Explanatory Search and Exploration of
Spatial Entities

Kalliopi Basiakou

Master Thesis

[oannina, June 2024

. TMHMA MHXANIKON H/Y & [TAHPO®OPIKHY

. o [TANENIETHMIO [QANNINQN

1
Vi _ﬁ DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF [OANNINA

Explanatory Search and Exploration of Spatial Entities

A Thesis

submitted to the designated
by the Assembly
of the Department of Computer Science and Engineering

Examination Committee
by

Kalliopi Basiakou

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER
SYSTEMS ENGINEERING

WITH SPECIALIZATION
IN DATA SCIENCE AND ENGINEERING

University of loannina

School of Engineering

loannina 2024

Examining Committee:

e Nikolaos Mamoulis, Professor, Department of Computer Science and Engi-
neering, University of Ioannina (Supervisor)
e Panos Vassiliadis, Professor, Department of Computer Science and Engineer-

ing, University of Ioannina

e Apostolos Zarras, Professor, Department of Computer Science and Engineer-

ing, University of Ioannina

DEDICATION

I would like to dedicate this thesis to my family.

ACKNOWLEDGMENTS

I would like to express my graditude to my advisor, Nikos Mamoulis, for giving me
this opportunity and the support, he offered me through all the time, as my super-
visor. I would also like to thank Dimitris Tsitsigkos for his support and encourage-
ment throughout the course of my research. I appreciate the time you dedicated to
providing thoughtful feedback and guidance, which has been incredibly beneficial
to my work. Additionally, I would like to like to extend my sincere thanks to George
Fakas, for his support and expertise. His strategic vision and organizational skills
were crucial in deciding what we needed to do and ensuring that the research pro-
gressed smoothly. I am also deeply grateful to my family for always supporting me
and having faith in me through all the years. Your unwavering belief in my abilities
has been a constant source of strength and motivation. To my friends, thank you
for always being there for me. Your companionship and encouragement have been
invaluable throughout this journey. Thank you all for your mentorship and for
believing in me. Your combined support has not only made this thesis possible but
has also equipped me with the knowledge and skills necessary for my future en-

deavors.

Ioannina, June 2024

Kalliopi Basiakou

CONTENTS

Dedication 2
Acknowledgments 3
Contents 4
List of Figures 7
List of Tables 8
Abstract 9
Extetapévn mepiAndn 11
CHAPTER 1 Introduction 13
0 T | N 13
1.2 ThesSis StIUCIUTEccoiiiiiiiiiiiiiiiiiiiii e 15
CHAPTER 2 Related work 16
CHAPTER 3 Object Summaries 21
3.1 About Object SUMMATIESccuvvmmmiiiiiiiiiiiiiiiii e 21
3.2 Object Summaries CONStIUCHON ...uuuvueiiiiiiiiiiiiiiiiiiiiiiiii e 22
3.2.1 Algorithm for Object Summary Creation...........ccccccvvurirvreeeeennnnnn.. 24

3.3 Example Structure of a Generated Object Summary.......ccccoeeeiiiiiiiiiiiiiiiinin, 27
CHAPTER 4 Spatial Proportionality 29
4.1 Introduction to Spatial Proportionality..........cccccovviiiiiiiiiiiiiiinn, 30
4.1.1 The Concept of Spatial Proportionalitycccccoovvimiiiimniinnnnnnnnn. 30

4.2 Baseline Algorithm.........cccoiiiiiiiiiiiiiiiiiii 32
4.2.1 Implementation of Baseline Algorithmccccoooiiiiii 34

4.3 Grid Algorithm..........ccooiiiiiiiiii 36
4.3.1 Detailed Explanation of Algorithm ..., 37

4.3.2 Advantages of Grid Algorithm ... 39

4.3.3 Implementation of Grid Algorithmcocoooii 39

4.4 Comparison of Baseline with Grid Algorithm ..o 42
4.5 Random Sampling Algorithm for Spatial Proportionality............cccceeeee... 43
4.5.1 Implementation of Random Sampling...........cccccvvviiiiiiiniiiinnnnnnnn. 44

4.5.2 Advantages and Limitations of Random Sampling 45
CHAPTER 5 Selection Algorithms 46
5.1 Importance of Selection Algorithmsccccciviiiiiiiiiiiiiiiiiii 46
5.2 Greedy Algorithm for Selectioncccoooiiiiiiiiiiiiiiiiiiii, 47
5.2.1 Implementation of Greedy Algorithmcccccccoo. 48

5.3 Greedy-Disc Algorithm..........couuuiiiiiiiiiiiiiiiiiiiiiiiii 49
5.3.1 Implementation of Greedy-Disc Algorithmccccovviiiiinnnnnnin. o1

5.3.2 Example Use Case: Diversifying Historical Places in Athens Related

t0 PeTICleS . .cvviiiiiiiiiii 52
CHAPTER 6 Experiments 55
6.1 Experiments INtroductioncccccceviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeen o6
6.2 Description of Datasetcuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiii 57
6.2.1 Popular Subregions...........cccccouuiiiimiiiiiiiii 58

6.2.2 Implementation of Algorithm for Popular Subregions Creation.... 58

6.3 Experiment A — Object Summary Creation.........cccccceuvvuumeiiiiiiniiniinnnnnnnn, 60
6.4 Experiment B — Tuning parameter d in Random Sampling Algorithm 62
6.5 Experiment C — Tuning parameter grid size in Grid Algorithm................ 65
6.6 Experiment D — Tuning radius (r) in Greedy-Disc Algorithm 69
6.7 Experiment E — Comparison of Grid with Baseline Algorithm 72
6.7.1 Performance Comparison of Grid and Baseline Algorithm on Smaller
Regions with Numerous NoOdescvvviiiiiiiiiiiiiiiiiiiiiiiii, 73

6.8 Experiment I — Selection Algorithms Comparison........ccceeeeveeiiiiiiiiiiiiininin, 75
6.8.1 Performance Evaluation of Greedy and Greedy Disc Algorithm on
Smaller Regions with Numerous Nodes.............cccccoiviiiiiiiiiiiiiiiniinnn. 79

6.9 Experiments Conclusion and Optimal modelccccccceiiiiiiiiii, 81
CHAPTER 7 Development and Functionality of the Web Application 82
7.1 Web Application Description.........ccccooiiiiiiiiiiiiiiiiiiiiiiiniinneeeneeiiiiieees 83

7.2 Web Application Functionality..........ccccevviiiiiiiiiimiiiiiiinnniine, 83
7.2.1 Use of @react-google-maps/api in our Project.........ccccevvvvveeieennnnn. 84
7.2.2 Interactive Markers, Customization and User Interaction.............. 85

7.2.3 Dynamic Marker Fetching Based on Map View and Search

KeYWOIAS c.civviiiiiiiiiiiiiiiiciiiiii e 87
T. 2.4 IMVEC MOAEL. .ottt e e e et e e e eanen 89
I s T A 0 4« i [0) VTR 90
CHAPTER 8 Conclusion 92
References 1
Short Biography 3

LIiST OF FIGURES

Figure 1: Object Summary for Pericles’ demonstrating hierarchical relationships with
key associated entities.cceeeviiiiiiiiiiiiiiiiiiiiiiis 27

Figure 2: Average Relative Approximation Error for Different DistPercentage values

Figure 3:Average Time of Sampling for Different DistPercentage values 64
Figure 4: Average Relative Approximation Error for Different grid size values.... 68
Figure 5: Average Time Grid for Different grid size values.......................oi. 68
Figure 6:Average Relative approximation Error for Different r_percentage values.71
Figure 7: Average Greedy-Disc+Grid Time for Different r_percentage values 71

Figure 8: Grid-Baseline Performance Comparison in All map and Popular Subregion

Figure 9: Selection Algorithms Comparison for different top k results................. 76
Figure 10:Average Approximate Error for Greedy+Grid and Random Sampling for
different top k values.........cccoovviiimiiiiiiiiiiii 77
Figure 11: Average Time for Greedy+Grid and random Sampling for different top k
VALULS oo 77

Figure 12: Comparison of Greedy and Greedy-Disc for subset with Smaller Regions

... 80
Figure 13: Web Application Home Page...........ccooooiiiiiiiiiiiiiiiii, 85
Figure 14: Different color of Markers on map.......cccooovuvimiiiiiiiiiiiiiiii, 86
Figure 15: Example of InfoWindowccccciiiiiii, 87
Figure 16 : Example of Zooming-In result..........cccoooiiiiiiiiiiii, 89

LisT OF TABLES

Table 1: Node Mapping: Bidirectional Maps for Node IDs and Node Names........ 23
Table 2: Keyword Mapping: Bidirectional Maps for Keyword IDs and Keywords23
Table 3: Node Relationship Storage: Mapping Node IDs to Connected Node IDs . 23
Table 4: Keyword Association Storage: Mapping Node IDs to Lists of Keyword IDs

Table 5: Geographic Location Storage: Mapping Node IDs to Place Information .. 24
Table 6: Comparison of Baseline and Grid-Based Algorithms for Spatial Keyword

SEATCR ..ttt 42
Table 7: Datset StatiStiCsuuuvuviiiiiiiiiiiiiiiiiiiiiiiiieccc e 57
Table 8: Performance Metrics for various DistPercentage Values 63
Table 9: Performance Metrics for different grid size values..........ccccooeeeiiiiiiii. 67
Table 10: Performance Metrics for different r percentage values............................ 70
Table 11: Grid-Baseline Performance Comparison...........cccccuuvuuiiiiiiiiiiiiinnnninninnnn, 73
Table 12: Greedy Results for subset with Smaller Regionsccccooeeiiiiiiiiiiiiiiiii. 79
Table 13: Greedy-Disc Results for subset with Smaller Regions.................ccoooee. 80

ABSTRACT

Kalliopi Basiakou, M.Sc. in Data Science and Engineering, Department of Computer
Science and Engineering, School of Engineering, University of loannina, Greece, June
2024

Thesis Title: Explanatory Search and Exploration of Spatial Entities

Advisor: Nikolaos Mamoulis, Professor

When retrieving information based on geographic locations (location-based
retrieval), it’'s important not just to consider where the objects are located but also to
take into account additional descriptive information or context associated with those
objects. This is especially important when the search results include a large number
of objects, which can be overwhelming for the user.

This research focuses on developing methods to find and extract geographical objects
within specific regions, using object summaries constructed from large data
collections. These object summaries, except from ids and names of objects (contextual
data), contain detailed information about their locations (geospatial information).
Points of interest (POIs) are examples of such spatial entities and can include
locations like restaurants, parks, landmarks, or any other significant places. Further-
more, this project examines the challenge of selecting a subset of query results that
best represents the entire set. We propose that objects with similar context and close
proximity should be proportionally represented in the selection. The project focuses
on selecting a smaller, more manageable group of results from the larger set. These
selected results should be both relevant and proportionally distributed in terms of
spatial and contextual attributes, ensuring they are meaningful and provide a
balanced mix of different locations and descriptions. The ultimate goal is to display
a diverse subset of objects on the map, enhancing the user’s ability to see a varied
and pertinent range of results. To achieve this, a grid-based algorithm is employed,
optimizing the process of spatial proportionality by dividing the spatial domain into
a grid. Additionally, a random sampling algorithm is used to select a representative

subset of spatial objects, maintaining spatial and contextual diversity by leveraging

9

randomness. The project also utilizes two algorithms for result selection post-grid or
baseline algorithms: Greedy and Greedy-DisC. The first ensures diversity and
relevance through a greedy heuristic and the second ensures coverage and
dissimilarity among selected items. These algorithms power a web application where
users input queries into a search box, and relevant points are dynamically shown on
a map. The object summary created, with the query as the root, dynamically updates
based on the current map bounds, ensuring users always see the most pertinent
information for their area of interest. This functionality combines user-friendly
search capabilities with the powerful visualization features of Google Maps, providing
an intuitive and interactive experience. Overall, this project significantly enhances
the retrieval and visualization of spatial and contextual data, making it easier for

users to find and understand relevant information.

10

EKTETAMENH IIEPIAHYH

KoAnomn Mrmoaotaxov, M.A.E. oty Emiotun Asedouévwv xor Mmyavixy), Tunuo
Myyovixeyy ITAnpogopitxng xar Mryovixwy YmoAoyiotoyy, IloAvtexvixn XyoAy,
[Mowveriotnuio Twavvivewy, EM\GSe, lodviog 2024
Tithog AitmAwpotixng Epyooiog: EmeEnynuotixn Avoalntnorn xot EEgpedvnom
Xwpwtxedyy OvrotnTwy.

EmBAémwy: Nuixdhoog Map.ovine, Kabnymtig

Otav avaxtodpe mAnpopopiec pe Pdorn yvewypopuxés Tomobeoieg elvour
onuovTixd vor Aopfavoovue voPn Oyt Lovo oL PBploxovtol To aVTILXELUEVO AN
%Ol TLG ETILTTAEOY TLEQLYQOUPLXES TTANPOPOPLES 1 TO TTALLOLO TTOL OYETLLETOL UE OVTA
Tow ovTxeipevo. Auto eivot LOLoLTEPO ONUOVTIXG OTOY TO ATTOTEAEGUATO. AVOLTNONG
TEQLAAUPAVOLY UEYAAO 0 pLOUG avTixeLUéVwY, Tor oTolor UTTOPEL vou elval LTTEPBOALXA
Lo TOV XPNoTN. Me TNy eVoOWwRATOoN TTANPOPOPLKY GYETIXE LE TO TTAXLOLO GTO 0TTOL0
OVYXEL EVOL EQWTNUA, 7] OLOOLXOOLO. OVOXTNONG UTTOPEL YO TTOLPEYEL TTLO OLOLOOTLXA
%O OLOCYELPIOLUO. OTTOTEAEOUOTO, BEATLOVOVTOS TNV LXOVOTNTO TOL YPENOTY Vo [Bpet
oVTO TOL PEYVEL ATTOSOTLXA.

H €pevva avt eotidlel otny avamtuEn nebddwy yia tny edpeon xow eEaywym
YEOYQOUPLXWY OVTLXELLEVWY EVTOG OUYKEXPLUEVWY TIEQLOYWY, YOEYVOLULOTTOLWOVIOG
meptAidels avtixetpévewy (Object Summaries) mov xatooxevalovtal amd LEYGAES
OULANOYEG Oedopévwy. AULTEG oL TEPLAPELS OVTIXELUEVWY, EXTOG OTO T
OVOYVWPLOTIXG XOL TO. OVOUOTO TwY ovTtXelnévey (meptypopixd dedopéva),
TEPLEYOVY AETITOUEPELS TTANPOPOPieC oyeTind pe Tig tomobeaieg Toug (YewywpELrég
TtAnpoopicg). To onueiar evdrapépovtog (POIs) eivor mopoadeiypoto TETOLWY
XWELXWDY OVIOTNTWY XOL LTTOPOVY vo TeptAopBavouvy tortobeoieg OTtwg eotiatépLa,
Tapxo, oEtobéata N dAAeg onpovTinég Tomobeoies.

EmmAéoy, avtd T0 €pyo eketdler v TEOXANOY TYG ETLAOYYG €VOG
UTTOCLYOAOD OTTOTEAEOUATWY EPWTNUATOS, TO OTOL0 AVTLTPOOWTEVEL XOAVTEQX
0AOxANpo To obvohro. Ilpoteivovue 6TL Tor oVTLXELPLEVOL PE TTAPOUOLO TTAXLOLO XOuL
XOVTLYN amdotoon Do TEETEL Vou EXTTPOCWTOVYTOL E [BLor voAOYLoL 0TV ETTLAOYT.

H epyaoio avtn sottdlel oty mAOYY HLOG ULXOEOTEENG, TTLO OLoryeLpiotung Motog

1

OTTOTEAEOUATWY OTTO TO UEYAADTEQPO OUVOAO. AULTE TOl ETULAEYUEVO. ATTOTEAECLOTO
TEETEL VO ELVOL TOOO OYETIXA OO0 XOL AVOAOYLXE XAUTOVEUNUEVD, GO0V OUPOPE TLG
XWPELXES XOL TEQLYPOUPLXUES LOLOTNTES, JLACPOALLOVTOG OTL €YOVY XATTOLO VOO KO
TIOPEYOLY TTOLXLALOL SLAPOPETLXWY TOTTODETLHY XL TepLypapwy. Me awtd Tov TpdTO
umopel vo. atoevybel n vTEPPBOALXY] ETLBEAPLYOY TWVY XENOTWY KE TTOAAG TTOPOLOLL
OTTOTEAEGULATOL, OLELXOADYOVTACS TOVG VoL BPOVY TTOLXIAEG XOIL OYETLXESG UE TO EQWTNUA
TOLG TTANPOPOPLEC.

Mo va emtevybel ovtd, yonmowpomoteital o oAyoptbpog Grid,
BEATLOTOTTOLOVTOG TN OLOOLXAOLOL TNG YWELXNG OVAAOYLXOTNTOS OLOLPWVYTOS TOV
xwotxé touéo oc TAEYUo. EmimAdov, yomotpomotsitar o Random Sampling
oAYOpLpog pe oxomo TNV ETAOYYN OVTLTTPOOWTELTIXOD VTTOCLYOAOD YWELXWY
OVTIXELUEVWOY, OLATNEWVING TN YWOELXN] %Ol TEQLYQOPLXN TOLXIALOL HECW TNG
TUYOLOTNTOG. LTNV EQYOOLO XPNOLLOTIOLOVYTOL ETTLONS SVO OAYOELOUOL Lo TNY TEALXY
ETULAOYY] ATTOTEAECUATWY TTOL Dot EPPaVLOTOOY GTO YAETY, Ol oToloL e@opp.élovTol
peta toug aAyoptbuovg Grid v Baseline, xow efvor o Greedy xow o Greedy-DisC. O
TPWTOG OLATQPAALLEL TTOLXLALOL XL CUVOUPELOL LETW ULOG ATTANOTYG EVEETLXNG eBGS0oL
%o 0 OeVTEPOS OLATPAALlEL xAALDY oL OVOUOLOTNTA UETOED TwWV ETLAEYUEVWY
OVTLXELUEVOV.

Avtol ov aAyépLbpol yonotpomolovvtol o pLor SLadLXTUOXY] EQOEULOYY] GTNY
OTTOLOL OL YPY|OTEG ELOAYOVY EQWTNULATO OE EVO TTAXLOLO oyl TNOMG KoL TOL OYETLXA
onueio eppavitovtor duvapuixd oe évayv xaptn. H mepiindyn avuxeipévou (Object
Summary) 7o dMULOVEYELTAL, LE TO EPWTNUA WG PLLO, EVNUEQWVETAL SLUYAULXA [LE
Béiom Tor TpEYOVTOL HPLOL TOL YXAPTY, OLCPOALOVTOS OTL OL XPNOTES PAETTOLY TTAVTA
TLG TLO OYETLXES TANPOPOPLES YLl TYV TEELOYY] EVOLUPEQPOVTOS TOLS. AvTN 7
Asttovpylor oLVOLALEL PLALXES TTPOG TOV YENOTN OLVATOTNTES OValNTNONG KE TLS
LoYLEES dLYOTHTNTEG OTTTLXOTOINOYNS Twy XapTtwyy Google, Tapéyxovtog €tol, yio
otodpootixn eumelplo. Ev xotoxAeidt, aut) 7 SLTAGPOTIXY] €pYooior EVLOYVEL
ONULOYTIXA TYY OVAXTNON XOL OTTTLXOTTOLNON YWELXWY XOL TTEPLYQUPLYKDY JESOUEVWLY,

%x00LOTOVTOG ELXOAGTEPO YLOL TOVG XPNOTES Vo BELOXOLY XAL VOL XATOYOOVY OYETLXES

TTANPOPOPLES.

12

CHAPTER 1

INTRODUCTION

1.1 Goal
1.2 Outline

In the first section of this chapter, we present a brief description of our work and
refer to the main directions and the main purpose of our research. In the second

section of this chapter, we refer to the structure of this Thesis.

1.1 Goal

In the era of big data, the efficient retrieval and representation of information
are critical for effective data management. With the increasing volume and
complexity of data, particularly geospatial data, there is a growing need for methods
that can provide users with clear and concise summaries of relevant information.
This is especially pertinent in location-based retrieval systems where users search
for information based on geographic locations. The challenge lies not only in
considering the geographical locations of objects but also in accounting for the
contextual information associated with these objects. When search results yield a
large number of objects, it can overwhelm users, necessitating the development of
methods that can distill and present the most pertinent information effectively.

To address this challenge, this thesis introduces the concept of Object Summary (OS),
a concise representation of data about a particular Data Subject (DS). By presenting
a clear and efficient overview of relevant data, OS enables users to interact with and
understand the underlying information without needing to examine its full, detailed

description. Additionally, the OS are pruned depending on the region input, ensuring

13

that only the most relevant and contextually appropriate data is included based on
the user’s query and location.

The goal of this project is to develop a novel exploration and explanatory
paradigm for spatial data retrieval, specifically targeting the retrieval of places rele-
vant to a queried entity within a specified region. The motivation behind this study
stems from the vast availability of public and private datasets associated with loca-
tions, such as semantic knowledge graphs (e.g., YAGO, DBpedia), geosocial networks
(e.g., Facebook, Foursquare), and points of interest tagged with textual descriptions
(e.g., Google Places). The output will be the k most relevant places about the queried
entity within the specified region, incorporating relevant nodes surrounding the en-
tity node in the data graph. This approach will enhance usability by allowing users
to explore important places that may not include the query keywords but are still
highly relevant.

Additionally, it is important that the retrieval of places considers their spatial
distribution to provide a fair and representative subset of places within a region.
This approach will address the issue of relevance-only based retrieval, which can
sometimes lead to a less informative or biased representation of places. By imple-
menting proportionality techniques, the project seeks to facilitate regional fairness
and prevent biases, ensuring a balanced representation of places from different areas.
The baseline and grid algorithms discussed in this thesis are designed to achieve
efficient and effective spatial proportionality. Moreover, selection algorithms play a
critical role in enhancing user experience and maintaining clarity in data
representation. By strategically displaying a subset of places on a map, we ensure
that points are not clustered too closely together, reducing visual clutter and
improving readability. The Greedy and Greedy-DisC algorithms discussed in this
thesis are designed to ensure diversity and relevance, and construct a diverse subset,
maximizing coverage and dissimilarity among the selected items.

To demonstrate the practical application of the concepts and algorithms dis-
cussed in this thesis, a web application was developed. This tool allows users to
enter a keyword and view relevant nodes displayed on a map. The nodes form an
object summary, with the keyword as the root, and dynamically update based on

the map’s current view. The application utilizes the algorithms discussed in this

14

thesis to ensure the displayed results are relevant, diverse, and proportionally rep-
resentative of the spatial data. It features an intuitive interface that supports zooming,
panning, and interactive markers, providing users with a comprehensive and engag-
ing way to explore data. The responsive design ensures accessibility across various
devices, making it a versatile tool for visualizing and interacting with spatial infor-

mation.

1.2 Thesis Structure

This thesis is structured into eight chapters, each detailing different aspects of the
research and development process:

In section 2, we review the related work and provide the background necessary for
understanding the context of this thesis.

Section 3 delves into Object Summaries, explaining their concept, construction, and
providing an algorithm for their creation. An example structure of a generated Object
Summary is also presented.

Section 4 focuses on Spatial Proportionality, introducing its concept and discussing
various algorithms designed to achieve it. The Baseline Algorithm and Grid
Algorithm are explained in detail, including their implementation and advantages.
We also compare the Baseline with the Grid Algorithm and explore a Random
Sampling Algorithm for spatial proportionality.

Section 5 covers Selection Algorithms, emphasizing their importance and detailing
the implementation of the Greedy Algorithm and Greedy-Disc Algorithm. An
example use case is provided to illustrate the application of the Greedy-Disc
Algorithm.

In section 6, we present a comprehensive analysis of experiments conducted to
evaluate the performance of the algorithms and parameters discussed.

Chapter 7 describes the development and functionality of the web application that
implements the work on spatial proportionality and diversity of results.

Finally, Chapter 8 concludes the thesis, summarizing the findings and discussing

potential future work.

15

CHAPTER 2

RELATED WORK

There is a variety of other related work on object (entity) summarisations.
For example [1] addresses the challenge of information overload in entity linking by
proposing a method to create compact, structured summaries of entity descriptions.
To avoid overloading human users with too much information, the authors aim to
substitute entire entity descriptions with concise, effective summaries that maintain
the quality of entity linking. The paper introduces three summarization approaches:
characteristic summaries, which select features based on their ability to uniquely
characterize each candidate entity; differential summaries, which prioritize features
that differentiate candidate entities from each other; and contextual summaries,
which select features relevant to the context of the entity mention using a class vector
model. These perspectives are combined into a comprehensive summarization
method that balances various aspects of entity description. Experimental results
showed that the combined approach allowed users to link entities with accuracy
comparable to full descriptions but with reduced time, highlighting its effectiveness
in facilitating user decisions. Another work [2]| discusses object summaries in the
context of interactive entity resolution, where the goal is to select a subset of critical
features from entity descriptions to be shown and judged by human users. The
proposed method, C3D+P, aims to generate these compact summaries effectively.
The features preferred for selection in the summaries are those that reflect the most
commonalities shared by and the most conflicts between the two entities, as well as
those that carry the largest amount of characteristic and diverse information about
them. The paper emphasizes that these selected features are then grouped and or-

dered to improve readability and speed up the judgment process. The experimental

16

results demonstrate that summaries generated by this method help users judge more
efficiently and accurately compared to entire entity descriptions. The method also
outperforms existing summarization techniques by specifically focusing on the re-
quirements of the entity resolution task, thus generating more useful and informative
object summaries. Building on the concept of generating useful and informative ob-
ject summaries, another study, [3] introduces Object Summaries (0S) as a novel
result format for keyword searches in relational databases. An OS is designed to
provide a comprehensive summary of data related to a specific Data Subject (DS) by
creating a tree structure with the keyword-containing tuple at the root and related
tuples as children. The paradigm liberates users from the need to know database
schemata or query languages, instead relying on the concept of Affinity to determine
the relevance of surrounding data. Affinity scores for relations and attributes help
decide what to include in the OS, ensuring that only semantically meaningful data
is presented. The paper highlights that this approach produces more complete and
useful search results compared to traditional relational keyword search (R-KwS)
methods, which often return disjointed tuples or require multiple keywords to form
meaningful associations. Experimental evaluations on databases like TPC-H and
Northwind showed high precision and recall, validating the etfectiveness of the pro-
posed method. The OS format was preferred by users for its self-contained and easily
comprehensible presentation of information, making it a significant improvement
over existing methods like précis queries, which can be harder to interpret due to
their narrative presentation and lack of automated Affinity calculation. However,
none of this work addresses spatial aspects of the data.

To further enhance the utility of object summaries, [4]| presents methods for
ranking object summaries (OSs) in response to keyword searches in relational data-
bases. The authors propose a model that ranks OSs based on their relevance to
thematic keywords, combining Information Retrieval (IR) properties, authoritative
ranking using ObjectRank, and affinity, which measures the closeness of tuples to
the data subject (DS) tuple. The thematic ranking is modeled as a top-k group-by
join problem (kGBJ), which computes the join paths between identifying and the-
matic tuples without fully generating the OSs. Two main approaches are discussed:

the Bi-Directional (BD) Approach, which computes complete OSs and ranks them,

17

and the Optimized kGB] Approach, which focuses on relevant join paths and uses
precomputed bounds to limit the search space. The methods were evaluated on
DBLP and TPC-H datasets, demonstrating high precision and recall. The optimized
kGB]J approach significantly outperformed the baseline BD method, showing up to
180 times faster performance in some cases. This thematic ranking model effectively
addresses the challenges of ranking OSs in large datasets and ensures that users
receive the most relevant OSs in response to their queries, however, the plain use of
IR has limitations when applied to data graphs in general. Namely, they miss rele-
vant nodes that are related to the keywords but they do not contain them [5]; e.g.
the node Parthenon has relevance to Pericles although it does not include the word
“Pericles”. Our work, by selecting places from the object summary, addresses this
problem.

Shifting the focus to the spatial dimension of data retrieval, various types of
spatial-keyword queries have been proposed before. Spatial keyword search on da-
tasets involves retrieving data objects based on both their geographical location and
textual content. Such queries are Boolean kNN, top-k kNN, and Boolean range que-
ries. A Boolean kNN query retrieves the k nearest objects to a user’s current location
that contain all specified keywords. The top-k kNN query, on the other hand, re-
trieves the k objects with the highest ranking scores, considering both their distance
to the query location and the relevance of their text descriptions to the query key-
words. Finally, the Boolean range query retrieves all objects within a specified spatial
region whose text descriptions contain all the specified keywords. These indices typ-
ically use the R-tree or its variations, such as the R*-tree, to combine spatial and
textual data efficiently for spatial keyword queries, where each minimum bounding
rectangle keeps the textual information of all objects inside its bounds. However,
these methods only search for individual objects that contain the specified keywords
and do not retrieve relevant places that lack the keywords but are still pertinent to
the query. Therefore, their direct application is not suitable in this context.

In addition to optimizing spatial keyword searches, numerous studies have
explored different aspects of fairness. Spatial data fairness, as defined in the paper
[6], addresses the unique challenges of ensuring equitable treatment in location-

based applications where decisions are influenced by individuals’ whereabouts. This

18

concept aims to prevent discrimination based on location data, which often correlates
with sensitive attributes like race, income, and education. The paper introduces two
main types of spatial fairness: distance-based fairness, relevant in scenarios like lo-
cation-based advertising and ride-hailing, ensures individuals are not unfairly
treated based on their proximity to a reference point, and zone-based fairness, which
focuses on fairness in spatial coordinates, applicable in gerrymandering, loan analy-
sis, and insurance pricing. To achieve these fairness goals, the paper proposes "fair
polynomials,” which adjust decision-making processes to ensure equitable treatment
without significantly sacrificing data utility. Expanding the scope of fairness in data,
[7] explores the concept of fair clustering under the disparate impact doctrine, em-
phasizing the need for approximately equal representation of each protected class
within every cluster. This approach addresses the potential for machine learning
algorithms to amplify existing biases present in training data. The authors introduce
the idea of fairlets, minimal sets that ensure fair representation while maintaining
clustering objectives, and show that fair clustering problems can be decomposed into
finding good fairlets followed by traditional clustering algorithms. Although finding
optimal fairlets is NP-hard, efficient approximation algorithms based on minimum
cost flow are proposed. The empirical results on real-world datasets demonstrate
that traditional clustering methods often yield unfair clusters, while fair clustering
methods, though potentially more costly, maintain balanced solutions. The document
also highlights the computational challenges associated with fair clustering, indicat-
ing that ensuring fairness introduces a significant computational bottleneck. Appar-
ently, our work is different as we study the selection of a subset of objects instead
of their clustering.

Concerning result diversification in information retrieval, the [8] discusses vari-
ous methodologies aimed at enhancing the diversity and relevance of retrieved re-
sults. It highlights several algorithms, notably the Maximal Marginal Relevance
(MMR) algorithm, which balances relevance and diversity by penalizing redundancy.
Additionally, the Submodular Function Maximization method is examined for its
efficient approach to diversification through submodular functions. The k-Nearest
Neighbor (k-NN) approach is also mentioned, focusing on diversifying results by

selecting items based on their dissimilarity to already chosen ones. These

19

comparisons provide a comprehensive understanding of the different strategies in
result diversification. We used the greedy-disc algorithm because it effectively bal-
ances dissimilarity and coverage, offering a practical and robust solution for our

specific diversification needs.

20

CHAPTER 3

OBJECT SUMMARIES

3.1 About Object Summaries
3.2 Object Summary Construction

3.3 Example Structure of Generated Object Summary

Chapter 3 provides an in-depth exploration of Object Summaries. It begins with Sec-
tion 3.1, which introduces the concept of Object Summaries, detailing their purpose
and significance. Section 3.2 discusses the process of constructing Object Summaries,
including the specific algorithm used for their creation. Finally, Section 3.3 presents
an example structure of a generated Object Summary, illustrating the practical ap-

plication of the concepts discussed in the chapter.

3.1 About Object Summaries

An Object Summary (OS) is a concise representation of all data held in a database
about a particular Data Subject (DS). The purpose of an object summary is to provide
a clear and efficient overview, allowing users to understand and interact with the
object or entity without needing to examine its full, detailed description. It is
generated as a response to a query search and is structured as a tree, with the DS as
the root node and its related nodes as children. Given the input node (‘“Pericles”),
we start traversing the dataset and add on the object summary as child nodes the
nodes surrounding the entity node (via edges/links) (e.g. Wife: Aspasia, Built:
Parthenon, etc). The OS paradigm is particularly user-friendly for those accustomed
to web keyword searches, providing a comprehensive summary that aids in data

exploration and schema extraction.

21

3.2 Object Summaries Construction

To create an Object Summary, we first need to establish data structures to store and
manage different types of data. Each map serves a specific purpose, facilitating the

efficient creation of the OS:

e nodeMap and nodeMapReverse: Map node IDs to names and vice versa for
easy lookup.

e keywordsMap and keywordsMapReverse: Map keyword IDs to keywords
and vice versa for easy lookup.

e edgesMap: Store the relationships between nodes.

e keywordsListMap: Store lists of keywords associated with each node.

e places: Store geographic information for place nodes.

Using these mappings, we build the OS by traversing the relationships between
nodes. We include nodes and their relationships up to three hops away from the
root node. The OS is generated using a breadth-first traversal starting from the root
node, adding nodes to the OS based on their relationships. The hierarchical structure
is formed by enqueuing child nodes and adding them as children of the current
node being processed. The tree structure ensures that the most important and
representative nodes are included, maintaining the context and relationships between
them. The importance and affinity of nodes are considered when constructing the
tree, ensuring that nodes higher in the tree are more important and have a greater

affinity to the root node.

A node in the OS can either be a place or a node without latitude and longitude
values. Only nodes with latitude and longitude values, designated as places, are
displayed on the map. After constructing the tree, we perform a pruning step to
ensure relevance and accuracy. Nodes that have latitude and longitude values outside

the specified map bounds are removed. This pruning step helps in maintaining the

22

geographical relevance of the data and ensures that the final OS only includes nodes
within the desired map bounds.

This approach ensures that the OS provides a comprehensive and contextually rich
summary of the data related to the DS, making it easier for users to explore and

understand the underlying data structures.

Here, we can see the Data structures we need in tables.

Table 1: Node Mapping: Bidirectional Maps for Node IDs and Node Names

nodeMap nodeMapReverse

map node IDs to their corresponding map node names to their

names corresponding IDs
nodeMap<Integer, String>: nodeMapReverse<String, Integer>:
e Key: Node ID (Integer) * Key: Node Name (String)

* Value: Node Name (String) e Value: Node ID (Integer)

¢ Function: This map is used to ¢ Function: This map is used to
retrieve the name of a node given its retrieve the ID of a node given its
ID. name.

Table 2: Keyword Mapping: Bidirectional Maps for Keyword IDs and Keywords

keywordsMap keywordsMapReverse
map keyword IDs to their map keyword IDs to their
corresponding keywords and vice corresponding keywords and vice
versa. versa.
keywordsMap<Integer, String>: keywordsMapReverse<String, Integer>:
e Key: Keyword ID (Integer) * Key: Keyword (String)
e Value: Keyword (String) e Value: Keyword ID (Integer)

¢ Function: This map is used to
¢ Function: This map is used to retrieve the ID of a keyword given its
retrieve the keyword given its ID. text.

Table 3: Node Relationship Storage: Mapping Node IDs to Connected Node IDs

edgesMap

store the edges (relationships) between nodes.
edgesMap<Integer, int[]>:

* Key: Node ID (Integer)

® Value: Array of connected node IDs (int[])

23

¢ Function: This map is used to retrieve the IDs of nodes that are directly
connected to a given node.

Table 4: Keyword Association Storage: Mapping Node IDs to Lists of Keyword IDs

keywordsListMap

store lists of keywords associated with each node.
keywordsListMap<Integer, int[]>:

* Key: Node ID (Integer)

* Value: Array of keyword IDs (int[])

¢ Function: This map is used to retrieve the list of keywords associated with a
given node.

Table 5: Geographic Location Storage: Mapping Node IDs to Place Information

places

Purpose: To store place information for nodes that represent geographic
locations.

places<Integer, PlaceObject>:
* Key: Node ID (Integer)
* Value: PlaceObject instance

¢ Function: This map is used to store and retrieve geographic information (like
latitude and longitude) for nodes that represent places.

3.2.1 Algorithm for Object Summary Creation

In this section, we present Algorithm 3.2.1: Object Summary Creation, which outlines
the process for creating an Object Summary (OS). The following pseudo details the

steps required to traverse the dataset, identify relevant nodes, and construct the OS

efficiently.

Algorithm 3.2.1 Object Summary Creation

Function CreateObjectSummary(keyword)

Initialize tempNeighbors, tempNeighbors2, tempNeighbors3 as null
Initialize neighbors, neighbors2, neighbors3 as null

Initialize neighborsArray as empty ArrayList

Set initialNode = nodeMapReverse.get(keyword)

If initialNode is null

24

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

Set initialNode = keywordsMapReverse.get(keyword)
If initialNode is null
Return
If initialNode is a keyword
ProcessKeyword(initialNode)
Else
ProcessNode(initialNode)
Clear temporary maps: edgesMap, keywordsListMap, places
Function ProcessKeyword(initialNode)
Set nodeKeyword = keyword
Set nodeld = initialNode
Initialize neighborsArray
For each entry in keywordsListMap
If entry contains nodeld
Add entry key to neighborsArray
If neighborsArray is not empty

Initialize tempNeighbors as ObjectInterface[neighborsArray.size()]

For each parentNode in tempNeighbors
Set neighbors2 = edgesMap.get(parentNode) // second hop
ProcessSecondHopNeighbors(parentNode)
Function ProcessSecondHopNeighbors(parentNode)
Set nodeKeyword = keyword
Set nodeld = initialNode
Set neighbors = edgesMap.get(initialNode) // first hop
If neighbors is not empty
Initialize tempNeighbors2 as ObjectInterface[neighbors.length]
For each neighborNode in neighbors
ProcessThirdHopNeighbors(neighborNode)
Function ProcessThirdHopNeighbors(parentNode)
Set nodeKeyword = keyword
Set nodeld = initialNode

Set neighbors = edgesMap.get(parentNode) // third hop

25

39:
40:
41:
42:
43:
L.

45:
46:
47:

48:
49:
50:
51:
52:
53:

B4:
55:
56:

57:
58:
59:

Initialize tempNeighbors3 as ObjectInterface[neighbors3.length]
If neighbors is not empty
For each nodeObj in neighbors
If nodeObj is a place

PlaceObiject placeObject = places.get(nodeld)

PlaceObject newPlaceObject = new PlaceObject(placeObject.getId(),
new Point(coordinates.getPoint().getLat(), coordinates.getPoint().getLon()),
placeObject.getName(), placeObject.getType(), nodeMap.get(initialNode), 3)

tempNeighbors3[i] = placeObject

Else

OtherObject otherObject = new OtherObject(parentNode2Id, temp-
Neighbors3, nodeKeywords, nodeMap.get(parentNode2Id), 2)

tempNeighbors3[i] = null

ProcessThirdHopNeighbors(parentNode)

Function createRoot(initialNode, tempNeighbors)
If nodeKeywords = keywordsListMap.get(initialNode)

PlaceObject coordinates = places.get(initialNode)

PlaceObject placeObject = new PlaceObject(initialNode, new Point(coordi-
nates.getPoint().getLat(), coordinates.getPoint().getLon()), placeObject.get-
Name(), placeObject.getType(), nodeMap.get(initialNode), 0)

objectSummary = placeObject
Else

OtherObject otherObject = new OtherObject(initialNode, tempNeighbors,
rootKeywords, nodeMap.get(initialNode), 0)

objectSummary = otherObject
Return objectSummary

End Function

Algorithm 3.2.1 outlines the steps to create an Object Summary (OS) for a given

keyword. The process begins by initializing necessary variables and retrieving the

initial node corresponding to the keyword from the node and keyword maps. If the

initial node is found, it is processed based on whether it is a keyword or a regular

26

node. The algorithm then traverses the dataset, processing neighbors through first,
second, and third hops to construct the OS. Functions like ‘ProcessKeyword’, ‘Pro-
cessSecondHopNeighbors’ and ‘ProcessThirdHopNeighbors’ handle the traversal
and neighbor processing. Finally, the ‘createRoot’ function assembles the OS from
the processed data and returns it. This structured approach ensures a comprehensive

and efficient summary of the data related to the specified keyword.

3.3 Example Structure of a Generated Object Summary

Assume the following data:
e Node "Pericles" has neighbors "Athens", "Democracy", "Philosophy".
o "Athens" has neighbors "Greece", "Sparta".
e "Democracy" has neighbors "Government", "Elections".

o "Philosophy" has neighbors "Socrates", "Plato".

The resulting Object Summary (0OS) would look like this:

Pericles

— Athens
| F—— Greece
| L Sparta
—— Democracy
| F— Government
| L— Elections
— Philosophy
[—— Socrates

L— Plato

Figure 1: Object Summary for ‘Pericles’ demonstrating hierarchical relationships
with key associated entities.

1. Initialization: initialNode is set to the ID corresponding to "Pericles".

27

3.

First Hop Neighbors: Retrieve neighbors of "Pericles": "Athens",
"Democracy", "Philosophy" and create PlaceObject or OtherObject instances
for these neighbors.

Second Hop Neighbors:

For each first hop neighbor, retrieve their neighbors:

"Athens" -> "Greece", "Sparta"
"Democracy" -> "Government", "Elections"

"Philosophy" -> "Socrates", "Plato"

Create PlaceObject or OtherObject instances for these second hop neighbors.

4.

Third Hop Neighbors: Since there are no further neighbors listed, this step
might be skipped for this example.

Construct Root Node: Create the root node "Pericles" with tempNeighbors as
its children.

Clean Up: Clear temporary maps: edgesMap, keywordsListMap, places.

28

CHAPTER 4

SPATIAL PROPORTIONALITY

4.1 Introduction to Spatial Proportionality

4.1.1 The Concept of Spatial Proportionality
4.2 Baseline Algorithm

4.2.1 Implementation of Baseline Algorithm
4.3 Grid Algorithm

4.3.1 Detailed Explanation of Algorithm

4.3.2 Advantages of Grid Algorithm

4.3.3 Implementation of Grid Algorithm
4.4 Comparison of Baseline with Grid Algorithm
4.5 Random Sampling Algorithm for Spatial Proportionality

4.5.1 Implementation of Random Sampling

4.5.2. Advantages and Limitations of Random Sampling

In this chapter, we delve into the realm of spatial proportionality and explore various
algorithms designed to achieve this goal. We begin with an introduction to the
fundamental concept of spatial proportionality, setting the stage for the algorithms
that follow. Section 4.1 provides an overview of this concept, establishing a
foundation for understanding the subsequent discussions. In Section 4.2, we present
the Baseline Algorithm, detailing its implementation and functionality. This
algorithm serves as a reference point for comparing more advanced methods. Next,
in Section 4.3, we introduce the Grid Algorithm. We offer a comprehensive
explanation of its workings, highlight its advantages, and describe its implementation
in detail. This algorithm is examined for its efficacy and benefits over the Baseline

Algorithm. Section 4.4 provides a comparative analysis of the Baseline and Grid

29

Algorithms, evaluating their respective strengths and weaknesses in achieving spatial
proportionality. Finally, in Section 4.5, we explore the Random Sampling Algorithm
for spatial proportionality. This section covers its implementation and discusses both
the advantages and limitations of this approach, providing a balanced view of its

practical applications.

4.1 Introduction to Spatial Proportionality

In the realm of spatial keyword search, where the goal is to retrieve and rank spatial
objects based on their contextual and locational relevance, the concept of spatial
proportionality emerges as a critical factor. Spatial proportionality aims to ensure
that the retrieved subset of spatial objects represents the overall spatial distribution
and contextual diversity of the original dataset. This concept not only enhances the
quality of search results but also aids users in gaining a more comprehensive
understanding of the spatial landscape. This report delves into the baseline and grid

algorithms designed to achieve efficient and effective spatial proportionality.
4.1.1 The Concept of Spatial Proportionality

Spatial proportionality is a fundamental concept in spatial keyword search, aimed at
ensuring that the subset of spatial objects retrieved is a representative sample of the
entire dataset in terms of both spatial distribution and contextual relevance. This
concept is crucial for providing users with search results that accurately reflect the
geographic and thematic diversity of the dataset, thereby improving the usability
and interpretability of the search outcomes. Spatial proportionality involves selecting
a representative subset of spatial objects from a larger set, such that the chosen subset
maintains the spatial and contextual distribution of the original dataset. This entails
ensuring that the selected objects are proportionally spread out in the spatial domain
and that they reflect the diversity of contexts present in the dataset. The challenge
lies in balancing relevance, diversity, and proportional representation, which often
requires sophisticated computational techniques. Proportionality with respect to
context and location is essential to providing users with diverse and representative

query results. Various proportionality scores are defined [9], such as spatial
30

proportionality pS(p;) and contextual proportionality pC(p;), which help measure
how well the selected subset reflects the spatial and contextual distribution of the
entire set. Spatial proportionality score pS(p;) of a place p; is the following:
pS(py) = pSS(p:) — PSR(py)
Where:
o pSS(p;) is the sum of spatial similarities between sS (pi, p j) and all other places
in the set S.
e pSR(p;) is the sum of spatial similarities between § (pi, p j) and all other places
in the subset R.
The goal is to select places that are not only relevant to the query but also ensure
that the overall set is spatially diverse and contextually representative.
Note that here, sS(p;, p;) stands for Ptolemy’s spatial similarity, defined as 1—
ds (pi,pj), where dS (pi,pj) computes the spatial diversity between p; and p;. The
rationale behind pSS(p;) is to favor places surrounded by numerous neighbors
within set § concerning the query point. Conversely, pSR(p;) favors places divergent
from the remaining places in set R, thereby embracing spatial diversity. Importantly,
both pSS(p;) and pSR(p;) pivot on the query location q. The score pS(p;) falls within
the range [0,K — k], akin to pCS(p;). Notably, computing sS(pi,pj)for all pairs ne-

cessitates substantial computational effort.

In large spatial datasets, such as geographic information systems (GIS), social media
geotags, and points of interest (POI) databases, the number of relevant objects
returned by a query can be overwhelming. Without spatial proportionality, the top
results may be clustered in a specific area or dominated by a particular context,
which can lead to biased and less informative search results. Spatial proportionality
addresses this issue by ensuring that the selected subset maintains Geographic
Diversity. This ensures that the spatial objects are well-distributed across the
geographic area of interest, preventing clustering in specific regions. Moreover, it
reflects Contextual Diversity, ensuring that the objects represent a variety of contexts
or themes, such as different types of POls, activities, or events. Finally, it enhances
User Comprehension, providing users with a holistic view of the spatial landscape,
aiding in better decision-making and understanding of the area. Achieving spatial

31

proportionality involves balancing three key factors: relevance, spatial distribution,
and contextual diversity. This requires sophisticated algorithms that can evaluate
and integrate these factors effectively. Relevance refers to the closeness of the spatial
objects to the query in terms of geographic proximity and thematic content, ensuring
that the selected objects are pertinent to the user’s query. Spatial Distribution ensures
that the selected objects are spread out geographically, preventing the selection from
being concentrated in a small area, which could skew the representation of the
dataset. Finally, Contextual Diversity ensures that the objects represent different
contexts or themes, avoiding redundancy and enhancing the richness of the
information provided to the user. Relevance scores and importance scores are
examples of how spatial proportionality can be quantified. Relevance scores are
obtained by summing up the spatial similarity scores for each object, indicating its
overall relevance in the context of the entire dataset. Importance scores, which are
used to rank the objects, are computed by combining relevance scores with contextual

information (such as hierarchical levels).

4.2 Baseline Algorithm

The baseline algorithm for spatial proportionality involves calculating pairwise spa-
tial similarities between all objects, summing these similarities to get relevance scores,
and then combining these scores with contextual information to get final importance
scores. This approach, while accurate, can be computationally intensive, especially
for large datasets. The Baseline Algorithm consists of these key steps: Initialization,
Spatial Similarity Calculation, Proportionality Relevance Calculation, and Place Level

Importance Calculation.

The algorithm begins by initializing essential parameters, including the collection of
places within the target region and the maximum distance allowed for spatial calcu-
lations. The next step involves computing the spatial similarity scores between all
pairs of spatial objects using the Euclidean distance. The similarity score between all

pairs of places within the region is determined based on the Euclidean distance

32

between the geographical coordinates of each pair of places. This score is normalized

by dividing it by the maximum distance using the formula:

maxDist — Euclidean Distance(pi, pj)

sS(pi.pj) = maxDist

Once the spatial similarities are computed, the algorithm calculates the proportion-
ality relevance score for each object. The proportionality relevance score for a spatial
object is the sum of its spatial similarity scores with all other objects in the dataset,

indicating the overall relevance of the object in the spatial context using the formula:
pR(pi) = Z sS(pi, pj)
{ =i}

The final step involves calculating the place level importance score for each object.
This score is a combination of the proportionality relevance score and the hierar-

chical level of the object, using the formula:

prli] 1
totalPlaces — 1 = (level(pi) + a)

score(pi) =

where a is a smoothing factor to ensure proper weighting of objects at different
levels. Finally, the algorithm executes the steps, that were previously described, in
sequence and returns a list of places sorted by their calculated Place Level Im-

portance scores.

The implementation details of the baseline algorithm for spatial proportionality in-
clude several key components. The algorithm utilizes a helper class to compute the
Euclidean distance between pairs of geographical coordinates. It employs arrays and
collections to manage and manipulate place objects and their associated scores effi-
ciently. Additionally, places are sorted based on their Place Level Importance scores
in descending order to prioritize the most relevant and important places within the

region.

Concluding, the Baseline Algorithm provides a foundational approach for assessing

the relevance and importance of places within a given geographical region. By
33

considering spatial similarity, pairwise relevance, and hierarchical importance, the
algorithm offers valuable insights for various applications requiring spatial analysis
and recommendation systems. The baseline algorithm, while effective in achieving
spatial proportionality, can be computationally expensive due to the need for pair-

wise comparisons and extensive similarity calculations.

4.2.1 Implementation of Baseline Algorithm

Algorithm 4.2.1, outlines a method to rank spatial objects by evaluating their con-
textual and locational relevance within a specified region. The algorithm processes a
list of PlaceObjects and a maximum distance for normalization to produce a sorted
list of these objects based on their computed scores. Below is the pseudocode for the

algorithm.

Algorithm 4.2.1 Baseline

Input:
placesInRegion: List of PlaceObject
maxDist: Maximum distance for normalization
Output:
List of PlaceObject sorted by their scores
Initialize:
totalPlaces = size of placesInRegion
ss = array of size (totalPlaces * totalPlaces)
pr = array of size totalPlaces
pli = array of PlaceObject of size totalPlaces
a=0.5
// Step 1: Calculate Spatial Similarities

Function calculateSS(Q):

for i from 0 to totalPlaces - 1:

—_
<

for j from O to totalPlaces - 1:

—_—
—_—
.o

distance = EuclideanDistance(placesInRegion[i].getPoint(),

placesInRegion[j].getPoint())

34

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

ss[i * totalPlaces + j] = (maxDist - distance) / maxDist
// Step 2: Calculate Proportionality Relevance
Function calculatePROQ:
for i from O to totalPlaces - 1:
sumOfSS = 0
for j from O to totalPlaces - 1:
ifi!=j:
sumOfSS = sumOfSS + ss[i * totalPlaces + j]

prli] = sumOfSS
// Step 3: Calculate Place Level Importance
Function calculatePLIO:

for i from O to totalPlaces - 1:

node = placesInRegion][i]

score = prl[i] / (totalPlaces - 1) + 1 / (node.getLevel() + a)

node.setScore(score)

pli[i] = node
// Main Execution
calculateSS()
calculatePRQ
calculatePLI(
// Sort places by their scores in descending order
sortedPLI = sort pli in descending order based on scores

return sortedPLI

Here is the explanation of the pseudocode for Algorithm 4.2.1, Baseline. The process
begins by initializing necessary data structures, including arrays for spatial similari-
ties (ss), proportionality relevance (pr), and place-level importance (pli). The algo-
rithm then proceeds through three main steps: First, the ‘calculateSS’ function com-
putes the Euclidean distance between each pair of PlaceObjects. These distances are
normalized using the maximum distance and stored in the spatial similarities array.
Second, the ‘calculatePR’ function sums the spatial similarities for each PlaceObject,

excluding itself, to determine its proportionality relevance. This sum represents how

35

each object is related to the others within the region. Third, the ‘calculatePLI’ func-
tion calculates a score for each PlaceObject by combining its proportionality relevance
with a normalization factor based on its hierarchical level. This score is used to assess
the overall importance of each PlaceObject. Finally, the PlaceObjects are sorted in
descending order based on their scores, resulting in a ranked list that reflects both
spatial distribution and contextual diversity. This method ensures that the most rel-
evant spatial objects are highlighted, enhancing the effectiveness of spatial keyword

searches.

4.3 Grid Algorithm

To address the computational challenges of the baseline algorithm, we used an in-
novative grid-based algorithm that offers an optimized approach by leveraging spa-
tial partitioning techniques. Specifically, we delve into the optimization of Ptolemy’s
similarity computation by using an algorithm capable of accelerating the calculation
of sg (pi, p j) for any given pair of places p; and p;. Ptolemy’s similarity measure is a
metric used to evaluate the similarity between pairs of spatial entities in the context
of spatial keyword searches. This measure integrates both spatial and textual rele-
vance to provide a comprehensive similarity assessment. It leverages Ptolemy’s the-
orem, which involves the relationships between distances in a cyclic quadrilateral.
Given two places p; and p; and a query point g, Ptolemy’s similarity measure

ss(pl-,pj) is defined as:

d(pi, q) - d(pj,q) + d(pip;) - d(q, q)
d(pi,q) +d(pj, q)

Ss(Pi'Pj) =

where:

e d(p; q) is the spatial distance between place p; and the query point q.
o d(p I q) is the spatial distance between place p; and the query point q.

o d(pl-,pj) is the spatial distance between place p; and place p;.

36

This measure balances the spatial proximity of the places to the query point with
their direct spatial relationship. By considering these distances, the measure effec-
tively captures both the geographical closeness and the contextual relevance of the

places concerning the query.

The grid-based algorithm optimizes the process of achieving spatial proportionality
by dividing the spatial domain into a grid. Each spatial object is assigned to a cell
within this grid, and the algorithm approximates spatial similarities based on the
cells rather than directly between all individual objects. This approach significantly
reduces the number of pairwise comparisons needed, making it suitable for large-
scale applications. This algorithm is designed to operate on two distinct grid struc-
tures: a squared grid and a radial grid structure but we selected to use the squared

grid.
4.3.1 Detailed Explanation of Algorithm

Now let’s see more details on how grid partitioning and proportionality techniques
enhance the efficiency and scalability of spatial keyword searches. First, we have the
Grid Partitioning (step1). The spatial domain is divided into a grid of cells. Each
spatial object is assigned to a cell based on its coordinates. This partitioning helps in
reducing the number of pairwise comparisons by considering only the objects within
the same cell or neighboring cells. More precisely, the algorithm is initiated by gen-
erating a structured grid, denoted as G, consisting of square cells. This grid is cen-
tered around a specified query location q and effectively covers the spatial distribu-
tion of all places within the set S. The dimensions of the grid, including the length
of its sides and the number of cells it encompasses, are strategically determined to
optimize computational efficiency. The center of the grid G, aligns with the query
location g, while the length of each side (G,) is set to twice the distance (f,,) between
q and the farthest point in S. The grid size determines how finely the spatial domain
is partitioned, directly impacting the number of comparisons and the level of detail

captured.

Here, we have an example of grid:

37

Consider a grid where cells are denoted as ¢, , with x and y being the coordinates
relative to the query point q. For example, ¢, , represents the cell at coordinates (1,
2) from the center. Below is a representation of such a grid, to help visualize how

the grid partitions the spatial domain around the query point.

C_33 C_23 C-13 €1,3 C23 C33
C_32 C_22 C_12 C1,2 €22 C32
C-31 C-21 C-11 €11 21 C31
C-3,-1 C-2,-1 C-1,-1 C1,-1 C2,-1 C3,-1
C-3,-2 C-2,-2 C-1,-2 C1,-2 C2,-2 C3,—2
C-3-3 C-2,-3 C-1,-3 C1,-3 C2,-3 C3,-3

This approach simplifies and speeds up the process of spatial keyword search by
reducing the computational load while maintaining accurate approximations of sim-
ilarity scores. The pre-computed cell center scores can be reused for various queries,

making this method both efficient and scalable.

The next step is the cell allocation (step 2), where we assign each place p from the
set S to its corresponding grid cell. For each cell ¢;, we maintain a count (|c;|)
representing the number of places it contains. Additionally, we approximate the
location of each cell’s center (c¢;), which serves as a proxy for the collective positions
of all places within that cell. Next, we have the similarity score calculation (step 3).
In this step, we calculate the Ptolemy’s similarity score (ps) for each cell c;. Lever-
aging precomputed similarity scores ss(ca-, Ce j) between the centers of every pair of
cells (c;, ¢;j), stored in a matrix (sgy), we employ a computation scheme that efficiently

considers the cardinality of each cell (I¢;)) and the precomputed similarity scores.

This computation, adapted from Equation: ps(p;) = ijes,piatpj ss(pi,pj) , involves
summing the product of the cardinalities of ¢; and ¢; with their corresponding pre-
computed similarity scores, and then subtracting 1 to eliminate self-comparisons. So,
instead of calculating the exact Euclidean distances between all pairs of objects, the
grid-based algorithm approximates these distances by considering the distances

between the centers of the grid cells.

38

Similar to the baseline algorithm, the grid-based algorithm calculates the
proportionality relevance scores for each spatial object. The spatial similarity scores
between objects within the same cell and neighboring cells are summed up to
compute the proportionality relevance score for each object. The final place level
importance score for each object is computed by combining its proportionality

relevance score and its hierarchical level. The formula used is:

prli] N 1
(totalPlaces — 1) = (level(p;) + a)

score(p;) =

This step ensures that the scores reflect both the spatial and contextual importance

of each object.
4.3.2 Advantages of Grid Algorithm

The grid-based algorithm offers several advantages. One key advantage is computa-
tional efficiency. By reducing the number of pairwise comparisons through grid
partitioning, the grid-based algorithm significantly lowers the computational cost.
This efficiency makes it feasible to apply the algorithm to large-scale datasets, where
the baseline algorithm would be too slow. Another advantage is scalability. The grid-
based algorithm scales well with the size of the dataset. As the dataset grows, the
grid can be adjusted to maintain a balance between accuracy and computational
efficiency. This allows the algorithm to handle a large number of spatial objects
without a significant increase in computational complexity. Finally, the algorithm
provides approximate similarity. While the grid-based algorithm uses approxima-
tions, it still maintains a reasonable level of accuracy in representing spatial propor-
tionality. The use of grid cells allows for a balance between exact calculations and

computational feasibility, providing a practical solution for large datasets.
4.3.3 Implementation of Grid Algorithm

The following pseudocode outlines Algorithm 4.3.2 Grid Algorithm, which is de-
signed to rank Points of Interest (POIs) by leveraging grid partitioning and spatial
similarity approximation. The algorithm operates through four main steps: grid par-

titioning, spatial similarity approximation, proportionality relevance calculation, and
39

place-level importance calculation. It follows with a detailed explanation of each step

to provide a comprehensive understanding of the process.

Algorithm 4.3.2 Grid Algorithm

Input: POIs, maxDist, gridSize
Parameters: gridSize
1: // Step 1: Grid Partitioning
2: for each POI in POls:
3: cell_x = floor((POI.Latitude - minLatitude) / (maxLatitude - minLatitude)
* gridSize)
4: celLy = floor((POI.Longitude - minLongitude) / (maxLongitude -
minLongitude) * gridSize)
grid[cell_x][cell_y].add(POI)
// Step 2: Spatial Similarity Approximation

5
6
7: for each cell i in grid:
8 for each cell_j in grid:
9

distance = EuclideanDistance(center(cell_i), center(cell_j))
10: similarity[cell_i][cell_j] = (maxDist - distance) / maxDist
11: for each cell in grid:

12: for each POI in cell:

13: for each neighbor_cell in get_neighboring cells(cell):
14: for each neighbor_POI in neighbor_cell:

15: similarity_score = similarity[cell][neighbor_cell]
16: ss[POI_i][POI_j] = similarity_score

17: // Step 3: Proportionality Relevance Calculation
18: for each POI in POls:

19: sum_of_similarities = 0

20: for each neighbor_POI in get_neighboring POIs(POI):
21: POL_i = neighbor_POI;

22: sum_of_similarities += ss[POI][neighbor_POI]

23: pr[POI] = sum_of_similarities

24: [/ Step 4: Place Level Importance Calculation

40

25: a = 0.5 // Smoothing factor

26: for each POI in POls:

27: final_score = pr[POI] / (total POIs - 1) + 1 / (POI.Level + a)
28: POl.set_score(final_score)

29: // Sorting and Output

30: sorted_POIs = sort(POIs, by=final_score, order:descending)

31: return sorted POls

The algorithm begins with grid partitioning, where the spatial domain is divided
into a grid of cells. Each POI is assigned to a specific cell based on its latitude and
longitude coordinates. This is done by calculating the cell’s x-coordinate (‘cell_x’) by
normalizing the POI's latitude within the grid size, and similarly, calculating the
cell’s y-coordinate (‘cell_y’) by normalizing the POI’s longitude within the grid size.
The POI is then added to the corresponding cell in the grid (grid[cell_x] [cell_y]*).

The second step approximates the spatial similarity between POIs by calculating the
distances between the centers of the grid cells they belong to. For each pair of cells
(‘cell_i’, ‘Cell_j’) in the grid, the Euclidean distance between their centers is
computed, normalized, and stored in a similarity matrix (‘similarity[cell_i] [cell_j]’).
For each POI in each cell, the algorithm retrieves the precomputed similarity score
between the current cell and its neighboring cells, and stores the similarity score for
the POI pair in the similarity score matrix (‘ss[POL _i] [POI_j]’). The third step
involves calculating the proportionality relevance (PR) score for each POI by
summing its spatial similarities with neighboring POIs. For each POI, the algorithm
initializes ‘sum_of_similarities’ to 0, then iterates through its neighboring POlIs,
adding the similarity score between the POI and each neighboring POI to
‘sum_of_similarities’. The PR score for the POI (‘pr[POI]’) is then set to
‘sum_of_similarities’. In the fourth step, the final importance score for each POI is
calculated by combining its PR score with a factor based on its hierarchical level.
This is done using the formula: ‘final_score = pr[POI] / (total_POIs - 1) + 1 /
(POI.Level + a)’, where ‘a’ is a smoothing factor set to 0.5. The computed final score
is then assigned to the POI. The final step involves sorting the POIs based on their

computed scores in descending order and returning the sorted list. By following

41

these steps, the Grid Algorithm efficiently partitions the spatial domain, approximates
spatial similarities, calculates relevance scores, and ranks POIs, ensuring both

computational efficiency and effective spatial keyword search results.

Concluding, the grid-based algorithm offers a practical and efficient approach to
achieving spatial proportionality in large-scale spatial keyword search applications.
By leveraging spatial partitioning techniques and approximate similarity calculations,
it significantly reduces computational overhead while maintaining a reasonable level
of accuracy. This makes the grid-based algorithm an essential tool for enhancing the

relevance and usability of spatial search results in large datasets.

4.4 Comparison of Baseline with Grid Algorithm

The table below compares the Baseline Algorithm and the Grid-Based Algorithm
across various aspects of their operation. It highlights differences in initialization,
spatial similarity calculation, proportionality relevance calculation, place level im-
portance calculation, computational complexity, accuracy, and scalability. The Base-
line Algorithm uses direct pairwise comparisons, resulting in high accuracy but also
high computational complexity. In contrast, the Grid-Based Algorithm partitions the
spatial domain into a grid, approximating similarities using cell centers, which re-
duces computational complexity and enhances scalability, albeit with slightly lower

accuracy.

Table 6: Comparison of Baseline and Grid-Based Algorithms for Spatial Keyword

Search
Aspect Baseline Algorithm Grid Algorithm
Partitions spatial domain into a
Initialization Directly uses all POIs grid

Spatial ~ Similarity | Exact pairwise similarity | Approximate similarity using

Calculation using Euclidean distance | grid cell centers

42

Proportionality

Relevance Sums exact similarities | Sums approximate similarities
Calculation with all other POIs within same/neighboring cells
Place Level

Importance Combines relevance score | Combines relevance score with
Calculation with hierarchical level hierarchical level

Computational High, due to pairwise | Lower, due to reduced number
Complexity comparisons of comparisons

High, due to exact calcu- | Slightly lower, due to approxi-

Accuracy lations mations

Limited by high compu-

Scalability tational cost Scales well with large datasets

4.5 Random Sampling Algorithm for Spatial Proportionality

The Random Sampling Algorithm is a straightforward method used to select a rep-
resentative subset of spatial objects from a larger dataset. This approach leverages
randomness to ensure that the selected subset maintains the spatial and contextual
diversity of the entire dataset. More precisely, Random Sampling Algorithm is de-
signed to select a subset of places from a given region based on specific criteria. It
initializes with parameters including the list of places in the region, maximum dis-
tance, desired number of results, and a distance percentage. The algorithm calculates
a minimum distance threshold based on the provided parameters. It then randomly
selects places from the region while ensuring they meet the distance criteria and
have not been previously selected. The process continues until the desired number
of results is obtained or there are no more places left to consider. Finally, it outputs
the selected places sorted by score in descending order, along with their IDs and
coordinates. This algorithm provides a systematic way to sample diverse locations
from a region while maintaining spatial separation and potentially prioritizing places

based on certain attributes.

43

4.5.1 Implementation of Random Sampling

The following pseudocode details a method for selecting a specified number of Points

of Interest (POIs) from a given region, based on distance constraints and scoring.

Algorithm 4.5.2 Random sampling

Input: POIs, maxDist, numberOfRes, distPercentage
Initialize results array with size numberOfRes
Calculate minDist based on maxDist and distPercentage
while counterInResults < numberOfRes:

Randomly select a place objTemp from placesInRegion

Add objTemp to results if it satisfies distance constraints and is not
already included

Increment counterInResults

Remove objTemp from placesInRegion

Sort results array in descending order by score

return results

The algorithm begins by initializing an array named ‘results’ with a size equal to
the desired number of results (‘numberOfRes’) to store the selected POIs. Next, the
minimum distance (‘minDist’) is calculated based on the maximum distance
(‘maxDist’) and a given distance percentage (‘distPercentage’). This step likely de-
termines the lower bound for distance constraints. The main part of the algorithm
is a loop that continues until the ‘results’ array contains the specified number of
POIs. Within this loop, a place (‘objTemp’) is randomly selected from the list of
POIs (‘placesInRegion’). The selected place is added to the ‘results’ array if it meets
the distance constraints and is not already included. The counter tracking the num-
ber of results (‘counterInResults’) is incremented, and the selected place (‘objTemp’)
is removed from ‘placesInRegion’ to avoid duplicate selections. Once the desired
number of POIs has been selected, the ‘results’ array is sorted in descending order
based on the score of each POI. Finally, the sorted ‘results’ array is returned as the

output of the algorithm. This method ensures that a specified number of POIs are

44

selected randomly, subject to distance constraints, and then sorted by their scores

for final output.

4.5.2 Advantages and Limitations of Random Sampling

The algorithm has several advantages and limitations. Among the advantages are
its simplicity, as it is easy to implement and understand, and its efficiency, since it
is computationally efficient due to requiring only random selection. However, the
algorithm also has limitations. It lacks control, as it does not guarantee proportional
representation in terms of spatial distribution and contextual diversity. Additionally,
there is significant variance in results between different runs due to the random
nature of the selection process. Lastly, it may not always provide a representative

subset, especially for datasets with clustered distributions.

While the random sampling algorithm is useful for its simplicity and efficiency, it
often serves as a starting point for more complex methods designed to ensure spatial
proportionality. More sophisticated algorithms, such as the baseline and grid-based
algorithms, provide better guarantees for maintaining spatial and contextual diver-
sity in the selected subsets. The random sampling algorithm, however, remains a
valuable tool for quick approximations and baseline comparisons in the context of

spatial keyword search.

45

CHAPTER 5

SELECTION ALGORITHMS

5.1 Importance of Selection Algorithms
5.2 Greedy Algorithm for Selection
5.2.1 Implementation of Greedy Algorithm
5.3 Greedy-Disc Algorithm
5.3.1 Implementation of Greedy-Disc Algorithm
5.3.2 Example Use Case: Diversifying Historical Places in Athens Related

to Pericles

In this chapter, we focus on the critical role of selection algorithms and their practical
implementations. We start with Section 5.1, which discusses the importance of se-
lection algorithms, highlighting their significance in various computational and real-
world contexts. Section 5.2 delves into the Greedy Algorithm for selection, explaining
its implementation in detail. This section serves as a foundation for understanding
how simple, yet effective algorithms can solve selection problems efficiently. Follow-
ing this, Section 5.3 introduces the Greedy-Disc Algorithm. We provide a detailed
explanation of its implementation and demonstrate its application through an exam-
ple use case. Specifically, Section 5.3.2 explores how the Greedy-Disc Algorithm can
be used to diversify historical places in Athens related to Pericles, showcasing its

practical utility.

5.1 Importance of Selection Algorithms

To enhance user experience and maintain clarity, we considered displaying a subset

of the places of the object summary we got as result on the map. This strategic

46

selection aims to cover the map as evenly as possible, ensuring that the displayed
points are not clustered too closely together. By implementing a greedy algorithm,
we ensure that each chosen point maintains a minimum distance from the others.
This approach reduces visual clutter and improves readability, allowing users to
focus on key locations without being overwhelmed by too much information. Addi-
tionally, this method improves performance by reducing loading times, making the
map more user-friendly and efficient. The result is a clean, aesthetically pleasing
map that highlights significant points of interest, making it easier for users to interact

with and analyse the displayed data.

5.2 Greedy Algorithm for Selection

Generally, a greedy algorithm is a problem-solving approach that makes the locally
optimal choice at each stage with the hope of finding the global optimum. Greedy
algorithms are typically used for optimization problems. The key characteristic of a
greedy algorithm is that it builds up a solution piece by piece, always choosing the
next piece that offers the most immediate benefit. We chose Greedy Algorithm to
display K distinct objects from the list of all objects retrieved from the query after
the algorithm’s application (grid/baseline). The goal of this algorithm is to select a
subset of spatial objects based on proportionality and relevance to a query context.

Greedy Algorithm is designed to select up to K places from a list such that each
selected place is sufficiently far from the others, ensuring diversity and relevance. It
is a greedy heuristic algorithm that iteratively selects the next best object based on
its contribution to the proportionality of the current result set. The algorithm starts
with an empty result set and computes initial scores or distances. Then, it uses
distance metrics to ensure selected objects are diverse. This involves pairwise com-
parisons and optimization to reduce computational complexity. We use the Euclid-
ean distance between places to ensure that each selected place is at least a minimum
distance away from others. The algorithm selects objects that maximize the propor-
tionality score, ensuring they contribute positively to the overall diversity and rele-

vance, and iteratively adds them to the result set based on their contributions until

47

the desired number of objects (K) is reached. Finally, the algorithm returns a subset

of objects that balance proportionality and relevance, ensuring diversity.

5.2.1 Implementation of Greedy Algorithm

Algorithm 5.2.1, the Greedy Algorithm, is designed to select a specified number of
Points of Interest (POIs) based on distance constraints and scoring criteria. The al-
gorithm ensures that the selected POIs are randomly chosen, meet the defined dis-
tance criteria, and are subsequently sorted by their scores. The following pseudocode

illustrates the detailed steps of this algorithm:

Algorithm 5.2.1 Greedy Algorithm

Input: A list of PlaceObjectDistinct results, integer K, double maxDist, double
distPercentage.

Output: A list of PlaceObjectDistinct resultsK that are selected.

1: Initialize resultsK as an empty list.

2: Calculate minDist as distPercentage * maxDist.

3: Add the first place in results to resultsK and indexSet.

4: for each place in results starting from the second place do
5: if place is not in indexSet then

6: if CheCkDistanceFromOtherPlacesInResults(place, counter) then
7: Add place to resultsK.

8: Add place to indexSet.

9: Increment counter.

10: end if

11: end if

12: if counter == K then

13: break

14: end if

15: end for

16: return resultskK

48

The algorithm starts by initializing the input parameters: the list of objects (results),
the number of objects to select (K), the maximum distance (maxDist), and the dis-
tance percentage (distPercentage). It also initializes the result list (resultsK), which
will store the selected objects, and an instance of the EuclideanDistance class for
distance calculations. The method calculateMinDistBasedOnRegion computes the
minimum allowable distance (minDist) between any two selected objects based on
the given distPercentage of maxDist. The main selection happens in the exe-
cute method. It initializes a set to keep track of already selected object IDs to avoid
duplicates. The first object from the list is always selected and added to resultsK.
For each subsequent object, it checks if the object has not already been selected
(using indexSet) and whether it maintains the minimum distance requirement from
all previously selected objects (checkDistanceFromTheOtherPlacesInResults). If both
conditions are satisfied, the object is added to resultsK and the ID is added to the
index set. This process continues until K objects are selected or all objects are con-
sidered. The method checkDistanceFromTheOtherPlacesInResults iterates over the
selected objects and calculates the distance between the current object and each of
the already selected objects using the Euclidean distance formula. If any distance is

found to be less than minDist, the object is rejected; otherwise, it is accepted.

5.3 Greedy-Disc Algorithm

The Greedy-DisC algorithm aims to construct a DisC diverse subset of a given set of
query results, ensuring that this subset represents the entire set (coverage) while
maintaining dissimilarity among the selected items. It is considered as a heuristic
method designed to approximate a solution to an NP-hard problem. The goal of
Greedy-DisC algorithm is to select a diverse subset of objects from a larger set such
that the selected subset maximizes coverage and dissimilarity among its members. It
does this by iteratively selecting the object with the largest "white neighborhood,"
which refers to the number of neighboring objects that have not yet been included

in the diverse subset or marked as "covered."

49

We start with an empty subset (S) and we color all objects in the set (P) as white.
Then there is the selection process. While there are still white objects we select the
white object p; that has the largest white neighborhood N/ (p;). This is the set of
white neighbors within a radius r of p;. Then we add p; to the subset S, we color
p; black, indicating it has been added to S and we color all white neighbors of p;
(i.e., objects in N (p;)) grey, indicating they are now covered by p;. To efficiently
implement the algorithm, we maintain a sorted list L' of all white objects based on
the size of their white neighborhood. The object with the largest white neighborhood
is always at the top of this list.

When initializing L', compute the size of the white neighborhoods for all objects.
This is done by performing a range query Q(p;,r) for each object p; and updating
the neighborhood sizes accordingly. To reduce computational overhead, the algo-
rithm uses a pruning rule: A leaf node (in the tree structure used for range queries)
that contains no white objects is colored grey. When all children of an internal node
are grey, the internal node is also colored grey. During range queries, subtrees rooted
at grey nodes are not searched, thus reducing the number of node accesses, and

speeding up the algorithm.

A key parameter in the Greedy-DisC algorithm is the radius r. The radius r signifi-
cantly influences both the performance of the algorithm and the number of objects
returned in the result subset. When r is small, each selected object covers a smaller
area and fewer neighbors, resulting in the need for more objects to achieve full
coverage. This increases the computational cost as the algorithm performs more it-
erations and range queries. Conversely, a larger radius allows each selected object to
cover a larger area and more neighbors, reducing the number of objects needed and
potentially lowering the overall computational effort. For tightly clustered datasets
with a smaller maximum diagonal distance, a moderate increase in r can quickly
reduce the number of objects required for coverage, enhancing performance and
efficiency. In contrast, for widely spread datasets with a larger maximum diagonal
distance, a significantly larger radius might be necessary to achieve similar reduc-
tions, though this could increase computational complexity due to larger range que-

ries. To optimize results, it’s advisable to start with a moderate r value and

50

incrementally adjust it, balancing the radius to effectively reduce the number of
objects while managing computational costs. By fine-tuning r according to the da-
taset’s distribution and the desired subset size, you can maximize both the efficiency
of the algorithm and the quality of the results. To determine the optimal radius for
specific datasets, we will perform a series of experiments, varying r and observing
the resulting subset size and computational performance. These experiments will
help identify the most effective radius values, ensuring that the algorithm performs

optimally for different dataset characteristics.

5.3.1 Implementation of Greedy-Disc Algorithm

The following pseudo-code and its subsequent description detail the steps of the

algorithm.

Algorithm 5.3.1 Greedy-DisC

Input: A set of objects P and a radius r.
Output: An r-DisC diverse subset S of P.
S=0
for all pi € P do
Color pi white
end for
while there exist white objects do
Select the white object pi with the largest [NM, (pi)|
S=Su{pi}
Color pi black
for all pj € NM_r(pi) do

—_
<

Color pj grey

—
p—
.o

end for

—_
N

end while

—_
w

return S

51

The Greedy-DisC algorithm begins by initializing an empty subset SS. All objects in
the set PP are initially colored white, indicating that they have not been processed.
The algorithm then enters a while loop that continues as long as there are white
objects remaining. Within the loop, the algorithm selects the white object p; that has
the largest number of white neighbors within a given radius r (denoted as |
NrW (pi) |). This object p; is added to the subset S, and its color is changed to black
to indicate that it has been included in the subset. Next, all white neighbors of p;
(objects within radius r) are colored grey, indicating that they are now covered
by p; and should not be selected again. This process repeats until no white objects
remain. Finally, the algorithm returns the subset S, which represents the rr-DisC

diverse subset of P.

5.3.2 Example Use Case: Diversifying Historical Places in Athens Re-

lated to Pericles

Consider a scenario where a user wants to find a diverse set of historical places in
Athens that are related to Pericles, such as museums, archaeological sites, and
galleries. The goal is to provide a subset of attractions that cover different types of
locations and are spatially distributed across the city, ensuring that the selected

attractions are both representative of Pericles” era and diverse in nature.

Scenario: A user queries, "Pericles" The objective is to present a diverse set of places
that cover different aspects related to Pericles, including archaeological sites,

museums, and galleries, ensuring they are spread out across the city.

Initial Setup: Historical places related to Pericles include the Acropolis, Parthenon,
Ancient Agora, National Archaeological Museum, Acropolis Museum, Stoa of Attalos,
Theatre of Dionysus, Odeon of Herodes Atticus, Kerameikos, Pnyx Hill, Museum of
Cycladic Art, and Benaki Museum. The radius r is set to a value that ensures places

within a 1 km radius are considered neighbors.

Iteration Details:

52

In the first selection, Acropolis is chosen. The neighborhood covered includes the
Parthenon, Theatre of Dionysus, and Odeon of Herodes Atticus. The subset S
includes {Acropolis}. The status is: Acropolis (black), Parthenon, Theatre of
Dionysus, and Odeon of Herodes Atticus (grey), others (white). In the second
selection, Ancient Agora is chosen, covering central Athens with multiple historical
elements. The neighborhood covered includes the Stoa of Attalos. The subset §
includes { Acropolis, Ancient Agora}. The status is: Acropolis, Ancient Agora (black),
Parthenon, Theatre of Dionysus, Odeon of Herodes Atticus, Stoa of Attalos (grey),
others (white). In the third selection, National Archaeological Museum is chosen for
its comprehensive coverage of artifacts from Pericles’ era. The neighborhood covered
includes adjacent museums and galleries. The subset SS includes { Acropolis, Ancient
Agora, National Archaeological Museum}. The status is: Acropolis, Ancient Agora,
National Archaeological Museum (black), nearby locations grey, others white. In the
fourth selection, Acropolis Museum is chosen for its focus specifically on artifacts
from the Acropolis. The neighborhood covered includes nearby attractions within
the Acropolis vicinity. The subset S includes {Acropolis, Ancient Agora, National
Archaeological Museum, Acropolis Museum}. The status is: Acropolis, Ancient
Agora, National Archaeological Museum, Acropolis Museum (black), covered places
grey, others white. In the fifth selection, Kerameikos is chosen as an important
archaeological site and ancient cemetery. The neighborhood covered includes nearby
ancient ruins and sites. The subset S includes {Acropolis, Ancient Agora, National
Archaeological Museum, Acropolis Museum, Kerameikos}. The status is: all selected
places (black), rest (grey). In the sixth selection, Benaki Museum is chosen for its
coverage of a range of historical periods, including that of Pericles. The neighborhood
covered includes surrounding historical and cultural sites. The subset SS includes
{Acropolis, Ancient Agora, National Archaeological Museum, Acropolis Museum,
Kerameikos, Benaki Museum}. The status is: all selected places (black), rest (grey).
Concluding, after running the Greedy DisC algorithm, the final subset SS includes a
diverse range of historical places related to Pericles, spread across Athens and
representing various types of attractions such as archaeological sites, museums, and

galleries. This approach ensures that users are presented with a varied set of options,

53

each providing unique insights into the era of Pericles and reducing redundancy. By
using the Greedy DisC algorithm, the selection of historical places is efficiently
diversified, balancing both the spatial distribution and the diversity of historical

contexts offered, thus enhancing the user’s exploration of Pericles’ legacy in Athens.

54

CHAPTER 6

EXPERIMENTS

6.1 Experiments introduction
6.2 Description of Dataset

6.2.1 Popular Subregions

6.2.2 Implementation of Algorithm for Popular Subregions Creation
6.3 Experiment A — Object summary Creation
6.4 Experiment B — Tuning parameter d in Random Sampling Algorithm
6.5 Experiment C — Tuning parameter grid size in Grid Algorithm
6.6 Experiment D — Tuning parameter radius (r) in Greedy-Disc Algorithm
6.7 Experiment E — Comparison of Grid with Baseline Algorithm

6.7.1 Performance Comparison of Grid and Baseline Algorithm on Smaller
regions with Numerous Nodes
6.8 Experiment I — Selection Algorithms Comparison

6.9 Conclusion of Experiments and Optimal model

In this chapter, we present a comprehensive analysis of various experiments
conducted to evaluate the performance of different algorithms and parameters. We
begin with an introduction to the experiments in Section 6.1, outlining the objectives
and significance of the experimental evaluations. Section 6.2 provides a detailed
description of the dataset used in the experiments, including a focus on popular
subregions. Subsections 6.2.1 and 6.2.2 cover the identification of these subregions
and the implementation of the algorithm for their creation. We then delve into spe-
cific experiments: Section 6.3 describes Experiment A, which focuses on the creation

of object summaries. Section 6.4 details Experiment B, involving the tuning of

55

parameter dd in the Random Sampling Algorithm. Section 6.5 covers Experiment C,
where the grid size parameter is tuned in the Grid Algorithm. Section 6.6 discusses
Experiment D, which involves tuning the radius parameter rr in the Greedy-Disc
Algorithm. Section 6.7 presents Experiment E, comparing the Grid Algorithm with
the Baseline Algorithm, with a specific performance comparison on smaller regions
with numerous nodes in Subsection 6.7.1. Section 6.8 explores Experiment F, which
compares different selection algorithms. Finally, Section 6.9 concludes the chapter
by summarizing the findings from the experiments and identifying the optimal

model based on the results.

6.1 Experiments Introduction

In our research, we conducted six distinct experiments to comprehensively evaluate
and optimize various algorithms related to spatial data analysis. In our research, we
conducted a series of six distinct experiments to comprehensively evaluate and opti-
mize various algorithms related to spatial data analysis. The primary objective of
these experiments was to systematically investigate and improve the performance of
algorithms used for data retrieval, quickly displaying objects on maps, and ensuring
diversity in the presented data. By experimenting with different parameters and
methods, we aimed to identify the most effective strategies and configurations, en-
suring that our findings contribute to more efficient and accurate spatial data anal-
ysis. In the first experiment, we measured the time required to create object sum-
maries by calculating the total time taken. The second experiment involved fine-
tuning a sampling algorithm by testing different distance values to determine the
optimal configuration. In the third experiment, we ran Grid algorithm to identify the
most suitable grid size that yields better results. The fourth experiment aimed at
tuning the Greedy-disc algorithm by adjusting the radius value to enhance perfor-
mance. The fifth experiment compared the grid algorithm against a baseline algo-
rithm to assess relative effectiveness. Finally, our sixth experiment involved a com-
parative analysis of selection algorithms, specifically evaluating the performance of

random sampling, greedy, and greedy-disc algorithms. These experiments

o6

collectively aimed to optimize algorithmic performance and provide insights into

their practical applications in spatial data analysis.

6.2 Description of Dataset

In our experiments, we utilized a comprehensive dataset derived from DBpedia,
which encompasses various types of data relevant to spatial analysis. The dataset is
composed of several files, each serving a specific purpose. The ‘node.txt’ file contains
all the nodes with their respective IDs and names, totaling 8,099,956 nodes. A subset
of these nodes, specifically representing places, is detailed in the ‘places.txt’ file,
which includes 883,664 place nodes. The ‘pid.txt’ file provides the latitude and
longitude coordinates for each place node, facilitating spatial mapping. For each
node, the ‘keywordlist.txt’ file lists the related keyword IDs, while the ‘keyword.txt’
tile maps each keyword ID to its corresponding keyword name. Additionally, the
‘edges.txt’ file outlines the connections between nodes, with each line indicating a
pair of connected nodes, encompassing a total of 6,799,279 connections. This rich
dataset enabled us to perform detailed and diverse spatial data analyses, crucial for
optimizing the algorithms under investigation.

For the experiments that test the algorithms, we created the object summaries of the
nodes. In total, our dataset comprises 1,059,011 object summaries (0S). For our
experiments, we focused on a subset of these object summaries, specifically selecting
those with a large number of distinct places. This subset allowed us to evaluate the
algorithms’ performance in handling complex and diverse spatial data, ensuring that
our findings are robust and applicable to scenarios involving high variability and
density of spatial information. Here are some statistics about the object summaries
used as our dataset for the experiments.

Table 7: Datset Statistics

Avg Total Places of | Avg Distinct Places | Max value of Total | Max value of Dis-

Subset’s Os of Subset’s OS Places of an OS | tinct Places of an
(Overall) 0OS (Overall)
10939 2672 50188 7449

57

6.2.1 Popular Subregions

Additionally, for each node within the small subset of summaries used in our ex-
periments, we identified smaller areas that contain a high concentration of places.
This allowed us to test the efficiency of the algorithms in these densely populated
regions. By focusing on areas where the maximum distance between objects is
smaller compared to the initial dataset, we aimed to assess the algorithms’ perfor-
mance in scenarios that simulate real-world conditions of high spatial density and
local popularity. This approach ensured that our evaluation covered both broad and
localized spatial contexts, providing a comprehensive analysis of the algorithms’ ef-

fectiveness.

6.2.2 Implementation of Algorithm for Popular Subregions Creation

The following pseudocode outlines the steps taken to evaluate the algorithms in
these concentrated regions. It encompasses the identification of densely populated
nodes, the selection of smaller areas with maximum inter-object distances signifi-
cantly smaller than those in the initial dataset, and the subsequent performance

testing of the algorithms.

Algorithm 6.2.2 Popular Subregions Creation

Function createSubregion(objectsSummaryNode, nodld, placesInRegion, to-
talPlaces)
Declare variables:
xmin, ymin, xmax, ymax as double, initialized to 0.0
subregionSize as double, initialized to 0
placesInSubregion as empty list
sizeOfPlacesInRegion as double, set to totalPlaces * 0.2
while subregionSize < estimatedPlacesInRegion

If subregionSize ==

Set ymin to latitude of the first place in placesInRegion

58

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:

28:
29:
30:
31:
32:

33:
34:
35:

Set xmin to longitude of the first place in placesInRegion

Increment subregionSize by 1
Add the first place from placesInRegion to placesInSubregion
Remove the first place from placesInRegion
Else if subregionSize ==
Update ymin and xmin with latitude of the first place in placesInRegion
Update ymin and xmin with longitude of the first place in placesInRe-
gion
Increment subregionSize by 1
Add the first place from placesInRegion to placesInSubregion
Remove the first place from placesInRegion
Call insideBboxIntersectsCheck with current MBR and update

placesInSubregion and placesInRegion
Update subregionSize with the size of placesInSubregion
Else if the first place in placesInRegion is within the current MBR
If the place is not already in placesInSubregion
Increment subregionSize by 1
Add the place to placesInSubregion
Remove the place from placesInRegion
Else
Update xmin, xmax, ymin, ymax with the coordinates of the first place
in placesInRegion
If the place is not already in placesInSubregion
Increment subregionSize by 1
Add the place to placesInSubregion
Remove the place from placesInRegion
Call insideBboxIntersectsCheck with updated MBR and update
placesInSubregion and placesInRegion
Update subregionSize with the size of placesinMBR
End while

End Function

59

36: Function insideBboxIntersectsCheck(xmin, xmax, ymin, ymax, placesInRe-
gion, placesInSubregion)
37: Initialize placesInMBR as empty list

38: For each place in placesInRegion

39: If place is not in placesInSubregion

40: If latitude of place is between xmin and xmax

41: If longitude of place is between ymin and ymax
42: Add place to placesiInMBR

43: Return placesinMBR
44: End Function

The provided pseudocode describes a function named ‘createSubRegion’ which par-
titions a set of places into smaller subregions based on their geographic coordinates.
The function initializes variables to track the minimum and maximum latitude and
longitude (xmin, xmax, ymin, ymax), as well as lists to hold places within the current
subregion. It iteratively processes places from ‘placesInRegion’, updating the bound-
ing box coordinates (MBR) as it adds places to the current subregion. The function
checks if the subregion size reaches an estimated size (20% of the total places) and
calls another function, ‘insideMBRODbjectsCheck’, to verify and update places within
the current bounding box. The ‘insideMBRODbjectsCheck’ function identifies and re-
turns places within the specified bounding box, adding them to a list if their coor-
dinates fall within the bounds. This process continues until the subregion size meets
the estimated number of places, ensuring each subregion contains places geograph-

ically close to each other.

6.3 Experiment A — Object Summary Creation

In this experiment, we aim to measure the average time required to construct an
object summary using data from DBpedia. The process involves reading input ex-
periment parameters, creating necessary data structures, and generating object sum-
maries for each experiment. The experiment is conducted by measuring the time

taken for the OS creation. The steps involved in the experiment are as follows:

60

1. Setup.Initialization and Reading Experimental Data: The experiment starts by
initializing variables to record the start and end times for each object summary
creation. It also sets up paths to the required DBpedia data files and reads
the input experimental configurations from a specified file. Then, using the
‘ReadInputData’ class, the experiment reads the input data which includes
various experiment configurations such as object summary node, node ID,

and query region.

2. Object Summary Creation: For each experiment configuration, the script
checks if the source data is from DBpedia. It initializes a ‘DBpediaSummary’
object with the required data file paths. The process involves creating struc-
tures necessary for the object summary, generating the object summary for

the specified node, and retrieving the summary.

3. Finding Relevant Places: After creating the object summary, the experiment
uses the ‘FindRelevantPlaces’ class to find relevant places within the specified

query region based on the generated object summary.

4. Time Measurement and Calculation: The time taken for each object summary
creation is measured using ‘System.nanoTime()’. This time is recorded and
accumulated to calculate the total time taken for all experiments. The average
time per experiment is computed and displayed after each iteration and at the

end of the experiment.
5. Output: The experiment prints the time taken for each object summary crea-
tion and the current average time in seconds. Finally, it prints the total aver-

age time for all experiments.

Result:

Average Time for OS creation: 74.653683055 sec

61

6.4 Experiment B — Tuning parameter d in Random Sampling Algo-

rithm

In this experiment, we aim to evaluate the performance of a sampling algorithm
using different maximum distances between results on a map. To achieve this, we
compare the performance of the sampling algorithm against a baseline algorithm by
tuning the parameter ‘d’. The parameter d represents a minimum distance threshold
that dictates how close two selected objects can be to each other when displayed on
the map. By adjusting d, we ensure that the objects shown in the results are suffi-
ciently spaced apart, thereby enhancing the clarity and usefulness of the spatial rep-
resentation on the map. This allows us to test and refine the algorithm’s ability to
maintain an optimal balance between object density and spatial distribution. After
executing the experiments, we obtain the average execution time for both algorithms
and the relative approximation error of the sampling algorithm compared to the

baseline. The experiment involves the following steps:

Setup, Initialization and Reading Experimental Data: The experiment initializes var-
iables to record execution times and scores for both the baseline and sampling algo-
rithms. It also sets up paths to the required DBpedia data files and reads the input
experimental configurations from a specified file. Then, using the ‘ReadInputData’
class, the experiment reads the input data which includes various experiment con-

figurations such as object summary node, and query region.

1. Object Summary Creation: For each experiment configuration, the script
checks if the source data is from DBpedia. It initializes a ‘DBpediaSummary’
object with the required data file paths and generates the object summary for

the specified node.
2. Finding Relevant Places: After creating the object summary, the experiment

uses the ‘FindRelevantPlaces’ class to find relevant places within the specified

query region based on the generated object summary.

62

. Maximum Distance Calculation: The experiment calculates the maximum dis-

tance within the query region using the ‘CalculateMaxDistRegion’ class.

. Executing Baseline Algorithm: The experiment runs the ‘Algorithm_sS_base-

line_DBpedia’ baseline algorithm and records its execution time.

. Executing Sampling Algorithm: The experiment iterates over different values
of the parameter ‘d’ (distance percentage options) and runs the ‘Algo-
rithm_sampling DBpedia’ sampling algorithm for each value, recording its

execution time.

. Calculating Approximation Error: The experiment calculates the relative ap-
proximation error of the sampling algorithm compared to the baseline algo-
rithm using the ‘FindRelativeApproximationError’ class. This step involves

comparing the scores of the top results from both algorithms.

. Output: The experiment records the execution times and approximation errors

for each value of ‘d’ and calculates the average times and errors.

Results:
Table 8: Performance Metrics for various DistPercentage Values
DistPercentage Average Relative Average Time Average Time
Approximate Error Sampling (sec) Baseline (sec)
(%)
0,0005 1760469078 0,006767489 11,20882603
0,001 18,40003295 0,016682745 11,20882603
0,002 19,02796759 0,020663199 11,20882603
0,005 21,35887775 0,027228646 11,20882603
0,01 23,30192525 0,02993709 11,20882603
0,02 2750947446 0,034960268 11,20882603
0,05 35,47916029 0,040393139 11,20882603

63

Average Relative Approximate Error (%)

Average Relative Approximation Error for Different Dist Percentage Values

3501

32.51

30.01

27.5¢

25.0F

175}

0.02 0.03 0.04

Dist Percentage

0.00 0.01

0.05

Figure 2: Average Relative Approximation Error for Different DistPercentage values

Average Time Sampling (sec)

Average Time Sampling for Different Dist Percentages

0.040
0.035r
0.030
0.025

0.020

0.010

0.02 0.03 0.04

Dist percentage

0.00 0.01

Figure 3:Average Time of Sampling for Different DistPercentage values

0.05

The performance evaluation of the sampling algorithm reveals that as the distance

threshold parameter d increases, the average relative approximate error also

64

increases. Starting from a distance percentage of 0.0005 with an error of
approximately 17.6%, the error gradually rises to about 35.5% at a distance
percentage of 0.05. This trend indicates that as the distance between selected objects
increases, the sampling algorithm’s accuracy relative to the baseline decreases,
suggesting that the objects become more spaced apart, leading to less accurate
representations compared to the baseline. In terms of average execution time, the
sampling algorithm consistently demonstrates significantly lower execution times
compared to the baseline algorithm across all distance thresholds. While the baseline
algorithm takes around 11.21 seconds consistently, the sampling algorithm’s
execution time starts at approximately 0.0068 seconds for the smallest distance
percentage (0.0005) and increases slightly to around 0.0404 seconds for the largest
distance percentage (0.05). Despite this increase, the sampling algorithm remains

substantially faster than the baseline.

6.5 Experiment C — Tuning parameter grid size in Grid Algorithm

In this experiment, we aim to evaluate the performance of a grid-based algorithm
by tuning the grid size parameter and comparing its performance against a baseline
algorithm. In this experiment, we aim to evaluate the performance of a grid-based
algorithm by tuning the grid size parameter and comparing its performance against
a baseline algorithm. We calculate the average execution time and the relative
approximation error of the grid algorithm compared to the baseline. By adjusting
the grid size, we seek to identify the optimal configuration that balances
computational efficiency with accuracy, ensuring that the algorithm performs well

under various conditions. The experiment involves the following steps:

1. Setup, Initialization and Reading Experimental Data: The experiment
initializes variables to record execution times and scores for both the baseline
and grid algorithms. It also sets up paths to the required DBpedia data files
and reads the input experimental configurations from a specified file. Then,

using the ReadInputData class, the experiment reads the input data which

65

includes various experiment configurations such as diagonal distance flag,
object summary node, and query region.

Object Summary Creation, Finding Relevant Places and Maximum Distance
Calculation: For each experiment configuration, the script checks if the source
data is from DBpedia. It initializes a DBpediaSummary object with the
required data file paths and generates the object summary for the specified
node. Then, the experiment uses the FindRelevantPlaces class to find relevant
places within the specified query region based on the generated object
summary. Afterwards, the experiment calculates the maximum distance
within the query region using the CalculateMaxDistRegion class, which is
necessary for both algorithms.

Executing Baseline Algorithm: The experiment runs
the Algorithm_sS_baseline_DBpedia baseline algorithm and records its
execution time.

Executing Grid Algorithm: The experiment iterates over different grid sizes
(e.g., 6x6, 8x8, 10x10, etc.) and runs the Algorithm_grid_DBpedia grid
algorithm for each grid size, recording its execution time.

Calculating Approximation Error: The experiment calculates the relative
approximation error of the grid algorithm compared to the baseline algorithm
using the FindRelativeApproximationError class. This step involves
comparing the scores of the top results from both algorithms.

Output: The experiment records the execution times and approximation errors
for each grid size and calculates the average times and errors. The results are
printed for each grid size, showing the average time for the grid algorithm,
the average time for the baseline algorithm, and the average relative

approximation error.

66

Table 9: Performance Metrics for different grid size values

Grid Size | Average Relative | Average Time | Average Time
Approximate Error | Grid (sec) Baseline (sec)
(%)

6x6 37,8912 0,0016 11,5633

8x8 30,939 0,0011 11,5633

10x10 30,7669 0,0006 11,5633

12x12 23,6697 0,0007 11,5633

14x14 22,0168 0,0007 11,5633

20x20 19,6488 0,0029 11,5633

30x30 12,0469 0,0036 11,5633

40x40 9,1839 0,009 11,5633

50x50 7,9788 0,0269 11,5633

60x60 6,5882 0,0569 11,5633

70x70 5,7652 0,0989 11,5633

67

Average Relative Approximate Error (%)

35f

301

251

20

15¢

Average Relative Approximation Error for Different Grid Size Values

& Q Vv ™ Q Q Q Q Q Q
" o+ + + v i N 0 & "
> N > » 5 »® < & S
Grid Size

Figure 4: Average Relative Approximation Error for Different grid size values

(sec)

Average Time Grid

0.08¢

0.06

o
o
4;

Average Time Grid for Different Grid Size Values

R Q 2 ™ Q Q N Q O QS
& o e I F 2 4 e $© P
> N > » » ® X S o
Grid Size

Figure 5: Average Time Grid for Different grid size values

68

Based on the results of the experiment, several conclusions can be drawn regarding
the performance of the grid-based algorithm. The evaluation demonstrates that as
the grid size increases, the average relative approximation error decreases signifi-
cantly. Starting from a 6x6 grid with an error of approximately 37.9%, the error
steadily decreases to about 8% with a 50x50 grid. This trend indicates that larger
grid sizes enhance the accuracy of the grid-based algorithm compared to the baseline.
In terms of computational efficiency, the grid-based algorithm consistently outper-
forms the baseline algorithm across all grid sizes. The average execution time for the
grid algorithm ranges from 0.0006 seconds for a 10x10 grid to 0.0269 seconds for
a 50x50 grid, which is significantly lower than the baseline algorithm’s consistent
execution time of around 11.56 seconds. These results highlight a clear trade-off
between grid size and computational efficiency. Smaller grids are faster but less
accurate, while larger grids provide higher accuracy at a marginally increased com-

putational cost.

6.6 Experiment D — Tuning radius (r) in Greedy-Disc Algorithm

In this experiment, we aim to determine the optimal radius value for the greedy-
disc algorithm by evaluating its performance across various radius settings. The
greedy-disc algorithm is tested with the following radius values: 0.001, 0.0005,
0.0001, and 0.00005. These values are multiplied by the maximum distance of ob-
jects in each object summary to derive the specific radius used in the experiment.
For each radius value, we measure the time taken to execute the algorithm, providing
insights into the computational cost associated with different radius sizes. Addition-
ally, we assess the approximate error by comparing the algorithm’s outputs to those
of a baseline algorithm known for its accuracy. By analyzing these two metrics—
execution time and approximate error—we aim to identify the radius value that
offers the best trade-off between speed and precision, ultimately enhancing the prac-

tical utility of the greedy-disc algorithm.

1. Read Experiment Data: Read experiment parameters from the input file and

initialize necessary data structures and variables.

69

2. Create Object Summaries and Calculate Maximum Distance: Create object
summaries, identify places in the query region and for the identified places,
calculate the maximum distance (maxDist).

3. Execute Baseline Algorithm: Run the baseline algorithm to get baseline
results. Measure the execution time and store the results.

4. Execute Grid Algorithm: Set up grid parameters, create a grid and execute
the Grid algorithm to get grid-based results. Measure the execution time and
store the results.

5. Run Greedy-Disc Algorithm with Various Radius Values: Iterate over the
defined radius array: {0.001, 0.0005, 0.0001, 0.00005}. For each radius
value: Calculate the specific radius as a fraction of maxDist. Execute
the greedy-disc algorithm to get the results. Measure and store the execution
time and calculate the relative approximation error compared to the baseline

6. Output Results: For each radius value, aggregate the execution times and
relative approximation errors and then calculate the average execution time

and average relative approximation error for each radius.

Results:
Table 10: Performance Metrics for different r percentage values
radius | greedyDisc +grid time | Relative approximation
I_percentage error

0.001 19,9657 209,3226 13,2511
0.0005 9,9829 345,3922 10,8128
0.0001 1,9966 994,0339 6,7853
0.00005 0,9983 1288,931 5,7729
0.00001 0.1996 1551.8521 4.93
0.000005 0.0998 1572.2599 4.8279

70

Relative Approximation Error for Different R Percentage Values

= - = =
o] (] o = N w
T T T T T T

Relative Approximation Error (%)

~
T

0.0|002 0.0004 0.0006 0.0008 0.0010
R Percentage

Figure 6:Average Relative approximation Error for Different r_percentage values

GreedyDisc + Grid Time for Different R Percentage Values

1200
1000
800

600

GreedyDisc + Grid Time (sec)

400

200t

0.0002 0.0004 0.0006 0.0008 0.0010
R Percentage

Figure 7: Average Greedy-Disc+Grid Time for Different r_percentage values

The experiment results reveal a clear trade-off between the execution time of the
greedy-disc algorithm combined with the grid approach and the relative approxima-

tion error. As the radius percentage decreases, the execution time for the greedy-disc

71

+ grid algorithm increases significantly, from 209.32 seconds at a 0.001 radius per-
centage to 1288.93 seconds at a 0.00005 radius percentage, while the baseline algo-
rithm’s execution time remains constant at approximately 16.71 seconds. Concur-
rently, the relative approximation error decreases from 13.25% to 5.77% as the ra-
dius percentage decreases, indicating that smaller radius values yield more accurate
results closer to the baseline algorithm. These findings highlight a trade-off between
computational efficiency and accuracy: larger radius values (e.g., 0.001) offer faster
results with higher approximation errors, whereas smaller radius values (e.g.,
0.00005) provide more accurate results at the cost of higher execution times. A
balanced approach suggests the 0.0005 radius value as a good compromise, offering
a relative approximation error of 10.81% with a moderate execution time of 345.39
seconds. Ultimately, the choice of radius value should align with whether the priority

is on faster computation or higher accuracy.

6.7 Experiment E — Comparison of Grid with Baseline Algorithm

In this experiment, we compare the performance of a grid-based algorithm with a
baseline algorithm in terms of execution time and approximation error, using a grid
size of 50x50 determined from previous experiments. The process involves reading
input data that includes various experiment configurations, creating an object sum-
mary for each configuration, and finding relevant places within a specified query
region. We then calculate the maximum distance within the query region, which is
necessary for both algorithms. The baseline algorithm is executed first, and its exe-
cution time is recorded. Subsequently, the grid algorithm is executed with the spec-
ified grid size, and its execution time is also recorded. We calculate the relative
approximation error of the grid algorithm compared to the baseline algorithm using
the scores of the top results from both algorithms. Finally, we record and calculate
the average execution times and approximation errors, presenting the results to eval-
uate the efficiency and accuracy of the grid-based approach. This comprehensive
comparison enables us to evaluate the effectiveness of the grid algorithm in enhanc-

ing the efficiency and accuracy of spatial data analysis tasks.

72

Results:

Table 11: Grid-Baseline Performance Comparison

Avg nodes/0S=2672, Grid Baseline Sampling
grid size=50x50
Average Time (sec) 0,0269 12,4592 0,0236
Relative Approximate Error (%) 7,9788 15,7349

6.7.1 Performance Comparison of Grid and Baseline Algorithm on

Smaller Regions with Numerous Nodes

Building on our previous experiment with a large subset of data, we have extended
our investigation to a different dataset, focusing on popular subsets of each node
where the region of each object summary is smaller. For this experiment, we utilized
a smaller grid size of 20x20, reflecting the reduced complexity and size of the data
regions. The objective remains the same: to measure and compare the execution time
and approximation error of the grid-based algorithm against the baseline algorithm.
By conducting this experiment with a different dataset and a smaller grid size, we
aim to provide a more nuanced understanding of the grid-based algorithm’s
performance across varying data scales and complexities.

This study’s outcomes will help determine the adaptability and efficiency of the grid-
based algorithm in different spatial data scenarios, thereby offering insights into its

practical applications for spatial data analysis tasks across diverse datasets.

73

All map
Avg nodes/0S=2672, Grid Baseline
grid size=20x20
Average Time (sec) 0,0029 11,5633
Relative Approximate Error (%) 19,6488
Subregion
Avg nodes/0S5=1597, Grid Baseline
grid size=20x20
Average Time (sec) 0,002 5,3338
Relative Approximate Error (%) 8,0141

Figure 8: Grid-Baseline Performance Comparison in All map and Popular Subre-
gion

The results indicate that for the entire map, the grid-based algorithm exhibited a
significantly lower average execution time (0.0029 seconds) compared to the baseline
algorithm (11.5633 seconds). Similarly, for subregions, the grid-based algorithm
demonstrated a reduced execution time (0.002 seconds) compared to the baseline
(5.3338 seconds). In terms of relative approximate error, the grid-based algorithm
had a higher error (19.6488%) for the entire map compared to the baseline. How-
ever, this error reduced considerably when focusing on subregions (8.0141%),
though no baseline error was provided for direct comparison. These findings suggest
that the grid-based algorithm is significantly more efficient in terms of execution
time across both the entire map and subregions. While it introduces a higher ap-
proximation error in larger, more complex data regions, its accuracy improves with
smaller, less complex data regions. This efficiency and adaptability highlight the
algorithm’s potential for handling large datasets and complex spatial data scenarios

quickly. Given its performance, the grid-based algorithm is particularly suited for

74

real-time spatial data analysis tasks where rapid processing is essential, and small

approximation errors can be tolerated.

6.8 Experiment F — Selection Algorithms Comparison

In this experiment, we compare the performance of three selection algorithms:
Greedy 1, Greedy Disc, and Random Sampling. We evaluate these algorithms by
running them for the top 20, 50, 100, 200, and 300 results (‘k’). We then compare
their results with those obtained from the baseline algorithm. First, the baseline
algorithm is executed, and its execution time is recorded. Next, the grid algorithm is
executed with the specified grid size equal to 50x50, and its execution time is also
recorded. We use the grid algorithm because it demonstrated better performance in
previous experiments. The results from the grid algorithm are then used as input
for the Greedy 1 and Greedy Disc algorithms. The Random Sampling algorithm uses
the list of relevant places within the specified query region based on the generated
object summary as input (the grid algorithm is not run in this case). We add the
execution time of these selection algorithms to the time of grid execution. Therefore,
we have the time for grid+Greedy 1, the time for grid+Greedy Disc, and the time for
Random Sampling. Finally, we calculate the approximation error by comparing the
combined results of the grid and each selection algorithm and the ones from random
sampling algorithm with the results of the baseline algorithm. This comparison al-
lows us to assess the efficiency and effectiveness of each algorithm in selecting the
most relevant data points from the dataset, providing insights into their relative

strengths and weaknesses across different result set sizes.

75

Results:

Topk 20 Sampling Grid+Greedy Grid+greedyDisc
Average Time 0,0075 0,0217 183,3711

Relative Approxi-

mate Error 18,6618 40038 12,7394

Topk 50 Sampling Grid+Greedy Grid+greedyDisc
Average Time 0,0174 0.0177 179,9156
Relative Approxi-

mate Error 17,8747 6,7433 14,2236

Topk 100 Sampling Grid+Greedy Grid+greedyDisc
Average Time 0,0236 0,0178 1777771

Relative Approxi-

mate Error 15,7349 6,1199 12,8638

Topk 200 Sampling Grid+Greedy Grid+greedyDisc
Average Time 0,0341 0,0194 176,7889
Relative Approxi-

mate Error 14,5861 6,592 11,5350

Topk 300 Sampling Grid+Greedy Grid+greedyDisc
Average Time 0,0461 0,022 177,3524

Relative Approximate

Error 14,001 6,972 10,7188

Figure 9: Selection Algorithms Comparison for different top k results

76

Relative Approximate Error for Sampling and Grid+Greedy for Different Topk Values

Sampling
181 —e— Grid+Greedy

= = = =
o N = o
T T T T

Relative Approximate Error (%)
[e¢)

20 50 100 200 300
Topk

Figure 10:Average Approximate Error for Greedy+Grid and Random Sampling for
different top k values

Average Time for Sampling and Grid+Greedy for Different Topk Values

Sampling

0.0451 o Grid+Greedy

0.040
¥ 0.035
C
o
(9]
fn_i 0.030
0]
£
i= 0.025¢
]
o
o
0 0.020 ‘_—k/./‘
<

0.015

0.010 ¢

20 50 100 200 300
Topk

Figure 11: Average Time for Greedy+Grid and random Sampling for different top k
values

77

The experiment comparing the Sampling, Grid+Greedy, and Grid+GreedyDisc algo-
rithms across various ‘k’ values (20, 50, 100, 200, and 300) has provided valuable
insights into their efficiency and accuracy. Each algorithm exhibits unique strengths
and weaknesses, influencing their suitability for different applications. Following
this, we see a detailed analysis of their efficiency, accuracy, and the overall implica-

tions of these results.

The efficiency of the three algorithms was evaluated based on their average execution
times across different ‘k’ values (20, 50, 100, 200, and 300). The Random Sampling
algorithm consistently demonstrated superior efficiency, with the lowest execution
times ranging from 0.0075 seconds for top k 20 to 0.0461 seconds for top k 300. In
comparison, Greedy had slightly higher, but still relatively low, execution times,
ranging from 0.0217 seconds for top k 20 to 0.022 seconds for top k 300. On the
other hand, Greedy-Disc showed significantly higher execution times, consistently
around 177 to 183 seconds, indicating a substantial computational cost. These results
highlight Sampling as the most time-efficient algorithm, followed closely by Greedy,

with Greedy-Disc being the least efficient.

In terms of accuracy, measured by relative approximate error, the Greedy algorithm
generally outperformed the other algorithms across all ‘k’ values. It achieved the
lowest relative approximate errors, ranging from 4.0038 for top k 20 to 6.972 for
top k 300, indicating high precision in selection. The Greedy-Disc algorithm also
performed well, with errors decreasing as ‘k’ increased, from 12.7394 for top k 20
to 10.7188 for top k 300, demonstrating better accuracy than Sampling but not as
high as Greedy. Conversely, the Random Sampling algorithm had the highest relative
approximate errors across all ‘k’ values, ranging from 14.001 for top k 300 to

18.6618 for top k 20, reflecting its lower precision due to its random nature.

Concluding, the experiment reveals distinct trade-offs between the three algorithms.
Random Sampling is the most efficient in terms of execution time but sacrifices ac-

curacy. Greedy provides a balanced approach, offering good accuracy with moderate

78

efficiency, making it a strong candidate for tasks requiring both speed and precision.
Greedy-Disc, while offering relatively good accuracy, particularly for higher ‘k’ val-
ues, is the least efficient due to its high computational cost. Therefore, the choice of
algorithm should be guided by the specific requirements of the application: Sampling
for speed, Greedy for a balance of speed and accuracy, and Greedy-Disc for accuracy

when computational resources are not a constraint.

Due to the vastly different ranges of execution times, particularly for the Greedy Disc
algorithm, plotting the results would not provide a visually effective comparison.
The large discrepancy in values would distort the visual representation, making it
challenging to interpret the results accurately. Therefore, we opted not to plot the

results of the Greedy Disc algorithm.

6.8.1 Performance Evaluation of Greedy and Greedy Disc Algorithm

on Smaller Regions with Numerous Nodes

In this experiment, we run selection algorithms: Greedy and Greedy Disc using a
subset with smaller regions containing numerous nodes. We evaluate these algo-
rithms by running them for the top 20, 50, 100, 200, and 300 results (‘k’). We then
compare their results with those obtained from the baseline algorithm. The experi-
ment was conducted similarly to the one in the previous section. We have recorded
the total average time taken for each algorithm and the approximation error by
comparing the combined results of the grid and each selection algorithm with the

results of the random sampling algorithm and the baseline algorithm.

Table 12: Greedy-Disc Results for subset with Smaller Regions

Top k | Average Time Greedy- | Average Relative
Results Disc Approximate Error

20 61,2937 6,2907

50 99,5522 90,7779

100 60,8516 95,3338

79

200 61,332 4,472
300 62,1185 3,7846

Table 13: Greedy Results for subset with Smaller Regions

Top k Results | Average Time | Average Relative
Greedy Approximate Error

20 0,0268 2,0626

50 0,0225 2,9924

100 0,0227 3.,1142

200 0,0244 3,6563

300 0,0274 4,0104

Average Time for Greedy Disc and Greedy AlgorithAserage Relative Approximate Error for Greedy Disc and Greedy Algorithms

Greedy Disc
60 —a— Greedy

6

50

40

Greedy Disc
30 #— Greedy

Average Time (seconds)
Average Relative Approximate Error (%)

10 /

5’0 160 150 260 2_’;0 300 5‘0 160 léO 260 250 360
Top k Results Top k Results

Figure 12: Comparison of Greedy and Greedy-Disc for subset with Smaller Regions

After executing this experiment, we evaluated the performance of the Greedy and
Greedy Disc algorithms using subsets with smaller regions containing numerous
nodes and compared them to results from subsets with larger regions. The Greedy
algorithm demonstrated significantly lower execution times across all tested scenarios
but exhibited a higher approximation error as the size of the result set increased. In

contrast, the Greedy Disc algorithm excelled in maintaining more consistent
80

execution times and showed a decreasing approximation error with larger result sets,
making it particularly suitable for tasks requiring higher accuracy. Although its ex-
ecution times were considerably higher in larger regions, the Greedy Disc algorithm’s
accuracy improvement with increasing result set sizes highlights its advantage in
scenarios where precision is paramount. Overall, the Greedy 1 algorithm is ideal for
applications where speed is critical, while the Greedy Disc algorithm is better suited
for tasks requiring higher accuracy, especially in smaller data regions. The selection
of the appropriate algorithm should thus balance the trade-offs between execution
time and accuracy based on the specific requirements of the application and the

characteristics of the data regions.

6.9 Experiments Conclusion and Optimal model

After comparing the Grid, Baseline, and Random Sampling algorithms for spatial
proportionality, and the Greedy and Greedy-Disc algorithms for selection, we have
identified the optimal model for our purposes. Using the Grid algorithm for spatial
proportionality is ideal because it is faster and maintains a relatively low approxi-
mation error. For displaying a subset of results on the map, the Greedy algorithm is
the best choice due to its efficiency, lower approximation error, and acceptable exe-

cution time.

Although the Sampling algorithm performs very quickly, it has a higher approxima-
tion error, making it suitable for scenarios where speed is prioritized over accuracy.
The Greedy-Disc algorithm, while ensuring diversity in the results displayed on the
map, has a significantly higher execution time. However, its approximation error is
not excessively high, suggesting it could be efficient in smaller regions, such as when
zooming in on a specific area on the map. This balance between execution time and
error makes the Grid and Greedy combination the most effective overall, with the

option to use Sampling for speed and Greedy-Disc for diversity in smaller regions.

81

CHAPTER 7

DEVELOPMENT AND FUNCTIONALITY OF THE

WEB APPLICATION

7.1 Web Application Description

7.2 Web Application Functionality
7.2.1 Use of @react-google-maps/api in our Project
7.2.2 Interactive Markers, Customization and User Interaction
7.2.3 Dynamic Marker Fetching Based on Map View and Search Keywords
7.2.4 MVC Model
7.2.5 Workflow

In this chapter, we provide a detailed overview of our web application, starting with
a short description in Section 7.1. This section sets the context for understanding the
application’s design and capabilities. Section 7.2 delves into the functionality of the
web application. Subsection 7.2.1 explores the use of @react-google-maps/api in our
project, highlighting its integration and benefits. Subsection 7.2.2 discusses the
implementation of interactive markers, customization options, and user interaction
features, showcasing how users can engage with the map. In Subsection 7.2.3, we
explain the process of dynamic marker fetching based on the map view and search
keywords, ensuring relevant and updated data display. Subsection 7.2.4 outlines the
MVC (Model-View-Controller) model employed in the application, providing a clear
understanding of its architecture. Finally, Subsection 7.2.5 presents the overall
workflow of the application, detailing the processes from user input to data

rendering.

82

7.1 Web Application Description

This thesis involves creating a web application that allows users to enter a keyword
in an input form, which then displays relevant nodes on a map. These nodes repre-
sent the object summary with the input keyword as the root. The nodes shown on
the map dynamically update based on the current map bounds, ensuring that users
always see the most pertinent information for their area of interest. This functionality
combines user-friendly search capabilities with the powerful visualization features of

Google Maps, providing an intuitive and interactive experience.

The main goal of this project is to visualize an object summary (0S) on a map, where
the summary is generated dynamically based on a user-provided keyword. The ap-
plication leverages advanced algorithms to determine the most relevant nodes to
display, ensuring the results are both comprehensive and focused. The map interface
supports zooming and panning, allowing users to explore different geographical ar-
eas and refine their search results in real-time. Additionally, the application includes
interactive markers that users can click on to obtain more detailed information about
each node. These markers are customizable, enabling the display of various types of
data such as text and links. This enriches the user experience by providing multiple
layers of information immediately. To enhance usability, the application features a
responsive design that works seamlessly across different devices, including desktops,
tablets, and smartphones. This ensures accessibility and convenience for users, re-
gardless of their preferred platform. Overall, the web application integrates sophis-
ticated data processing with a sleek and user-friendly interface, making it a valuable

tool for visualizing and exploring object summaries based on user-defined keywords.

7.2 Web Application Functionality

The application consists of several key components and features that work together
to deliver this functionality. To begin with, in the front page we have a search input
form that allows users to input a keyword that serves as the root of the object

summary. The SearchBar component captures the user’s input and triggers the

83

creation of the object summary based on this keyword. On form submission, the
application sends a request to the backend to fetch nodes related to the keyword,
within the current map bounds. Next, we have the Map Component which displays
the nodes of the object summary on a Google Map, providing a visual representation
of the data. For the implementation we utilize @react-google-maps/api to render the
map and manage map interactions. This app, also, provides dynamic Marker fetch-
ing. As the user zooms or pans the map, the application fetches and displays markers
that fall within the new map bounds. Additionally, users can click on markers to
view additional information in an InfoWindow. The purpose of Dynamic Marker
Fetching is to ensures that only relevant nodes are displayed based on the current
map view and search keyword. In this app Loading Indicators are also used to
enhance user experience by indicating data loading processes. We use ClipLoader
from react-spinners to show a spinner while fetching data. The spinner is displayed
whenever a new fetch request is initiated and hides once the data is successfully
loaded. Next, we have Marker Customization. The purpose is to ditferentiate nodes
based on their hierarchical level within the object summary.Custom marker icons
are used to represent different levels (yellow for level 0, red for level 1, blue for level
2, and green for level 3).The getMarkerlcon function assigns appropriate icons to
markers based on their level. This comprehensive approach ensures that users can
efficiently explore and interact with data related to their chosen keyword, making
the application both powerful and user-friendly. In the following sections, we will
describe the key features in more detail to provide a deeper understanding of the

application’s functionality and implementation.

7.2.1 Use of @react-google-maps/api in our Project

In this thesis, we integrated the @react-google-maps/api library to leverage the robust
mapping capabilities of Google Maps within a React application. This library is a
well-maintained wrapper around the Google Maps JavaScript API, designed to work
seamlessly with React. Our goal was to provide users with an interactive and intuitive
map interface, and @react-google-maps/api proved to be an excellent tool for this

purpose. The decision to use @react-google-maps/api was driven by several key

84

factors. First of all, the library is specifically designed for React applications, provid-
ing a straightforward and familiar API for React developers. It also, offers efficient
and performant rendering of Google Maps, with optimizations to handle large data
sets and complex map features. Moreover, the library supports a wide range of cus-
tomization options, allowing us to tailor the map’s appearance and functionality to
our specific needs. Finally, being widely used and actively maintained, @react-
google-maps/api benefits from extensive documentation, community support, and
regular updates. As far as the implementation is concerned, the initial setup of @re-
act-google-maps/api was simple and well-documented. We installed the library via
npm and configured it with our Google Maps API key. The library’s modular struc-
ture allowed us to import only the components we needed, optimizing our applica-

tion’s performance.

Map

Generate 0S:

Node name (e.g. Aristotle) Submit

No Filtering v No Selection Algorithm v/

Map Satellite

Figure 13: Web Application Home Page

7.2.2 Interactive Markers, Customization and User Interaction

Interactive markers were a crucial feature in our project, providing users with dy-
namic and engaging ways to interact with the map. These markers served as points
of interest on the map, each capable of displaying additional information when

85

interacted with. We implemented interactive markers using the Marker and In-
foWindow components from @react-google-maps/api. Each marker was placed at a
specific geographic location, and when clicked, it triggered an infowindow that dis-
played relevant of the representing node. To enhance user interaction, we customized
the markers and infowindows in several ways. To begin with, we used custom
marker icons to make different types of locations easily distinguishable. More spe-
cifically we used ditferent colors depending on the level of marker in the object
summary. So, we have yellow for level O(the root of os) , red for level 1, blue for
level 2 and green for level 3. This involved specifying an icon property for the
Marker component, allowing for a more intuitive and visually appealing map inter-
face. Moreover, to enhance the dynamic content on the map, the content of the
infowindows was generated dynamically based on the marker clicked. This allowed

us to provide rich, location-specific information.

e »
‘_ » CopperBox'Arena MARYL
o i " e ? , ’A'STO? , 7 9
- -~
Q amden Mkt < 2 AR 3“”“ , STRATF!
Ly =06
z E London Stadium
CAMDEN TOWN 1SANGTON . & & ?
""“""”‘ Victorid Park ,
ANGEL ” Victoria LD FoER Q:»m Arena
2 Park Chinese
Prlu'r. British Library QQ - i Pagoda B(' r3
Y VEA ad
Foundling Mu e mQ oTh_" Lial Muse y ° , 4 sraom
s - e
R ee , 81359 MILE END.
3 - & .
T»,O sh Museum Q AP) [FoLp
RYLE ' e, o Nhitechapel G d, BOW COMMON
G204 AN oo ’. I's Catt
rauls Ca ra
ea 5125
SOHO o;rw-.\,,r hous! SHADWELL Museum of POPLAR
C o Rt be St S London Docklands
lemy of Arts T e
g I & , ‘ *r'* Q
« Tharmeg , BLACKWALL
R Lo on J0 N & @
% ’ he S f"'fo Su, CANARY WHARF |
=t - ° Thel02
®. QB\ gham @alace SOUTHWA ,
WESTMINSTER || &% ™ 7 o B8 e
NS < i,) ROTHERHITHE Isle.of Dogs
& UAMBETH o Ao bttt B &
2 TeteRritain Q BERMONDSEY b Q -3 Mudchute
. PIMLICO E Park andIarm‘g
e) %) o T X2
KENNINGTON 820, o = Ve
) & A WALWORTH A . 3 Q(.i‘
‘ o \° Ctlly‘Sulko
alf:'\!“"o L‘ 7 o Burgess Park N, O.W."“"

Figure 14: Different color of Markers on map

86

Map

Generate OS:

Aristotle Submit
No Filtering v NoSelection Algorithm v
T —ER
2 Map Satellite Avw doboa A @ e Kifisia s Nea Maki
. = - Ano Liosia A; ¢ @ Ve N
''''' B Magoula Waterfun Waterpark§) Avto Awdota 2L @
Mandra Mayooha rkoputod S d W AL @
Mévbpa / Lol ekl nastery of Agia Monastery
e Prr Rl Zefyii ol
ASpropyrgos Zegupt | ~
O . Aepobpopio Adniponupyog o @ N\ A/
SLa et o @ Marousi O) HP“’(‘“A‘\
Eleusis 2 [Nea lonia Mapovot Sy 5
EAevoiva HPC»'OLDO‘): llion Néa lwvia P rilissia Pa
£Tp00TION Oy) A, Kokking
o Q o Beix
«© N KaAArexvoimoAn
N Chalandri Drafi IDione sazral
- Salats) Xahavépt Gerakas @ prakiker Ntdot NG
- 8 - Haidari Peristeri répaxac
X 7
aldael lgpio X m Municipalty
Seneral Hospital of @ of Pallini ikermi Auds
v . : @m‘,‘, e 1‘ s Mahkivy Miképpt WACH
Egaleo Name: Hellenic_Parliament = ar o
A&poc : dent Athe: Glyka Nera m —
Kondalios AYAAE®W 1p: 725734 Aok Nepd iy = Qu
KopubaAhog T Artemido:
105 Allout Fun Park iy g0 day | s (@)
a > Airport, an IHG\Y' Artemida
Salamina Perama @ A @‘ APTEPLS
¥ AT SIS Keratsini 5 Q 2 <] Spata
Sahapiva Makovkia Népaa T ca ‘ m AN S
Kallithea Bopwvag Paiania Inapola Ather
Ampelakia o KaAAiBéa Nawavia ternatio
AuneAdkia 1ultif 3 tavros Niarch (il T i
I Piraeus Q ? i hopite Eleftherios
Mewpaiag L 9
5 U
? H Ilioupol: KapeAhde Archaeologi
H
Salamina L] HAOTOAN i auron)
»punoka 3 ;
Q ed Beac Alimos] Bpavpiva
Kaxf) BiyAa iz Ahwog AY. Fewpytog Ndrnpa
Argyroupoli Sphettus o Kytheros
ApyupobTioAn TQNTIOC Koropi 0000 KuBnpoc Erotospil
\ o Mndoa @peac
Q@ Lere B poroaft A
N Markopoulo népto PaYTn.
a Mesogaias 5
a - Blounyavr : Krual
Siisdalteschion nulelan epuoxt cLRIT

Figure 15: Example of InfoWindow

7.2.3 Dynamic Marker Fetching Based on Map View and Search Key-

words

In our project, we implemented a dynamic marker fetching mechanism that updates
the displayed markers based on the current viewport of the map and a keyword
entered in the search bar. This ensures that users are always presented with the
most relevant markers corresponding to their current area of interest and search
criteria, enhancing both performance and user experience. The core idea is to fetch
and display markers that fall within the bounds of the current map window and
match the search keyword. As the user zooms or pans the map, or changes the
search keyword, the latitude and longitude of the map’s bounds change, triggering
a fetch request to update the markers accordingly. Event handlers for onBound-
sChanged, onZoomChanged, and onDragknd capture map movements and update
the markers accordingly. This dynamic fetching approach ensures that only the
markers relevant to the current view and search criteria are loaded, significantly
improving performance. It avoids the need to load all markers at once, which can
be resource-intensive and slow down the application. Additionally, by updating

87

markers in real-time as the user navigates the map and enters search keywords, we
provide a more responsive and interactive user experience. From a user perspective,
this method ensures that they always see the most pertinent information based on
their current map view and search criteria. As users zoom in to focus on a smaller
area, more detailed markers become visible. Conversely, zooming out provides a
broader overview with fewer markers, preventing the map from becoming cluttered.
The ability to filter markers by search keywords further refines the displayed results

to match user interests.

88

Map

Generate 0S:

,,,,,,

Figure 16 : Example of Zooming-In result

7.2.4 MVC Model

The Model-View-Controller (MVC) architecture is a widely-used software design
pattern that separates an application into three interconnected components: the
Model, the View, and the Controller. This separation helps manage complex appli-
cations by isolating the internal representations of information from the ways that
information is presented to and accepted from the user. Here’s how we implemented
the MVC model in our project. The Model component represents the data and the
business logic of the application. It is responsible for retrieving data, processing it,
and storing it. In our project, the Model was responsible for retrieving marker data
from the backend API based on the current map bounds and search keywords and
storing and updating marker data in response to changes in the map view or search
input. Also, the Model is responsible for the business Logic that means, filtering the
markers based on the current search keyword and managing state related to the
markers, such as which markers are selected or visible. The View component repre-
sents the Ul of the application. It is responsible for rendering the data provided by
the Model to the user and capturing user input. In our project, the View was re-
sponsible for rendering the Google Map component, displaying markers on the map

based on data from the Model, capturing user interactions such as panning, zooming,
89

and clicking on markers and finally, displaying infowindows with additional marker
information when a marker is clicked. The Controller acts as an intermediary be-
tween the Model and the View. It processes user inputs from the View, updates the
Model, and then updates the View based on the new state of the Model. In our
project, the Controller was responsible for handling User Input, for example, man-
aging state changes triggered by user interactions with the map and search bar,
updating the Model with new map bounds or search keywords and updating the
View. That means, the controller ensures that the View reflects the current state of
the Model and coordinates the fetching and rendering of markers based on the

current map bounds and search keyword.

7.2.5 Workflow

1. User Input:

The user enters a keyword in the search input form and submits it.
The handleForm2Submit function captures the keyword and initiates a fetch request
to retrieve the object summary nodes related to the keyword.

2. Data Fetching:

The application constructs an API request with parameters including the keyword,
current map bounds (northEast and southWest coordinates), and selected algorithms
for filtering and selection. The backend processes this request, generates the object
summary, and returns the relevant nodes.

3. Map Rendering:

The fetched nodes are stored in the application’s state (markers).
The map component renders these nodes as markers, updating them dynamically
based on user interactions with the map.

4. User Interaction:

Users can zoom and pan the map, which triggers updates to the map bounds.
The application fetches new nodes that fall within the updated bounds, ensuring

that the map always displays relevant information.

90

Users can click on markers to open InfoWindows that provide additional information
about each node. The application handles marker clicks by updating the selected-

Marker state and rendering the corresponding InfoWindow.

91

CHAPTER 8

CONCLUSION

This thesis set out to enhance the retrieval and visualization of spatial and contextual

data, with a particular focus on achieving spatial proportionality and diversity in the

displayed results. Through the development and testing of various algorithms, we

aimed to identify the most efficient and effective methods for these tasks. After

conducting comprehensive experiments comparing the Grid, Baseline, and Random

Sampling algorithms for spatial proportionality, as well as the Greedy and Greedy-

Disc algorithms for result selection, we have identified the optimal model for our

purposes.

Grid Algorithm for Spatial Proportionality: The Grid algorithm emerged as
the ideal choice for achieving spatial proportionality. It provides a faster
execution time compared to the Baseline algorithm and maintains a relatively
low approximation error. This balance of speed and accuracy makes it highly
suitable for large-scale applications where efficiency is crucial.

Greedy Algorithm for Result Selection: For displaying a subset of results on
the map, the Greedy algorithm is the best choice. It is efficient, has a lower
approximation error, and offers an acceptable execution time. This makes it
ideal for providing users with a clear and concise set of results that are both

relevant and proportionally representative of the overall data set.

While the optimal model combines the Grid algorithm for spatial proportionality

and the Greedy algorithm for result selection, alternative algorithms may be

preferable in specific scenarios:

Random Sampling Algorithm: Although the Random Sampling algorithm
operates very quickly, it has a higher approximation error. This makes it
suitable for scenarios where speed is prioritized over accuracy, such as initial

exploratory searches or real-time applications where rapid response is critical.

92

e Greedy-Disc Algorithm: The Greedy-Disc algorithm ensures diversity in the
results displayed on the map but comes with a significantly higher execution
time. Despite this, its approximation error is not excessively high, suggesting
that it could be effective in smaller regions, such as when users zoom in on a
specific area of the map. This makes it a valuable tool for applications
requiring high diversity and detailed local analysis.

The practical implementation of these findings is demonstrated through the devel-
opment of a web application. This application integrates the Grid and Greedy algo-
rithms to dynamically generate and display object summaries based on user queries.
The application supports interactive map features, providing an intuitive and engag-

ing user experience.

Future work could explore further optimization of the algorithms to reduce execution
time and approximation error. Additionally, expanding the application to support
more complex queries and integrating additional data sources could enhance its

functionality.

Overall, this thesis has demonstrated the effectiveness of combining the Grid and
Greedy algorithms for spatial proportionality and result selection, respectively. By
addressing the challenges of efficiently retrieving and visualizing spatial data, this
work contributes to the field of data management and provides a robust foundation
for future advancements. The development of the web application showcases the
practical applicability of these findings, offering users a powertful tool for exploring

and interacting with spatial data.

93

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

Gong Cheng, Danyun Xu, and Yuzhong Qu.: Summarizing Entity
Descriptions for Effective and Efficient Human-centered Entity Linking
- the State Key Laboratory for Novel Software Technology, Nanjing

University, China

G. Cheng, D. Xu, Y. Qu, (3d+ p: A summarization method for
Interactive entity resolution, Journal of Web Semantics, pages 203-213,

2015.

G. J. Fakas, A Novel Keyword Search Paradigm in Relational Databases:
Object Summaries, Data and Knowledge Engineering (DKE) Journal,
pages 208-229, 2011.

G. Fakas, Y. Cai, Z. Cai, N. Mamoulis, Thematic ranking of object
summaries for keyword search, Data and Knowledge Engineering

Journal (DKE), pages 1-17, 2018.

A. Balmin, V. Hristidis, Y. Papakonstantinou, Objectrank: Authority-
Based Keyword Search in Databases, VLDB, pages 564-575, 2004

G. J. Fakas, G. Kalamatianos, Proportionality on Spatial Data with
Context, ACM Transactions on Database Systems (TODS), 2023

[7]

[8]

[9]

S. Shaham, G. Ghinita, C. Shahabi, Models and mechanisms for spatial
data fairness, Proceedings of the VLDB Endowment, 16(2), pp.167-179,
2022.

Marina Drosou, E. Pitoura, DisC diversity: result diversification based

on dissimilarity and coverage. — Proceedings of the Endowment, 2012

G. Kalamatianos, G. J. Fakas, N. Mamoulis, Proportionality in Spatial
Keyword Search, Proceedings of the ACM Conference on the
Management of Data (SIGMOD), 2021.

SHORT BIOGRAPHY

Kalliopi Basiakou is an M.Sc. graduate student with specialization in Data Science
and Engineering, at the Department of Computer Science and Engineering (CSE) of
the University of Ioannina, Greece. She received her M.Eng. degree from the De-
partment of Computer Science and Engineering of the University of Ioannina, in
2022. Her research interests include data analysis, data visualization (especially spa-

tial data and network data), applications development, data management etc.

