Guitarist Hand Information Retrieval Using
Computer Vision

A Thesis

submitted to the designated
by the Assembly
of the Department of Computer Science and Engineering

Examination Committee
by
Panagiotis Kouzouglidis

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER
SYSTEMS ENGINEERING

WITH SPECIALIZATION
IN DATA SCIENCE AND ENGINEERING

University of Ioannina
School of Engineering

Ioannina 2023

Examining Committee:

¢ Christophoros Nikou, Professor, Department of Computer Science and Engi-

neering, University of Ioannina (Advisor)

* Aristidis Likas, Professor, Department of Computer Science and Engineering,

University of loannina

* Konstantinos Blekas, Professor, Department of Computer Science and Engi-

neering, University of loannina

DEDICATION

Dedicated to my parents and to my brother and sister for supporting me financially

and spiritually throughout all these years of my studies.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, professor Christophoros Nikou, for always being
helpful, supporting and passing on to me advanced knowledge through his master
course of computer vision. Also, I would like to thank Giorgos Sfikas, whose feedback

and advice helped me a lot during the beginning steps of this master thesis.

TABLE oF CONTENTS

List of Figures

List of Tables

Abstract

Extetopévn Mepidndn

1

Introduction
1.1 Thesis Objectives
1.2 Thesis Structure e e e e e e e

Background Knowledge

2.1 Guitar Essentials L oo o
2.1.1 Guitar Anatomy oL e e e e
2.1.2 Tablature system
2.1.3 Notesand Chords

2.2 Image Processing and Computer Vision
2.2.1 Edge Detection Using Sobel Filters
2.2.2 Contours. v vttt e e e e e
223 Filtering e
2.2.4 Thresholding
2.2.5 Morphological Operations
2.2.6 Perspective Transformation

2.3 Machine Learning o oo e
2.3.1 Linear Regression,
2.3.2 K-means Algorithm

iii

vi

viii

3 Guitarist Hand Information Retrieval Using Computer Vision
3.1 Problem Definition o Lo

3.2 Related Work e
3.3 Our Approach e
3.3.1 Fretboard Detection and Normalization
3.3.2 Finger Detection and Localization
3.3.2.1 Skin Segmentation

3.3.2.2 Left-Hand’s Fingertips Localization

3.3.2.3 Guitar Pick Localization

3.3.3 String Detection L oo
3.3.4 Fret Localization
3.3.5 Tab Prediction

4 Experiments

4.1 Dataset.o e e e e e e e e e e e e
4.2 Evaluation metrics L. oL e e e

421 Per Fret e

422 PerString e
4.3 Experiments Configuration
4.4 Numerical Results L o
4.5 Comparison with similar works
4.6 Limitations and Error Cases

5 Conclusions and Future Work

Bibliography

ii

14
14
14
15
15
20
21
22
23
23
24
25

27
27
29
30
31
31
34
38
39

41

43

LisT oF F1GURES

2.1 Guitar Partso e e e e e e e e e 4
2.2 Guitar Tablature Example oo 5
2.3 Fretboard Notes for Standard Tuning 6
2.4 Chord Chart o i it ittt e e 6
2.5 Edge Detection Using Sobel Filters 7
2.6 Contour Detection for Random Shapes 8
2.7 TImage Smoothing o i e 9
2.8 Image Thresholding 10
2.9 Morphological Erosion and Dilation 11
2.10 Morphological Opening and Closing 11
2.11 Perspective Transformation Example 12
2.12 Linear Regression it e e e 13
2.13 K-Means Algorithm (for k=3) 13
3.1 [GHIR 1/16] - Original Frame 16
3.2 [GHIR 2/16] - Horizontal Edge Detection Using Sobel Filter 16
3.3 [GHIR 3/16] - Horizontal Edges After Performing Morphological Operations

and Smoothing e 17
3.4 [GHIR 4/16] - Detected Contours of Horizontal Edges 18
3.5 [GHIR 5/16] - Detected Contours with top and bot points 19
3.6 [GHIR 6/16] - Guitar Fretboard Detected Area« . v 20
3.7 [GHIR 7/16] - Normalized Fretboard 20
3.8 [GHIR 8/16] - Normalized Fretboard’s Edges for Removal 21
3.9 [GHIR 9/16] - Skin Segmentationo v 22
3.10 [GHIR 10/16] - Left and Right Hand Segmentation 22
3.11 [GHIR 11/15] - Localized Fingertipso oo .. 23

1ii

3.12 [GHIR 12/16] - Detected Guitar Pick Position 24

3.13 [GHIR 13/16] - Normalized Fretboard’s Vertical Edges 24
3.14 [GHIR 14/16] - Detected Guitar Strings« 24
3.15 [GHIR 15/16] - Normalized Fretboard’s Horizontal Edges 25
3.16 [GHIR 16/16] - Detected Frets, 26
4.1 C Major Progression Tabs 29
4.2 CMajorScale Tabs v it it e e e e e e 30
4.3 F Major Scale Tabs e 30
4.4 Children of Bodom - Kissing the Shadows Riff Tabs 31
4.5 Limitation: Low accuracy to fingertips that press the 6th string. 40
4.6 Error case: Right hand contour filtered out. Guitar pick detection fails. . . . 40
4.7 Error cases: (1) Poor fretboard area detection (2) False skin segmentation . . 40

4.8 Error cases: (1) Multiple fingertip localization per finger (2) Duplicate string
detection e 40

4.9 Error case: Shadow results to finger segmentation failure. 40

iv

L.isT oF TABLES

4.1 Dataset size perrecording Lo 29
4.2 Fret-Prediction Evaluation for C Chord (528 frames) 35
4.3 Fret-Prediction Evaluation for Am Chord (496 frames) 35
4.4 Fret-Prediction Evaluation for Dm Chord (526 frames) 35
4.5 Fret-Prediction Evaluation for G7 Chord (502 frames) 35
4.6 Fret-Prediction Evaluation for C Major Progression 36
4.7 Fret-Prediction Evaluation for C Major Scale 36
4.8 String-Prediction Evaluation for C Major Scale 36
4.9 Fret-Prediction Evaluation for F Major Scale 37
4.10 String-Prediction Evaluation for F Major Scale 37
4.11 Fret-Prediction Evaluation for Kissing the Shadows Riff 37
4.12 String-Prediction Evaluation for Kissing the Shadows Riff 38
4.13 Comparison with previous methods. 38

ABSTRACT

Panagiotis Kouzouglidis, M.Sc. in Data and Computer Systems Engineering, Depart-
ment of Computer Science and Engineering, School of Engineering, University of
Ioannina, Greece, 2023.

Guitarist Hand Information Retrieval Using Computer Vision.

Advisor: Christophoros Nikou, Professor.

Music Transcription is the process of extracting information from a song or piece
and converting it into some form of music notation. Traditionally, it is a time consum-
ing task that is performed manually and it requires significant music knowledge and
experience from the musician. The Automatic Music Transcription (AMT) problem
has been mainly approached through audio signal processing. However, extracting
pitch from an audio recording can be a difficult task due to the dependency of fre-
quencies to factors such as the type of the instrument, tuning, sound enhancement
using effects (e.g. distortion) and others.

In this work we study the problem of Guitarist Hand Information Retrieval (GHIR)
which corresponds to a vision-based approach of the AMT problem for the guitar
instrument. GHIR is a complicated and difficult task since it consists of many sub
problems. First, we detect the guitar fretboard which is the area of the guitar where
the fingers are placed and moving. Next, we detect the positions of the guitar’s strings
and frets. Then, we localize the fingertips of the guitarist’s left hand that presses the
notes. Finally, we combine the aforementioned information to predict for each string
which note is pressed.

We try to solve the GHIR problem without using any markers, that could be useful
for higher accuracy of fretboard detection or fingertip localization. Also, unlike other
works we don’t use frame references to interpolate frets that are missing due to the

occlusion from the guitarist hand. We process, analyze and extract information from

vi

each frame independently. In addition, we don’t use any prior knowledge of the
guitar’s fret distances.

We introduce the problem of pick position prediction, which gives us the infor-
mation of the candidate string the guitarist hits.

We evaluate our model on a dataset that we created and annotated. The dataset
consists of video recordings, where we play a set of chosen chords and scales on
guitar. We present our results and we compare the performance of our model to
similar experiments of other works. We analyze the error cases of our model and we

propose future improvements and extensions.

vii

EXTETAMENH IIEPIAHWH

Mavoytdtng KovlouyAldng, AM.E. ot Myyovixn Asdopévwy xal YTOAOYLOTIXGY
Yvotnuatwy, Tunuo Mnyovixody H/Y xoar [TAnpopopLtxg, [loAvteyvixn XyoAy, [love-
ToTULo Twavvivey, 2023.

Avéxtnon IIAnpogopiog twy Xeptohy tov Kibapiota pe Xpnon Ymoroytotixng Opo-
onG.

Enprerwv: Xprotdépopog Nixov, Kabnynts.

H Meteyypaey Movowxig (Music Transcription) eivar 7 Stadixooion eEoywyrig
TIANPOPOPLOG EVOS LOLOLXOV XOUUOTIOD XOL V] OTTOTOTWOY] TOL O XATOLO [LOPPY|
povoxng onuetoypapiag. [opoadootoxd avtn elvor pLoe pxeTd Ypovopépo dLodt-
xootor xofog ylvetor yetpoxivito ol amoLTelToL 1 LOLOLXY] YVWON xal avTiAndn
TOU OXPOOTY] WOTE YO UTTOPEL HUE TO OUTL Yo avoryvwploel TLg VOTEG TOL LOLGLXOV
xoppottod. Koatd to mopeAboy €xel peietndel to mpoPanua tng Avtépotng Metey-
yvoapng Movoixrg (Automatic Music Transcription, AMT) xvpiwg amd ™y oxomLd
NG OWVAALGTG TOL MYNTLXOD oNaTos. To AMT mpdBAnua pe Ty xeNomn Tov MYNTLXOD
ONULOTOG TIEPLEYEL LPXETES BLOXOALES AGYW TWY TTOAAWY SLAYOPOTIOLNOEWY TTOV [LTTO-
PEL YO €XEL O XWPEOG TWY CLYYVOTNTWY, OL OTTOLES TTPOXVTITOVY ELTE OO TNV QVOCT TOL
0pYGVOL, E(TE OTTH TO EXACTOTE XOVEOLOUO, ELTE OO TNV YENON NYNTLXWY EQPE %O
ToEOPopEKHoswy (distortion) -wov Umopel var YeNotpomotnfody xatd Ty extéAeon
TOL XOUUOTLOV- %.OL.

2Ny Tapodoo epyaoion LEAETANE TO TEOPRANUe g EEaywyg [TAnpopopiag twy
Xeptoy evoc Kibapioto (Guitarist Hand Information Retrieval, GHIR) pe tnv yp7on
Yroroytotixig Opaorg (Computer Vision). H eEaywyh awtig g TAnpopopiog orto-
TeAel oLOLUOTIXG TTPOPBANUO LETEYYOOPNG LOVOLUNG, XoBWG TEAXOG 0TOYOG lva vou
LETUTPEPOLE TO LOLALXO XOUUATL -TTOL TTalleToll oTNY xLOAPA- OE LOLOLXT TAUTTAC-
Tovpoa. To GHIR eivar apxetd moAbTAOXO %o SDOXOAO TEOPANUO xotbWdG atoTEAEL -

ToL oo OLAPOoPa ETULUEPOLS LTTO-TTPOPANUOT. Apytxd evTOTT{OLUE TOV ACLLUO TNG

viil

xbapog, dnAadn Ty TEPLOYN OTNY oTolo [BploxovTol xo XLvolvToL Tor YEQELO TOL
xbapiota. Ztnv ovvéyela evtomilovpe Tig O€oelg Ty TAOTWY OAAE xOL Twy Y0E-
0wy g xbdpog. ‘Emeita, Bploxovpe tig Béoelg amd Tig dxpeg Twy dayTOAWY TOL
opLoTePOD YeELod touv xtbopiota. Térog, ocuvduvdlovpe GAX To TOPATTAVL WOTE YO
TpoPAEPovpe Yo x&be xopd1 TNg xbdpog ol vota Catder” o xtboploTog.

Emtyetpodpe vo Moovpe to GHIR mpdPAnuo ywpeic xohon onuadidy (markers)
ov O popovoay va pog Bonbnoovy eite oTov evtomiopd Tov Aotpod g xbdpoac,
elte 0TOV axPLBECTEPO EVTOTILOWUOS TwY SoxTOAWY Tov xtbapiota. Entiong dev xévovpue
yofion xapé avoapopdc (frame reference), 6mwe yivetar oc dAhec SovActéc xoL To
omoioe Bonbody oty avTipeTwion g emtxdAvdrng (occlusion) Twy TéoTtwy omd TO
¥épt Tov xtbapiota. Avtipetwmilovpe xdbe xopé PLEpPOVLUEVO XOL OVEERQTNTO oL
mpoorabobpe amd T XoL LOVO Yo EEAYOLUE O,TL TTANPOQPOPLO. UTTOPOVUE, (YOTE
VO PTACOVIE GTO TEAXO aTOTEAETUO. TEAOC Oev EVOLUE YPNON XOWULAG EX TWV
TPOTEPWY YVWOYG OYETLXA UE TLG ATTOGTACELS TTOL €XOLY T TATTA NG xLh&pags.

Etodryovpe 1o mpdPAnua tng edpeomng tng B€ong tng mévag xow 1 omolo Oo pog
OWOEL TNV TANPOPOPLa YLt TO TToL X0eoN elval vodhmneLa vor Talel o xtboploTog
oc OTTOLOONTOTE OOCUEVO XOPE.

AELoAoyodpe TO LOVTEND oG TTAVL GE GOVOAO JESOUEVW®Y TTOL INULOVPYNOOLE XOL
emtonpetdoape (annotated). To odvoro dedopévwy amotedeital oo Bivieo monEipa-
TOC XATOLWY oLYY0ELWY (chords) kot xApdxwy (scales) oe xbdpoa. Tapovotdlovpe
TOL TTOTEAEGLOTO. TOV [LOVTEAOL OG KOL TO. CUYXPLVOLUE UE TTOOOUOLO TTELOGLLOITOL
amd aAheg dovAetég. TéAog, ayoAtalovpe Tig aduvapieg Tov xabwg xot Tpoteivovue

LOEEC YLOL ETEXTAOELG XL BEATLOOELS.

ix

CHAPTER 1

INTRODUCTION

1.1 Thesis Objectives

1.2 Thesis Structure

1.1 Thesis Objectives

In this thesis we address the problem of Guitarist Hand Information Retrieval (GHIR)
which corresponds to a vision-based approach of the Automatic Music Transcription
(AMT) problem. We propose a solution for each of the individual sub-problems,

GHIR consists of. Specifically, the problems that we try to solve are the following:

1. Guitar fretboard area detection and normalization.

2. Guitarist’s hands segmentation and fingertip localization.
3. Guitar fret localization.

4. Guitar string detection.

5. Fret prediction for each guitar strings (which notes are pressed from the gui-

tarist’s left hand).

6. Pick position prediction (which is the candidate string that the guitarist hits).

There are some previous works that address the same problem using different ap-

proaches. The thing that these works have in common is either the usage of markers,

1

either the usage of frame references. Markers are useful for higher detection accuracy
of the guitar fretboard. Also, they can be used on fingertips to make their localization
easier. On the other hand, frame references are frames that in most of the cases are
processed manually and they are used to retrieve missing information (i.e. missing
guitar frets due to the occlusion from the guitarist hand). Finally, they use known
formulas to approximate guitar fret positions.

We attempt to solve the GHIR problem without using any of the aforementioned
practices. We try to extract all the information that we can from each frame inde-
pendently and without any prior knowledge. We take into account every little detail
that we can extract from the processed frames. The motivation for this approach is to
come up with a fully automated solution that has high accuracy and doesn’t depend
on previous frames or manual interference. If we manage to come up with this kind

of solution then with simple extensions it could outperform all the existing methods.

1.2 Thesis Structure

The rest of this thesis is organized as follows: In Chapter 2 we provide the essential
background knowledge that we needed for this work. We cover topics related to
guitar, image processing and machine learning. In Chapter 3 we provide details for
our approach and related work. In Chapter 4 we present the experimental results
of our method and we compare them with similar experiments of other works. In
Chapter 5 we summarize our findings and we provide a list of future improvements

and extensions of this work.

CHAPTER 2

BAckGrROUND KNOWLEDGE

2.1 Guitar Essentials
2.2 Image Processing and Computer Vision

2.3 Machine Learning

2.1 Guitar Essentials

In this section we mention the most important guitar concepts that are needed for a

better understanding of this thesis.

21.1 Guitar Anatomy

The guitar is a popular stringed instrument that has been used in a wide variety of
musical genres, including metal, rock, pop, country, blues, jazz, classical, and folk.
The guitar consists of a long, fretted neck with six strings that can be plucked or
strummed to create different notes and chords. There are many different types of
guitars, including acoustic guitars, electric guitars, and classical guitars. In current
thesis we use an electric guitar for our experiments.

The main parts of a guitar are:

1. Headstock: The headstock is located at the top of the guitar neck and holds the

tuning pegs, which are used to tune the strings.

Tuning Pegs

MNut

Fretboard / Fingerboard
Frets / Fret Wires
Cutaway

Sound Hole

Pick Guard

Pickups

Bridge

10 Pickup Selector Switch
11 Volume/Tone Knobs
12 Output Jack

VONOORWN=

Figure 2.1: Guitar Parts

2. Neck: The neck is the long, thin part of the guitar that extends from the body.
It holds the fingerboard, which is a smooth surface with raised metal frets that

the musician uses to press down on the strings to change the pitch of the notes.
3. Body: The body is the largest part of the guitar and is typically made of wood.

4. Strings: The strings are thin wire ropes that are stretched across the neck and
body of the guitar. They are plucked or strummed to produce the sound of the

instrument.

5. Bridge: The bridge is a small piece of hardware located on the body of the
guitar. It holds the strings in place and transfers their vibration to the body of

the guitar, which helps to produce the sound.

6. Sound Hole: The sound hole is a small opening in the body of the guitar that
allows sound to escape from the resonant chamber. Note that the electric guitars

don’t have a sound hole.

A detailed image for the guitar parts is provided in Figure 2.1

2.1.2 'Tablature system

The guitar tablature system, also known as guitar tabs or simply tabs, is a musical

notation system used to represent music played on the guitar. Unlike traditional sheet

4

-

T T f | 1|' f F —
I | | | | | I | | 1
{fam) T T } i i i i i 1 |
\Q)u j| —J- _‘l-]I I] I i)

1 -.I- ?
0—1—3—5—7—8—-10

0—1—3
0—2
X — _3
- 0—2—3
L 0—1—3

Figure 2.2: Guitar Tablature Example

music, which uses standard notation to represent the pitch and duration of each note,
guitar tabs use a system of numbers and symbols to represent the location of each
note on the guitar fretboard. Tabs are often used by guitarists to learn and play new
music, particularly for popular songs and guitar solos.

In guitar tabs, each line represents a guitar string, with the top line representing
the thinnest string (1st string) and the bot line representing the thickest string (6th
string). For example, a ”0” on the bottom line means to play the open (unfretted)
string, while a ’5” on the top line means to play the fifth fret on the 1st string. There
are many techniques on guitar that have a specific representation in guitar tabs but
we won’t go into further details, since they are not used in current work. An example

guitar tablature is shown in Figure 2.2

2.1.3 Notes and Chords

In music, a guitar note is a sound that is produced by plucking, strumming, or
otherwise vibrating a string on a guitar. When a guitar string is plucked, it vibrates
at a specific frequency, which determines the pitch of the resulting note. The pitch
of a note is determined by the frequency of the sound wave, with higher frequencies
corresponding to higher pitches and lower frequencies corresponding to lower pitches.
The 1st string of the guitar provides the highest pitches and the 6th string provides
the lowest pitches. The guitarist presses different frets across the guitar to produce
different notes. Each fret produces a different sound. The list of the guitar notes of
the first 12 frets for the case of Standard Tuning, is shown in Figure 2.3.

Guitar notes can be played individually or in combination with other notes. A
guitar chord is a combination of two or more notes played together on a guitar. The

notes are played by strumming the strings of the guitar with the fingers or a pick. The

@

-
-

~E#
-C#-

Figure 2.3: Fretboard Notes for Standard Tuning

®

m>» 0 O mm

Sekeon
Seeunh

S
Shiop

B
e
&
o)
oS

kb0
6i0;

o8
ol
G
ol
ol
ot

T
LR
DEEEEM

LS. AL S
: —
| L 11
3 2 2 1 3 = 3 4
= D F
o O-O X-X_O x >
1 11
2:3 1 13 2 3 4 2 1
AmMm Dm Em
xX O (o] X_X-O o O-O-O
|
2 3 2739 23

Figure 2.4: Chord Chart

most commonly used chords are shown in Figure 2.4. Also, we can play a sequence

of chords in a specific order to create a chord progression.

2.2 Image Processing and Computer Vision

In this section we mention the background knowledge of Image Processing and Ma-
chine Learning that we needed for this work. We don’t into details. Our purpose is to
provide only an idea about the techniques of image processing and machine learning,

that we use in this work.

2.2.1 Edge Detection Using Sobel Filters

Sobel edge detection is an image processing technique used to detect edges in digital

images. It is named after Irwin Sobel, who developed the technique in the 1960s.

6

Original Horizontal Edges (|G.|)

Figure 2.5: Edge Detection Using Sobel Filters

Sobel edge detection uses two 3x3 kernels which are convolved with the original
image to calculate approximations of the derivatives — one for horizontal edges, and
one for vertical. For a given source image A the horizontal and vertical derivative

approximations (G, and G, respectively) are calculated as follows:

+1 0 -1 +1 42 +1
Go= |42 0 —=2|*Aand G,= |0 0 0 |=*A.
+1 0 -1 -1 -2 -1

The gradient approximations can be combined to give the gradient magnitude,
using G = |G,| + |G,|. The approximated derivatives of a selected image using the

Sobel filters are shown in Figure 2.5.

Original Shapes

Y2 £Y

Detected Contours

&b d X

Figure 2.6: Contour Detection for Random Shapes

2.2.2 Contours

In image processing, a contour is a curve that connects points of equal intensity or
color in an image. It can be used to extract important features in an image, such
as boundaries or edges, and to segment the image into regions with different colors
or intensities. The contour of an object in an image can be found using various
algorithms, such as edge detection, thresholding, or region growing. Once the contour
is found, it can be represented as a sequence of points that approximate the curve.

An image illustration of contours for some random shapes is shown in Figure 2.6.

2.2.3 Filtering

Image filtering is a fundamental technique in image processing that is used to modify
an image by applying a set of mathematical operations to each pixel or neighborhood
of pixels in the image. The purpose of image filtering is to enhance or extract certain
features of an image, such as edges, textures, or colors, or to remove noise or unwanted
details. There are many types of image filters that can be used to achieve different

effects, such as:

Original Smoothing Filter

Figure 2.7: Image Smoothing

1. Smoothing filters: These filters are used to reduce noise or blur an image by
averaging the intensity of nearby pixels. Examples of smoothing filters include

the Gaussian filter, the median filter, and the bilateral filter.

2. Edge detection filters: These filters are used to highlight edges in an image
by detecting regions where the intensity changes abruptly. Examples of edge
detection filters include the Sobel filter, the Canny filter, and the Laplacian of

Gaussian filter.

3. Sharpening filters: These filters are used to enhance the details or edges in
an image by increasing the contrast of adjacent pixels. Examples of sharpening

filters include the unsharp mask filter and the high-pass filter.

4. Color filters: These filters are used to modify the colors of an image by adjusting
the hue, saturation, or brightness of the pixels. Examples of color filters include
the color balance filter, the histogram equalization filter, and the color transfer

filter.

An a example of smoothing filter applied to an image is shown in Figure 2.7.

2.2.4 Thresholding

Image thresholding is a technique in image processing that is used to convert a

grayscale or color image into a binary image, where each pixel is either black or

Figure 2.8: Image Thresholding

white (or 0 or 1). The goal of image thresholding is to separate objects from the
background by finding a threshold value that separates the pixel values of the objects

and the background. An example of image threshold is shown in Figure 2.8.

2.2.5 Morphological Operations

Morphological operations are a set of mathematical operations that are used in image
processing and computer vision to modify the shape or size of objects in an image.

The most common morphological operations are:
¢ Dilation: is used to expand the boundaries of objects in an image.
* Erosion: is used to shrink the boundaries of objects in an image.

* Opening: is the result of an erosion followed by dilation. It is useful in removing

noise.

* Closing: is a dilation followed by an erosion. It is useful in used to fill small

gaps or holes in an image

Both dilation and erosion are performed by applying a structuring element to the
image, which is a small binary or grayscale image that defines the shape and size of
the operation. In Figure 2.9 we see the result of a digital character after performing
erosion and dilation accordingly. In Figure 2.10 we see the result of the morphological

operations opening and closing.

2.2.6 Perspective Transformation

Perspective transformation, also known as projective transformation, is a mathemat-

ical process used in computer vision to convert an image of a scene taken from one

10

Original Erosion Dilation
.

Figure 2.9: Morphological Erosion and Dilation

Opening Closing

Figure 2.10: Morphological Opening and Closing

viewpoint into an image that appears as though it was taken from a different view-
point. The goal of perspective transformation is to map a set of points in an image
taken from one viewpoint onto a corresponding set of points in an image taken from
a different viewpoint, such that the spatial relationships between the points are pre-
served. In Figure 2.11 we see the result of a perspective transformation that was

applied to the handwritten paper.

2.3 Machine Learning

In this subsection we describe the concept of Linear Regression and K-means algo-
rithm. We don’t go into details since it’s not necessary for the understanding of this

work.

2.3.1 Linear Regression

Linear regression is a statistical technique used to model the relationship between
two variables, where one variable is considered as the dependent variable and the

other as the independent variable. The objective of linear regression is to find a linear

11

Figure 2.11: Perspective Transformation Example

relationship between the two variables, which can be used to predict the value of
the dependent variable based on the value of the independent variable. Specifically,
in linear regression, a line is fitted to the data points by minimizing the sum of
the squared differences between the predicted values and the actual values of the
dependent variable. The line is defined by an equation of the form y = mx + b, where
y is the dependent variable, x is the independent variable, m is the slope of the line,
and b is the y-intercept. The slope of the line represents the change in the dependent
variable for a unit change in the independent variable. A graphical illustration of

linear regression is shown in Figure 2.12.

2.3.2 K-means Algorithm

K-means is a clustering algorithm used in unsupervised machine learning, which
groups a set of data points into k clusters based on their similarity. The algorithm
works by iteratively assigning data points to the nearest cluster centroid, and then
re-calculating the centroids based on the mean of the points in the cluster. Specifically

the steps of the K-means algorithm are described below:

1. Specify the k which is the number of clusters.

2. Initialze randomly the k centroids.

12

value

by computing the mean

id of each cluster

(b) Compute the new centro

of the points.

after the usage of the

ng clusters

ulti

ample of the res

In Figure 2.13 is shown an ex

ithm (for k=3)

Figure 2.13: K-Means Algor

13

CHAPTER 3

GuITARIST HAND INFORMATION RETRIEVAL

Using CoMPUTER VISION

3.1 Problem Definition
3.2 Related Work

3.3 Our Approach

3.1 Problem Definition

In GHIR problem, given a frame of a guitarist that plays the guitar, the objective is
to return for each of the six strings, which note is pressed by the guitarist. GHIR

corresponds to an Automatic Guitar Music Transcription problem.

3.2 Related Work

Automatic Guitar Music Transcription (AGMT) is an interesting problem and has been
studied from different aspects over the last years using audio processing methods [1],
[2], [3], [4], [5]. We are interested in works that approach the AGMT problem using
vision-based methods. These works [6], [7], [8], [9], [10] provide a full solution for
the GHIR problem while some other works focus on a specific sub-problem such as

the guitar neck detection and tracking [11], [12] or guitarist fingertip tracking [13].

14

Their main approach for guitar neck detection is to initialize manually the first frame
by selecting key points on the guitar fretboard and then by using optical flow (or
other techniques) they detect the new positions of the key points in next frames.
These points provide them proper information about the guitar fret positions. Hough
transformation is used either to detect the guitar strings [7], the guitar fretboard
area [6] or even fingertips [8]. The missing frets are interpolated either by using fret
positions from previous frames, or by using known formulas that approximate the
fret distances. The extraction of the skin pixels in most of the aforementioned works
is done according to the Kovac model [14]. Fingertips are commonly localized by

finding some local maxima on finger contours [7].

3.3 Our Approach

In this section we describe our approach to solve the GHIR problem. We provide
a solution for each of the sub-problems the GHIR problem consists of. Also, we
introduce the pick position detection problem, which corresponds to finding the string
that the guitarist hits. The solution that we provide is for the case of a right-handed
guitarist, which means that he presses the notes/frets with his left hand and he hits
the strings using his right hand. However, the solution is general enough to work for

the case of a left-handed guitarist with some minor modifications.

3.3.1 Fretboard Detection and Normalization

The first and the most crucial sub-problem that we must solve in GHIR is the detection
of the fretboard area. It’s the part of the image that has all the useful information
that we need, in order to predict the notes that the guitarist plays. If for any reason
this stage fails, then the rest of our method fails too. Without the correct information
about the guitar area it’s impossible to make correct predictions for the positions of
the strings, frets, fingertips and guitar pick. In Figure 3.1 we see an example of a
frame that is used as starting frame of our method.

As we can see in the starting frame, the camera is not totally focused on the
guitar fretboard. There are other elements too, such as some part of the guitarist’s
face, the guitarist’s t-shirt, the closet behind the guitarist, the light switch and some

door’s parts. All the aforementioned elements are noise in our data and they must

15

Figure 3.1: [GHIR 1/16] - Original Frame

be filtered out during our method. The guitar’s bridge and headstock also make our
task harder. They create edges that are noise for our detection and proper handling
is required so they are filtered out too.

Our first goal is to detect the frets of the guitar. We start by computing the edges
of the frame. The edges constitute the structure of the frame and hold all the precious
information that we need to achieve our goal. We use the Sobel operator 2.2.1 to detect
the horizontal edges of the frame. Canny edge detection could also be used, but in
our case Sobel provided us without much effort the information that we needed. The

horizontal edges are shown in Figure 3.2

Figure 3.2: [GHIR 2/16] - Horizontal Edge Detection Using Sobel Filter

16

By looking the horizontal edges in Figure 3.2 we confirm our concern about the
noise that is created from elements that are not part of the guitar fretboard. Also, we
can see that some structure is shaped for the guitar frets. However, we need to make
additional image processing to make the guitar frets more clear. For this purpose,
we apply to the horizontal-edges image the morphological operations of closing and
opening. The closing operations aim to fill the holes of the frets, while the opening
operations aim to separate adjacent frets that have a fret marker between them. We
must note that we use two different kernels during the morphological closing. The first
kernel focuses in vertical closing and the second one focuses on horizontal closing.

An example of the two kernels for kernel_size = 3 is:

010 0 00
closing_kernelyerticar = |0 1 0|, closing_kernelporizontar = |1 1 1
010 0 00

As a final step of our processing we apply a smoothing filter. After the smoothing,
all the pixels that have values greater than 0, are set to 255. The resulting thresholded

image is shown in Figure 3.3.

Figure 3.3: [GHIR 3/16] - Horizontal Edges After Performing Morphological Operations and

Smoothing

After applying the morphological operations and smoothing filter, we can see that
the frets are now fully shaped. In the specific example, we notice that there is a fret,
that is deformed after it is merged with other edges. Nevertheless, that doesn’t affect
our method. For the next step, we detect the contours of the resulted image. We

keep only the contours that have area between some boundaries. We try to filter out

17

contours that are not candidate frets, either because they have small area, or because

they have large area. The resulting contours are shown in Figure 3.4.

Figure 3.4: [GHIR 4/16] - Detected Contours of Horizontal Edges

We are now one step closer to detect the guitar fretboard area. The frets are shaped
as rectangles and their edge points of the shorter sides, define the two lines that we
need to detect. To localize these points, we find for each contour (1) the point that has
the minimum y-coordinate and (2) the point that has the maximum y-coordinate.
The detected points along with their corresponding contours are shown in Figure
3.5. For the rest of this work, we will refer to red-colored points of Figure 3.5 as the
top_points of the candidate frets, while the blue-colored points will be referred as the
bot_points of the candidate frets.

Now that we have the position of the top_points and the bot_points of the candidate
frets, the next step is to detect the two lines that intersect the top_points and the

bot_points of the real frets. The process goes as follows:

1. We sort the list of points based on their x-coordinate. Points with smaller x-

coordinate are first on the list.

2. We create candidate lines by using pairs of the sorted points. Each point cre-
ates candidate lines only with points that have higher x-coordinate. For lower
computational cost, we define a minimum index offset between the two points.
Two points with greater distance probably define a better candidate line than

two points that have smaller distance. We group the two candidate lines that

18

Figure 3.5: [GHIR 5/16] - Detected Contours with top and bot points

are created from a pair of frets. One line is created from the top_points of the

two frets and one line is created from the bot_points of the two frets.

3. For each candidate line we compute it’s score. The score of a candidate line
is defined as the number of the points that intersects. We are not looking for
a perfect intersection. We consider that a point (z,,y,) belongs to a line with
equation y = ma+b if |(maz,+b)—y,| < error_tolerance, where error_tolerance is
a small number (e.g. 3). For a robust implementation, we take into consideration
the edge points of a fret, only if both the top_point and bot_point belong to the

corresponding lines.

4. We take the points of the lines with the maximum score and we perform Linear
Regression analysis. The resulted lines constitute the two lines that define the

freatboard area.

The two detected lines, along with the best top_points and bot_points are shown in
Figure 3.6. The two lines that define the fretboard area, are now detected. We set the
equation of the line that intersects the top_points as y = m;x + b, and the equation of
the line that intersects the bot_points as y = mox + bs.

For visualization purposes and for easier processing we apply a perspective trans-

formation to our frame using the following four points:

e top_left =(0,b)

19

Figure 3.6: [GHIR 6/16] - Guitar Fretboard Detected Area

e top_right = (frame_width, my frame_width + b;)
e bot_left = (0,bs)

e bot_right = (frame_width, moframe_width + bs)

The resulted frame has width equals to the euclidean distance between the points
(top_left, top_right) and it’s height is equals to the euclidean distance between the
points (top_left, bot_left). For the rest of our work, we will refer to this frame as the

normalized fretboard. An example of the normalized fretboard is shown in Figure 3.7.

i

Figure 3.7: [GHIR 7/16] - Normalized Fretboard

3.3.2 Finger Detection and Localization

In this subsection we describe the method, that we use to localize the fingertips of
the guitarist’s left hand. To be able to extract this information, we must first find the

pixels that correspond to skin pixels. In other words we must segment the normalized

20

freatboard into two clusters (1) the pixels that constitute the guitar part and (2) the

pixels that constitute the guitarist’s hands.

3.3.2.1 Skin Segmentation

Before proceeding to any kind of image segmentation of the normalized fretboard,
we remove as many edges as possible from the image. This step has two benefits (1)
it removes pixels which are not skin pixels, (2) in most of the cases it separates the
fingers. Overlapping fingers can lead to poor fingertip detection performance. We use
the edges of the normalized fretboard, that result after applying the Sobel operator
in both vertical and horizontal directions. We use a very low threshold for the edges
and we also apply some morphological operations and smoothing filtering, in order
to make the resulting edges thicker. An example output of this process is shown in

Figure 3.8.

L A, B, NEREEE NN N N N N N _§N _§N _§N B o i el el il A
“ﬂnlmllull'.'l------—-_— a——_

by RS £

|

Bl mm e e e e e m mam A b el me— —

Figure 3.8: [GHIR 8/16] - Normalized Fretboard’s Edges for Removal

We are interested only for the original pixel values that have a zero-value in the
thresholded image of Figure 3.8. We proceed the image segmentation by using the
K-means algorithm (with & = 2) to the pixels of interest. Hopefully, all the non-skin
pixels are filtered out and the rest of the pixels are categorized into the pixels that
represent the color of the guitar and the pixels that represent the guitarist’s hands.
The center of each cluster is a vector of size=3 and holds the information of the
average R, G, B values of the pixels that belong to that cluster. As the cluster that
represents the skin pixels, we select the one that has the higher variance between the
center’s values. The segmentation result is shown in Figure 3.9.

We notice in Figure 3.9 that some fret markers are also categorized as skin. We
easily filter them out by removing the contours that have a small area.

The next important task is to distinguish between the two hands and separate
the detected contours into the right_hand_contours and left_hand_contours. We group

the contours based on their minimum x-coordinate. In the Figure 3.10 we color the

21

Figure 3.9: [GHIR 9/16] - Skin Segmentation

segmented right hand using blue color and the segmented left hand using magenta

color.

IR ==

Figure 3.10: [GHIR 10/16] - Left and Right Hand Segmentation

The contour grouping can lead to left_hand_contours that in number can be greater
than 4. Four is the maximum number of contours, that the guitarist’s left hand
can consist of (one contour per finger). In the case where we have more detected

left_hand_contours than expected, we keep the four contours with the maximum area.

3.3.2.2 Left-Hand’s Fingertips Localization

At the current stage we have the contours that represent the fingers of the guitarist’s
left hand. Our next goal is to detect the fingertips. To take advantage of the finger’s
curvature, we attempt to localize the fingertips by using the second derivatives of the

y-coordinates. Specifically for each finger contour we do the following:

1. Create a function using the y-coordinates of the contour points. We start traversing
the contour path from the bottom left point and we move to points with smaller
y-coordinate. We take the y-coordinate for each point until we reach to the bottom

right point.

2. We compute the second derivative of the y-coordinates. We consider as candidate
fingertips, the points where the sign of the second derivative is negative, while

the sign of the first derivative is positive.
3. We group adjacent candidate fingertips.

22

After the end of the above process, we end up with groups of candidate fingertips.
We select the four groups with the higher number of candidate fingertips. As the final
fingertips we take the mean values of these groups of points. The extracted fingertips

are shown in Figure 3.11.

il E =

Figure 3.11: [GHIR 11/15] - Localized Fingertips

3.3.2.3 Guitar Pick Localization

In this subsection we introduce the problem of the pick position prediction. When
a guitarist holds the guitar pick, the structure of his right hand and specifically his
thumb, creates a curve. The hand picking techniques may differ from one guitarist
to another, but in most of the cases our assumption is true. Hence, our objective is
to traverse the contour path of the right hand and find the first local maxima of the
x-coordinates.

Similarly to the case of the left hand, the right hand can also consist of multiple
contours. The edge removal that was applied in a previous step of our method,
seems to also separate the right hand of the guitarist into multiple contours. As
a first step we select the contour that has as a starting y-coordinate the 0 and is
located rightmost compared to the rest contours that also start from the top of the
normalized fretboard. Finally, we traverse the contour path starting from the contour
point (max_x_coordinate, 0) (i.e the rightmost contour point where it’s y-coordinate
is 0). and we move downwards until the first local maxima of the x-coordinate. This
point is our prediction for the guitar pick position. The detected guitar pick position

for our example is shown in Figure 3.12.

3.3.3 String Detection

We approach the string detection problem as simple as possible. We detect in the

normalized fretboard, the vertical edges using the Sobel operator. Then, we apply

23

1] N L L L E Ll e —— I'-
Figure 3.12: [GHIR 12/16] - Detected Guitar Pick Position

some morphological operations to fill the horizontal gaps of the strings. An example

of that edge detection is shown in Figure 3.13.

Figure 3.13: [GHIR 13/16] - Normalized Fretboard’s Vertical Edges

We proceed by computing for each row, the percent of white pixels that it has. If
that percent is above a defined threshold then we consider that row as a candidate
string. After, finding all the candidate strings, we merge the consecutive adjacent
candidate strings. We end up with a list of y-coordinates that represent the positions
of the guitar strings. If the number of detected strings is greater than 6, we merge the
closest strings until their number becomes 6. If the number of the detected strings is
less than 6, then we fill the missing strings based on the existing string positions and

distances. The detected strings in our example are shown in Figure 3.14.

-

Figure 3.14: [GHIR 14/16] - Detected Guitar Strings

3.3.4 Fret Localization

The final step is to localize the guitar frets. First, we apply the perspective transfor-
mation that we already used in Subsection 3.3.1 to the original horizontal edge image

that is shown in Figure 3.4.

24

Figure 3.15: [GHIR 15/16] - Normalized Fretboard’s Horizontal Edges

Then using the edge image of Figure 3.15 we do following steps to get the fret

positions:

1. Find the contours and keep only the ones that have area greater than a thresh-
old.

2. Filter out the contours that have smaller x-coordinate than the maximum x-

coordinate of the right hand contours.

3. Filter out the contours that have higher x-coordinate than the maximum x-

coordinate of the left hand contours.

4. Compute the top_points and bot_points of the filtered contours as in Subsection
3.3.1.

5. Filter out the contours where top_point.y > tol or top_point.y < width—tol, where
the tol is a small number (e.g 3) and width is the width of the normalized
fretboard image. In other words we keep only the contours that have as a
starting y-coordinate the 0 and as an ending y-coordinate the width of the

image.

6. Start from the leftmost fret position and by moving to the right, interpolate
missing fret positions until we create a point that has higher x-coordinate than
the maximum x-coordinate of the left hand contours. We take into account the

edge image of Figure 3.15 to fix the positions of the created frets.

An example output of the process that we just described, is shown in Figure 3.16.

3.3.5 Tab Prediction

In previous subsections we detected and gathered the information that we need to

be able to make a prediction. To predict the string that the guitarist hits, is quite

25

Figure 3.16: [GHIR 16/16] - Detected Frets

straightforward. We set as the PRED_STRING, the string that has the minimum
distance from the pick position that we found in Subsection 3.3.2.3. The distance is
calculated using only the y-coordinates.

To predict the notes that the guitarist presses with his fingers we do the following

for each fingertip:

1. We compare the x-coordinate of the fingertip with the frets’ x-coordinates and
we find at which bin it belongs. The index of the bin is the predicted fret for
this fingertip.

2. We compare the y-coordinate of the fingertip with the strings y-coordinates and
we find at which bin it belongs. The index of the bin is the predicted string for

this fingertip.

The guitar that we use for our example has six (6) strings. Hence, our method
returns a list that has a size of six and each element contains fret predictions. We
provide a more detailed explanation about the representation of our method’s output

in Subsection 4.1.

26

CHAPTER 4

EXPERIMENTS

4.1 Dataset

4.2 Evaluation metrics

4.3 Experiments Configuration

4.4 Numerical Results

4.5 Comparison with similar works

4.6 Limitations and Error Cases

4.1 Dataset

For our experiments we needed video recordings from a guitarist that played some
notes and chords on guitar. Unfortunately, there were no available datasets from pre-
vious works, so we had to create our own. For the purposes of this work, we created
four (4) video recordings using a NIKON COOLPIX P510 digital camera. In two of
them we played chords and progressions that were previously tested in other works,
to be able to make some kind of comparison with our approach. For the last video
recording, we chose a guitar riff from a favorite metal song. Specifically, our dataset

contains the following video recordings with a resolution of 1080p (1920x1080):

e C Major Progression that consists of the chords C, Am, Dm and G7 (see Figure
4.1 for tabs).

e C Major Scale (see Figure 4.2 for tabs’).

"https://www.guitarcommand.com/

27

https://www.guitarcommand.com/

e F Major Scale (see Figure 4.3 for tabs?).

 Kissing the Shadows ? guitar riff from the metal band Children of Bodom (see
Figure 4.4 for tabs?).

Since the dataset was created from scratch, we also needed to annotate it. In our
case, in order to create a proper annotation we must assign for each frame of interest,
a pair (GT_NUM STRING, GT_FRETS), where GT_NUM _STRING is the number of
the string that guitarist hits, while GT_FRETS is a list of numbers with length six
(6) and corresponds to the frets that guitarist presses with his fingers. Note that as
frames of interest we refer to the frames where the guitarist actually plays the guitar
(either by strumming or individual string picking). All the frames, where the guitarist
moves his left hand -to place the fingers to the correct position- are not taken into
account.

For our annotation, we assigned the number O to the thickest string and the num-
ber 5 to the thinnest string. Also, the fret numbering starts from the right part of
guitar (bridge) to the left part (headstock). Note that the aforementioned number
assignment is the reversed compared to how we described the string and fret num-
bering in previous chapter. An example of an annotation pair is (0, [18, 19, -1, -1, -1,
20]), which is interpreted as: (1) The guitarist hits the thickest string (2) The guitarist
presses with his fingers the third (3rd) fret of the sixth (6th) string, the second (2nd)
fret of the fifth (5th) string and the first (1st) fret of the first (1st) string. The positions
where the number is -1 are ignored, since the corresponding strings are not used to
form the current chord or note that is played from the guitarist.

For the case of C Major Progression we set the GT_NUM_STRING to -1. Our ap-
proach for the estimation of guitar pick position works only for single-string picking,
while in the case of C Major Progression, we have string strumming.

In the rest of the recordings we had single-string picking, so we needed to assign a
string number to each of the annotation pairs. We processed all the frames manually
and we detected the exact frames where the guitarist hits -with his right hand- one
of the six (6) strings. For each of these frames we assigned the single fret number,
which corresponds to the fret that the guitarist presses with his left hand. For our

experiments we include only the frames where the guitarist hits a string.

2https://www.guitarcommand.com/
3https://www.youtube.com/watch?v=AW_ wgKGoEmI
“https://www.ultimate-guitar.com/

28

https://www.guitarcommand.com/
https://www.youtube.com/watch?v=AW_wgKGoEmI
https://www.ultimate-guitar.com/

Table 4.1: Dataset size per recording

Recording Number of Frames
C Chord Progression 2052
C Major Scale 308
F Major Scale 225
Kissing the Shadows Riff 106

After the annotation of the video recordings, we ended up with a specific number

of frames which are shown in the Table 4.1.

The dataset seems to have unbalanced sizes. We have to note that the annotation

of a frame interval, where the guitarist strums the strings is much faster and easier. On

the other hand, the single-string picking annotation is a time consuming task, since

each frame needs to be processed individually. We decided to follow this approach

for the single-string evaluation, since it’s the most low-level testing we could do. An

alternative approach would be to set a frame interval around the picking frame but

that wouldn’t give us exactly the information that we need to check the performance

of our string predictor.

C Am Dm G7 C

8 8 8 = 8

g 8 A= < 8

8 ey - - :§: Lo
0 0 1 1 0
1 1 3 0 1
A 0 2 2 0 0
2 2 0 0 2

Figure 4.1: C Major Progression Tabs

4.2 Evaluation metrics

As we described in previous chapter, our predictor returns a pair (PRED_STRING,

PRED_FRETS). To evaluate our prediction we use the corresponding groundtruth

pair (GT_NUM_STRING, GT_FRETS).

29

=]
]

-

} ft i f I
[) ‘ ? f ‘ [)
s @ 2’ ;0 - 0 3 2‘ v
30 0 3
. N
1 . L] M 1 hd ” H
0) a hd “ “ v a 2 fy]
- v [[- L -
- -
Figure 4.2: C Major Scale Tabs
\Y
p | I i T 3] 2' 1 3 1 =+ T
—— T |
2 1] ! 1 1 i
4 | ~ I T T T 4
E. ' E.
1 o v =
E. - 0. 5 T ? 5 0. - E.
. - ! -] -] ! - »
-] -]

Figure 4.3: F Major Scale Tabs

4.21 Per Fret

We evaluate the fret-prediction as follows: for each groundtruth fret in the GT_FRETS,
we check if it is included in the list of predicted frets (PRED_FRETS) for the corre-
sponding string. Each string is evaluated separately. For a better understanding we

include an example 4.2.1.

Example 4.2.1. Assume that for a given frame the list for the groundtruth frets is
GT_FRETS=[18, 18, 19, -1, 20, -1] and the predicted tabs are PRED_FRETS=[[18],
[18], [19, 201, [, [1, [1]. The result of the comparison is [True, True, True, None, False,
None], which means that we predicted correctly the pressed frets for the strings 4,
5 and 6, but we made an incorrect prediction for the fret of the second (2nd) string.
We ignore the string indexes with None values, because they are not part of the

groundtruth.

We are unable to predict whether the guitarist actually presses a note, so cases

such as C Major Scale 4.2, where the fret groundtruth value for a string is 0, are not

30

Internde

- - - - - - - 14-15-17 15141514
16 16-14

171514 14 171514 1514
141517 171514 1517 15 17141517 14 1715

141514 14
141517 17 17151415 14 141517 151415 14
16 1614 16 1614

171514 14 171514 1514
141517 171514 1517 15 1714151714 1715

14-15-14 14
14-15-17 17 17-15-14 15 14
16 1614

Figure 4.4: Children of Bodom - Kissing the Shadows Riff Tabs

considered to our evaluation.

4.2.2 Per String

The task of string-prediction evaluation is more straightforward. For a given frame,
the string prediction is correct it GT_NUM_STRING and PRED_STRING are equals.

Otherwise, the prediction is incorrect.

4.3 Experiments Configuration

To perform our experiments we must configure some parameters that are mainly
related to morphological operations or filtering unnecessary information from our
data. More specifically the list of parameters that we use, along with their values are

described below:
e SOBEL X THRESHOLD PERCENT (Default: 0.12): it is used to threshold

31

the image of horizontal edges (G,) that results after applying the sobel opera-
tor to the original frame. We consider as edges the pixels that have value >=

SOBEL_X THRESHOLD_PERCENT*max(G,). Note that G, has the absolute

values of horizontal derivative approximation.

GX_V_CLOSE_KERNEL_SIZE (Default: 5): the size of the kernel that is used

for vertical morphological closing to G,.

GX_V_CLOSE_ITERATIONS (Default: 4): the number of vertical morpholog-

ical closing iterations that are applied to G,.

GX_H _CLOSE_KERNEL _SIZE (Default: 4): the size of the kernel that is used

for horizontal morphological closing to G,.

GX_H_CLOSE_ITERATIONS (Default: 1): the number of horizontal morpho-

logical closing iterations that are applied to G,.

GX_V_OPEN_KERNEL SIZE (Default: 5): the size of the kernel that is used

for vertical morphological opening to G,.

GX_V_OPEN_ITERATIONS (Default: 1): the number of vertical morphological

opening iterations that are applied to G,.

GX SMOOTH_KERNEL SIZE (Default: 6): the size of the smoothing kernel
that is applied to G, after the morphological operations. After the smoothing

we consider as edges all the pixels that have value > 0.

GX_MIN _CONTOUR_AREA (Default: 600): the minimum area of the G, con-

tours, that we use for the rest of our computations.

GX MAX CONTOUR_AREA (Default: 1500): the maximum area of the G,

contours, that we use for the rest of our computations.

MAX POINT_Y_ERROR (Default: 3): the maximum error a contour point can

have in order to be included in a candidate fretboard line.

MIN _POINT _INDEX OFFSET (Default 10): the minimum index distance be-
tween two sorted contour points that are used to create a candidate fretboard

line.

32

SOBEL_Y THRESHOLD PERCENT (Default 0.1): it is used to threshold the
image of vertical edges (G,) that results after applying the sobel operator to the
original frame. We consider as edges the pixels that have value >= THRESHOLD,
where THRESHOLD = SOBEL_Y_THRESHOLD_PERCENT*max(G,). Note that

G, has the absolute values of vertical derivative approximation.

PGY_V_CLOSE_KERNEL_SIZE (Default: 2): the size of the kernel that is used

for vertical morphological closing to normalized G, (pG,).

PGY_V_CLOSE_ITERATIONS (Default: 2): the number of vertical morpho-

logical closing iterations that are applied to pG,,.

PGY_H _CLOSE_KERNEL SIZE (Default: 5): the size of the kernel that is used

for horizontal morphological closing to pG,,.

PGY_H _CLOSE_ITERATIONS (Default: 2): the number of horizontal morpho-

logical closing iterations that are applied to pG,,.

PGY_SMOOTH_KERNEL SIZE (Default: 6): the size of the smoothing kernel
that is applied to pG, after the morphological operations. After the smoothing

we consider as edges all the pixels that have value > 0.

MIN_FRET_AREA (Default: 200): the minimum area of the contours of the

normalized G, (pG,), to be considered as candidate frets.

STRING_MIN PERCENT FILLED (Default: 0.3) the minimum percent of
white pixels that are required from a vertical line of pG,, to be considered

as a candidate string.

PICK_POS NUM_NEIGHBOURS (Default: 15): the number of neighbors that

are used to detect the x local maxima of the pick position.

As we can easily see, we have quite a number of configuration parameters. Al-

though, it took no time and effort to find some good configuration, such that the

experiments to be executed flawlessly. Probably, these configuration parameters could

be initialized automatically using the following process: during the beginning of the

video recording the guitarist presses specific notes that don’t lead to finger overlap-

ping. Then our method tries to find the best set of parameters that results to a correct

prediction of the notes that the guitarist presses.

33

4.4 Numerical Results

Tables 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, contain the numerical results
of our experiments. We also provide separate evaluations for the chords C, Am, Dm

and G7 that form the C Major Progression.

34

Table 4.2: Fret-Prediction Evaluation for C Chord (528 frames)

String
Fret Prediction

1 12 3 |4 5 6
Errors — | 63 — | 264 | 306 | 469
Accuracy — | 88% | — | 50% | 42% | 11%
Overall Accuracy: 48%

Table 4.3: Fret-Prediction Evaluation for Am Chord (496 frames)

String
Fret Prediction

1]2 3 4 5 |6
Errors — | 24 14 19 — | —
Accuracy — 1 95% | 97% | 96% | — | —
Overall Accuracy: 96%

Table 4.4: Fret-Prediction Evaluation for Dm Chord (526 frames)

String
Fret Prediction

1 2 3 4 |5 |6
Errors 21 47 21 — | — | —
Accuracy 96% | 91% | 96% | — | — | —
Overall Accuracy: 94%

Table 4.5: Fret-Prediction Evaluation for G7 Chord (502 frames)

String
Fret Prediction

1 2 |3 |4 |5 6
Errors 35 — | —|—13b 356
Accuracy 93% | — | — | — | 93% | 29%
Overall Accuracy: 72%

35

Table 4.6: Fret-Prediction Evaluation for C Major Progression

String
Fret Prediction

1 2 3 4 5 6
Errors 56 134 | 35 283 | 341 | 825
Frames Compared | 1028 | 1550 | 1022 | 1024 | 1030 | 1030
Accuracy 93% | 91% | 97% | 72% | 67% | 20%

Overall Accuracy: 73%

Table 4.7: Fret-Prediction Evaluation for C Major Scale

String
Fret Prediction

1 12 3 4 5 6
Errors — 10 0 1 1 —
Frames Compared | — | 22 b4 88 22 | —
Accuracy — 1 100% | 100% | 99% | 91% | —
Overall Accuracy: 98%

Table 4.8: String-Prediction Evaluation for C Major Scale

String
String Prediction

1]2 3 4 5 6
Errors — 10 1 1 5 —
Frames Compared | — | 22 b4 88 22 | —
Accuracy — [100% | 98% | 99% | 77% | —
Overall Accuracy: 96%

36

Table 4.9: Fret-Prediction Evaluation for F' Major Scale

String
Fret Prediction

1]2 3 4 5 6
Errors — 10 6 15 4 —
Frames Compared | — | 45 60 |90 30 | —
Accuracy — [100% | 90% | 83% | 87% | —
Overall Accuracy: 89%

Table 4.10: String-Prediction Evaluation for ' Major Scale

String
String Prediction

1]2 3 4 5 6
Errors — | 4 15 5 0 —
Frames Compared | — | 45 |60 |90 |30 —
Accuracy — | N% | 75% | 94% | 100% | —
Overall Accuracy: 89%

Table 4.11: Fret-Prediction Evaluation for Kissing the Shadows Riff

String
Fret Prediction

1 2 3 4 |5 |6
Errors 15 14 5 - | —] —
Frames Compared | 30 60 16 —_ | — | —
Accuracy 80% | 77% | 69% | — | — | —
Overall Accuracy: 76%

37

Table 4.12: String-Prediction Evaluation for Kissing the Shadows Riff

String
String Prediction

1 2 3 4 |5 |6
Errors 4 2 0 - — | —
Frames Compared | 30 | 60 | 16 — | —]—
Accuracy 87% | 97% | 100% | — | — | —
Overall Accuracy: 94%

Overall our method works well. We don’t provide qualitative results of our de-
tections but we have to note that the high accuracy of the fret and string detection
is the key of the high performance of our method. Also, the fingertip localization is
remarkable and contributes to the high accuracy. We didn’t measure the aforemen-
tioned accuracies, but looking the output videos of our method that contains frames

like 3.16, we can easily notice the robustness of our detection.

4.5 Comparison with similar works

We are not able to make a proper comparison with other works, since the datasets
are not the same. Although, we created a dataset that tests similar cases and the
numerical comparison can give us an idea about the performance of our method. We
present the comparison in Table 4.13.

Our method outperforms in both of the cases the Burns’ method [8] and performs
better than Duke’s method [7] for the case of C Major Scale. We are sure that with a
couple of improvements our method will totally outperform the rest of the methods.
The advantage of our method is that we don’t make approximations of the guitar
fret positions. We use as much information as we can from the edges to find them.

We approximate the fret positions only in the case where the hand covers the whole

Table 4.13: Comparison with previous methods.

Case Scarr’s method [8] | Duke’s method [7] | Our method
C Major Progression | 52% 86% 73%
C Major Scale 70% 76% 98%

38

fret. Another advantage of our method is that we separate the fingers before the

localization of fingertips, which solves the finger overlapping problem.

4.6 Limitations and Error Cases

The performance of our method is very promising and at some cases achieves the
maximum accuracy. However, our method has it’s limitations and inevitably we have
some error cases that currently are not handled properly. First of all, the main lim-
itation of our method is the finger information that we lose, when we apply the
perspective transformation.

For the case of the guitarist’s right hand, this limitation may arise when he plays
the 5th and the 6th string. Generally, when the guitarist plays the last three strings,
his right hand is formed from two different contours. The thumb in most of the cases
is separated from the rest of the hand. During the contour filtering process (based
on their area), there is a chance that the thumb of the right hand is filtered out too.
Without the contour path that corresponds to thumb, our prediction is not reliable,
since we are searching the first local-maxima in the wrong contour path.

For the case of the guitarist’s left hand, we can’t handle the case where the guitarist
presses the 6th string with his fingers. His fingertip is out of the normalized fretboard
frame and our approach using derivatives to detect the fingertips won’t work.

Our method has also it’s limitations regarding the fingertip localization. After
using the edge removal procedure, the fingers are separated and ideally each finger
contributes with a single fingertip. Yet, that’s not the case. In the current implementa-
tion, the groups of candidate fingertips -that are bigger in size- are taken into account
for the computation of the final fingertips. This approach may result to multiple fin-
gertips detection, per finger. Additionally, we have to note that the edge removal
procedure in some cases creates structures in finger contours, that lead to a false
fingertip detection.

Some error cases illustrations are shown in Figures 4.5, 4.6, 4.7, 4.8 and 4.9.

39

Figure 4.8: Error cases: (1) Multiple fingertip localization per finger (2) Duplicate string

detection

Figure 4.9: Error case: Shadow results to finger segmentation failure.

40

CHAPTER DO

ConcLusions AND FuTurRe WoORK

In this work we studied the problem of Guitarist Hand Information Retrieval which
corresponds to a vision-based approach of the Automatic Music Transcription prob-
lem for the guitar instrument. We solved this problem by processing and extracting
information from each frame independently and without the usage of any prior
knowledge about the characteristics of the guitar. Also, we introduced the problem of
pick position prediction, which gives us the information of the candidate string the
guitarist hits. We evaluated our model on a dataset that we created and annotated.
The experimental results show that our approach achieves high accuracy in both of
fret and string prediction. Our method performs better in most of the cases compared
to similar experiments of other works.

Although our approach performs quite well in our experiments, there are some

issues that could be easily resolved:
* Duplicate detection of the same string.
¢ False skin detection of guitar areas, that results to false positive fingertips.
* Multiple fingertip localization that result from the same finger.
Finally, a list of possible extensions could be:
e Automatic setting of model’s configuration by optimizing an objective function.

¢ Modification of the fingertip localization algorithm, so it can detect fingertips of

the 6-th string with higher accuracy.

41

Modification of the edge removal algorithm (during the phase of skin detec-
tion), in order to minimize the finger deformation, that results to false positive

fingertips.

Modification of the string detection algorithm, so it detects the strings as seams

and not as horizontal lines.

Use information from previous frames to improve the accuracy and also decrease

computational cost.

Execution speed optimization of the current implementation.

42

BIBLIOGRAPHY

[1] A. M. Barbancho, A. Klapuri, L. J. Tardén, and I. Barbancho, “Automatic tran-
scription of guitar chords and fingering from audio,” IEEE Transactions on Audio,

Speech, and Language Processing, vol. 20, no. 3, pp. 915-921, 2011.

[2] C. Kehling, J. Abefler, C. Dittmar, and G. Schuller, “Automatic tablature tran-
scription of electric guitar recordings by estimation of score-and instrument-

related parameters.” in DAFx, 2014, pp. 219-226.

[3] K. Yazawa, K. Itoyama, and H. G. Okuno, “Automatic transcription of guitar
tablature from audio signals in accordance with player’s proficiency,” in 2014
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2014, pp. 3122-3126.

[4] G. Burlet and I. Fujinaga, “Robotaba guitar tablature transcription framework.”
in ISMIR, 2013, pp. 517-522.

[5] P. D. O’Grady and S. T. Rickard, “Automatic hexaphonic guitar transcription

using non-negative constraints,” 2009.

[6] J. Scarr and R. Green, “Retrieval of guitarist fingering information using computer
vision,” in 2010 25th International Conference of Image and Vision Computing New
Zealand. 1EEE, 2010, pp. 1-7.

[7] B. Duke and A. Salgian, “Guitar tablature generation using computer vision,” in

Advances in Visual Computing: 14th International Symposium on Visual Computing,
ISVC 2019, Lake Tahoe, NV, USA, October 7-9, 2019, Proceedings, Part 1I 14.
Springer, 2019, pp. 247-257.

[8] A.-M. Burns, “Computer vision methods for guitarist left-hand fingering recog-
nition,” 2006.

43

[9]

[10]

[11]

[12]

[13]

[14]

Z. Wang and]. Ohya, “Tracking the guitarist’s fingers as well as recognizing
pressed chords from a video sequence,” Electronic Imaging, vol. 2016, no. 15, pp.
1-6, 2016.

G. Quested, R. Boyle, and K. Ng, “Polyphonic note tracking using multimodal

retrieval of musical events,” in ICMC, 2008.

Z. Wang and]. Ohya, “Detecting and tracking the guitar neck towards the ac-
tualization of a guitar teaching-aid system,” in The Abstracts of the international
conference on advanced mechatronics: toward evolutionary fusion of IT and mecha-
tronics: ICAM 2015.6. The Japan Society of Mechanical Engineers, 2015, pp.
187-188.

——, “An accurate and robust algorithm for tracking guitar neck in 3d based on
modified ransac homography,” Electronic Imaging, vol. 2018, no. 18, pp. 4601,
2018.

C. Kerdvibulvech, H. Saito et al., “Guitarist fingertip tracking by integrating a
bayesian classifier into particle filters,” Advances in Human-Computer Interaction,
vol. 2008, 2008.

J. Kovac, P. Peer, and F. Solina, Human skin color clustering for face detection.
IEEE, 2003, vol. 2.

44

AUTHOR’S PUBLICATIONS

P. Kouzouglidis, G. Sfikas and C. Nikou. Automatic video colorization using 3D con-
ditional generative adversarial networks. LNCS Vol. 11844, pp.209-218. International
Symposium on Visual Computing (ISVC’19), 7-9 October 2019, Lake Tahoe, Nevada,
USA.

SHORT BIOGRAPHY

Panagiotis Kouzouglidis was born in Drama in 1994. He obtained a Diploma in Com-
puter Science from the department of Computer Science and Engineering, University
of Ioannina, Greece in 2019. He is currently a M.Sc. student in Data and Computer
Systems Engineering at the same department, specialized in Data Science and Engi-

neering. His research interests include Computer Vision and Machine Learning.

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Thesis Objectives
	Thesis Structure

	Background Knowledge
	Guitar Essentials
	Guitar Anatomy
	Tablature system
	Notes and Chords

	Image Processing and Computer Vision
	Edge Detection Using Sobel Filters
	Contours
	Filtering
	Thresholding
	Morphological Operations
	Perspective Transformation

	Machine Learning
	Linear Regression
	K-means Algorithm

	Guitarist Hand Information Retrieval Using Computer Vision
	Problem Definition
	Related Work
	Our Approach
	Fretboard Detection and Normalization
	Finger Detection and Localization
	Skin Segmentation
	Left-Hand's Fingertips Localization
	Guitar Pick Localization

	String Detection
	Fret Localization
	Tab Prediction

	Experiments
	Dataset
	Evaluation metrics
	Per Fret
	Per String

	Experiments Configuration
	Numerical Results
	Comparison with similar works
	Limitations and Error Cases

	Conclusions and Future Work
	Bibliography
	Author's Publications
	Short Biography

