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Abstract

Konstantinos Giannis

M.Sc. in Computer Science, Department of Computer Science and Engineering, University

of Ioannina, Greece, September 2018

Tilte of Dissertation: Decremental Dominators and Low-High Orders in Directed Acyclic

Graphs

Thesis Supervisor: Loukas Georgiadis

Graphs are mathematical objects that model many diverse natural or man-made sys-

tems. A graph G = (V,E) consists of a set of vertices V together with a set E of edges.

Graphs play an important role in computer science because they can be used to repre-

sent essentially any pairwise relationship between objects. For example, graphs can model

transportation networks, communication networks, social networks, electronic circuits etc.

Graphs are useful not only in computer science but in many academic areas such as chem-

istry, physics, mathematics and biology. Designing e�cient graph algorithms can be a

very challenging task.

In this thesis, we consider practical algorithms for maintaining the dominator tree and

a low-high order of a directed acyclic graph (DAG) under edge deletions. Let G=(V, E,

s) be a directed graph with a distinguished start vertex s. The dominator tree D of G is a

tree rooted at s, such that a vertex v is an ancestor of a vertex w if and only if every path

from s to w include v. The dominator tree is a central tool in program optimization and

code generation, and has many applications in other diverse areas including constraint

programming, circuit testing, biology, and in algorithms for graph connectivity problems.

A low high order of G is a preorder of D that certi�es the correctness of D and has further

applications in connectivity and path-determination problems.

First, we provide a carefully engineered version of a recent algorithm [ICALP 2017]

for maintaining the dominator tree of a directed acyclic graph through a sequence of edge

deletions. Then, we show how how to extend this algorithm so that it also maintains

a low-high order of the given DAG. Our algorithms, for both tasks, run in O(mn) total

time and O(m+n) space, where n is the number of vertices and m is the number of edges

before any deletions. These results trivially extend to the case of reducible graphs.

We study the e�ciency of our algorithms in practice by conducting an extensive ex-

perimental study, using real-world graphs, taken from a variety of application areas, and
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arti�cial graphs. The experimental results show that both algorithms perform very well

in practice and are orders of magnitude faster than recomputing from scratch. .
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ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ

Κωνσταντίνος Γιάννης

M.Sc., Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Σεπτέμβριος

2018

Τίτλος Διατριβής: Διατήρηση κόμβων κυριαρχίας και λοω-ηιγη διατάξεων σε κατευθυνόμενα

άκυκλα γραφήματα μετά από διαγραφές ακμών

Επιβλέπων: Λουκάς Γεωργιάδης

Τα γραφήματα είναι μαθηματικά αντικείμενα που μας βοηθούν στο να μοντελοποιήσουμε

πολλά αλγοριθμικά προβλήματα. ΄Ενα γράφημα G = (V,E) αποτελείται από ένα σύνολο κο-

ρυφών V και ένα σύνολο ακμών E. Τα γραφήματα είναι μείζονος σημασίας για την επιστήμη

των πληροφορικής καθώς χρησιμοποιούνται για την αναπαράσταση της σχέσης μεταξύ των

αντικειμένων που μελετάμε. Για παράδειγμα, μέσω των γραφημάτων μπορούμε να μοντελο-

ποιήσουμε οδικά δίκτυα, τηλεπικοινωνιακά δίκτυα, κοινωνικά δίκτυα, ηλεκτρικά κυκλώματα

κ.α. Η χρησιμότητα των γραφημάτων δεν περιορίζεται μόνο στην επιστήμη των πληροφορι-

κής αλλά επεκτείνεται και σε πολλούς ακόμα επιστημονικούς τομείς όπως για παράδειγμα τη

χημεία, τη φυσική, τα μαθηματικά και τη βιολογία. Η κατασκευή νέων αλγορίθμων για την

επεξεργασία γραφημάτων αποτελεί μεγάλη πρόκληση.

Σε αυτή τη διπλωματική εργασία, ασχολούμαστε με πρακτικούς αλγορίθμους για τη

διατήρηση ενός δέντρου κυριαρχίας καθώς και μιας λοω-ηιγη διάταξης για κατευθυνόμενα

άκυκλα γραφήματα για μια ακολουθία διαγραφών. ΄Εστω G = (V,E, s) ένα κατευθυνόμενο

άκυκλο γράφημα με αφετηριακή κορυφή τον κόμβο s. Το δέντρο κυριαρχίας D του γραφήμα-

τος G είναι ένα δέντρο με ρίζα τον κόμβο s, τέτοιο ώστε ένας κόμβος v λέμε ότι κυριαρχεί

ενός κόμβου w αν και μόνο αν όλα τα μονοπάτια από τη ρίζα s προς τον κόμβο w περνάνε

από τον κόμβο v. Τα δέντρα κυριαρχίας έχουν πολλές και σημαντικές εφαρμογές όπως για

παράδειγμα στον έλεγχο κυκλωμάτων, στη βιολογία καθώς και σε διάφορα προβλήματα συνε-

κτικότητας γραφημάτων. Μια λοω-ηιγη διάταξη του G αποτελεί μια προδιάταξη των κόμβων

του δέντρου κυριαρχίας D η οποία αποτελεί ένα πιστοποιητικό ορθότητας για το δέντρο

κυριαρχίας D και έχει διάφορες εφαρμογές στη συνεκτικότητα των γραφημάτων.

Αρχικά, παρουσιάζουμε μια υλοποίηση ενός πρόσφατου αλγορίθμου [ICALP2017] για

την ενημέρωση ενός δέντρου κυριαρχίας ενός κατευθυνόμενου άκυκλου γραφήματος για μια

ακολουθία διαγραφών και στη συνέχεια μελετάμε το πως μπορούμε να ενημερώσουμε τη λοω-

ηιγη διάταξη του άκυκλου γραφήματος παράλληλα με την ενημέρωση του δέντρου κυριαρχίας.
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Οι δύο αλγόριθμοι που θα παρουσιάσουμε απαιτούν O(mn) χρόνο εκτέλεσης και O(m+ n)

χώρο, όπου n είναι το πλήθος των κορυφών του γραφήματος και m το πλήθος των ακμών

πριν από τις διαγραφές.

Στο τελευταίο κεφάλαιο, μελετάμε την απόδοση των αλγορίθμων μας διενεργώντας μια

εκτενή πειραματική μελέτη. Για τα πειράματά μας χρησιμοποιήσαμε γραφήματα του πραγμα-

τικού κόσμου από διάφορες εφαρμογές καθώς και τεχνητά γραφήματα. Τα αποτελέσματα

της μελέτης έδειξαν πως και οι δύο αλγόριθμοι είναι αρκετά αποδοτικοί στην πράξη και είναι

τάξεις μεγέθους ταχύτεροι απο τους αντίστοιχους που επανυπολογίζουν τη λύση απο την

αρχή.
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Chapter 1

Introduction

1.1 Thesis Scope

1.2 Preliminaries

1.3 Our Contribution

1.4 Applications

1.5 Road map

1.1 Thesis Scope

Graphs are mathematical objects that model many diverse natural or man-made systems,

by representing pairwise relations between various types of objects. In physics and chem-

istry, a graph makes a natural model for molecules where vertices represent atoms and

edges bonds, in social sciences we use friendship graphs to model social structures based

on di�erent kinds of relationships between people or groups and in civil engineering the

road system of a city can be represented by a transportation network. More speci�cally, in

computer science graphs are ubiquitous because they are able to describe both the struc-

ture and the dynamics of various systems. We can use graphs to represent communication

networks, web page connections, data organisation etc.

In several applications, we deal with dynamic graphs, i.e., graphs that are subject to

updates, such as the insertion or deletion of edges or vertices. Here, we consider only edge

updates. Dynamic graph algorithms have been extensively studied for several decades,

and many important results have been achieved for fundamental problems, including con-

nectivity, minimum spanning tree, transitive closure, shortest paths (see, e.g., the survey

1



in [11]). Typically, the goal of a dynamic graph algorithm is to update the solution to a

problem e�ciently after each update of the graph, that is, much faster than recomputing

from scratch (using a static algorithm). Of course, we aim to update the solution as

quickly as possible. We can classify dynamic graph problems according to the types of

updates allowed. A dynamic graph problem is said to be fully dynamic if it is able to

process both insertions and deletions of edges, incremental if it requires to process edge

insertions only and decremental if it can process edge deletions only.

Here we consider two decremental problems in directed graphs, namely maintaining

the dominator tree and a low-high order of a �ow graph. Speci�cally, we consider how

to maintain the dominator tree and a low-high order of an acyclic �ow graph through a

sequence of edge deletions (see Figure 1.1). These results trivially extend for the class

of reducible �ow graphs (de�ned below) that includes acyclic �ow graphs. The dynamic

dominator problem arises in various applications, such as data �ow analysis and compila-

tion [8, 12]. Moreover, dynamic dominators can be used for dynamically testing various

connectivity properties in digraphs, such as 2-vertex connectivity, strong bridges and

strong articulation points [28]. We remark that the reducible case is interesting for appli-

cations in program optimization since one notion of a �structured� program is that its �ow

graph is reducible. Also, several real-world networks, such as certain types of biological

networks, are acyclic [25].

1.2 Preliminaries

Let T be a tree rooted at s with vertex set VT ⊆ V and D be a dominator tree rooted at

s with vertex set VD ⊆ V . We denote by T (v) the subtree of T rooted at v and by t(v)

the parent of vertex v ∈ VT in T ; t(v) = null if v is the root of T . If v is an ancestor

of w, T [v, w] is the path in T from v to w. If v is a proper ancestor of w, T (v, w] is the

path to w from the child of v that is an ancestor of w. Analogously, T [v, w) denotes the

path from v to t(w). Suppose now that the vertex set VT of T consists of the vertices

reachable from s. Equivalently, path D[s, v] consists of the vertices that dominate v. Tree

T has the parent property if for all (v, w) ∈ E with v ∈ VT and w ∈ VT , v is a descendant
of t(w) in T . If T has the parent property and has a low-high order, then T = D [21].

For every v ∈ V , we denote by C(v) the set of children of vertex v in D. A �ow graph

G = (V,E, s) is a directed graph (digraph) with vertex set V , edge set E, a distinguished

start vertex s ∈ V where s is a vertex without any entering edges. A vertex v ∈ V of G

called reachable if there is a path from s to u; if no such path exists, vertex u is called

unreachable. An edge (u, v) of the forementioned �ow graph G is a bridge if its deletion

makes v unreachable from s. A reducible �ow graph [26, 39] is one in which every strongly

connected subgraph S has a single entry vertex v such that every path from s to a vertex

in S contains v. A �ow graph is reducible if and only if it becomes acyclic when every

edge (v, w) such that w dominates v is deleted [39]. We refer to such an edge as a back

edge. Deleting back edges does not change the dominator tree, since no such edge can be

2
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Figure 1.1: (Top) A �ow graph G and its dominator tree D. The numbers correspond to

a preorder numbering of D that is a low-high order of G. (Bottom) The �ow graph G′

and its dominator tree D′ after the deletion of edge (g, d).

on a simple path from s. Deletion of such edges thus reduces the problem of computing

dominators on a reducible �ow graph to the same problem on an acyclic graph. Every

reducible �ow graph has a topological order, which is a total order of its vertices such that

if (x, y) is an edge, x is ordered before y.

Dominators For the set of reachable vertices of �ow graphG, we can de�ne a dominator

relation as follows. A vertex v is a dominator of a vertex w (v dominates w) if every path

from s to w contains v; v is a proper dominator of w if v dominates w and v 6= w. The

previously de�ned dominator relation in �ow graph G can be represented by a tree rooted

at s. We call such a tree a dominator tree D, where u dominates w if and only if u is

an ancestor of w in dominator tree D (see Figure 1.1). For every reachable vertex w of

D, except the root s, we denote by d(w) the parent of w in D. The dominator tree is a

central tool in program optimization and code generation [9], and it has applications in

other diverse areas including constraint programming [35], circuit testing [3], biology [1,

25], memory pro�ling [33], the analysis of di�usion network [24], and in connectivity

problems [13, 14, 17, 18, 20, 27, 28, 29, 30].
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Low-High order A preorder of a �ow graph G is a total order of the vertices of G,

such that for every vertex v, the descendants of v in the dominator tree of G are ordered

consecutively after vertex v. A low-high order δ, of a �ow graph G, is a preorder of the

vertices of the dominator tree D such for all reachable vertices v 6= s, either (d(v), v) ∈ E
or there are two edges (u, v) ∈ E, (w, v) ∈ E. Both distinguished vertices u and w

are reachable in G with the property that u is less than v (u <δ v), v is less than w

(v <δ w), and w is not a descendant of v in D (see Figure 1.1). Every �ow graph G has a

low-high order that is computable in linear time. Low−high orders provide a correctness

certi�cate for dominator trees that is entirely straightforward to verify in linear time. By

augmenting an algorithm that computes the dominator tree D of a �ow graph G, so that

it also computes a low-high order of G, one obtains a certifying algorithm to compute

D. A certifying algorithm not only computes the solution of a problem but also provides

a correctness certi�cate with the property that one can use the provided certi�cate in

order to verify that the given solution is correct. Low-high orders also have applications

in path-determination problems [40] and fault-tolerant network design [4, 5, 22].
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Figure 1.2: The �ow graph of Figure 1.1 and two strongly divergent spanning trees B and

R.
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Figure 1.3: A �ow graph and its corresponding derived graph.

Divergent spanning trees Divergent spanning trees are closely related to low-high

orders [21]. Let G[Vr] be a �ow graph with start vertex s that is induced by vertex set

Vr, where Vr is the set of all reachable vertices. Two spanning trees of G[Vr] rooted at s,

namely B and R, are divergent if for every vertex u ∈ Vr, the paths from s to u in both

B and R share only the dominators of u. We call B and R strongly divergent if for every

pair of vertices u and w, either the path in B from s to u and the path in R from s to

w, share only the common dominators of u and w, or the path in R from s to u and the

path in B from s to w, share only the the common dominators of u and w. From now on,

in order to simplify our notation, we will refer to B and R as strongly divergent spanning

trees of G. Every �ow graph has a pair of strongly divergent spanning trees, which are

easy to compute in O(m) time from a given low-high order of G. Divergent spanning

trees can be used in data structures that compute pairs of vertex-disjoint s-t paths in 2-

vertex connected digraphs (for any two query vertices s and t) [13], in fast algorithms for

approximating the smallest 2-vertex-connected spanning subgraph of a digraph [14], and

in constructing sparse subgraphs of a given digraph that maintain certain connectivity

requirements [17, 29, 30].

Derived Edges A key concept of the decremental algorithm of Georgiadis et al. [16] for

maintaining the dominator tree D of a DAG, is the concept of derived edges. Recall that

from the previously denoted parent property of D, if (v, w) is an edge of G, the parent

of w, namely d(w), is an ancestor of v in D. Let (v, w) be an edge of G, with w not an

ancestor of v in D (Such edges do not exist if G is acyclic). Then, the derived edge of

(v, w) is the edge (v, w); if v = d(w) then v = v, otherwise if v 6= d(w) v is the sibling of

w that is an ancestor of v. If w is an ancestor of v in D, then the derived edge of (v, w)

is null. Note that a derived edge (v, w) may not be an edge in the edge set of G (see

Figure 1.3). Given the dominator tree D of a �ow graph G = (V,E, s) and a list of edges

S ⊆ E, we can compute the derived edges of S in O(|V |+ |S|) time [21].

5



1.3 Our Contribution

The problem of updating the domination relation has been extensively studied for few

decades (see, e.g., [2, 7, 8, 16, 19, 36, 37]). Simple algorithms have been proposed to

update the dominators after a sequence of edge insertions (incremental dominators prob-

lem). Those algorithms achieve a total of O(mn) running time, where n is the number

of vertices of the �ow graph and m is the number of edges after all insertions [2, 8, 19].

The decremental version of the problem seems much harder to solve. Cicerone et al. [8]

achieve a total O(mn) update bound using O(n2) space for reducible �ow graphs, where

m is the initial number of edges. For general directed graphs, Georgiadis et al. [16] pre-

sented an algorithm that can process a sequence of edge deletions in a �ow graph and

achieves O(mn log n) total running time using O(n2 log n) space, and can answer domi-

nance queries, i.e., does vertex u dominate vertex v, in constant time. In the same paper,

Georgiadis et al. [16] presented an algorithm for reducible �ow graphs that achieves O(mn)

total running time using O(m+ n) space. Implementing this algorithm for reducible �ow

graphs turns out to be a challenging task. Nevertheless, here we present an e�cient

implementation that performs very well in practice and requires careful engineering and

choice of data structures. In particular, we propose a data structure for an extension of

the dynamic list order maintenance problem [6, 10] and a data structure for maintaining

and updating derived edges [21]. We assess the merits of our algorithm in practical sce-

narios by conducting a thorough experimental study, with a variety of test graphs taken

from de�erent application areas. We note that a conditional lower bound in [16] suggests

that it might be hard to substantially improve the O(mn) update bounds in the partial

dynamic (incremental or decremental) problem of maintaining the dominator tree, even

for acyclic �ow graphs.

Our second contribution is to show that we can maintain decrementally a low-high

order of a reducible �ow graph in O(mn) total time. As previously mentioned, by provid-

ing an algorithm that updates both the dominator tree for a sequence of edge deletions

and a low-high order, implies the �rst decremental certifying algorithm [34] for computing

dominators in O(mn) total time for reducible �ow graphs. It also immediately provides

O(mn)-time algorithms for the following problems:

• A data structure that maintains an acyclic �ow graph G decrementally, and answers

the following queries in constant time: (i) For any two query vertices v and w, �nd a

path πsv from s to v and a path πsw from s to w that are maximally vertex-disjoint,

i.e., such that πsv and πsw share only the common dominators of v and w. We can

output these paths in O(|πsv| + |πsw|) time. (ii) For any two query vertices v and

w, �nd a path πsv from s to v that avoids w, if such a path exists. We can output

this path in O(|πsv|) time. Such a data structure (in the static case) was used by

Tholey [40] in a linear-time algorithm for the 2-disjoint paths problem on a directed

acyclic graph (DAG).

• A decremental version of the fault-tolerant reachability problem [4, 5] in DAGs. We
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maintain an acyclic �ow graph G = (V,E, s) through a sequence of edge deletions,

so that we can answer the following query in O(n) time. Given a spanning forest

F = (V,EF ) of G rooted at s, �nd a set of edges E ′ ⊆ E\EF of minimum cardinality,

such that the subgraph G′ = (V,EF ∪ E ′, s) of G has the same dominators as G.

An incremental low-high order algorithm with O(mn) total update time was presented

in [15]. As in the dynamic dominators problem, the decremental version seems more

di�cult than the incremental. To highlight this aspect, note that a single edge deletion

can cause O(n) changes in a given low-high order even if the dominator tree remains

unaltered (See Figure 3.1). On the other hand, in the incremental setting, it su�ces to

update the low-high order only for the vertices that change parent in the dominator tree.

1.4 Applications

Here we provide a couple immediate applications of our decremental low-high order algo-

rithm.

1.4.1 Strongly divergent spanning trees and path queries

Let Vr be the set of reachable vertices, and let G[Vr] be the �ow graph with start vertex

s that is induced by Vr. Two spanning trees B and R of G[Vr], rooted at s, are divergent

if for all v, the paths from s to v in B and R share only the dominators of v; B and R

are strongly divergent if for every pair of vertices v and w, either the path in B from s to

v and the path in R from s to w share only the common dominators of v and w, or the

path in R from s to v and the path in B from s to w share only the common dominators

of v and w. In order to simplify our notation, we will refer to B and R, with some abuse

of terminology, as strongly divergent spanning trees of G.

Every �ow graph has a pair of strongly divergent spanning trees. Given a low-high

order of G, it is straightforward to compute two strongly divergent spanning trees of G

in O(m) time [21].

We augment our decremental algorithm so that for each vertex v 6= s we keep two

variables low(v) and high(v). Variable low(v) stores an edge (u, v) ∈ E such that u 6= d(v)

and u < v in low-high; low(v) = null if no such edge exists. Similarly, high(v) stores an

edge (w, v) ∈ E such that and v < w in low-high and w is not a descendant of v in D;

high(v) = null if no such edge exists. Note that these are just original edges of the sparse

subgraph H that correspond to the derived edges in H. Finally, we mark each vertex v

such that (d(v), v) ∈ E. Note that for a reachable vertex v, we can have low(v) = null or

high(v) = null (or both) only if mark(v) = true.

We can use the arrays mark , low , and high to maintain a pair of strongly divergent

spanning trees, B and R, of G after each update. Moreover, we can construct B and R so

that they are also edge-disjoint except for the bridges of G. A bridge of G is an edge (u, v)
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that is contained in every path from s to v. Let b(v) (resp., r(v)) denote the parent of a

vertex v in B (resp., R). To update B and R after the deletion of an edge (x, y), we only

need to update b(v) and r(v) for the vertices v that are relocated in the updated low-high

order. Speci�cally, we set b(v) ← d(v) if low(v) = null , b(v) ← low(v) otherwise. Then,

we set r(v)← d(v) if high(v) = null , r(v)← high(v) otherwise.

Now consider a query that, given two vertices v and w, asks for two maximally vertex-

disjoint paths, πsv and πsw, from s to v and from s to w, respectively. Such queries were

used in [40] to give a linear-time algorithm for the 2-disjoint paths problem on a directed

acyclic graph. If v <δ w, then we select πsv ← B[s, v] and πsw ← R[s, w]; otherwise, we

select πsv ← R[s, v] and πsw ← B[s, w]. Therefore, we can �nd such paths in constant

time, and output them in O(|πsv|+ |πsw|) time. Similarly, for any two query vertices v and

w, we can report a path πsv from s to v that avoids w. Such a path exists if and only if w

does not dominate v, which we can test in constant time using the ancestor-descendant

relation in D [38]. If w does not dominate v, then we select πsv ← B[s, v] if v <δ w, and

select πsv ← R[s, v] if w <δ v.

1.4.2 Fault tolerant reachability

Baswana et al. [4] study the following reachability problem. We are given a �ow graph

G = (V,E, s) and a spanning tree T = (V,ET ) rooted at s. We call a set of edges E ′ valid

if the subgraph G′ = (V,ET ∪ E ′, s) of G has the same dominators as G. The goal is to

�nd a valid set of minimum cardinality. As shown in [22], we can compute a minimum-size

valid set in O(m) time, given the dominator tree D and a low-high order of δ of it. We

can combine the above construction with our decremental low-high algorithm to solve

the decremental version of the fault tolerant reachability problem on DAGs, where G is

modi�ed by edge deletions and we wish to compute e�ciently a valid set for any query

spanning tree T . Let t(v) be the parent of v in T . Our algorithm maintains, after each

edge insertion, a low-high order of G, together with the mark , low , and high arrays. Given

a query spanning tree T = (V,ET ), we can compute a valid set of minimum cardinality

E ′ as follows. For each vertex v 6= s, we apply the appropriate one of the following cases:

(a) If t(v) = d(v) then we do not insert into E ′ any edge entering v. (b) If t(v) 6= d(v)

and v is marked then we insert (d(v), v) into E ′. (c) If v is not marked then we consider

the following subcases: If v < t(v) in low-high, then we insert into E ′ the edge (x, v) with

x = low(v). Otherwise, if t(v) < v in low-high, then we insert into E ′ the edge (x, v) with

x = high(v). Hence, can update the minimum valid set in O(mn) total time.

We note that the above construction can be easily generalized for the case where T is

forest, i.e., when ET is a subset of the edges of some spanning tree of G. In this case, t(v)

can be null for some vertices v 6= s. To answer a query for such a T , we apply the previous

construction with the following modi�cation when t(v) is null. If v is marked then we

insert (d(v), v) into E ′, as in case (b). Otherwise, we insert both edges entering v from

low(v) and high(v). In particular, when ET = ∅, we compute a subgraph G′ = (V,E ′, s) of

G with minimum number of edges that has the same dominators as G. This corresponds
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to the case k = 1 in [5].

1.5 Road map

The rest of this thesis is organized as follows.In Chapter 2, we describe how the decre-

mental dominators algorithm of [16] works. Then, we describe how a carefully engineered

version of this algorithm, by incorporating e�cient solutions for the following tasks that

we encountered during the implementation: (i) answering ancestor-descendant queries in

the dynamically changing dominator trees, (ii) maintaining dynamically the derived edges

of a graph, and (iii) handling the deletion of bridges.

In Chapter 3, we present an algorithm for updating a low-high order of an acyclic �ow

graph after edge deletions. On of the key ideas in this algorithm is to maintain a sparse

subgraph of the acyclic graph G that has the same dominator tree as G.

In Chapter 4, we conduct an experimental study by implementing the algorithms from

Chapters 2 and 3. Our study was conducted on real-world graphs taken from a variety

of application areas. We examine the e�ciency of our algorithms with three dynamized

versions of SNCA (two for the decremental dominators problem and one for the low-high

order problem).
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Chapter 2

Decremental Dominators

2.1 A�ected vertices

2.2 E�cient Implementation

In this chapter, we provide a specialised solution for maintaining the dominator tree,

under a sequence of edge deletions in reducible �ow graphs. A well-known algorithm to

compute the dominator tree D of an acyclic �ow graph G is the following from M. S. Hecht

and J. D. Ullman [26] which builds D incrementally. First we compute a topological order

for vertices in G that are reachable from root s. Then we process all reachable vertices in

topological order, and for each vertex v we compute the nearest common ancestor u for

all incoming edges of v and we set d(v)← u. The provided solution for the update of the

dominator tree has a total update time of O(mn) and uses O(m+ n) space.

Let (x, y) be the deleted edge, we call the deletion of (x, y) regular if (x, y) in not a

bridge in G, i.e. y remains reachable from root s after the deletion of (x, y). By G′ and

D′ we denote the �ow graph and its dominator tree after the update (G′ = G \ (x, y)).
In general, for any given function f on V , we let f ′ be the function after the update. In

particular, d′(v) denotes the parent of v in D′. By de�nition, D′ 6= D only if x is reachable

before the update.

2.1 A�ected vertices

Now we consider how the dominator tree D is a�ected after the deletion of a single edge.

We say that a vertex v is a�ected by the deletion if v has a new parent inD′ (d′(v) 6= d(v)),

and una�ected otherwise. In the case where vertex v is a�ected, d′(v) does not dominate

v in G. Since the e�ect of an edge deletion is the reverse of an edge insertion, [19, Lemma

1] and [21, Lemma 4.1] imply the following:
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Lemma 2.1. Suppose x is reachable and the deletion of edge (x, y) is regular, i.e., y does

not become unreachable after the deletion. Then the following statements hold:

(a) All a�ected vertices become descendants in D′ of a child c of d(y).

(b) A vertex v is a�ected if and only if (d(v), v) is not an edge of G′ and all edges

(u, v) ∈ E \ (x, y) correspond to the same derived edge (u, v) = (c, v) of G.

(c) After the deletion, each a�ected vertex v becomes a child of a vertex on the critical

path D′[c, d′(y)].

(d) No vertex on D′[c, d′(y)] is a�ected. Hence, D′[c, d′(y)] = D[c, d′(y)].

We note that statements (a) and (c) hold for arbitrary �ow graphs, while (b) and (d)

are true only for acyclic (and reducible) �ow graphs. The algorithm of [16] applies Lemma

2.1 in order to locate the a�ected vertices in some topological order of G as follows. For

every vertex v we maintain a count InSiblings(v) and a list DerivedOut(v). InSiblings(v)

corresponds to the number of distinct siblings w of v such that (w, v) is a derived edge.

DerivedOut(v) is a list of derived edges (v, u) leaving each vertex v. As we locate each

a�ected vertex, we �nd its new parent in the dominator tree and we update the counts

InSiblings for every sibling of v. The �rst step of the algorithm is to check if vertex y is

a�ected after the deletion of the edge (x, y), as suggested by Lemma 3.1(b). Speci�cally,

we update the count InSiblings(y), and if InSiblings(y) = 1 after the update, we compute

the nearest common ancestor z of all vertices in In(y), where In(y) is the set of vertices

with a leaving edge towards y in G′. Nearest common ancestor z will be the new parent of

y (d′(y) = z) in D′ and by Lemma 2.1(c), z is a descendant of a sibling c of y in D. Next,

we update the InSiblings(v) counts for all v ∈ DerivedOut(y). Speci�cally, we decrement

InSiblings(v) if v ∈ DerivedOut(c); if InSiblings(v) = 1 then we identify v as a�ected and

inserted into a FIFO queue Q. For each vertex w extracted from Q, we repeat the same

process by updating the InSiblings counts for every sibling of w in D. Since we discover

the a�ected vertices in topological order, none of these siblings of w has been inserted

into Q yet.

Now we describe how we can �nd the new parent of each a�ected vertex. We can

locate the new parent d′(w) of each a�ected vertex w extracted from queue Q, similarly

as for y, i.e. by computing the nearest common ancestor in D′ of all vertices in In(w).

This solution, however, does not guarantee the desired O(mn) total update time. To

achieve the desired update time, we locate d′(w) by traversing the critical path D[c, d′(y)]

in top-down order, until we �nd a vertex u such that In(w) contains a vertex that is not a

descendant of u in D′. When we locate u we set d′(w)← u. Finally, we can compute the

updated InSiblings counts and DerivedOut lists in a postprocessing step. The analysis

in [16] is based on the fact that the a�ected vertices that remain reachable increase their

depth in D. Notice that a vertex w can be processed at most once per deletion.
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Algorithm 1: DeleteEdge(G, preorder , size, e)

Input: Flow graph G = (V,E, s), its dominator tree D, arrays preorder and size,

and an edge e = (x, y).

Output: Flow graph G′ = (V,E \ (x, y), s), its dominator tree D′, and arrays

preorder ′ and size ′.

1 Delete e from G to obtain G′ = (V,E ′, s).

2 if x was unreachable in G then return (G′, D, preorder , size)

3 else if y is becomes unreachable in G′ then

4 (D′, preorder ′, size ′)← Initialize(G′)

5 return (G′, D′, preorder ′, size ′)

6 end

7 Let In(y) be the set of vertices v such that (v, y) is an edge in G′.

8 Let f be the child of d(y) that is an ancestor of x.

9 if there is no vertex v ∈ In(y) such that v ∈ D(f) then

10 Set InSiblings(y)← InSiblings(y)− 1.

11 Set DerivedOut(f)← DerivedOut(f) \ y.
12 end

13 if (d(y), y) ∈ E ′ or InSiblings(y) ≥ 2 then return (G′, D, preorder , size)

14 Compute the nearest common ancestor z of In(y) in D′.

15 if z = d(y) then return (G,D, preorder , size)

16 Let c be the child of d(y) that is an ancestor of y in D′.

17 Set d′(y)← z.

18 Execute UpdateInSiblings(y).

19 while Q is not empty do

20 Extract a vertex w from Q.

21 forall v ∈ D(w) do set AffectedAncestor(v)← w.

22 Execute LocateNewParent(w) and UpdateInSiblings(w).

23 end

24 Delete the a�ected vertices from DerivedOut(c).

25 Let S be the set of all edges entering a�ected vertices. Compute the derived

edges S of S.

26 Compute InSiblings(w) for all a�ected vertices w.

27 Compute DerivedOut(v) for all vertices v such that (v, w) ∈ S.
28 Make a dfs traversal of D′ to compute the updated arrays preorder ′ and size ′.

29 return (G′, D′, preorder ′, size ′)
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Procedure UpdateInSiblings(w)

1 foreach vertex q ∈ DerivedOut(w) do

2 if q ∈ DerivedOut(c) then

3 set InSiblings(q)← InSiblings(q)− 1

4 if InSiblings(q) = 1 and d(q) 6∈ In(w) then insert q into Q

5 end

6 else

7 DerivedOut(c)← DerivedOut(c) ∪ q
8 end

9 end

10 Set DerivedOut(w)← ∅.

Procedure LocateNewParent(w)

1 foreach vertex u ∈ D′(c, d′(y)] in top-down order do

2 if there is an edge (v, w) ∈ E ′ such that v 6∈ D′(w) then

3 set d′(w)← d(u) and return

4 end

5 end
 

Log(n) nodes 

. . . . 

Log(n) nodes Log(n) nodes Log(n) nodes 

Figure 2.1: Representatives list data structure

2.2 E�cient Implementation

Providing an e�cient implementation of the above algorithm turns out to be a very

challenging task. In particular, we need to incorporate e�cient solutions for the following

tasks of the algorithm: (i) answering ancestor-descendant queries in the dynamically

changing dominator tree D, (ii) maintaining dynamically the derived edges of G, and (iii)

handling the deletion of bridges. We note that (i) and (ii) are not needed when we update

D incrementally.
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2.2.1 Ancestor-descendant queries

A crucial task for the update of the dominator tree is to answer ancestor-descendant

queries in constant time. Throughout the execution of the algorithm, we need to test the

ancestor-descendant pairwise relation between the vertices of D. These kind of queries

are signi�cant to the update process because they help us locate the new parent for every

a�ected vertex v 6= y. To that end, it su�ces to recompute a preorder and a postorder

numbering for the vertices of D after each update. We can easily compute both preorder

and postorder by simply performing a dfs traversal on D in O(n) time. We say that

a vertex v is descendant of a vertex u, if and only if u ≤ v in preorder and v ≤ u

in postorder [38]. Another option is to represent preorder and postorder with a data

structure for the dynamic list order problem [6, 10]. Both methods guarantee the desired

O(mn) total update bound, but the use of a dynamic list order data structure gives a much

faster implementation in practice. From [38], we know that for every vertex w of a tree

T , its subtree T (w) follows vertex w in preorder and precedes w in postorder. By taking

advantage of the fact that for each a�ected vertex v we can move the entire subtree of

D(v) in the new location in the dynamic lists, rather than inserting the vertices in D(v)

one by one, we can speed up the update process. Speci�cally, we remove the subtree

D(v) from its current locations in the two dynamic lists and insert them immediately

after d′(v) in the preorder list and immediately before the �rst descendant of d′(v) in

the postorder list. For this purpose, we adapted the dynamic list order data structure

of Bender et al. [6] that uses a two-level structure (implementing a numbering scheme)

and supports insertions, deletions and order queries in constant amortized time. The

top-level of the two-level structure mentioned above is a doubly connected list which we

call representatives list. Each vertex in the representatives' list is linked with a bottom

level doubly connected list of log n) elements, where n is the number of vertices in the

graph ( 2.1). We modify this structure so that it can also support the following operation:

move(u, v, w): Move the items between u and v (inclusive) from their current location in

the dynamic list and insert them right after w.

We implement the above operation as follows. The �rst step is to �nd the repre-

sentative nodes for u and v in representatives list (top-level structure); we call those

representatives left-representative and right-representative, respectively. The second step

is to check if the left-representative mentioned above (right-representative, respectively)

has nodes in its bottom level list that do not belong to the moving set of items; If there are

such items then we split the bottom-level list, and we create a new representative node.

After this step, both representative nodes, and every other representative node between

them has bottom level items that belong to the moving set. Therefore, we can quickly

move the entire set of items by linking the left-representative and the right-representative

to their new position in the dynamic list, right after item w. Finally, we check if we can

merge the representative nodes that we move or split with their neighbours.
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2.2.2 Derived edges

Recall that a�ected vertices are these who change their parent in the dominator tree

after an update, and for every a�ected vertex we need to update the InSiblings counts

and the DerivedOut lists. (i) edges entering a�ected vertices, and (ii) edges that enter

a former sibling of y from a descendant of an a�ected vertex. Let S be the set of these

edges. As mentioned in the previous chapter, we can compute the derived edges of set

S in O(n + |S|) time [21], which su�ces for our O(mn) bound since every edge in S is

adjacent to at least one vertex that changes depth in D. This method is based on bucket

sorting using a preorder numbering of D and it is not suitable for our framework, since we

do not maintain a preorder numbering of the vertices, but use a dynamic list order data

structure instead. Here we propose a more practical method. First we note that for each

edge (u, v) of type (ii), i.e., u is a descendant of an a�ected vertex and d(v) = d′(v) = d(y),

we have u = c. Now let (u, v) be of type (i), i.e., v is a�ected so d′(v) ∈ D′[c, y) and u

is a descendant of d′(v). If u = d′(v) then u = u, so suppose u is a proper descendant of

d′(v). Let wv be the next vertex on D′[c, y] following d′(v) (wv = d′(d′(v))), and let zu be

the nearest ancestor of u such that d′(zu) ∈ D′[c, y]. Then, u = wv if d
′(zu) 6= d′(v), and

u = zu if d
′(zu) = d′(v). Note that we have already computed wv, for each a�ected vertex

v, when we locate its new parent in D′. Hence, it su�ces to compute zu for all edges (u, v)

where u is a proper descendant of d′(v). We do that by visiting the ancestors of u until

we reach zu. First we mark all vertices on D′[c, y], so we stop our search when reaching

a vertex that has a marked parent. To avoid multiple visits to the same vertices, we

maintain at each vertex w a label l(w), initially null. After we locate zu, we set l(w) = zu
for each visited vertex w. Thus, the next search stops at a vertex w such that d′(w)

is marked or l(w) is not null. Therefore, we can compute all the new derived edges in

O(n+ |S|) time as desired.

2.2.3 Unreachable vertices

When we remove an edge (x, y), some vertices may become unreachable if the deleted

edge is a bridge in G. Since we deal with acyclic graphs, this means that (x, y) is the only

edge of the �ow graph entering y from a reachable vertex. Hence, we can easily detect if

the deleted edge (x, y) is a bridge since we have InSiblings(y) = 0 and d(y) = x. From a

theoretical point of view, we can achieve O(mn) total running time by recomputing the

dominator tree from scratch after each such deletion, since the total number of bridges

that can appear is at most n− 1. In practice, this approach is not good because it causes

a signi�cant slowdown in our algorithm. A better idea to improve the performance of our

algorithm is to handle the deletion of a bridge (x, y) as follows:

1. Compute the set of edges Y from vertices in D(y) to vertices in D \ D(y). Note

that no edge e ∈ Y is a bridge in G \ (Y \ e), since for any vertex v ∈ D \D(y), all

edges in (w, v) ∈ Y correspond to the same derived edge (w, v).
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2. Process each edge e ∈ Y as a regular deletion.

3. Delete D(y) from the dominator tree D′ of G′, and update accordingly the data

structures.

Note that Steps 1 and 3 take O(m) time. Also, since in Step 2 we have regular

deletions, the total running time remains O(mn).
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Chapter 3

Decremental low-high order

3.1 Bounded search algorithm

3.1.1 A�ected vertices

3.1.2 Una�ected vertices

3.2 Implementation Issues

In this chapter, we consider the problem of updating a low-high order of an acyclic

�ow graph G = (V,E, s) after the deletion of an edge (x, y). First, we show how to achieve

an O(mn) total update bound using a sparsi�cation technique, similar to the one used for

the incremental problem in [15]. The idea is to maintain a sparse subgraph H = (V,EH)

of G with the same vertex set, and O(n) edges. Subgraph H has the same dominator tree

as G. Recall that by 2.1(c), each vertex v with (d(v), v) 6∈ E has two entering edges (u, v)

and (w, v) such that u 6= w; then, it su�ces to add two such edges in H.

Corollary 3.1. Let H = (V,EH) be subgraph of an acyclic �ow graph G such that EH
contains:

(a) All edges (u, v) ∈ E such that u = d(v).

(b) Two edges (u, v) and (w, v) such that u 6= w for each vertex v with (d(v), v) 6∈ E.

Then H has the same dominator tree as G. Moreover, a low-high order of H is also a

valid low-high order of G.

Note that the two edges in Corollary 3.1(b) exist by Lemma 2.1(c). Clearly H =

(V,EH) has O(n) edges as required. We can compute a low-high order for H in O(|EH |) =
O(n) time using the static algorithm of [21]. For every non-leaf vertex x of D, the

algorithm arranges the children C(x) in a local low-high order δx. Vertices in C(x) are
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separated into two categories depending on whether they have a directed edge from x or

not. We place all vertices v ∈ C(x) that have a directed edge from x, (x, v) ∈ E , in

arbitrary order in δx. Then, we process the remaining children of x in topological order

as follows. For each vertex v where (x, v) 6∈ E, graph H contains edges (u, v) and (w, v)

such that u 6= w, so u and w precede v in the topological order and are already located

in δx. Hence, it su�ces to insert v in any location in δx between u and w. When we have

computed all local low-high ordered lists of children, we obtain a complete low-high order

of G by arranging each subtree D(v) of D immediately after v. After the deletion of (x, y)

we need to update H in order to ensure that it still satis�es Corollary 3.1. We can do this

during the update of the derived edges, after we have located all their a�ected vertices

and their new parents in D′. Therefore, we get the following result.

Theorem 3.1. We can maintain a low-high order of a reducible �ow graph G with n

vertices through a sequence of edge deletions in O(mn) total time, where m is number of

edges in G before all deletions.

3.1 Bounded search algorithm

Here we present an e�cient algorithm that updates a low-high order faster in practice.

To that end, we also need to maintain DerivedIn(v) lists. Each one of them has the

derived edges (u, v) entering vertex v. The algorithm has to process two di�erent set of

vertices. The �rst set includes the a�ected vertices, recall that a�ected is all vertices that

change their dominator in D′. It is quite easy to update the set of a�ected vertices. The

problematic case is when we have to update the low-high order for the set of una�ected

vertices because each one of them may cause many changes in the given low-high order.

For the latter case, we propose a bounded search process that identi�es the una�ected

vertices that may need to be relocated in their current low-high order.

3.1.1 A�ected vertices

As previously mentioned, the set of a�ected vertices is quite easy to update. The crucial

observation is that the algorithm for updating the dominator tree in chapter 2 discovers

the a�ected vertices in topological order. Therefore, when we move the a�ected vertices

in their new position in D′ and update their incoming derived edges, we can position them

in low-high order. For each a�ected vertex v, if (d(v), v) 6∈ E, then DerivedIn(v) contains

two vertices u and w such that u < w in low-high order, so we can insert v between these

two vertices.

3.1.2 Una�ected vertices

Now we deal with the more challenging case of updating the low-high order of una�ected

vertices. As we observed, a single edge deletion may cause many changes in a given low-
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Figure 3.1: An example of propagation of changes in the low-high order after the deletion

of an edge. Vertices are arranged from left to right in low-high order. (a) After the

deletion of (x, y), y violates the given low-high order. (b)-(c) Moving y between z and

t causes a new violation at vertex v, which in turn causes another violation at vertex u

after v is placed between z and y. (d) The low-high order is �nally restored when we

place u between v and t.

high order, even if there are no a�ected vertices (See Figure 3.1). After we update the

dominator tree and the low-high order of the a�ected vertices, the �rst step is to initialise

a vertex set I, which contains all una�ected vertices that have at least one entering derived

edge from an a�ected vertex. The next step is to �x the low-high order for every vertex in

I. However by �xing low-high order for the set I; we may invalidate the low-high order of

other vertices that are reachable from vertices in I. Thus, we compute a set X (I ⊆ X)

of vertices that may need to be relocated in low-high order due to the changes in the

low-high order caused from I. The next lemma determines the location of the vertices in

I.

Lemma 3.1. Let v be an una�ected vertex that violates the given low-high order after

updating the dominator tree in response to an edge deletion (i.e., v ∈ I). Then d′(v) =

d(y).

Proof. A vertex v may violate the low-high order only if it has an entering edge (u, v)

such that u is a descendant of an a�ected vertex and the derived edge of (u, v) changes.

From the parent property of the dominator tree we have that for all (v, w) ∈ E with v

and w reachable, v is a descendant of d(w) in D. Since, by Lemma 2.1(c), all a�ected

vertices become descendants of a child c of d(y), the derived edge of (u, v) changes only

if v is a child of d(y). Since v is una�ected, d′(v) = d(v) = d(y). 2

The above lemma also helps us narrow our search down for candidate vertices that we
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may need to relocate in the given low-high order in response to updating of the position

in the low-high order of the vertices in I. Since I consists only of children of d(y), we

only need to search among the una�ected children of d(y) that are reachable from I. As

we relocate vertices in low-high order, this process may cascade. (See Figure 3.1).

Initially, we set X = I and for every vertex in I we execute a search in order to

discover all vertices that may violate the given low-high order due to the replacement of

the vertices in I. During this search, it is crucial to avoid any unnecessary propagation

of changes in the low-high order. To achieve this, when we process a vertex v ∈ X, we

examine its outgoing derived edges. In order to bound the total running time of our

algorithm by O(mn), we maintain a sparse spanning subgraph H = (V,EH) of G with

O(n) edges that satis�es Corollary 3.1, together with the derived edges EH of EH . We

also maintain the invariant that for each vertex v such that (d(v), v) 6∈ E, the two derived
edges (u, v), (w, v) ∈ EH are such that u < v < w in low-high order.

Our algorithm, FixLH(y), computes a vertex set X ⊆ C ′(d(y)) that we need to process

in order to ensure that vertices in X satisfy the low-high order of G′. Initially, we set

X = I and for every vertex in I we examine its outgoing derived in EH in order to

discover all vertices that may violate the given low-high order due to the replacement of

the vertices in I. During this search, it is crucial to avoid any unnecessary propagation

of changes in the low-high order, because it has a huge impact on the execution time of

our algorithm (see Figure 3.1). To achieve this, when we examine an outgoing derived

edge (u, v) ∈ EH of u ∈ X, we test if v has two derived edges (x, v), (y, v) ∈ EH such

that x < v < y where x, y 6∈ X. If we can �nd two such edges, then v keeps on satisfying

the current low-high order, and there is no need to add v in X. If this is not the case,

we insert v in X. This bounded search is outlined by Procedure scan. Note that we can

only a�ord to check a constant number k of entries in DerivedIn(v) in order to have O(n)

running time per deletion. (In our experiments we set k ≤ 3).

Algorithm 2: FixLH(y)

1 I = children of d(y) that violate the low-high order of G after the deletion

/*I ⊆ {y} if y is not affected; otherwise, I contains unaffected

children of d(y) that have an entering edge from a descendant of

an affected vertex */

2 initialize X = I /*X will contain the unaffected children of d(y) that

need to be relocated in low-high order */

3 foreach vertex u ∈ I do
4 if u not scanned then scan(u)

5 end

6 Process vertices in X in topological order to place them in low-high order using

the edges in EH
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Procedure scan(u)

1 foreach derived edge (u, v) ∈ EH do

2 if v 6∈ X and (d(v), v) 6∈ E then

3 if u < w in low-high order then

4 examine the �rst k = O(1) edges in DerivedIn(v) to �nd a replacement

derived edge e = (w, v) with w 6∈ X and w < v in low-high order

5 end

6 else

7 examine the �rst k = O(1) edges in DerivedIn(v) to �nd a replacement

derived edge e = (z, v) with z 6∈ X and v < z in low-high order

8 end

9 if a replacement derived edge e was found then

10 replace (u, v) with e in EH

11 end

12 else

13 insert v into X

14 scan(v)

15 end

16 end

17 end

Lemma 3.2. Algorithm FixLH correctly updates the low-high order of the children of d(y)

in D′ in O(n) time.

Proof. To prove the correctness of algorithm FixLH, �rst note that it correctly updates

the low-high order of all vertices in X. Now we need to argue that the remaining vertices

satisfy the updated low-high order. Observe that any vertex v that is visited during the

search for X, is not inserted into X only if (d(v), v) ∈ EH or if both derived edges in

EH entering v are not in X. Clearly, the same holds for all vertices that are not visited

during this process. Hence, any vertex v 6∈ X does not violate the computed low-high

order before and after relocating the vertices in X.

Now we argue that the algorithm runs in O(n) time. Each vertex v may change its two

entering edges in EH at most k = O(1) times, since we look for replacement edges only

in the �rst k = O(1) edges in DerivedIn(v). Thus, DerivedIn(v) will be examined in lines

4 and 7 of Procedure scan a constant number of times in total for each v, so we spend

constant time for each vertex. Finally, we need to process the vertices of X in topological

order. Note that the vertices may be inserted in X in arbitrary order. We can sort them

topologically by computing a topological order of the of subgraph of H = (V,EH) that is

induced by the vertices of X. Since EH has O(n) edges, this steps also takes O(n) time.

2
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3.2 Implementation Issues

We can extend the decremental dominators algorithm from the previous chapter so that it

also maintains a low-high order as described above. The following implementation issues

a�ect the e�ciency of our algorithm in practice.

Representation of a low-high order. Since a low-high order is a preorder of D, we

could use the same dynamic list order data structure as the one we use in the previous

chapter to store the preorder and postorder numbering of the vertices in D. This choice,

however, has a negative impact to the execution time of our algorithm. A low-high order

may need to update many times during an edge deletion, and every time such a low-high

update happens we need to update the data structures for both the preorder and postorder

of D, even though we do not need a postorder structure to store a low-high order. For

this reason, we use a separate dynamic list order data structure for the low-high order,

which is updated independently of the preorder and postorder data structures of D.

Unreachable vertices. As in the decremental dominators algorithm, we have to take

special care of how the deletion of a bridge (x, y) is handled. To that end, we �rst tested

the two methods mentioned in Section 2.2: (a) Run a static algorithm to recompute

the dominator tree of D and a low-high order from scratch, and (b) Process each edge

e = (u, v) with u a descendant of y in D and v not a descendant of y in D as a regular

deletion (e cannot be a bridge) and update the low-high order after each such deletion.

Then delete (x, y), making all descendants of y in D unreachable from s. Unlike the

decremental dominators algorithm where choice (b) was always superior compared to

(a), things are a bit di�erent for the update of the low-high order, and that's because

during the sequence of regular deletions a vertex may be scanned several times when the

FixLH process is executed. Hence, we also implemented the following improvement, which

updates the low-high order of una�ected vertices only once, after we have processed all

regular deletions. Speci�cally, we �rst update the dominator tree as in (b) but do not

compute the complete low-high order after each regular deletion of an edge e = (u, v).

As we process each regular deletion (u, v), we also �x the low-high order of each a�ected

vertex. Let A? denote the set of all a�ected vertices found during all regular deletions.

For each edge (w, t) such that w is a descendant of an a�ected vertex in A? we insert t in

a list I?. We compute a set X? of vertices which may need their low-high to be updated

by executing scan(v), starting from all vertices v in I? that have not been scanned yet.

Finally, we sort X? topologically and update the low-high order of all vertices in X?.

All of the above three methods are executed in O(m) time per bridge deletion, so

they all guarantee the O(mn) total running time. In our experiments, however, the last

method turned out to be an order of magnitude faster than (a) and (b).
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Chapter 4

Experimental Study

4.1 Decremental Dominators

4.2 Low-High order

In order to assess the e�ciency of our decremental dominators and decremental low-

high order algorithms in practice, we conduct an extensive experimental study. Our

study was conducted on real-world graphs taken from a variety of application areas. We

wrote our implementations in C++, using g++ v.4.6.4 with full optimization (�ag -O3)

to compile the code. We report the running times on a Dell Precision Tower 7820 CTO

Base machine running Ubuntu (16.04 LTS), equipped with an Intel Xeon Gold 5118 2.3

GHz processor with 16 MB L3 cache and 192GB DDR4-2400 RAM at 2,666 MHz. We

did not use any parallelization, and each algorithm ran on a single core. We report CPU

times measured with the getrusage function.

Table 4.1 shows some statistics about the graphs used in our experimental evaluation.

In all test instances, we select the �rst vertex of the graph as the start vertex. Similar

results were produced when we choose a random vertex of the graph as the start vertex.

Given an acyclic �ow graph, we create our decremental instances as follows. For every

test graph, we consider a portion of its edges as the edges that will be deleted. The

portion size is controlled by a parameter p ∈ [0, 1]. Let m be the initial number of edges

in the graph. We create a sequence of deletions by choosing bp ·mc random edges in the

original graph uniformly at random. For each graph and each choice of p, we create 10

such random instances using di�erent seeds for the initialization of the random functions,

and report the average running times. (For a given input graph, two values p1 < p2 of p,

and a �xed seed, the deletion sequence for p1 is a subsequence of the deletion sequence for

p2). The algorithms compute (in static mode) the dominator tree and the low-high order,

in case of the decremental low-high order algorithms, of the given acyclic graph and then

they run in decremental mode, processing the sequence of deletions. Note that during
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the execution of the algorithms some vertices may become unreachable (after a deletion

of a bridge), and thus some subsequent deletions may involve unreachable vertices. All

algorithms can detect and ignore these deletions. For computing dominators in static

mode we use the SNCA algorithm from [23], which is a simpli�ed variant of the classic

Lengauer-Tarjan algorithm [31]. As an intermediary, this algorithm computes a sparse

subgraph H of the input graph G that has the same dominators as G. The indegree of

each vertex in H is at most 2, so H has at most 2(n− 1) edges (the start vertex has zero

indegree). For computing a low-high order, we augment this algorithm with the low-high

order algorithm for acyclic graphs from [21]. We speedup the computation of a low-high

order by using only the edges in H (instead of all the edges of G).

Graph Details

Graph Type n m

bitcoin WN 6005 9648

advogato SN 2320 17809

amazon-302 WG 55414 126663

soc-epinions SN 17117 158754

web-Berkstan WG 29145 169870

web-google WG 77480 372859

wikitalk SN 49430 664139

amazon-601 WG 276049 1259198

Table 4.1: Graph instances used in the experiments. The original graphs are taken from

[32] and converted to DAGs by including vertices and edges reachable from the start

vertex and deleting depth-�rst search back edges. The number of vertices n and edges m

refer to the produced instances.

4.1 Decremental Dominators

We compare the performance of three algorithms that update the dominator tree. The

�rst one is our e�cient algorithm Decr presented in Section 2, and two dynamised versions

of SNCA. We did not consider the algorithm of Cicerone et al. [8] since it requires O(n2)

space, and therefore is impractical for large graphs. The �rst dynamised version of SNCA

named DSNCA1 tests if the deleted edge (x, y) belongs in the sparse subgraph H. If not,

then the dominator tree is not a�ected, and therefore the algorithm does nothing. In case

the deleted edge belongs in the sparse subgraph H, DSNCA1 runs SNCA from scratch

for the whole graph. The second version of SNCA called DSNCA2 performs the same

test, but if (x, y) ∈ H, it computes the nearest common ancestor z of x and y in D and

runs SNCA only for the subgraph of G induced by D(z). In Table 4.2 we present the

average running times of the three algorithms mentioned above over ten random deletion

sequences. From the obtained results it is clear that our e�cient algorithm is superior
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compared with DSNCA1 and DSNCA2. Indeed, except for one input graph (amazon-302),

in all other instances, Decr is one or two orders of magnitude faster than the dynamised

versions of SNCA. Also, we note that in most instances, a signi�cant fraction of the input

graph gets disconnected from that start vertex after the deletion of 50% of the edges, and

therefore many subsequent edge deletions are ignored. Thus, as we can see in Table 4.2,

in most instances the running times of the algorithms remain almost the same for p ≥ 0.5.

Even though someone would expect DSNCA2 to be faster than DSNCA1 because DSNCA2

only recomputes the dominator tree only for the subgraph induced by D(z) (z is the

nearest common ancestor of x and y), in practice, DSNCA2 does not provide a signi�cant

improvement in the running times and in some instances it even causes slowdown due to

the overhead of computing the nearest common ancestor.

4.2 Low-High order

Here we examine the e�ciency of our algorithm, Decr-LH, with a dynamized version of

SNCA that also computes a low-high order of an acyclic �ow graph. This algorithm, that

we refer to as DSNCA-LH, works as follows. It maintains a sparse subgraph H = (V,EH)

of G such that for each v 6= s, (d(v), v) ∈ EH , or EH contains edges (u, v) and (w, v) with

u < v < w. When we delete an edge (x, y) we test if this edge belongs to H. If not, then

the dominator tree and the low-high order are not a�ected we do nothing. Otherwise,

we look into the entering edges of v and try to �nd a replacement edge for (x, y) so that

y satis�es the current low-high order. If this fails, then we compute the dominator tree

and the low-high from scratch. The corresponding average running times reported in the

last two columns of Table 4.2. Similarly to dominators, DSNCA-LH is not competitive

with our e�cient algorithm. We observe that maintaining a low-high order along with

our e�cient decremental algorithm incurs a very low overhead, which is on average less

than 7% of the running time of Decr. Hence, both algorithms Decr and Decr-LH, perform

very well in practice. In Figure 4.1 we examine how the running time of the decremental

low-high algorithm is a�ected by the method we use to handle the deletion of a bridge.

To that point, we compare the three di�erent versions of Decr-LH that implement the

three di�erent methods described in chapter 3.2. The �rst method (Decr-LH-v1) runs

the static algorithm that computes the low-high order for the whole graph, the second

one (Decr-LH-v2) handles each edge (u, v) with u ∈ D(y) and v ∈ D \D(y) as a regular

deletion. We compare these two methods with our improved algorithm for updating the

low high order (Decr-LH-v3).

In the �rst place, we observe that the way we handle the deletion of a bridge is very

crucial to the e�ectiveness of our algorithms. In particular, for every test graph, our

improved algorithm is always faster by an order of magnitude, as shown in Table 4.3.

The Decr-LH-v3 algorithm is up to thirteen times faster compared to the Decr-LH-v2

algorithm and up to twenty times faster compared to Decr-LH-v1. Although we expect

that Decr-LH-v1 would be slower in every test graph compared to Decr-LH-v2, that's not
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the case for graphs advogato, bitcoin and amazon-302 because after the deletion of a

bridge Decr-LH-v2 may have to update many times the low-high order for the children of

a given node that is descendant of node y. Furthermore, another factor that a�ects the

performance of Decr-LH-v2 compared to the performance of Decr-LH-v1 is the number of

nodes that become unreachable after the deletion of a bridge as we can see by combining

the information we get from Tables 4.3 and 4.4.
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Figure 4.1: Average running times (in seconds) of three versions of Decr-LH that handle

the deletion of a bridge (x, y) as described in Section 3.2. Decr-LH-v1 applies method (a)

(running a static algorithm from scratch), Decr-LH-v2 applies method (b) (handling each

edge (u, v) with u ∈ D(y) and v ∈ D \ D(y) as a regular deletion), while Decr-LH-v3

applies the improved method of Section 3.2.
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Decremental Dominators Decremental Low-High

Graphs DSNCA1 DSNCA2 Decr DSNCA-LH Decr-LH

bitcoin_05 0.05 0.05 0.01 0.17 0.01

bitcoin_10 0.09 0.10 0.03 0.35 0.03

bitcoin_20 0.17 0.18 0.03 0.71 0.04

bitcoin_50 0.34 0.37 0.08 1.59 0.09

bitcoin_75 0.39 0.46 0.12 1.92 0.13

bitcoin_100 0.42 0.46 0.17 1.94 0.17

advogato_05 0.06 0.05 0.02 0.16 0.03

advogato_10 0.12 0.09 0.02 0.31 0.03

advogato_20 0.20 0.18 0.04 0.63 0.04

advogato_50 0.47 0.41 0.10 1.37 0.11

advogato_75 0.54 0.51 0.11 1.68 0.12

advogato_100 0.54 0.50 0.12 1.71 0.12

amazon-302_05 7.60 7.68 4.22 26.08 4.44

amazon-302_10 8.13 7.69 4.35 26.28 4.57

amazon-302_20 8.09 7.68 4.36 26.30 4.43

amazon-302_50 8.22 7.77 4.22 26.22 4.52

amazon-302_75 8.14 7.69 4.32 26.38 4.54

amazon-302_100 8.23 7.71 4.34 25.87 4.59

soc-epinions_05 5.59 3.72 0.08 10.36 0.14

soc-epinions_10 11.38 7.49 0.12 21.38 0.18

soc-epinions_20 22.31 15.39 0.18 45.66 0.26

soc-epinions_50 56.04 40.25 0.42 128.82 0.56

soc-epinions_75 80.85 61.29 0.67 194.26 0.82

soc-epinions_100 89.02 68.02 0.80 217.47 0.94

web-Berkstan_05 4.64 5.23 0.33 16.45 0.38

web-Berkstan_10 8.68 9.94 0.60 31.28 0.64

web-Berkstan_20 14.98 16.28 1.05 52.84 1.11

web-Berkstan_50 21.78 21.35 1.37 71.79 1.35

web-Berkstan_75 22.42 21.42 1.32 71.96 1.34

web-Berkstan_100 22.48 21.49 1.32 71.88 1.34

web-google_05 38.31 43.22 2.70 123.13 3.76

web-google_10 71.69 85.94 3.93 248.14 5.14

web-google_20 104.55 157.08 7.37 458.20 8.53

web-google_50 110.56 186.86 10.54 550.62 11.13

web-google_75 110.09 186.70 10.56 553.24 11.38

web-google_100 110.44 186.83 10.54 552.15 11.30

WikiTalk_05 97.82 71.12 1.72 139.41 3.20

WikiTalk_10 195.87 143.51 3.12 291.18 5.92

WikiTalk_20 392.72 289.26 5.48 615.37 8.95

WikiTalk_50 948.96 695.69 30.89 1600.38 32.19

WikiTalk_75 1296.04 1018.67 60.04 2361.56 60.30

WikiTalk_100 1410.21 1014.21 61.08 2808.81 61.98

amazon-601_05 871.09 790.92 75.65 2879.21 83.09

amazon-601_10 1564.34 1417.06 99.86 4723.03 107.75

amazon-601_20 2202.82 2118.52 128.90 4878.07 130.05

amazon-601_50 2388.70 2068.55 141.77 7674.28 142.25

amazon-601_75 2505.03 2395.96 144.10 7706.98 144.19

amazon-601_100 2700.07 2769.54 140.60 7686.45 142.48

Table 4.2: Average running times in seconds over 10 random deletion sequences.

The su�xes in the graph names correspond to the percentage of deleted edges p =

5%, 10%, 20%, 50%, 75%, and 100%.
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Decremental Low-High

Graphs Decr-LH-v1 Decr-LH-v2 Decr-LH-v3

bitcoin_05 0.02 0.12 0.01

bitcoin_10 0.04 0.16 0.03

bitcoin_20 0.08 0.20 0.04

bitcoin_50 0.19 0.30 0.03

bitcoin_75 0.28 0.36 0.13

bitcoin_100 0.33 0.40 0.17

advogato_05 0.04 0.06 0.03

advogato_10 0.06 0.12 0.03

advogato_20 0.12 0.20 0.04

advogato_50 0.25 0.35 0.11

advogato_75 0.32 0.37 0.12

advogato_100 0.35 0.36 0.12

amazon-302_05 6.48 19.66 4.44

amazon-302_10 6.49 19.62 4.57

amazon-302_20 6.64 19.55 4.43

amazon-302_50 6.85 19.32 4.52

amazon-302_75 6.90 19.45 4.54

amazon-302_100 6.96 19.60 4.59

soc-epinions_05 1.10 0.67 0.14

soc-epinions_10 2.22 1.09 0.18

soc-epinions_20 6.96 1.84 0.26

soc-epinions_50 13.91 4.01 0.56

soc-epinions_75 21.82 5.54 0.82

soc-epinions_100 21.75 5.90 0.94

web-Berkstan_05 2.61 1.68 0.38

web-Berkstan_10 4.47 3.57 0.64

web-Berkstan_20 6.83 4.98 1.11

web-Berkstan_50 7.20 5.58 1.35

web-Berkstan_75 7.57 5.54 1.34

web-Berkstan_100 11.88 5.56 1.34

web-google_05 27.32 18.58 3.76

web-google_10 45.69 76.98 5.14

web-google_20 59.94 140.17 8.53

web-google_50 61.28 144.58 11.13

web-google_75 63.84 146.71 11.38

web-google_100 63.45 144.20 11.30

WikiTalk_05 15.31 6.44 3.20

WikiTalk_10 36.00 13.27 5.92

WikiTalk_20 192.94 32.66 8.95

WikiTalk_50 362.70 297.88 32.19

WikiTalk_75 388.40 520.64 60.30

WikiTalk_100 308.60 542.88 61.98

Table 4.3: Average running times (in seconds) of three versions of Decr-LH that handle

the deletion of a bridge (x, y) as described in Section 3.2. Decr-LH-v1 applies method (a)

(running a static algorithm from scratch), Decr-LH-v2 applies method (b) (handling each

edge (u, v) with u ∈ D(y) and v ∈ D \ D(y) as a regular deletion), while Decr-LH-v3

applies the improved method of Section 3.2.
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Statistics

Graphs Deletions Regular Bridges Skipped

bitcoin_05 482 409.3 66.3 6.4

bitcoin_10 964 812.4 133.7 17.9

bitcoin_20 1929 1571.1 314.8 43.1

bitcoin_50 4824 3520.5 923.5 380

bitcoin_75 7236 4426.4 1499.2 1310.4

bitcoin_100 9648 4623.2 1881.1 3143.7

advogato_05 890 844.6 20.8 24.6

advogato_10 1780 1644.8 43.0 92.2

advogato_20 3561 3151.8 98.2 311

advogato_50 8904 6358.6 306.8 2238.6

advogato_75 13356 6989.2 446.6 5920.2

advogato_100 17809 7004.4 464.4 10340.2

amazon-302_05 6333 3391.2 1011.2 1930.6

amazon-302_10 12666 3986.4 1264.2 7415.4

amazon-302_20 25332 4107.8 1340.8 19883.4

amazon-302_50 63331 4123.2 1357.8 57850

amazon-302_75 94997 4123.8 1362.0 89511.2

amazon-302_100 126663 4123.8 1363.2 121176

soc-epinions_05 7937 7860.0 64.8 12.2

soc-epinions_10 15875 15667.0 153.4 54.6

soc-epinions_20 31750 31075.6 411.4 263

soc-epinions_50 79377 75085.2 1983.8 2308

soc-epinions_75 119065 106583.4 5136.8 7344.8

soc-epinions_100 158754 119556.0 9818.0 29380

web-Berkstan_05 8493 8068.6 181.2 243.2

web-Berkstan_10 16987 15588.2 424.6 974.2

web-Berkstan_20 33974 28536.6 1073.4 4364

web-Berkstan_50 84935 45208.6 2810.4 36916

web-Berkstan_75 127402 47087.2 3395.4 76919.4

web-Berkstan_100 169870 47173.4 3478.4 119218.2

web-google_05 18642 17528.2 598.8 515

web-google_10 37285 33669.2 1379.6 2236.2

web-google_20 74571 55486.6 2942.4 16142

web-google_50 186429 67637.8 4695.2 114096

web-google_75 279644 67739.6 4728.4 207176

web-google_100 372859 67742.6 4733.8 300382.6

WikiTalk_05 33206 33071.8 115.6 18.6

WikiTalk_10 66413 66039.6 279.6 93.8

WikiTalk_20 132827 131562.8 766.0 498.2

WikiTalk_50 332069 301943.0 4497.6 25628.4

WikiTalk_75 498104 403477.2 12688.0 81938.8

WikiTalk_100 664139 428014.0 19058.6 217066.4

amazon-601_05 62959 53690.8 4167.0 5101.2

amazon-601_10 125919 97230.8 8276.4 20411.8

amazon-601_20 251839 147971.2 15044.4 88823.4

amazon-601_50 629599 161620.0 18554.6 449424.4

amazon-601_75 944398 161636.6 18564.2 764197.2

amazon-601_100 1259198 161637.4 18568.2 1178992.4

Table 4.4: Average statistics for the deletion sequences used in our experiments. Column 2

(deletions) gives the total number of deletions in the sequence, column 2 gives the number

of deletions that involve reachable vertices (regular), and column 3 gives the number of

bridges that are deleted during the deletion sequence.
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Appendix A

Figures coresponding to Table 4.4
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Figure A.1: Bitcoin statistics
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Figure A.2: Advogato statistics
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Figure A.3: Amazon-302 statistics
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Figure A.4: soc-epinion statistics
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Figure A.5: web-Berkstan statistics
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Figure A.6: web-google statistics
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Figure A.7: WikiTalk statistics
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Figure A.8: Amazon-601 statistics
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