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ABSTRACT

Leonidas Zafeiriou, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of loannina,
Greece, 2023.

Counterfactual Explanations for Recommendation Bias.

Advisor: Panayiotis Tsaparas, Assoc. Professor.

Today, we rely heavily on automated recommendation algorithms for assisting us
in making several decisions, such as the content we consume, the items we buy, or the
careers we pursue. These algorithms use sophisticated machine learning techniques
that are trained on large quantities of user interaction data. As a result they incorpo-
rate various biases in their recommendations, where certain groups of users or items
are treated differently. Understanding the recommender biases is important in mon-
itoring the health of the recommendation system and achieving fairness. However,
given the complexity of recommender algorithms, this is becoming increasingly dif-
ficult. To address this issue there is a strong research movement towards producing
different types of explanations for the behavior of the algorithms. One type of expla-
nations is counterfactual explanations where we look for a small number of changes
in the input data that will achieve a desired change in the output of the algorithm on
a specific data instance, e.g., increase the score of the recommender for a specific user-
item pair. In this work, we consider counterfactual explanations for recommendation
bias. Given that bias is defined with respect to groups of users and items instead of
specific user-item pairs, we generalize the definition of counterfactual explanations
to handle this case. We then consider a random-walk based recommender, and we
propose algorithms for computing the counterfactual explanations. Our algorithms
are efficient and they can be applied to large datasets. We perform an experimental

evaluation of our algorithms using both real and synthetic data.
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EXTETAMENH IIEPIAHWH

Aewvidag Zoetpiov, A M.E. ot Mnyavixn] Aedopévwy xor YTTOAOYLOTIXWDY XVoTY-
pwatwy, Tuquo Mnyavixoy H/Y ko ITAnpopopixng, [loAvtexvixy XyoAn, [laveriotiuto
Towovvivewy, 2023.

EEnynoeig pe Avtiimapadetypa yioo Zuotiuoto Xuotdocwy e [lpoxatainets.
EmBAénwv: Mavayidtng Toardapog, AvarA. Kobnyntigs.

ZNuepa, Baotlopaote o peydro Babud os avtépatovg akydpLbu.ovg cuoThoewy
Lo va pog Bonbnoovy ot AMdn amo@aoswy o TOAG BEpato, OTTWG Ta TTEPLEYOUEVAL
TTOU XATOUYOAWYOLUE, TO OVTIXELLEVO TTOL AYOPALOVUE 1] TLG HOPLEPES TTOL AXOAOL-
Bodpe. Avtol oL aAydpLbuoL xPNOLLOTOLOVY TIPONYUEVES TEXVLXKES UMYOVIXNG Labnong
IOV EXTTALOEVOVTOL OE PEYAAOVG GYXOLG GESOUEVWY XAANAETLOPOOYG TWY YONOTWY.
Q¢ ATOTEAEGLAL, EVOWLATWOYOLY SLAPOPES TTPOXATOANPELS GTLE GLATATELS TOVG, HTTOV
OPLOUEVES OUAGEG YPNOTWY 1N VTIXELULEVWY VTLULETWTI{oVvTaL StapopeTixd. [lapdro
TIOL O TES OL TTPOXATOANPELS ElvaL wg Eva onuelo amapaltnTteg Wote vo dobovy eEo-
TOULXEVEVEG GUOTATELS, LTTOPOVY YO OONYY|OOVY GE AVLOY OVTLUETWTILOY OPLOUEVM®Y
OULASWV.

H xotovonomn 1wy mpoxatoAPewy Twy cLGTNUETWY GLOTACEWY ELVOL ONUOYTLXY
Yioe TNV TTopoxoAoVBbNom g 0p07g AsLTOLEYIOG TOL CLUOTNUATOS CUOTAOEWY KL TNV
eTITEVEY] TNG OLxotooVYNG. QaTHG0, AGYW TNG TTOAVTTAOXOTNTAS TWV AYOPLOpwWwY ov-
OTAOEWY, aLTO YiveTow OA0 xaL Lo SVoX0A0. Mo vou avTLpeTWTLoTEL 0V TO To {NTNLCL,
VTTAPYEL €V LOYVPEO AIVNULOL EQEVLYOIG TTPOS TNY TTAPAYWYY] OLOPOPETLXWY TOTWY €EN-
YNOEWY YLO TN CUUTEQPLPOPE TWV aAYoPLOpwY. "Evog ToTog eEnynocwy eivor ot eEny-
OELG UE OVTLTTAPASELY A, OTTOL oVOLNTOVUE pULlor UixpY] 0AAoY]) oTtor dedouéva eLaGSov
ov Bo emtiTOYEL Lo emOLUNTY dAAOYY] TN €E0B0 TOoL aAyopibuov oe plo cuyxe-
XOLULEYN TTEPITITWOY SESOUEVWY, YLOL TTOPASELY U, OOENTY TOL OXOP TOL GUOTNULATOG

OLOTACEWY YLO EVOL GUYXEXPLLEVO LELYOS YOO TN-CVTLXELLEVOL.



X1y mopovoa epyaocia, eEetdlovue EENYNOELS UE OVTLTIOPASELY O YLOL TLG TTOO-
XOTOAPELS OE GLOTNULATO CLOTACEWY. Asdopévou Gl oL TpoxatoApels xabopiCo-
VTOL OE OYEOY WE OUADES YPNOTWY XL OVILXELUEVWY OVTL YLor ouyxeEXQLUEVR (evym
YONOTN-AVTIXELUEVOV, YEVIXEDOVUE TOV OPLOUO TWY EENYNOEWY UE OVTLTTOASELYUO
YL VOU OVTLLETWTTLOOVUE LTV TNV TEPLTTWOoY. EEetdlovpe diopopetivoig TOTTOVG
eEnynoewy. Apyixd, €EETALOVUE TOVS UELOVWOUEVOLS YPNOTEG XAl ovolnTovpUE €En-
YNoeLg YLati €vag xPNomg Oev AoUPAVEL PXETES TTPOTAOELS YLO [ALOL CUYXEXQLUEYN
xotnyoplor avtixeltpévwy. Emextelvovue avtée Tig €EnNynoctg oty TEPITTWON TOU
EYOVUE UL OUEDA XONOTWY OVTL YLOL EVOY LELOVOUEVO XONOTY. LT CUVEYELR, EEETA-
Covpue Tor LELOVWUEVD OVTIXELUEVO XOL ovolnTOVpE eENYNOELS YLati dev TpoTeivovTon
OE ULOL OLYXEXPLULEYT oudda xpnotwy. Emexteivovpe xo méAL Tig eEnynosts avtég
YLt TNV TEPITTTWON GOV EYOVLUE Lidt OLADO OVTIXELUEVOY OVTL YLOL EVOL LELOVWOUEVO
OVTLXELUEVO.

Oewpolpe €var CVCTNUO CLOTATEWY TLYALOL TTEPITIATOL PUCLOUEYOL GE YOO -
LOTO X0l TTPOTELYOLRE 0AY0PLBUOLS YLor TOV LTTOAOYLOUG EENYNOEWY UE OVTLTTAQO-
oetypa. Ouv okydptbpot pog yonolpomoLtoly gpyoieion Noappixng AryeBpog yioo Tov
oTOd0TLXO VTTOAOYLOWUO TNG OAAXYNG TNG TTOAWGYG TOV CGLOTHLATOS CLUGTACEWY XOL
UTTOPOVY VO EQOPLOCTOVY %Ol OE UEYAAX OOVOAa Sedopévwy. Kavovpe melpopo-
T ELOAGYNOY TwV oAYoPLOUWY LaGg XENOLULOTTOLOYTOS EVa GUVOAO TOLVLKY, Xatbwg
xot ovvhetixd dedopéva. Ta TeELPAUOTA pog LEAETAVE TNV SLOXOALOL eVpeaNg k-
YNOEWY YLOL SLAPOPES TEPLTTTWOELS XOL TIOPEYOLY XATOVONGY] TWY YOULOOAXTNOLOTLXWY

TOL CLYOAOL BedOUEVWY Taw OTolo ETTNEEALOLY TLG EENYTOELG.

vi



CHAPTER 1

INTRODUCTION

Today, we rely heavily on automated recommendation algorithms for assisting us in
making several decisions, such as the content we consume, the items we buy, or the
careers we pursue. These algorithms use sophisticated machine learning techniques
that are trained on large quantities of user interaction data. As a result, they incorpo-
rate various biases in their recommendations, where certain groups of users or items
are treated differently. Although these biases are to some extent integral to the algo-
rithms in order to make personalized recommendations, they can also lead to unfair
treatment of sensitive groups.

Fairness and bias in recommendations is a problem that has received significant
attention in the past years [1, 2]. Different definitions of fairness have been adopted,
depending on whether fairness is defined with respect to consumers or producers [3].
In most definitions, we assume that there are groups of users and/or items, defined
based on sensitive attributes such as gender, religion or age for users, and type of
content for items. The recommender should treat the groups in a fair manner, e.g.,
producing recommendations of equal quality for two user groups, or representing
proportionally the items in different item groups. When this is not achieved, we
consider the recommender to be biased.

Understanding recommendation biases is important in monitoring the health of
the recommendation system and ensuring fairness. However, given the complexity
of recommendation algorithms, this is becoming increasingly difficult. To address
the algorithmic complexity of the “black box”, there is a strong research movement

towards producing different types of explanations for the behavior of algorithms,



including recommendation algorithms [4]. One type of explanations is counterfactual
explanations [5], where we look for a small number of changes in the input data
that will achieve a desired change in the output of the algorithm on a specific data
instance, e.g., change the classification of a data point.

In this work, we consider counterfactual explanations for recommendation bias.
Previous work on counterfactual explanations for fairness focused on explaining the
decisions of the recommender for specific user-item pairs [6, 7, 8]. Given that bias is
defined with respect to groups of users and items instead of specific user-item pairs,
we need to generalize the definition of counterfactual explanations to handle this case.
We consider different types of explanations. First, we consider individual users, and
we seek explanations as to why a user does not get enough recommendations from
a specific item category. We extend these explanations to the case where we have a
group of users instead of an individual user. We then consider individual items and
look for explanations as to why they do not get recommended to a specific group
of users. Again, we extend these explanations to the case where we have an item
category rather than a single item.

We consider a graph-based random walk recommender, and we propose algo-
rithms for computing the counterfactual explanations. Our algorithms exploit Linear
Algebra tools to efficiently estimate the effect of a change to the bias of the rec-
ommender, and it can be applied to large datasets. We perform an experimental
evaluation of our algorithms using a real movies dataset, as well as synthetic data.
Our experiments study the hardness of producing explanations for different cases,
and provide understanding of the dataset characteristics that affect the explanations.

In summary, in this work we make the following contributions:

* We consider and formalize the novel problem of counterfactual explanations for

different types of recommendation bias.

* We propose efficient algorithms for computing counterfactual explanations for

a random walk recommender that can scale on large datasets.

* We evaluate quantitatively and qualitatively our algorithms on real and synthetic

datasets.

The rest of the work is structured as follows. In Chapter 2 we provide the defi-

nitions for our problems. In Chapter 3 we present methods for computing the effect



of a counterfactual, and algorithms for producing counterfactuals. In Chapter 4 we
present our experimental evaluation. Chapter 5 presents the related work, and Chap-

ter 6 concludes present work.



CHAPTER 2

DEFINITIONS

We are given as input a set of users U/ and a set of items 7 and a user-item matrix
D with the preferences of the users over the items. We also have a recommender Rp
that is trained on the matrix D, which given a pair (u,i) € U x Z, it outputs a score
Rp(u,i) that is the estimation of the preference of user u for the item .

We assume that we can define groups of users and items based on the properties
of the users and items respectively. For example, we may partition users into male
and female based on gender, or we may define groups of users based on age, or on
residence. Similarly, if the items are movies, we may define subsets of movies based on
genre, or on release date. We are interested in defining biases that the recommender
may have towards specific groups of items or users, and provide explanations for
them.

We first consider the bias of the recommender in the estimated ratings for an
individual user towards a specific group of items. For example in the user-movie
scenario, we want to explain why the estimated ratings for a specific user are on
average higher for the Action movies, compared to those for Romance movies. For-
mally, let u be a specific user, let I C Z denote a subset of the items that belong
to a specific group, and let I = Z \ I denote the items not in the group. We define
Rp(u,I) = ﬁ > icr Bp(u,i) to be the average estimated score of the recommender
for user u for the items in I. Rp(u, ) is defined similarly. We define the bias of
recommender Rp in the recommendations for user u towards group I as:

Rp(u,I)

By (1) = 22



When Bp,, (I|u) > 1 the recommender is biased in favor of I in the scores it produces
for u, meaning that it estimates higher average score for the items in group / than
the rest. When Bpg, (I|u) < 1 the recommender is biased against the group I.

We seek explanations for the bias of the recommender in the recommendations
to an individual user u towards group /. We assume that I is being treated unfairly
(Bgr,(Ilu) < 1), and thus we want to increase Bg, (I|u). The explanations we will
produce will be in the form of counterfactuals: changes in the ratings D, of user u that
will result in an increase Bg, (I|u). We refer to these explanations as individual user

bias explanations. We thus have the following definition:

Definition 2.1 (Individual User Bias Explanation). Given user-item preference matrix
D, a recommender Rp, a user v C U, a group of items /, and a target value 0, an
individual user bias explanation is the minimum subset £, C D, such that if deleted
from D, Bry,, (I|u) > (1+60) Br,(I|u).

We can extend the definition of bias to the case that we have a group of users
instead of a single user. In the user-movie example, we want to explain why the
average ratings of male users are on average lower for Romance movies than for
Action movies. Let U C U denote a subset of the users that belong to a specific group.
For a group of items I, we define Rp(U,I) = ﬁzueU Rp(u,I) to be the average
over the users in U of the average estimated score of the recommender for the items
in I. Rp(U,I) is defined similarly. We define the bias of recommender Rp in the
recommendations for group U towards group [ as:

Rp(U, 1)
Br,(I|U) = Ro(U.1)
p(U,
Again, By, (I|u) > 1 means that the recommender is biased in favor of I in the scores
it produces for the user group U, while B, (/|u) < 1 means that the recommender
is biased against the item group I.

We seek again counterfactual explanations for the bias of the recommender in the
recommendations to an user group U against item group . Let Dy denote the set
of ratings from users in U. We look for changes in the ratings D, of user u that will
result in an increase Bg,(/|U). We refer to these explanations as individual user bias

explanations. We thus have the following definition:

Definition 2.2 (User Group Bias Explanation). Given user-item preference matrix D,

a recommender Rp, a group of users U C U, a group of items I, and a target value 0,

5



a user group bias explanation is the minimum subset Eyy C Dy such that if deleted
from D, Bg,,, (I|{U) = (1+6) Bg,(I|U).

We then turn our attention to the item side, and we consider the bias of the
recommender in the estimated ratings that an individual item ¢ receives from a group
of users U. In our user-movie example, we look at a specific movie, and we want to
explain, why this movie receives on average lower ratings from male users than from
female users. For example, why is it the case that the movie "The English Patient”
appeals less to male than to female users?

Formally, let i be a specific item, let U C Z denote a subset of the users that
belong to a specific group, and let U = Z \ U denote the users not in the group. We
define Rp(U, i) = |—(1]| > wev Bp(u, i) to be the average estimated score of the recom-
mender for group U for the item i. Rp(U,i) is defined similarly. We define the bias
of recommender Rp in the recommendations for item ¢ from group U as:

By (0i) = H221)

Rp(U,1)

When Bg, (Uli) > 1 the recommender is biased in favor of U in the recommendations
for item i, meaning that it estimates higher average score for the users in group U
than the rest for i. When Bpg, (I|u) < 1 the recommender is biased against the group
U.

We seek again counterfactual explanations for the bias of the recommender in the
recommendations for an individual ¢ u from a group /. We assume that U is being
treated unfairly (Bg, (U|i) < 1), and thus we want to increase Br,(U|i). We look for
changes in the ratings Dy of the group U that will result in an increase Bg, (U|7).

We refer to these explanations as individual item bias explanations. We thus have the

following definition:

Definition 2.3 (Individual Item Bias Explanation). Given user-item preference matrix
D, a recommender Rp, an item ¢ C Z, a group of users U, and a target value 0, an
individual item bias explanation is the minimum subset £y C Dy such that if deleted
from D, Bg,,, (Uli) = (1+0) Br,(Uli).

We will also consider the the bias of the recommender in the estimated ratings
that a group of items / receives from a group of users U. In our example, we want

to explain why the romance category receives lower scores for males than it receives



for females. We define the bias of recommender Rp in the recommendations for item

¢ from group U as:
o RD(U7 [)
Rp(U,T)

As in the case of the item bias explanations we seek changes in Dy that will result

B, (U[I)

in an increase in By, (U|I).

Definition 2.4 (Item Group Bias Explanation). Given user-item preference matrix D,
a recommender Rp, an item group / C Z, a group of users U, and a target value 0,
an item group bias explanation is the minimum subset Ey; C Dy such that if deleted
from D, Bgy,, (U|I) = (1+0) Bg,(U|I).

Our definitions of bias and explanations for bias are general, but clearly, the exact
explanations depend on the recommendation algorithm Rp. In the next section, we
present the recommendation algorithm Rp that we will consider in this work, and an
efficient method for computing individual and group explanations for random-walk

recommenders.



CHAPTER 3

ExprrANATIONS IN GRAPH RECOMMENDERS

3.1 The recommendation algorithm
3.2 Estimate the effect of edge removals
3.3 Computing the explanations

3.4 Algorithms for computing bias explanations

3.1 The recommendation algorithm

As our recommendation algorithm, we will use the RecWalk algorithm [9]. We view

the user-item matrix D as a bipartite graph G with adjacency matrix:

0 D

Ag =
DT 0

The RecWalk algorithm estimates the scores for user-item pairs by performing ran-
dom walks on the graph G. Let H = Diag(Ag1) ' Ag be the transition probability of
a simple random walk on the user-item bipartite graph. This transition matrix can
also exploit an item mode. Let M; be an inter-item transition probability matrix that

captures relations between items, and define matrix M as:

I 0
0 M;

M =



The overall transition probability matrix of RecWalk is defined as P = a H+(1—a) M
where o captures the relative contribution of each of the two components in the
random walk.

To compute recommendations for a user u, we perform a personalized random walk
rooted on u. At each step the random walk with probability (1—-) transitions accord-
ing to matrix P, while with probability « it restarts from node u. For the stationary

probability p, of the random walk we have:

where 7 is the jump probability. The estimated rating of item ¢ for user v is given by:
Rp(u,i) = pu(i).
Note that we can compute the p, vectors for all nodes x € GG, both users and items,
by computing the matrix
Q=7(I-1-mP)". (3.2)
It is easy to see that p, = e, (), and thus the x-th row of matrix () holds the p, vector.
Given this graph view of the data and the algorithm, the counterfactual explana-
tions that we consider consist of (directed) edges, which if deleted from the bipartite
graph would result in the increase of the estimated ratings of a user or a set of users
for an item or a set of items, depending on the problem we consider. We view the
edges of the bipartite graph as pairs of directed edges, and our explanations will

remove edges from the user side towards the item side.

3.2 Estimate the effect of edge removals

We will begin with the estimation of the change of the estimated rating Rp(u,) for
a user-item pair (u,7), when deleting an edge (z,y) from the graph. Note that » may

be different from wu, and y may be different form i. We want to estimate
A (ua ( (xa y)) = RD\(%Z/)(”? Z) - RD(ua Z)

We will provide analytical formulas for this computation which we will then use
for the different problems we consider in this paper. For simplicity we assume that
a = 0, but our formulas below can easily be extended to the case that o # 0.

Recall that Rp(u,i) = pu(i) denote the personalized random walk probability of

user u for item i. We use Rpj(,)(u,i) = pu(i|(z,y)) to denote the probability of user

9



u for item ¢ after the removal of edge (z,y). We want to estimate A(u,i, (z,y)) =
Pu(il(2,)) = Puli)-

For the following, we use D, to denote the outgoing edges from node z in the
bipartite graph. This node may be either a user or an item. The vector p, is the
output of a personalized random walk using the matrix P and it assigns probabilities
to both the items and the users in the bipartite graph. Furthermore, note that using
the matrix P we can also run personalized random walks for items as well, and
estimate a vector p; for any item .

We can prove the following (the proof appears in the appendix):

A (u, i, (z,y)) = pu(®)A(z, i, (x,y)) (3.3)

where

22 (1 Sen, Pil) — Py(i)
1D, = 1= 22 (17 Zjep, Pile) = Pu(a))

This formula can be extended to the case where we remove multiple edges from

A(z,i, (z,y)) = (3.4)

the node . We will use E, C {(z,y) : y € D, } to denote the set of edges removed from
z (note that we assume that at least one edge from x remains in the graph). Given that
the left endpoint of the edges is fixed to z, abusing the notation, we will also use E,
to denote the set of neighbors of x from which we remove the edges, that is, the set of
right endpoints of the removed edges. We can estimate A(u, i, E,) = pu(i|Ez) — pu(i)

as follows:

Au,i, By) = pu(z)A(z,1, E,) (3.5)
where
(B Pi) — B Dy pi0)
R (LS () — i Sen, Pi())

Note that Equations 3.3 and 3.4 are special cases of Equations 3.5 and 3.6 when E,

(3.6)

Az, i, E,)

contains a single edge.

Consider now the case where we want to compute explanations for an individual
user u, by removing a set of edges E, from user u to increase the score that the
recomender gives to the group of items /. Abusing the notation, we will use p, (/) =

> icr Pu(i) to denote the total probability that the personalized random walk gives

10



to the group /. Therefore, R(u,i) = ﬁpu(l). Let A(u,I,E,) = Rpg,(I|lu) — Rp(I|u).
Using Equations 3.5 and 3.6, we have:

Au, I, E,) = pu(u)A(u, I, E,) (3.7)
where

Au, 1, B,) S (B Lien, P = 1y Len, i) (3.8)
U, L,y L) = _ — |
PP = 12 (B Tien, Pilw) — iy Syen, Pi(w)

Consider now a group of users U and an item i. The effect of removing a set of

edges E, from a node z can be estimated as
AU, i, E,) = pu(x)A(z, i, E,) (3.9

where py(z) = & 3.y Pu(2) and A(z, i, E,) is computed as in Equation 3.4.
When considering a group of users U and a group of items I, the effect of removing

a set of edges F, from a node x can be estimated as
AU, I E,) = pu(x)A(z, I, E,) (3.10)

where A(z, I, E,) is computed as in Equation 3.8.

3.3 Computing the explanations

We will now describe how we can efficiently compute the different terms that appear
in the Equations we presented above (and specifically, Equations 3.5 and 3.6, that
are the basis for the rest).

We consider the case where we remove a set of edges £, from a node x and we
want to estimate A(u, I, E,) = pu(z)A(x, I, E,) for some node u. The formulas for this
computation require the computation of the quantities p;(z) for every node i € G,
and p;(/) for every node i € G.

The naive implementation would be to estimate all personalized vectors that we
need. We can estimate the quantities efficiently using a single absorbing random walk.
The cost of the absorbing random walk is essentially the same as that of executing a
Pagerank algorithm, thus making the estimation very efficient.

An absorbing random walk is walk where some nodes, or states, are absorbing. A

node, or state, is absorbing when the random walk can only enter the node and there

11



is no transition out of the node. We create our absorbing random walk by augmenting

the graph G with the addition of four absorbing nodes:

¢ Absorbing node A,: Only node z links to this absorbing node.

e Absorbing node A;;: All the user nodes in U, except for z, link to this absorbing

node.
e Absorbing node A;: All the items in I link to this absorbing node.

 Absorbing node A7: All the items in I link to this absorbing node.

Note that each transient node (non-absorbing) is connected to a single absorbing
state. Each absorbing node Ay, corresponds to a distinct subset Z C V' of the nodes
of the graph G, as defined above. We set the transition probability from any transient
node to the corresponding absorbing node to be v, the restart probability of the
personalized random walk. With probability 1 — + the random walk transitions to
another transient state using the transition matrix P.

In this absorbing random walk we are interested in estimating the absorption prob-
ability «;(Az) for any node i in the graph, which is the probability that a random
walk that starts form node ¢ will be absorbed at absorbing node Az. This can be
estimated efficiently for all nodes ¢ € G and all absorbing states A, with a simple it-
erative procedure. The key observation is that o, (A7) = p,(Z), that is, the absorption
probability from node z to an absorbing state A, is equal to the probability allocated
to the set Z by the personalized random walk rooted at x.

The iterative procedure is as efficient as running a Pagerank algorithm. For every
node ¢ we maintain a vector with the four absorbing probabilities we want to compute,
one for each absorbing node. These are initialized to zero. For a node 7, and an
absorbing node Az, if i ¢ Z, then a;(Az) = (1—7) > ..p Pjai(Az). lfi € Z, a;(Az) =
Y+(1=7) > ep, Fijei(Az). Repeating until convergence gives the desired probabilities.

jeD;

3.4 Algorithms for computing bias explanations

3.4.1 Individual user explanations.

In the case of individual user explanations to a user u, we want to explain why

for user u the scores of the recommender R for group / are lower than those for
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group I. To find these explanations we look for the edges E, C D, emanating from
u whose removal will maximize A(u, I, E,,). We use a greedy algorithm for this task.
We incrementally build the set F,, each time adding the edge (u,v) that maximizes
the gain gain(u,v) = A(u, I, E, U {(u,v)}) — A(u, I, E, U {(u,v)}). Note that we can
implement the Greedy algorithm very efficiently. We compute for every node ¢ in
the graph the quantities p;(u) and p;(/), using the absorbing random walk. This
computation is done once, at the beginning of the algorithm. Then at any iteration of
the algorithm we can compute gain(u,v) with simple mathematical operations using
Equation 3.7. We will refer to this algorithm as GreebY.

For comparison, we will also consider a simpler version of the greedy algorithm
that computes A(u, I, (u,v)) for each edge (u,v), sorts the edges in decreasing order
of the A-values, and select them in that order. This algorithm is more efficient as it

makes only one computation initially.

3.4.2 User group explanations.

In the case of explanations to a user group, we want to explain why for the user group
U the scores of the recommender R for the item group [/ are lower than those for
the complement item group I. The explanation Ey; consists of a set of changes in the
ratings of the users in U that correct the bias of the recommender. We will consider
three algorithms for constructing the explanations, each leading to a qualitatively
different type of explanations.

The first algorithm looks for the best set of edges from U to remove. Note that it is
relatively trivial to show that we only need to consider edges (u, v) to the complement
item group I, that is, v € I; otherwise, we decrease R(U,I). The algorithm computes
the value A(U, I, (u,i)) for each edge (u,i), where u € U, and i € I, it sorts the
edges, and selects the top ones that achieve the target bias goal. We will refer to this
algorithm as EpceExpLAIN.

The second algorithm builds the explanation by selecting users from U, and re-
moving all their edges to the complement group I. The explanation in this case is a
set of users who, if disconnected from the complement item group I it will correct the
bias of the recommender. To compute the explanation, for each user u € U, let E,(I)
denote the set of edges from u to the group I. The algorithm estimates A(u, I, E,(I))

for all users u € U, sorts them according to the A values, and returns the top ones

13



that achieve the target bias goal. We will refer to this algorithm as UserExpLAIN.
The third algorithm builds the explanation by selecting items from the complement
group I, and removing all edges from the group U. The explanation in this case is a
set of items, such that if they disconnected from group U, it will correct the bias of
the recommender. For an item i € I, we approximate the effect of its removal from
group U by computing A(U,I,i) = > ., A(U, I, (u,i)). We sort the items according
to the A values, and return the top ones that achieve the target bias goal. We will

refer to this algorithm as ITEMExpLAIN.

3.4.3 Individual Item Explanations.

In the case of individual item explanations, we want to explain why for a specific
item, the recommendation algorithm estimates lower scores from group U than U.
The explanations consist of edges from the user group U. For an item 4, it is relatively
easy to see that the best edges to remove are from the users that have rated the item ¢,
that is, users in D; C U. For each edge (z,y), z € D;, y # i, we compute A(U, 1, (z,y)).
We sort the edges according to these values, and we return the top edges that achieve

the target bias value.

3.4.4 Item Group Explanations.

In the case of item group explanations, we want to explain why for a group of items,
the recommendation algorithm estimates lower scores from group U than U. For this
case, we adopt the three different types of explanations we described for the user

group explanations, and the corresponding algorithms.
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CHAPTER 4

EXPERIMENTS

4.1 Datasets

4.2 Explanations to individual users
4.3 User-group explanations

4.4 Individual item explanations

4.5 Item-group explanations

We now evaluate our algorithms for producing explanations for the different recom-
mendation bias. Depending on the type of bias we consider we will consider different
approaches for selecting explanation edges. The goal of the experiments is to under-

stand quantitatively and qualitatitively the different explanations we produce.

4.1 Datasets

We evaluate our algorithm using both real and synthetic datasets. We will now de-

scribe our datasets and their characteristics.

Real Dataset: We use MovieLens 100K Dataset [10] which is a dataset of user ratings
on movies. It consists of 100,000 ratings from 943 users on 1682 movies. There is
demographic information about the users, and genre information about the movies.

For our experiments we used the gender to define groups of users, and the movie
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Figure 4.1: Individual user explanations

genre for defining groups of movies. We used a subset of the dataset with the movies
of Action or Romance genre, exclusively. The resulting dataset consists of all users,
670 males and 273 females and 448 movies, 226 Action and 222 Romance. In our
experiments we will denote the group of Males as M and the group of Females as

F, and the Romance group as R and the Action group as A.

Synthetic Datasets: We also created synthetic datasets to study our algorithms. All
datasets consist of Ny = 1000 users and N; = 1000 items. Users are partitioned into
two groups, Uy and U, of equal size, and items into two categories, [, and [;, also
of equal size. For each user we allocated a constant number of ratings equal to 10%
of total number of items, i.e., 100 ratings per user in our case. We introduce bias
in the data, where users in U, favor items in [;, and users in U; favor items in I;.
We control the bias with a parameter 3: For a user from group U, (U;), we allocate
a rating to an item in category I, (I;) with probability 5 and an item in category
I, (Iy) with probability 1 — 5. The goal is to study the effect of the data bias in the
explanations, so we vary the parameter § to take values in {0.5,0.6,0.7,0.8,0.9}. We
also initialized items with k = 5 ratings. To preserve the bias in ratings initialization,
the items in I, were rated by users in U, with the probability S and by users in U,
with the probability 1 — 5 (similarly for the items in I;).

We also want to investigate the effect of item popularity, so we varied the prob-
ability distribution with which we select to assign an item to a user with an item
category. We generated popularity distributions for the items utilizing Zipf’s Law.
For the Zipf law parameter ¢ we used parameters a € {1,1.1,1.3,1.5,1.7}, where

higher parameter value, implies more skewed distribution, while value a = 1 results

16



80 Popularity ) 14
—8— 1.0 (uniform)

Explanation Size
8
Average B(l|u)

—@— Delta Greedy (118.398 s)
Delta Sort (35.859 s)
@ Standard Error

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0 4 8 12 16 20 24 28
Bias Explanation Size

(a) Synthetic Data Explanations (b) GREEDY Vs SoRT
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in a uniform distribution.

4.2 Explanations to individual users

We first experiment with explanations for individual users. In the Movies dataset, we
select the target group I to be the movies in the Romance category (group R). We
consider users with initial B(R|u) < 1, and we seek explanations that will result in
B(RJu) > 1 (target 6 = 1). We first consider the Greepy algorithm. To study the how
the initial bias affects the complexity of our explanations, we sampled 20 users in
three different ranges of initial B(R|u) values: (0.65,0.75), (0.75,0.85), and (0.75,0.85).
Figure 4.1a plots the size of the explanation E, and the resulting (average) Bg, (R|u).
We observe that the more biased the nodes initially towards Action, the larger the
complexity of the explanation. However, even for large Action bias, we can explain it
with a small number of edges (no more than 12 for B(R|u) ~ 0.7 and less than 5 for
B(RJu) =~ 0.9). An example of the explanation movies is shown in Figure 4.1b. The
selected movies are all known Action movies.

We performed some additional measurements in order to better understand the
type of movies that the algorithm selects as explanations, and more specifically how
the popularity of the movie affects the selection. For a user u, we compute the cor-
relation between the A-values, A(u, R, (u,7)), of the removed edges and their degree
popularity. The resulted histogram of the correlation coefficients (both value and rank

correlation) for a sample of 200 users appears in Figure 4.3 . We observe a clear neg-
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Figure 4.3: Individual user correlations with item popularity

ative correlation (average Pearson correlation -0.64, average Rank Correlation -0.76),
meaning that the movies selected have small degree. It is thus the case that removing
links to fringe movies has a stronger effect than removing links to popular movies.
This can also be deduced from Equation 3.4, where the target of the edge selected
must have lower probability of reaching the target group, than the other neighbors
of the user. Unpopular Action movies are less likely to lead Romance category.

To further understand the explanations produced we perform experiments with
synthetic data. We vary the bias in the data 3, as well as the skewness of the degree
distribution a. We observe that as the bias increases it the complexity of the expla-
nations increases. Increasing the skewness of the degree distribution also increases
the complexity, since it has an effect on the resulting bias. We also compute the cor-
relation coefficient for the synthetic data as well, and we observe an even stronger
negative correlation between the A-value of an edge and the popularity of the movie.

Finally, we compare the GrReepy algorithm with the efficient heuristic that simply
sorts the edges by the A values. We observe that we gain considerably in efficiency,
with only a small increase in the explanation complexity for large values of target

bias 0. Thus, the sorting algorithm is a viable alternative to the GREEDY solution.

4.3 User-group explanations

We now consider explanations to user groups. In the Movies dataset we set the target

item group to be the Romance category R, and we consider the user group consisting
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of male users M. We have that B(R|M) ~ 0.70, so there is a bias of the recommender
against the Romance category when producing scores for the Male users, which we
want to explain.

We consider the three different algorithms for producing explanations that we
described in Section 3.4: EpceExprLaIN, UserExprLAIN, ITEMExpLAIN. Each algorithm
produces a different type of explanation. We plot them together in Figure 4.4b, where
the z-axis shows the number of edges removed and the y-axis B(R|M). On the plot
we also show the number of users selected for UserRExpLAIN, and the number of items
“removed” for ITEMExpLAIN, to achieve the target bias value.

We observe that in terms of edges removed the EpceExpLAIN algorithm has the
most efficient explanation, followed by the UserExpLAIN algorithm, and then the ITE-

MExpLAIN algorithm. This is expected since the last two produce a different type of
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explanation. These explanations are interesting in their own right. The UserExpLAIN
algorithm can explain the bias by affecting only a small subset of 44 users, while the
ITEMExpLAIN algorithm produces an explanation with just 22 movies. Looking at the
selected edges of EpceExpLAIN, we observed that they involve 320 distinct users, and
148 distinct movies. The occurrence distribution for the users indicates that we never
remove a lot of edges from a user. On the other hand, the occurrence distribution for
movies is more skewed, with many movies appearing a few times, and a few movies
having several edges removed. The occurrence histograms appear in Figure 4.5.

We also explored the characteristics of the explanations. The EpceExpLAIN algo-
rithm tends to select users with low degree and few edges towards Action (negative
correlation under -0.6). Removing a single edge from such users has a strong effect,
as it transfers significant amount of probability to the Romance group. This is contrast
to the UserExpLAIN algorithm who selects users with high degree, and several ratings
in Action (correlation 0.91). Removing all of these edges results in high increase of
B(R|M). Interestingly, there is zero overlap between the users affected by the two
algorithms.

The ItemMExprLAIN algorithm tends to select movies that are overall popular (cor-
relation 0.86). The 22 movies selected by ItemExpLAIN appear also in the top-100
edges selected by EpceExpraiN (66% of the edges), while 16 out of the 22 selected
movies appear in the top-100. The top-5 selections of the ITEMExpLAIN algorithm
are: “Air Force One”, “The Godfather”, “The Princess Bride”, “Independence Day”,
“Star Treck: First Contact”. We see that the list contains popular movies that are also
popular outside the Action genre, such as “The Godfather” or “The Princess Bride”.

We also experimented with synthetic data. Results are shown in Figure 4.6. We
observe again that as the bias increases the explanation complexity also increases,
while increasing the skewness of the degree distribution (high a values) results in

higher explanation size.

4.4 Individual item explanations

We now consider explanations to individual items. In the Movies dataset we set the
target user group U to be the group of male users M. We consider items with initial

B(M]i) < 1, and we seek explanations that will result in B(M|:) > 1 (target 6 = 1). We
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Figure 4.6: User-group explanations for synthetic data

create again samples of 20 items, for three different ranges of initial B(M i) values:
(0.55,0.65), (0.7,0.8), and (0.85,0.95).

Figure 4.7a plots the size of the explanation F; and the resulting (average) By, (M]i).
We observe that the higher the bias against Males (lower B(M|i)), the the larger the
complexity of the explanation. However, we can still explain the bias with a small
number of edges (15 on average for B(M]i) ~ 0.6 and 6 on average for B(R|u) ~ 0.9).
An example of the explanation movies is shown in Figure 4.7b. In the selected movies
there are known Action movies like ”Jaws” or ”The Jackal”. However, there are also
Romance movies like ”English Patient” or "The Wings of the Dove”. This choice is
made because the algorithm removes edges from users that have seen the object movie
and also with low number of seen movies in general. This way we have a greater
effect on the score allocated from random walk to ”Oscar & Lucinda” removing a
Romance movie instead of removing an Action from a user with more ratings. Thus,

the algorithm prioritize users with low number of ratings.
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4.5 Item-group explanations

We now consider explanations to item groups. We set again the target user group
U to be the group of male users M, and the target item group to be the Romance
category R. We have that B(M|R) ~ 0.92, so there is a bias of the recommender
towards Males when producing scores for the Romance, which we want to explain.

We consider again the three different algorithms for producing explanations for
groups: EpceExpLAIN, UserExpLaIN, ITEMExpLAIN. Note that the selections of the al-
gorithms are exactly the same as for the user-group case. The results in the bias ratio
are different, as it is shown in Figure 4.4.

We first observe that the EpceExpLAIN achieves the target value much faster, and
with a steep increase. The ITEMExpLAIN algorithm coincidentaly achieves the target
bias at the same number of movies as for the user-group case. The algorithm in this
case is better than the UserExrrLaAIN algorithm, which performs much worse, both
in terms of number of edges removed and number of users affected. The UserEx-
PLAIN algorithm selects users with many edges to the Action category. This increases
R(M, R), but it also increases R(F,R), so the increase in B(M|R) is small. This is
in contrast with the EpceExpLAIN algorithm that selects edges from users with small

degree, that cause large increase to R(M, R) but small increase to R(F, R).
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CHAPTER DO

ReELATED WORK

The problem of fairness in recommendations has received a lot of recent attention [1,
2]. Several formulations of the problem have been proposed looking at different levels,
sides, and perspectives of fairness. A general distinction is on whether fairness is
considered at the level of individuals or groups [11]. In recommendations in particular,
there are also many sides involved [3]. Consumer, or user fairness looks at the users
receiving the recommendations, whereas producer or item fairness looks at the items
being recommended. In this work, we provide explanations both at the individual
and group level as well as both from the user and the item side.

Various perspectives of fairness have also been captured. One perspective is that
the prediction errors of the item ratings must be similar across groups or individu-
als [12, 13]. Accuracy based fairness is also formulated using pairwise metrics [14].
Another perspective is fair exposure, for example, allocating exposure to items in rec-
ommendation lists proportional to their relevance [15, 16]. Finally, calibration asks
that the predicted proportions of the various recommended items, or groups agree
with the actual proportions of the items, or groups in the user preferences [17, 18].
In this work, we offer a general method for explaining unfair behavior and applied it
to explain cases where there is discrepancies between predictions and group parity.

Explainability in Al is getting increasing attention. It is achieved by using inter-
pretable and transparent models, or by generating post-hoc explanations for opaque
models. A common approach in the latter case are attribution-based methods includ-

ing methods that quantify how much the output is changed when an input variable is
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perturbed and methods that quantify marginal effects of variables on the output com-
pared to a reference model [19]. Well-known examples of such methods are LIME
[20] and DeepLIFT [21]. As opposed to attribution techniques, counterfactual expla-
nations produce small changes in the input so that a different prediction is made [5].
In this work, we take a post-hoc countefactual-based approach.

There has been much work on explaining recommendation results as well [4]. Here
we focus on counterfactual-based explanations for explaining unfairness. Counterfac-
tual explanations for recommendations explore either item features, or user actions.
An example of the first approach is CountER that formulates an optimization problem
to generate minimal changes on the features of an item such that the recommenda-
tion decision about the item is reversed [6]. Our approach falls in the latter case
where a counterfactual explanation is a set of user actions that, when removed, the
recommendations change. Prince [7] follows this approach for graph recommenders
and looks for a set of minimal user actions that, if removed, the top recommendation
item will be replaced by a different item. ACCENT extends the user action approach
to neural recommenders [8]. Here, we extend the user action approach for explain-
ing unfairness. The only other work on counterfactual explanations for unfairness in
recommendations that we are aware of is [22] that follows an item feature approach.

Finally, we propose modification of the interaction graph. There has also been a
line work on graph perturbations to achieve specific properties. For example, previous
research has studied the importance of edges in a network such that link recommen-
dation algorithms result in increasing the Pagerank of underrepresented groups [23],

while rewiring edges was proposed to decrease paths to polarized content [24].
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CHAPTER O

CONCLUSIONS

In this work we considered the problem of defining counterfactual explanations for
bias of recommendation algorithms. We considered different types of bias, and pro-
vided definitions for the explanations for these biases. We the case of a random walk
recommender, and we provided efficient algorithms for computing different types
of explanations. We validated our approach with experiments on real and synthetic
data.

For future work, we are interested in extending our approach to more recommen-
dation algorithms, and other graph-based approaches, such as GNNs. We also plan

to consider other definitions of fairness and explanations for these definitions.
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APPENDIX A

APPENDIX A

A.1 Estimating the effect of edge removals from a user

A.2 Computing personalized random walk probabilities using absorbing random walk

A.1 Estimating the effect of edge removals from a user

We will provide a proof for Equations 3.5 and 3.6. The proof also applies to the case
of a single edge removal, where the set of edges I/, removed contains a single edge
(|E;| = D.

Proof. Let P and P’ denote the transition matrices of the recommender random
walk on the graphs G and G’ before and after the removal of the edge of edges E,
respectively. The set E, contains (directed) edges emanating from node z, that is, it
is of the form £, = {(z,y) : y € Y}, for a subset Y of the neighbors of z. Abusing the
notation, since the source of the edges is fixed to z, we will use £, to denote both the
set of edges and the set of neighbors Y of x from which we remove the edges. We
assume that |F,| = k, and that d, > k.

To prove our theorem, we first write the transition matrix P’ as the sum of the
transition matrix P and a rank-1, perturbation matrix B, that is, P’ = P+ B. We use
B; to denote the i-th row of matrix B, and we have:

0, 1F T
k 1 T

——e

do—kte = kB, =T
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where ey, is the vector with 1 at the positions of nodes in E,, and zero everywhere
else.

We want to estimate

Q=vI-(1=-7P) " =4I -(1-)(P+B)".

To do so, we exploit a lemma [25] that states that for a non-singular matrix M and

a rank-1 matrix H, such that M + H is nonsingular, we have:

1
—— M 'HM ™, g=tr(HM ")

M+H) =M1 -
( ) 14+g

Applying for M = (I — (1 —~v) P) and H = —(1 — ) B, and using the fact that
Q=M™
Q =~(M+H)™

1
=M ' —y—MT'HM ', g=tr(HM ™)

1+g
- Q 1 Q Q ., ( . pl
_7;_71+—h ;(—(1—7)3);, h—tr( (1 7)37Q>
A=)
=Q+ ——1=7Q B Q, where ¢=1tr(B Q) (A1)
1— A/’Y)q

With mathematical manipulations, we get:

07 ) 7é X
k 1 1 .
dy—k (Z ZjEDx jS Tk ngEw sz‘) y 1=

k 1 1
QBQy; = mQuz <d_:r Z Qji — ¥ Z jS)

z jED, JEE,

Substituting in Equation A.1, and using the fact that ¢ = tr(B @) = BQ,, we have:
1—
% (,% > iep, Qii = % Xjen, sz‘)

x — 1—

dek — ) (L5 Qio =+ e, Qi)

We know that for any nodes k,/, pi({) = Qu. Also, d, = |D,| and |E,| = k.

Therefore:

=E <|/Dlz| > jen, Pild) = 3 e, Pj(’i)>
Bl = 42 (13 Zen, o) — By Tyer ()

Pu(i|E:) = pu(i) + pu(z)
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A.2 Computing personalized random walk probabilities using ab-
sorbing random walk

We will now show that the absorption probabilities «,(Az) of the absorbing random

walk we defined in Section 3.3 compute the personalized random walk probabilities

p.(Z).

The absorbing random walk is defined by the transition matrix R:

T B
0 I

R =

The matrix T is the transition matrix between transient nodes (non-absorbing). In our
case, we have T' = (1 — )P, where P the transition probability matrix of the random
walk algorithm, and « the jump probability. Matrix B has the transition probabilities
from the transient nodes to the absorbing nodes. In our case, we have four absorbing
nodes, so it is an n x 4 matrix, where each column corresponds to an absorbing nodes
Ay. For the column B; we have By(i) = v if i € Z, and 0 otherwise.

Using existing theory on absorbing random walks [26, 27]. to compute the ab-
sorption probabilities, we compute the fundamental matrix F' = (I — (1 —~)P)"1, and

then we have that a,(Az) = FBz(z). Note that ' = %Q. Therefore, we have:

1
- _QJ:BZ
v

1
= _ xBZ
’yP

= Z %Px(i)v

1€Z

= pa(i)

1€Z

In the derivation above we used the fact that the x-th row (), of matrix () stores

the personalized vector p,, and the fact that for a subset of nodes Z (e.g., Z = I),

P:(Z) = D ic, Puli).
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