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ABSTRACT

Ioannis Georvasilis, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, 2023.
Deep Learning Methods for Elemental Map Prediction from MA-XRF spectra.
Advisor: Aristidis Likas, Professor.

Macro-XRF (MA-XRF) is a valuable non-destructive technique for investigating
the chemical elemental composition of materials. MA-XRF data can be considered
as high dimensional images, where a large vector of X-ray wavelengths emitted by
excited atoms is computed for each pixel. Through MA-XRF analysis, experts derive
Elemental Distribution Maps, which provide essential insights into the spatial distri-
bution of various elements within a given sample. However, the generation of these
maps requires significant expertise, analysis and time investment. This work attempts
to provide an automated solution to this fundamental problem that is cast as a re-
gression problem with high dimensional inputs and multiple outputs. The dataset
under examination comprises paintings created using medieval painting techniques,
dating from the 18th to the 19th centuries, with the primary objective of predicting
concentrations for twelve specific chemical elements.

To address this problem two popular deep architectures namely, a Fully Con-
nected Neural Network (MLP) and an 1d Convolutional Neural Network, have been
employed as multi-output regressors. A novel issue in our approach is the integration
of physics-based prior knowledge into these models. This prior knowledge is injected
through a predefined layer with constant weights, which accurately encapsulates the
spectral signatures of the twelve elements under examination. The experimental re-
sults indicate that the enhanced models lead to substantial performance improvement,
highlighting the potential of combining deep learning techniques with physics-based
insights in the domain of MA-XRF elemental mapping.

vii
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ΕΚΤΈΤΆµΈΝΉ ΠΈΡΊΛΉΨΉ

Ιωάννης Γεωρβασίλης, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστη-
μάτων, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, 2023.
Μέθοδοι Βαθιάς Μάθησης για Πρόβλεψη Στοιχειακών Χαρτών από φάσματα MA-
XRF.
Επιβλέπων: Αριστείδης Λύκας, Καθηγητής.

Η φασματοσκοπία φθορισμού ακτίνων-Χ macro (MA-XRF), είναι μια πολύτιμη
μη καταστροφική αναλυτική τεχνική που χρησιμοποιείται για τη διερεύνηση της
στοιχειακής σύνθεσης των υλικών. Μέσω της ανάλυσης MA-XRF, οι ειδικοί εξάγουν
Χάρτες Στοιχειακής Κατανομής, οι οποίοι παρέχουν ουσιαστικές πληροφορίες για
τη χωρική κατανομή διαφόρων στοιχείων σε ένα δεδομένο δείγμα. Ωστόσο, η δη-
μιουργία αυτών των περίπλοκων χαρτών απαιτεί σημαντική τεχνογνωσία, ανάλυση
και επένδυση χρόνου. Υπό το πρίσμα της αυξανόμενης αξιοποίησης της Μηχανικής
Μάθησης, ιδίως της Βαθιάς Μάθησης, για την αντιμετώπιση σύνθετων προκλήσεων
που σχετίζονται με το MA-XRF, η παρούσα εργασία περιστρέφεται γύρω από το
θεμελιώδες πρόβλημα της πρόβλεψης Χαρτών Στοιχειακής Κατανομής (Elemental
Distribution Maps), το οποίο διαμορφώνεται ως πρόβλημα παλινδρόμησης πολλα-
πλών εξόδων. Το υπό εξέταση σύνολο δεδομένων περιλαμβάνει πίνακες που δη-
μιουργήθηκαν με μεσαιωνικές τεχνικές ζωγραφικής και χρονολογούνται από τον
18ο έως τον 19ο αιώνα, με πρωταρχικό στόχο την πρόβλεψη των συγκεντρώσεων
δώδεκα συγκεκριμένων στοιχείων.

Για την αποτελεσματική αντιμετώπιση αυτής της πρόκλησης, η παρούσα μελέτη
χρησιμοποιεί δύο ευρέως μελετημένες βαθιές αρχιτεκτονικές: ένα Πλήρως Συνδεδε-
μένο Νευρωνικό Δίκτυο (MLP) και ένα 1d Συνελικτικό Νευρωνικό Δίκτυο, που χρη-
σιμοποιούνται ως παλινδρομείς πολλαπλών εξόδων. Αυτό που διαφοροποιεί αυτή
την έρευνα είναι η ενσωμάτωση πρότερης γνώσης με βάση τη Φυσική σε αυτά τα
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μοντέλα βαθιάς μάθησης. Η πρότερη γνώση ορίζεται μέσω ενός προκαθορισμένου
ενδιάμεσου επιπέδου (Prior Layer) με σταθερά βάρη, το οποίο ενσωματώνει τις φα-
σματικές υπογραφές των δώδεκα στοιχείων που ορίζονται ως στόχοι. Τα σταθερά
βάρη στο επίπεδο αυτό χρησιμεύουν ως μια μορφή εξαγωγής χαρακτηριστικών. Η
εκμετάλλευση των φασματικών υπογραφών βοηθά τα μοντέλα να εστιάζουν στα
κατάλληλα χαρακτηριστικά, βελτιώνοντας έτσι την ικανότητά τους να διακρίνουν
και να διαφοροποιούν τα στοιχεία.

Τα πειραματικά ευρήματα της προτεινόμενης προσέγγισης υποδεικνύουν σημα-
ντική βελτίωση της επίδοσης των μοντέλων, υπογραμμίζοντας έτσι τις δυνατότητες
συνδυασμού της γνώσης βασισμένη στη Φυσική με τις τεχνικές βαθιάς μάθησης στον
τομέα της στοιχειακής ανάλυσης MA-XRF.

Λέξεις Κλειδιά: μηχανική μάθηση, βαθιά μάθηση, βαθιά νευρωνικά δίκτυα, χάρτες
στοιχειακής κατανομής, πρότερη γνώση βασισμένη στη Φυσική
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CHAPTER 1

INTRODUCTION

1.1 Learning Algorithms

1.2 Generalization

1.3 Feedforward Neural Networks

1.4 Cost Function Optimization

1.5 Thesis Contribution

1.6 Thesis Outline

1.1 Learning Algorithms

A Machine Learning (ML) algorithm is one that can learn from data, which occurs
when a computer program improves its performance on a certain set of tasks as
assessed by a specific performance metric over time. Machine Learning enables us to
tackle issues that would be impossible to accomplish with fixed programs built and
designed by humans.

Machine Learning tasks are typically described in terms of how the machine
learning system should handle a given example. An example, denoted as x ∈ Rd,
constitutes a set of d quantitatively measured features extracted from an object or event
that we intend the Machine Learning system to process. Machine Learning can be
applied to a wide array of tasks, with some of the most prevalent ones encompassing
the following:
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• Classification: In this task, the computer program is required to determine
the category to which an input belongs among K possible categories. Usually,
the learning algorithm is typically required to generate a function f : Rn →
{1, . . . , k}. Specifically, the model f outputs the category ŷ for a given example
x. There are alternative versions of the classification task where the output, ŷ,
represents a probability distribution across categories (i.e. object recognition,
where the input is an image and the output is a numeric code identifying the
object in the image) or a binary decision in case of two categories (i.e. distin-
guishing between spam and non-spam emails in the context of email filtering).

• Regression: In this Machine Learning task, the computer program is now re-
quired to estimate a numerical value given some input. Commonly with classi-
fication tasks, the learning algorithm is typically required to generate a function
f , differentating in the output space f : Rn → R. Some real-world examples of
regression tasks include predicting the price of a house given its characteristics,
predicting the weather, or how many degrees the car should turn given the
front camera input, etc.

To evaluate a Machine Learning algorithm’s abilities, it is essential to establish a
numerical measure for assessing its task performance. For tasks such as classifica-
tion, we often measure the accuracy of the model. Accuracy is just the proportion
of examples for which the model produces the correct output. We can also obtain
equivalent information by measuring the error rate, the proportion of examples for
which the model produces an incorrect output. The error on a particular example x

is 0 if it is correctly classified and 1 if it is not.
Usually, we aim to assess how effectively the Machine Learning algorithm performs

on unseen data, as this dictates its real-world deployment potential. Subsequently, we
measure the model’s performance using a distinct set of data, independent of the
data used for training the Machine Learning system.

In certain instances, like a regression task, selecting a performance measure that
aligns with the intended behaviour of the system can be challenging since it is not
always clear how to determine what should be measured. For instance, when con-
ducting a regression task, we need to determine whether to penalise the system more
for frequently committing medium-sized errors or for rarely committing very large
ones. These types of design choices are dependent on the application at hand. Below
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are listed some popular performance measurements:

• Accuracy (Classification): It measures the proportion of correctly classified in-
stances out of the total number of instances.

• Precision and Recall (Classification): Precision measures the ratio of true pos-
itives to the total number of predicted positives, while recall (sensitivity) mea-
sures the ratio of true positives to the total number of actual positives.

• F1‐Score (Classification): The F1-score is the harmonic mean of precision and
recall.

• Mean Absolute Error (MAE) (Regression): MAEmeasures the average absolute
difference between the predicted values and the actual values.

• Mean Squared Error (MSE) (Regression): MSE calculates the average of the
squared differences between predicted and actual values.

1.2 Generalization

The primary objective in Machine Learning is achieving good performance on novel,
unseen inputs on which our model was trained. Generalization is called the ability
to perform well on unobserved inputs.

When a Machine Learning model is trained, there is typically access to a training
datase, the trainset. An essential metric to be computed on this dataset is the training
error, which represents the error that is aimed to be minimized. What sets Machine
Learning apart from optimization is the goal of reducing not only the training error,
but also the generalization error, which refers to the expected value of the error
on a new, unseen input. This is also commonly referred to as the test error. The
estimation of a Machine Learning model’s generalization error is commonly achieved
by measuring its performance on a test set of examples that were collected separately.
This is known as the testset.

An immediate connection can be observed between the training and test error is
that the expected training error of a randomly selected model is equal to the expected
test error of that model. For achieving good generalization, two key goals are aimed
to be achieved. Firstly, the training error is sought to be minimized to ensure good
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performance on the data on which the model is trained. Secondly, efforts are made to
narrow the gap between the training error and the test error, which quantifies how
well the model generalizes to new, unseen data. These two factors correspond to the
two key challenges in Machine Learning : underfitting and overfitting.

• Underfitting: Underfitting occurs when a model is too simple to capture the
underlying patterns in the training data, leading to poor performance on both
the training and test datasets. It signifies that the model hasn’t learned the data
well and lacks the complexity needed to make accurate predictions.

• Overfitting: Overfitting is a challenging issue and occurs where a model becomes
excessively complex, capturing noise and random fluctuations in the training
data instead of the genuine underlying patterns. This results in excellent per-
formance on the training dataset but poor performance on unseen data (test
dataset), as the model fails to generalize effectively.

Model capacity, represents the ability of a model to learn and represent complex
relationships within the data. We can control whether a model is more likely to
overfit or underfit by altering its capacity. There are in fact many ways of changing a
model’s capacity. Model capacity is not solely determined by the model choice and the
number of parameters it comprises. The model defines a family of functions that the
learning algorithm can select from while adjusting parameters to minimize a training
objective. This concept is referred to as the representational capacity of the model,
and it often poses a challenging optimization problem. Consequently, the learning
algorithm does not seek to identify the optimal function f ⋆ but rather aims to find
one, f̂ , that substantially reduces the training error.

1.3 Feedforward Neural Networks

Feedforward Neural Networks, or multilayer perceptrons (MLPs), is the subfield
of Machine Learning models that made the most significant achievements in recent
years in the research area of Artificial Intelligence (AI). The goal of a feedforward
network is to approximate some function f ⋆. For instance, a MLP classifier maps an
input x to a category y. The MLP establishes a mapping y = f(x; θ) and acquires the
optimal function approximation by learning the values of the parameters θ. These
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models are referred to as feedforward because the information passes through the
function to evaluate from x, through the intermediate computations used to define f ,
and finally to the output y.

Feedforward networks build upon the foundational concept of the basic Percep‐
tron, who invented from the psychologist F. Rosenblatt from Cornell University [2].
It is known as the ”Perceptron” by its inventor, incorporating both analogue and dig-
ital signals with a threshold component that transforms analogue signals into digital
ones. It is regarded as the initial artificial neural network (ANN). The Perceptron (see
Figure 1.1), multiplies each feature, xi, of the input vector x, with its corresponding
weight wi. The weight w0, also known as bias, is always multiplied by the number
one. Afterward, the total sum passes through the activation function ϕ, as defined in
Equation 1.1.

ϕ =

1, if w0 +
∑d

i=1 wixi > 0

0, otherwise
(1.1)

1

x1

x2

xd

w0

w1

w2

wd

Σ ϕ o

Inputs Weights Summation Activation Output

Figure 1.1: F. Rosenblatt’s Perceptron.

Expanding upon the foundational Perceptron, feedforward networks extend the
Perceptron’s capabilities by introducing multiple layers f i(x) of interconnected neu-
rons, allowing for the modeling of more intricate relationships within data. They
are referred to as networks since they are commonly composed by combining mul-
tiple functions together, the hidden layers. The model is associated with a chained
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structure graph (see Figure 1.2), whereby each layer output feeds into the subsequent
hidden layer as an input. The overall length of the chain gives the depth of the model.
Each hidden layer of the network is typically vector-valued and the dimensionality
of these hidden layers determines the width of the model. It is optimal to perceive
feedforward networks as machines for approximating functions that are intended to
achieve statistical generalisation, often drawing upon some knowledge gained from
our observations.

Non-linear activation functions, such as the Sigmoid, Rectified Linear Unit (ReLU),
or Hyperbolic Tangent (tanh), introduce non‐linearity into the network. They enable
neural networks to approximate complex, non-linear functions by capturing non-
linear patterns and relationships in data, that are common in real-world data. By
applying non-linear activation functions to the weighted sums in the hidden layers,
the network gains the capacity to learn and represent intricate relationships.

Input Layer f1(x) f2(x) Output Layer

Figure 1.2: Feedforward Neural Network architecture with 2 hidden layers.

1.4 Cost Function Optimization

Nearly all of feedfoward networks are trained by stochastic gradient descent or
SGD, which is an extension of gradient descent. Gradient descent is an optimization
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algorithm commonly used in Machine Learning to minimize a cost or loss function.
It iteratively updates the parameters of a model to find the minimum of the cost
function. A cost function, or loss function, denoted as J(θ), measures the network’s
effectiveness, similar to the metrics outlined in Section 1.1, by quantifying the dif-
ference between predicted and actual outputs. The optimization process of gradient
descent, however, necessitates a differentiable cost function. For example, the param-
eters of MLP for classification tasks are often optimized using the Cross-Entropy Loss
cost function:

CrossEntropy = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

where N is the number of training examples, yi is the true class label for the i-th
example (0 for one class and 1 for the other in binary classification), and ŷi is the
predicted class probability (typically obtained using a softmax activation function for
multiclass classification).

On the other hand a widely used cost function for regression tasks is the Mean
Squared Error (MSE):

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (1.2)

where N is the number of training examples, yi is the actual target value for the ith
example, and ŷi is the predicted value for the i-th example.

The core idea behind SGD is the perspective that the gradient can be seen as an
expectation. This expectation can be efficiently approximated using a small subset of
samples. More precisely, in each iteration of the algorithm, a minibatch of examples
B = {(x(1), y(1)), . . . , (x(m′), y(m

′))} can be randomly drawn uniformly from the training
set. The size of the minibatch, denoted as m′, is usually selected as a relatively small
number of examples, typically ranging from 1 to a few hundred always depending
on the training set size m.

The estimation of the gradient is defined as:

∇θLoss(θ) = −1

b

b∑
i=1

∇θLoss(x(i), y(i))

where ∇θ represents the gradient with respect to the networks parameters θ, Loss(θ)
is the loss function, m′ is the minibatch size, (x(i), y(i)) represents the i-th minibatch
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sample with input x(i) and target y(i). ∇θLoss(x(i), y(i)) is the gradient of the loss with
respect to the model parameters for the i-th minibatch example.

Stochastic Gradient Descent (SGD) plays a vital role in the extension of MLPs to
Deep Neural Networks (DNNs), described in Chapter 3. This significance arises from
SGD’s proficiency in optimizing models within high-dimensional parameter spaces,
its regularization capacity, aptitude for escaping local minima, adaptability through
dynamic learning rates, suitability for parallel computation, memory efficiency, and
applicability in real-time learning scenarios. The adaptability and versatility inherent
in SGD render it an indispensable tool for the efficient training and optimization of
the intricate architectures and extensive datasets commonly associated with DNNs.

1.5 Thesis Contribution

This thesis makes a notable contribution by proposing the integration of deep learning
techniques with physics-based prior knowledge to address the challenge of Elemental
Maps Prediction in Macro-XRF (MA-XRF) analysis. By incorporating a predefined
layer encapsulating spectral signatures of examined elements, the research signifi-
cantly enhances model accuracy and effectiveness, offering a promising approach for
improving elemental mapping in materials analysis. This innovative fusion of ma-
chine learning and domain-specific insights has the potential to advance the broader
field of MA-XRF and has practical implications for various applications, including
cultural heritage preservation and materials science.

1.6 Thesis Outline

The following is a brief description of the structure of the following chapters:

• Chapter 2: Presentation of Macro X-ray fluorescence, including Image Analysis
Techniques and Spectral Properties.

• Chapter 3: Introduction to deep learning, exploring representation learning with
deep neural networks, convolutional neural networks (including convolution
and architecture), and training techniques.
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• Chapter 4: Outline of the proposed method using deep networks (Fully Con-
nected Networks and Convolutional Networks) and incorporating Physics-Based
Prior Knowledge.

• Chapter 5: Description of the experimental procedures carried out and analysis
of the experimental results.

• Chapter 6: A summary of the thesis, along with ideas for future research and
improvements in Elemental Distribution Mapping.
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CHAPTER 2

MACRO X-RAY FLUORESCENCE

2.1 Introduction

2.2 Spectro‐Scanning techniques for Image Analysis

2.3 Physics Principles of Macro‐XRF

2.4 Spectrum Properties and Analysis

2.1 Introduction

Macro X-ray fluorescence (MA-XRF) is a powerful analytical technique that enables
non-destructive elemental analysis of large objects and surfaces. It provides valuable
information about the elemental composition of materials, allowing researchers to
identify and characterize various substances. Macroscopic XRF is closely correlated
with hyperspectral imaging, as both techniques involve the acquisition of spectral
information. While hyperspectral imaging focuses on capturing detailed spectral data
across a wide range of wavelengths, macro XRF specifically targets X-ray wavelengths
(Figure 2.1) emitted by excited atoms in a sample. This technique offers several ad-
vantages, including its non-invasive nature, high sensitivity, and ability to analyze
diverse materials. Moreover, macro XRF finds significant applications in different
fields, such as archaeology, art conservation, geology, and environmental science. In
the domain of cultural heritage, macro XRF has emerged as a valuable tool for in-
vestigating and preserving historical artifacts, paintings, sculptures, and architectural
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elements. By providing insights into the elemental composition of these cultural trea-
sures, macro XRF aids in authentication, provenance determination, and the identifi-
cation of restoration materials, contributing to the preservation of our shared heritage.

Figure 2.1: The Electromagnetic Spectrum: Illustration depicting the full range of
electromagnetic wavelengths.

2.2 Spectro‐Scanning techniques for Image Analysis

The spectro-scanning technique plays a crucial role in the analysis of macro-XRF
images. The first step in spectro-scanning involves the acquisition of XRF images.
XRF instruments emit high-energy X-ray radiation onto the sample surface, causing
the atoms within the sample to emit characteristic fluorescent X-rays. These emitted
X-rays are then collected and processed to generate a spatially resolved image of the
sample’s elemental composition.

To obtain XRF images, a scanning mechanism is employed (Figure 2.2). This
mechanism consists of an X-ray source and a detector that move together across
the sample surface in a controlled manner. The X-ray source emits a focused X-ray
beam onto the sample, typically scanning the surface in a grid pattern or along pre-
determined lines. As the X-ray beam interacts with the sample, the emitted X-rays
are captured by the detector which records their energy and intensity. The scan-
ning process is often controlled by precise mechanical systems that ensure accurate
positioning and movement of the X-ray source and detector. These systems em-
ploy various mechanisms such as stepper motors, linear stages, or robotic arms. The
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synchronized movement of the X-ray source and detector enables the collection of
spatially resolved XRF data, which forms the basis of macro-XRF images.

Figure 2.2: The spectro-scanning mechanism - Bruker M6 Jetstream.

Once the XRF data is acquired, it undergoes a series of processing steps to gener-
ate meaningful images. Initially, the raw data is pre-processed to remove noise and
correct for instrumental artifacts. This includes background subtraction to eliminate
signals unrelated to the sample’s elemental composition. Next, the processed data
is reconstructed into an image format using appropriate software. The XRF data is
typically represented as a matrix of intensity values, where each pixel corresponds
to a specific spatial location on the sample surface. This matrix can be visualized
using various techniques, such as color mapping, where different elemental intensi-
ties are assigned different colors, allowing for the visual identification of elemental
distributions.

In addition to elemental images, spectroscopic information can be extracted from
the XRF data. By analyzing the energy spectrum of each pixel, it is possible to identify
the presence of specific chemical elements and quantify their relative concentrations.
This spectral analysis provides valuable insights into the composition and structure
of the analyzed sample.
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2.3 Physics Principles of Macro‐XRF

X-ray fluorescence (XRF) spectroscopy is based on the interaction between high en-
ergy X-rays and the atoms in a sample, as shown in the figure 2.3. When a sample is
exposed to X-rays, the inner-shell electrons of the atoms can be excited to higher en-
ergy levels. These excited electrons are inherently unstable and quickly return to their
original energy levels, resulting in the emission of characteristic fluorescent X-rays.

Figure 2.3: Physical mechanisms within an atom for X-ray-fluorescence [1].

The XRF excitation process occurs through two primary mechanisms: X-ray ab-
sorption and the photoelectric effect. X-ray absorption involves the absorption of
incident X-rays by atoms in the sample, leading to the excitation of inner shell elec-
trons. The probability of absorption (P ) can be described by the Beer-Lambert law:

P = I0 · e−µx (2.1)

where I0 is the initial intensity of the X-ray beam, µ is the linear absorption
coefficient, which depends on the atomic properties and energy of the incident X-
rays, and x is the thickness of the sample.

In the photoelectric effect, an incident X-ray photon interacts with an atom’s inner
shell electron, causing the electron to be ejected from its orbit. The energy (E) of the
ejected electron is equal to the difference between the X-ray photon energy (Ephoton)
and the binding energy (Ebinding) of the electron shell from which it originated:

E = Ephoton − Ebinding (2.2)
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The emitted characteristic X-rays during the de-excitation process provide valu-
able information about the elemental composition of the sample. Each chemical ele-
ment has unique characteristic X-ray energies associated with its electron transitions,
enabling the identification and quantification of elements present in the sample.

MA-XRF data can be thought of as high-dimensional images, akin to traditional
two-dimensional images but with an added layer of complexity. In this context, each
pixel of the image corresponds to a spectrum, which is essentially a large vector of X-
ray wavelengths emitted by excited atoms within the sample. This multidimensional
data structure captures a wealth of information about the sample’s composition and
distribution of elements, making it a powerful tool for in-depth analysis and visual-
ization. Just as in traditional image processing, where each pixel represents a color
or intensity value, in MA-XRF, each pixel encapsulates a spectrum, offering a rich
source of data for researchers to explore and extract valuable insights. Figure 2.4b
visualizes the MA-XRF data structure as presented by the authors in [3].

Figure 2.4: MA-XRF Data Representation.

To detect and analyze the emitted X-rays, various types of detectors are employed
in macro-XRF instruments. Commonly used detectors include solid-state detectors,
such as silicon drift detectors (SDD) or energy-dispersive detectors (EDS) [4], and gas-
filled detectors like proportional counters or microcalorimeters. Solid-state detectors
[5], operate based on the principle of X-ray energy conversion into electrical signals.
When an X-ray photon interacts with the detector material, it produces a charge
cloud that is collected by the detector’s electrodes, generating an electrical pulse
proportional to the X-ray energy. This signal is then processed and analyzed to
determine the energy and intensity of the detected X-rays. Gas-filled detectors [6],
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on the other hand, rely on the ionization of gas molecules by X-ray photons. When
an X-ray interacts with the gas, it ionizes the gas atoms, leading to the formation
of ion-electron pairs. These ion-electron pairs are collected, resulting in an electrical
signal that can be measured and analyzed to obtain information about the X-ray
energy and intensity.

The macro-XRF technique considers not only the excitation and emission pro-
cesses but also the effects of various factors on the resulting X-ray spectra. Factors
such as X-ray attenuation in the sample, fluorescence yield, and detector efficiency
impact the measured XRF intensities. Understanding and accounting for these factors
are crucial for accurate quantitative analysis and interpretation of macro-XRF data.

2.4 Spectrum Properties and Analysis

XRF spectra retain useful properties that are essential for in-depth analysis and un-
derstanding. They enable researchers to improve analytical methods, reveal hidden
compositional subtleties and, in turn, promote a deeper understanding of complex
materials. More precisely, a XRF spectrum represent the distribution of X-ray inten-
sities at different energies emitted by the sample [7]. Each energy corresponds to a
specific atomic transition within the sample’s constituent elements.

As illustrated in Figure 2.5, the form and intensity of the chemical elements
(such as the Ka transition of Fe and Zn) differ, offering essential insights into the
existence of elements and their corresponding ratios. XRF spectra have a key property:
the pure elemental spectrum signatures are non-linearly combined. To clarify this
statement objectively, a pure elemental spectrum can be obtained by either scanning
a sample that exclusively contains a specific element or generating synthetic spectra
using specialized software that employs statistical analysis and requires input of the
necessary parameters for generation [8]. Such a combination or mixture results from
the overlapping excitation and emission energies of the different elements.

The process of separating the combination of spectra into its individual elemental
spectra is referred to as Spectral Unmixing or Decomposition. Various algorithms
and mathematical models have been developed to perform this task [9, 10, 11]. These
methods aim to identify the individual elemental contributions based on known pure
elemental spectra. By comparing the measured mixed spectrum to a library of pure
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Figure 2.5: Revealing Elemental Composition: Sum Spectrum of Scanned Image.

elemental spectra, it is possible to estimate the relative concentrations of the elements
within the sample. Nonetheless, Spectral Unmixing can be a challenging task due
to factors such as spectral overlap, limited energy resolution of the detector, and
measurement noise. Advanced techniques, such as Non-negative Natrix Factorization
(NMF) [12] and constrained Non-linear Least Squares fitting, have been employed to
improve the accuracy and reliability of Spectral Unmixing [13].

Interpretation of XRF spectra involves identifying the characteristic peaks and de-
termining the corresponding elements. Each element has unique XRF spectral char-
acteristics such as peak energies and relative intensities. Comparison of the measured
spectra with reference spectra or databases of known elemental XRF signatures aids
in elemental identification. In addition, software tools and algorithms have been de-
veloped to automate the process of element identification and quantification based on
spectral analysis [14, 15].
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CHAPTER 3

DEEP LEARNING

3.1 Introduction

3.2 Deep Neural Networks

3.3 Convolutional Neural Networks (CNNs)

3.1 Introduction

Deep Learning has risen to prominence thanks to a confluence of factors that have
transformed the landscape of artificial intelligence. The sheer availability of massive
datasets generated in the digital age, coupled with significant advancements in hard-
ware capabilities, has paved the way for Deep Neural Networks (DNNs) to emerge.
Breakthroughs in algorithmic techniques, from novel architectures to optimization
methods, have made it possible to train and deploy deep networks with unprece-
dented efficiency. Real-world applications across domains such as computer vision
(CV) [16, 17, 18], natural language processing (NLP) [19, 20], and autonomous sys-
tems, have showcased the transformative potential of deep learning, further fueling
its popularity. Additionally, the rise of transfer learning [21, 22], open-source frame-
works, a vibrant research community, and industry giants’ substantial investments
have collectively propelled deep learning into the mainstream, making it an essential
tool for tackling complex and diverse challenges in the modern era.
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3.2 Deep Neural Networks

3.2.1 Representation Learning

Deep Neural Networks, constitute an expansion of Feedforward Neural Networks
characterized by their depth, with multiple hidden layers between the input and
output layers (Figure 3.1). In a DNN architecture, each hidden layer consists of a
collection of neurons or units, followed by a non-linear activation function, and these
layers are densely connected through weighted connections.

Figure 3.1: A Deep Neural Network consisting of five hidden layers.

Deep networks trained in a supervised manner can be thought as performing a
kind of representation learning. The hidden layers learn to provide a representation
to the output layer, which is typically a linear classifier, responsible for predicting the
correct outputs for the given inputs. Training using a supervised criterion inherently
causes the representations in each hidden layer to acquire characteristics that facilitate
the learning process. To illustrate, inputs belonging to classes that are not linearly
separable in their features, probably will become linearly separable in the last hidden
layer, through the effective representations derived from the hidden layers outputs.

Supervised training of feedforward networks does not involve explicitly imposing
any condition on the learned intermediate features. Other kinds of representation
learning algorithms are often explicitly designed to shape the representation in some
particular way [23]. However, a tradeoff between preserving as much information
about the input as possible and achieving desirable representation properties is en-
countered in most representation learning problems. Efficiently learning representa-
tions of input data is of particular interest, due to its potential to enable unsupervised
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and semi-supervised learning, as noted in [24], stemming from the availability of
abundant unlabeled training data and limited labeled training data.

While supervised training of feedforward networks doesn’t explicitly impose con-
ditions on learned intermediate features, other representation learning algorithms,
such as Autoencoders, are designed with the explicit purpose of shaping representa-
tions in a specific manner. Autoencoders, a popular approach in representation learn-
ing, employ a deep network architecture (Figure 3.2) that consists of an encoder and
a decoder. The encoder compresses the input data into a lower-dimensional repre-
sentation, often called a bottleneck layer or latent space, while the decoder aims to
reconstruct the input from this representation. This process encourages the network
to capture meaningful features in the data, striking a balance between information
preservation and the creation of useful representations. Similar to other representation
learning paradigms, Autoencoders play a pivotal role in leveraging large volumes of
unlabeled data for various machine learning tasks, including unsupervised and semi-
supervised learning.

Figure 3.2: The autoencoder architecture.

In summary, representation learning is a key concept in deep neural networks.
While supervised training naturally fosters helpful representations, techniques like
Autoencoders intentionally shape them. This balance between preserving information
and creating useful representations is vital for advancing machine learning, especially
in scenarios with ample unlabeled data. Representation learning continues to drive
improvements in data-driven decision-making.
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3.2.2 Back‐Propagation

When a DNN is fed with an input x and produces an output ŷ, the information
flows forward through the network’s hidden layers and produces a scalar cost J(θ).
This process is called forward propagation. The back‐propagation algorithm [25],
allows the information from the cost J to then flow backwards through the network, in
order to compute the gradient. Deriving an analytical expression for the gradient is a
straightforward task, yet numerically assessing this expression can be computationally
demanding. The back-propagation algorithm, on the other hand, accomplishes this
efficiently through a straightforward and cost-effective algorithm that automatically
computes the gradient.

Neural networks can be observed as computational graphs where the individual
computational units or nodes are directed connected with other nodes, all respon-
sible for performing operations, such as summations, multiplications and in general
mathematical computations. If a variable y is computed by applying an operation to
a variable x, then a directed edge from x to y can be defined. The chain rule of calcu-
lus finds application in computing the derivatives of functions created by composing
other functions with known derivatives. Back-propagation is an algorithm designed
to effectively compute the chain rule, employing a specific sequence of operations that
optimizes efficiency.

Given J and a deep neural network with parameters θ, the algorithm iteratively
computes the gradients as presented in Equation 3.1.

∂J
∂θ

=
∂J

∂fH+1
· ∂f

H+1

∂fH
· ∂fH

∂fH−1
· . . . · ∂f

2

∂f 1
· ∂f

1

∂θ
(3.1)

where ∂J
∂fH+1 represents the gradient of the cost function with respect to the net-

work’s output (fH+1), and ∂fH

∂fH−1 represents the gradient of the H-th layer output
(fH) with respect to the (H − 1)-th layer output (fH−1). This process is repeated
layer by layer, propagating the gradients backward through the network to adjust
the parameters θ and improve its performance during training.

The update rule for parameters θ of the hidden layer f i in a neural network using
backpropagation with gradient descent formulated in Equation 3.2,

θinew = θiold − α∇θiJ(θiold) (3.2)

where θinew and the θiold represents the updated and the current parameters of the
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hidden layer f i respectively. α is the learning rate, hyperparameter that controls the
step size during the update. ∇θi represents the gradient with respect to the param-
eters θi and J(θiold) the cost function associated with the network, which is typically
calculated using the forward and backward pass through the network.

3.2.3 Regularization

A central problem in deep neural networks is how to learn them to perform well
not just on the training data, but also on new unobserved inputs. Many Machine
Learning strategies are explicitly designed to minimise test error, potentially leading
to an increase in training error. These strategies, collectively known as regularization,
aim to improve model generalization.

Many regularization approaches are based on limiting the capacity of deep models,
by adding a parameter norm penalty Ω(θ) to the cost function J which was expressed
in Equation 3.3.

J̃(θ;X, y) = J(θ;X, y) + αΩ(θ) (3.3)

The hyperparameter α ∈ [0,∞) is responsible for weighting the relative contri-
bution of the norm penalty term, Ω, relative to the standard cost function J , where
setting α to 0 results in no regularization. When the training algorithm minimises the
regularised objective function J̃ , it reduces both the initial objective function J on the
training data and a measure of the parameter θ. Equation 3.4 presents one of the most
important parameter norms that are widely used for deep networks regularization,
the L2 regularization also known as ridge regression.

Ω(θ) =
1

2
∥w∥22 (3.4)

Another way for a ML model to achieve generalization, as many researchers claim,
is to train it on more data, although in practice, the amount of available data is lim-
ited. One way to overcame such an obstacle is to create and incorporate fake data into
the training set and in this way to increase the diversity in the data. Dataset augmen‐
tation has been a particularly effective technique for difficult classification problems
like object recognition. A commonly used technique in Computer Vision and Natural
Language Processing is the generation of new data through transformations applied
to existing data. Such transformations could include image manipulations such as
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rotation, translation, scaling, and flipping, among others. However, it is important to
exercise caution to ensure that transformations do not result in misclassifications (e.g.
horizontally flipping a ‘6’ may result in a ‘9’).

A modern and promising approach for generating new fake data is through the
use of a special category of ML models, the Generative models. These models learn
to generate synthetic data that resembles real data but is not actually derived from
real-world examples. The two main types of generative models are Variational Au-
toencoders (VAEs) [26] and Generative Adversarial Networks (GANs) [27]. These
models aim to understand the underlying probability distribution of the training data,
allowing them to generate new outputs based on what they have learned. Instead,
they learn to approximate it through the neural network architecture and optimiza-
tion processes used during training. The focus is on generating data samples that
are statistically similar to real data, rather than providing an analytical probability
density function (PDF) formula.

Probably, the most commonly used form of regularization in deep learning is a
strategy called early stopping and it is popular due both to its effectiveness and its
simplicity. Specifically, researchers commonly define a validation subset, which is a
portion of the training subset excluded from both model training and testing. The
model’s performance is monitored on this validation set during training, and the error
or loss on this validation set is referred to as the validation error. Early stopping
involves terminating the training process when the validation error starts to increase,
indicating that the model is beginning to overfit the training data. This prevents the
model from learning noise in the data and helps it generalize better to unseen data.

Another widely used technique for achieving better generalization in deep learning
is dropout. Dropout is a regularization method that involves randomly setting a
fraction of the neurons in a neural network to zero during each training iteration. This
effectively turns off some neurons, making the network more robust and preventing
it from relying too heavily on any particular set of neurons. Dropout encourages the
network to learn more robust and distributed features, reducing the risk of overfitting.
During inference (when the model is used for predictions), dropout is typically turned
off. This simple yet effective technique has proven to be highly successful in improving
the generalization of deep neural networks.

In summary, generalization techniques play a crucial role in enhancing the per-
formance of deep learning models. These techniques are not mutually exclusive and
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can often be combined to further improve a model’s ability to generalize effectively
on unseen data.

3.3 Convolutional Neural Networks (CNNs)

3.3.1 Introduction

Convolutional neural networks, also known as CNNs are a specialized class of neural
networks designed for processing structured data objects [28]. These objects often ex-
hibit a grid-like structure, with examples including time-series data, represented as a
1D grid sampled at regular intervals, and image data, portrayed as a 2D grid of pixels.
CNNs have proven highly effective in practical applications. The term ”convolutional
neural network” signifies that these networks utilize a mathematical operation called
convolution, which is a specialized form of linear operation. Essentially, convolutional
networks are deep neural networks that incorporate convolution instead of traditional
dot product multiplication in at least one of their layers.

3.3.2 Convolutional Layer

In the realm of convolutional neural networks (CNNs), the convolutional layer is
a fundamental building block responsible for extracting features or representations
from input data in a manner inspired by the mathematical operation of convolution.
In its simplest form, convolution is the result of sliding a small window, known as
a kernel or filter, over the input data and computing the element-wise dot product
at each position. It’s important to note that convolutional layers exhibit a unique
property known as weight sharing, where the same set of weights (kernel) is used at
different spatial positions of the input. This operation is visualized in Figure 3.3 for
1D data. Importantly, convolution, as a linear operation, is differentiable, allowing for
the use of gradient-based optimization during training.

In practice, a convolutional layer often consists of multiple convolutional filters
applied in parallel to the input data. Each filter captures different patterns or features
from the input. The results from these filters are then combined, typically through
element-wise addition, and passed through a non-linear activation function such as
the rectified linear unit (ReLU) to form a convolutional block.
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Figure 3.3: The convolution operation

Three crucial parameters influence the behavior of a convolutional layer:

• Kernel: The kernel defines the size and shape of the local receptive field. It
determines which features the filter extracts from the input.

• Stride: Stride specifies the step size at which the kernel slides over the input. A
larger stride reduces the spatial dimensions of the output feature map.

• Padding: Padding involves adding extra values (often zeros) around the input
data to control the spatial dimensions of the output feature map. Padding can
be ’valid’ (no padding) or ’same’ (padding to preserve input dimensions).

The convolutional layer’s ability to automatically learn and extract hierarchical
features from data makes it a cornerstone of deep learning architectures, especially
in computer vision tasks.

3.3.3 Pooling Layer

In CNNs, the pooling layer is a crucial component that serves to downscale feature
maps generated by preceding convolutional layers. Pooling operations are employed
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to reduce spatial dimensions while retaining essential information, leading to more
efficient computation and translational invariance.

There are two primary types of pooling commonly used:

• Max Pooling: In max pooling, a small window, known as the pooling kernel or
filter, slides over the input feature map and selects the maximum value within
the window at each position, discarding the rest. This operation focuses on
preserving the most prominent features within each region.

• Average Pooling: Average pooling computes the average value within the pool-
ing window, resulting in a smoother downsampling process. It provides a form
of translational invariance while being computationally less intensive than max
pooling.

Pooling layers offer several benefits in CNNs:

• Dimension Reduction: Pooling reduces the spatial dimensions of feature maps,
which subsequently reduces the computational complexity and memory require-
ments of the network.

• Translation Invariance: By selecting key values, pooling layers make the net-
work less sensitive to small spatial shifts or variations in the input data.

• Hierarchical Feature Abstraction: As CNNs progress through multiple pooling
layers, they capture increasingly abstract and high-level features from the input.

The key parameters for pooling layers include the size of the pooling window
and the stride, which determine how the pooling operation is applied to the input
data. Additionally, variants of pooling, such as global average pooling, have been
introduced and found applications in various network architectures.

In combination with convolutional layers, pooling layers enable CNNs to efficiently
learn hierarchical features from data, making them indispensable in numerous com-
puter vision and deep learning applications.

3.3.4 CNN Architecture

The architecture of CNNs is also characterized by a hierarchical arrangement of lay-
ers (Figure 3.4), each designed to capture and transform features from the input
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data progressively. At its core, a typical CNN consists of three main types of layers:
convolutional layers, pooling layers, and fully connected layers.

Fully connected layers, also known as dense layers, are traditionally placed at the
end of the CNN architecture. They serve to consolidate the extracted representations
and provide the final classification or regression output. These layers are fully con-
nected, meaning that each neuron in a fully connected layer is connected to every
neuron in the previous layer, like the classic feedforward neural networks.

Figure 3.4: A CNN is depicted visually, composed of four convolutional layers and
two fully-connected layers. The first layer has a kernel size of 3, while the remaining
have a kernel size of 2.

The combination of these layers forms a deep neural network that is particularly
effective for tasks involving structured data, such as image recognition and natural
language processing. The precise arrangement and complexity of CNN architectures
can vary widely based on the specific task and dataset, with deeper networks often
capturing more abstract and high-level features.
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CHAPTER 4

ELEMENTAL DISTRIBUTION MAPPING WITH
DEEP NEURAL NETWORKS

4.1 Introduction

4.2 Problem Definition

4.3 Deep Networks Models

4.4 Incorporating Physics‐based Prior Knowledge

4.5 Evaluation Measures

4.6 The Objective Function

4.1 Introduction

Elemental distribution mapping or elemental mapping, is a crucial analytical tech-
nique in the field of materials science and related disciplines. It involves the spatial
visualization and quantification of the distribution of chemical elements within a
sample, providing invaluable insights into the composition and structure of materi-
als. The utility of elemental mapping lies in its ability to unveil intricate details about
the elemental composition of materials, enabling researchers to make informed deci-
sions, optimize processes, and gain a deeper understanding of the underlying physical
and chemical properties [29, 30, 31]. By producing high-resolution elemental maps,
scientists can identify impurities, defects, or gradients within materials, which is es-
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sential for quality control and the development of advanced materials with tailored
properties.

However, the practical implementation of elemental mapping in real-world sce-
narios poses significant challenges. Traditional elemental analysis methods, such as
electron probe microanalysis (EPMA) [32] and energy-dispersive X-ray spectroscopy
(EDS) [33], require manual operation, are time-consuming, and often demand a
high level of expertise. Additionally, these methods may be limited in their ability to
handle complex sample geometries and large datasets efficiently. The automation of
elemental mapping processes is thus imperative to overcome these challenges.

There is a growing need for automation to tackle these challenges and improve the
efficiency of elemental mapping. Deep Neural Networks have emerged as a promis-
ing solution for automating complex processes. By harnessing their capabilities, it is
possible to significantly enhance the speed and precision of elemental mapping.

4.2 Problem Definition

In the context of this study, elemental mapping is formally defined as a Multi‐output
Regression Problem. This characterization encapsulates the fundamental objective of
estimating and quantifying the concentrations of multiple chemical elements within
each pixel or region of interest in an image or sample. These concentrations are
determined from the counts of specific X-ray fluorescence characteristic transitions,
where a high count indicates a high concentration of the corresponding element. Term
”Multi-output” is aptly chosen, signifying that the predictive model must simultane-
ously handle and predict accurately the overall concentration (or total number of
counts) for all the target elements, resulting in a multi-dimensional output space.
Specifically, the problem can be formulated as follows:

Y = f(X) + ε

where X denotes the input data, consisting of individual spectra obtained from the
spectroscanning mechanism and Y the corresponding ground-truth elemental con-
centrations. f(·) is the mapping function implemented by the Deep Artificial Neural
Networks (DNNs) to predict elemental concentrations while ε accounts for the residual
error or noise in the predictions.
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To address this complex challenge, we employ Deep Artificial Neural Networks
(DNNs), recognized for their ability to handle intricate, high-dimensional datasets
effectively. The inputs comprise of individual spectra corresponding to each pixel
from the spectro-scanned image, while the DNNs are responsible for predicting the
element concentrations for the corresponding spectra. The concentration values are
non-negative integers, since they are defined as the total counts of the characteristic
transitions.

Evaluating the performance of DNNs in the context of elemental mapping hinges
on establishing criteria for a ”good” network. In practical terms, the quality of a
network is assessed based on its capacity to provide accurate estimates of elemental
concentrations across the entire concentration range. While identifying and quantify-
ing higher concentrations of elements is generally less challenging, particular attention
must be dedicated to lower concentration levels. Lower concentrations pose a chal-
lenge because they are often obscured by noise and overlapped by other elements,
making their accurate identification and estimation a tough task even for seasoned
experts in the field. Thus, the effectiveness of a network is measured, in part, by its
ability to accurately estimate elements, particularly in scenarios involving low con-
centrations.

4.3 Deep Networks Models

The primary Machine Learning models being considered for the prediction of Ele-
mental Distribution Maps are the essential Fully Connected Model (FCN) and a 1D
Convolutional Neural Network (1DCNN).

The intuition for studying the FCN arises from the fact that in FCNs first hidden
layer, the weights of each neuron are directly connected to corresponding input values
from the spectra. This design allows each neuron to act as a spectral signature identi-
fier, recognizing intricate patterns and correlations within the spectral data. The most
effective FCN architecture identified through the experimentation process is visually
depicted in Figure 4.1. The FCN architecture proposed includes multiple layers. The
input layer is customized to accommodate the 4096 total features extracted from the
input spectra, as detailed in the dataset description presented in Section 5.1. In ad-
dition, the architecture includes three hidden layers. The first hidden layer yields
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512 features, while the subsequent two yield 64 features each. The output layer is
configured to yield k features, where k corresponds to the total number of elemental
concentration values that need to be predicted. Notably, each of the hidden layers
employs the ReLU activation function, introducing non-linearity to the intermediate
representations within the network.

X

Linear
ReLU

Linear
ReLU

Linear
ReLU

Ŷ

4096 512 64 64 12

Figure 4.1: The architecture of Fully Connected Network (FCN).

Regarding the proposed 1DCNN architecture, it comprises a sequence of five one-
dimensional convolutional layers tailored to effectively extract valuable features from
the input spectra, as revealed by the authors’ research at [34].

Specifically, the initial convolutional layer takes in a single input channel and
yielding an output of 64, employing a kernel size of 5 and a stride of 2 for effective
capture of local patterns. Subsequently, three more convolutional layers follow suit,
each taking in 64 input channels and producing 64 output channels, utilizing smaller
kernel sizes of 3 and a stride of 2 to further enhance the learned representations.
Finally, a fifth convolutional layer takes 64 input channels and yields 128, employing
the same kernel size and stride like the previous ones. Throughout the network, the
ReLU activation function is consistently applied to introduce non-linearity into the
intermediate representations.

Additionally, to mitigate overfitting during training, a dropout layer with a dropout
probability of 0.05 is incorporated. As is customary in convolutional neural networks,
a flattening step follows the convolutional layers to convert the series of representa-
tions into a singular vector. Lastly, a linear layer is used for the output layer. The
network architecture also integrates max-pooling with a kernel size of 2 and a stride
of 2 to reduce the spatial dimensions of the intermediate output representations, facil-
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itating the extraction of prominent features. The overall architecture of the proposed
1DCNN can be seen in Figure 4.2
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Figure 4.2: The architecture of 1D Convolutional Neural Network (1DCNN).

4.4 Incorporating Physics‐based Prior Knowledge

Throughout the experimentation, particularly in evaluating the deep networks de-
tailed in Section 4.3, it was apparent that these networks have encountered difficulty
in precisely estimating elemental concentrations in areas of paintings with extremely
low levels.

During experimentation a noteworthy observation emerged: during inference, the
neural network exhibited a tendency to overlook the low peaks in the input spectra.
As a result, significant portion of vital information contained within individual spec-
tra remained underutilized by the trained networks. This can be attributed to the
standard training process of neural networks, which relies on gradient-based algo-
rithms to minimize a loss function. When certain peaks, particularly the high peaks,
have a greater influence on the loss function, the associated gradients become larger.
Consequently, the network prioritizes the learning of patterns associated with these
high peaks, inadvertently relegating the significance of the lower peaks.

The significance of lower peaks in MA-XRF analysis cannot be underestimated.
These lower peaks, though less noticable, play a crucial role in characterizing the
elemental composition of the spectra. To grasp their importance, it’s essential to
consider the concept of the pure spectrum, which introduced in Section 2.4. As can be
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deduced from Figure 4.3, pure spectra function as elemental signatures, encapsulating
vital information about the height and width of the peaks, as well as the precise
energies at which they are positioned. While the high peaks may dominate the overall
signal, the lower peaks provide essential fine-grained details that aid in distinguishing
between the different elements. In essence, they act as indicators that contribute to
the comprehensive understanding of the spectral data, ensuring that no subtleties in
the elemental composition go unnoticed.

Figure 4.3: Pure spectra visualization of iron (Fe K), copper (Cu K), zinc (Zn K) and
strodium (Sr K).

In this study, an innovative approach is introduced that utilizes the concept of
pure spectra to enhance the efficiency and accuracy of neural networks in predicting
elemental concentrations within a given sample. To the best of current knowledge,
this represents the first attempt to incorporate pure spectra for the improvement of
elemental concentration estimation.

The rationale behind this approach is based on the intuition of computing the dot
product between real spectrum (comprising a mixture of elemental signals) and a nor-
malized pure spectrum. This operation serves as a measure of alignment or similarity
between the observed spectra and the idealized elemental signature. The outcome
of this procedure offers a numeric indication of a specific element’s contribution to
the given sample. High dot product outcomes suggest increased concentration of the
corresponding element. This is shown in Figure 4.4, which visualize the dot product
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(a) (b)

(c) (d)

Figure 4.4: Comparison of Expert-Derived Pb (a) and S (c) Distribution Maps with
Proposed Dot Product Results (b), (d).

result between the spectra/pixels of an X-ray scanned painting and the corresponding
pure spectra of lead (Pb) and sulfur (S).

This idea is implemented by extending the architectures of both the FCN and
1DCNN through the incorporation of an additional layer. Specifically, we introduce
the prior layer, which contains pre-existing and untrainable weightsW ∈ Rd×l, where
d represents the dimensionality of the input spectra, and l signifies the total number
of spectral signatures currently available. In prior layer’s weight matrix, each row
corresponds to the pure spectral signature of a respective element. The placement of
prior layer occurs immediately preceding the initial hidden layer in both networks;
however, the forward process varies between the two.

In FCN, the forward process of the prior layer remains consistent with that of
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traditional linear layers, where it computes the dot product between the input and
weight matrix W, yielding a l-dimensional vector o ∈ Rl. Each value in this vector
denotes the level of alignment between the input and corresponding weight. Thus, in
such a representation effectively indicates the degree to which each element is present
in the input.
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Figure 4.5: The architecture of Fully Connected Network (FCN+) featuring the Prior
Layer.

For the 1DCNN, a small modification has been made to the forward process in
order to effectively apply convolution operations that occur after the prior layer. These
changes have been made so that the multiplicative operations performed between the
input and weight values do not result in a sum, as is the case in dot product. Instead,
these operations produce distinct values placed in a new vector. Therefore, the prior
layer generates l representations or feature vectors, denoted as oi ∈ Rd, corresponding
to the presence of certain elements within the input spectrum. Subsequently, these l

generated representations are concatenated with the input spectrum, resulting in a
total of l + 1 input representations. They are then fed into the 1DCNN for additional
processing during the feed-forward phase.

Figures 4.5 and 4.6 present the overall architecture of FCN and 1DCNN respec-
tively.
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Figure 4.6: The architecture of 1D Convolutional Neural Network (1DCNN+) featuring
the Prior Layer.

4.5 Evaluation Measures

In assessing the performance of the elemental mapping models, four evaluation mea-
sures have been computed to gauge their effectiveness.

The initial measure for evaluating the models’ effectiveness is the Structural Sim‐
ilarity Index (SSIM). The measure is based on the principle that the human visual
system is highly adapted to recognize subtle changes in an image’s luminance (l),
contrast (c), and structure (s) [35]. SSIM ranges from -1 (entirely dissimilar images)
to 1 (completely identical images) and is presented as follows:

SSIM(ypred, yreal) =
(2 · µypred · µyreal + c1) · (2 · σypredyreal + c2)

(µ2
ypred

+ µ2
yreal

+ c1) · (σ2
ypred

+ σ2
yreal

+ c2)

where µypred , σypred , µyreal , σyreal , are the means and standard deviations of ypred and
yreal respectively. σypredyreal is the covariance of ypred and yreal, and c1, c2 are constants
to avoid instability when the denominator approaches zero.

The second evaluation measure is the Pearson Correlation between ypred and yreal,
so to quantify the linear relationship between the predicted elemental concentrations
and the actual ones. It provides information about the strength and direction of the
linear association. Certainly, a good value for the Pearson Correlation coefficient (r)
is one that is closer to 1, indicating a stronger positive linear relationship between
the predicted and actual elemental concentrations, where the predictions closely align
with the ground truth values. The Pearson Correlation coefficient (r) is calculated as:
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r(yreal, ypred) =

∑
(yreali − ȳreal)(ypredi − ȳpred)√∑

(yreali − ȳreal)2
∑

(ypredi − ȳpred)2

where yreali and ypredi represent individual data points in yreal and ypred, respectively.
ȳreal and ȳpred denote the means of yreal and ypred, respectively.

An additional method of assessing the precision of the predicted concentrations
ypred in contrast to the real values yreal is to fit them using a linear relationship in
the following form:

ypred = α · yreal

A good value for the slope α in the linear relationship between predicted concen-
trations ypred and actual values yreal would typically be close to 1.0. This indicates
that the predicted concentrations are highly accurate and align closely with the actual
values, following a nearly one-to-one relationship. Values significantly different from
1.0, whether smaller or larger, would suggest a deviation from an ideal fit, indicating
potential inaccuracies in the predictions.

Finally, it’s essential to consider the use of the absolute z‐score measure, which
gauges the accuracy of the predicted values (ypred) in comparison to the actual values
(yreal). This measure calculates absolute z-score value individually for each pixel p
and each transition k, following the methodology outlined in reference [36]:

zpk =
|ykpred − ykreal|

σykreal

The calculated z-score values (zpk) are then grouped into specific ranges, namely,
(0, 1], (1, 2], (2, 3], (3,+∞). The number of z-score values that fall within the [0, 1)

range serves as a crucial indicator of model performance – a higher count in this
range implies better model accuracy and closer agreement between predicted and
actual values.

4.6 The Objective Function

In the quest to optimize the model’s training process, different loss functions were
carefully considered, including the conventional LL1 and LL2 variants. However,
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during experimentation, a notable challenge arose: the precise estimation of low-
concentration values using conventional loss functions proved to be a difficult task.
Despite efforts, it was observed that L1 and L2 loss functions were inadequate in
capturing the nuances of the data, particularly when dealing with values at the lower
end of the concentration spectrum.

In response to this issue, a different approach was implemented by introducing the
LaL1 loss function into the model training regimen (Equation 4.1). This decision was
driven by the recognition of the need for adaptability in the loss function to account
for the inherent variability and uncertainty within the dataset. The LaL1 loss function
uniquely addresses these challenges by normalizing the absolute differences between
the true target values (yi) and the model’s predictions (ŷi) based on the square root
of the true target values.

LaL1 =
1

N

N∑
i=1

|yi − ŷi|√
yi

(4.1)

This adaptive loss function excels in scenarios where traditional loss functions
fall short, especially when dealing with low-concentration values. By placing more
emphasis on improving accuracy for smaller and more uncertain true values, the LaL1

loss function has significantly improved the model’s performance.
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CHAPTER 5

EXPERIMENTS

5.1 Datasets

5.2 Experimental Setup

5.3 Results and Analysis

5.1 Datasets

Training Deep Learning models poses challenges not only in enhancing existing
methodologies and algorithms but also in harnessing a substantial volume of rep-
resentative data to achieve optimal generalization performance when confronted with
previously unobserved data. A high-quality dataset for deep learning should encom-
pass a diverse range of examples, ensuring it captures the inherent variability in the
target domain. Furthermore, the dataset’s size and scale should align with the com-
plexity of the problem at hand, striking a balance between computational feasibility
and the model’s capacity to learn intricate patterns.

For the experiments, five Greek paintings, dating from the 18th to the 19th
centuries, were carefully selected (Figure 5.1). This dataset encompasses a total of
589,068 spectra, representing the entirety of pixels within the images as captured by
the spectro-scanning mechanism, courtesy of The Ceramics & Composites Laboratory
(CCL) within the Department of Material Science and Engineering at the University
of Ioannina [37]. Specifically, the dataset comprises:
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1. A mid-19th-century painting showing a Deesis scene (upper part) along with
St Georgios, “the dragon-slayer,” and the Three Hierarchs (lower part).

2. A late 19th-century painting featuring St. Fanourios.

3. A 19th-century painting presenting St. Dionisios.

4. A painting from the mid-18th century depicting the Virgin Mary Hodigitria,
commonly known as ’She who shows the way’ [39].

5. An early 19th-century, severely decayed painting depicting St. John the Fore-
runner and a Hierarch [38].

It is worth noting that these paintings were created using techniques and materials
akin to those employed by medieval painters. The process involved applying egg
tempera paints and delicate metallic leaves onto gessoed wooden panels [40, 41],
distinguishing them from the prevailing oil-based canvas paintings in contemporary
Western European art during the same period.

The MA-XRF measurements were carried out utilizing the M6-Jetstream scanner,
a product of Bruker [42], which allows scanning of areas up to 80x60 cm2. Equipped
with a 30 W Rhodium X-ray tube, the M6 Jetstream scanner operated with a high
voltage of 50kV and a current of 600 µA in the present measurements. Notably,
no absorption filter was applied to the beam path of the ionization radiation. The
incoming X-ray beam from the source was focused using a polycapillary glass optic
and directed perpendicularly onto the target surface. Photon detection was performed
using a silicon drift detector with a 30mm2 active area, providing an energy resolution
of 145 eV at the Mn Kα-energy. Each spectrum was comprised of 4096 features.
Detailed information regarding the MA-XRF scans and their associated scanning
parameters can be found in Table 5.1.

Painting Width, Height Pixel size Dwell time (ms/pixel) Beam diameter (µm)

1 202, 318 200x200 8 200

2 350, 228 500x500 25 580

3 382, 272 200x200 20 100

4 564, 428 500x500 50 580

5 364, 274 200x200 20 100

Table 5.1: Details of the available MA-XRF images.
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(a) Painting 1 (b) Painting 2 (c) Painting 3

(d) Painting 4 (e) Painting 5

Figure 5.1: The Dataset consists of 5 religious panel paintings.

Regarding the Ground-truth (GT) values that correspond to the count numbers
for all K and L characteristic XRF transitions, a careful preparation was carried out
by experts using the PyMca code (version 5.6.7) [43]. Twelve chemical elements
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were analyzed and selected for the present study, which include distinct transitions
including the K transition of S, K, Ca, Cr, Mn, Fe, Cu, Zn, and Sr, as well as the
L transition of Au, Hg, and Pb. Figure 5.2 illustrates the elemental maps for each
characteristic transition of Painting 4, obtained through analysis and normalized to
values between 0 and 1.

Figure 5.2: Elemental Distribution Maps of Painting 4.

5.2 Experimental Setup

Four distinct deep network architectures are investigated, described in Chapter 4: the
Fully Connected Network (FCN), the 1D Convolutional Neural Network (1DCNN),
as well as their extended counterparts, FCN+ and 1DCNN+, which incorporate the
Physics-Based prior knowledge through the additional Prior Layer. Regarding opti-
mization, the models were trained for 1000 epochs by employing the gradient-based
optimization method Adam [44], a widely acknowledged technique within the do-
main of deep learning. The learning rate, a pivotal hyperparameter essential for the
convergence and stability of the training process, is fine-tuned to 0.001.

To ensure precise training of neural networks for accurate predictions of element
maps, this study relies on MA-XRF spectra. When working with the five religious
panel paintings, each consisting of hundreds of thousands of pixels/spectra, it is im-
perative to use efficient sampling techniques. One significant reason for employing
sampling is the spatial dependence of pixels on their neighboring ones. This inher-
ent spatial correlation can lead to an imbalanced dataset, particularly affecting pixels
located on edges and in areas with significant damage or deterioration. To address
this issue and make the training process cost-effective and time-efficient, strided sam-
pling with a stride step of 10 is employed. This technique systematically reduces the
dataset’s size while preserving essential information.

For the purpose of ensuring the accuracy of experimental inferences, a leave‐one‐
out technique is implemented [45]. This involves evaluating the model’s predictions
on an entire, unaltered image, which is maintained as a separate dataset known as
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the testset. Importantly, no form of sampling is applied to this dataset. Regarding
the remaining images in the dataset, from which pixels are extracted for training,
a different approach is taken. This subset is divided into two distinct datasets: the
trainset which encompasses 80% of the data, and the valset, which accounts for
the remaining 20%. To ensure the selection of the best-performing model, a stringent
evaluation criterion implemented that relies on validation scores. This validation score
corresponds to the objective function discussed in Section 4.6. It is also utilized the
early stopping technique, which monitors the validation score during training. The
chosen model configuration will be the one that minimizes this score, facilitating
optimal generalization on unobserved data. This approach ensures that the model
will be fine-tuned to perform well not only on the training data but also on new,
unseen data.

Finally, for all the experiments conducted, the PyTorch library [46] is utilized,
harnessing the computational capabilities of a CUDA-enabled device for the efficient
training and evaluation of deep neural network models.

5.3 Results and Analysis

During the study, various architectures of deep neural networks were tested, along
with different initial training conditions and hyperparameter adjustments. The re-
sults of the experiments presented in this section are related to the best individual
architecture of each model, followed by subsequent comparisons to identify the most
efficient method and network in relation to the others.

5.3.1 Painting 4 Evaluation

The evaluation of the models performance on Painting 4 involved the use of all images
for training, with Painting 4 kept separate in the testset. The evaluation process for
Painting 4 commenced with the utilization of a fundamental and intuitive measure:
the comparison of elemental distribution maps predicted by the proposed deep mod-
els with the corresponding ground truth maps. The predicted elemental maps for all
target elements within Painting 4, which was utilized in testing, are presented in Fig-
ure 5.3. It should be noted that the models underwent effective training and careful
evaluation on Painting 4, which was not part of the training data. This visual com-
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parison offers valuable insights into the adaptability and generalization capabilities of
each model across different contexts and datasets, thereby providing a comprehensive
assessment of their overall performance and robustness.

Figure 5.3: Visualization and comparison of predicted and ground-truth Elemental
Distribution Maps for Painting 4.

Upon visual inspection, the predicted elemental maps appear to yield satisfactory
predictions. However, upon closer examination, notable deviations become evident
when comparing these predicted maps with their corresponding ground truth (GT)
counterparts. Particularly, in Figure 5.3, significant disparities are noticeable, espe-
cially in the case of the K transition elements: potassium (K), sulfur (S), zinc (Zn), and
chromium (Cr). These disparities are attributed to the extremely low elemental con-
centrations, which pose considerable challenges for models in effectively predicting
the actual ones.

Nonetheless, it is essential to emphasize that a thorough assessment of model
performance extends beyond visual analysis. A careful examination of the actual
concentration values, beyond standardized visual representations, is imperative to
draw definitive conclusions regarding model effectiveness.

To this end, Table 5.2 presents the evaluation results for Painting 4 using the
Structural Similarity measure. Among the models subjected to evaluation, 1DCNN+
emerged as the top performer, achieving an impressive average SSIM score of 0.982.
This high score signifies its exceptional capability to accurately capture the similarity
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FCN FCN+ 1DCNN 1DCNN+

Total 0.982 0.998 0.991 0.998

Avg 0.875 0.909 0.872 0.982

S K 0.872 0.398 0.963 0.981

K K 0.917 0.938 0.946 0.968

Ca K 0.989 0.991 0.991 0.997

Cr K 0.819 0.985 0.967 0.995

Mn K 0.989 0.989 0.883 0.997

Fe K 0.995 0.997 0.964 0.999

Cu K 0.89 0.979 0.966 0.992

Zn K 0.766 0.914 0.548 0.971

Sr K 0.901 0.968 0.948 0.982

Au L 0.743 0.896 0.682 0.965

Hg L 0.853 0.906 0.866 0.975

Pb L 0.761 0.951 0.740 0.965

Table 5.2: Structural Similarity evaluation of models for Painting 4.

between the predicted Elemental Distribution Maps and the Ground Truth. Con-
versely, FCN exhibited less favorable performance, with an average SSIM score of
0.875, indicating comparatively lower performance in terms of similarity. Notably,
1DCNN outperformed FCN, underscoring the superior effectiveness of convolutional
layers in generating more precise representations. A comparison between models
with and without prior knowledge revealed a conspicuous advantage in incorporat-
ing prior knowledge. For instance, FCN+ surpassed FCN, and 1DCNN+ outperformed
1DCNN in nearly all cases, underscoring the significant impact of prior knowledge in
augmenting model performance.

Table 5.3 and Table 5.4 present the evaluation results for Painting 4 using the
Pearson Correlation and Slope measures, respectively. These measures gauge the per-
formance of different models in capturing elemental distribution maps as compared
to the Ground Truth. In terms of Pearson Correlation, 1DCNN+ achieved the high-
est average score of 0.996, indicative of a strong linear correlation capture, while
FCN exhibited a lower score of 0.924. The incorporation of prior knowledge con-
sistently resulted in enhanced model performance, with FCN+ outperforming FCN
and 1DCNN+ surpassing 1DCNN across various elements. Regarding Slope measure,
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FCN FCN+ 1DCNN 1DCNN+

Avg 0.924 0.984 0.936 0.996

S K 0.950 0.898 0.984 0.999

K K 0.945 0.973 0.986 0.989

Ca K 0.999 0.999 0.999 0.999

Cr K 0.718 0.986 0.956 0.994

Mn K 0.997 0.998 0.971 0.999

Fe K 0.999 0.999 0.999 0.999

Cu K 0.999 0.999 0.999 0.999

Zn K 0.497 0.961 0.376 0.983

Sr K 0.987 0.995 0.990 0.996

Au L 0.993 0.998 0.982 0.998

Hg L 0.999 0.999 0.999 0.999

Pb L 0.999 0.999 0.996 0.999

Table 5.3: Pearson Correlation evaluation of models for Painting 4.

1DCNN+ also outperformed other models with an average score of 1.009, demonstrat-
ing superior slope capture. FCN yielded a slightly higher score of 1.11. Once again,
the inclusion of prior knowledge proved advantageous, with FCN+ outperforming
FCN and 1DCNN+ surpassing 1DCNN in multiple elements.

Model 0‐1 1‐2 2‐3 > 3

FCN 0.606 0.107 0.065 0.222

FCN+ 0.901 0.086 0.010 0.001

1DCNN 0.802 0.129 0.044 0.023

1DCNN+ 0.925 0.060 0.011 0.002

Table 5.5: Absolute z-score values distribution analysis for Painting 4.
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FCN FCN+ 1DCNN 1DCNN+

Avg 1.11 0.99 1.144 1.009

S K 0.950 0.961 1.068 0.927

K K 0.945 1.029 1.183 1.109

Ca K 0.999 0.992 1.008 1.014

Cr K 0.718 0.970 0.989 0.965

Mn K 0.997 1.008 0.948 1.020

Fe K 0.999 1.000 1.001 1.009

Cu K 0.999 0.991 1.005 1.011

Zn K 0.497 0.980 2.261 1.023

Sr K 0.987 0.989 1.007 0.993

Au L 0.993 0.974 0.908 1.000

Hg L 0.999 0.991 1.042 1.02

Pb L 0.999 0.991 1.307 1.017

Table 5.4: Slope evaluation of models for Painting 4.

Figure 5.4: Visualization of absolute z-score values spatial distribution for Painting
4.

A comprehensive analysis of the absolute z-score values, as illustrated in Fig-
ure 5.4, revealed the superior performance of both the FCN+ and 1DCNN+ models.
Figure’s pixel colors transitioned from white to yellow, orange, red, and black, sig-
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nifying increasing deviations from the actual values within the respective intervals:
(0, 1], (1, 2], (2, 3], and (3,+∞). The predictions of the 1DCNN+ model demonstrated
strong agreement with the Ground Truth concentration values, evident in the error
areas displaying minimal deviations, nearly appearing white.

For a more precise assessment of the performance of FCN+ and 1DCNN+ models,
which had been visually assessed through absolute z-score values, Table 5 offers a
concise and structured representation. This table quantified the percentage of pre-
dicted values falling within specific intervals, namely (0, 1], (1, 2], (2, 3], and (3,+∞),
providing a logical and easily interpretable format for evaluating model efficiency.

5.3.2 Painting 5 Evaluation

In parallel with the evaluation of Painting 4, the assessment of the model’s perfor-
mance on Painting 5 followed a similar protocol, utilizing all images for training
within the trainset and reserving Painting 5 exclusively for the testset. Notably, in
the evaluation of the models’ performance on Painting 5, a consistent trend emerged,
with the 1DCNN+ model consistently outperforming all other models in every as-
pect. The 1DCNN+ has achieved the highest SSIM scores for all target elements. Its
remarkable capacity to accurately replicate the visual complexities, as demonstrated
in Painting 5 (Table 5.6), is reflected in its average SSIM score of 0.994.

47



FCN FCN+ 1DCNN 1DCNN+

Total 0.986 0.969 0.993 0.999
Avg 0.933 0.867 0.963 0.994
S K 0.989 0.404 0.977 0.997
K K 0.972 0.859 0.964 0.976
Ca K 0.996 0.989 0.992 0.997
Cr K 0.987 0.941 0.959 0.993
Mn K 0.978 0.914 0.978 0.998
Fe K 0.954 0.976 0.998 0.999
Cu K 0.975 0.940 0.975 0.994
Zn K 0.933 0.883 0.946 0.997
Sr K 0.818 0.842 0.977 0.994
Au L 0.812 0.853 0.902 0.991
Hg L 0.836 0.847 0.909 0.993
Pb L 0.946 0.954 0.982 0.995

Table 5.6: Structural Similarity evaluation of models for Painting 5.

However, it is noteworthy that FCN+ did not perform as effectively for Painting
5 compared to its performance for Painting 4. In this assessment, both the FCN and
1DCNN models appear to outshine FCN+ by achieving higher structural similarity
with the ground truth concentration values. This deviation from the performance
observed for Painting 4 suggests that Painting 5 contains subtler details or complexities
that impose a more significant challenge to the models (Table 5.6).

Despite this, it is important to highlight that FCN+ still achieved remarkable SSIM
scores, coming remarkably close to the performance of models without prior physics
knowledge incorporation. This outcome is particularly noteworthy considering that
FCN+ employs only 12 features derived from Prior Layer incorporation. This re-
sult underscores the model’s capacity to capture the painting’s visual characteristics
effectively despite its relatively limited feature set, highlighting the potential of the
proposed approach even in challenging scenarios.
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Figure 5.5: Visualization of absolute z-score values spatial distribution for Painting
5.

In complement to the Structural Similarity measure, the Pearson Correlation (Table
5.7) was also assessed as a complementary evaluation measure. Notably, the 1DCNN+
model exhibited exceptional performance with an average correlation coefficient of
0.998. This signifies a robust alignment between its predictions and the actual values,
underscoring its capability to capture the intricate patterns within the painting’s data.
Across various elemental regions, such as Calcium K (Ca K), Iron K (Fe K), and
Copper K (Cu K), 1DCNN+ consistently outperformed other models, demonstrating
its effectiveness in discerning subtle nuances within the spectra. This finding echoes
what was observed with Painting 5, but it’s worth highlighting the model’s versatility
and reliability across various evaluation measures. This consistency underlines its
strength in handling intricate artistic data, suggesting it could shine in a wide range
of scenarios.

Table 5.8 offers an analysis of the distribution of absolute z-score values, further
assessing the models’ effectiveness. The 1DCNN+ model excels in this evaluation,
exhibiting a distribution that signifies its ability to closely approximate the actual
values for Painting 5. These results reinforce the notion that 1DCNN+ stands out
as a powerful model for capturing the intricacies of the painting, both in terms of
Pearson Correlation and z-score distribution, highlighting its potential for applications
in MA-XRF analysis.
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FCN FCN+ 1DCNN 1DCNN+

Avg 0.976 0.923 0.988 0.998

S K 0.999 0.902 0.998 0.999

K K 0.977 0.828 0.977 0.986

Ca K 0.999 0.999 0.999 0.999

Cr K 0.995 0.957 0.971 0.998

Mn K 0.968 0.906 0.973 0.998

Fe K 0.999 0.999 0.999 0.999

Cu K 0.999 0.998 0.999 0.999

Zn K 0.961 0.685 0.951 0.999

Sr K 0.820 0.812 0.991 0.998

Au L 0.995 0.991 0.994 0.999

Hg L 0.999 0.998 0.999 0.999

Pb L 0.999 0.999 0.999 0.999

Table 5.7: Pearson Correlation evaluation of models for Painting 5.

Model 0‐1 1‐2 2‐3 >3

FCN 0.838 0.111 0.016 0.035

FCN+ 0.703 0.215 0.046 0.036

1DCNN 0.941 0.049 0.006 0.002

1DCNN+ 0.978 0.015 0.004 0.001

Table 5.8: Absolute z-score values distribution analysis for Painting 5.

Figures 5.6 and 5.7 are presented indicatively to emerge the generalization capa-
bilities offering the convolutional operations, displaying the training and validation
loss curves over epochs for Painting 5. The consistently lower training loss in the
1DCNN+ model can be attributed to its specialized architecture for one-dimensional
data, enabling it to capture complex patterns more effectively. The incorporation
of prior physics-based knowledge further enhances its representations, facilitating
quicker convergence and lower training loss compared to other models.
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Figure 5.6: Training Loss of models for Painting 5.

Figure 5.7: Validation Loss of models for Painting 5.

However, it’s important to note that in the case of FCN and 1DCNN, the difference
in training and validation loss trends can be attributed to their distinct generaliza-
tion capabilities. FCN, despite achieving a lower training loss than 1DCNN, exhibits a
propensity to overfit the training data due to its architecture. This leads to a higher
validation loss as it struggles to generalize effectively to unseen data. In contrast,
1DCNN, although having a slightly higher training loss, showcases better general-
ization capabilities. Its architecture enables it to capture pertinent features without
overfitting, resulting in a lower validation loss. This characteristic underscores the ro-
bustness of 1DCNN’s learned representations, which is pivotal for achieving improved
predictive performance on unseen or real-world data.
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CHAPTER 6

EPILOGUE

6.1 Conclusion

6.2 Future work

6.1 Conclusion

In conclusion, the research conducted in this thesis has successfully addressed the
problem of Elemental Maps Prediction in the context of Macro-XRF analysis. Two
prominent deep architectures, the Fully Connected Neural Network and the Con-
volutional Neural Network, were utilized as multi-output regressors. Notably, this
study introduced a novel approach by incorporating Physics-Based prior knowledge
into these deep learning models through the inclusion of a predefined layer utiliz-
ing the spectral properties of the elements under investigation. This incorporation of
prior knowledge increased the accuracy of the models considerably. The experimen-
tal outcomes underscore the potential of integrating deep learning techniques with
domain-specific physics-based insights to advance the field of MA-XRF elemental
mapping.

6.2 Future work

As the field of Elemental Map Prediction continues to evolve, there are several promis-
ing avenues for future research and development. In this section, some potential di-
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rections for future work are outlined that can further advance the understanding and
application of elemental mapping:

• Enriched dataset: Expanding the dataset by incorporating more paintings and
increasing the number of samples per artwork is essential. A larger and more
diverse dataset would enable the models to learn a broader range of artistic
styles, variations, and complexities, potentially leading to even more accurate
and robust results.

• Pre‐training Models: Pre-training models on related tasks or using transfer
learning from other domains can be explored. Pre-training can help initialize
the models with valuable knowledge and representations, making it easier for
them to learn the elemental mapping task effectively. This approach has the
potential to enhance the models’ performance and speed up convergence.

• 2D Convolutional Networks: Investigating the use of 2D convolutional net-
works is a promising avenue. The incorporation of a prior layer could efficiently
reduce the number of channels, making the computational resource require-
ments less demanding. Additionally, 2D convolutional networks can capture
spatial dependencies within the paintings, potentially improving the models
ability to discern subtle patterns and details.

• Efficient Sampling for Pixel‐Based Training: When training models with
pixel data as independent features, there is a potential for improving efficiency
through advanced pixel sampling techniques. Future research could explore
methods such as edge detection algorithms to identify and prioritize informa-
tive pixels, as well as selecting pixels whose features deviate significantly from
the mean.

• Enhancing the Prior Layer with more pure spectra: Future research could
explore the incorporation of a broader set of pure spectra into the prior layer of
models. Instead of relying solely on target spectra, enriching the prior layer with
a diverse range of pure spectra from the periodic table is a promising research.

Multiple Regressors: An alternative avenue for future investigation lies in the
decomposition of the problem into training individual single-output regressors
as opposed to a unified multi-output regressor.
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• Hyperparameters and Architectures: Conducting a thorough exploration of
hyperparameters and model architectures is crucial. Further fine-tuning of hy-
perparameters and experimentation with different model architectures could
lead to further improvements in performance.
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