feasible to apply the algorithm to large-scale datasets, where

the baseline algorithm would be too slow. Another advantage is scalability. The grid-

based algorithm scales well with the size of the dataset. As the dataset grows, the

grid can be adjusted to maintain a balance between accuracy and computational

efficiency. This allows the algorithm to handle a large number of spatial objects

without a significant increase in computational complexity. Finally, the algorithm

provides approximate similarity. While the grid-based algorithm uses approxima-

tions, it still maintains a reasonable level of accuracy in representing spatial propor-

tionality. The use of grid cells allows for a balance between exact calculations and

computational feasibility, providing a practical solution for large datasets.

4.3.3 Implementation of Grid Algorithm

The following pseudocode outlines Algorithm 4.3.2 Grid Algorithm, which is de-

signed to rank Points of Interest (POIs) by leveraging grid partitioning and spatial

similarity approximation. The algorithm operates through four main steps: grid par-

titioning, spatial similarity approximation, proportionality relevance calculation, and

40

place-level importance calculation. It follows with a detailed explanation of each step

to provide a comprehensive understanding of the process.

Algorithm 4.3.2 Grid Algorithm

 Input: POIs, maxDist, gridSize

 Parameters: gridSize

1: // Step 1: Grid Partitioning

2: for each POI in POIs:

3: cell_x = floor((POI.Latitude - minLatitude) / (maxLatitude - minLatitude)

* gridSize)

4: cell_y = floor((POI.Longitude - minLongitude) / (maxLongitude -

minLongitude) * gridSize)

5: grid[cell_x][cell_y].add(POI)

6: // Step 2: Spatial Similarity Approximation

7: for each cell_i in grid:

8: for each cell_j in grid:

9: distance = EuclideanDistance(center(cell_i), center(cell_j))

10: similarity[cell_i][cell_j] = (maxDist - distance) / maxDist

11: for each cell in grid:

12: for each POI in cell:

13: for each neighbor_cell in get_neighboring_cells(cell):

14: for each neighbor_POI in neighbor_cell:

15: similarity_score = similarity[cell][neighbor_cell]

16: ss[POI_i][POI_j] = similarity_score

17: // Step 3: Proportionality Relevance Calculation

18: for each POI in POIs:

19: sum_of_similarities = 0

20: for each neighbor_POI in get_neighboring_POIs(POI):

21: POI_i = neighbor_POI;

22: sum_of_similarities += ss[POI][neighbor_POI]

23: pr[POI] = sum_of_similarities

24: // Step 4: Place Level Importance Calculation

41

25: a = 0.5 // Smoothing factor

26: for each POI in POIs:

27: final_score = pr[POI] / (total_POIs - 1) + 1 / (POI.Level + a)

28: POI.set_score(final_score)

29: // Sorting and Output

30: sorted_POIs = sort(POIs, by=final_score, order=descending)

31: return sorted_POIs

The algorithm begins with grid partitioning, where the spatial domain is divided

into a grid of cells. Each POI is assigned to a specific cell based on its latitude and

longitude coordinates. This is done by calculating the cell's x-coordinate (‘cell_x’) by

normalizing the POI's latitude within the grid size, and similarly, calculating the

cell's y-coordinate (‘cell_y’) by normalizing the POI's longitude within the grid size.

The POI is then added to the corresponding cell in the grid (‘grid[cell_x][cell_y]’).

The second step approximates the spatial similarity between POIs by calculating the

distances between the centers of the grid cells they belong to. For each pair of cells

(‘cell_i’, ‘cell_j’) in the grid, the Euclidean distance between their centers is

computed, normalized, and stored in a similarity matrix (‘similarity[cell_i][cell_j]’).

For each POI in each cell, the algorithm retrieves the precomputed similarity score

between the current cell and its neighboring cells, and stores the similarity score for

the POI pair in the similarity score matrix (‘ss[POI_i][POI_j]’). The third step

involves calculating the proportionality relevance (PR) score for each POI by

summing its spatial similarities with neighboring POIs. For each POI, the algorithm

initializes ‘sum_of_similarities’ to 0, then iterates through its neighboring POIs,

adding the similarity score between the POI and each neighboring POI to

‘sum_of_similarities’. The PR score for the POI (‘pr[POI]’) is then set to

‘sum_of_similarities’. In the fourth step, the final importance score for each POI is

calculated by combining its PR score with a factor based on its hierarchical level.

This is done using the formula: ‘final_score = pr[POI] / (total_POIs - 1) + 1 /

(POI.Level + a)’, where ‘a’ is a smoothing factor set to 0.5. The computed final score

is then assigned to the POI. The final step involves sorting the POIs based on their

computed scores in descending order and returning the sorted list. By following

42

these steps, the Grid Algorithm efficiently partitions the spatial domain, approximates

spatial similarities, calculates relevance scores, and ranks POIs, ensuring both

computational efficiency and effective spatial keyword search results.

Concluding, the grid-based algorithm offers a practical and efficient approach to

achieving spatial proportionality in large-scale spatial keyword search applications.

By leveraging spatial partitioning techniques and approximate similarity calculations,

it significantly reduces computational overhead while maintaining a reasonable level

of accuracy. This makes the grid-based algorithm an essential tool for enhancing the

relevance and usability of spatial search results in large datasets.

4.4 Comparison of Baseline with Grid Algorithm

The table below compares the Baseline Algorithm and the Grid-Based Algorithm

across various aspects of their operation. It highlights differences in initialization,

spatial similarity calculation, proportionality relevance calculation, place level im-

portance calculation, computational complexity, accuracy, and scalability. The Base-

line Algorithm uses direct pairwise comparisons, resulting in high accuracy but also

high computational complexity. In contrast, the Grid-Based Algorithm partitions the

spatial domain into a grid, approximating similarities using cell centers, which re-

duces computational complexity and enhances scalability, albeit with slightly lower

accuracy.

Table 6: Comparison of Baseline and Grid-Based Algorithms for Spatial Keyword
Search

Aspect Baseline Algorithm Grid Algorithm

Initialization Directly uses all POIs

Partitions spatial domain into a

grid

Spatial Similarity

Calculation

Exact pairwise similarity

using Euclidean distance

Approximate similarity using

grid cell centers

43

Proportionality

Relevance

Calculation

Sums exact similarities

with all other POIs

Sums approximate similarities

within same/neighboring cells

Place Level

Importance

Calculation

Combines relevance score

with hierarchical level

Combines relevance score with

hierarchical level

Computational

Complexity

High, due to pairwise

comparisons

Lower, due to reduced number

of comparisons

Accuracy

High, due to exact calcu-

lations

Slightly lower, due to approxi-

mations

Scalability

Limited by high compu-

tational cost Scales well with large datasets

4.5 Random Sampling Algorithm for Spatial Proportionality

The Random Sampling Algorithm is a straightforward method used to select a rep-

resentative subset of spatial objects from a larger dataset. This approach leverages

randomness to ensure that the selected subset maintains the spatial and contextual

diversity of the entire dataset. More precisely, Random Sampling Algorithm is de-

signed to select a subset of places from a given region based on specific criteria. It

initializes with parameters including the list of places in the region, maximum dis-

tance, desired number of results, and a distance percentage. The algorithm calculates

a minimum distance threshold based on the provided parameters. It then randomly

selects places from the region while ensuring they meet the distance criteria and

have not been previously selected. The process continues until the desired number

of results is obtained or there are no more places left to consider. Finally, it outputs

the selected places sorted by score in descending order, along with their IDs and

coordinates. This algorithm provides a systematic way to sample diverse locations

from a region while maintaining spatial separation and potentially prioritizing places

based on certain attributes.

44

4.5.1 Implementation of Random Sampling

The following pseudocode details a method for selecting a specified number of Points

of Interest (POIs) from a given region, based on distance constraints and scoring.

Algorithm 4.5.2 Random sampling

 Input: POIs, maxDist, numberOfRes, distPercentage

1: Initialize results array with size numberOfRes

2: Calculate minDist based on maxDist and distPercentage

3: while counterInResults < numberOfRes:

4: Randomly select a place objTemp from placesInRegion

5: Add objTemp to results if it satisfies distance constraints and is not

already included

6: Increment counterInResults

7: Remove objTemp from placesInRegion

8: Sort results array in descending order by score

9: return results

The algorithm begins by initializing an array named ‘results’ with a size equal to

the desired number of results (‘numberOfRes’) to store the selected POIs. Next, the

minimum distance (‘minDist’) is calculated based on the maximum distance

(‘maxDist’) and a given distance percentage (‘distPercentage’). This step likely de-

termines the lower bound for distance constraints. The main part of the algorithm

is a loop that continues until the ‘results’ array contains the specified number of

POIs. Within this loop, a place (‘objTemp’) is randomly selected from the list of

POIs (‘placesInRegion’). The selected place is added to the ‘results’ array if it meets

the distance constraints and is not already included. The counter tracking the num-

ber of results (‘counterInResults’) is incremented, and the selected place (‘objTemp’)

is removed from ‘placesInRegion’ to avoid duplicate selections. Once the desired

number of POIs has been selected, the ‘results’ array is sorted in descending order

based on the score of each POI. Finally, the sorted ‘results’ array is returned as the

output of the algorithm. This method ensures that a specified number of POIs are

45

selected randomly, subject to distance constraints, and then sorted by their scores

for final output.

4.5.2 Advantages and Limitations of Random Sampling

The algorithm has several advantages and limitations. Among the advantages are

its simplicity, as it is easy to implement and understand, and its efficiency, since it

is computationally efficient due to requiring only random selection. However, the

algorithm also has limitations. It lacks control, as it does not guarantee proportional

representation in terms of spatial distribution and contextual diversity. Additionally,

there is significant variance in results between different runs due to the random

nature of the selection process. Lastly, it may not always provide a representative

subset, especially for datasets with clustered distributions.

While the random sampling algorithm is useful for its simplicity and efficiency, it

often serves as a starting point for more complex methods designed to ensure spatial

proportionality. More sophisticated algorithms, such as the baseline and grid-based

algorithms, provide better guarantees for maintaining spatial and contextual diver-

sity in the selected subsets. The random sampling algorithm, however, remains a

valuable tool for quick approximations and baseline comparisons in the context of

spatial keyword search.

46

CHAPTER 5

SELECTION ALGORITHMS

5.1 Importance of Selection Algorithms

5.2 Greedy Algorithm for Selection

 5.2.1 Implementation of Greedy Algorithm

5.3 Greedy-Disc Algorithm

 5.3.1 Implementation of Greedy-Disc Algorithm

 5.3.2 Example Use Case: Diversifying Historical Places in Athens Related

to Pericles

In this chapter, we focus on the critical role of selection algorithms and their practical

implementations. We start with Section 5.1, which discusses the importance of se-

lection algorithms, highlighting their significance in various computational and real-

world contexts. Section 5.2 delves into the Greedy Algorithm for selection, explaining

its implementation in detail. This section serves as a foundation for understanding

how simple, yet effective algorithms can solve selection problems efficiently. Follow-

ing this, Section 5.3 introduces the Greedy-Disc Algorithm. We provide a detailed

explanation of its implementation and demonstrate its application through an exam-

ple use case. Specifically, Section 5.3.2 explores how the Greedy-Disc Algorithm can

be used to diversify historical places in Athens related to Pericles, showcasing its

practical utility.

5.1 Importance of Selection Algorithms

To enhance user experience and maintain clarity, we considered displaying a subset

of the places of the object summary we got as result on the map. This strategic

47

selection aims to cover the map as evenly as possible, ensuring that the displayed

points are not clustered too closely together. By implementing a greedy algorithm,

we ensure that each chosen point maintains a minimum distance from the others.

This approach reduces visual clutter and improves readability, allowing users to

focus on key locations without being overwhelmed by too much information. Addi-

tionally, this method improves performance by reducing loading times, making the

map more user-friendly and efficient. The result is a clean, aesthetically pleasing

map that highlights significant points of interest, making it easier for users to interact

with and analyse the displayed data.

5.2 Greedy Algorithm for Selection

Generally, a greedy algorithm is a problem-solving approach that makes the locally

optimal choice at each stage with the hope of finding the global optimum. Greedy

algorithms are typically used for optimization problems. The key characteristic of a

greedy algorithm is that it builds up a solution piece by piece, always choosing the

next piece that offers the most immediate benefit. We chose Greedy Algorithm to

display K distinct objects from the list of all objects retrieved from the query after

the algorithm's application (grid/baseline). The goal of this algorithm is to select a

subset of spatial objects based on proportionality and relevance to a query context.

Greedy Algorithm is designed to select up to K places from a list such that each

selected place is sufficiently far from the others, ensuring diversity and relevance. It

is a greedy heuristic algorithm that iteratively selects the next best object based on

its contribution to the proportionality of the current result set. The algorithm starts

with an empty result set and computes initial scores or distances. Then, it uses

distance metrics to ensure selected objects are diverse. This involves pairwise com-

parisons and optimization to reduce computational complexity. We use the Euclid-

ean distance between places to ensure that each selected place is at least a minimum

distance away from others. The algorithm selects objects that maximize the propor-

tionality score, ensuring they contribute positively to the overall diversity and rele-

vance, and iteratively adds them to the result set based on their contributions until

48

the desired number of objects (K) is reached. Finally, the algorithm returns a subset

of objects that balance proportionality and relevance, ensuring diversity.

5.2.1 Implementation of Greedy Algorithm

Algorithm 5.2.1, the Greedy Algorithm, is designed to select a specified number of

Points of Interest (POIs) based on distance constraints and scoring criteria. The al-

gorithm ensures that the selected POIs are randomly chosen, meet the defined dis-

tance criteria, and are subsequently sorted by their scores. The following pseudocode

illustrates the detailed steps of this algorithm:

Algorithm 5.2.1 Greedy Algorithm

 Input: A list of PlaceObjectDistinct results, integer K, double maxDist, double

distPercentage.

 Output: A list of PlaceObjectDistinct resultsK that are selected.

1: Initialize resultsK as an empty list.

2: Calculate minDist as distPercentage * maxDist.

3: Add the first place in results to resultsK and indexSet.

4: for each place in results starting from the second place do

5: if place is not in indexSet then

6: if checkDistanceFromOtherPlacesInResults(place, counter) then

7: Add place to resultsK.

8: Add place to indexSet.

9: Increment counter.

10: end if

11: end if

12: if counter == K then

13: break

14: end if

15: end for

16: return resultsK

49

The algorithm starts by initializing the input parameters: the list of objects (results),

the number of objects to select (K), the maximum distance (maxDist), and the dis-

tance percentage (distPercentage). It also initializes the result list (resultsK), which

will store the selected objects, and an instance of the EuclideanDistance class for

distance calculations. The method calculateMinDistBasedOnRegion computes the

minimum allowable distance (minDist) between any two selected objects based on

the given distPercentage of maxDist. The main selection happens in the exe-

cute method. It initializes a set to keep track of already selected object IDs to avoid

duplicates. The first object from the list is always selected and added to resultsK.

For each subsequent object, it checks if the object has not already been selected

(using indexSet) and whether it maintains the minimum distance requirement from

all previously selected objects (checkDistanceFromTheOtherPlacesInResults). If both

conditions are satisfied, the object is added to resultsK and the ID is added to the

index set. This process continues until K objects are selected or all objects are con-

sidered. The method checkDistanceFromTheOtherPlacesInResults iterates over the

selected objects and calculates the distance between the current object and each of

the already selected objects using the Euclidean distance formula. If any distance is

found to be less than minDist, the object is rejected; otherwise, it is accepted.

5.3 Greedy-Disc Algorithm

The Greedy-DisC algorithm aims to construct a DisC diverse subset of a given set of

query results, ensuring that this subset represents the entire set (coverage) while

maintaining dissimilarity among the selected items. It is considered as a heuristic

method designed to approximate a solution to an NP-hard problem. The goal of

Greedy-DisC algorithm is to select a diverse subset of objects from a larger set such

that the selected subset maximizes coverage and dissimilarity among its members. It

does this by iteratively selecting the object with the largest "white neighborhood,"

which refers to the number of neighboring objects that have not yet been included

in the diverse subset or marked as "covered."

50

We start with an empty subset (𝑆) and we color all objects in the set (𝑃) as white.

Then there is the selection process. While there are still white objects we select the

white object 𝑝! that has the largest white neighborhood 𝑁78(𝑝!). This is the set of

white neighbors within a radius 𝑟 of 𝑝!. Then we add 𝑝! to the subset 𝑆, we color

𝑝! black, indicating it has been added to 𝑆 and we color all white neighbors of 𝑝!

(i.e., objects in 𝑁78(𝑝!)) grey, indicating they are now covered by 𝑝!. To efficiently

implement the algorithm, we maintain a sorted list 𝐿′	 of all white objects based on

the size of their white neighborhood. The object with the largest white neighborhood

is always at the top of this list.

When initializing 𝐿′, compute the size of the white neighborhoods for all objects.

This is done by performing a range query 𝑄(𝑝! , 𝑟) for each object 𝑝! 	and updating

the neighborhood sizes accordingly. To reduce computational overhead, the algo-

rithm uses a pruning rule: A leaf node (in the tree structure used for range queries)

that contains no white objects is colored grey. When all children of an internal node

are grey, the internal node is also colored grey. During range queries, subtrees rooted

at grey nodes are not searched, thus reducing the number of node accesses, and

speeding up the algorithm.

A key parameter in the Greedy-DisC algorithm is the radius 𝑟. The radius 𝑟 signifi-

cantly influences both the performance of the algorithm and the number of objects

returned in the result subset. When 𝑟 is small, each selected object covers a smaller

area and fewer neighbors, resulting in the need for more objects to achieve full

coverage. This increases the computational cost as the algorithm performs more it-

erations and range queries. Conversely, a larger radius allows each selected object to

cover a larger area and more neighbors, reducing the number of objects needed and

potentially lowering the overall computational effort. For tightly clustered datasets

with a smaller maximum diagonal distance, a moderate increase in 𝑟 can quickly

reduce the number of objects required for coverage, enhancing performance and

efficiency. In contrast, for widely spread datasets with a larger maximum diagonal

distance, a significantly larger radius might be necessary to achieve similar reduc-

tions, though this could increase computational complexity due to larger range que-

ries. To optimize results, it's advisable to start with a moderate 𝑟 value and

51

incrementally adjust it, balancing the radius to effectively reduce the number of

objects while managing computational costs. By fine-tuning 𝑟 according to the da-

taset's distribution and the desired subset size, you can maximize both the efficiency

of the algorithm and the quality of the results. To determine the optimal radius for

specific datasets, we will perform a series of experiments, varying 𝑟 and observing

the resulting subset size and computational performance. These experiments will

help identify the most effective radius values, ensuring that the algorithm performs

optimally for different dataset characteristics.

5.3.1 Implementation of Greedy-Disc Algorithm

The following pseudo-code and its subsequent description detail the steps of the

algorithm.

Algorithm 5.3.1 Greedy-DisC

 Input: A set of objects P and a radius r.

 Output: An r-DisC diverse subset S of P.

1: S = ∅

2: for all pi ∈ P do

3: Color pi white

4: end for

5: while there exist white objects do

6: Select the white object pi with the largest |𝑁𝑀7(𝑝𝑖)|

7: S = S ∪ {pi}

8: Color pi black

9: for all pj ∈ NM_r(pi) do

10: Color pj grey

11: end for

12: end while

13: return S

52

The Greedy-DisC algorithm begins by initializing an empty subset SS. All objects in

the set PP are initially colored white, indicating that they have not been processed.

The algorithm then enters a while loop that continues as long as there are white

objects remaining. Within the loop, the algorithm selects the white object 𝑝! that has

the largest number of white neighbors within a given radius 𝑟 (denoted as ∣

𝑁𝑟𝑊(𝑝𝑖) ∣). This object 𝑝! is added to the subset 𝑆, and its color is changed to black

to indicate that it has been included in the subset. Next, all white neighbors of 𝑝!
 (objects within radius 𝑟) are colored grey, indicating that they are now covered

by 𝑝! and should not be selected again. This process repeats until no white objects

remain. Finally, the algorithm returns the subset 𝑆, which represents the rr-DisC

diverse subset of 𝑃.

5.3.2 Example Use Case: Diversifying Historical Places in Athens Re-

lated to Pericles

Consider a scenario where a user wants to find a diverse set of historical places in

Athens that are related to Pericles, such as museums, archaeological sites, and

galleries. The goal is to provide a subset of attractions that cover different types of

locations and are spatially distributed across the city, ensuring that the selected

attractions are both representative of Pericles' era and diverse in nature.

Scenario: A user queries, "Pericles" The objective is to present a diverse set of places

that cover different aspects related to Pericles, including archaeological sites,

museums, and galleries, ensuring they are spread out across the city.

Initial Setup: Historical places related to Pericles include the Acropolis, Parthenon,

Ancient Agora, National Archaeological Museum, Acropolis Museum, Stoa of Attalos,

Theatre of Dionysus, Odeon of Herodes Atticus, Kerameikos, Pnyx Hill, Museum of

Cycladic Art, and Benaki Museum. The radius 𝑟 is set to a value that ensures places

within a 1 km radius are considered neighbors.

Iteration Details:

53

In the first selection, Acropolis is chosen. The neighborhood covered includes the

Parthenon, Theatre of Dionysus, and Odeon of Herodes Atticus. The subset 𝑆

includes {Acropolis}. The status is: Acropolis (black), Parthenon, Theatre of

Dionysus, and Odeon of Herodes Atticus (grey), others (white). In the second

selection, Ancient Agora is chosen, covering central Athens with multiple historical

elements. The neighborhood covered includes the Stoa of Attalos. The subset 𝑆

includes {Acropolis, Ancient Agora}. The status is: Acropolis, Ancient Agora (black),

Parthenon, Theatre of Dionysus, Odeon of Herodes Atticus, Stoa of Attalos (grey),

others (white). In the third selection, National Archaeological Museum is chosen for

its comprehensive coverage of artifacts from Pericles' era. The neighborhood covered

includes adjacent museums and galleries. The subset SS includes {Acropolis, Ancient

Agora, National Archaeological Museum}. The status is: Acropolis, Ancient Agora,

National Archaeological Museum (black), nearby locations grey, others white. In the

fourth selection, Acropolis Museum is chosen for its focus specifically on artifacts

from the Acropolis. The neighborhood covered includes nearby attractions within

the Acropolis vicinity. The subset 𝑆 includes {Acropolis, Ancient Agora, National

Archaeological Museum, Acropolis Museum}. The status is: Acropolis, Ancient

Agora, National Archaeological Museum, Acropolis Museum (black), covered places

grey, others white. In the fifth selection, Kerameikos is chosen as an important

archaeological site and ancient cemetery. The neighborhood covered includes nearby

ancient ruins and sites. The subset 𝑆 includes {Acropolis, Ancient Agora, National

Archaeological Museum, Acropolis Museum, Kerameikos}. The status is: all selected

places (black), rest (grey). In the sixth selection, Benaki Museum is chosen for its

coverage of a range of historical periods, including that of Pericles. The neighborhood

covered includes surrounding historical and cultural sites. The subset SS includes

{Acropolis, Ancient Agora, National Archaeological Museum, Acropolis Museum,

Kerameikos, Benaki Museum}. The status is: all selected places (black), rest (grey).

Concluding, after running the Greedy DisC algorithm, the final subset SS includes a

diverse range of historical places related to Pericles, spread across Athens and

representing various types of attractions such as archaeological sites, museums, and

galleries. This approach ensures that users are presented with a varied set of options,

54

each providing unique insights into the era of Pericles and reducing redundancy. By

using the Greedy DisC algorithm, the selection of historical places is efficiently

diversified, balancing both the spatial distribution and the diversity of historical

contexts offered, thus enhancing the user's exploration of Pericles' legacy in Athens.

55

CHAPTER 6

EXPERIMENTS

6.1 Experiments introduction

6.2 Description of Dataset

 6.2.1 Popular Subregions

 6.2.2 Implementation of Algorithm for Popular Subregions Creation

6.3 Experiment A – Object summary Creation

6.4 Experiment B – Tuning parameter d in Random Sampling Algorithm

6.5 Experiment C – Tuning parameter grid size in Grid Algorithm

6.6 Experiment D – Tuning parameter radius (r) in Greedy-Disc Algorithm

6.7 Experiment E – Comparison of Grid with Baseline Algorithm

 6.7.1 Performance Comparison of Grid and Baseline Algorithm on Smaller

regions with Numerous Nodes

6.8 Experiment F – Selection Algorithms Comparison

6.9 Conclusion of Experiments and Optimal model

In this chapter, we present a comprehensive analysis of various experiments

conducted to evaluate the performance of different algorithms and parameters. We

begin with an introduction to the experiments in Section 6.1, outlining the objectives

and significance of the experimental evaluations. Section 6.2 provides a detailed

description of the dataset used in the experiments, including a focus on popular

subregions. Subsections 6.2.1 and 6.2.2 cover the identification of these subregions

and the implementation of the algorithm for their creation. We then delve into spe-

cific experiments: Section 6.3 describes Experiment A, which focuses on the creation

of object summaries. Section 6.4 details Experiment B, involving the tuning of

56

parameter dd in the Random Sampling Algorithm. Section 6.5 covers Experiment C,

where the grid size parameter is tuned in the Grid Algorithm. Section 6.6 discusses

Experiment D, which involves tuning the radius parameter rr in the Greedy-Disc

Algorithm. Section 6.7 presents Experiment E, comparing the Grid Algorithm with

the Baseline Algorithm, with a specific performance comparison on smaller regions

with numerous nodes in Subsection 6.7.1. Section 6.8 explores Experiment F, which

compares different selection algorithms. Finally, Section 6.9 concludes the chapter

by summarizing the findings from the experiments and identifying the optimal

model based on the results.

6.1 Experiments Introduction

In our research, we conducted six distinct experiments to comprehensively evaluate

and optimize various algorithms related to spatial data analysis. In our research, we

conducted a series of six distinct experiments to comprehensively evaluate and opti-

mize various algorithms related to spatial data analysis. The primary objective of

these experiments was to systematically investigate and improve the performance of

algorithms used for data retrieval, quickly displaying objects on maps, and ensuring

diversity in the presented data. By experimenting with different parameters and

methods, we aimed to identify the most effective strategies and configurations, en-

suring that our findings contribute to more efficient and accurate spatial data anal-

ysis. In the first experiment, we measured the time required to create object sum-

maries by calculating the total time taken. The second experiment involved fine-

tuning a sampling algorithm by testing different distance values to determine the

optimal configuration. In the third experiment, we ran Grid algorithm to identify the

most suitable grid size that yields better results. The fourth experiment aimed at

tuning the Greedy-disc algorithm by adjusting the radius value to enhance perfor-

mance. The fifth experiment compared the grid algorithm against a baseline algo-

rithm to assess relative effectiveness. Finally, our sixth experiment involved a com-

parative analysis of selection algorithms, specifically evaluating the performance of

random sampling, greedy, and greedy-disc algorithms. These experiments

57

collectively aimed to optimize algorithmic performance and provide insights into

their practical applications in spatial data analysis.

6.2 Description of Dataset

In our experiments, we utilized a comprehensive dataset derived from DBpedia,

which encompasses various types of data relevant to spatial analysis. The dataset is

composed of several files, each serving a specific purpose. The ‘node.txt’ file contains

all the nodes with their respective IDs and names, totaling 8,099,956 nodes. A subset

of these nodes, specifically representing places, is detailed in the ‘places.txt’ file,

which includes 883,664 place nodes. The ‘pid.txt’ file provides the latitude and

longitude coordinates for each place node, facilitating spatial mapping. For each

node, the ‘keywordlist.txt’ file lists the related keyword IDs, while the ‘keyword.txt’

file maps each keyword ID to its corresponding keyword name. Additionally, the

‘edges.txt’ file outlines the connections between nodes, with each line indicating a

pair of connected nodes, encompassing a total of 6,799,279 connections. This rich

dataset enabled us to perform detailed and diverse spatial data analyses, crucial for

optimizing the algorithms under investigation.

For the experiments that test the algorithms, we created the object summaries of the

nodes. In total, our dataset comprises 1,059,011 object summaries (OS). For our

experiments, we focused on a subset of these object summaries, specifically selecting

those with a large number of distinct places. This subset allowed us to evaluate the

algorithms' performance in handling complex and diverse spatial data, ensuring that

our findings are robust and applicable to scenarios involving high variability and

density of spatial information. Here are some statistics about the object summaries

used as our dataset for the experiments.

Table 7: Datset Statistics

Avg Total Places of

Subset’s Os

Avg Distinct Places

of Subset’s OS

Max value of Total

Places of an OS

(Overall)

Max value of Dis-

tinct Places of an

OS (Overall)

10939 2672 50188 7449

58

6.2.1 Popular Subregions

Additionally, for each node within the small subset of summaries used in our ex-

periments, we identified smaller areas that contain a high concentration of places.

This allowed us to test the efficiency of the algorithms in these densely populated

regions. By focusing on areas where the maximum distance between objects is

smaller compared to the initial dataset, we aimed to assess the algorithms' perfor-

mance in scenarios that simulate real-world conditions of high spatial density and

local popularity. This approach ensured that our evaluation covered both broad and

localized spatial contexts, providing a comprehensive analysis of the algorithms' ef-

fectiveness.

6.2.2 Implementation of Algorithm for Popular Subregions Creation

The following pseudocode outlines the steps taken to evaluate the algorithms in

these concentrated regions. It encompasses the identification of densely populated

nodes, the selection of smaller areas with maximum inter-object distances signifi-

cantly smaller than those in the initial dataset, and the subsequent performance

testing of the algorithms.

Algorithm 6.2.2 Popular Subregions Creation

 Function createSubregion(objectsSummaryNode, nodId, placesInRegion, to-

talPlaces)

1: Declare variables:

2: xmin, ymin, xmax, ymax as double, initialized to 0.0

3: subregionSize as double, initialized to 0

4: placesInSubregion as empty list

5: sizeOfPlacesInRegion as double, set to totalPlaces * 0.2

6: while subregionSize < estimatedPlacesInRegion

7: If subregionSize == 0

8: Set ymin to latitude of the first place in placesInRegion

59

9: Set xmin to longitude of the first place in placesInRegion

10: Increment subregionSize by 1

11: Add the first place from placesInRegion to placesInSubregion

12: Remove the first place from placesInRegion

13: Else if subregionSize == 1

14: Update ymin and xmin with latitude of the first place in placesInRegion

15: Update ymin and xmin with longitude of the first place in placesInRe-

gion

16: Increment subregionSize by 1

17: Add the first place from placesInRegion to placesInSubregion

18: Remove the first place from placesInRegion

19: Call insideBboxIntersectsCheck with current MBR and update

placesInSubregion and placesInRegion

20: Update subregionSize with the size of placesInSubregion

21: Else if the first place in placesInRegion is within the current MBR

22: If the place is not already in placesInSubregion

23: Increment subregionSize by 1

24: Add the place to placesInSubregion

25: Remove the place from placesInRegion

26: Else

27: Update xmin, xmax, ymin, ymax with the coordinates of the first place

in placesInRegion

28: If the place is not already in placesInSubregion

29: Increment subregionSize by 1

30: Add the place to placesInSubregion

31: Remove the place from placesInRegion

32: Call insideBboxIntersectsCheck with updated MBR and update

placesInSubregion and placesInRegion

33: Update subregionSize with the size of placesInMBR

34: End while

35: End Function

60

36: Function insideBboxIntersectsCheck(xmin, xmax, ymin, ymax, placesInRe-

gion, placesInSubregion)

37: Initialize placesInMBR as empty list

38: For each place in placesInRegion

39: If place is not in placesInSubregion

40: If latitude of place is between xmin and xmax

41: If longitude of place is between ymin and ymax

42: Add place to placesInMBR

43: Return placesInMBR

44: End Function

The provided pseudocode describes a function named ‘createSubRegion’ which par-

titions a set of places into smaller subregions based on their geographic coordinates.

The function initializes variables to track the minimum and maximum latitude and

longitude (xmin, xmax, ymin, ymax), as well as lists to hold places within the current

subregion. It iteratively processes places from ‘placesInRegion’, updating the bound-

ing box coordinates (MBR) as it adds places to the current subregion. The function

checks if the subregion size reaches an estimated size (20% of the total places) and

calls another function, ‘insideMBRObjectsCheck’, to verify and update places within

the current bounding box. The ‘insideMBRObjectsCheck’ function identifies and re-

turns places within the specified bounding box, adding them to a list if their coor-

dinates fall within the bounds. This process continues until the subregion size meets

the estimated number of places, ensuring each subregion contains places geograph-

ically close to each other.

6.3 Experiment A – Object Summary Creation

In this experiment, we aim to measure the average time required to construct an

object summary using data from DBpedia. The process involves reading input ex-

periment parameters, creating necessary data structures, and generating object sum-

maries for each experiment. The experiment is conducted by measuring the time

taken for the OS creation. The steps involved in the experiment are as follows:

61

1. Setup,Initialization and Reading Experimental Data: The experiment starts by

initializing variables to record the start and end times for each object summary

creation. It also sets up paths to the required DBpedia data files and reads

the input experimental configurations from a specified file. Then, using the

‘ReadInputData’ class, the experiment reads the input data which includes

various experiment configurations such as object summary node, node ID,

and query region.

2. Object Summary Creation: For each experiment configuration, the script

checks if the source data is from DBpedia. It initializes a ‘DBpediaSummary’

object with the required data file paths. The process involves creating struc-

tures necessary for the object summary, generating the object summary for

the specified node, and retrieving the summary.

3. Finding Relevant Places: After creating the object summary, the experiment

uses the ‘FindRelevantPlaces’ class to find relevant places within the specified

query region based on the generated object summary.

4. Time Measurement and Calculation: The time taken for each object summary

creation is measured using ‘System.nanoTime()’. This time is recorded and

accumulated to calculate the total time taken for all experiments. The average

time per experiment is computed and displayed after each iteration and at the

end of the experiment.

5. Output: The experiment prints the time taken for each object summary crea-

tion and the current average time in seconds. Finally, it prints the total aver-

age time for all experiments.

Result:

Average Time for OS creation: 74.653683055 sec

62

6.4 Experiment B – Tuning parameter d in Random Sampling Algo-

rithm

In this experiment, we aim to evaluate the performance of a sampling algorithm

using different maximum distances between results on a map. To achieve this, we

compare the performance of the sampling algorithm against a baseline algorithm by

tuning the parameter ‘d’. The parameter d represents a minimum distance threshold

that dictates how close two selected objects can be to each other when displayed on

the map. By adjusting d, we ensure that the objects shown in the results are suffi-

ciently spaced apart, thereby enhancing the clarity and usefulness of the spatial rep-

resentation on the map. This allows us to test and refine the algorithm's ability to

maintain an optimal balance between object density and spatial distribution. After

executing the experiments, we obtain the average execution time for both algorithms

and the relative approximation error of the sampling algorithm compared to the

baseline. The experiment involves the following steps:

Setup, Initialization and Reading Experimental Data: The experiment initializes var-

iables to record execution times and scores for both the baseline and sampling algo-

rithms. It also sets up paths to the required DBpedia data files and reads the input

experimental configurations from a specified file. Then, using the ‘ReadInputData’

class, the experiment reads the input data which includes various experiment con-

figurations such as object summary node, and query region.

1. Object Summary Creation: For each experiment configuration, the script

checks if the source data is from DBpedia. It initializes a ‘DBpediaSummary’

object with the required data file paths and generates the object summary for

the specified node.

2. Finding Relevant Places: After creating the object summary, the experiment

uses the ‘FindRelevantPlaces’ class to find relevant places within the specified

query region based on the generated object summary.

63

3. Maximum Distance Calculation: The experiment calculates the maximum dis-

tance within the query region using the ‘CalculateMaxDistRegion’ class.

4. Executing Baseline Algorithm: The experiment runs the ‘Algorithm_sS_base-

line_DBpedia’ baseline algorithm and records its execution time.

5. Executing Sampling Algorithm: The experiment iterates over different values

of the parameter ‘d’ (distance percentage options) and runs the ‘Algo-

rithm_sampling_DBpedia’ sampling algorithm for each value, recording its

execution time.

6. Calculating Approximation Error: The experiment calculates the relative ap-

proximation error of the sampling algorithm compared to the baseline algo-

rithm using the ‘FindRelativeApproximationError’ class. This step involves

comparing the scores of the top results from both algorithms.

7. Output: The experiment records the execution times and approximation errors

for each value of ‘d’ and calculates the average times and errors.

Results:

Table 8: Performance Metrics for various DistPercentage Values

DistPercentage Average Relative

Approximate Error

(%)

Average Time

Sampling (sec)

Average Time

Baseline (sec)

0,0005 17,60469078 0,006767489 11,20882603

0,001 18,40003295 0,016682745 11,20882603

0,002 19,02796759 0,020663199 11,20882603

0,005 21,35887775 0,027228646 11,20882603

0,01 23,30192525 0,02993709 11,20882603

0,02 27,50947446 0,034960268 11,20882603

0,05 35,47916029 0,040393139 11,20882603

64

Figure 2: Average Relative Approximation Error for Different DistPercentage values

Figure 3:Average Time of Sampling for Different DistPercentage values

The performance evaluation of the sampling algorithm reveals that as the distance

threshold parameter d increases, the average relative approximate error also

65

increases. Starting from a distance percentage of 0.0005 with an error of

approximately 17.6%, the error gradually rises to about 35.5% at a distance

percentage of 0.05. This trend indicates that as the distance between selected objects

increases, the sampling algorithm's accuracy relative to the baseline decreases,

suggesting that the objects become more spaced apart, leading to less accurate

representations compared to the baseline. In terms of average execution time, the

sampling algorithm consistently demonstrates significantly lower execution times

compared to the baseline algorithm across all distance thresholds. While the baseline

algorithm takes around 11.21 seconds consistently, the sampling algorithm's

execution time starts at approximately 0.0068 seconds for the smallest distance

percentage (0.0005) and increases slightly to around 0.0404 seconds for the largest

distance percentage (0.05). Despite this increase, the sampling algorithm remains

substantially faster than the baseline.

6.5 Experiment C – Tuning parameter grid size in Grid Algorithm

In this experiment, we aim to evaluate the performance of a grid-based algorithm

by tuning the grid size parameter and comparing its performance against a baseline

algorithm. In this experiment, we aim to evaluate the performance of a grid-based

algorithm by tuning the grid size parameter and comparing its performance against

a baseline algorithm. We calculate the average execution time and the relative

approximation error of the grid algorithm compared to the baseline. By adjusting

the grid size, we seek to identify the optimal configuration that balances

computational efficiency with accuracy, ensuring that the algorithm performs well

under various conditions. The experiment involves the following steps:

1. Setup, Initialization and Reading Experimental Data: The experiment

initializes variables to record execution times and scores for both the baseline

and grid algorithms. It also sets up paths to the required DBpedia data files

and reads the input experimental configurations from a specified file. Then,

using the ReadInputData class, the experiment reads the input data which

66

includes various experiment configurations such as diagonal distance flag,

object summary node, and query region.

2. Object Summary Creation, Finding Relevant Places and Maximum Distance

Calculation: For each experiment configuration, the script checks if the source

data is from DBpedia. It initializes a DBpediaSummary object with the

required data file paths and generates the object summary for the specified

node. Then, the experiment uses the FindRelevantPlaces class to find relevant

places within the specified query region based on the generated object

summary. Afterwards, the experiment calculates the maximum distance

within the query region using the CalculateMaxDistRegion class, which is

necessary for both algorithms.

3. Executing Baseline Algorithm: The experiment runs

the Algorithm_sS_baseline_DBpedia baseline algorithm and records its

execution time.

4. Executing Grid Algorithm: The experiment iterates over different grid sizes

(e.g., 6x6, 8x8, 10x10, etc.) and runs the Algorithm_grid_DBpedia grid

algorithm for each grid size, recording its execution time.

5. Calculating Approximation Error: The experiment calculates the relative

approximation error of the grid algorithm compared to the baseline algorithm

using the FindRelativeApproximationError class. This step involves

comparing the scores of the top results from both algorithms.

6. Output: The experiment records the execution times and approximation errors

for each grid size and calculates the average times and errors. The results are

printed for each grid size, showing the average time for the grid algorithm,

the average time for the baseline algorithm, and the average relative

approximation error.

67

Table 9: Performance Metrics for different grid size values

Grid Size Average Relative

Approximate Error

(%)

Average Time

Grid (sec)

Average Time

Baseline (sec)

6x6 37,8912 0,0016 11,5633

8x8 30,939 0,0011 11,5633

10x10 30,7669 0,0006 11,5633

12x12 23,6697 0,0007 11,5633

14x14 22,0168 0,0007 11,5633

20x20 19,6488 0,0029 11,5633

30x30 12,0469 0,0036 11,5633

40x40 9,1839 0,009 11,5633

50x50 7,9788 0,0269 11,5633

60x60 6,5882 0,0569 11,5633

70x70 5,7652 0,0989 11,5633

68

Figure 4: Average Relative Approximation Error for Different grid size values

Figure 5: Average Time Grid for Different grid size values

69

Based on the results of the experiment, several conclusions can be drawn regarding

the performance of the grid-based algorithm. The evaluation demonstrates that as

the grid size increases, the average relative approximation error decreases signifi-

cantly. Starting from a 6x6 grid with an error of approximately 37.9%, the error

steadily decreases to about 8% with a 50x50 grid. This trend indicates that larger

grid sizes enhance the accuracy of the grid-based algorithm compared to the baseline.

In terms of computational efficiency, the grid-based algorithm consistently outper-

forms the baseline algorithm across all grid sizes. The average execution time for the

grid algorithm ranges from 0.0006 seconds for a 10x10 grid to 0.0269 seconds for

a 50x50 grid, which is significantly lower than the baseline algorithm's consistent

execution time of around 11.56 seconds. These results highlight a clear trade-off

between grid size and computational efficiency. Smaller grids are faster but less

accurate, while larger grids provide higher accuracy at a marginally increased com-

putational cost.

6.6 Experiment D – Tuning radius (r) in Greedy-Disc Algorithm

In this experiment, we aim to determine the optimal radius value for the greedy-

disc algorithm by evaluating its performance across various radius settings. The

greedy-disc algorithm is tested with the following radius values: 0.001, 0.0005,

0.0001, and 0.00005. These values are multiplied by the maximum distance of ob-

jects in each object summary to derive the specific radius used in the experiment.

For each radius value, we measure the time taken to execute the algorithm, providing

insights into the computational cost associated with different radius sizes. Addition-

ally, we assess the approximate error by comparing the algorithm's outputs to those

of a baseline algorithm known for its accuracy. By analyzing these two metrics—

execution time and approximate error—we aim to identify the radius value that

offers the best trade-off between speed and precision, ultimately enhancing the prac-

tical utility of the greedy-disc algorithm.

1. Read Experiment Data: Read experiment parameters from the input file and

initialize necessary data structures and variables.

70

2. Create Object Summaries and Calculate Maximum Distance: Create object

summaries, identify places in the query region and for the identified places,

calculate the maximum distance (maxDist).

3. Execute Baseline Algorithm: Run the baseline algorithm to get baseline

results. Measure the execution time and store the results.

4. Execute Grid Algorithm: Set up grid parameters, create a grid and execute

the Grid algorithm to get grid-based results. Measure the execution time and

store the results.

5. Run Greedy-Disc Algorithm with Various Radius Values: Iterate over the

defined radius array: {0.001, 0.0005, 0.0001, 0.00005}. For each radius

value: Calculate the specific radius as a fraction of maxDist. Execute

the greedy-disc algorithm to get the results. Measure and store the execution

time and calculate the relative approximation error compared to the baseline

6. Output Results: For each radius value, aggregate the execution times and

relative approximation errors and then calculate the average execution time

and average relative approximation error for each radius.

Results:

Table 10: Performance Metrics for different r percentage values

r_percentage

radius greedyDisc +grid time Relative approximation

error

0.001 19,9657 209,3226 13,2511

0.0005 9,9829 345,3922 10,8128

0.0001 1,9966 994,0339 6,7853

0.00005 0,9983 1288,931 5,7729

0.00001 0.1996 1551.8521 4.93

0.000005 0.0998 1572.2599 4.8279

71

Figure 6:Average Relative approximation Error for Different r_percentage values

Figure 7: Average Greedy-Disc+Grid Time for Different r_percentage values

The experiment results reveal a clear trade-off between the execution time of the

greedy-disc algorithm combined with the grid approach and the relative approxima-

tion error. As the radius percentage decreases, the execution time for the greedy-disc

72

+ grid algorithm increases significantly, from 209.32 seconds at a 0.001 radius per-

centage to 1288.93 seconds at a 0.00005 radius percentage, while the baseline algo-

rithm's execution time remains constant at approximately 16.71 seconds. Concur-

rently, the relative approximation error decreases from 13.25% to 5.77% as the ra-

dius percentage decreases, indicating that smaller radius values yield more accurate

results closer to the baseline algorithm. These findings highlight a trade-off between

computational efficiency and accuracy: larger radius values (e.g., 0.001) offer faster

results with higher approximation errors, whereas smaller radius values (e.g.,

0.00005) provide more accurate results at the cost of higher execution times. A

balanced approach suggests the 0.0005 radius value as a good compromise, offering

a relative approximation error of 10.81% with a moderate execution time of 345.39

seconds. Ultimately, the choice of radius value should align with whether the priority

is on faster computation or higher accuracy.

6.7 Experiment E – Comparison of Grid with Baseline Algorithm

In this experiment, we compare the performance of a grid-based algorithm with a

baseline algorithm in terms of execution time and approximation error, using a grid

size of 50x50 determined from previous experiments. The process involves reading

input data that includes various experiment configurations, creating an object sum-

mary for each configuration, and finding relevant places within a specified query

region. We then calculate the maximum distance within the query region, which is

necessary for both algorithms. The baseline algorithm is executed first, and its exe-

cution time is recorded. Subsequently, the grid algorithm is executed with the spec-

ified grid size, and its execution time is also recorded. We calculate the relative

approximation error of the grid algorithm compared to the baseline algorithm using

the scores of the top results from both algorithms. Finally, we record and calculate

the average execution times and approximation errors, presenting the results to eval-

uate the efficiency and accuracy of the grid-based approach. This comprehensive

comparison enables us to evaluate the effectiveness of the grid algorithm in enhanc-

ing the efficiency and accuracy of spatial data analysis tasks.

73

Results:

Table 11: Grid-Baseline Performance Comparison

Avg nodes/OS=2672,

grid size=50x50

Grid Baseline Sampling

Average Time (sec) 0,0269 12,4592 0,0236

Relative Approximate Error (%) 7,9788

15,7349

6.7.1 Performance Comparison of Grid and Baseline Algorithm on

Smaller Regions with Numerous Nodes

Building on our previous experiment with a large subset of data, we have extended

our investigation to a different dataset, focusing on popular subsets of each node

where the region of each object summary is smaller. For this experiment, we utilized

a smaller grid size of 20x20, reflecting the reduced complexity and size of the data

regions. The objective remains the same: to measure and compare the execution time

and approximation error of the grid-based algorithm against the baseline algorithm.

By conducting this experiment with a different dataset and a smaller grid size, we

aim to provide a more nuanced understanding of the grid-based algorithm’s

performance across varying data scales and complexities.

This study’s outcomes will help determine the adaptability and efficiency of the grid-

based algorithm in different spatial data scenarios, thereby offering insights into its

practical applications for spatial data analysis tasks across diverse datasets.

74

All map

Avg nodes/OS=2672,

grid size=20x20

Grid Baseline

Average Time (sec) 0,0029 11,5633

Relative Approximate Error (%) 19,6488

Subregion

Avg nodes/OS=1597,

grid size=20x20

Grid Baseline

Average Time (sec) 0,002 5,3338

Relative Approximate Error (%) 8,0141

Figure 8: Grid-Baseline Performance Comparison in All map and Popular Subre-
gion

The results indicate that for the entire map, the grid-based algorithm exhibited a

significantly lower average execution time (0.0029 seconds) compared to the baseline

algorithm (11.5633 seconds). Similarly, for subregions, the grid-based algorithm

demonstrated a reduced execution time (0.002 seconds) compared to the baseline

(5.3338 seconds). In terms of relative approximate error, the grid-based algorithm

had a higher error (19.6488%) for the entire map compared to the baseline. How-

ever, this error reduced considerably when focusing on subregions (8.0141%),

though no baseline error was provided for direct comparison. These findings suggest

that the grid-based algorithm is significantly more efficient in terms of execution

time across both the entire map and subregions. While it introduces a higher ap-

proximation error in larger, more complex data regions, its accuracy improves with

smaller, less complex data regions. This efficiency and adaptability highlight the

algorithm's potential for handling large datasets and complex spatial data scenarios

quickly. Given its performance, the grid-based algorithm is particularly suited for

75

real-time spatial data analysis tasks where rapid processing is essential, and small

approximation errors can be tolerated.

6.8 Experiment F – Selection Algorithms Comparison

In this experiment, we compare the performance of three selection algorithms:

Greedy 1, Greedy Disc, and Random Sampling. We evaluate these algorithms by

running them for the top 20, 50, 100, 200, and 300 results (‘k’). We then compare

their results with those obtained from the baseline algorithm. First, the baseline

algorithm is executed, and its execution time is recorded. Next, the grid algorithm is

executed with the specified grid size equal to 50x50, and its execution time is also

recorded. We use the grid algorithm because it demonstrated better performance in

previous experiments. The results from the grid algorithm are then used as input

for the Greedy 1 and Greedy Disc algorithms. The Random Sampling algorithm uses

the list of relevant places within the specified query region based on the generated

object summary as input (the grid algorithm is not run in this case). We add the

execution time of these selection algorithms to the time of grid execution. Therefore,

we have the time for grid+Greedy 1, the time for grid+Greedy Disc, and the time for

Random Sampling. Finally, we calculate the approximation error by comparing the

combined results of the grid and each selection algorithm and the ones from random

sampling algorithm with the results of the baseline algorithm. This comparison al-

lows us to assess the efficiency and effectiveness of each algorithm in selecting the

most relevant data points from the dataset, providing insights into their relative

strengths and weaknesses across different result set sizes.

76

Results:

Topk 20 Sampling Grid+Greedy Grid+greedyDisc

Average Time 0,0075 0,0217 183,3711

Relative Approxi-

mate Error 18,6618 4,0038 12,7394

Topk 50 Sampling Grid+Greedy Grid+greedyDisc

Average Time 0,0174 0.0177 179,9156

Relative Approxi-

mate Error 17,8747 6,7433 14,2236

Topk 100 Sampling Grid+Greedy Grid+greedyDisc

Average Time 0,0236 0,0178 177,7771

Relative Approxi-

mate Error 15,7349 6,1199 12,8638

Topk 200 Sampling Grid+Greedy Grid+greedyDisc

Average Time 0,0341 0,0194 176,7889

Relative Approxi-

mate Error 14,5861 6,592 11,5350

Topk 300 Sampling Grid+Greedy Grid+greedyDisc

Average Time 0,0461 0,022 177,3524

Relative Approximate

Error 14,001 6,972 10,7188

Figure 9: Selection Algorithms Comparison for different top k results

77

Figure 10:Average Approximate Error for Greedy+Grid and Random Sampling for
different top k values

Figure 11: Average Time for Greedy+Grid and random Sampling for different top k
values

78

The experiment comparing the Sampling, Grid+Greedy, and Grid+GreedyDisc algo-

rithms across various ‘k’ values (20, 50, 100, 200, and 300) has provided valuable

insights into their efficiency and accuracy. Each algorithm exhibits unique strengths

and weaknesses, influencing their suitability for different applications. Following

this, we see a detailed analysis of their efficiency, accuracy, and the overall implica-

tions of these results.

The efficiency of the three algorithms was evaluated based on their average execution

times across different ‘k’ values (20, 50, 100, 200, and 300). The Random Sampling

algorithm consistently demonstrated superior efficiency, with the lowest execution

times ranging from 0.0075 seconds for top k 20 to 0.0461 seconds for top k 300. In

comparison, Greedy had slightly higher, but still relatively low, execution times,

ranging from 0.0217 seconds for top k 20 to 0.022 seconds for top k 300. On the

other hand, Greedy-Disc showed significantly higher execution times, consistently

around 177 to 183 seconds, indicating a substantial computational cost. These results

highlight Sampling as the most time-efficient algorithm, followed closely by Greedy,

with Greedy-Disc being the least efficient.

In terms of accuracy, measured by relative approximate error, the Greedy algorithm

generally outperformed the other algorithms across all ‘k’ values. It achieved the

lowest relative approximate errors, ranging from 4.0038 for top k 20 to 6.972 for

top k 300, indicating high precision in selection. The Greedy-Disc algorithm also

performed well, with errors decreasing as ‘k’ increased, from 12.7394 for top k 20

to 10.7188 for top k 300, demonstrating better accuracy than Sampling but not as

high as Greedy. Conversely, the Random Sampling algorithm had the highest relative

approximate errors across all ‘k’ values, ranging from 14.001 for top k 300 to

18.6618 for top k 20, reflecting its lower precision due to its random nature.

Concluding, the experiment reveals distinct trade-offs between the three algorithms.

Random Sampling is the most efficient in terms of execution time but sacrifices ac-

curacy. Greedy provides a balanced approach, offering good accuracy with moderate

79

efficiency, making it a strong candidate for tasks requiring both speed and precision.

Greedy-Disc, while offering relatively good accuracy, particularly for higher ‘k’ val-

ues, is the least efficient due to its high computational cost. Therefore, the choice of

algorithm should be guided by the specific requirements of the application: Sampling

for speed, Greedy for a balance of speed and accuracy, and Greedy-Disc for accuracy

when computational resources are not a constraint.

Due to the vastly different ranges of execution times, particularly for the Greedy Disc

algorithm, plotting the results would not provide a visually effective comparison.

The large discrepancy in values would distort the visual representation, making it

challenging to interpret the results accurately. Therefore, we opted not to plot the

results of the Greedy Disc algorithm.

6.8.1 Performance Evaluation of Greedy and Greedy Disc Algorithm

on Smaller Regions with Numerous Nodes

In this experiment, we run selection algorithms: Greedy and Greedy Disc using a

subset with smaller regions containing numerous nodes. We evaluate these algo-

rithms by running them for the top 20, 50, 100, 200, and 300 results (‘k’). We then

compare their results with those obtained from the baseline algorithm. The experi-

ment was conducted similarly to the one in the previous section. We have recorded

the total average time taken for each algorithm and the approximation error by

comparing the combined results of the grid and each selection algorithm with the

results of the random sampling algorithm and the baseline algorithm.

Table 12: Greedy-Disc Results for subset with Smaller Regions

Top k

Results

Average Time Greedy-

Disc

Average Relative

Approximate Error

20 61,2937 6,2907

50 59,5522 5,7779

100 60,8516 5,3338

80

200 61,332 4,472

300 62,1185 3,7846

Table 13: Greedy Results for subset with Smaller Regions

Top k Results Average Time

Greedy

Average Relative

Approximate Error

20 0,0268 2,0626

50 0,0225 2,9924

100 0,0227 3,1142

200 0,0244 3,6563

300 0,0274 4,0104

Figure 12: Comparison of Greedy and Greedy-Disc for subset with Smaller Regions

After executing this experiment, we evaluated the performance of the Greedy and

Greedy Disc algorithms using subsets with smaller regions containing numerous

nodes and compared them to results from subsets with larger regions. The Greedy

algorithm demonstrated significantly lower execution times across all tested scenarios

but exhibited a higher approximation error as the size of the result set increased. In

contrast, the Greedy Disc algorithm excelled in maintaining more consistent

81

execution times and showed a decreasing approximation error with larger result sets,

making it particularly suitable for tasks requiring higher accuracy. Although its ex-

ecution times were considerably higher in larger regions, the Greedy Disc algorithm's

accuracy improvement with increasing result set sizes highlights its advantage in

scenarios where precision is paramount. Overall, the Greedy 1 algorithm is ideal for

applications where speed is critical, while the Greedy Disc algorithm is better suited

for tasks requiring higher accuracy, especially in smaller data regions. The selection

of the appropriate algorithm should thus balance the trade-offs between execution

time and accuracy based on the specific requirements of the application and the

characteristics of the data regions.

6.9 Experiments Conclusion and Optimal model

After comparing the Grid, Baseline, and Random Sampling algorithms for spatial

proportionality, and the Greedy and Greedy-Disc algorithms for selection, we have

identified the optimal model for our purposes. Using the Grid algorithm for spatial

proportionality is ideal because it is faster and maintains a relatively low approxi-

mation error. For displaying a subset of results on the map, the Greedy algorithm is

the best choice due to its efficiency, lower approximation error, and acceptable exe-

cution time.

Although the Sampling algorithm performs very quickly, it has a higher approxima-

tion error, making it suitable for scenarios where speed is prioritized over accuracy.

The Greedy-Disc algorithm, while ensuring diversity in the results displayed on the

map, has a significantly higher execution time. However, its approximation error is

not excessively high, suggesting it could be efficient in smaller regions, such as when

zooming in on a specific area on the map. This balance between execution time and

error makes the Grid and Greedy combination the most effective overall, with the

option to use Sampling for speed and Greedy-Disc for diversity in smaller regions.

82

CHAPTER 7

DEVELOPMENT AND FUNCTIONALITY OF THE

WEB APPLICATION

7.1 Web Application Description

7.2 Web Application Functionality

 7.2.1 Use of @react-google-maps/api in our Project

 7.2.2 Interactive Markers, Customization and User Interaction

 7.2.3 Dynamic Marker Fetching Based on Map View and Search Keywords

 7.2.4 MVC Model

 7.2.5 Workflow

In this chapter, we provide a detailed overview of our web application, starting with

a short description in Section 7.1. This section sets the context for understanding the

application's design and capabilities. Section 7.2 delves into the functionality of the

web application. Subsection 7.2.1 explores the use of @react-google-maps/api in our

project, highlighting its integration and benefits. Subsection 7.2.2 discusses the

implementation of interactive markers, customization options, and user interaction

features, showcasing how users can engage with the map. In Subsection 7.2.3, we

explain the process of dynamic marker fetching based on the map view and search

keywords, ensuring relevant and updated data display. Subsection 7.2.4 outlines the

MVC (Model-View-Controller) model employed in the application, providing a clear

understanding of its architecture. Finally, Subsection 7.2.5 presents the overall

workflow of the application, detailing the processes from user input to data

rendering.

83

7.1 Web Application Description

This thesis involves creating a web application that allows users to enter a keyword

in an input form, which then displays relevant nodes on a map. These nodes repre-

sent the object summary with the input keyword as the root. The nodes shown on

the map dynamically update based on the current map bounds, ensuring that users

always see the most pertinent information for their area of interest. This functionality

combines user-friendly search capabilities with the powerful visualization features of

Google Maps, providing an intuitive and interactive experience.

The main goal of this project is to visualize an object summary (OS) on a map, where

the summary is generated dynamically based on a user-provided keyword. The ap-

plication leverages advanced algorithms to determine the most relevant nodes to

display, ensuring the results are both comprehensive and focused. The map interface

supports zooming and panning, allowing users to explore different geographical ar-

eas and refine their search results in real-time. Additionally, the application includes

interactive markers that users can click on to obtain more detailed information about

each node. These markers are customizable, enabling the display of various types of

data such as text and links. This enriches the user experience by providing multiple

layers of information immediately. To enhance usability, the application features a

responsive design that works seamlessly across different devices, including desktops,

tablets, and smartphones. This ensures accessibility and convenience for users, re-

gardless of their preferred platform. Overall, the web application integrates sophis-

ticated data processing with a sleek and user-friendly interface, making it a valuable

tool for visualizing and exploring object summaries based on user-defined keywords.

7.2 Web Application Functionality

The application consists of several key components and features that work together

to deliver this functionality. To begin with, in the front page we have a search input

form that allows users to input a keyword that serves as the root of the object

summary. The SearchBar component captures the user's input and triggers the

84

creation of the object summary based on this keyword. On form submission, the

application sends a request to the backend to fetch nodes related to the keyword,

within the current map bounds. Next, we have the Map Component which displays

the nodes of the object summary on a Google Map, providing a visual representation

of the data. For the implementation we utilize @react-google-maps/api to render the

map and manage map interactions. This app, also, provides dynamic Marker fetch-

ing. As the user zooms or pans the map, the application fetches and displays markers

that fall within the new map bounds. Additionally, users can click on markers to

view additional information in an InfoWindow. The purpose of Dynamic Marker

Fetching is to ensures that only relevant nodes are displayed based on the current

map view and search keyword. In this app Loading Indicators are also used to

enhance user experience by indicating data loading processes. We use ClipLoader

from react-spinners to show a spinner while fetching data. The spinner is displayed

whenever a new fetch request is initiated and hides once the data is successfully

loaded. Next, we have Marker Customization. The purpose is to differentiate nodes

based on their hierarchical level within the object summary.Custom marker icons

are used to represent different levels (yellow for level 0, red for level 1, blue for level

2, and green for level 3).The getMarkerIcon function assigns appropriate icons to

markers based on their level. This comprehensive approach ensures that users can

efficiently explore and interact with data related to their chosen keyword, making

the application both powerful and user-friendly. In the following sections, we will

describe the key features in more detail to provide a deeper understanding of the

application's functionality and implementation.

7.2.1 Use of @react-google-maps/api in our Project

In this thesis, we integrated the @react-google-maps/api library to leverage the robust

mapping capabilities of Google Maps within a React application. This library is a

well-maintained wrapper around the Google Maps JavaScript API, designed to work

seamlessly with React. Our goal was to provide users with an interactive and intuitive

map interface, and @react-google-maps/api proved to be an excellent tool for this

purpose. The decision to use @react-google-maps/api was driven by several key

85

factors. First of all, the library is specifically designed for React applications, provid-

ing a straightforward and familiar API for React developers. It also, offers efficient

and performant rendering of Google Maps, with optimizations to handle large data

sets and complex map features. Moreover, the library supports a wide range of cus-

tomization options, allowing us to tailor the map's appearance and functionality to

our specific needs. Finally, being widely used and actively maintained, @react-

google-maps/api benefits from extensive documentation, community support, and

regular updates. As far as the implementation is concerned, the initial setup of @re-

act-google-maps/api was simple and well-documented. We installed the library via

npm and configured it with our Google Maps API key. The library’s modular struc-

ture allowed us to import only the components we needed, optimizing our applica-

tion's performance.

Figure 13: Web Application Home Page

7.2.2 Interactive Markers, Customization and User Interaction

Interactive markers were a crucial feature in our project, providing users with dy-

namic and engaging ways to interact with the map. These markers served as points

of interest on the map, each capable of displaying additional information when

86

interacted with. We implemented interactive markers using the Marker and In-

foWindow components from @react-google-maps/api. Each marker was placed at a

specific geographic location, and when clicked, it triggered an infowindow that dis-

played relevant of the representing node. To enhance user interaction, we customized

the markers and infowindows in several ways. To begin with, we used custom

marker icons to make different types of locations easily distinguishable. More spe-

cifically we used different colors depending on the level of marker in the object

summary. So, we have yellow for level 0(the root of os) , red for level 1, blue for

level 2 and green for level 3. This involved specifying an icon property for the

Marker component, allowing for a more intuitive and visually appealing map inter-

face. Moreover, to enhance the dynamic content on the map, the content of the

infowindows was generated dynamically based on the marker clicked. This allowed

us to provide rich, location-specific information.

Figure 14: Different color of Markers on map

87

Figure 15: Example of InfoWindow

7.2.3 Dynamic Marker Fetching Based on Map View and Search Key-

words

In our project, we implemented a dynamic marker fetching mechanism that updates

the displayed markers based on the current viewport of the map and a keyword

entered in the search bar. This ensures that users are always presented with the

most relevant markers corresponding to their current area of interest and search

criteria, enhancing both performance and user experience. The core idea is to fetch

and display markers that fall within the bounds of the current map window and

match the search keyword. As the user zooms or pans the map, or changes the

search keyword, the latitude and longitude of the map's bounds change, triggering

a fetch request to update the markers accordingly. Event handlers for onBound-

sChanged, onZoomChanged, and onDragEnd capture map movements and update

the markers accordingly. This dynamic fetching approach ensures that only the

markers relevant to the current view and search criteria are loaded, significantly

improving performance. It avoids the need to load all markers at once, which can

be resource-intensive and slow down the application. Additionally, by updating

88

markers in real-time as the user navigates the map and enters search keywords, we

provide a more responsive and interactive user experience. From a user perspective,

this method ensures that they always see the most pertinent information based on

their current map view and search criteria. As users zoom in to focus on a smaller

area, more detailed markers become visible. Conversely, zooming out provides a

broader overview with fewer markers, preventing the map from becoming cluttered.

The ability to filter markers by search keywords further refines the displayed results

to match user interests.

89

Figure 16 : Example of Zooming-In result

7.2.4 MVC Model

The Model-View-Controller (MVC) architecture is a widely-used software design

pattern that separates an application into three interconnected components: the

Model, the View, and the Controller. This separation helps manage complex appli-

cations by isolating the internal representations of information from the ways that

information is presented to and accepted from the user. Here’s how we implemented

the MVC model in our project. The Model component represents the data and the

business logic of the application. It is responsible for retrieving data, processing it,

and storing it. In our project, the Model was responsible for retrieving marker data

from the backend API based on the current map bounds and search keywords and

storing and updating marker data in response to changes in the map view or search

input. Also, the Model is responsible for the business Logic that means, filtering the

markers based on the current search keyword and managing state related to the

markers, such as which markers are selected or visible. The View component repre-

sents the UI of the application. It is responsible for rendering the data provided by

the Model to the user and capturing user input. In our project, the View was re-

sponsible for rendering the Google Map component, displaying markers on the map

based on data from the Model, capturing user interactions such as panning, zooming,

90

and clicking on markers and finally, displaying infowindows with additional marker

information when a marker is clicked. The Controller acts as an intermediary be-

tween the Model and the View. It processes user inputs from the View, updates the

Model, and then updates the View based on the new state of the Model. In our

project, the Controller was responsible for handling User Input, for example, man-

aging state changes triggered by user interactions with the map and search bar,

updating the Model with new map bounds or search keywords and updating the

View. That means, the controller ensures that the View reflects the current state of

the Model and coordinates the fetching and rendering of markers based on the

current map bounds and search keyword.

7.2.5 Workflow

1. User Input:

The user enters a keyword in the search input form and submits it.

The handleForm2Submit function captures the keyword and initiates a fetch request

to retrieve the object summary nodes related to the keyword.

2. Data Fetching:

The application constructs an API request with parameters including the keyword,

current map bounds (northEast and southWest coordinates), and selected algorithms

for filtering and selection. The backend processes this request, generates the object

summary, and returns the relevant nodes.

3. Map Rendering:

The fetched nodes are stored in the application's state (markers).

The map component renders these nodes as markers, updating them dynamically

based on user interactions with the map.

4. User Interaction:

Users can zoom and pan the map, which triggers updates to the map bounds.

The application fetches new nodes that fall within the updated bounds, ensuring

that the map always displays relevant information.

91

Users can click on markers to open InfoWindows that provide additional information

about each node. The application handles marker clicks by updating the selected-

Marker state and rendering the corresponding InfoWindow.

92

CHAPTER 8

CONCLUSION

This thesis set out to enhance the retrieval and visualization of spatial and contextual

data, with a particular focus on achieving spatial proportionality and diversity in the

displayed results. Through the development and testing of various algorithms, we

aimed to identify the most efficient and effective methods for these tasks. After

conducting comprehensive experiments comparing the Grid, Baseline, and Random

Sampling algorithms for spatial proportionality, as well as the Greedy and Greedy-

Disc algorithms for result selection, we have identified the optimal model for our

purposes.

• Grid Algorithm for Spatial Proportionality: The Grid algorithm emerged as

the ideal choice for achieving spatial proportionality. It provides a faster

execution time compared to the Baseline algorithm and maintains a relatively

low approximation error. This balance of speed and accuracy makes it highly

suitable for large-scale applications where efficiency is crucial.

• Greedy Algorithm for Result Selection: For displaying a subset of results on

the map, the Greedy algorithm is the best choice. It is efficient, has a lower

approximation error, and offers an acceptable execution time. This makes it

ideal for providing users with a clear and concise set of results that are both

relevant and proportionally representative of the overall data set.

While the optimal model combines the Grid algorithm for spatial proportionality

and the Greedy algorithm for result selection, alternative algorithms may be

preferable in specific scenarios:

• Random Sampling Algorithm: Although the Random Sampling algorithm

operates very quickly, it has a higher approximation error. This makes it

suitable for scenarios where speed is prioritized over accuracy, such as initial

exploratory searches or real-time applications where rapid response is critical.

93

• Greedy-Disc Algorithm: The Greedy-Disc algorithm ensures diversity in the

results displayed on the map but comes with a significantly higher execution

time. Despite this, its approximation error is not excessively high, suggesting

that it could be effective in smaller regions, such as when users zoom in on a

specific area of the map. This makes it a valuable tool for applications

requiring high diversity and detailed local analysis.

The practical implementation of these findings is demonstrated through the devel-

opment of a web application. This application integrates the Grid and Greedy algo-

rithms to dynamically generate and display object summaries based on user queries.

The application supports interactive map features, providing an intuitive and engag-

ing user experience.

Future work could explore further optimization of the algorithms to reduce execution

time and approximation error. Additionally, expanding the application to support

more complex queries and integrating additional data sources could enhance its

functionality.

Overall, this thesis has demonstrated the effectiveness of combining the Grid and

Greedy algorithms for spatial proportionality and result selection, respectively. By

addressing the challenges of efficiently retrieving and visualizing spatial data, this

work contributes to the field of data management and provides a robust foundation

for future advancements. The development of the web application showcases the

practical applicability of these findings, offering users a powerful tool for exploring

and interacting with spatial data.

REFERENCES

[1] Gong Cheng, Danyun Xu, and Yuzhong Qu.: Summarizing Entity
Descriptions for Effective and Efficient Human-centered Entity Linking
- the State Key Laboratory for Novel Software Technology, Nanjing

University, China

[2] G. Cheng, D. Xu, Y. Qu, C3d+ p: A summarization method for
interactive entity resolution, Journal of Web Semantics, pages 203-213,

2015.

[3] G. J. Fakas, A Novel Keyword Search Paradigm in Relational Databases:
Object Summaries, Data and Knowledge Engineering (DKE) Journal,

pages 208–229, 2011.

.

[4] G. Fakas, Y. Cai, Z. Cai, N. Mamoulis, Thematic ranking of object
summaries for keyword search, Data and Knowledge Engineering

Journal (DKE), pages 1–17, 2018.

[5] A. Balmin, V. Hristidis, Y. Papakonstantinou, Objectrank: Authority-
Based Keyword Search in Databases, VLDB, pages 564-575, 2004

[6] G. J. Fakas, G. Kalamatianos, Proportionality on Spatial Data with
Context, ACM Transactions on Database Systems (TODS), 2023

[7] S. Shaham, G. Ghinita, C. Shahabi, Models and mechanisms for spatial
data fairness, Proceedings of the VLDB Endowment, 16(2), pp.167-179,

2022.

[8] Marina Drosou, E. Pitoura, DisC diversity: result diversification based
on dissimilarity and coverage. – Proceedings of the Endowment, 2012

[9] G. Kalamatianos, G. J. Fakas, N. Mamoulis, Proportionality in Spatial
Keyword Search, Proceedings of the ACM Conference on the
Management of Data (SIGMOD), 2021.

SHORT BIOGRAPHY

Kalliopi Basiakou is an M.Sc. graduate student with specialization in Data Science

and Engineering, at the Department of Computer Science and Engineering (CSE) of

the University of Ioannina, Greece. She received her M.Eng. degree from the De-

partment of Computer Science and Engineering of the University of Ioannina, in

2022. Her research interests include data analysis, data visualization (especially spa-

tial data and network data), applications development, data management etc.

