
Multiple Mini-Robots Navigation Using
Reinforcement Learning

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Piyabhum Chaysri

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN TECHNOLOGIES - APPLICATIONS

University of Ioannina

May 2018

Examining Committee:

• Κωνσταντίνος Μπλέκας, Αναπλ. Καθηγητής, Τμήμα Μηχανικών Η/Υ και Πλη-
ροφορικής, Πανεπιστήμιο Ιωαννίνων (Επιβλέπων)

• Αριστείδης Λύκας, Καθηγητής, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πα-
νεπιστήμιο Ιωαννίνων

• Κώστας Βλάχος, Επίκ. Καθηγητής, Τμήμα Μηχανικών Η/Υ και Πληροφορικής,
Πανεπιστήμιο Ιωαννίνων

Dedication

For my family.

Acknowledgements

First and foremost, I would like to thank my advisor prof. Konstantinos Blekas for
his guidance, patience and understanding throughout my research. Also I would
like to thank prof. Vlachos Kostas for his advise and expertise in robotics to help
me achieve what have not been done before in a simulator. And I would like to
express my utmost gratitude to all the staffs in department of Computer Science &
Engineering, University of Ioannina for all your guidance throughout my studying
period from bachelor to master degree. And I’d like to thank so many people who
help me throughout my stay in Greece. Ever since I step my foot in this country, the
experience is overwhelmingly joyful. Thank you, Centre for the Study of the Hellenic
Language and Culture (HeLaS) for Greek language courses and those opened the
door for me to study in Greece. I would like to thank prof. Dimitrios Noutsos and
his family who have always been there for me and my sister in time of need. Thank
Mrs. Vasiliki Androutsou for everything. Finally, I would like to thank my family for
all they have done for me.

Table of Contents

List of Figures iii

List of Tables v

List of Algorithms vi

Abstract vii

Εκτεταμένη Περίληψη viii

1 Introduction 1
1.1 Machine Learning on Intelligent Agents 2

1.1.1 Intelligent Agents . 3
1.1.2 Multiagent Systems . 4

1.2 Centrifugal Force Mini Robots . 6
1.2.1 Motion Principle . 6
1.2.2 Platform Dynamics . 11

1.3 Thesis Contribution . 13
1.4 Thesis Layout . 14

2 Reinforcement Learning 15
2.1 Reinforcement Learning . 15

2.1.1 Value Functions . 17
2.1.2 Temporal Difference . 20
2.1.3 Exploration and Exploitation . 20
2.1.4 ε-greedy . 20

2.2 Q-learning Algorithm . 21
2.3 Value Function Approximation . 22

i

3 Multiagent Reinforcement Learning for Multiple Mini-Robots 24
3.1 A Multiagent RL Framework for Multiple Mini-Robots Navigation . . . 25

3.1.1 Q-Learning Algorithm for Autonomous Robots Navigation . . . 25
3.1.2 Single Robot Navigation . 26
3.1.3 Multiple Robots Navigation . 27

3.2 Implementation Details . 30
3.2.1 Robot Operating System (ROS) 30
3.2.2 Implementation in ROS . 32

4 Experimental Results 35
4.1 Experiments of Single Robot . 35

4.1.1 Noisy Environment . 36
4.1.2 Experiments 20x20 Grid . 36
4.1.3 Experiments: 40x40 Grid . 40

4.2 Experiments of Multiple Robots . 42
4.3 Performance Evaluation . 49

4.3.1 Single Robot Performance . 49
4.3.2 4 Robots Performance . 50
4.3.3 Performance Comparison, 1 Robot VS 4 Robots 53

5 Conclusions 54
5.1 Conclusions . 54
5.2 Future Work . 55

Bibliography 57

ii

List of Figures

1.1 Intelligent agents . 2
1.2 A simple depiction of an intelligent agent. 3
1.3 A prototype of centrifugal force mini robot.[1] 7
1.4 Simplified one dof platform with rotation mass m.[1] 8
1.5 Horizontal and vertical force acting on a one dof platform. 9
1.6 Platform motion. 10
1.7 The two-actuator platform concept.[1] 10
1.8 Eccentric mass rotational speed response to 850mV. 12
1.9 Acceleration, velocity and rotational speed respond to 850mV. 13
1.10 Cell injection using manipulator [1] . 14

2.1 Reinforcement learning process . 16

3.1 Multi-robot navigation concept . 25
3.2 Single robot navigation . 27
3.3 Multiple robots navigation . 28
3.4 Discretization of distance state. 28
3.5 Mean distance state . 29
3.6 Smallest distance state . 30
3.7 Robots supported by ROS . 31
3.8 Rviz visualizer . 32
3.9 Gazebo simulator . 33
3.10 Navigation of centrifugal-force robot with Q-Learning nodes 33
3.11 Centrifugal-force robot in ROS visualization 34

4.1 Noisy environment success rate . 37
4.2 Noisy environment path lengths . 37

iii

4.3 Single robot 20x20 grid success rate . 38
4.4 Single robot 20x20 grid path length . 39
4.5 Single robot 40x40 grid success rate . 40
4.6 Single robot 40x40 grid path length . 41
4.7 4 Robots success rate, 4 actions mean distance state VS min distance state 43
4.8 4 Robots path length, 4 actions mean distance state VS min distance state 44
4.9 4 Robots success rate, 4 actions mean distance state VS min distance

state with exploration updates . 44
4.10 4 Robots path length, 4 actions mean distance state VS min distance

state with exploration updates . 45
4.11 4 Robots, 4 distance states success rate 4 actions VS 8 actions 45
4.12 4 Robots, 4 distance states path length 4 actions VS 8 actions 46
4.13 4 Robots, 3 distance states success rate 4 actions VS 8 actions 47
4.14 4 Robots, 3 distance states path length 4 actions VS 8 actions 47
4.15 4 Robots, 3 VS 4 distance states success rate 4 actions VS 8 actions . . 48
4.16 4 Robots, 3 VS 4 distance states path length 4 actions VS 8 actions . . . 48
4.17 Single robots optimal paths . 50
4.18 4 Robots optimal path, 3 distance states 51
4.19 4 Robots optimal path, 4 distance states 51
4.20 4 Robots, worst case scenario, 3 distance states 52
4.21 4 Robots, worst case scenario, 4 distance states 52
4.22 Performance analysis: success rate . 53
4.23 Performance analysis: path length . 53

iv

List of Tables

4.1 Single robot 20x20 grid summary . 39
4.2 Single robot 40x40 grid summary . 41
4.3 4 Robots summary . 49

v

List of Algorithms

2.1 Q-learning algorithm with ε-greedy exploration 22

vi

Abstract

Piyabhum Chaysri, M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, May 2018.
Multiple Mini-Robots Navigation Using Reinforcement Learning.
Advisor: Konstantinos Blekas, Associate Professor.

Reinforcement Learning is a machine learning approach for constructing intelli-
gent agents and solving control problems. The agent learns by interacting with its
environment over a period of time, without relying on exemplary supervision or
complete model of the environment. The task is to discover a target in the presence
of obstacles by maximizing the reward signal received and constructing appropriate
value functions.
In this work we focus on the navigation of mini robotic vehicles, which are

equipped with two vibration motors. These mini robots are used in a simulated
environment for medical applications under a microscope. A reinforcement learning
multi-agent system is introduced for navigation of multiple mini robots in unknown
environments. The goal is to build appropriate decision (navigation) rules for every
robot in order to reach their target, and at the same time to maintain (sub) optimal
navigation paths by avoiding other mobile robots. We assume that the robots start
from different locations, they all share the same map and they are moving simulta-
neously. An appropriate reward function is used that takes into account the existence
of other mini robots in its neighborhood at every step. The reinforcement learning
agents were created on-line using the Q-learning algorithm. The system has been
implemented in ROS (Robot Operating System) environment and has been evaluated
through various noisy cases and variable number of robots.

vii

Ε Π

Piyabhum Chaysri, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πληροφο-
ρικής, Πανεπιστήμιο Ιωαννίνων, Μαΐου 2018.
Πλοήγηση Πολλαπλών Μίνι-ρόμποτ με χρήση Reinforcement Learning.
Επιβλέπων: Κωνσταντίνος Μπλέκας, Αναπληρωτής Καθηγητής.

Η ενισχυτική μάθηση, Reinfoecement Learning (RL), είναι μια κατηγορία της μη-
χανικής μάθησης που χρησιμοποιηθεί για την κατασκευή τους ευφυείς πράκτορες
και λύνει τα προβλήματα έλεγχου. Ένας πράκτορας μαθαίνει από την αλληλεπί-
δραση με το περιβάλλον του χωρίς υποδειγματικό επιβλέποντα ή μοντέλο του πε-
ριβάλλοντος. Η διεργασία είναι να βρεθεί τον στόχο το οποίο βρίσκεται ανάμεσα
εμπόδια από τη μεγιστοποίηση της ανταμοιβής, χτίζοντας τις κατάλληλες συναρτή-
σεις αξίας.
Η εργασία πραγματεύεται την αυτόνομη πλοήγηση μίνι-ρομποτικών συστημά-

των, τα οποία εξοπλισμένα με δύο μικρές κινητήρες δόνησης. Τα οποία είναι πλατ-
φόρμα μικρομετατοπίσεων με φυγοκεντρικούς ενέργειας. Αυτά τα τα μίνι-ρομπότ
χρησιμοποιούνται σε προσομοιώσεις περιβάλλοντα για ιατρικές εφαρμογές υπό μι-
κροσκόπιο. Παρουσιάζεται η ενισχυτική μάθηση πολλαπλών πρακτόρων συστημά-
των για την πλοήγηση μίνι-ρομποτικών συστημάτων σε άγνωστα περιβάλλοντος. Ο
στόχος είναι να χτίζει κατάλληλη πολιτική αποφάσεών (πλοήγηση) σε κάθε ρομπότ
(πράκτορα) για να φτάνουν στους στόχους τους. Παράλληλα, να διατηρούν (υπό)
βέλτιστα μονοπάτια και αποφεύγον άλλα ρομπότ τα οποία κυκλοφορούν μέσα στο
ίδιο περιβάλλον. Υποθέτουμε ότι κάθε ρομπότ ξεκινούν από διαφορετικές θέσεις
όμως μοιράζουν ίδιο χάρτη (χώρο διεργασία) και κινούνται ταυτόχρονα. Χρησιμο-
ποιείται κατάλληλη συνάρτηση ανταμοιβής ή οποία αναγνωρίζει γειτονικά ρομπότ
σε κάθε βήμα. Ο πράκτορας ενισχυτικής μάθησης δημιουργείται απευθείας (on-line)
χρησιμοποιώντας αλγόριθμο Q-learning και συμμετέχει σε πολλαπλούς πράκτορες
συστημάτων. Παρουσιάσουμε και την χρήση του ε-greedy στο Q-learning. Το οποίο

viii

είναι μια μέθοδο εξερεύνησης στο περιβάλλον με την πιθανότητα εξερεύνησης. Χρη-
σιμοποιείται το κατάλληλο παράμετρο της πιθανότητας εξερεύνησης και μπορεί να
κατάληξει στην βέλτιστη πολιτική. Κάθε ρομπότ (κάθε πράκτορες) έχουν τον δικό
τους στόχο και δουλεύουν σε συνεργατική περιβάλλον. Το σύστημα έχει υλοποιηθεί
μέσω ROS (Robot Operating System) και έχει αξιολογηθεί με πολλαπλές θορυβώδες
περιπτώσεις και πολλαπλά ρομπότ.

ix

Chapter 1

Introduction

1.1 Machine Learning on Intelligent Agents

1.2 Centrifugal Force Mini Robots

1.3 Thesis Contribution

1.4 Thesis Layout

One of the major scientific challenges of today is to decode the human intelligence
and develop it in artificial systems. We always challenge ourselves to unlock the way
human learns and replicate it with a machine. The strive to create a machine that
can learn leads to the development of artificial intelligent or AI as we know it today.
In Artificial Intelligence (AI) [2], an intelligent agent is typically an autonomous
entity, which observes and acts upon a typically unknown environment, directing
its activity towards achieving specific goals. The majority of the presented artificial
intelligence agents are designed based on the same concept. They accept stimulus from
the environment and react according to the history of stimuli they have received. Their
difference originates from the fact that a number of different internal structures are
used for the processing of the newly arrived information that are generated from the
interaction with the environment. Numerous intelligent agents have been proposed
so far in a wide range of fields such as: robotics, gaming, navigation, etc. (see figure
1.1 for some indicative examples).

1

Figure 1.1: Intelligent agents

1.1 Machine Learning on Intelligent Agents

Machine learning plays a crucial role in development of artificial intelligence, as the
learning capability constitutes and integral part of an intelligent system. During the
last decades a variety of machine learning techniques have been used extensively for
the development of advanced decision making mechanism, which can be considered
as the agent’s core.
Machine learning Machine learning can be categorized into three main subfields

according to the problem under consideration: i) supervised learning, ii) unsupervised
learning, iii) reinforcement learning. Supervised learning refers to the problems where the
desired outputs corresponding to some input data are known in advance. Roughly
speaking, it can be seen as an explicit teacher is available. In the case where the
desired output consists of discrete values, the problem is known as classification. The
objective in classification problems is to assign an instance to one of a finite set of
discrete class labels. On the other hand, if the desired output consists of continuous
values, the task is called regression. In regression, the goal is the prediction of the
output value of an unknown input instance. In contrast to supervised learning, in
unsupervised learning no knowledge about the target values is supplied. The goal in
this case is the discovery of similar groups within the data, this is called clustering, or
the determination of the data distribution within the input space, known as density
estimation.

Reinforcement learning (RL) has been demonstrated that constitutes a suitable plat-
form for the development of intelligent agents. In RL, in which this thesis focuses on,
an agent interacts with an initially unknown environment and modifies its behaviour
(policy) so as to maximize its cumulative rewards. Reinforcement learning is also ex-
ceptionally good at solving unpredictable and non-linear problem as in real-world

2

environments and applications.
One of the skills that human processed is self-learning or self-taught and we are

trying to replicate this behaviour in intelligent agents or robots. Since the core of
self-learning robot is for it to learn by interacting with the environment, we can find
the framework for intelligent agent development of this type in reinforcement learning.

1.1.1 Intelligent Agents

By definition [3] an agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order to meet its
design objectives. An intelligent agent [4] can be a program or a robot which able to
interact with its environment and make intelligent decisions by using its features. To
put it simply the agents interact with the environment and follow a set of command
to react with the environment by predetermined action programmed by human so
they can perform the task without intervention. The things that set apart intelligent
agents from mere agents are capability of making “rational” decisions and actions
and ability to optimize their decisions based on interaction with the environment.
Upon interacting with an environment the agent receives reward to improve future
decisions. We call this self-learning automaton an “intelligent agent”.

Figure 1.2: A simple depiction of an intelligent agent.

As depicted in figure 1.2 an agent perceives the changes in the environment by
perception with sensors or features, then a reward is given to the agent to make
decision and subsequently commit an action towards the environment then the pro-
cess is repeated from the perception. This agent not only can learn to interact with

3

the environment but can also interact with other agent as well leading to multi-robot
system where the agents learn by interacting with both the environment and other
robots.

1.1.2 Multiagent Systems

Agents operate and exist in some environment, which typically is both computational
and physical. The environment might be open or closed, and it might or might not
contain other agents. Although there are situations where an agent can operate use-
fully by itself, the increasing interconnection and networking of computers is making
such situations rare, and in the usual state of affairs the agent interacts with other
agents [4]. A multiagent system (MAS) can be cooperative where all the agents are
cooperating to complete a task or it can be competitive where each robot compet-
ing with the other for resource or completion of a task. From the previously seen
intelligent agents, a multiagent system contains some added properties for an agent
to work concurrently with other agents within the same environment. One of which
being the ability to communicate or exchange the messages between agents or the
way for them to interact with one another.

Characteristics of Multiagent Environments

• Multiagent environments provide an infrastructure specifying communication
and interaction protocols.

• Multiagent environments are typically open and have no centralized designer.

• Multiagent environments contain agents that are autonomous and distributed,
and may be self-interested or cooperative.

Coordination Protocols

In an environment with limited resources, agents must coordinate their activities
with each other to further their own interests or satisfy group goals. The actions
of multiple agents need to be coordinated because there are dependencies between
agents’ actions, there is a need to meet global constraints, and no one agent has
sufficient competence, resources or information to achieve system goals. Examples

4

of coordination include supplying timely information to other agents, ensuring the
actions of agents are synchronized, and avoiding redundant problem solving [4].

Cooperation Protocols

In this thesis the agents are working primarily in cooperative fashion. We will focus on
how the cooperation protocols work in general senses and adapt it to suite the learning
process that we will use later in agent construction. A basic strategy shared by many
of the protocols for cooperation is to decompose and then distribute tasks. Such a
divide-and-conquer approach can reduce the complexity of a task: smaller subtasks
require less capable agents and fewer resources. However, the system must decide
among alternative decompositions, if available, and the decomposition process must
consider the resources and capabilities of the agents. Also, there might be interactions
among the subtasks and conflicts among the agents.
Task decomposition can be done by the system designer, whereby decomposition

is programmed during implementation, or by the agents using hierarchical planning,
or it might be inherent in the representation of the problem, as in an AND-OR graph.
Task decomposition might be done spatially, based on the layout of information
sources or decision points, or functionally, according to the expertise of available
agents.
Once tasks are decomposed, they Call be distributed according to the following

criteria [5].

• Avoid overloading critical resources.

• Assign tasks to agents with matching capabilities.

• Make an agent with a wide view assign tasks to other agents.

• Assign overlapping responsibilities to agents to achieve coherence.

• Assign highly interdependent tasks to agents in spatial or semantic proximity.
This minimizes communication and synchronization costs.

• Reassign tasks if necessary for completing urgent tasks.

Much of traditional AI has been concerned with how an agent can be constructed
to function intelligently, with a single locus of internal reasoning and control imple-
mented in a Von Neumann architecture. But intelligent systems do not function in

5

isolation—they are at the very least a part of the environment in which they oper-
ate, and the environment typically contains other such intelligent systems. Thus, it
makes sense to view such systems in societal terms. Different agents can take different
roles in a society to expand and improve the interaction with the environment. The
roles in a society can be assigned by distributing tasks to each agent. The following
mechanisms are commonly used to distribute tasks:

• Market mechanisms: tasks are matched to agents by generalized agreement or
mutual selection (analogous to pricing commodities).

• Contract net: announce, bid, and award cycles.

• Multiagent planning: planning agents have the responsibility for task assign-
ment.

• Organizational structure: agents have fixed responsibilities for particular tasks.

In conclusion, by dividing role of the agents in a society, the roles can be assigned
to each agent to function together and form an organized large-scale system which can
solve large amount of problems or operate in large environment efficiently. Another
benefit of using MAS is scalability, where more agents can be added in to environment
to improve the functionality or to optimize the outcome.

1.2 Centrifugal Force Mini Robots

The agent in this thesis is based on centrifugal-force mini robot for medical purpose.
The proportion system used in this robot is vibration motor which generates the drive
forward and backward for each actuator [1]. The model is based on a low-cost small
robot with two actuators from vibration DC motors. This robot is designed to work
in high resolution environment such as manipulation under microscope. A photo of
the prototype can bee seen in Fig. 1.3.

1.2.1 Motion Principle

The underlying physics of the actuation mechanism are explained using a simplified
one degree of freedom (one dof) mobile platform of mass M . The actuation mech-
anism employs an eccentric mass m, rotated at a constant angular speed ωm by a

6

Figure 1.3: A prototype of centrifugal force mini robot.[1]

platform-mounted motor, as shown in Fig. 1.4. The actuation angle θ defines the
angular position of the eccentric mass m with respect to the vertical axis, see Fig.
1.4. One cycle of operation is completed when the mass m has described an angle of
360◦. Gravitational and centripetal forces exerted on the rotating mass are resolved
along the y − z z axes to yield

fOy = mrωm
2 sin θ

fOz = −mg −mrωm
2 cos θ

(1.1)

where g is the acceleration of gravity and r is the arm of eccentricity of m with
respect to O. These forces are transmitted to the platform at point O, while the small
moment due to m is neglected. When the angular speed ωm is low, the platform does
not move because the horizontal actuation force fOy is cancelled by frictional forces
at the platform contact points A and B. However, if the angular speed ωm exceeds a
critical value ωm_critical, then fOy overcomes the support point friction forces, and as
a result, the platform begins to slide.
Using a simplified static-kinetic friction model, the motion of the platform along

7

Figure 1.4: Simplified one dof platform with rotation mass m.[1]

the and axes is described by

Mÿ = fOy − ffr

0 = faz + fbz + (−Mg + fOz)
(1.2)

where all forces are defined in Fig. 1.4, and ffr force. Neglecting viscous friction
ffr, is given by

ffr =


fcsgn(ẏ), ẏ ̸=0

fOy, ∥fOy∥ < fc, ẏ = 0, ÿ = 0

fcsgn(fOy), ∥fOy∥ > fc, ẏ = 0, ÿ ̸=0

(1.3)

where fc is the Coulomb friction level, i.e. the maximum friction force that can
exist for the current normal force, and is given by

fc = µ(faz + fbz) = µ(Mg − fOz) (1.4)

The parameter µ is the coefficient of kinetic friction and the function sgn (ẏ) is
defined by

sgn(ẏ) =


+1, ẏ > 0

0, ẏ = 0

−1, ẏ < 0

(1.5)

The forces acting on the platform are given by (1.1), (1.3), and (1.4) and are plotted
in Fig. 1.5 for three consecutive cycles.

8

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Time (s)

-1

-0.5

0

0.5

1

1.5

F
o
rc

e
 (

N
)

plot (a): Horizontal actuation force and vertical force

f
Oy

-f
Oz

+Mg

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Time (s)

-1

-0.5

0

0.5

1

F
o
rc

e
 (

N
)

plot (b): Coulomb level and friction force

-f
C

-f
fr

Figure 1.5: Horizontal and vertical force acting on a one dof platform.

It is observed that the horizontal actuation force fOy and the vertical actuation
force fOz are time periodic and fOz leads fOy by π/2 [Fig. 1.5(a)].
Due to (1.4), the Coulomb friction level fC is periodic too and in phase with fOz ,

but its sign changes from positive to negative depending on the speed direction [Fig.
1.5(b)]. This figure also shows the friction force ffr. The platform’s motion response
caused by the forces in Fig. 1.5 is computed by numerical integration of (1.2) and is
presented in Fig. 1.6.
The physics of the motion principle are explained next in more detail. Due to

(1.1), when the actuation angle θ is small, the actuation force fOy is not sufficient to
overcome the Coulomb level and no motion is induced. At a critical angle θ1, the
actuation force fOy overcomes the static friction limit fC , and motion is induced (
Fig. 1.6). The platform executes forward motion. When m passes the highest point
at θ = 180◦, the platform already has a positive velocity. As m moves past this point,
friction forces together with actuation forces decelerate the platform. As friction still
increases, it eventually brings the platform to a stop at a critical angle θ2 (Fig. 1.6).
The actuation forces are now pointing to the left and as a result reverse platform
motion starts. While m rotates to the forth quadrant of the actuation cycle, the reverse
platform motion decelerates and eventually stops at critical angle θ3 (Fig. 1.6).
Quite interestingly, as shown in Fig. 1.6(c), for a counterclockwise rotation of the

eccentric load, the platform exhibits a net displacement along the positive y axis. This
is due to the fact that during platform forward motion, the eccentric mass is at the

9

0 5 10 15 20 25
-20

-10

0

10

A
cc

e
le

ra
ti

o
n

 (
m

/s
2

)

plot(a): Acceleration

0 5 10 15 20 25
-5

0

5

10
V

e
lo

ci
ty

 (
m

/s
)

10 -3 plot (b): Velocity

0 5 10 15 20 25
0

1

2

3

P
o

si
ti

o
n

 (
m

)

10 -5 plot (c): Position

θ1 θ θ2 3

step size

Figure 1.6: Platform motion.

higher points of its trajectory (second quadrant of actuation cycle) and, therefore, the
normal forces and the frictional forces are low, whereas during the reverse motion,
the mass is at the lower points of its trajectory (fourth quadrant of actua- tion cycle)
and the frictional forces are high. Consequently, the platform decelerates more during
reverse motion compared to forward motion and therefore—for a counterclockwise
rotation of the eccentric load—a net displacement towards the positive y axis takes
place.

Spherical

support

Base

Motor

Eccentric

load

y

x

Y

XO

B

C

D

d

A

E

D

l

Figure 1.7: The two-actuator platform concept.[1]

10

1.2.2 Platform Dynamics

Two centrifugal force actuators, are employed in the design of a microrobotic platform
capable of two dof planar motions, see Fig. 1.7. Although it is easier to drive the
microrobot using more actuators, in the sense that there is no need for a motion
planning algorithm, it would be less efficient. When more motors are used some
of the components of the horizontal actuation forces cancel out each other (a null-
space is generated) and consequently efficiency is reduced. Furthermore, having more
motors reduces significantly the capability for miniaturization, increase the cost, and
the complexity of the design. Platform base: The contact points between the platform
and the ground are provided by three fixed small steel balls A, B, and C located at
the vertices of an equilateral triangle (Fig. 1.7).
The length between the ball supports is l, while the radius of the platform base

is d (Fig. 1.7). The three-contact point configuration is favoured because it is not
over-constrained and ensures static equilibrium along the vertical axis.
Actuators: The actuation of the platform employs miniature vibrating motors.

Each vibrating motor is axially coupled to an eccentric load, while the control input
is the rotation speed ωm of the motor. During motor rotation, the eccentric mass of the
load generates periodic dynamic forces, which are transferred to the contact points
and interact with the friction forces.
The platform dynamics can be described using the Newton–Euler formulation as

following.
Mv̇ = R

∑
i

bfi, i = {a, b, c, d, e} (1.6)

Izzψ̈ = ẑ
∑
i

(bri × bfi), i = {a, b, c, d, e} (1.7)

where b is the body-fixed frame, R is the rotation matrix between frame b and the
inertial frame O (see Fig. 1.7), ψ is the platform angle of rotation v = dotx, doty, dotz]T

, and is its center of mass (CM) velocity with respect to the inertial frame O. In (1.7),Izz
is the polar moment of inertia in the body fixed frame and ẑ denotes the unit z axis
vector. In both equations, the subscripts i = {a, b, c} correspond to frictional forces at
the contact points of the platform, and i = {d, e} correspond to the forces generated
by the two vibrating motors. The actuation forces that act on the platform, when the

11

DC micromotors rotate (assuming identical micromotors), are given by

bfix = mrθ̇i
2 sin θi

bfiz = −mgi −mrθ̇i2 cos θi
(1.8)

where i = {d, e} and θi is the angle of micromotor i, m is the micromotor eccentric
mass, and r is the arm of eccentricity. The dynamics of the DC micromotor are given
by

θ̈i = −
b

J
θ̇i +

kt
J

iLi −
mgrsinθi

J
− c

J

iLi = −
kt
L
θ̇i −

R

L
iLi +

1

L
Vin_i

(1.9)

where iLi is the motor i current, R is the electrical resistance, b is the viscous friction,
c is the Coulomb friction at the micromotor’s axis, kt is the torque constant L, is the
inductance, J is the eccentric’s load moment of inertia, and Vin_i voltage of motor .
the input i.
Using the equation (1.9) we can calculate rotational speed of the eccentric mass

responding to input voltage. The nominal voltage is 850mV which produce the rota-
tional speed at 1010rad/second as depicted in the figure 1.8.

0 0.5 1 1.5

Time (s)

0

200

400

600

800

1000

1200

S
p

e
e

d
 (

ra
d

/s
)

Eccentric Mass Rotational Speed Response 850mV input

X: 1.013

Y: 1010

Figure 1.8: Eccentric mass rotational speed response to 850mV.

The acceleration and velocity responding to eccentric mass rotational speed are
depicted in the figure 1.9, from the 0 second 850mV is given to the actuator and from
the 1.5 second the power is shut off, given 0V to the actuator to simulate the time
needed to stop the actuator and platform subsequently.

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

-10

-5

0

5

10

A
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

plot (a): Acceleration

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

-5

0

5

10

V
e

lo
c
it
y
 (

m
/s

)
10 -3 plot (b): Velocity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

-500

0

500

1000

1500

S
p

e
e

d
 (

ra
d

/s
)

plot (c): Eccentric Mass Rotational Speed

Figure 1.9: Acceleration, velocity and rotational speed respond to 850mV.

1.3 Thesis Contribution

In this thesis we propose the use of reinforcement learning for creating intelligent
agents to solve multi-robot navigation problem with active collision avoidance in col-
laborative environment. Also the novel reward function in order to create appropriate
Q value for navigation usage. Parallelism is also in consideration of the work as well,
so the agents can work together and sharing their workloads by carrying out task
(target) specific for each agent. The agent in this thesis is modelled after the afore-
mentioned mini centrifugal-force robot for medical purposes. The main function of
these robot is to inject medicine in to cells, one at a time with precision (see figure
1.10). The work presented in this thesis, the main goal is to create a robust algorithm,
for all the agents to autonomously navigate through unknown space to their target
without collision, and on optimal path. Which can solve the collaboration navigation
problem and optimize the output by sharing workloads among all available agents in
the environment. In chapter 3 we propose value functions for multi-robot navigation
and collision avoidance.

13

Figure 1.10: Cell injection using manipulator [1]

1.4 Thesis Layout

We start by looking at what agents and multi-agent systems are and how they works,
along with what benefits multi-agent systems might bring to robotics and machine
learning. Next we will look at the agent used in this thesis which is a micro-robotics
platform with 2 degrees of freedom (dof). In the second chapter we will look at the re-
inforcement learning framework to construct an intelligent agent then the method we
use to train the agents for navigation. The third chapter contains experimental results
with various noise level for single agent to examine the influence of noisy environ-
ment effects on reinforcement learning. Then we will look at the experiment for single
robot and four robots environment to examine the learning rate and path length cor-
responding to different exploration-exploitation ratio. Closing with the performance
evaluation comparing the different state-action pairs and exploration probabilities for
single and multi-robot navigation.

14

Chapter 2

Reinforcement Learning

2.1 Reinforcement Learning

2.2 Q-learning Algorithm

2.3 Value Function Approximation

In the previous chapter we discussed about the use machine learning on intelligent
agents. Imagine an artificial intelligent (AI) that capable of learning by itself without
explicit teacher to tell it what to do in every situation. Through the reinforcement
learning (RL) framework we can achieve intelligent agent construction without explicit
teacher or one could call it a self-learning agent or robot. However this framework
is not limited to control problem in robotics but also for solving non-linear problems
too.

2.1 Reinforcement Learning

As stated in N. Tziortziotis’ dissertation [2], reinforcement learning (RL) [6] is a
framework for constructing an intelligent agent, which capable of solving non-linear
problems. In RL an autonomous agent follows a trial-and-error process to learn the
optimal action to perform in each state in order to reach its goals. The agent interacts
with the environment the agent learns through the reward received from each action.

15

Figure 2.1: Reinforcement learning process

By repeating this process the agent eventually learns which action to take to maximize
the reward to reach the goal with optimal action sequence or path. The fundamental
parts of a reinforcement learning problem are the policy, the reinforcement function,
the value function and the model.
Policy a decision mechanism which contains a map from states to action. To put

it simply the policy dictates what action should the agent take in each state.
Reward function defines the goal of RL. It calculates the state-action pair in to one

value. It decides what is good action and what is a bad action for the agent tot take.
Value function is the sum of reward for the agent in long term starting from a

certain point.
Model is the environment that an agent acts upon. Usually an agent has no knowl-

edge of the environment.
In each iteration or time t (see figure 2.1), the agent perceives its current state

(s∈S), select an action (a∈A), possibly changing it’s state, and receives a reward
signal to corresponded state and action combination. (r∈R). This information is
filled overtime when agent explore the environment and fill the information until
it learns the optimal action for each state. This sequential decision process can be
described as a Makrov Decision Process (MDP) which is typically denoted as a tuple
M = {S,A, T,R, γ}, where:

• S is a finite set of state.

• A is a finite set of actions per state.

• T : S × A → P (S), is the transition probability kernel P (S) assigns to each
state-action pair (s, a) that leads state s′ ∈ S.

16

• R : S ×A× S → IR, is the immediate reward function which gives the expected
reward when action a ∈ A is selected at state s ∈ S.

• γ ∈ (0, 1), is a discount factor such that rewards further in to the future are less
important than immediate rewards.

For a model to be Markovian, it needs to satisfy the Markov property. Meaning the
state at time t+1 depends only on the state t, regardless of the states in the previous
times:

P{st+1 = s′, rt+1 = r | st, at} = P{st+1 = s′, rt+1 = r | st, at, st−1, at−1, ..., s0, t0} (2.1)

2.1.1 Value Functions

One of the goals in RL is to maximize the accumulated reward [7] rather than imme-
diate reward. The value function is used to evaluate the reward from total expected
reward depends on the current state and on the selection of actions in future states.
The selection of actions per state is given by a policy π is a mapping of each state s∈S
and action a∈A to the probability π(s, a) of taking the action a in state s. One of the
goals in RL is to estimate how good to be in a state or how good the selected action
is. The notion of “goodness” is defined in terms of future rewards or accumulated
reward which represented as value functions. The value function is used to determine
how good the state and action is according to each selected policy. The target is to
find the policy that produce maximum value function. Given a state st ∈ S. at time t
and an action at ∈ Ast , the agent receives a reward rt+1 and moves to the next state
st+1. The accumulated reward R at time i can be described as:

Rt = rt+1 + rt+2 + rt+3 + ...+ rt+i (2.2)

The total expected reward depends on the current state and on the selection of
actions if future states. The selection in each state is given by a policy π which is
mapping of state s ∈ S and action a ∈ A to the probability π(s, a).

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+k+1 (2.3)

Where γ is discount rate 0⩽γ < 1

17

Finite Horizon: the agent tries to optimize the expected accumulated rewards on
the next h steps without considering what happens afterwards:

E(
h∑

t=0

rt) . (2.4)

In many cases when the agent continue to work for a long time or continuing task.
The reward value from the equation 2.4 increases indefinitely from T =∞. In order
to reduce the importance of the non-immediate reward, the rewards received by the
agent are geometrically reduced according to a discount factor γ, (0⩽γ < 1):

E(
h∑

t=0

γtrt) . (2.5)

Transition model is assumed to be Markovian, so the state transition do not depend
on previous states, and the transition probabilities are given by:

P (s′ | s, a) = P (st+1 = (s′ | st = s, at = a) (2.6)

The expected reward value is:

R(s′ | s, a) = E{rt+1 | st = s, at = a, st+1 = s′} (2.7)

The value function of a state s, denoted by V π(s) represents the total accumulated
reward that the agent can receive starting at state s and following policy π. Similarly
the the value function of a state s taking action a, is denoted as Qπ(s, a) and represents
the total accumulated reward that the agent can receive starting at state s, taking action
a and following a policy π. The goal is to find policy that produce maximum value
function rather than maximum immediate rewards. Value function for a state s using
an infinite discounted reward model:

V π(s) = Eπ{Rt|st = s} = Eπ

{
∞∑
k=0

γkrt+k+1|st = s

}
(2.8)

Value function for a state s with action a and policy π(Qπ(s, a)) can be expressed
as:

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{
∞∑
k=0

γkrt+k+1|st = s, at = a

}
(2.9)

18

Expanded expression for V π(s):

V π(s) =Eπ{Rt|st = s}

=Eπ

{
∞∑
k=0

γkrt+k+1|st = s

}

=Eπ

{
rt+1 +

∞∑
k=0

γkrt+k+2|st = s

}

=
∑
a

π(s, a)
∑
s′

P (s′ | s, a)

[
R(s′ | s, a) + γEπ(

∞∑
k=0

γkrt+k+2|st = s)

]
=
∑
a

π(s, a)
∑
s′

P (s′ | s, a) [R(s′ | s, a) + γV π(s′)]

(2.10)

Where π(s, a) is the probability of taking action a in state s under policy π.
The optimal value functions V ∗ and Q∗ can be expressed recursively with the

Bellman optimality equation as:

V ∗(s) = max
π

V π(s) , ∀s∈S (2.11)

Q∗(s, a) = max
π

Qπ(s, a) ,∀s∈S and ∀a∈A(s) (2.12)

Q∗(s, a) = E{rt+1 + γV ∗(st+1) | st = s, at = a} (2.13)

V ∗(s) = max
a∈A(s)

Qπ∗
(s, a)

=max
a

Eπ∗{Rt|st = s, at = a}

=max
a

Eπ∗

{
∞∑
k=0

γkrt+k+1|st = s, at = a

}

=max
a

Eπ∗

{
rt+1 +

∞∑
k=0

γkrt+k+2|st = s, at = a

}
=max

a
E{rt+1 + γV ∗(st+1) | st = s, at = a}

=max
a

∑
s′

T a
SS′ [Ra

SS′ + γV ∗(s′)]

(2.14)

Similarly, for Q values:

Q∗(s, a) =E{rt+1 + γmax
a′

Q∗(st+1, a
′) | st = s, at = a}

=
∑
s′

T a
SS′

[
Ra

SS′ + γmax
a′
Q∗(s′, a′)

] (2.15)

19

2.1.2 Temporal Difference

The Temporal Difference (TD) family of algorithms [8] provides an elegant framework
for solving prediction problems. The main advantage of this class of algorithms is its
ability to learn directly from raw experience, without any further information, such as
the model of the environment (model free). The temporal difference is a bootstrapping
technique, where its estimates are updated online based in part on the previously
learned value function estimations. More specifically, at each time t , where the agent
executes the action at at state st , the predicted state-value of the newly visited state
st+1 along with the immediate received reward are used, in order to estimate the
prediction error, known as the temporal difference error. The value iteration is as
following:

V (st)←V (st) + α [rt+1 + γV (st+1)− V (st)] (2.16)

where α is the learning rate.

2.1.3 Exploration and Exploitation

One big subject on self-learning algorithm is how to achieve a balance between ex-
ploration and exploitation. While the exploration in this context being to visit all the
states enough to learn how to make a decision. And exploration is when an agent
uses the collected information to make an intelligent decision.

2.1.4 ε-greedy

One of the common strategies to select actions and explore the environment is ε-
greedy. This is the simplest method to conduct an action selection process by selecting
the action with the largest estimated accumulated reward value at each state, a∗, for
Qt(s, a

∗) = maxaQt(s, a). At the beginning where all the states have not been visited
yet, the method explores the environment by selecting the action randomly with the
probability ε and the probability to selects the largest accumulated reward is 1 − ε
(exploration). The main benefit of this method is each state will be visited at least
once. As the time progress the ε value decreases the method exploit the information
collected by the agent and use it to choose the best action available (exploitation).

20

2.2 Q-learning Algorithm

Q-learning (Watkins, 1989) [9] is one of the most studied topics for reinforcement
learning. It offers quick and easy Off-policy temporal different control.
It is a non-deterministic rewards and action method that is widely used in self-

learning agent. Q-learning is another extension to traditional dynamic programming
(value iteration) that is great at tackling control problem. It does not require the model
of the environment. Q-learning belongs to the family of temporal control method, and
capable of being implemented in on-line, fully incremental way without the need of
waiting until the end of an episode. In addition to that, Q-learning algorithm learns
from raw experience without a model of the environment’s dynamics (model-free).
The policy update rule of Q-learning uses state-action pair as following:

Q(s, a)←Q(s, a) + α
[
r + γmax

a′
Qπ(s′, a′)−Q(s, a)

]
(2.17)

where Q(s, a) is the state-action pair, α is the learning rate, r is the reward and γ is
the discount factor.
The key point is to find optimal Q-value of the each state-action pair (st, at)

using stochastic exploration and the value iteration based on temporal difference. In
this thesis we adope the Q-learning algorithm with ε-greedy [10] 2.1 for exploration
probability.
As a model-free control method, Q-learning is based on the estimation of the

action value function, Q. Learning a policy therefore means updating the Q-function
to make it more accurate. One important aspect of model-free algorithms is that there
is a need for exploration. To account for potential inaccuracies in the Q -function, the
agent must try out different actions to explore the environment for finding possible
better policies. The ε-greedy action selection strategy is an effective means of balancing
exploration and exploitation in reinforcement learning, which selects actions according
to:

a =

 a∈argmaxaQ(s, a) with probability 1− εt (exploit)
random action in A with probability εt (explore)

(2.18)

where εt ∈ (0, 1) is the exploration probability at time step t.
Usually, the exploration diminishes over time, so that the policy used asymptoti-

cally becomes greedy and therefore (as Qt → Q∗) optimal. This can be achieved by
making εt approach 0 as t grows. For instance, an ε-greedy exploration schedule of

21

Algorithm 2.1 Q-learning algorithm with ε-greedy exploration
1: Exploration schedule {εt}∞t=0

2: Initialize Q (s, a) arbitrarily
3: for each episode do
4: Initialize s
5: repeat
6: Choose action a

7: a =

 a∈argmaxaQ(s, a) with probability 1− εt (exploit)
random action in A with probability εt (explore)

8: Take action a, observe r and s′

9: Update Q(s, a):
10: Q(s, a)←Q(s, a) + α(r + γmaxa′Qπ(s′, a′)−Q(s, a))
11: until s is terminal state
12: end for

the form εt = 1/t diminishes to 0 as t → ∞, while still satisfying the second con-
vergence condition of Q-learning, i.e., while allowing infinitely many visits to all the
state-action pairs. According to that, the agent behaves greedily most of the time, but
with small probability, ε, selects an action uniformly random.

2.3 Value Function Approximation

The majority of reinforcement learning algorithms rely on the estimation of a value
function, which is a real-valued function over the state or the state-action space. In
finite state spaces, value functions can be represented exactly using a tabular form
that directly stores in memory a separate value for each individual state. Nevertheless,
in the case where the state space is large or infinite (commonly encountered in the
real world) an exact value representation becomes prohibitive. This problem not only
stems from memory constraints, but also from the time as well as the samples needed
for accurately learning all table entries. Therefore, an approximation architecture for
the representation of the value function is commonly adopted, which must facilitate
generalization. The most typical approximation scheme is the linear function approx-
imation, where the value function is represented as the weighted combination of a

22

set of basis functions:

V (s) = ϕ(s)Tw =
k∑

i=1

ϕi(s)wi (2.19)

where w ∈ Rk is a vector of coefficients and ϕ : S → Rk is a mapping from states
to a k-dimensional vector, called basis function. Usually, basis functions are fixed
and non-linear functions of s. In this way, the value function V (s), is allowed to
be non-linear function of the state space. Functions of the form of 2.19 are called
linear models, as they are linear in the parameters w. Nevertheless, poor design
choices can result in estimates that diverge from the optimal value function and
agents that perform poorly. In practice, achieving high performance requires finding
an appropriate representation for the value function approximator. Next, we consider
a number of approaches suitable for state space representation, which have been used
extensively in the area of reinforcement learning.

State Aggregation

State aggregation is the simplest method for defining features for a linear function
approximator. This approach discretizes the continuous state space into disjoint seg-
ments, whose union covers the state space S. In this way, a binary feature is attached
to each region, which can be seen as its indicator. A feature is active (i.e. equal to 1
) if the considered state falls into the corresponding region. Otherwise, the feature is
0 and is supposed as inactive.

23

Chapter 3

Multiagent Reinforcement Learning for
Multiple Mini-Robots

3.1 A Multiagent RL Framework for Multiple Mini-Robots Navigation

3.2 Implementation Details

In this chapter we will explain the use of reinforcement learning for navigation of un-
known space using Q-learning algorithm in this thesis. This will provide framework
to build intelligent agents that learn to interact with unknown and unpredictable
environment, in order to create robust navigation policies for the desired single robot
and multiple robots platform. We use robot operating system (ROS) to implement the
centrifugal-force mini robot simulator and Q-learning algorithm for navigation. As
for results verification, we use both ROS and the exported data to process in Matlab.
ROS also provide the visualization to help us understand movements and paths of
the robots better. The visual representation also provides us the clue of how robots
interact with an environment during the learning and exploration procedures.

24

3.1 A Multiagent RL Framework for Multiple Mini-Robots Navi-

gation

Working in multiagent environment can be unpredictable due to the changes made
to the environment by other agents. In this work we propose the use of reinforcement
learning to construct an intelligent agent for navigation of collaborative medical mini-
robotics platforms to be able to navigate to the goal regardless of the initial state
and condition. Workspace is divided in to grids, each grid represents the status for
each agent the goal for others are considered static obstacle and the other agents
are considered dynamic obstacles as seen in figure 3.1. In this thesis we focus on
proximity collision avoidance policies that map the distance between other agent in
to state-action pairs using centralized control for all agents to perceive the position
of other agents near by and subsequently calculate the rewards. Workspace is on a
rectangular flat surface. The agents have no prior knowledge of the environment and
starting position for each episode are different and to the edge of the workspace.
For each episode to end, either an agent goes out of boarder or collide with other
obstacles or all the agents reach their goals. The goals for each agent are in different
position and occupy one block of grid.

Figure 3.1: Multi-robot navigation concept

3.1.1 Q-Learning Algorithm for Autonomous Robots Navigation

In this section, we present the use of Q-learning algorithm for navigation of multi-
robots system. We have adopted the Q-learning algorithm to discover a proper policy,
π, based on which our agents select the most appropriate action at each state.
The centrifugal-force mini robot requires very fine integral at 10−6 second per

step for speed and position calculation due to high frequency of the eccentric mass

25

rotation. Each time step is 50000dt, which translates to 0.5 second so the robot can
have small of movement whether starting from stand still or continue running from
previous time step.
In this thesis we examine the use of different exploration probability update rates

for one robot environment and add the different reward functions for multiple robots.
The Q-values table created from different learning parameters then being compared
to observe effects of the aforementioned parameters. The learning rate and discount
factor are kept constant throughout all the experiments. The focus is mainly on the
exploration.
One of the most crucial part of constructing an agent is balancing between ex-

ploration and exploitation. We purpose the update strategy by multiplying the ε by
a constant for a certain number of episodes. This way we can choose the appropri-
ate exploration strategy according to the problem size, which we will discuss in the
following sections.

3.1.2 Single Robot Navigation

First let us look at the single robot navigation system using Q-Learning in order
to understand how the agent works in a simplified environment. The workspace is
divided in to grid of 20×20, or 40×40 cells and the states are the S = (x, y) coordinate
of the robot. The actions consist of 8 possible directions (in step of 45◦) as depicted in
figure 3.2 and the goal is located at the centre of the workspace. There is no obstacle
in the workspace so the agent is free to explore through the entire board without any
obstruction. The rewards r are defined as following:

r =


100 , reaches goal
−100 , out of border
−1 , otherwise

(3.1)

The learning procedure for each episode starts at a random point on the edge of
the board. Then the agent is trying to explore the environment to collect data for Q
values. Over time the Q value table is being filled and the agent gradually use the
gathered data for exploitation rather than exploration. It is crucial to strike a balance
between exploration and exploitation so that the agent will construct an optimal
policy for navigation. We use the term “optimal” to describe shortest path and the
least direction change possible from any starting point. The reason we also use the

26

Figure 3.2: Single robot navigation

least number of direction changes is because of the limitation of the robot model we
use, this robot requires substantial time to change the direction.

3.1.3 Multiple Robots Navigation

The multiple robots navigation system utilizes the basics from single robot naviga-
tion environment with added features such as the discrete distance between robots
and considers the goals for other robots as obstacle. An agent only knows distance
information about other robots. All robots are sharing the same workspace so they
have to avoid collision between one another. Considering each robot has to be in the
same board and has to avoid both goals of other robots and other robots as well
(figure 3.3), the agents have to be able to navigate through limited space if two or
more robots are in close proximity. Each robot has its own goal and not competing
to reach the same goal. The goals are located in the centre region of the board with
some space between each goal for the robots to be able to navigate between them
without collision. This is being done to share the workloads. Imagining the scenario
of different medicines have to be injected in different positions. This can be done
quickly with more robot rather using only one robot. We will examine the different
reward functions to determine the quality of navigation with the percentage of suc-
cess episodes. Starting positions are different and the failure of each episode is occur
when an agent either going out of border, or collide with obstacles, defined by other
robots (dynamic) and other robots’ targets (static).
The workspace is constructed by dividing in to grid of 20 × 20 cells. The set of

states for every robot (i) consists of: Si = (xi, yi, di)

27

Figure 3.3: Multiple robots navigation

• xi, yi, position of robot on board

• di, distance of other robots: mean or minimum (smallest) distance

And we examine the set of actions between 4 and 8 directions to see which provides
the best results. As we have seen in the state-action pair, the multiple robot has one
additional attribute which is the discrete distance between robots. This also adds
more complexity and the number of states-action pairs so we need to examine which
combination of the state-action produce the best result and for the exploration to be
able to visit all the states, often enough to gather sufficient information to use for
navigation.

Figure 3.4: Discretization of distance state.

The discretization of the distance is as shown in figure 3.4. We build the distance
state by quantizing the distances in to states from very close to very far. The severity
of situation is quantized in to discrete distance states starting from 1, meaning there
is a robot or are other robots in very close proximity to the selected robot, hence the
robot is in imminent danger of collision. The following states mean the closest robots
or other robots are further away and pose less threat of collision. The discrete distance
state can be adjusted to have appropriate size for the workspace and complexity of

28

the problem. We purpose two reward functions for multiple robot, one is by taking
the position of all other robots in to consideration (see fig. 3.5) by using textitmean
discrete distance state to map the position and distance state to the actions. The latter
is to use only the position of the nearest robot in to consideration (see fig.3.6) and
convert the smallest distance to discrete distance state.

Figure 3.5: Mean distance state

The reward functions are as following:

ri =


L , reaches goal
−L , out of workspace, collision
cri , otherwise

(3.2)

Calculation of cri (collaborative reward):

• mean distance: cri = −k
∑

j(1−
disti,j

D
)

(NR−1)
− c

• smallest distance: cri = −k
[
mindi,j(1−

disti,j
D

)
]
− c

where

• distij discrete distance between two robots

• NR number of robots in workspace

29

Figure 3.6: Smallest distance state

• D maximum discrete size of distance

• L, k, c constants (common values L > 2000, k = 1, c = 1)

In this thesis we examine different state-action numbers to find the optimal dis-
tance states from the quantization of actual distance in to 3 and 4 states with the
number of available actions between 4 and 8 actions.

3.2 Implementation Details

3.2.1 Robot Operating System (ROS)

So far we have only mentioned the use of Robot Operating System to implement the
reinforcement learning in robot but we have not explained it yet. In this section we
will explain in details of what it is, and its importance in development of robotic
platforms.
Robot Operating System (ROS) [11] is a framework that is widely used in robotics.

The philosophy is to make a piece of software that could work in other robots by
making little changes in the code. What we get with this idea is to create functionalities

30

that can be shared and used in other robots without much effort so that we do not
reinvent the wheel.
ROS was originally developed in 2007 by the Stanford Artificial Intelligence Lab-

oratory (SAIL) with the support of the Stanford AI Robot project. As of 2008, de-
velopment continues primarily at Willow Garage, a robotics research institute, with
more than 20 institutions collaborating within a federated development model.
A lot of research institutions have started to develop projects in ROS by adding

hardware and sharing their code samples. Also, the companies have started to adapt
their products to be used in ROS. In the figure 3.7, you can see some fully supported
platforms. Normally, these platforms are published with a lot of code, examples, and
simulators to permit the developers to start their work easily. The sensors and ac-
tuators used in robotics have also been adapted to be used with ROS. Every day
an increasing number of devices are supported by this framework. ROS provides

Figure 3.7: Robots supported by ROS

standard operating system facilities such as hardware abstraction, low-level device
control, implementation of commonly used functionalities, message passing between
processes, and package management. It is based on graph architecture with a cen-
tralized topology where processing takes place in nodes that may receive or post,
such as multiplex sensor, control, state, planning, actuator, and so on. The library is
geared towards a Unix-like system (Ubuntu Linux is listed as supported while other
variants such as Fedora and Mac OS X are considered experimental).
The ∗ − ros − pkg package is a community repository for developing high-level

libraries easily. Many of the capabilities frequently associated with ROS, such as the
navigation library, the Rviz visualizer (figure 3.8) and the Gazebo simulator (figure
3.9), are developed in this repository. These libraries give a powerful set of tools to
work with ROS easily, knowing what is happening every time. Of these, visualization,
simulators, and debugging tools are the most important ones. There are plenty of
packages and tools to develop and build user-written algorithm and applying it to

31

Figure 3.8: Rviz visualizer

respective robot or simulator.
ROS is released under the terms of the BSD (Berkeley Software Distribution)

license and is an open source software. It is free for commercial and research use.
The ∗ − ros − pkg contributed packages are licensed under a variety of open source
licenses.
ROS promotes code reutilization so that the robotics developers and scientists do

not have to reinvent the wheel all the time. With ROS, you can do this and more.
You can take the code from the repositories, improve it, and share it again.
ROS has released some versions, as of now the latest one being Melodic. In this

thesis, we are going to use Kinetic Kame because it is the most recent long-term
support (LTS) release.

3.2.2 Implementation in ROS

In this work all the nodes are created new without using previously existed packages
of the ROS. The centrifugal-force robot simulator complies with ROS standard so it
works with standard ROS command to drive the robot (cmd_vel) so it can connect
and use with other nodes easily. The simulator is also compatible with Rviz for
visualization.
Q-Learning algorithm (algorithm 2.1) and controller nodes are talking to each

32

Figure 3.9: Gazebo simulator

other via ROS messages that has many to many capability. The connections between
node can be seen in figure 3.10. The controller is talking to the robot via ROS service
as one to one pair. Finally we use Rviz for visualization of the robot and workspace.
The connection between node is depicted in figure 3.10.
As for the multi-robots Q-learning algorithm the main program is a centralized

node that controls all the robots. The node recognize the positions of every robot.
It constructs the Q value table and subsequently follow the policies that created for
each robots.

Figure 3.10: Navigation of centrifugal-force robot with Q-Learning nodes

The single robot environment visualization in Rviz is depicted in figure 3.11a
completed with 3D model and heading of the robot. This environment also support
other features such as publishing topic transform (TF) for robot positioning, odom-
etry (odom) for position tracking and compatibility with other navigation stack and

33

velocity command (cmd_vel) for driving the robot with standard ROS command. The
environment for multiple robots can be seen in figure 3.11b. This environment only
works as a visualization tool to verify the learning result with no capability to work
with other stacks or packages.

(a) 1 Robot visualization in Rviz (b) 4 Robots visualization in Rviz

Figure 3.11: Centrifugal-force robot in ROS visualization

34

Chapter 4

Experimental Results

4.1 Experiments of Single Robot

4.2 Experiments of Multiple Robots

4.3 Performance Evaluation

The experiments conducted in this thesis focused mainly on various ε exploration
probability value for single robot environment. As for multi-robot environment dif-
ferent reward functions are being used for finding optimal policy. Furthermore we
have experimented with different number of state-action pairs from different discrete
distance between robots and simplified actions.

4.1 Experiments of Single Robot

First, we will examine the results from single robot environment to see how the agents
react to different noise level and different exploration strategies. The experiments for
single robot are as follow:

• Work space is divided in to 20×20 blocks of 5mm×5mm tiles, 10×10cm in total
or 40×40 blocks of 5mm× 5mm tiles, 20× 20cm in total.

• The goal is located in the grid (10, 10) for 20×20 blocks workspace and (20, 20)

for 40×40 blocks workspace.

35

• Initial exploration probability ε = 0.9

• Experiment with exploration rate update ε = ε× 0.999.

• Learning rate α = 0.001.

• Discount rate γ = 0.99.

4.1.1 Noisy Environment

One of the issues a centrifugal-force mini robot can face is the inaccuracy of the
vibration motor speed as we can not set the constant angular velocity due to technical
limitations, which leads to the different speed and subsequently position of the robot
in each time step. We call this phenomenon “noisy environment”. To simulate the
noise in the environment we add white noise to the speed of a robot after acceleration
is integrated. The conducted experiments are for different noise level at 1%, 5%, 10%
and 20%.
The environment and Q-learning algorithm parameters are as following:

• Initial exploration probability ε = 0.9

• Experiment with exploration rate update ε = ε× 0.999 every 100 episodes.

• Noise signal 1%, 5%, 10%, 20%

The results are depicted in figure 4.1 for success rate and figure 4.2 for path
length. We concluded that the noise level has no real impact to the performance of
the learning and agent construction. The reason being all the states are separated in
to grid system, and each movement of the robot at time t to t+1 does not immediately
move to the next state, giving no negative impact to the agent even when it moves
further for maximum of 20% travelled distance.

4.1.2 Experiments 20x20 Grid

This is the standard workspace of 10×10 centimetres. The state-action pairs from this
experiment is the smallest, hence the problem has less complexity and should provide
the basic understanding of the agent construction. The parameters are as following:

• Work space is divided in to 20×20 blocks.

36

0 1 2 3 4 5

episodes 10 5

0

10

20

30

40

50

60

70

80

90

100

s
u

c
c
e
s
s
 r

a
te

 (
%

)

Single Robot Noisy Environment: Success Rate

noise = 1%

noise = 5%

noise = 10%

noise = 20%

Figure 4.1: Noisy environment success rate

0 1 2 3 4 5

episodes 10 5

5

10

15

20

25

30

p
a
th

 l
e
n
g
th

 (
c
m

)

Single Robot Noisy Environment: Path Length

noise = 1%

noise = 5%

noise = 10%

noise = 20%

Figure 4.2: Noisy environment path lengths

37

• Initial exploration probability ε = 0.9

• Experiment with exploration rate update ε = ε × 0.999 for each 1, 100, 500

episodes.

• Learning rate α = 0.001.

• Discount rate γ = 0.99.

• Noise signal [0%, 10%].

The results are depicted in figure 4.3 for success rate and figure 4.4 for path
length. The learning rate of single robot environment in 20×20 workspace converges
very fast, at less than 500,000 episodes. However more exploration does not necessary
mean the best result in this case. We can see from the exploration probability update
rate at each 500 episodes, the produced policy dropped the success rate from 100%
to 99.9923%. Validation is done from 3 runs of 1,000,000 episodes for each policy.
The results of path lengths and success rate for each policy are depicted in table 4.1.

0 0.5 1 1.5 2

episodes 10 6

0

10

20

30

40

50

60

70

80

90

100

s
u
c
c
e
s
s
 r

a
te

 (
%

)

Single Robot 20x20 Grid: Success Rate

e = 1

e = 100

e = 500

Figure 4.3: Single robot 20x20 grid success rate

We can see that the difference between path lengths from the policies with explo-
ration probability update each 100 and 500 episode is negligible. But the success rate
from the update each 500 episodes has dropped from policy with more exploitation.

38

0 0.5 1 1.5 2

episodes 10 6

5

10

15

20

25

30
p
a

th
 l
e
n
g
th

 (
c
m

)
Single Robot 20x20 Grid: Path Length

e = 1

e = 100

e = 500

Figure 4.4: Single robot 20x20 grid path length

ε Update episodes Success rate (%) Path length (cm)
1 100% 7.31335

100 100% 5.85753

500 99.992% 5.73847

Table 4.1: Single robot 20x20 grid summary

39

4.1.3 Experiments: 40x40 Grid

These experiments are conducted to investigate how an agent would work in a larger
environment and subsequently much higher state-action pairs and how to select good
exploration strategy for more state-action pairs.

• Work space is divided in to 40×40 blocks.

• Goal is located in the grid (20, 20)

• Initial exploration probability ε = 0.9

• Experiment with exploration rate update ε = ε × 0.999 for each 1, 100, 200, 500

episodes.

• Learning rate α = 0.001.

• Discount rate γ = 0.99.

• Noise signal [0%, 10%].

0 0.5 1 1.5 2 2.5 3

episodes 10 6

0

10

20

30

40

50

60

70

80

90

100

s
u
c
c
e
s
s
 r

a
te

 (
%

)

Single Robot 40x40 Grid: Success Rate

e = 1

e = 100

e = 200

e = 500

Figure 4.5: Single robot 40x40 grid success rate

The results are depicted in figure 4.5 and figure 4.6. The learning rate of sin-
gle robot environment in 40×40 blocks workspace has increased from 20×20 blocks
workspace about 3 times. The convergence happened at less than 1,500,000 episodes.

40

0 0.5 1 1.5 2 2.5 3

episodes 10 6

10

15

20

25

30

35
p
a
th

 l
e
n
g
th

 (
c
m

)

Single Robot 40x40 Grid: Path Length

e = 1

e = 100

e = 200

e = 500

Figure 4.6: Single robot 40x40 grid path length

ε Update episodes Success rate (%) Path length (cm)
1 100% 17.821

100 100% 15.625

200 100% 12.842

500 99.99% 12.191

Table 4.2: Single robot 40x40 grid summary

41

The best exploration strategy to update the probability each 200 episodes and it con-
verges at around 600,000 episodes. Once again we can see that more exploration
cause more harm than good to the agent. When the path length is close to optimal,
the difference of path lengths between exploration strategy are so slim and almost
negligible. As conclude that a few millimetres does not worth the drop of success rate
below 100%. Although 99.997% success rate is very satisfying but getting a robot to
the target all the time is the main priority and it is not worth the compromise for a
few millimetres of shorter path.

4.2 Experiments of Multiple Robots

The main focus of these experiments is to find which combination of the distance
state-action pair combining with exploration strategy produces the best result for
multiple robots environment. The agents not only need to reach their targets but
need to avoid the collision with other robots as well.
The standard working parameters are as following:

• Workspace: grid of 20× 20 cells

• The locations of the goals are in different grid for each robot:

– Robot 1 goal: (7, 7)

– Robot 2 goal: (14, 7)

– Robot 3 goal: (7, 14)

– Robot 4 goal: (14, 14)

• State for every robot (i): Si = (xi, yi, di)

– xi, yi, position of robot on board

– di, distance of other robots: mean or smallest distance

• Action: 4 or 8 possible directions

First we examine the performance of distance states between mean distance state
and minimum distance state starting by using only 4 actions to decrease the number
of state-action pairs.

42

• Distance states: 4 discrete distance states

– [0, 2] = 1

– (2, 5] = 2

– (5, 9] = 3

– (9,∞) = 4

• Action: 4 possible directions, in step of 90◦

0 1 2 3 4 5 6 7 8

episodes 10 6

0

10

20

30

40

50

60

70

80

90

100

s
u
c
c
e
s
s
 r

a
te

 (
%

)

4 Robots, 4 Dist. States, 4 Actions: Success Rate

Mean dist. state

Minimum dist. state

Figure 4.7: 4 Robots success rate, 4 actions
mean distance state VS min distance state

As we can see in the figure 4.7, the success rate for mean distance state fluctuates
a lot even after the convergence. However the path lengths are the same for both
mean distance state and minimum distance state as depicted in 4.8.
When different exploration strategies are applied. The results are in the same

fashion as we can see in figure 4.9 that mean distance state produces many fluctuation
in success rate. In figure 4.10, we can observe that mean distance state and minimum
distance state both produce the same learning rate and path length, indicating the
same overall performance is the same between these two state-action strategies. So
we pick the minimum distance state to conduct further experiments.

43

0 1 2 3 4 5 6 7 8

episodes 10 6

5

10

15

20

25

30

p
a
th

 l
e
n
g
th

 (
c
m

)

4 Robots, 4 Dist. States, 4 Actions: Path Length

Mean dist. state

Minimum dist. state

Figure 4.8: 4 Robots path length, 4 actions
mean distance state VS min distance state

0 1 2 3 4 5 6 7 8

episodes 10 6

0

10

20

30

40

50

60

70

80

90

100

s
u
c
c
e
s
s
 r

a
te

 (
%

)

4 Robots, 4 Dist. States, 4 Actions: Success Rate

Mean dist. state, e = 100

Mean dist. state, e = 500

Minimum dist. state, e = 100

Minimum dist. state, e = 500

Figure 4.9: 4 Robots success rate, 4 actions
mean distance state VS min distance state with exploration updates

44

0 1 2 3 4 5 6 7 8

episodes 10 6

5

10

15

20

25

30

p
a
th

 l
e
n
g
th

 (
c
m

)

4 Robots, 4 Dist. States, 4 Actions: Path Length

Mean dist. state, e = 100

Mean dist. state, e = 500

Minimum dist. state, e = 100

Minimum dist. state, e = 500

Figure 4.10: 4 Robots path length, 4 actions
mean distance state VS min distance state with exploration updates

Next we examine the performance between 4 action and 8 action states. As we
add more actions in to agents, the complexity increases and the states need visiting
increase subsequently.

0 2 4 6 8 10

episodes 10 6

0

10

20

30

40

50

60

70

80

90

100

s
u
c
c
e
s
s
 r

a
te

 (
%

)

4 Robots, 4 vs 8 action states, 4 distance states: Success Rate

4 action states

8 action states

Figure 4.11: 4 Robots, 4 distance states success rate
4 actions VS 8 actions

45

0 2 4 6 8 10

episodes 10 6

5

10

15

20

25

30

p
a
th

 l
e
n
g
th

 (
c
m

)

4 Robots, 4 vs 8 action states, 4 distance states: Path Length

4 action states

8 action states

Figure 4.12: 4 Robots, 4 distance states path length
4 actions VS 8 actions

As we can see the results in figure 4.11, the success rate for 8 action states fluctuates
a lot more than 4 action states. However the path length (figure 4.12 is shown that
8 action states produce better result for distance travelled. Because there are more
directions to move, a robot can navigate through the workspace much easier and can
evade other robots better.
Now that we know the 8 actions are good, we will try to lower the complexity of

the agent by decreasing number of distance states to 3 as following.

• [0, 3] = 1

• (3, 9] = 2

• (9,∞) = 3

The results for success rate from 3 distance states (figure 4.13) yield less fluctuation
for both 4 actions and 8 actions. As for the path length (figure 4.14) action states,
8 actions yield better results than 4 actions for the aforementioned reason of better
movements.
Comparing all the state-action pairs and exploration strategy we can have better

understanding of how to construct an optimal policy for a collaborative multiple
robots system.

46

0 2 4 6 8 10

episodes 10 6

0

10

20

30

40

50

60

70

80

90

100

s
u

c
c
e

s
s
 r

a
te

 (
%

)

4 Robots, 4 vs 8 action states, 3 distance states: Success Rate

4 action states

8 action states

Figure 4.13: 4 Robots, 3 distance states success rate
4 actions VS 8 actions

0 2 4 6 8 10

episodes 10 6

5

10

15

20

25

30

p
a
th

 l
e
n
g
th

 (
c
m

)

4 Robots, 4 vs 8 action states, 3 distance states: Path Length

4 action states

8 action states

Figure 4.14: 4 Robots, 3 distance states path length
4 actions VS 8 actions

47

0 2 4 6 8 10

episodes 10 6

0

10

20

30

40

50

60

70

80

90

100

s
u

c
c
e

s
s
 r

a
te

 (
%

)

4 Robots, 3 vs 4 distance states: Success Rate

4 actions, 3 distance states

8 actions, 3 distance states

4 actions, 4 distance states

8 actions, 4 distance states

Figure 4.15: 4 Robots, 3 VS 4 distance states success rate
4 actions VS 8 actions

0 2 4 6 8 10

episodes 10 6

5

10

15

20

25

30

p
a
th

 l
e
n
g
th

 (
c
m

)

4 Robots, 3 vs 4 distance states: Path Length

4 actions, 3 distance states

8 actions, 3 distance states

4 actions, 4 distance states

8 actions, 4 distance states

Figure 4.16: 4 Robots, 3 VS 4 distance states path length
4 actions VS 8 actions

48

Distance state Actions ε Update Success rate Path length (cm)
Mean distance 4 states 4 100 99.868% 8.53

Mean distance 4 states 4 500 99.846% 8.62

Min distance 4 states 4 500 99.992% 9.4186

Min distance 4 states 8 500 99.92% 8.2794

Min distance 3 states 4 500 99.983% 9.0838

Min distance 3 states 8 500 99.997% 7.8513

Table 4.3: 4 Robots summary

The summary in table 4.3 shows that combination of minimum distance state
with 3 stages and 8 actions pair yields the best result. Although every policy shows
very similar performance, minimum distance is the safest policy to use because the
mean distance state can be unreliable. For example, in case of one robots is very close
and one other robot is very far, this will results in medium state of the distance state
despite the thread of imminent collision.

4.3 Performance Evaluation

The performance matrices that we focused on in this thesis consist of success rate
and path length. The success rate reflects the completion of the task. As for the path
length, this indicates how good is the policy respective from Q-learning algorithm
parameters. The performance evaluations are done by using Q-values table for each
experiment to validate with 100,000 episodes for 5 times and calculate the mean
success rate and path length for the final results.
As we have mentioned in previous chapter, the exploration vs exploitation param-

eters is the key to finding optimal policy. We found that excessive exploration can
cause the policy to steer the robot out off optimal path or to stuck in loops.

4.3.1 Single Robot Performance

The optimal paths generated from single robot experiments are the best they could
possibly be. No matter where the robot is located, it is able to navigate to the goal as

49

shown in figure 4.17.

Figure 4.17: Single robots optimal paths

As for the exploration probability (ε) update strategy, for 20×20 grid environment
an update per 100 episodes yield the best result for success rate and path length
combination with 100% success and average path at 5.86cm (table 4.1). In 40 × 40

grid environment an update per 200 episodes yield the best results with with 100%
success and average path at 12.84cm (table 4.2).

4.3.2 4 Robots Performance

In 4 robots environment, performance from two distance states are very close and of-
ten indistinguishable. However the path from 8 action states are more optimized than
path from 4 action states despite the increased complexity. However when working
in multiple robots environment we have to consider the path that each robot takes
in order to avoid a collision.

Best Case Scenario

In a best case scenario each robot is able to reach its destination and able to keep
distance between other robots at the same time for both 3 distance states as seen in
figure 4.18 and 4 distance states as seen in figure 4.19. The depicted scenario occurs
when there are no crossing between any of the paths, which depends on the starting
points.

50

0 0.02 0.04 0.06 0.08 0.1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
4 robots path

Figure 4.18: 4 Robots optimal path, 3 distance states

0 0.02 0.04 0.06 0.08 0.1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
4 robots path

Figure 4.19: 4 Robots optimal path, 4 distance states

51

Worst Case Scenario

If the starting point of two or more robots are on the opposite side of the board,
sometimes the 3 distance states will not be able to keep distance between robots that
crossing pass and will results in near misses, as seen in figure 4.20. But for the 4
distance states the collision avoidance seems to work correctly as seen in figure4.21.
However all robots are still able to navigate to their respective goals without collision
with other obstacles.

0 0.02 0.04 0.06 0.08 0.1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
4 robots path

Figure 4.20: 4 Robots, worst case scenario, 3 distance states

0 0.02 0.04 0.06 0.08 0.1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
4 robots path

Figure 4.21: 4 Robots, worst case scenario, 4 distance states

52

4.3.3 Performance Comparison, 1 Robot VS 4 Robots

The comparison between using only one robot in the environment and using 4 robots
in the environment can be seen in figure 4.22 and 4.23. Path length for single robot
environment is the shortest because it has no need to avoid collision with other
robots or obstacles. However the path for 4 robots environment are not much longer
than single robot meaning there are 4 tasks done in the in 1.34× times of one task.
Furthermore the success rates are all above 99.5% which is remarkable. Finally, out
of all the tests done in visualization, none of them fails, all the robots are able to
reach their targets.

Figure 4.22: Performance analysis: success rate

Figure 4.23: Performance analysis: path length

53

Chapter 5

Conclusions

5.1 Conclusions

5.2 Future Work

The main objective of this thesis is the development, implementation and evaluation
of reinforcement learning for multiple mini-robots navigation in unknown environ-
ments. Specifically, we elaborate on using Q-Learning algorithm for multiple robots
in collaborative system. In this section we summarize results of the current research
and discuss some possible future works.

5.1 Conclusions

After lengthy experiment, we have found that the results are very promising. All
estimated policies found are near optimal, success rates are more than 99%. The
results from noisy environment are shown that noise is negligible for this agent as
there is no difference in convergence rate for each noise level. This is to be expected
because the state are divided in grids and the robot is not fast enough to escape a grid
in only one time step. In one robot environment the result from longer exploration
period, such as updating the exploration probability (ε) once every 500 episodes can
result in negative effect as the success rate drop but path length does not improve.
For multiple robots environment, we choose to work in collaborative perspective

54

giving the workload sharing capability to the agents. In this environment, choosing an
appropriate reward function is much more important than single robot environment
because not only a robot need to reach its target but also need to avoid both static
and dynamic obstacles.
In 4 robots environment, the results frommean distance state and smallest (min.)

distance state are very close in terms of overall success rate and path length. However
when we look at the spike that randomly happened, mean distance state is unreliable.
This occur when all the states have not been visited or have not visited enough. Due to
the design of the distance state that take all robots in to account and if some are very
far and some are very close the the selected robot, this will results in medium distance
which can also cause the problem with collision and near miss portrayed in figure
4.20. We have come to the conclusion that the smallest or minimum distance state
yields the best result overall. Also it is rare to achieve the full 100% success rate from
any reward function and exploration strategy. However there were some experiments
that results in 100% for 4 and 2 robots environment but not very often. The way
to quantize the distance in to states also plays an important role in the learning
process. An appropriate set of distances need to be selected for each environment
according to the number of robots in the environment, size of the robot and size
of the workspace. The compromise between exploration-exploitation is needed to
produce good result (shortest path) and good learning rate. The balance between
good exploration and excessive exploration need to be discovered for each type of
problem and environment. Finally, the results also show that multiple robots can
complete multiple tasks only a fraction slower than single robot completing a single
task. We have come to conclusion that autonomous multiple robots navigation using
reinforcement learning in collaborative environment to be feasible and effective.

5.2 Future Work

In the following, we present some interesting directions for future research that elab-
orate on a number of open issues related to the methodologies presented in this
thesis.
Further research is required for better understanding and use of reinforcement

learning in multiagent systems. Especially alternative reward functions need to be

55

developed for different type of scenarios and problem size. So far we purposed two
simple yet effective reward functions and state spaces with low complexity. The state
spaces need be developed further for better results such as interoperating the direc-
tions of other robots in to the state to improve the collision avoidance. The different
model-based for value function approximations scheme could be used to improve the
accuracy and accelerate the learning process.
The scalability which is one of many strengths of a multiagent system need be

further developed in to this scheme by adding more robots in to the environment.
After proving that all of the methods are working in the simulator, we would like to
implement it in real robots to work in real-world environment.

56

Bibliography

[1] P. Vartholomeos, K. Vlachos, and E. Papadopoulos, Analysis and Motion Control
of a Centrifugal-Force Microrobotic Platform, vol. 10. 2013.

[2] N. Tziortziotis, Machine Learning for Intelligent Agents. PhD thesis, University of
Ioannina, 2015.

[3] M. Wooldridge and N. Jennings, Intelligent agents: theory and practice. 1995.

[4] G. Weiss, Multiagent Systems A Modern Approach to Distributed Modern Approach
to Artificial Intelligence. The MIT Press, 1999.

[5] E. H. Durfee, V. R. Lesser, and D. D. Corkill, “Coherent cooperation among
communicating problem solvers,” IEEE Transactions on Computers, vol. C-36,
pp. 1275–1291, Nov 1987.

[6] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT Press,
second ed., 2017.

[7] C. Szepesvari, Algorithms for Reinforcement Learning. Morgan and Claypool Pub-
lishers, 2009.

[8] R. Sutton, Learning to Predict by the Methods of Temporal Dierence. 1988.

[9] C. Watkins and P. Dayan, Q-learning. 1992.

[10] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement Learning and
Dynamic Programming Using Function Approximators. CRC Press.

[11] A. Martinez and E. Fernandez, Learning ROS for Robotics Programming. Packt
Publishing, 2013.

57

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Machine Learning on Intelligent Agents
	Intelligent Agents
	Multiagent Systems

	Centrifugal Force Mini Robots
	Motion Principle
	Platform Dynamics

	Thesis Contribution
	Thesis Layout

	Reinforcement Learning
	Reinforcement Learning
	Value Functions
	Temporal Difference
	Exploration and Exploitation
	-greedy

	Q-learning Algorithm
	Value Function Approximation

	Multiagent Reinforcement Learning for Multiple Mini-Robots
	A Multiagent RL Framework for Multiple Mini-Robots Navigation
	Q-Learning Algorithm for Autonomous Robots Navigation
	Single Robot Navigation
	Multiple Robots Navigation

	Implementation Details
	Robot Operating System (ROS)
	Implementation in ROS

	Experimental Results
	Experiments of Single Robot
	Noisy Environment
	Experiments 20x20 Grid
	Experiments: 40x40 Grid

	Experiments of Multiple Robots
	Performance Evaluation
	Single Robot Performance
	4 Robots Performance
	Performance Comparison, 1 Robot VS 4 Robots

	Conclusions
	Conclusions
	Future Work

	Bibliography

