Computational Optimization for Association
Rule Mining Using Weighted Transactions

A Thesis

submitted to the designated
by the Assembly
of the Department of Computer Science and Engineering

Examination Committee
by
Adam Kypriadis

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER
SYSTEMS ENGINEERING

WITH SPECIALIZATION
IN DATA SCIENCE AND ENGINEERING

University of Ioannina
School of Engineering

Ioannina 2023

Examining Committee:

* Konstantinos Parsopoulos, Professor, Department of Computer Science and

Engineering, University of Ioannina (Advisor)

* Aristidis Likas, Professor, Department of Computer Science and Engineering,

University of loannina

* Konstantina Skouri, Professor, Department of Mathematics, University of Ioan-

nina

DEDICATION

To my family, partner, and friends for always standing by me.

ACKNOWLEDGEMENTS

First, I would like to express my gratitude for my supervisor, Professor Konstanti-
nos Parsopoulos, for his consistent guidance, encouragement, and boundless patience
throughout this dissertation.

Moreover, I owe special thanks to Professor Isaac Lagaris and PhD candidate
Dimitra Triantali for our endless scientific discussions and their invaluable input

during this study.

TABLE oF CONTENTS

List of Figures iii
List of Tables v
List of Algorithms vi
Abstract vii
Extetopévn Mlepiindy viii
1 Introduction 1
1.1 Objectives e e 1
1.2 Structure of the Thesis 2

2 Background Information 3
2.1 Association Rules L o oo oo 3
2.1.1 Relevant definitions and concepts 3

2.1.2 Numerical association rule mining 4

2.2 Particle Swarm Optimization 5
2.3 Real-valued Genetic Algorithm 8
2.3.1 Representation oL 8

2.3.2 Selection 8

2.3.3 Recombination0 0oL 8

2.3.4 Mutation e 9

3 The proposed approach 1
3.1 Dataset and Preprocessing 11
3.2 Weighted Transactions 12
3.3 Solution Representation and Initialization 13

3.4 Objective Function o

3.5 Restarting the Algorithm,

3.6 Search Space Boundaries

3.7 Tunable Parameters e e

4 Experimental Analysis

4.1 Implementation Details,

4.2 Experimental and Parameter Setting

4.3 Solution Profitability Assessment

4.4 Conclusions

Bibliography

..................................

A Statistics for PSO and GA

B Boxplots for PSO Solution Quality

C Boxplots for GA Solution Quality

ii

23
23
25
29
30

32

33

41

49

LisT oF F1GURES

4.1 Boxplots for PSO and GA solution quality, setting optimal parameters . 28

B.1 Boxplots for PSO solution quality, settings 1-5 42
B.2 Boxplots for PSO solution quality, settings 5-9 42
B.3 Boxplots for PSO solution quality, settings 9-13 43
B.4 Boxplots for PSO solution quality, settings 13-17 43
B.5 Boxplots for PSO solution quality, settings 17-21 44
B.6 Boxplots for PSO solution quality, settings 21-25 44
B.7 Boxplots for PSO solution quality, settings 25-29 45
B.8 Boxplots for PSO solution quality, settings 29-33 45
B.9 Boxplots for PSO solution quality, settings 33-37 46
B.10 Boxplots for PSO solution quality, settings 37-41 46
B.11 Boxplots for PSO solution quality, settings 41-45 47
B.12 Boxplots for PSO solution quality, settings 45-49 47
B.13 Boxplots for PSO solution quality, settings 49-53 48
B.14 Boxplots for PSO solution quality, settings 53-54 48
C.1 Boxplots for GA solution quality, settings 1-5 50
C.2 Boxplots for GA solution quality, settings 5-9 50
C.3 Boxplots for GA solution quality, settings 9-13 51
C.4 Boxplots for GA solution quality, settings 13-17 51
C.5 Boxplots for GA solution quality, settings 17-21 52
C.6 Boxplots for GA solution quality, settings 21-25. 52
C.7 Boxplots for GA solution quality, settings 25-29 53
C.8 Boxplots for GA solution quality, settings 29-33 53
C.9 Boxplots for GA solution quality, settings 33-37. o4

C.10 Boxplots for GA solution quality, settings 37-41 54

1ii

C.11 Boxplots for GA solution quality, settings 41-45. 55

C.12 Boxplots for GA solution quality, settings 45-49 55
C.13 Boxplots for GA solution quality, settings 49-53 56
C.14 Boxplots for GA solution quality, settings 53-57. 56
C.15 Boxplots for GA solution quality, settings 57-61 57
C.16 Boxplots for GA solution quality, settings 61-64 57

iv

L.isT oF TABLES

3.1

4.1
4.2
4.3

A1
A2
A3
A4
A5
A.6
A7

Dataset format e e e e e e 12

Statistics for PSO and GA solution quality, setting optimal parameters . 28

Friedman Tests for PSO 29
Wilcoxon Test for PSO oo L. 29
Statistics for PSO, swarm size 20 L oL, 34
Statistics for PSO, swarm size 200 35
Statistics for PSO, swarm size 400 36
Statistics for GA, population size 200 (a) 37
Statistics for GA, population size 200 (b) 38
Statistics for GA, population size 20 (a) 39
Statistics for GA, population size 20 (b) 40

LisT oF ALGORITHMS

2.1
2.2
2.3
3.1
3.2
4.1

PSO pseudocode 7
Tournament selection pseudocode 9
Genetic algorithm pseudocode 10
Initialization of search points 0L, 15
Find Matching Transactions 17
Main Algorithm L oo 24

vi

ABSTRACT

Adam Kypriadis, M.Sc. in Data and Computer Systems Engineering, Department of
Computer Science and Engineering, School of Engineering, University of loannina,
Greece, 2023.

Computational Optimization for Association Rule Mining Using Weighted Transac-
tions.

Advisor: Konstantinos Parsopoulos, Professor

Association rules determine high-utility relations between items present in a transac-
tional dataset. Despite the fact that several studies have attempted to develop effective
association rule mining algorithms in order to handle the growing size of real-world
data, these efforts have largely focused on mining frequent item combinations rather
than information about item combination, quantity, and monetary value.

The present study builds on recent developments to propose an efficient algorithm
for mining numerical association rules, in the context of rough values, by utilizing
state-of-the-art metaheuristics such as the particle swarm optimization and the real-
valued genetic algorithms. The novelty of the proposed approach lies in in the use of
revenue-based weights of the dataset’s transactions in order to improve the quality
and usability of the obtained association rule solutions. Consequently, the proposed
method is enabled to provide additional information regarding profitable item com-
binations alongside their quantities.

Typical statistical experimentation was used to extract the best-suited parame-
ters for the proposed algorithms. Their assessment was based on a large real-world
transactional dataset, providing insight regarding the algorithm’s ability to extract
association rules from real world data as well as the implications of using weighted

transactions.

vii

EXTETAMENH IIEPIAHWH

Addap Kumptadng, A.M.Z. ot Mnyovixn Asdopévwy xot YToOAOYLoOTIXWY XUoTNUG-
Ty, Tunua Mnyavixody H/Y xow ITAnpogopixrg, IloAvteyvinn XyoAn, [lavemiotiuto
Twovvivwy, 2023.

YmoAoytotixy BeAttotomoinon yio tny EEGpvEN Kavdvwy Zvoyétiong pe Xpnon Bo-
PWY OTLS LUVOAAXYEC.

Enprenov: Kowvotavtivog [lapodmovrog, Kabnyntig

2T0)0G NG TOPOVLOOS EQYOOLOG ELVaL M VATTTUEY VOGS OTTOTEAEOUOTIXOU OAyoQib-
KoL Yo TNV €EOPLEY PLOUNTIXWY KOVOVWY CLOYETLONG ATTO EVOL EXTETOUEVO GUVOAO
oLYVOAAYWY ToL Bootletor os Gedopéva YLog TEOYUOTLXNG etonpelog. EmimAéoy,
gLodyetor N évvolar Mg avabeoang Bopwdy oTlg ouvaAAaYEg e oTOXO TNV EOPULEN
TIOLOTLXOTEPWY XOVOVWY OLOYETLOYNG, UECW TNG UEYLOTNG aklomolinong Twy Stabéat-
LWV OESOUEVWLY.

OL xavdveg OLOYETLONG ATTOTEAODY EVOLAPEPOVOEG OYETELG UETAED OYTIXELUEVLY
Tov epavilovtol oe €vor aGVOAO cLVOAAaYWY. Kabe xavdvog amoteleital amd 300
uépm, Ty «uT6beo» (antecedent) xow To «ovuTéPATLO» (consequent). T'to Ty TToLO-
XY AELOAGYNON TWY XOVOVLY ODTWY OAAG XOL YLOL TNV TTEOCHPUOYN TV oAyopih-
LY TTOL 0POPOVY GTNY eEOPLEY TOLG, YEMotpoTolovvTaL dVo Paotxég petpixés. H
TEOTN artd avTég eivar N «vTooTHPLEN» (support), 1 omolo opileTor wg TO TOCO-
07O TWY CUYOAAXYWY TIOL TEPLEYOLY OAOL TO. AVTLXELULEVOL TTOL CLUTEQLALBAVOYTOL
oty vTdbeon koL 0TO CLUTEPACUO TOL ExAOTOTE xovova. H dedtepy ovoudaletorn
«eumotoobyn» (confidence) xow eivar 0 oELOUOC TWY CLYAAAXYWY TTOL TEPLEYOLY
Toe ovtixeipeva g vTOHEoNG KOL TOV CLUUTEPACUATOS, TPOS Tov oPLiUd Twv ov-
VOAAOY®Y TTOL TEPLEYOLY TOLVAGYLOTOV Tl oVTLXELHEVOL TNG LTTOOEONG TOL KOAVOVOL.
Ov optBuntixol xovdveg CLOYETLONG EUTTEQLEXOVY TTANPOPOPLO. TTOL GYETILETOL UE TNV

TOCOTNTO TWY OVTLXELUEVWOY TNG DTTOHEDTC *OL TOL CLUTIEPACUOTOG, O avtifeon pe

viil

TOUG ATTAODG XOVOVES OLOYETLOYG TTOL TLEPLEYOLY TTANPOPOPLOL LOVO YLOL TNV TTOOLGLNL
N un Tov xabe avTixeLpévou.

XT0ov oUYYEOVO XOOUO TWV ETULYELPNOEWY ELVOL QOAVEPD TTWG N AELOL ULOG CLUVOA-
AoyMg Oev umopel vor extipuniel TANPWG UECW NG TOPOLOLOG XOL TNG TOCHTNTAG
TWY OVTLXELLEVWY TTOL GLUTEQLAOUPAVEL. AdYw awTOL, GTNY TAPOVOO EQYOTLO OVaL-
Oétovpe emiong Pdon OTLG CLVAAAXYES TTOL, YLOL TYV CUYXEXQLUEVY] EQOQUOYY XOL
OUYOAO 3eB0UEVWLY, EXPEALOLY TO TOGOCTO TOL %EPDOLG TOL EYEL OTTOPEPEL GTNY
emuyelpnon N xébe ocvvorlhayn. To opamdve Béon pmopody vo avtiatorynboly ue
OTTOLAONTTOTE EVAAAXKTLXY] TTOGOTYTOL TTOL EXPEALEL ONUAVTLXOTNTO. OE SLOPOPETIXES
EQOPUOYES, TTPOCPEPOVTOS ETOL EVAY QUEGO TPOTO TTPOCOPUOYNG TOLS OAYOELOLOL
oc dLapoeTixd oVVoAa dedouévwy. Ta Bapn yonolpomolodvToL YLor vor 0pLOOVUE EX
VEOU TMV LTTOOTNPELEN XOL TNV EUTILGTOOVVY], ETOL (WOTE 0 AYOPLOLOG VO TTOLPAYEL TTLO
%x€PJ0PHPOVE XUVOVES GLOYETLONG.

To obvoro Sedopévwy Tov ypnoLpoTotinxe yio Ty gpyaocio amoteAsitol amd
TLG CUVOAAXYEG ULOG TIPOYULOTLXNG ETILXELPNONG O dLaoTnuo TOLWY €Ty, H éxtoom
TOL GLYOAOL OWTOV, TO OTOLO TEPLEYEL YLALASES OVTIXELLEVOL TTOL GLUWUETEYOLY OE
EXOTOVTAOES YLALEDES CUVOAAXYES, *xBwG ETTLOMG 1 CPOLATNTE TOL KO OL AGVVEYELES
NG TTPOG KEYLOTOTTOINGY oLYAPTNONGS xabLoTOVY TNV YPNoN Tapadoatox®y Lefddwy
BeAtiotoToinong UE Topaywyous advvarty. ‘Etol emAéxOnxay ol otoyooTixég ué-
fodoL g BeAtioTOoTOINONG UE OUNVOG CWOUATLOLWY 0L TWY YEVETIXWY OAYOPLOUWY,
Ol OTOlEG OVTLUETWTLLOVY ETILTUYWS TNV CGUVYEYELO TNG OVTIXELUEVIXNG GLVEOTNONG
OTTOLTOVTOS TTOPAAANA UL PO LTTOAOYLOTLXG XOGTOG. TEAOG, TTapovaLalovTal To oTto-
TEAEOUOTO GTOTLOTLXNG VAAVOYG YLO TNV EEQYWYY] TWV XOUADTEQWY TTXPAUETOWY TOV
oAyoplbuov oto TopaTdvew oVvoro dedouévwy, xobwe emiong xot M pébodog mov
XONOLLOTOLNONXE YLOL TNV TTOPAAANAY EXTEAEDT] TWV OTALTOVOUEVWY SOXLULWY O Ui

OLOTASO LTTOAOYLOTWV.

ix

CHAPTER 1

INTRODUCTION

1.1 Obijectives

1.2 Structure of the Thesis

1.1 Objectives

As the economy has been steadily growing, corporations are becoming increasingly
complex constructs. Their exponential growth has created the need for progressively
bigger and more accurate data for their daily operations. Alongside the economic
system, algorithms have evolved to be more efficient and precise. While information
about profitable item combinations has been in need for as long as the trading of
goods has existed, it is recently that the need for efficiency made traditional methods,
ranging from the human experience to exhaustive search algorithms, obsolete. A
significant amount of research has been conducted to construct optimization-based
algorithms to uncover high utility item combinations, referred to as association rules,
a term coined by [1].

The main objective of the present thesis is the development of an efficient numer-
ical association rule mining method using weighted transactions. The algorithm’s
numerical aspect refers to its ability to provide information about the quantities of
the involved items in the transactional dataset, whereas the novelty of assigning
weights to transactions based on economic revenue allows the algorithm to produce
high-quality rules by transforming the algorithm’s output solutions from frequent

item combinations to profitable item combinations.

The core method was developed and tuned using a large and sparse real-world
dataset. It comprises information about the revenue of each transaction, the customer
identification number, and the month it occurred for a Greek company over a three-
year period. Naturally, mining for association rules on a dataset of this magnitude of
more than 130000 transactions and 2300 items is computationally demanding, hence
a heuristic optimization method is best suited against traditional approaches.

Particle swarm optimization and real-valued genetic algorithms are robust, stochas-
tic methods for locating the minima (or maxima) of a given objective function. They
are particularly suited for our application in association rule mining since, unlike
standard optimization approaches, they do not require the objective function to be
continuous or differentiable. Specifically for particle swarm optimization, in order
to achieve a better solution each particle moves across the search space based on
an adaptable velocity that combines the best position it has visited, as well as the
best position visited by particles belonging in its neighborhood. Similarly, real-valued
genetic algorithms generate new candidate solutions by combining some of the best
positions discovered previously. The stochastic nature of these methods enables them
to achieve a solution of comparable quality in a fraction of the computational budget
required by an exhaustive search.

The suggested algorithm is applied to the aforementioned large dataset, along with
a statistical analysis of the solutions’ quality for different parameter combinations. As

a result, a set of promising values for each one of the parameters is obtained.

1.2 Structure of the Thesis

The present thesis contains 4 chapters, and is organized as follows: Chapter 2 con-
tains background information. This includes association rules, the particle swarm
optimization method, and real-valued genetic algorithms. In Chapter 3, the proposed
approach is presented, while Chapter 4 contains experimental analysis, the obtained

results, and implementation details.

CHAPTER 2

BACKGROUND INFORMATION

2.1 Association Rules
2.2 Particle Swarm Optimization

2.3 Real-valued Genetic Algorithm

2.1 Association Rules

2.1.1 Relevant definitions and concepts

The exchange of goods between firms, individuals, and other economic entities is a
crucial aspect of our society and economy. Due to the rising stability of this established
economic system, the numerous transactions might reveal evolving but persistent pat-
terns. Association rules are valuable relations between sets of items in a transactional
dataset [1]. Their utility is measured using a range of quality metrics, the most typical

of which are support and confidence. More specifically, given an itemset of n items,
I ={iy,ig,...,in}, (2.1)
a set of m transactions,
T = {ti,ta,....tm}, (2.2)

consists of subsets of the itemset. Each transaction is represented by an n dimensional

vector
ti - {til,tiz,...,tin} (23)

3

where the components ¢;; may take two values:

1, if item j is present in transaction ¢
=4 P ’ (2.4)
0, otherwise.

Association rules are defined as relations between one subset of the itemset to another.

Thus, an association rule between subsets A and C denoted as
A—C, (2.5)

can be interpreted as “The presence of the items of set A in a transaction means that
the items of set C' have a chance p of also taking part in the transaction”. The subset
A is called the “antecedent” of the rule and C'is called the “consequent”. In order to

define the quality of an association rule, the following metrics are commonly used:

1. Support: The total number of transactions containing the items of both the

antecedent and the consequent, divided by the total number of transactions:

{{aruicy]

Total # of transactions

(2.6)

Support =

2. Confidence: The total number of transactions that include the items of both
the antecedent and the consequent of the rule, divided by the total number of

transactions that include the items of the antecedent:
{{aruicy]

2.7
4

Con fidence =

Thus, support can be considered to be the measure of rule frequency, and con fidence

the measure of rule robustness.

2.1.2 Numerical association rule mining

The majority of previous studies have focused on binary representations both in the
transactional dataset and the rules produced. As an example, consider the following
rule:

Beef 4 Ketchup — Burger buns,

which can be interpreted as: “When beef and ketchup are purchased together there

is strong likelihood that burger buns will also be included in the same transaction”.

4

Our approach is based on [2] and focuses on numerical association rule mining,
which implies that the amount of an object must also be considered. An example of

such a transaction would be:
0.5kg of beef + 300ml! of ketchup + 8 burger buns Revenue: $25

and the resulting association rules that contain two bounds for each product take the

following form:
beef € [0.25, 1.5] + ketchup € [200,600] — burger buns € [4, 10]

which could be interpreted as “When between 0.25 and 1.5 kilograms of beef are
purchased with between 200 and 600 milliliters of ketchup, there is strong likelihood

between 4 and 10 burger buns are going to be also purchased”.

2.2 Particle S warm Optimization

Particle Swarm Optimization (PSO), introduced by R.C.Eberhart and J.Kennedy [3], is
a heuristic designed for numerical optimization especially in cases where derivatives
do not exist or they are difficult to compute. As described in [4], the process begins by

randomly initializing a number of particles (search points) within the search space:
S ={x1,%9, ..., xN}, (2.8)

where N is the number of particles that constitute the swarm.

Each particle is represented as an n-dimensional vector,
;= (i, Tiyy ooy T,), 1 =1,...,N. (2.9)
It also has an adaptable velocity
v; = (Vi Vigy o 0;,), 1= 1,...; N, (2.10)

which is updated for every iteration by combining the best position that the particle
has detected itself, also called the “personal best”, and the best position of the particle’s

neighborhood. Particle i’s neighborhood can be represented as follows:
NG; = {iy, i, iz} € {1,2,...N}, 1<k<N. (2.11)
Two common PSO models with regard to the neighborhood type are:

5

(a) gbest: NG; ={1,2,..,N}
(b) lbest: NG; ={i —a,...,i,...,i +a}.

In the first case, particle ¢’s neighborhood is considered to include all the particles of
the swarm. In the second, it consists of particle 7, and particles with adjacent indexes,
in a cyclic manner. Its extent is defined by radius a.

The velocities and positions for iteration ¢ 4- 1 are calculated as follows:

t+1
o
J

= X[Ui(:) + rand()cy (pg) —) + rand()@(pég - xg))] (2.12)

iﬂ
ISH) _ xg)"i‘vz‘(;) (2.13)
2‘:1)2’“,7]\77 j:172,...,n,

where:

1) g; is the index of the best particle of the NG; neighborhood:

g; = arg minf(p{"),
JENG;

2) ¢1,c9 > 0 are the cognitive and social parameters, respectively,
3) x is the constriction coefficient,
4) rand() are random numbers in [0, 1].

So every particle’s new position is calculated based on:

()

i

(a) Its inertia v

(

(b) Its attraction towards the best position p” it has visited.

(¢) Tts neighborhood’s best position p”.

It is important to impose a limit, v,,,,, on velocities in order to prevent particles from
frequently departing the search space. These limits are usually set as percentage of

the search space. The velocity for particle i’s component j is limited as follows

e < g < gl (2.14)
v = a(uyg, i), a€(0,1], (2.15)

J

where

Algorithm 2.1 PSO pseudocode

Input: search space X, x, c1, c2, Umax

t<+ 0

2 < Initialize(X)

v® <0

Evaluate particles

p') « updateBests(v®), ("))

while termination condition not true do
v+« calcVelocities(v®, 2 p® | v, ¢y, ¢))
check bounds(v+) v,
2+« updatePositions (v, 2 X)
Evaluate particles
p*Y) « updateBests(v(*+h x®)
t+ +

end while

Return best

1) a: denotes the fraction of the search space a particle is allowed to cross during

a single iteration,

2) wu;,l;: are the upper and lower bounds, respectively, for the j-th dimension of

the search space.

Then, the objective values are calculated for the particles and, the personal bests

are updated as follows:

(t+1) . (t+1) (t)
xz, 7, it f(x; < f(p; .
pgt-{—l) _ Zt) f() f(p), i=1,2,...N (216)
p; , otherwise.

The PSO algorithm is given in pseudocode in Algorithm 2.1.

2.3 Real-valued Genetic Algorithm

Genetic algorithms (GA), introduced by J.H. Holland [5], are the main type of evolu-
tionary metaheuristics, and they are inspired by the process of natural evolution. As
described in [6], a population of selectable size is initialized across the search space
and then undergoes the processes of selection, mutation, and recombination in order

to discover new candidate solutions.

2.3.1 Representation

Candidate solutions also called the members of the population, are represented as
vectors. These vectors are inputs to the objective function, which is the function to be
minimized and is used to assess their quality. The i-th member of the population is

represented as,

Pi = (pi17pi27 “'7pin>7 1=]., ...,N, (2.17)

where N is the population size and n the dimension of the search space.

2.3.2 Selection

Selection is the process of choosing some members of the population to be combined
in order to form the next generation of candidate solutions. Tournament selection is
a typical method in which population S of N members is produced by repeatedly
selecting randomly N, (tournament size) members and selecting the best among them.

In order to select member s;, N; members are selected randomly,

PR = {p},p), -, n}, (2.18)
p; € {plap2a'-'7pN}7 izl?"'aNt7 (219)

and the best of them is assigned to s;
s; = best(PR). (2.20)

The tournament selection algorithm is given in pseudocode in Algorithm 2.2.

2.3.3 Recombination

The recombination operator acts on the newly selected population to numerically

recombine some of them, and forms population R. After ensuring that the number

8

Algorithm 2.2 Tournament selection pseudocode
1: forn=1,..,N do

2: Select N, members randomly
3: s, < best of selected

4: end for

of selected members is even, the members are split in pairs, and for every one an
offspring is produced.

The recombination of two members of the population p;, p; produces an offspring

0= (01,09, ...,0p), (2.21)

where:
o = TPy + (1 —1%)Dj,s (2.22)
r, ~ U([=0,1+6]), §>0. (2.23)

Parameter ¢ aids in preventing the gradual shrinkage of the search space.

2.3.4 Mutation

Mutation is the final operation in which, noise is added to randomly selected com-
ponents of the population vectors, in order to produce population M. Suppose com-

ponent p;. has been selected for mutation. Then it is perturbed as follows:

pij A sz + Zj, (2.24)
where

zj ~ N(0,0%) or (2.25)

z; ~ U([—a,a]). (2.26)

Special caution is required so that the resulting value remains inside the search space,
which is achieved by selecting suitable values of ¢ or a, for the Gaussian or uniform
distribution, respectively.

Then population M, is evaluated, and combined with P, in order to form F,;.

This combination may take the form of complete replacement,
Fry = M, (2.27)

9

Algorithm 2.3 Genetic algorithm pseudocode

1: Input: search space X, N,
2: k<0

Py, < Initialize(X)
evaluate(Fy)

xp <— update best(Py)

while termination condition not true do
7. Sk < selection(Py, N,)

8: Ry < recombination(Sy)

9: My < mutation(Ry)
10: evaluate(My,)

11: Pyy1 < new population(My, Py)
12: xp, < update best(Py1)
13: k++
14: end while

15: Print best x

or the best N particles of M; and P, may be chosen to form P4,
Pt+1 = beStN(Mt U Pt) (2.28)

Lastly, x;, which holds the best discovered candidate solution, is updated accordingly.

The GA algorithm is given in pseudocode in Algorithm 2.3.

10

CHAPTER 3

THE PROPOSED APPROACH

3.1 Dataset and Preprocessing

3.2 Weighted Transactions

3.3 Solution Representation and Initialization
3.4 Objective Function

3.5 Restarting the Algorithm

3.6 Search Space Boundaries

3.7 Tunable Parameters

3.1 Dataset and Preprocessing

The real-world dataset used for this application contains transactions of a Greek
corporation that span 3 calendar years. The selection of a real world dataset with
more than 130000 single-item transactions (referred to as pre-transactions) and 1830
items, in contrast to an artificial one, provides an indication that the algorithm can
successfully cope with big and noisy data. Pre-transactions are coded as matrix rows
that include the item’s id, the client’s id, the amount of the item purchased, the
month the pre-transaction occurred, and the revenue it has brought to the company,
as reported in Table 3.1.

In order to transform the original dataset that consists of single-item transactions
to the transactional dataset required by the algorithm, we considered a transaction to

contain the items purchased by a single client during a month. This is calculated by

11

Table 3.1: Dataset format

Pre-transaction No | Client id | Item id | Month | Amount | Revenue
1 2152 1267 3 50.6 145.5
2 1744 2189 5 10.0 77.0

summing every item’s amount for every client, and month of the 3 years. Transaction

i is represented as follows:

(3.1

ti = (sumltemy i, sumltemajy, ..., sumltemy,,, k),
where:
1=1,2,...,3% 12 % Njenss iS the transaction’s index,
7 =1,..., Neients is the client’s id,
k =1,...,36 is the corresponding month,

sumltemy;, is the amount of item ¢ for client j, purchased during the k-th

month.

Empty or 1-item lines, which correspond to months that specific clients did not make
any purchase or purchased just one single item, are eliminated from the transactional
database. The total revenue of the pre-transactions that comprise a transaction is
calculated and stored separately for every transaction. The minimum and maximum
values for each item are also stored and define the search space limits to prevent the

solver from drifting out of the search space.

3.2 Weighted Transactions

Most previous studies on association rule mining have evaluated the association rules
produced by the algorithms using the standard quality metrics, namely support and
confidence. However, in a real world business environment the high frequency of an
itemset does not necessarily lead to high profitability for the company. Using weights

for the dataset transactions can tackle this issue, by emphasizing on the profitability of

12

the company thereby producing association rules of relevant quality. For the specific
dataset, the weight of a transaction is defined as the transaction’s economic revenue
divided by the total revenue of all transactions. While revenue-based weights are
appropriate for this dataset, this novel method provides an easy way of adjusting the
algorithm’s orientation towards any metric of interest on different applications.

The redefined rule quality metrics are calculated as follows:

(a) Each transaction’s weight is calculated as the revenue of the transaction divided

by the sum of revenues of all transactions:

i-th transaction’s revenue
: (3.2)

w; =

sum of revenues

(b) Support of rule R: A — C' is redefined as the sum of weights of the transactions

that conform to the rule divided by the sum of weights:

> w

t, €T (AUC)

>owi

t;eT

Support = (3.3)

(¢) Confidence of rule R: A — C' is redefined as the sum of weights of the transac-
tions that conform to the rule, divided by the weights of the transactions that

include the items of the antecedent of the rule:
> w
t;€T(AUC)

> wy

t; GT(A)

(3.4)

Confidence =

The redefined quality metrics have been used in our application.

3.3 Solution Representation and Initialization

In the considered PSO and GA solvers, search points that correspond to candidate

rule solutions are represented as vectors of length 3 * Nitems:
rule; = (Ibj1, ubi1, pit, [bio, ubiz, Pz, - s IiN s s Wi Nyems > PiNyms)+ (3.5)

where Njems is the number of total items present in the dataset. So participation of

item j in rule ¢ is denoted by three numbers:

13

(1) 1b;;: lower bound for the item’s quantity
(2) ub;;: upper bound for the item’s quantity
(3) py;: participation indicator in the interval [0, 1], defined as follows:

(a) If p;; € [0,1/3) then item j is not part of rule i.
(b) If p;; € [1/3,2/3) then item j is included in the antecedent of rule i.

(c) If p;; € [2/3,1] then item j is included in the consequent of rule i.

Transactions are represented as vectors of length (Nitems):

tk - (AklaAk27'-'7AkN (36)

items)

where Aj; is the amount of item j in transaction k, and Njems is the number of items
present in the dataset.

The initial positions of search points that define rules, either corresponding to
particles for PSO, or population members for GAs, are of great importance, especially
in the case of a high dimensional search space like the one used in our applica-
tion. Exploiting the existing knowledge in the database, the points’ initial values are

selected around randomly chosen transactions. Thus, a rule
rule; = (Ibj1, ubir, pit, lbia, ubiz, Pz, -y 10iNiemgs UDiNyemes PiNiems) (3.7)
is initialized around a randomly selected transaction
ti = (Aj1, Ajay ooy AN (3.8)
as follows:
(a) For items that are present in transaction j, i.e.,
Aj* > 0,
rule bounds are defined as:

by, = Ajx — 11, 11 €[0,20% * (max; — min,)]
ubj = Aj + 19, 19 €0,20% * (max; — min,)]

Pix =73, T3 € [1/3,1]

14

Algorithm 3.1 Initialization of search points

1: for every search point do

2: Select transaction ¢ randomly

3 for £k =1, ..., Niems do

4: if item £ is included in ¢ then

5 Set uby and (b so that t(k) € [lby, uby]
6 Set py, € [1/3,1]

7: else

8: Set ub, = maxk and [b, = mink
9: Set pr € [0,1/3)
10: end if

11: end for
12: end for

13: Return initialized points

(b) For items that are not present in transaction j, i.e.,
A]* - O,
rule bounds are set as:

by, = min;, ubj, = max;, pu =713, 13 € [0,1/3),

where min; is the minimum non-zero amount of item ¢ found in the dataset, max; is
the maximum amount of item ¢ found in the dataset, and r random numbers.

Another reason for the initialization of search points around existing transactions
is to ensure that at the beginning of the algorithm, every member of the swarm has
a positive fitness value. Alternatively, if the search points were initialized randomly
across the search space, there would exist a significant likelihood that all of them
assume near-zero fitness values due to the sparsity of the dataset. In this scenario,
there would be no meaningful comparison between them, therefore there would be
no best search point to lead the swarm or population, for PSO and GA respectively,
towards optimal solutions.

The initialization procedure is given in pseudocode form in Algorithm 3.1.

15

3.4

Objective Function

An efficient implementation requires a rule quality measure that adheres to the basic

assumptions of this specific application. The ultimate goal is to find rules of the

highest possible quality, also called the rule’s fitness, which translates to maximizing

the objective function. Selecting the objective function is not a trivial task since a slight

imbalance between confidence and support on either side may result in rules of low

value. Example scenarios of imbalanced objective function are presented below:

(Example 1)

(Example 2)

(Example 3)

Support imbalance: If the objective function is prone to high support, the algo-
rithm may discover rules with frequent items or high total revenue (in the case
of revenue based weighted transactions), but the rules would lack robustness.

For example, a supermarket application would include rules of the type:
plastic bag — milk,

which are characterized by low confidence since plastic bags are not purchased
solely or primarily with milk. We can make the assumption that this rule does
not provide the business with valuable information as the extracted information

about milk could be obtained by analyzing milk sales alone.

Confidence imbalance: If the objective function rewards high confidence, the al-
gorithm may concentrate around a single or few specific transactions, so that the
antecedent is found nowhere else in the transactional database. Thus, the pro-
duced rule would be highly infrequent or unprofitable on the case of weighted

transactions. In the supermarket example above, we could have rules of type:
beef € [0.2499, 0.2501] 4 ketchup € [199, 201] — burger buns € [5, 5],

which is concentrated on specific transaction instances.
A third aspect specific to our application on numerical association rule mining is
the width of the rule bounds. If no constraint is imposed to the fitness function,

rule bounds tend to expand in order to match more transactions. An example

for the supermarket application would include rules of type:
beef € [0,10000] + ketchup € [0,20000] — burger buns € [0, 50000],

while a rule of narrow margins and possibly lower support or confidence would

be far more usetul, e.g.:

beef € [0.25, 1.5] 4+ ketchup € [200,600] — burger buns € [4, 10] .

16

Algorithm 3.2 Find Matching Transactions

Input: rule , transactions
Logical:: matches(Nyan)
matches(1 : Nigan) < True
for j =1,4,...,3 % Njems do
if rule(j + 2) < 0.33 then
continue
end if
item < (7 +2)/3
fori=1,..., Nyan do
if matches(i) == False then
continue
else if transactions(item,i) <= 0.001 then
matches(i) = False
else if rule(j) > transactions(item, i) then
matches(i) = False
else if rule(j + 1) < transactions(item,i) then
matches(i) = False
end if
end for
end for

Return matches

In order to prevent rule bounds from arbitrarily expanding, a penalty term is intro-
duced in the objective function. More specifically, the sum of the normalized width
of the bounds for items included in the rule is subtracted from the rule’s objective
function value. This handling has the additional implication of limiting the prod-
ucts included in the produced rules, which is important when dealing with itemsets
containing thousands of items.

Based on the above analysis, the final form of the objective function is:
f = a = Confidence + b * Support — ¢ * Penalty (3.9)

where q, b, and c are constants defined through experimentation for rules that contain

items in both the antecedent and the consequent. Our analysis for the specific dataset

17

suggested the following suitable values:
a=10% b=10°, c=10"",

which were experimentally proven to achieve balanced solutions, considering support
and confidence, for the specific dataset.
For rules that lack items in the antecedent or the consequent, the corresponding

values are:

as these rules have no meaning.

Since Eq. (3.9) is obviously discontinuous, optimization algorithms that rely on
derivative information become inapplicable. This is one of the main reasons that
metaheuristics such as PSO and GA have been selected for the present thesis. In
order to calculate support and confidence, the following procedure is used:

Transaction j takes part in the i-th rule’s calculation of support and confidence,

it all of the items included in the rule
rule; = (Ibi1, ubir, pir, iz, ubiz, Piz, -+ s IiNieme s UWDiNiems s PiNems)
such that p;. € [1/3,1], are also present in transaction
ty = (Aj1, Ajas oos AjNiams)
and all the amounts of these items fall between the rule’s lower and upper bounds:
Aj. € (B, uB.], for every item that p;. € [1/3,1]. (3.10)

The procedure is given in pseudocode form in Algorithm 3.2.

3.5 Restarting the Algorithm

Restarting the particles is another key element of the method. The necessity derives
from the fact that convergence is typically achieved in a fraction of the available com-
putational budget, regardless of being defined as the number of function evaluations
(most commonly) or as the algorithm’s iterations limit.

A simple approach would be to periodically reinitialize the particles when a specific
fixed number function evaluations have elapsed without detecting a new best position.

However, this is inefficient due to the following peculiarities:

18

(a) When restarting occurs, the swarm may have not fully converged. Therefore,

the particles may be prevented from approaching a better position.

(b) The particles may have fully converged, keep spending computational resources

until the predefined limit is reached, without significant solution improvement.

A more advanced strategy would be to use as restarting criterion the standard de-
viation among the particles’ positions. This would be close to zero if the particles
had converged to a single point in the search space. A disadvantage of this strategy
appears in the case where some particles get trapped due to their personal best and
the neighborhood best canceling each other out, resulting in particle velocity close to
zero at each subsequent iteration of the algorithm. If this situation emerges during
the algorithm’s later stage, when most other particles have converged close to the
swarm’s best position, there is limited chance of finding a new best position. Thus,
the trapped particle would remain almost stationary.

In order to overcome this obstacle, it is common practice to restart the algorithm
when the standard deviation is close to zero, indicating that the majority of the
particles have converged close to the swarm’s best position. The exact limit of the
standard deviation that triggers the algorithm to restart is application-specific and
introduces an additional parameter that needs to be defined.

The approaches above do not work in their standard form in our application
on numerical association rule mining. This is attributed primarily to the dataset’s
high dimension that renders the calculation of the standard deviation of particle
positions computationally expensive. A less expensive alternative would be the use of
the standard deviation of the particles’ function values. An obvious disadvantage of
this choice is the misleading information of the objective values near discontinuities.
Since each particle is initialized around an existing transaction, the corresponding rule
has positive support and confidence at the beginning of the algorithm. Due to the size
of the considered dataset that consists of thousands of items, the particles that move
towards the best frequently pass across points in the search space that correspond to
rules with near zero objective values, indicating the lack of transactions containing the
rules’ product combinations. Consequently, many particles possess near zero values
for many iterations, resulting also in near zero standard deviations of the objective
values, although the swarm has not converged yet.

These obstacles can be addressed by combining the two strategies for restarting

19

the algorithm. Hence, we may restart under 2 conditions:

(a)

(b)

Restarting condition 1: The average deviation of the particles’ function values
from the swarm’s best approaches zero. This condition effectively treats the
early restart problem that would arise under the mainstream approach, as the
best can only be a valid rule with positive associated objective value. This is
due to the initialization process, which ensures that particles include at least

one transaction.

Restarting condition 2: A new best has not been discovered after a specific fixed
number of iterations. This limit is set through statistical experimentation to a
relatively high value, as a secondary measure. It is only activated on the rare case
that too many particles get trapped far away from the swarm’s best, preventing

the average deviation from the best being further reduced.

It is important to note that this process involves a complete restart of the algorithm.

The swarm’s overall best position is saved to a separate variable and the swarm’s

best is redefined among them, as if the algorithm has no prior knowledge of what

it has discovered so far. This prevents the algorithm from converging to the same

solution.

3.6

Search Space Boundaries

Search space boundaries are usually related to the specific application. Three separate

restrictions are defined in our case:

(a)

(b)

(o)

Upper bound limits: The upper bound for an item in a rule is limited to the

maximum amount present in the transactional dataset for the item.

Lower bound limits: The lower bound for an item in a rule is prevented from
falling below the minimum amount present in the transactional dataset for the

item.

Velocity limit: In order to avoid particles that overfly significant parts of the
search space that may contain optimal solutions, a limit as the percentage of
the search space a particle is permitted to move during a single iteration of the

algorithm must be specified.

20

If a particle’s new position falls outside these limits, the new position is set exactly

on the limit. A complete walkthrough of the algorithm can be found in Section 4.1.

3.7 Tunable Parameters

Obtaining suitable parameter values for the proposed algorithm may have a major
impact on solution quality and necessary computation budget. The high dimension of
the dataset is prohibitive for mining good association rules through exhaustive search.
Thus, the detection of good rules that could be used as compass for fine-tuning the
proposed algorithm is not feasible. Another obstacle on the path of extracting optimal
parameters is their dependency on the dataset. Hence, a trivial dataset with known
solutions cannot be used either.

A common practice for tuning stochastic algorithms is to extract the best set of
parameters via preliminary statistical analysis. In a full factorial design, a number of
candidate values is set for each parameter, and all their possible combinations are
assessed under the average solution quality over a number of experiments.

The parameters considered for PSO in our application are the following:

(1) Swarm size: If the computational budget for the execution of the algorithm is
considered to be constant, a balance between the number of particles and the

algorithm’s iterations, which are inversely related, must be achieved.

(2) Velocity limit: It defines the maximum distance a particle can move in a single
iteration of the algorithm. These limits are usually set as percentage of the search

space, and prevent the swarm from frequently departing the search space.

(3) Neighborhood type: It specifies if each particle moves towards the best particle

of the swarm (gbest model), or towards the best of neighborhood (Ibest model).

(4) Restarting limit: It defines the number of iterations of not discovering a new

overall best position before the algorithm restarts.
The parameters considered for the real-valued GA are the following;:

1. Population size: Similar to PSO’s swarm size above.

2. Ni: The number of selected population members during tournament selection.

The best among them is selected to participate in recombination.

21

3. Crossover rate: This is a real number in [0, 1]. During recombination, a random
number in [0, 1] is drawn for every member of the population. If this number

is greater than the crossover rate, the member is chosen for recombination.

4. Mutation rate: This is also a real number in [0,1]. During mutation a random
number in [0, 1] is drawn for every component of every member of the popula-
tion. If this number is greater than mutation rate, the corresponding component

is mutated (perturbed).
5. Restarting limit: Same as PSO above.

Experimental analysis on the aforementioned parameters is presented in Section 4.2.

22

CHAPTER 4

EXPERIMENTAL ANALYSIS

4.1 Implementation Details
4.2 Experimental and Parameter Setting
4.3 Solution Profitability Assessment

4.4 Conclusions

4.1 Implementation Details

A very efficient implementation of the proposed algorithm was required in order to
cope with the total number of more than 2950000000 objective function calls needed
for extracting the best suited parameters for the two methods, namely PSO and GAs.
Moreover, the high dimension of the vectors that represent candidate rule-solutions,
which is equal to 5490 (=3%1830), where 1830 is the number of non-zero items in the
selected dataset, imposed difficulties on memory management and data distribution
among physical machines. For this reason, the implementation was based on Fortran

using OpenMP for the parallelization of specific procedures described below.

23

Algorithm 4.1 Main Algorithm

1: Input: total Runs, computational Budget, neighborhoodType,
swarmSize, restarting Limit, Vmax, X, C1, C2

sentJobs[1] < 0

completedJobs[1] <— 0

initialize transactions

X < calculate limits

while sentJobs[1] < total Runs do
sentJobs[1] « sentJobs[1] 4+ 1

9: t<0

® =

10: 2 < Initialize(X)

1: v® 0

12: Evaluate particles

13: p® « updateBests(v(¥), z(*)

14: while computational Budget not exhausted do

15: checkRestart(restarting Limit)

16: v« calcVelocities(v®, 20 p® | v, ¢y, ¢)
17: check bounds(v+, vy

18: 2+ « updatePositions(v+) 2" X)

19: Evaluate particles

20: p+Y « updateBests(v(*+D) 2 (®)

21: t++

22: end while

23: completedJobs[1] <— completed.Jobs[1] + 1
24: Write solution to file

25: end while

26: while .True. do

27: if completed.Jobs[1] == total Runs then
28: exit
29: end if

30: end while

The algorithm’s input includes the following parameters:
1) total Runs: The number of independent experiments, in our case 25 experiments

24

for each set of parameters.
2) computational Budget: The number of function evaluations per run.

3) The PSO parameters: neighborhood type, swarm size, restarting limit, X, Umax.

C1, Co.

Then, copies of the program (images) equal to the number of physical machines
available in the computer cluster are initialized, using the Fortran’s Coarray program-
ming. When an image completes a total run of the algorithm it is assigned another
one, and so on until all the requested runs (parameter: totalRuns) are completed.
Using OpenMP libraries, each image is able to execute code in parallel.

A computer cluster comprised of 7 physical machines outfitted with Intel i7 pro-
cessors was used for the completion of this thesis. It took about 48 hours to complete
the 3000 runs of the algorithm, each with a computational budget of 10° function
evaluations.

Algorithm 4.1 reports the complete pseudocode of the parallel implementation
for the PSO algorithm. The GAs case was implemented following exactly the same
approach. It is trivial for the user to make the corresponding modification for that

case.

4.2 Experimental and Parameter Setting

In order to extract the most efficient parameter values for the considered algorithms,
different levels were set for each parameter, and their possible combinations were
assessed in terms of the average solution quality over 25 independent experiments.
Each experiment assumed a computational budget of 10° objective function calls.

The resulting 54 parameter combinations for PSO were obtained by combining the

following values:
1. Swarm size: 20, 200, 400
2. Velocity limit: 10%, 50%, 100% of the search space
3. Neighborhood type: gbest, lbest

4. Restarting limit: 100, 500, 1000 iterations

25

The 64 parameter combinations for the GAs were obtained for the following values:
1. Population size: 20, 200
2. Tournament size: 10%, 50% of the population size
3. Recombination rate: 0.9, 0.6
4. Mutation rate: 0.01,0.02,0.03,0.04
5. Restarting limit: 100, 300

Each experiment yielded the following information, which was used to evaluate and

pick the optimal parameter set for each solver:
1. The maximum achieved objective function value.
2. The corresponding solution.

3. The iterations of the algorithm needed to reach the solution, also called the

last hit.

For each parameter combination, the minimum, maximum, average, median, and
standard deviation of the obtained solution values were calculated over the 25 con-
ducted experiments, and for presentation compactness they are all reported in Ap-
pendix A.

Finally, the parameter sets were compared using the following criteria, in descending

order of importance:
1. Maximum mean value over the 25 experiments
2. Minimum standard deviation over the 25 experiments
3. Minimum average last-hit over the 25 experiments

The necessity for more than one selection criterion derives from the fact that multiple
sets of parameters can successfully locate what is deemed to be the function’s global
maximum within the available budget, although at different cost. Boxplots of the
objective values over the 25 experiments for each parameter combination for PSO are

presented in Appendix B. Each one is labeled in the following form:
Umaz_IN_RL_NT,

26

where v,,,, denotes the limit imposed on velocities, /N the swarm size, RL the restart-

ing limit, and NT' the neighborhood type. For example label
10_20_100_gbest,

corresponds to velocity limit (v,,,,) 10% of the search space, swarm size 20, restarting
limit 100, and gbest neighborhood type.
Similarly, boxplots for the GA parameter combinations are presented in Appendix C,

labeled in the following form:
N_RL_N;{_RR_MR,

where N is the population size, RL the restarting limit, NV, is the tournament size,
RR the recombination rate and M R the mutation rate.
Based on the results, the most efficient parameter setting for PSO was the following

one:
(a) Velocity Limit: 100% of the search space
(b) Swarm Size: 400
(¢) Restarting Limit: 100
(d) Neighborhood Type: gbest
For the GAs, the most efficient parameter setting was the following;:
(1) Population size: 20
(2) N2
(3) Recombination rate: 0.6
(4) Mutation rate: 0.04
(5) Restarting limit: 100

Between the two solvers, PSO was shown to provide solutions of higher quality,
considering the criteria described above. More specifically, Table 4.1 shows that the
average of the objective values over 25 experiments for PSO, outfitted with the most

efficient parameter setting, was found to be 7126.488, while for the GA the respective

27

Table 4.1: Statistics for PSO and GA solution quality, setting optimal parameters

Solver Minimum Maximum Average Median Std Devw.
PSO 7126.485 7126.489 7126.488 7126.488 0.001
GA 3266.887 6817.273 5259.064 5126.499 845.696

Figure 4.1: Boxplots for PSO and GA solution quality, setting optimal parameters

8000

[0}

7000

6000 -

5000 -

4000 -

3000 -

2000

1000

0 . :
PSO GA

most efficient parameter setting yielded the average of 5259.064. Figure 4.1 illustrates
the objective values in boxplots.

In order to determine if all the parameters can affect the obtained results, the
Friedman and Wilcoxon tests were used for comparison among PSO models. For
each test, a single parameter of the aforementioned most efficient PSO parameter
setting was perturbed. The obtained values over 25 experiments for each parameter
setting were compared, in order to detect statistically significant differences among
them. The results are presented in Tables 4.2 and 4.3, for Friedman and Wilcoxon
tests, respectively. For example, consider the first line of Table 4.2, where the per-
turbed parameter is velocity limit (vma.y). Candidate values for the velocity limit are
10%,50%, and 100% of the search space. Hence, the Friedman test was performed for

the following parameter settings:
(1) 10_400_100_gbest,
(2) 50_400_100_gbest,
(3) 100_400_100_gbest,

28

Table 4.2: Friedman Tests for PSO

Perturbed Parameter Candidate Values p-value
Velocity Limit (%) 10, 50, 100 0.0000
Swarm Size 20, 200, 400 0.0000

Restarting Limit (iterations) 100, 500, 1000 0.0038

Table 4.3: Wilcoxon Test for PSO

Perturbed Parameter Candidate Values p-value

Neighborhood Type lbest, gbest 0.0000

and the resulting p value was found to be 0.0000, which indicates that at least one set
of the compared objective values shows statistical difference that is not attributed to
random chance.

Since p values were found to approach zero for all the tests presented above, it
can be safely assumed that all the examined PSO parameters, namely velocity limit,
swarm size, restarting limit, and neighborhood type, could have an impact on the

quality of the obtained solutions.

4.3 Solution Profitability Assessment

Through the process described in Chapter 3, it was shown that PSO and GA solvers
can be suitably modified for numerical association rule mining, on real-world big
data.

In our experimental evaluation, the proposed method was compared to numerical
association rule mining without weighted transactions in order to assess its ability to
extract more profitable item combinations. Each one of the two cases was evaluated
over 25 independent experiments, by utilizing PSO with the most efficient parameter
setting. For each one of the 50 experiments, the computational budget was 10° func-
tion evaluations. The performance metric was the total revenue of the transactions
included in the rule solution.

In the case of not utilizing weighted transactions, all 25 experiments converged to

29

solution (rule):
item 144 € [0.751,117.219] — item 133 € [0, 507.047)],

which incorporates transactions of 495539.750 total revenue.
However, in the case of utilizing weighted transactions, all 25 experiments converged

to more profitable solution (rule):
item 154 € [0,191.218] — item 133 € [0, 205.362],

which incorporates transactions of 574736.000 total revenue, 15.98% higher than in
the case of no weights in the transactions.
This is a strong indication that using weighted transactions can lead to results that are
more interesting from the managerial point of view, even in huge real-world datasets.
The dataset’s items were further processed through ABC analysis, which is a
method to group the stock into three categories of importance, A, B, and C. There are
no prespecified rules per class, and different bounds between the classes can be applied
based on user-defined objectives and criteria [7]. An ABC analysis was performed on

the dataset, based on the total revenue, according to the following categorization:
(1) A items offer 80% of revenue,
(2) B items offer 15% of revenue,
(3) C items offer 5% of revenue.

According to this categorization, both items of the obtained rule-solution, namely 133,
and 154 belong to class “A”, which additionally confirms the solution’s high quality

in respect to profitability.

4.4 Conclusions

The aforementioned experimental findings and the corresponding statistical analysis
offer compelling evidence that the proposed optimization-based approach for associ-
ation rule mining, outfitted with the novel profit-oriented method of weighted trans-
actions, can effectively extract profitable item combinations from a real-world dataset,

which can aid the company become more economically competitive. Moreover, the

30

solutions were compared and shown to be robust, and aligned with results obtained
using the well-established operations research method of ABC analysis. Future work

will expand our approach to more general frameworks and datasets.

31

BIBLIOGRAPHY

[1] R. Agrawal, T. Imielifiski, and A. Swami, “Mining association rules between sets
of items in large databases,” SIGMOD Rec., vol. 22, no. 2, p. 207-216, jun 1993.

[2] A. E. Alatas Bilal, “Rough particle swarm optimization and its applications in
data mining,” Soft Computing, vol. 12, pp. 1205-1218, 2008.

[3]]J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of
ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp. 1942-
1948 vol.4.

[4] K. E. Parsopoulos and M. N. Vrahatis, Particle Swarm Optimization and Intelligence:
Advances and Applications. Hershey, PA: Information Science Reference - Imprint
of: IGI Publishing, 2010.

[5] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control and Artificial Intelligence. ~Cambridge, MA,
USA: MIT Press, 1992.

[6] A. H. Wright, “Genetic algorithms for real parameter optimization,” ser. Foun-
dations of Genetic Algorithms, G.]. RAWLINS, Ed. Elsevier, 1991, vol. 1, pp.
205-220.

[7] K. Lysons, B. Farrington, C. I. of Purchasing, and Supply, Purchasing and Supply

Chain Management. Financial Times/Prentice Hall, 2005.

32

APPENDIX A

StaTisTicsS FOR PSO AnD GA

The following pages contain the minimum, maximum, average, median, and standard

deviation calculated for the solution values obtained over 25 experiments, for each
parameter setting of PSO (Tables A.1-A.3) and GA (Tables A.4-A.7).

For PSO, each parameter setting is labeled in the following form:
Umaz_N_RL_NT,

where v,,,, denotes the limit imposed on velocities, NV the swarm size, RL the restart-
ing limit, and NT' the neighborhood type.

For GA, each parameter setting is labeled in the following form:
N_RL_N;,_ RR_MR,

where N is the population size, RL the restarting limit, N, is the tournament size,
RR the recombination rate and M R the mutation rate.

Dominant values fore each column, are presented in bold.

33

Table A.1: Statistics for PSO, swarm size 20

Algorithm Minimum Maximum Average Median Std Dev.
10_20_100_gbest 5037.307 7125.323 6556.897 6248.088 577.852
10_20_100_lbest 5576.803 7125.014 6487.041 6247.532 450.593
10_20_500_gbest 3136.610 7115.280 5592.232 5725.098 1087.575
10_20_500_Ibest 3282.600 7125.318 5821.053 6144.742 1015.486
10_20_1000_gbest 1712.648 6248.090 4360.911 4313.850 1532.262
10_20_1000_lbest 2268.606 7125.168 5710.111 6096.620 1276.518
50_20_100_gbest 7116.312 7126.359 7125.902 7126.355 1.999
50_20_100_lbest 6248.664 7126.358 7089.960 7126.232 175.301
50_20_500_gbest 6245.692 7126.359 6906.696 7116.305 378.402
50_20_500_Ibest 6248.183 7126.356 7020.497 7126.236 291.024
50_20_1000_gbest 6099.235 7126.357 6641.175 6248.667 475.056
50_20_1000_lbest 5578.073 7126.351 6744.324 7115.918 486.985
100_20_100_gbest ~ 6248.679 7126.488 7055.813 7126.422 242.918
100_20_100_lbest 7116.111 7126.488 7125.607 7126.463 2.859
100_20_500_gbest 6146.388 7126.489 6908.817 7116.440 388.884
100_20_500_lbest ~ 6248.388 7126.488 6914.495 7126.303 381.960
100_20_1000_gbest 6146.371 7126.488 6805.255 7126.303 435.735
100_20_1000_lbest 6248.383 7126.488 6879.786 7126.366 401.772

34

Table A.2: Statistics for PSO, swarm size 200

Algorithm Minimum Maximum Average Median Std Dev.
10_200_100_gbest -0.000 7125.322 5237.918 6248.088 2710.201
10_200_100_Ibest 2680.812 7114.491 5325.534 5407.556 952.930
10_200_500_gbest 340.480 7125.322 5050.406 6132.305 1994.875
10_200_500_Ibest 1015.698 6704.773 4426.010 5575.238 1783.186
10_200_1000_gbest 268.338 7125.322 4320.247 5582.311 2463.093
10_200_1000_Ibest 2.050 7125.159 3418.454 3092.456 2272.498
50_200_100_gbest 7126.236 7126.359 7126.349 7126.359 0.034
50_200_100_lbest 6245.586 7126.352 6791.045 7126.103 425.307
50_200_500_gbest 6248.667 7126.360 7056.104 7126.359 243.009
50_200_500_Ibest 4359.403 7126.350 6304.744 6248.305 757.287
50_200_1000_gbest ~ 4445.113 7126.359 6878.625 7126.237 603.351
50_200_1000_lbest 1321.406 7126.346 5943.154 6248.645 1637.676
100_200_100_gbest 7126.370 7126.489 7126.478 7126.488 0.029
100_200_100_Ibest 6245.743 7126.485 7013.406 7126.368 289.432
100_200_500_gbest 7126.370 7126.489 7126.442 7126.488 0.055
100_200_500_lbest ~ 4558.580 7126.488 6749.387 7126.367 776.412
100_200_1000_gbest = 6248.740 7126.489 6985.215 7126.422 328.062
100_200_1000_lbest ~ 3786.789 7126.485 6072.893 6248.383 1030.715

35

Table A.3: Statistics for PSO, swarm size 400

Algorithm Minimum Maximum Average Median Std Dev.
10_400_100_gbest 6245.246 7125.326 6843.522 7125.168 417.394
10_400_100_Ibest 3280.654 7021.866 5472.868 6096.261 1190.926
10_400_500_gbest 285.605 7125.324 4633.207 5582.319 2383.345
10_400_500_lbest 340.427 7024.310 3597.080 3388.579 1744.009
10_400_1000_gbest 231.093 7125.322 4324.223 5051.998 2529.852
10_400_1000_lbest 1.806 7125.249 2805.342 1960.440 2510.109
50_400_100_gbest 7126.236 7126.360 7126.349 7126.359 0.034
50_400_100_Ibest 5047.093 7126.350 6858.029 7126.103 513.681
50_400_500_gbest 6248.675 7126.360 7021.027 7126.359 291.091
50_400_500_Ibest 1182.218 7126.353 5182.133 5269.893 1599.255
50_400_1000_gbest 309.766 7126.360 6643.040 7126.359 1373.075
50_400_1000_Ibest 13.213 7126.351 5216.913 5770.583 2049.099
100_400_100_gbest 7126.485 7126.489 7126.488 7126.488 0.001
100_400_100_lbest 5773.284 7126.484 6823.721 7126.303 454.660
100_400_500_gbest ~ 7126.370 7126.489 7126.474 7126.488 0.039
100_400_500_lbest 3581.093 7126.422 6310.954 6248.642 948.531
100_400_1000_gbest 3208.865 7126.488 6711.540 7126.488 892.732
100_400_1000_lbest ~ 3352.730 7126.484 5835.818 6248.440 1088.186

36

Table A.4: Statistics for GA, population size 200 (a)

Algorithm Minimum Maximum Average Median Std Dew.
200_100_100.0_0.6_0.01 3621.955 6248.519 4917.894 4917.793 797.974
200_100_100.0_0.6_0.02 2928.788 6086.778 4482.497 4322.263 802.083
200_100_100.0_0.6_0.03 2630.944 7023.297 4806.800 4761.761 993.009
200_100_100.0_0.6_0.04 3393.298 6593.076 4864.619 4535.096 955.301
200_100_100.0_0.9_0.01 3002.298 6245.751 4156.009 4152.343 761.527
200_100_100.0_0.9_0.02 2886.444 6883.329 4221.776 4236.877 838.024
200_100_100.0_0.9_0.03 3122.244 6248.629 4131.776 4173.803 734.955
200_100_100.0_0.9_0.04 2545.162 6547.853 4153.626 3915.671 929.794
200_100_20.0_0.6_0.01 3229.563 6248.557 4755.047 4682.729 927.679
200_100_20.0_0.6_0.02 3532.235 6248.494 4537.548 4429.746 834.462
200 100 _20.0 0.6 0.03 3705.724 6443.214 5082.711 5100.427 804.190
200_100_20.0_0.6_0.04 3074.717 6883.316 4940.388 5092.024 1207.815
200_100_20.0_0.9_0.01 2986.699 6380.158 4207.450 4198.822 796.787
200_100_20.0_0.9_0.02 2614.431 5577.828 4001.349 3932.378 611.082
200_100_20.0_0.9_0.03 2621.634 6248.592 4158.012 4338.138 738.542
200_100_20.0_0.9_0.04 3103.165 7036.004 3965.492 3781.059 880.109

37

Table A.5: Statistics for GA, population size 200 (b)

Algorithm Minimum Maximum Average Median Std Dew.
200_300_100.0_0.6_0.01 2657.800 6585.668 4235.354 3612.178 1219.847
200_300_100.0_0.6_0.02 2535.903 6245.731 3989.541 3809.940 1010.842
200_300_100.0_0.6_0.03 2595.321 6097.424 4213.748 3948.591 1068.842
200_300_100.0_0.6_0.04 2169.505 6248.697 3699.852 3688.358 1112.558
200_300_100.0_0.9_0.01 2450.562 6248.444 3638.618 3506.953 849.513
200_300_100.0_0.9_0.02 1986.509 6275.677 3253.627 2812.466 1174.250
200_300_100.0_0.9_0.03 1876.788 4888.670 3289.228 3429.913 720.094
200_300_100.0_0.9_0.04 1978.429 5834.727 3743.302 3637.616 918.200
200_300_20.0_0.6_0.01 2536.539 6394.704 4008.347 3779.562 998.596
200_300_20.0_0.6_0.02 2934.198 6246.933 4183.226 3938.560 892.092
200_300_20.0_0.6_0.03 1915.508 6453.896 3556.588 3497.353 1085.761
200 300 _20.0 0.6 0.04 2435.234 6468.349 4403.993 4113.407 1264.631
200_300_20.0_0.9_0.01 1450.889 5770.680 3581.286 3510.707 1031.405
200_300_20.0_0.9_0.02 1868.792 4429.561 3567.229 3696.145 701.714
200_300_20.0_0.9_0.03 1816.598 6245.757 3501.050 3364.362 1069.577
200_300_20.0_0.9_0.04 2131.235 4798.282 3346.302 3359.447 721.598

38

Table A.6: Statistics for GA, population size 20 (a)

Algorithm Minimum Maximum Average Median Std Devw.
20_100_10.0_0.6_0.01 2870.147 4714.019 3999.715 3943.643 527.481
20_100_10.0_0.6_0.02 3094.579 4953.131 3929.509 3896.028 504.627
20_100_10.0_0.6_0.03 2749.081 4728.539 4009.868 4215.555 575.901
20_100_10.0_0.6_0.04 3035.769 4958.150 4111.375 4181.183 464.352
20_100_10.0_0.9_0.01 2753.447 4777.631 4081.093 4285.192 602.557
20_100_10.0_0.9_0.02 2740.872 5080.116 3878.510 3822.302 558.955
20_100_10.0_0.9_0.03 2693.944 5131.071 3865.457 3930.757 641.328
20_100_10.0_0.9_0.04 3166.069 4720.538 3984.379 3973.337 442.033
20_100_2.0_0.6_0.01 3260.795 6883.378 5144.616 5212.992 987.997
20_100_2.0_0.6_0.02 2999.685 7025.758 5115.896 5132.411 1003.298
20_100_2.0_0.6_0.03 2976.725 7036.031 5084.202 5097.699 1078.006
20 100 2.0 0.6 0.04 3266.887 6817.273 5259.064 5126.499 845.696
20_100_2.0_0.9_0.01 3004.779 6086.782 4252191 4270.096 822.824
20_100_2.0_0.9_.0.02 2969.691 6672.118 4349.800 4381.869 818.939
20_100_2.0_0.9_0.03 2612.516 6661.419 4108.147 3913.064 773.055
20_100_2.0_0.9_0.04 3245.571 7126.445 4500.016 4248.384 1006.687

39

Table A.7: Statistics for GA, population size 20 (b)

Algorithm Minimum Maximum Average Median Std Devw.
20_300_10.0_0.6_0.01 2243.670 4508.809 3478.907 3552.589 672.223
20_300_10.0_0.6_0.02 1834.217 4280.087 3298.084 3375.234 674.076
20_300_10.0_0.6_0.03 1724.753 4478.125 3135.266 3084.563 809.608
20_300_10.0_0.6_0.04 2336.007 4323.456 3377.682 3357.480 538.891
20_300_10.0_0.9_0.01 2274.379 4646.893 3337.583 3438.632 671.561
20_300_10.0_0.9_0.02 2514.589 4438.024 3289.852 3221.731 528.060
20_300_10.0_0.9_0.03 1996.193 5101.667 3692.895 3746.250 763.979
20_300_10.0_0.9_0.04 1592.483 4648.966 3089.188 3061.362 782.243
20_300_2.0_0.6_0.01 1898.938 6547.860 4131.962 4144.852 1130.473
20 300 2.0 0.6 0.02 1992.700 6883.311 4228.676 4251.548 1325.921
20_300_2.0_0.6_0.03 2719144 7023.260 4168.837 4186.604 1005.016
20_300_2.0_0.6_0.04 2154.028 7025.816 3848.858 3455.608 1092.819
20_300_2.0_0.9_0.01 1336.940 6828.028 3535.281 3362.869 1035.542
20_300_2.0_0.9_0.02 2022.382 6248.699 3495.209 3373.948 1028.138
20_300_2.0_0.9_0.03 1793.497 6853.859 3894.181 3695.269 1130.465
20_300_2.0_0.9_0.04 2068.851 5101.668 3650.026 3610.784 823.998

40

APPENDIX B

BoxpLoTs For PSO SorutioNn QUALITY

The following pages contain boxplots for PSO solution quality, obtained over 25 ex-

periments for each parameter setting. Each boxplot is labeled in the following form:
Umag_IN_RL_NT,

where v,,,, denotes the limit imposed on velocities, NV the swarm size, RL the restart-

ing limit, and NT' the neighborhood type.

41

8000
7000 T
6000 o ? f

5000 -

4000 -

3000

2000 -

1000

0 T T T T T
10_20_100_gbest 10_20_100_Ibest 10_20_500_gbest 10_20_500_Ibest 10_20_1000_gbest

Figure B.1: Boxplots for PSO solution quality, settings 1-5

8000

(0]

7000

6000 -

T

5000 -

4000 -

3000

2000 -

1000

T T T T
10_20_1000_gbest 10_20_1000_lbest 50_20_100_gbest 50_20_100_Ibest 50_20_500_gbest

Figure B.2: Boxplots for PSO solution quality, settings 5-9

42

8000
|_———] —_—a— — -
7000 e g
[e] (e] (e]
6000

5000

4000 -

3000

2000

1000 -

T T T T T
50_20_500_gbest 50_20_500_Ibest 50_20_1000_gbest 50_20_1000_lbest 100_20_100_gbest

Figure B.3: Boxplots for PSO solution quality, settings 9-13

8000

0]

7000 -

6000 -

5000

4000 -

3000

2000

1000 -

0 T T T T T
100_20_100_gbest 100_20_100_lbest 100_20_500_gbest 100_20_500_Ibest 100_20_1000_gbest

Figure B.4: Boxplots for PSO solution quality, settings 13-17

43

8000

10 0 T Tk

6000 -

Al
A

5000

4000 -

3000

(e]

2000

1000 -

e

T T T T T
100_20_1000_gbest 100_20_1000_Ibest 10_200_100_gbest 10_200_100_lbest 10_200_500_gbest

0 o

Figure B.5: Boxplots for PSO solution quality, settings 17-21

8000

(0]

7000 -

6000 -

IS

5000

4000 -

3000

2000

1000 -

e

T
10_200_500_gbest 10_200_500_lbest 10_200_1000_gbest 10_200_1000_Ibest 50_200_100_gbest

Figure B.6: Boxplots for PSO solution quality, settings 21-25

44

8000

" m i) . i
o o

6000 -

5000

4000 -

3000

2000

1000 -

T T T T
50_200_100_gbest 50_200_100_lbest 50_200_500_gbest 50_200_500_lbest 50_200_1000_gbest

Figure B.7: Boxplots for PSO solution quality, settings 25-29

8000
— — —_—— — = — —
7000 (] ~ U
(o] (o]
6000
5000
4000 -
3000

2000

1000 -

0 T T T T T
50_200_1000_gbest 50_200_1000_Ibest 100_200_100_gbest 100_200_100_best 100_200_500_gbest

Figure B.8: Boxplots for PSO solution quality, settings 29-33

45

8000

— — — — _——0 —
7000 g
8 (e]
6000
o
5000
4000 -
3000
2000
1000 -
o T T T T T
100_200_500_gbest 100_200_500_Ibest 100_200_1000_gbest 100_200_1000_lbest 10_400_100_gbest

Figure B.9: Boxplots for PSO solution quality, settings 33-37

8000

119

6000 -

5000
4000 -
3000
2000
1000 -

8

0 T T T T T
10_400_100_gbest 10_400_100_lbest 10_400_500_gbest 10_400_500_lbest 10_400_1000_gbest

Figure B.10: Boxplots for PSO solution quality, settings 37-41

46

8000

7000 -

o}
I
I

o
I

6000 -

5000 o

4000 -

3000

2000

1000 -

T T T T
10_400_1000_gbest 10_400_1000_Ibest 50_400_100_gbest 50_400_100_lbest 50_400_500_gbest

Figure B.11: Boxplots for PSO solution quality, settings 41-45

8000

7000 - —o— F ﬂ T —S—
o A 4

N7

5000

4000 -

3000

2000

1000 -

(¢]

0 T o T D T

50_400_500_gbest 50_400_500_lbest 50_400_1000_gbest 50_400_1000_Ibest 100_400_100_gbest

Figure B.12: Boxplots for PSO solution quality, settings 45-49

47

8000

(0]
q

7000 -

6000 -

5000

(o))

4000 -

3000

2000

1000 -

T T T T
100_400_100_gbest 100_400_100_lbest 100_400_500_gbest 100_400_500_lbest 100_400_1000_gbest

Figure B.13: Boxplots for PSO solution quality, settings 49-53

8000

7000 -

6000 -

5000

4000 -

3000

2000

1000 -

0 T T
100_400_1000_Global 100_400_1000_Local

Figure B.14: Boxplots for PSO solution quality, settings 53-54

48

AprPENDIX C

BoxpLoTs FOrR GA SorutioN QUALITY

The following pages contain boxplots for GA solution quality, obtained over 25 ex-

periments for each parameter setting. Each boxplot is labeled in the following form:
N_RL_N,_RR_MR,

where N is the population size, RL the restarting limit, /V; is the tournament size,

RR the recombination rate and M R the mutation rate.

49

8000
7000 +
6000 -
5000 -

> -

3000

2000 -

1000

0 T T T T T
200_100_100.0_0.6_0.01 200_100_100.0_0.6_0.02 200_100_100.0_0.6_0.03 200_100_100.0_0.6_0.04 200_100_100.0_0.9_0.01

Figure C.1: Boxplots for GA solution quality, settings 1-5

8000

7000

o
6000 o
5000

%

3000

2000

1000 -

T T T T T
200_100_100.0_0.9_0.01 200_100_100.0_0.9_0.02 200_100_100.0_0.9_0.03 200_100_100.0_0.9_0.04 200_100_20.0_0.6_0.01

Figure C.2: Boxplots for GA solution quality, settings 5-9

50

8000

7000 o

BLER

3000 —_—

2000

1000 -

o T T T T T
200_100_20.0_0.6_0.01 200_100_20.0_0.6_0.02 200_100_20.0_0.6_0.03 200_100_20.0_0.6_0.04 200_100_20.0_0.9_0.01

Figure C.3: Boxplots for GA solution quality, settings 9-13

8000
7000 o
6000
5000

=

3000 —_—

>

2000

1000 -

T T T T T
200_100_20.0_0.9_0.01 200_100_20.0_0.9 0.02 200_100_20.0_0.9_0.03 200_100_20.0_0.9 0.04 200_300_100.0_0.6_0.01

Figure C.4: Boxplots for GA solution quality, settings 13-17

51

8000

7000 o

o
6000 |

o
5000 |
4000
3000

2000

1000 -

o T T T T T
200_300_100.0_0.6_0.01 200_300_100.0_0.6_0.02 200_300_100.0_0.6_0.03 200_300_100.0_0.6_0.04 200_300_100.0_0.9_0.01

Figure C.5: Boxplots for GA solution quality, settings 17-21

8000
7000
0

o l¢)
6000

o
5000 o

o

T (2 %
N a
SN - 1

1000 -

T T T T T
200_300_100.0_0.9_0.01 200_300_100.0_0.9_0.02 200_300_100.0_0.9_0.03 200_300_100.0_0.9_0.04 200_300_20.0_0.6_0.01

Figure C.6: Boxplots for GA solution quality, settings 21-25

52

8000

7000 o

(¢]

6000

5000 -_

4000
3000

2000

1000 -

o T T T T T
200_300_20.0_0.6_0.01 200_300_20.0_0.6_0.02 200_300_20.0_0.6_0.03 200_300_20.0_0.6_0.04 200_300_20.0_0.9_0.01

Figure C.7: Boxplots for GA solution quality, settings 25-29

8000
7000 +
6000

5000 -

§ﬂ¥%%%

o

1000 -

T T T T
200_300_20.0_0.9_0.01 200_300_20.0_0.9 0.02 200_300_20.0_0.9_0.03 200_300_20.0_0.9_0.04 20_100_10.0_0.6_0.01

Figure C.8: Boxplots for GA solution quality, settings 29-33

53

8000

7000 o

6000

5000 —I_ _|_

4000

3000

2000

1000 -

o T T T T T
20.100_10.0 0.6 0.01 20_100_10.0_0.6_0.02 20_100_10.0_0.6_0.03 20_100_10.0_0.6_0.04 20_100_10.0_0.9_0.01

Figure C.9: Boxplots for GA solution quality, settings 33-37

8000
7000 +
6000
5000 -

NI ==

3000

2000

1000 -

T T T
20.100_10.0 0.9.0.01 20_100_10.0.0.9 0.02 20_100_10.0_0.9 0.03 20_100_10.0_0.9 0.04 20_100_2.0_0.6_0.01

Figure C.10: Boxplots for GA solution quality, settings 37-41

8000

7000 o
6000
5000

4000

3000

2000

1000 -

o T T T T T
20.100.2.0 0.6.0.01 20100 2.0 0.6.0.02 20_1002.0.0.6 0.03 20.1002.0.0.6.0.04 20_100_2.0 0.9 0.01

Figure C.11: Boxplots for GA solution quality, settings 41-45

8000

7000 +

(@)
o (o}
6000 | o
5000
4000 - ?? %
o

3000 —

2000

1000 -

T T T T
20100 2.0 0.9 0.01 20.100_2.0 0.9 0.02 20.100.2.0 0.9 0.03 20.1002.0 0.9 0.04 20_300_10.0_0.6_0.01

Figure C.12: Boxplots for GA solution quality, settings 45-49

55

8000

7000 o
6000
5000

4000

- >I< 7=

2000

1000 -

o T T T T T
20300_10.0 0.6 0.01 20_300_10.0_0.6_0.02 20_300_10.0_0.6_0.03 20_300_10.0_0.6_0.04 20_300_10.0_0.9_0.01

Figure C.13: Boxplots for GA solution quality, settings 49-53

8000
7000 +
6000

5000 -

3000

T S 52

2000 —_—

1000 -

T T T T T
20300_10.0 0.9.0.01 20_300_10.0.0.9 0.02 20_300_10.0_0.9 0.03 20_300_10.0_0.9 0.04 20_300_2.0_0.6_0.01

Figure C.14: Boxplots for GA solution quality, settings 53-57

56

8000

7000 o o

6000 o °
5000
4000 E
3000

2000

1000 -

o T T T T T
20.300_2.0 0.6.0.01 20300 2.0 0.6.0.02 20_3002.0.0.6 0.03 20 3002.00.6.0.04 20_300_2.0 0.9 0.01

Figure C.15: Boxplots for GA solution quality, settings 57-61

8000
7000 +

[}
6000 e
C]

5000 - e

— >

3000

2000 _—

1000 -

T T T
20_300_2.0_0.9_0.01 20_300_2.0_0.9 0.02 20_300_2.0_0.9_0.03 20_300_2.0_0.9_0.04

Figure C.16: Boxplots for GA solution quality, settings 61-64

57

SHORT BIOGRAPHY

Adam Kypriadis was born in Thessaloniki, Greece, in 1994. In 2012 he enrolled in
the undergraduate program of Mathematics of the University of Ioannina and earned
his Degree in 2020. In 2021 he enrolled in the Graduate Program of the Department
of Computer Science and Engineering of University of loannina, and is persuing a

Master’s Degree in “Data and Computer Systems Engineering”.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Objectives
	Structure of the Thesis

	Background Information
	Association Rules
	Relevant definitions and concepts
	Numerical association rule mining

	Particle Swarm Optimization
	Real-valued Genetic Algorithm
	Representation
	Selection
	Recombination
	Mutation

	The proposed approach
	Dataset and Preprocessing
	Weighted Transactions
	Solution Representation and Initialization
	Objective Function
	Restarting the Algorithm
	Search Space Boundaries
	Tunable Parameters

	Experimental Analysis
	Implementation Details
	Experimental and Parameter Setting
	Solution Profitability Assessment
	Conclusions

	Bibliography
	Statistics for PSO and GA
	Boxplots for PSO Solution Quality
	Boxplots for GA Solution Quality
	Short Biography

