Decremental Dominators and Low-High Orders
in Directed Acyclic Graphs

A Thesis

submitted to the designated
by the General Assembly of Special Composition
of the Department of Computer Science and Engineering

Examination Committee
by
Konstantinos Giannis

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION
IN COMPUTER SCIENCE THEORY

University of Ioannina

October 2018

Examining committee

o Aouxdg I'ewpyiddng, Avaminewtric Kodnyntig, Tufuo Mnyovixoy H/YT o ITAnpo-
popwhc, Havemothuo Inavvivoy (EmBiénonv)

o Acwvidac Hoinde, Kadnyntic, Tudua Mnyavixav H/YT xou IIinpogopixrc, Ilavent-
othuo Iwavvivey

o Ynupldwv Kovtoyidvwne, Avamhnewtic Kodnyntne, Tuua Mnyovixoy H/T xaw IThn-
cogopric, Havemotiwo Twavvivwv

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere thanks to my thesis advisor, associate profes-
sor Loukas Georgiadis for the continuous support of my MSc study and research, for his
patience, encouragement and immense knowledge. His guidance and his possitive outlook
helped me all these years as his student.

I am profoundly grateful to my co-authors, Giuseppe F. Italiano, Luigi Laura and
Aikaterini Karanasiou for their valuable collaboration.

Finally, I must express my very profound gratitude to my family for providing me
with unfailing support and continuous encouragement throughout my years of study and
through the process of researching and writing this thesis. This accomplishment would
not have been possible without them.

CONTENTS

1 Introduction

1.1 Thesis Scope. e
1.2 Preliminaries
1.3 Our Contribution
1.4 Applications L

1.4.1 Strongly divergent spanning trees and path queries

1.4.2 Fault tolerant reachability
1.5 Roadmap e

2 Decremental Dominators

2.1 Affected vertices
2.2 Efficient Implementation

2.2.1 Ancestor-descendant queries

2.2.2 Derived edges
2.2.3 Unreachable vertices

3 Decremental low-high order

3.1 Bounded search algorithm 0oL
3.1.1 Affected vertices
3.1.2 Unaffected vertices

3.2 Implementation Issues

4 Experimental Study

4.1 Decremental Dominators
4.2 Low-High order

A Figures coresponding to Table 4.4

i

10
10
13
14
15
15

17
18
18
18
22

23
24
25

34

LIST OF FIGURES

1.1
1.2

1.3
2.1
3.1
4.1

Al
A2
A3
A4
A5
A6
AT
A8

A flow graph G and its dominator tree D 3
The flow graph of Figure 1.1 and two strongly divergent spanning trees B

and R. L e 4
A flow graph and its corresponding derived graph. D
Representatives list data structure 13
Propagation of changes in the low-high order 19
Average running times of three versions of Decr-LH 26
Bitcoin statistics L 34
Advogato statistics L 34
Amazon-302 statistics 35
soc-epinion statisticso L 35
web-Berkstan statistics L 35
web-google statisticso Lo 36
WikiTalk statistics 36
Amazon-601 statistics 36

i

LIST OF TABLES

4.1 Graph instances used in the experiments. 24
4.2 Average running times in seconds over 10 random deletion sequences. . . . 27
4.3 Average running times (in seconds) of three versions of Decr-LH. 28
4.4 Average statistics for the deletion sequences used in our experiments. . . . 29

iv

LIST OF ALGORITHMS

1 DeleteEdge(G, preorder, size,e)o o o 12
- Procedure UpdatelnSiblings(w) oL 13
- Procedure LocateNewParent(w) L., 13
2 FixLH(y) . . o 20
- Procedure scan(u) 21

ABSTRACT

Konstantinos Giannis

M.Sc. in Computer Science, Department of Computer Science and Engineering, University
of Ioannina, Greece, September 2018

Tilte of Dissertation: Decremental Dominators and Low-High Orders in Directed Acyclic
Graphs

Thesis Supervisor: Loukas Georgiadis

Graphs are mathematical objects that model many diverse natural or man-made sys-
tems. A graph G = (V, E) consists of a set of vertices V together with a set E of edges.
Graphs play an important role in computer science because they can be used to repre-
sent essentially any pairwise relationship between objects. For example, graphs can model
transportation networks, communication networks, social networks, electronic circuits etc.
Graphs are useful not only in computer science but in many academic areas such as chem-
istry, physics, mathematics and biology. Designing efficient graph algorithms can be a
very challenging task.

In this thesis, we consider practical algorithms for maintaining the dominator tree and
a low-high order of a directed acyclic graph (DAG) under edge deletions. Let G=(V, E,
s) be a directed graph with a distinguished start vertex s. The dominator tree D of G is a
tree rooted at s, such that a vertex v is an ancestor of a vertex w if and only if every path
from s to w include v. The dominator tree is a central tool in program optimization and
code generation, and has many applications in other diverse areas including constraint
programming, circuit testing, biology, and in algorithms for graph connectivity problems.
A low high order of G is a preorder of D that certifies the correctness of D and has further
applications in connectivity and path-determination problems.

First, we provide a carefully engineered version of a recent algorithm [[CALP 2017|
for maintaining the dominator tree of a directed acyclic graph through a sequence of edge
deletions. Then, we show how how to extend this algorithm so that it also maintains
a low-high order of the given DAG. Our algorithms, for both tasks, run in O(mn) total
time and O(m+n) space, where n is the number of vertices and m is the number of edges
before any deletions. These results trivially extend to the case of reducible graphs.

We study the efficiency of our algorithms in practice by conducting an extensive ex-
perimental study, using real-world graphs, taken from a variety of application areas, and

vi

artificial graphs. The experimental results show that both algorithms perform very well
in practice and are orders of magnitude faster than recomputing from scratch. .

vil

EKTETAMENH ITEPIAHWH

Kovotavtivog I'dvvng

M.Sc., TuAuo Mnyavixédyv H/T & ITinpogopinic, HoavemotAuo Ioavvivey, SentéuBptog
2018

Tithoc AwrteBric: Awotripnon xouBwy xuptapytag xon Aow-nuyn SLatdlewmy o€ xaTeLYUVOUEVY
GuXAOL YEAUPAUATO UET AT DLy PUPES XUV

Emprénwv: Aouxdg Iewpyddng

To ypapAuato etvor pordnuotixd aviixelyevo tou pog Bondody oTo vor HOVIEAOTOINCOUUE
TOANS, ohyoprduxd tpofAfuata. ‘Evo ypdenuo G = (V, E) anotekeltoan ond éva ghvoro xo-
evpwv V' xa éva obvoho oxuey E. To yeagpruata etvon yellovog onuaciog yior TNy emo Thun
TV TANEOQPOEIXNS xadDS YENOWOTOUVTOL Yiol TNV AVATORIo TG TG O)EoNg METAL) TGV
AVTIXEWEVOY IOV MEAETAUE. Lo TORADEY AL, HECK TV YEUPNUATOV UTOLOVUE VO UOVTIEAO-
TOLACOUME 00LXd BiXTUN, TNAETIXOWOVLOXS BIXTUN, XOWVWVIXG BIXTUN, NAEXTEIXS XUXAWUATA
x.o. H yenowomnta twv ypapnudtwy dev neplopileton H6vVo oTNY ETOTAUN TOV TANEOPORL-
xfg oAAG emexTelveTon xou GE TOANOUG oXOUA ETLC TNHOVIXOUE TOUES OTWE Lol TUEABELY AL TT)
YMUele, T Quowt|, o pardnuaTed xon T Broroylo. H xoataoxeur vEwv alyopldunmy yio tTnv
enelepyaoia YeupnUdTeY omoTeAel UEYAAN TEOXANON.

Ye auth TN OimhwpaTind| epyaoio, aoyoAolNACTE UE TEoxT00S alyopiluoug ylo TN
OlaTienoT evog BEVTEOL xupLaEylag XS Xou WG AOW-MLyT) SETIENS VLol XATEVYUVOUEVY
oeuxhat ypopridarta yiar ptar axohouvdia Saypapdy. Eotw G = (V, E, s) éva xateuduvoyevo
doxuxho Yedpnua pE apeTnELa xopuph Tov xoufo s. To dévtpo xuplapyiog D Tou yeaphua-
T0¢ G ebvan éva 6évtpo pe pila Tov xouPo s, Tétolo Kote évag xoufog v Aéue 6Tl xuplapyel
eVOC xOpuPBou w av xou YOvo av Ao T Jovordtiar and T plCa s Teog Tov XOUPo w TEPVAVE
a6 Tov xoufo v. To dévtpa xupLapyiag €xouv TOANES XaL ONUAVTIXES EQPUPUOYES OTILG Yo
TOEABELY 0L OTOV EAEYY O XUXAWUATWY, oT1 Bloloyio xodde xou oe Bidpopa TeoBAUaTo GUVE-
ATIXOTNTOS YEUPNUATOY. Mot Aow-nryr Sidtadn tou G amotehel plar TeodLETaln Twv xOufev
ToU BEvTEoL xuplapyiag D 1 omola amotehel eva mioToTONTIXG 0pYOTNTAS Yo TO BEVIPO
xuplapylac D xon €yel BIAPOPES EPUPUOYES OTI CUVEXTIXOTNTO TOV YRUPNHUATWY.

Apyxd, mapouotdloupe wior bhonoinon evég npdogotou akyopiduou [ICALP2017] yuw
NV EVNUEPMOT) EVOS BEVTEOU Xuplapyiag EVOC XATEVHUVOUEVOU BXUXAOL YRUPHUITOS VLol ULdL
axohoL Dol BLoryPAPMY %ok GTT) GUVEYELX UEAETAUE TO TS UTOPOVUE VoL EVIUERWCOUNE T AOw-
neyn B18Tan ToU AxUXAOU YRUPHUATOS TUREAANACL UE TNV EVIUECWGT] TOU BEVTEPOUL Xuptapyiag.

viil

Ou 800 ahydprduol mou Yo Topovctdcouue amoutody O(mn) yedvo extéreons xou O(m + n)
X®po, 6Tou N ebvan To TARYOC TV XOPLPWY TOL YEAUPAUATOS %ot M TO TARUOC TOV oXUWY
TEWV ATt TIC OLOYPUUPES.

210 TeheuTalo XEQPIAAO, UEAETAUE TNV AmOBOCT] TWV UAYORIDUGY LU DLEVERYMVTAS ULl
EXTEVA TELpaoTix) WEAETY. T'tar To TELpdUATE WA Y ENOUOTIOW|CUUE Y QOUPTUTA TOU OO UaL-
TIX0U XOOUOU and OLdPOopES EQapUOYES xadoe xou TeyvnTd Yeaghuata. To aroteréouata
NG PERETNG €0etlary TS xou oL 600 ahyopriuol elval apXeTd anodoTxol oTny TEddn xat elvor
Td&elc peyédoug toydTepoL amo Toug avtioTolyouc mou enavutoloyilouv TN AloT amo TNV

.

X

CHAPTER 1

INTRODUCTION

1.1 Thesis Scope
1.2 Preliminaries
1.3 Our Contribution
1.4 Applications

1.5 Road map

1.1 Thesis Scope

Graphs are mathematical objects that model many diverse natural or man-made systems,
by representing pairwise relations between various types of objects. In physics and chem-
istry, a graph makes a natural model for molecules where vertices represent atoms and
edges bonds, in social sciences we use friendship graphs to model social structures based
on different kinds of relationships between people or groups and in civil engineering the
road system of a city can be represented by a transportation network. More specifically, in
computer science graphs are ubiquitous because they are able to describe both the struc-
ture and the dynamics of various systems. We can use graphs to represent communication
networks, web page connections, data organisation etc.

In several applications, we deal with dynamic graphs, i.e., graphs that are subject to
updates, such as the insertion or deletion of edges or vertices. Here, we consider only edge
updates. Dynamic graph algorithms have been extensively studied for several decades,
and many important results have been achieved for fundamental problems, including con-
nectivity, minimum spanning tree, transitive closure, shortest paths (see, e.g., the survey

in [11]). Typically, the goal of a dynamic graph algorithm is to update the solution to a
problem efficiently after each update of the graph, that is, much faster than recomputing
from scratch (using a static algorithm). Of course, we aim to update the solution as
quickly as possible. We can classify dynamic graph problems according to the types of
updates allowed. A dynamic graph problem is said to be fully dynamic if it is able to
process both insertions and deletions of edges, incremental if it requires to process edge
insertions only and decremental if it can process edge deletions only.

Here we consider two decremental problems in directed graphs, namely maintaining
the dominator tree and a low-high order of a flow graph. Specifically, we consider how
to maintain the dominator tree and a low-high order of an acyclic flow graph through a
sequence of edge deletions (see Figure 1.1). These results trivially extend for the class
of reducible flow graphs (defined below) that includes acyclic flow graphs. The dynamic
dominator problem arises in various applications, such as data flow analysis and compila-
tion |8, 12]. Moreover, dynamic dominators can be used for dynamically testing various
connectivity properties in digraphs, such as 2-vertex connectivity, strong bridges and
strong articulation points [28]. We remark that the reducible case is interesting for appli-
cations in program optimization since one notion of a “structured” program is that its flow
graph is reducible. Also, several real-world networks, such as certain types of biological
networks, are acyclic [25].

1.2 Preliminaries

Let T be a tree rooted at s with vertex set Vpr C V and D be a dominator tree rooted at
s with vertex set Vp C V. We denote by T'(v) the subtree of T rooted at v and by t(v)
the parent of vertex v € Vp in T t(v) = null if v is the root of T. If v is an ancestor
of w, T[v,w] is the path in T from v to w. If v is a proper ancestor of w, T'(v,w] is the
path to w from the child of v that is an ancestor of w. Analogously, T'[v, w) denotes the
path from v to t(w). Suppose now that the vertex set Vi of T consists of the vertices
reachable from s. Equivalently, path D[s, v] consists of the vertices that dominate v. Tree
T has the parent property if for all (v,w) € E with v € Vr and w € Vr, v is a descendant
of t(w) in T. If T has the parent property and has a low-high order, then "= D [21].
For every v € V., we denote by C(v) the set of children of vertex v in D. A flow graph
G = (V,E, s) is a directed graph (digraph) with vertex set V', edge set F, a distinguished
start vertex s € V' where s is a vertex without any entering edges. A vertex v € V of G
called reachable if there is a path from s to w; if no such path exists, vertex u is called
unreachable. An edge (u,v) of the forementioned flow graph G is a bridge if its deletion
makes v unreachable from s. A reducible flow graph [26, 39| is one in which every strongly
connected subgraph S has a single entry vertex v such that every path from s to a vertex
in S contains v. A flow graph is reducible if and only if it becomes acyclic when every
edge (v, w) such that w dominates v is deleted [39]. We refer to such an edge as a back
edge. Deleting back edges does not change the dominator tree, since no such edge can be

Figure 1.1: (Top) A flow graph G and its dominator tree D. The numbers correspond to
a preorder numbering of D that is a low-high order of G. (Bottom) The flow graph G’
and its dominator tree D’ after the deletion of edge (g, d).

on a simple path from s. Deletion of such edges thus reduces the problem of computing
dominators on a reducible flow graph to the same problem on an acyclic graph. Every
reducible flow graph has a topological order, which is a total order of its vertices such that
if (z,y) is an edge, x is ordered before y.

Dominators For the set of reachable vertices of flow graph G, we can define a dominator
relation as follows. A vertex v is a dominator of a vertex w (v dominates w) if every path
from s to w contains v; v is a proper dominator of w if v dominates w and v # w. The
previously defined dominator relation in flow graph G can be represented by a tree rooted
at s. We call such a tree a dominator tree D, where u dominates w if and only if u is
an ancestor of w in dominator tree D (see Figure 1.1). For every reachable vertex w of
D, except the root s, we denote by d(w) the parent of w in D. The dominator tree is a
central tool in program optimization and code generation [9], and it has applications in
other diverse areas including constraint programming [35], circuit testing [3], biology [1,
25], memory profiling [33], the analysis of diffusion network [24], and in connectivity
problems [13, 14, 17, 18, 20, 27, 28, 29, 30].

Low-High order A preorder of a flow graph G is a total order of the vertices of G,
such that for every vertex v, the descendants of v in the dominator tree of G are ordered
consecutively after vertex v. A low-high order ¢, of a flow graph G, is a preorder of the
vertices of the dominator tree D such for all reachable vertices v # s, either (d(v),v) € E
or there are two edges (u,v) € E, (w,v) € E. Both distinguished vertices u and w
are reachable in G with the property that w is less than v (u <s v), v is less than w
(v <5 w), and w is not a descendant of v in D (see Figure 1.1). Every flow graph G has a
low-high order that is computable in linear time. Low—high orders provide a correctness
certificate for dominator trees that is entirely straightforward to verify in linear time. By
augmenting an algorithm that computes the dominator tree D of a flow graph G, so that
it also computes a low-high order of G, one obtains a certifying algorithm to compute
D. A certifying algorithm not only computes the solution of a problem but also provides
a correctness certificate with the property that one can use the provided certificate in
order to verify that the given solution is correct. Low-high orders also have applications
in path-determination problems [40] and fault-tolerant network design [4, 5, 22].

G D
s 1
2 a b 9
2 9
4 d e 7
3 10
3 g e h 10
i 8
B R
s 1 s 1
2 a c 5 b 9 2 a c 5 b 9
4d®Y/ 4 d e 7
6
3g< Oh 10 3 90 fA6/Oh10
O O
i 8 i 8

Figure 1.2: The flow graph of Figure 1.1 and two strongly divergent spanning trees B and
R.

QO,

Figure 1.3: A flow graph and its corresponding derived graph.

Divergent spanning trees Divergent spanning trees are closely related to low-high
orders [21]. Let G[V,] be a flow graph with start vertex s that is induced by vertex set
V., where V. is the set of all reachable vertices. Two spanning trees of G[V,] rooted at s,
namely B and R, are divergent if for every vertex u € V,., the paths from s to u in both
B and R share only the dominators of u. We call B and R strongly divergent if for every
pair of vertices u and w, either the path in B from s to v and the path in R from s to
w, share only the common dominators of v and w, or the path in R from s to v and the
path in B from s to w, share only the the common dominators of © and w. From now on,
in order to simplify our notation, we will refer to B and R as strongly divergent spanning
trees of G. Every flow graph has a pair of strongly divergent spanning trees, which are
easy to compute in O(m) time from a given low-high order of G. Divergent spanning
trees can be used in data structures that compute pairs of vertex-disjoint s-t paths in 2-
vertex connected digraphs (for any two query vertices s and ¢) [13], in fast algorithms for
approximating the smallest 2-vertex-connected spanning subgraph of a digraph [14], and
in constructing sparse subgraphs of a given digraph that maintain certain connectivity
requirements |17, 29, 30].

Derived Edges A key concept of the decremental algorithm of Georgiadis et al. [16] for
maintaining the dominator tree D of a DAG, is the concept of derived edges. Recall that
from the previously denoted parent property of D, if (v,w) is an edge of G, the parent
of w, namely d(w), is an ancestor of v in D. Let (v, w) be an edge of G, with w not an
ancestor of v in D (Such edges do not exist if G is acyclic). Then, the derived edge of
(v,w) is the edge (U, w); if v = d(w) then ¥ = v, otherwise if v # d(w) ¥ is the sibling of
w that is an ancestor of v. If w is an ancestor of v in D, then the derived edge of (v, w)
is null. Note that a derived edge (T,w) may not be an edge in the edge set of G (see
Figure 1.3). Given the dominator tree D of a flow graph G = (V| E, s) and a list of edges
S C E, we can compute the derived edges of S in O(|V] + |S|) time [21].

1.3 Our Contribution

The problem of updating the domination relation has been extensively studied for few
decades (see, e.g., [2, 7, 8, 16, 19, 36, 37]). Simple algorithms have been proposed to
update the dominators after a sequence of edge insertions (incremental dominators prob-
lem). Those algorithms achieve a total of O(mn) running time, where n is the number
of vertices of the flow graph and m is the number of edges after all insertions |2, 8, 19].
The decremental version of the problem seems much harder to solve. Cicerone et al. [§]
achieve a total O(mn) update bound using O(n?) space for reducible flow graphs, where
m is the initial number of edges. For general directed graphs, Georgiadis et al. [16] pre-
sented an algorithm that can process a sequence of edge deletions in a flow graph and
achieves O(mnlogn) total running time using O(n?logn) space, and can answer domi-
nance queries, i.e., does vertex u dominate vertex v, in constant time. In the same paper,
Georgiadis et al. [16] presented an algorithm for reducible flow graphs that achieves O(mn)
total running time using O(m + n) space. Implementing this algorithm for reducible flow
graphs turns out to be a challenging task. Nevertheless, here we present an efficient
implementation that performs very well in practice and requires careful engineering and
choice of data structures. In particular, we propose a data structure for an extension of
the dynamic list order maintenance problem [6, 10] and a data structure for maintaining
and updating derived edges [21]. We assess the merits of our algorithm in practical sce-
narios by conducting a thorough experimental study, with a variety of test graphs taken
from defferent application areas. We note that a conditional lower bound in [16] suggests
that it might be hard to substantially improve the O(mn) update bounds in the partial
dynamic (incremental or decremental) problem of maintaining the dominator tree, even
for acyclic flow graphs.

Our second contribution is to show that we can maintain decrementally a low-high
order of a reducible flow graph in O(mn) total time. As previously mentioned, by provid-
ing an algorithm that updates both the dominator tree for a sequence of edge deletions
and a low-high order, implies the first decremental certifying algorithm [34] for computing
dominators in O(mn) total time for reducible flow graphs. It also immediately provides
O(mn)-time algorithms for the following problems:

e A data structure that maintains an acyclic flow graph G decrementally, and answers
the following queries in constant time: (i) For any two query vertices v and w, find a
path m,, from s to v and a path 7, from s to w that are maximally vertex-disjoint,
i.e., such that m,, and 7, share only the common dominators of v and w. We can
output these paths in O(|m,,| + |msw|) time. (i) For any two query vertices v and
w, find a path 7w, from s to v that avoids w, if such a path exists. We can output
this path in O(|ms,|) time. Such a data structure (in the static case) was used by
Tholey [40] in a linear-time algorithm for the 2-disjoint paths problem on a directed
acyclic graph (DAG).

e A decremental version of the fault-tolerant reachability problem [4, 5] in DAGs. We

maintain an acyclic flow graph G = (V, E, s) through a sequence of edge deletions,
so that we can answer the following query in O(n) time. Given a spanning forest
F = (V, Er) of G rooted at s, find a set of edges £’ C E'\ Er of minimum cardinality,
such that the subgraph G’ = (V, Er U E’, s) of G has the same dominators as G.

An incremental low-high order algorithm with O(mn) total update time was presented
in [15]. As in the dynamic dominators problem, the decremental version seems more
difficult than the incremental. To highlight this aspect, note that a single edge deletion
can cause O(n) changes in a given low-high order even if the dominator tree remains
unaltered (See Figure 3.1). On the other hand, in the incremental setting, it suffices to
update the low-high order only for the vertices that change parent in the dominator tree.

1.4 Applications

Here we provide a couple immediate applications of our decremental low-high order algo-
rithm.

1.4.1 Strongly divergent spanning trees and path queries

Let V. be the set of reachable vertices, and let G[V;] be the flow graph with start vertex
s that is induced by V,.. Two spanning trees B and R of G[V,], rooted at s, are divergent
if for all v, the paths from s to v in B and R share only the dominators of v; B and R
are strongly divergent if for every pair of vertices v and w, either the path in B from s to
v and the path in R from s to w share only the common dominators of v and w, or the
path in R from s to v and the path in B from s to w share only the common dominators
of v and w. In order to simplify our notation, we will refer to B and R, with some abuse
of terminology, as strongly divergent spanning trees of G.

Every flow graph has a pair of strongly divergent spanning trees. Given a low-high
order of G, it is straightforward to compute two strongly divergent spanning trees of G
in O(m) time [21].

We augment our decremental algorithm so that for each vertex v # s we keep two
variables low(v) and high(v). Variable low(v) stores an edge (u,v) € E such that u # d(v)
and u < v in low-high; low(v) = null if no such edge exists. Similarly, high(v) stores an
edge (w,v) € E such that and v < w in low-high and w is not a descendant of v in D;
high(v) = null if no such edge exists. Note that these are just original edges of the sparse
subgraph H that correspond to the derived edges in H. Finally, we mark each vertex v
such that (d(v),v) € E. Note that for a reachable vertex v, we can have low(v) = null or
high(v) = null (or both) only if mark(v) = true.

We can use the arrays mark, low, and high to maintain a pair of strongly divergent
spanning trees, B and R, of GG after each update. Moreover, we can construct B and R so
that they are also edge-disjoint except for the bridges of G. A bridge of G is an edge (u, v)

that is contained in every path from s to v. Let b(v) (resp., r(v)) denote the parent of a
vertex v in B (resp., R). To update B and R after the deletion of an edge (x,y), we only
need to update b(v) and r(v) for the vertices v that are relocated in the updated low-high
order. Specifically, we set b(v) < d(v) if low(v) = null, b(v) < low(v) otherwise. Then,
we set 7(v) < d(v) if high(v) = null, r(v) < high(v) otherwise.

Now consider a query that, given two vertices v and w, asks for two maximally vertex-
disjoint paths, 7, and m,,, from s to v and from s to w, respectively. Such queries were
used in [40] to give a linear-time algorithm for the 2-disjoint paths problem on a directed
acyclic graph. If v <;5 w, then we select 7y, < B[s,v] and 7y, < Rl[s,w|; otherwise, we
select 1y, < R[s,v] and 7, < Bls,w]. Therefore, we can find such paths in constant
time, and output them in O(|7s, |+ |7s|) time. Similarly, for any two query vertices v and
w, we can report a path 7, from s to v that avoids w. Such a path exists if and only if w
does not dominate v, which we can test in constant time using the ancestor-descendant
relation in D [38]. If w does not dominate v, then we select 7y, < B[s,v] if v <s w, and
select g, < Rls,v] if w <5 v.

1.4.2 Fault tolerant reachability

Baswana et al. [4] study the following reachability problem. We are given a flow graph
G = (V, E,s) and a spanning tree T' = (V| Er) rooted at s. We call a set of edges E’ valid
if the subgraph G’ = (V, Er U E', s) of G has the same dominators as G. The goal is to
find a valid set of minimum cardinality. As shown in [22], we can compute a minimum-size
valid set in O(m) time, given the dominator tree D and a low-high order of § of it. We
can combine the above construction with our decremental low-high algorithm to solve
the decremental version of the fault tolerant reachability problem on DAGs, where G is
modified by edge deletions and we wish to compute efficiently a valid set for any query
spanning tree T'. Let t(v) be the parent of v in 7. Our algorithm maintains, after each
edge insertion, a low-high order of GG, together with the mark, low, and high arrays. Given
a query spanning tree T = (V, Er), we can compute a valid set of minimum cardinality
E’ as follows. For each vertex v # s, we apply the appropriate one of the following cases:
(a) If t(v) = d(v) then we do not insert into E’ any edge entering v. (b) If t(v) # d(v)
and v is marked then we insert (d(v),v) into E’. (c¢) If v is not marked then we consider
the following subcases: If v < ¢(v) in low-high, then we insert into £’ the edge (x,v) with
z = low(v). Otherwise, if ¢(v) < v in low-high, then we insert into E’ the edge (x,v) with
x = high(v). Hence, can update the minimum valid set in O(mn) total time.

We note that the above construction can be easily generalized for the case where T is
forest, i.e., when E7 is a subset of the edges of some spanning tree of G. In this case, t(v)
can be null for some vertices v # s. To answer a query for such a 7', we apply the previous
construction with the following modification when ¢(v) is null. If v is marked then we
insert (d(v),v) into E’, as in case (b). Otherwise, we insert both edges entering v from
low(v) and high(v). In particular, when Er = (), we compute a subgraph G' = (V, E’, s) of
GG with minimum number of edges that has the same dominators as GG. This corresponds

to the case k =1 in [5].

1.5 Road map

The rest of this thesis is organized as follows.In Chapter 2, we describe how the decre-
mental dominators algorithm of [16] works. Then, we describe how a carefully engineered
version of this algorithm, by incorporating efficient solutions for the following tasks that
we encountered during the implementation: (i) answering ancestor-descendant queries in
the dynamically changing dominator trees, (ii) maintaining dynamically the derived edges
of a graph, and (iii) handling the deletion of bridges.

In Chapter 3, we present an algorithm for updating a low-high order of an acyclic flow
graph after edge deletions. On of the key ideas in this algorithm is to maintain a sparse
subgraph of the acyclic graph G that has the same dominator tree as G.

In Chapter 4, we conduct an experimental study by implementing the algorithms from
Chapters 2 and 3. Our study was conducted on real-world graphs taken from a variety
of application areas. We examine the efficiency of our algorithms with three dynamized
versions of SNCA (two for the decremental dominators problem and one for the low-high
order problem).

CHAPTER 2

DECREMENTAL DOMINATORS

2.1 Affected vertices

2.2 Efficient Implementation

In this chapter, we provide a specialised solution for maintaining the dominator tree,
under a sequence of edge deletions in reducible flow graphs. A well-known algorithm to
compute the dominator tree D of an acyclic flow graph G is the following from M. S. Hecht
and J. D. Ullman [26] which builds D incrementally. First we compute a topological order
for vertices in GG that are reachable from root s. Then we process all reachable vertices in
topological order, and for each vertex v we compute the nearest common ancestor u for
all incoming edges of v and we set d(v) < u. The provided solution for the update of the
dominator tree has a total update time of O(mn) and uses O(m + n) space.

Let (x,y) be the deleted edge, we call the deletion of (x,y) regular if (x,y) in not a
bridge in G, i.e. y remains reachable from root s after the deletion of (x,y). By G’ and
D' we denote the flow graph and its dominator tree after the update (G' = G\ (z,y)).
In general, for any given function f on V, we let f’ be the function after the update. In
particular, d’'(v) denotes the parent of v in D’. By definition, D" # D only if z is reachable
before the update.

2.1 Affected vertices

Now we consider how the dominator tree D is affected after the deletion of a single edge.
We say that a vertex v is affected by the deletion if v has a new parent in D' (d'(v) # d(v)),
and unaffected otherwise. In the case where vertex v is affected, d’'(v) does not dominate
vin G. Since the effect of an edge deletion is the reverse of an edge insertion, [19, Lemma
1] and [21, Lemma 4.1| imply the following:

10

Lemma 2.1. Suppose x is reachable and the deletion of edge (xz,vy) is reqular, i.e., y does
not become unreachable after the deletion. Then the following statements hold:

(a) All affected vertices become descendants in D' of a child ¢ of d(y).

(b) A wertex v is affected if and only if (d(v),v) is not an edge of G' and all edges
(u,v) € E\ (z,y) correspond to the same derived edge (u,v) = (c,v) of G.

(c) After the deletion, each affected vertex v becomes a child of a vertex on the critical

path D'[c,d' (y)].
(d) No vertex on D'[c,d (y)] is affected. Hence, D'[c,d (y)] = Dlc,d (y)].

We note that statements (a) and (c) hold for arbitrary flow graphs, while (b) and (d)
are true only for acyclic (and reducible) flow graphs. The algorithm of [16] applies Lemma,
2.1 in order to locate the affected vertices in some topological order of G as follows. For
every vertex v we maintain a count InSiblings(v) and a list DerivedOut(v). InSiblings(v)
corresponds to the number of distinct siblings w of v such that (w,v) is a derived edge.
DerivedOut(v) is a list of derived edges (v,u) leaving each vertex v. As we locate each
affected vertex, we find its new parent in the dominator tree and we update the counts
InSiblings for every sibling of v. The first step of the algorithm is to check if vertex y is
affected after the deletion of the edge (x,y), as suggested by Lemma 3.1(b). Specifically,
we update the count InSiblings(y), and if InSiblings(y) = 1 after the update, we compute
the nearest common ancestor z of all vertices in In(y), where In(y) is the set of vertices
with a leaving edge towards y in G'. Nearest common ancestor z will be the new parent of
y (d'(y) = z) in D" and by Lemma 2.1(c), z is a descendant of a sibling ¢ of y in D. Next,
we update the InSiblings(v) counts for all v € DerivedOut(y). Specifically, we decrement
InSiblings(v) if v € DerivedOut(c); if InSiblings(v) = 1 then we identify v as affected and
inserted into a FIFO queue (). For each vertex w extracted from (), we repeat the same
process by updating the InSiblings counts for every sibling of w in D. Since we discover
the affected vertices in topological order, none of these siblings of w has been inserted
into @ yet.

Now we describe how we can find the new parent of each affected vertex. We can
locate the new parent d'(w) of each affected vertex w extracted from queue @), similarly
as for y, i.e. by computing the nearest common ancestor in D’ of all vertices in In(w).
This solution, however, does not guarantee the desired O(mn) total update time. To
achieve the desired update time, we locate d’'(w) by traversing the critical path Dlc, d'(y)]
in top-down order, until we find a vertex u such that In(w) contains a vertex that is not a
descendant of v in D’. When we locate u we set d'(w) < u. Finally, we can compute the
updated InSiblings counts and DerivedOut lists in a postprocessing step. The analysis
in [16] is based on the fact that the affected vertices that remain reachable increase their
depth in D. Notice that a vertex w can be processed at most once per deletion.

11

Algorithm 1: DeleteEdge(G, preorder, size, e)

[S SR .Y

© w N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26
27
28

29

Input: Flow graph G = (V, E, s), its dominator tree D, arrays preorder and size,
and an edge e = (z,y).
Output: Flow graph G’ = (V, E'\ (z,y), s), its dominator tree D’, and arrays
preorder’ and size’.
Delete e from G to obtain G' = (V, E', s).

if x was unreachable in G then return (G', D, preorder, size)
else if y is becomes unreachable in G' then
(D', preorder’, size') < Initialize(G")

return (G', D', preorder’, size’)
end
Let In(y) be the set of vertices v such that (v,y) is an edge in G'.
Let f be the child of d(y) that is an ancestor of .
if there is no vertex v € In(y) such that v € D(f) then

Set InSiblings(y) < InSiblings(y) — 1.
Set DerivedOut(f) < DerivedOut(f) \ y.
end
if (d(y),y) € E' or InSiblings(y) > 2 then return (G', D, preorder, size)
Compute the nearest common ancestor z of In(y) in D'.
if z = d(y) then return (G, D, preorder, size)
Let ¢ be the child of d(y) that is an ancestor of y in D’.
Set d'(y) + 2.
Execute UpdatelnSiblings(y).
while () is not empty do
Extract a vertex w from ().
forall v € D(w) do set AffectedAncestor(v) < w.
Execute LocateNewParent(w) and UpdatelnSiblings(w).
end
Delete the affected vertices from Derived Out(c).
Let S be the set of all edges entering affected vertices. Compute the derived
edges S of S.
Compute InSiblings(w) for all affected vertices w.
Compute DerivedOut(v) for all vertices v such that (v,w) € S.
Make a dfs traversal of D’ to compute the updated arrays preorder’ and size’.
return (G, D', preorder’, size’)

12

Procedure UpdatelnSiblings(w)

1 foreach vertex q € DerivedOut(w) do

3 set InSiblings(q) < InSiblings(q) — 1
if InSiblings(q) =1 and d(q) € In(w) then insert ¢ into Q

2 if ¢ € DerivedOut(c) then
4

5 end

6 else

7

8 end

9 end

10 Set DerivedOut(w) « ().

‘ DerivedOut(c) < DerivedOut(c) U q

Procedure LocateNewParent(w)

1 foreach vertex u € D'(c,d (y)] in top-down order do
2 if there is an edge (v,w) € E' such that v ¢ D'(w) then

3
4 end
5 end

‘ set d'(w) < d(u) and return

?

Log(n) nodes |

Log(n) nodes |

Log(n) nodes | | Log(n) nodes

Figure 2.1: Representatives list data structure

2.2 Efficient Implementation

Providing an efficient implementation of the above algorithm turns out to be a very
challenging task. In particular, we need to incorporate efficient solutions for the following
tasks of the algorithm: (i) answering ancestor-descendant queries in the dynamically
changing dominator tree D, (ii) maintaining dynamically the derived edges of G, and (iii)
handling the deletion of bridges. We note that (i) and (ii) are not needed when we update

D incrementally.

13

2.2.1 Ancestor-descendant queries

A crucial task for the update of the dominator tree is to answer ancestor-descendant
queries in constant time. Throughout the execution of the algorithm, we need to test the
ancestor-descendant pairwise relation between the vertices of D. These kind of queries
are significant to the update process because they help us locate the new parent for every
affected vertex v # y. To that end, it suffices to recompute a preorder and a postorder
numbering for the vertices of D after each update. We can easily compute both preorder
and postorder by simply performing a dfs traversal on D in O(n) time. We say that
a vertex v is descendant of a vertex wu, if and only if © < v in preorder and v < u
in postorder [38]. Another option is to represent preorder and postorder with a data
structure for the dynamic list order problem [6, 10]. Both methods guarantee the desired
O(mn) total update bound, but the use of a dynamic list order data structure gives a much
faster implementation in practice. From [38], we know that for every vertex w of a tree
T, its subtree T'(w) follows vertex w in preorder and precedes w in postorder. By taking
advantage of the fact that for each affected vertex v we can move the entire subtree of
D(v) in the new location in the dynamic lists, rather than inserting the vertices in D(v)
one by one, we can speed up the update process. Specifically, we remove the subtree
D(v) from its current locations in the two dynamic lists and insert them immediately
after d'(v) in the preorder list and immediately before the first descendant of d'(v) in
the postorder list. For this purpose, we adapted the dynamic list order data structure
of Bender et al. [6] that uses a two-level structure (implementing a numbering scheme)
and supports insertions, deletions and order queries in constant amortized time. The
top-level of the two-level structure mentioned above is a doubly connected list which we
call representatives list. Each vertex in the representatives’ list is linked with a bottom
level doubly connected list of logn) elements, where n is the number of vertices in the
graph (2.1). We modify this structure so that it can also support the following operation:

move(u, v, w): Move the items between u and v (inclusive) from their current location in
the dynamic list and insert them right after w.

We implement the above operation as follows. The first step is to find the repre-
sentative nodes for u and v in representatives list (top-level structure); we call those
representatives left-representative and right-representative, respectively. The second step
is to check if the left-representative mentioned above (right-representative, respectively)
has nodes in its bottom level list that do not belong to the moving set of items; If there are
such items then we split the bottom-level list, and we create a new representative node.
After this step, both representative nodes, and every other representative node between
them has bottom level items that belong to the moving set. Therefore, we can quickly
move the entire set of items by linking the left-representative and the right-representative
to their new position in the dynamic list, right after item w. Finally, we check if we can
merge the representative nodes that we move or split with their neighbours.

14

2.2.2 Derived edges

Recall that affected vertices are these who change their parent in the dominator tree
after an update, and for every affected vertex we need to update the InSiblings counts
and the DerivedOut lists. (i) edges entering affected vertices, and (ii) edges that enter
a former sibling of y from a descendant of an affected vertex. Let S be the set of these
edges. As mentioned in the previous chapter, we can compute the derived edges of set
S in O(n + |S|) time [21], which suffices for our O(mn) bound since every edge in S is
adjacent to at least one vertex that changes depth in D. This method is based on bucket
sorting using a preorder numbering of D and it is not suitable for our framework, since we
do not maintain a preorder numbering of the vertices, but use a dynamic list order data
structure instead. Here we propose a more practical method. First we note that for each
edge (u,v) of type (ii), i.e., u is a descendant of an affected vertex and d(v) = d'(v) = d(y),
we have @ = ¢. Now let (u,v) be of type (i), i.e., v is affected so d'(v) € D'[c,y) and u
is a descendant of d'(v). If w = d'(v) then @ = u, so suppose u is a proper descendant of
d'(v). Let w, be the next vertex on D’[c,y| following d'(v) (w, = d'(d'(v))), and let z, be
the nearest ancestor of u such that d'(z,) € D'[c,y]. Then, @ = w, if d'(z,) # d'(v), and
U = z, if d'(z,) = d'(v). Note that we have already computed w,, for each affected vertex
v, when we locate its new parent in D’. Hence, it suffices to compute z, for all edges (u,v)
where u is a proper descendant of d’'(v). We do that by visiting the ancestors of u until
we reach z,. First we mark all vertices on D’'[c,y], so we stop our search when reaching
a vertex that has a marked parent. To avoid multiple visits to the same vertices, we
maintain at each vertex w a label [(w), initially null. After we locate z,, we set [(w) = z,
for each visited vertex w. Thus, the next search stops at a vertex w such that d'(w)
is marked or [(w) is not null. Therefore, we can compute all the new derived edges in
O(n + |S]|) time as desired.

2.2.3 Unreachable vertices

When we remove an edge (x,y), some vertices may become unreachable if the deleted
edge is a bridge in G. Since we deal with acyclic graphs, this means that (x,y) is the only
edge of the flow graph entering y from a reachable vertex. Hence, we can easily detect if
the deleted edge (z,y) is a bridge since we have InSiblings(y) = 0 and d(y) = z. From a
theoretical point of view, we can achieve O(mn) total running time by recomputing the
dominator tree from scratch after each such deletion, since the total number of bridges
that can appear is at most n — 1. In practice, this approach is not good because it causes
a significant slowdown in our algorithm. A better idea to improve the performance of our
algorithm is to handle the deletion of a bridge (z,y) as follows:

1. Compute the set of edges Y from vertices in D(y) to vertices in D \ D(y). Note
that no edge e € Y is a bridge in G\ (Y \ e), since for any vertex v € D \ D(y), all
edges in (w,v) € Y correspond to the same derived edge (w,v).

15

2. Process each edge e € Y as a regular deletion.

3. Delete D(y) from the dominator tree D’ of G’, and update accordingly the data
structures.

Note that Steps 1 and 3 take O(m) time. Also, since in Step 2 we have regular
deletions, the total running time remains O(mn).

16

CHAPTER 3

DECREMENTAL LOW-HIGH ORDER

3.1 Bounded search algorithm
3.1.1 Affected vertices
3.1.2 Unaffected vertices

3.2 Implementation Issues

In this chapter, we consider the problem of updating a low-high order of an acyclic
flow graph G = (V, E, s) after the deletion of an edge (z,y). First, we show how to achieve
an O(mn) total update bound using a sparsification technique, similar to the one used for
the incremental problem in [15]. The idea is to maintain a sparse subgraph H = (V| Ey)
of G with the same vertex set, and O(n) edges. Subgraph H has the same dominator tree
as G. Recall that by 2.1(c), each vertex v with (d(v),v) € E has two entering edges (u,v)
and (w,v) such that u # w; then, it suffices to add two such edges in H.

Corollary 3.1. Let H = (V, Ey) be subgraph of an acyclic flow graph G such that Ey
contains:

(a) All edges (u,v) € E such that u = d(v).
(b) Two edges (u,v) and (w,v) such that @ # w for each vertex v with (d(v),v) ¢ E.

Then H has the same dominator tree as G. Moreover, a low-high order of H is also a
valid low-high order of G.

Note that the two edges in Corollary 3.1(b) exist by Lemma 2.1(c). Clearly H =
(V, Ex) has O(n) edges as required. We can compute a low-high order for H in O(|Ey|) =
O(n) time using the static algorithm of [21]. For every non-leaf vertex x of D, the
algorithm arranges the children C'(z) in a local low-high order d,. Vertices in C(x) are

17

separated into two categories depending on whether they have a directed edge from z or
not. We place all vertices v € C(x) that have a directed edge from z, (z,v) € E , in
arbitrary order in d,. Then, we process the remaining children of x in topological order
as follows. For each vertex v where (z,v) € E, graph H contains edges (u,v) and (w,v)
such that w # w, so w and w precede v in the topological order and are already located
in 0,. Hence, it suffices to insert v in any location in §, between u and w. When we have
computed all local low-high ordered lists of children, we obtain a complete low-high order
of G by arranging each subtree D(v) of D immediately after v. After the deletion of (z,y)
we need to update H in order to ensure that it still satisfies Corollary 3.1. We can do this
during the update of the derived edges, after we have located all their affected vertices
and their new parents in D’. Therefore, we get the following result.

Theorem 3.1. We can maintain a low-high order of a reducible flow graph G with n
vertices through a sequence of edge deletions in O(mn) total time, where m is number of
edges in G before all deletions.

3.1 Bounded search algorithm

Here we present an efficient algorithm that updates a low-high order faster in practice.
To that end, we also need to maintain DerivedIn(v) lists. Each one of them has the
derived edges (u,v) entering vertex v. The algorithm has to process two different set of
vertices. The first set includes the affected vertices, recall that affected is all vertices that
change their dominator in D’. Tt is quite easy to update the set of affected vertices. The
problematic case is when we have to update the low-high order for the set of unaffected
vertices because each one of them may cause many changes in the given low-high order.
For the latter case, we propose a bounded search process that identifies the unaffected
vertices that may need to be relocated in their current low-high order.

3.1.1 Affected vertices

As previously mentioned, the set of affected vertices is quite easy to update. The crucial
observation is that the algorithm for updating the dominator tree in chapter 2 discovers
the affected vertices in topological order. Therefore, when we move the affected vertices
in their new position in D' and update their incoming derived edges, we can position them
in low-high order. For each affected vertex v, if (d(v),v) € E, then DerivedIn(v) contains
two vertices u and w such that v < w in low-high order, so we can insert v between these

two vertices.

3.1.2 Unaffected vertices

Now we deal with the more challenging case of updating the low-high order of unaffected
vertices. As we observed, a single edge deletion may cause many changes in a given low-

18

Figure 3.1: An example of propagation of changes in the low-high order after the deletion
of an edge. Vertices are arranged from left to right in low-high order. (a) After the
deletion of (z,y), y violates the given low-high order. (b)-(c) Moving y between z and
t causes a new violation at vertex v, which in turn causes another violation at vertex u
after v is placed between z and y. (d) The low-high order is finally restored when we
place u between v and t.

high order, even if there are no affected vertices (See Figure 3.1). After we update the
dominator tree and the low-high order of the affected vertices, the first step is to initialise
a vertex set I, which contains all unaffected vertices that have at least one entering derived
edge from an affected vertex. The next step is to fix the low-high order for every vertex in
1. However by fixing low-high order for the set I; we may invalidate the low-high order of
other vertices that are reachable from vertices in I. Thus, we compute a set X (I C X)
of vertices that may need to be relocated in low-high order due to the changes in the

low-high order caused from /. The next lemma determines the location of the vertices in
I.

Lemma 3.1. Let v be an unaffected vertex that violates the given low-high order after
updating the dominator tree in response to an edge deletion (i.e., v € I). Then d'(v) =

d(y).

Proof. A vertex v may violate the low-high order only if it has an entering edge (u,v)
such that u is a descendant of an affected vertex and the derived edge of (u,v) changes.
From the parent property of the dominator tree we have that for all (v,w) € E with v
and w reachable, v is a descendant of d(w) in D. Since, by Lemma 2.1(c), all affected
vertices become descendants of a child ¢ of d(y), the derived edge of (u,v) changes only
if v is a child of d(y). Since v is unaffected, d'(v) = d(v) = d(y). O

1

The above lemma also helps us narrow our search down for candidate vertices that we

19

may need to relocate in the given low-high order in response to updating of the position
in the low-high order of the vertices in I. Since I consists only of children of d(y), we
only need to search among the unaffected children of d(y) that are reachable from /. As
we relocate vertices in low-high order, this process may cascade. (See Figure 3.1).

Initially, we set X = [and for every vertex in I we execute a search in order to
discover all vertices that may violate the given low-high order due to the replacement of
the vertices in I. During this search, it is crucial to avoid any unnecessary propagation
of changes in the low-high order. To achieve this, when we process a vertex v € X, we
examine its outgoing derived edges. In order to bound the total running time of our
algorithm by O(mn), we maintain a sparse spanning subgraph H = (V, Ey) of G with
O(n) edges that satisfies Corollary 3.1, together with the derived edges Ey of Ey. We
also maintain the invariant that for each vertex v such that (d(v),v) € E, the two derived
edges (u,v), (w,v) € Ey are such that u < v < w in low-high order.

Our algorithm, FixLH(y), computes a vertex set X C C”(d(y)) that we need to process
in order to ensure that vertices in X satisfy the low-high order of G’. Initially, we set
X = I and for every vertex in I we examine its outgoing derived in Ejy in order to
discover all vertices that may violate the given low-high order due to the replacement of
the vertices in I. During this search, it is crucial to avoid any unnecessary propagation
of changes in the low-high order, because it has a huge impact on the execution time of
our algorithm (see Figure 3.1). To achieve this, when we examine an outgoing derived
edge (u,v) € Ey of u € X, we test if v has two derived edges (z,v), (y,v) € Ey such
that © < v <y where x,y € X. If we can find two such edges, then v keeps on satisfying
the current low-high order, and there is no need to add v in X. If this is not the case,
we insert v in X. This bounded search is outlined by Procedure scan. Note that we can
only afford to check a constant number k of entries in DerivedIn(v) in order to have O(n)

running time per deletion. (In our experiments we set k < 3).

Algorithm 2: FixLH(y)

1 I = children of d(y) that violate the low-high order of G after the deletion
/*I C{y} if y is not affected; otherwise, [contains unaffected

children of d(y) that have an entering edge from a descendant of

an affected vertex */
2 initialize X = I /*X will contain the unaffected children of d(y) that
need to be relocated in low-high order */
3 foreach vertez u € I do
4 if u not scanned then scan(u)
5 end
6 Process vertices in X in topological order to place them in low-high order using

the edges in By

20

Procedure scan(u)

1 foreach derived edge (u,v) € Ey do

2 if v X and (d(v),v) ¢ E then
3 if u < w wn low-high order then
4 examine the first & = O(1) edges in DerivedIn(v) to find a replacement
derived edge e = (w,v) with w € X and w < v in low-high order
5 end
6 else
7 examine the first £ = O(1) edges in DerivedIn(v) to find a replacement
derived edge e = (z,v) with z ¢ X and v < z in low-high order
8 end
9 if a replacement derived edge e was found then
10 ‘ replace (u,v) with e in Epy
11 end
12 else
13 insert v into X
14 scan(v)
15 end
16 end
17 end

Lemma 3.2. Algorithm FixLH correctly updates the low-high order of the children of d(y)
in D" in O(n) time.

Proof. To prove the correctness of algorithm FixLH, first note that it correctly updates
the low-high order of all vertices in X. Now we need to argue that the remaining vertices
satisfy the updated low-high order. Observe that any vertex v that is visited during the
search for X, is not inserted into X only if (d(v),v) € Ey or if both derived edges in
Ey entering v are not in X. Clearly, the same holds for all vertices that are not visited
during this process. Hence, any vertex v ¢ X does not violate the computed low-high
order before and after relocating the vertices in X.

Now we argue that the algorithm runs in O(n) time. Each vertex v may change its two
entering edges in Ey at most k = O(1) times, since we look for replacement edges only
in the first k = O(1) edges in DerivedIn(v). Thus, DerivedIn(v) will be examined in lines
4 and 7 of Procedure scan a constant number of times in total for each v, so we spend
constant time for each vertex. Finally, we need to process the vertices of X in topological
order. Note that the vertices may be inserted in X in arbitrary order. We can sort them
topologically by computing a topological order of the of subgraph of H = (V, Ey) that is
induced by the vertices of X. Since Ejx has O(n) edges, this steps also takes O(n) time.
]

1

21

3.2 Implementation Issues

We can extend the decremental dominators algorithm from the previous chapter so that it
also maintains a low-high order as described above. The following implementation issues
affect the efficiency of our algorithm in practice.

Representation of a low-high order. Since a low-high order is a preorder of D, we
could use the same dynamic list order data structure as the one we use in the previous
chapter to store the preorder and postorder numbering of the vertices in D. This choice,
however, has a negative impact to the execution time of our algorithm. A low-high order
may need to update many times during an edge deletion, and every time such a low-high
update happens we need to update the data structures for both the preorder and postorder
of D, even though we do not need a postorder structure to store a low-high order. For
this reason, we use a separate dynamic list order data structure for the low-high order,
which is updated independently of the preorder and postorder data structures of D.

Unreachable vertices. As in the decremental dominators algorithm, we have to take
special care of how the deletion of a bridge (z,y) is handled. To that end, we first tested
the two methods mentioned in Section 2.2: (a) Run a static algorithm to recompute
the dominator tree of D and a low-high order from scratch, and (b) Process each edge
e = (u,v) with u a descendant of y in D and v not a descendant of y in D as a regular
deletion (e cannot be a bridge) and update the low-high order after each such deletion.
Then delete (z,y), making all descendants of y in D unreachable from s. Unlike the
decremental dominators algorithm where choice (b) was always superior compared to
(a), things are a bit different for the update of the low-high order, and that’s because
during the sequence of regular deletions a vertex may be scanned several times when the
FixLH process is executed. Hence, we also implemented the following improvement, which
updates the low-high order of unaffected vertices only once, after we have processed all
regular deletions. Specifically, we first update the dominator tree as in (b) but do not
compute the complete low-high order after each regular deletion of an edge e = (u,v).
As we process each regular deletion (u,v), we also fix the low-high order of each affected
vertex. Let A* denote the set of all affected vertices found during all regular deletions.
For each edge (w,t) such that w is a descendant of an affected vertex in A* we insert ¢ in
a list I*. We compute a set X* of vertices which may need their low-high to be updated
by executing scan(v), starting from all vertices v in [* that have not been scanned yet.
Finally, we sort X* topologically and update the low-high order of all vertices in X*.

All of the above three methods are executed in O(m) time per bridge deletion, so
they all guarantee the O(mn) total running time. In our experiments, however, the last
method turned out to be an order of magnitude faster than (a) and (b).

22

CHAPTER 4

EXPERIMENTAL STUDY

4.1 Decremental Dominators

4.2 Low-High order

In order to assess the efficiency of our decremental dominators and decremental low-
high order algorithms in practice, we conduct an extensive experimental study. Our
study was conducted on real-world graphs taken from a variety of application areas. We
wrote our implementations in C++, using g++ v.4.6.4 with full optimization (flag -03)
to compile the code. We report the running times on a Dell Precision Tower 7820 CTO
Base machine running Ubuntu (16.04 LTS), equipped with an Intel Xeon Gold 5118 2.3
GHz processor with 16 MB L3 cache and 192GB DDR4-2400 RAM at 2,666 MHz. We
did not use any parallelization, and each algorithm ran on a single core. We report CPU
times measured with the getrusage function.

Table 4.1 shows some statistics about the graphs used in our experimental evaluation.
In all test instances, we select the first vertex of the graph as the start vertex. Similar
results were produced when we choose a random vertex of the graph as the start vertex.
Given an acyclic flow graph, we create our decremental instances as follows. For every
test graph, we consider a portion of its edges as the edges that will be deleted. The
portion size is controlled by a parameter p € [0, 1]. Let m be the initial number of edges
in the graph. We create a sequence of deletions by choosing |p-m] random edges in the
original graph uniformly at random. For each graph and each choice of p, we create 10
such random instances using different seeds for the initialization of the random functions,
and report the average running times. (For a given input graph, two values p; < ps of p,
and a fixed seed, the deletion sequence for p; is a subsequence of the deletion sequence for
p2). The algorithms compute (in static mode) the dominator tree and the low-high order,
in case of the decremental low-high order algorithms, of the given acyclic graph and then
they run in decremental mode, processing the sequence of deletions. Note that during

23

the execution of the algorithms some vertices may become unreachable (after a deletion
of a bridge), and thus some subsequent deletions may involve unreachable vertices. All
algorithms can detect and ignore these deletions. For computing dominators in static
mode we use the SNCA algorithm from [23], which is a simplified variant of the classic
Lengauer-Tarjan algorithm [31]. As an intermediary, this algorithm computes a sparse
subgraph H of the input graph G that has the same dominators as G. The indegree of
each vertex in H is at most 2, so H has at most 2(n — 1) edges (the start vertex has zero
indegree). For computing a low-high order, we augment this algorithm with the low-high
order algorithm for acyclic graphs from |21|. We speedup the computation of a low-high
order by using only the edges in H (instead of all the edges of G).

Graph Details

Graph Type n m
bitcoin WN 6005 9648
advogato SN 2320 17809
amazon-302 WG 55414 126663
soc-epinions SN 17117 158754

web-Berkstan | WG 29145 169870
web-google WG 77480 372859
wikitalk SN 49430 664139
amazon-601 WG 276049 1259198

Table 4.1: Graph instances used in the experiments. The original graphs are taken from
[32] and converted to DAGs by including vertices and edges reachable from the start
vertex and deleting depth-first search back edges. The number of vertices n and edges m
refer to the produced instances.

4.1 Decremental Dominators

We compare the performance of three algorithms that update the dominator tree. The
first one is our efficient algorithm Decr presented in Section 2, and two dynamised versions
of SNCA. We did not consider the algorithm of Cicerone et al. [8] since it requires O(n?)
space, and therefore is impractical for large graphs. The first dynamised version of SNCA
named DSNCAL tests if the deleted edge (x,y) belongs in the sparse subgraph H. If not,
then the dominator tree is not affected, and therefore the algorithm does nothing. In case
the deleted edge belongs in the sparse subgraph H, DSNCA1 runs SNCA from scratch
for the whole graph. The second version of SNCA called DSNCA2 performs the same
test, but if (z,y) € H, it computes the nearest common ancestor z of x and y in D and
runs SNCA only for the subgraph of G induced by D(z). In Table 4.2 we present the
average running times of the three algorithms mentioned above over ten random deletion
sequences. From the obtained results it is clear that our efficient algorithm is superior

24

compared with DSNCA1 and DSNCA2. Indeed, except for one input graph (amazon-302),
in all other instances, Decr is one or two orders of magnitude faster than the dynamised
versions of SNCA. Also, we note that in most instances, a significant fraction of the input
graph gets disconnected from that start vertex after the deletion of 50% of the edges, and
therefore many subsequent edge deletions are ignored. Thus, as we can see in Table 4.2,
in most instances the running times of the algorithms remain almost the same for p > 0.5.
Even though someone would expect DSNCA2 to be faster than DSNCA1 because DSNCA2
only recomputes the dominator tree only for the subgraph induced by D(z) (z is the
nearest common ancestor of and y), in practice, DSNCA2 does not provide a significant
improvement in the running times and in some instances it even causes slowdown due to

the overhead of computing the nearest common ancestor.

4.2 Low-High order

Here we examine the efficiency of our algorithm, Decr-LH, with a dynamized version of
SNCA that also computes a low-high order of an acyclic flow graph. This algorithm, that
we refer to as DSNCA-LH, works as follows. It maintains a sparse subgraph H = (V, Ey)
of G such that for each v # s, (d(v),v) € Ey, or Ey contains edges (u,v) and (w,v) with
u < v < w. When we delete an edge (z,y) we test if this edge belongs to H. If not, then
the dominator tree and the low-high order are not affected we do nothing. Otherwise,
we look into the entering edges of v and try to find a replacement edge for (z,y) so that
y satisfies the current low-high order. If this fails, then we compute the dominator tree
and the low-high from scratch. The corresponding average running times reported in the
last two columns of Table 4.2. Similarly to dominators, DSNCA-LH is not competitive
with our efficient algorithm. We observe that maintaining a low-high order along with
our efficient decremental algorithm incurs a very low overhead, which is on average less
than 7% of the running time of Decr. Hence, both algorithms Decr and Decr-LH, perform
very well in practice. In Figure 4.1 we examine how the running time of the decremental
low-high algorithm is affected by the method we use to handle the deletion of a bridge.
To that point, we compare the three different versions of Decr-LH that implement the
three different methods described in chapter 3.2. The first method (Decr-LH-v1) runs
the static algorithm that computes the low-high order for the whole graph, the second
one (Decr-LH-v2) handles each edge (u,v) with uw € D(y) and v € D\ D(y) as a regular
deletion. We compare these two methods with our improved algorithm for updating the
low high order (Decr-LH-v3).

In the first place, we observe that the way we handle the deletion of a bridge is very
crucial to the effectiveness of our algorithms. In particular, for every test graph, our
improved algorithm is always faster by an order of magnitude, as shown in Table 4.3.
The Decr-LH-v3 algorithm is up to thirteen times faster compared to the Decr-LH-v2
algorithm and up to twenty times faster compared to Decr-LH-v1. Although we expect
that Decr-LH-v1 would be slower in every test graph compared to Decr-LH-v2, that’s not

25

the case for graphs advogato, bitcoin and amazon-302 because after the deletion of a
bridge Decr-LH-v2 may have to update many times the low-high order for the children of
a given node that is descendant of node y. Furthermore, another factor that affects the
performance of Decr-LH-v2 compared to the performance of Decr-LH-v1 is the number of
nodes that become unreachable after the deletion of a bridge as we can see by combining
the information we get from Tables 4.3 and 4.4.

25

-

-
wn

/ e Dectr-LH-v1

e Dectr-LH-v2
Dectr-LH-v3
/
T —

Running times (Sec)
\

\

0

ISP IR I GRS ISP R I GRS IS S I I
VS S S S 32 & & & &S F & & & &
N N S o S & S F & & & &F L
S & & F F L L& & & & & NI SIS S S
v v A\ AV v (9 '’ '’ ’a 52 2 K L B
PP & & & F F F LR R L LS
> 2 > > > L By EE R RO Q\éo

Figure 4.1: Average running times (in seconds) of three versions of Decr-LH that handle
the deletion of a bridge (z,y) as described in Section 3.2. Decr-LH-v1 applies method (a)
(running a static algorithm from scratch), Decr-LH-v2 applies method (b) (handling each
edge (u,v) with u € D(y) and v € D\ D(y) as a regular deletion), while Decr-LH-v3
applies the improved method of Section 3.2.

26

Decremental Dominators

Decremental Low-High

Graphs DSNCA1l DSNCA2 Decr | DSNCA-LH Decr-LH
bitcoin_ 05 0.05 0.05 0.01 0.17 0.01
bitcoin 10 0.09 0.10 0.03 0.35 0.03
bitcoin 20 0.17 0.18 0.03 0.71 0.04
bitcoin 50 0.34 0.37 0.08 1.59 0.09
bitcoin 75 0.39 0.46 0.12 1.92 0.13
bitcoin 100 0.42 0.46 0.17 1.94 0.17
advogato_ 05 0.06 0.05 0.02 0.16 0.03
advogato_ 10 0.12 0.09 0.02 0.31 0.03
advogato_ 20 0.20 0.18 0.04 0.63 0.04
advogato 50 0.47 0.41 0.10 1.37 0.11
advogato 75 0.54 0.51 0.11 1.68 0.12
advogato 100 0.54 0.50 0.12 1.71 0.12
amazon-302 05 7.60 7.68 4.22 26.08 4.44
amazon-302 10 8.13 7.69 4.35 26.28 4.57
amazon-302 20 8.09 7.68 4.36 26.30 4.43
amazon-302_ 50 8.22 7.7 4.22 26.22 4.52
amazon-302 75 8.14 7.69 4.32 26.38 4.54
amazon-302_100 8.23 7.71 4.34 25.87 4.59
soc-epinions 05 5.59 3.72 0.08 10.36 0.14
soc-epinions_ 10 11.38 7.49 0.12 21.38 0.18
soc-epinions_ 20 22.31 15.39 0.18 45.66 0.26
soc-epinions_ 50 56.04 40.25 0.42 128.82 0.56
soc-epinions__ 75 80.85 61.29 0.67 194.26 0.82
soc-epinions_ 100 89.02 68.02 0.80 217.47 0.94
web-Berkstan 05 4.64 5.23 0.33 16.45 0.38
web-Berkstan 10 8.68 9.94 0.60 31.28 0.64
web-Berkstan_ 20 14.98 16.28 1.05 52.84 1.11
web-Berkstan_ 50 21.78 21.35 1.37 71.79 1.35
web-Berkstan_ 75 22.42 21.42 1.32 71.96 1.34
web-Berkstan_ 100 22.48 21.49 1.32 71.88 1.34
web-google_ 05 38.31 43.22 2.70 123.13 3.76
web-google_ 10 71.69 85.94 3.93 248.14 5.14
web-google_ 20 104.55 157.08 7.37 458.20 8.53
web-google_ 50 110.56 186.86 10.54 550.62 11.13
web-google_ 75 110.09 186.70 10.56 553.24 11.38
web-google 100 110.44 186.83 10.54 552.15 11.30
WikiTalk 05 97.82 71.12 1.72 139.41 3.20
WikiTalk 10 195.87 143.51 3.12 291.18 5.92
WikiTalk 20 392.72 289.26 5.48 615.37 8.95
WikiTalk 50 948.96 695.69 30.89 1600.38 32.19
WikiTalk 75 1296.04 1018.67 60.04 2361.56 60.30
WikiTalk 100 1410.21 1014.21 61.08 2808.81 61.98
amazon-601_05 871.09 790.92 75.65 2879.21 83.09
amazon-601_10 1564.34 1417.06 99.86 4723.03 107.75
amazon-601_20 2202.82 2118.52 128.90 4878.07 130.05
amazon-601_ 50 2388.70 2068.55 141.77 7674.28 142.25
amazon-601_75 2505.03 2395.96 144.10 7706.98 144.19
amazon-601 100 2700.07 2769.54 140.60 7686.45 142.48

Table 4.2: Average running times in seconds over 10 random deletion

The suffixes in the graph names correspond to the percentage of deleted
5%, 10%, 20%, 50%, 75%, and 100%.

27

sequences.
edges p =

Decremental Low-High
Graphs Decr-LH-vl Decr-LH-v2 Decr-LH-v3
bitcoin 05 0.02 0.12 0.01
bitcoin_ 10 0.04 0.16 0.03
bitcoin_ 20 0.08 0.20 0.04
bitcoin_ 50 0.19 0.30 0.03
bitcoin_ 75 0.28 0.36 0.13
bitcoin_ 100 0.33 0.40 0.17
advogato 05 0.04 0.06 0.03
advogato 10 0.06 0.12 0.03
advogato 20 0.12 0.20 0.04
advogato 50 0.25 0.35 0.11
advogato 75 0.32 0.37 0.12
advogato 100 0.35 0.36 0.12
amazon-302__ 05 6.48 19.66 4.44
amazon-302__ 10 6.49 19.62 4.57
amazon-302_ 20 6.64 19.55 4.43
amazon-302_ 50 6.85 19.32 4.52
amazon-302 75 6.90 19.45 4.54
amazon-302 100 6.96 19.60 4.59
soc-epinions_ 05 1.10 0.67 0.14
soc-epinions_ 10 2.22 1.09 0.18
soc-epinions 20 6.96 1.84 0.26
soc-epinions 50 13.91 4.01 0.56
soc-epinions_ 75 21.82 5.54 0.82
soc-epinions_ 100 21.75 5.90 0.94
web-Berkstan 05 2.61 1.68 0.38
web-Berkstan 10 4.47 3.57 0.64
web-Berkstan 20 6.83 4.98 1.11
web-Berkstan 50 7.20 5.58 1.35
web-Berkstan 75 7.57 5.54 1.34
web-Berkstan 100 11.88 5.56 1.34
web-google 05 27.32 18.58 3.76
web-google 10 45.69 76.98 5.14
web-google 20 59.94 140.17 8.53
web-google 50 61.28 144.58 11.13
web-google 75 63.84 146.71 11.38
web-google 100 63.45 144.20 11.30
WikiTalk 05 15.31 6.44 3.20
WikiTalk 10 36.00 13.27 5.92
WikiTalk 20 192.94 32.66 8.95
WikiTalk 50 362.70 297.88 32.19
WikiTalk 75 388.40 520.64 60.30
WikiTalk 100 308.60 542.88 61.98

Table 4.3: Average running times (in seconds) of three versions of Decr-LH that handle
the deletion of a bridge (z,y) as described in Section 3.2. Decr-LH-v1 applies method (a)
(running a static algorithm from scratch), Decr-LH-v2 applies method (b) (handling each
edge (u,v) with u € D(y) and v € D \ D(y) as a regular deletion), while Decr-LH-v3
applies the improved method of Section 3.2.

28

Statistics
Graphs Deletions | Regular | Bridges | Skipped
bitcoin_ 05 482 409.3 66.3 6.4
bitcoin_ 10 964 812.4 133.7 17.9
bitcoin 20 1929 1571.1 314.8 43.1
bitcoin 50 4824 3520.5 923.5 380
bitcoin 75 7236 4426.4 1499.2 1310.4
bitcoin_100 9648 4623.2 1881.1 3143.7
advogato 05 890 844.6 20.8 24.6
advogato 10 1780 1644.8 43.0 92.2
advogato_ 20 3561 3151.8 98.2 311
advogato_50 8904 6358.6 306.8 2238.6
advogato 75 13356 6989.2 446.6 5920.2
advogato 100 17809 7004.4 464.4 10340.2
amazon-302_05 6333 3391.2 1011.2 1930.6
amazon-302 10 12666 3986.4 1264.2 74154
amazon-302 20 25332 4107.8 1340.8 19883.4
amazon-302_ 50 63331 4123.2 1357.8 57850
amazon-302_75 94997 4123.8 1362.0 89511.2
amazon-302 100 126663 4123.8 1363.2 121176
soc-epinions 05 7937 7860.0 64.8 12.2
soc-epinions_ 10 15875 | 15667.0 153.4 54.6
soc-epinions_ 20 31750 | 31075.6 411.4 263
soc-epinions_ 50 79377 | 75085.2 1983.8 2308
soc-epinions 75 119065 | 106583.4 5136.8 7344.8
soc-epinions_ 100 158754 | 119556.0 9818.0 29380
web-Berkstan 05 8493 8068.6 181.2 243.2
web-Berkstan 10 16987 | 15588.2 424.6 974.2
web-Berkstan 20 33974 | 28536.6 1073.4 4364
web-Berkstan _50 84935 | 45208.6 2810.4 36916
web-Berkstan_ 75 127402 | 47087.2 3395.4 76919.4
web-Berkstan 100 169870 | 47173.4 3478.4 | 119218.2
web-google 05 18642 | 17528.2 598.8 515
web-google 10 37285 | 33669.2 1379.6 2236.2
web-google 20 74571 55486.6 2942.4 16142
web-google 50 186429 | 67637.8 4695.2 114096
web-google 75 279644 | 67739.6 4728.4 207176
web-google 100 372859 | 67742.6 4733.8 | 300382.6
WikiTalk 05 33206 | 33071.8 115.6 18.6
WikiTalk 10 66413 | 66039.6 279.6 93.8
WikiTalk 20 132827 | 131562.8 766.0 498.2
WikiTalk 50 332069 | 301943.0 4497.6 25628.4
WikiTalk 75 498104 | 403477.2 | 12688.0 81938.8
WikiTalk 100 664139 | 428014.0 | 19058.6 | 217066.4
amazon-601_05 62959 | 53690.8 4167.0 5101.2
amazon-601 10 125919 | 97230.8 8276.4 20411.8
amazon-601_ 20 251839 | 147971.2 | 15044.4 88823.4
amazon-601__ 50 629599 | 161620.0 | 18554.6 | 449424.4
amazon-601_75 944398 | 161636.6 | 18564.2 | 764197.2
amazon-601_100 1259198 | 161637.4 | 18568.2 | 1178992.4

Table 4.4: Average statistics for the deletion sequences used in our experiments. Column 2
(deletions) gives the total number of deletions in the sequence, column 2 gives the number
of deletions that involve reachable vertices (regular), and column 3 gives the number of
bridges that are deleted during the deletion sequence.

29

BIBLIOGRAPHY

1]

2]

3]

4]

[5]

[6]

17l

18]

19]

[10]

S. Allesina and A. Bodini. Who dominates whom in the ecosystem? Energy flow
bottlenecks and cascading extinctions. Journal of Theoretical Biology, 230(3):351—
358, 2004.

S. Alstrup and P. W. Lauridsen. A simple dynamic algorithm for maintaining a
dominator tree. Technical Report 96-3, Department of Computer Science, University
of Copenhagen, 1996.

M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and V. Boppana. Fault equivalence
identification using redundancy information and static and dynamic extraction. In
Proceedings of the 19th IEEE VLSI Test Symposium, March 2001.

S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability for directed
graphs. In Yoram Moses, editor, Distributed Computing, volume 9363 of Lecture
Notes in Computer Science, pages 528-543. Springer Berlin Heidelberg, 2015.

S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability subgraph:
Generic and optimal. In Proc. 48th ACM Symp. on Theory of Computing, pages
509-518, 2016.

M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito. Two simplified
algorithms for maintaining order in a list. In Proc. 10th European Symposium on
Algorithms, pages 152-164, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

M. D. Carroll and B. G. Ryder. Incremental data flow analysis via dominator and
attribute update. In Proc. 15th ACM POPL, pages 274-284, 1988.

S. Cicerone, D. Frigioni, U. Nanni, and F. Pugliese. A uniform approach to semi-
dynamic problems on digraphs. Theor. Comput. Sci., 203:69-90, August 1998.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451-490, 1991.

P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In Proc. 19th
ACM Symp. on Theory of Computing, pages 365-372, 1987.

30

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic graph algorithms. In
Algorithms and Theory of Computation Handbook, 2nd Edition, Vol. 1, pages 9.1—
9.28. CRC Press, 2009.

K. Gargi. A sparse algorithm for predicated global value numbering. SIGPLAN Not.,
37(5):45-56, May 2002.

L. Georgiadis. Testing 2-vertex connectivity and computing pairs of vertex-disjoint
s-t paths in digraphs. In Proc. 37th Int’l. Coll. on Automata, Languages, and Pro-
gramming, pages 738749, 2010.

L. Georgiadis. Approximating the smallest 2-vertex connected spanning subgraph of
a directed graph. In Proc. 19th European Symposium on Algorithms, pages 1324,
2011.

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura. Incremental Low-High
Orders of Directed Graphs and Applications. In Costas S. Iliopoulos, Solon P. Pis-
sis, Simon J. Puglisi, and Rajeev Raman, editors, 16th International Symposium on
Experimental Algorithms (SEA 2017), volume 75 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 27:1-27:21, Dagstuhl, Germany, 2017. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

L. Georgiadis, T. D. Hansen, G. F. [taliano, S. Krinninger, and N. Parotsidis. Decre-
mental data structures for connectivity and dominators in directed graphs. In ICALP,
pages 42:1-42:15, 2017.

L. Georgiadis, G. F. Ttaliano, L. Laura, and N. Parotsidis. 2-edge connectivity in
directed graphs. In Proc. 26th ACM-SIAM Symp. on Discrete Algorithms, pages
1988-2005, 2015.

L. Georgiadis, G. F. Ttaliano, L. Laura, and N. Parotsidis. 2-vertex connectivity in di-
rected graphs. In Proc. 42nd Int’l. Coll. on Automata, Languages, and Programming,
pages 605-616, 2015.

L. Georgiadis, G. F. Italiano, L. Laura, and F. Santaroni. An experimental study

of dynamic dominators. In Proc. 20th FEuropean Symposium on Algorithms, pages
491-502, 2012. Full version: CoRR, abs/1604.02711.

L. Georgiadis, G. F. Italiano, and N. Parotsidis. Incremental 2-edge-connectivity in
directed graphs. In ICALP, pages 49:1-49:15, 2016.

L. Georgiadis and R. E. Tarjan. Dominator tree certification and divergent spanning
trees. ACM Transactions on Algorithms, 12(1):11:1-11:42, November 2015.

L. Georgiadis and R. E. Tarjan. Addendum to “dominator tree certification and
divergent spanning trees”. ACM Transactions on Algorithms, 12(4):56:1-56:3, August
2016.

31

23]

[24]

[25]

[26]

27]

28]

[29]

30]

[31]

32]

33]

[34]

[35]

[36]

L. Georgiadis, R. E. Tarjan, and R. F. Werneck. Finding dominators in practice.
Journal of Graph Algorithms and Applications (JGAA), 10(1):69-94, 2006.

M. Gomez-Rodriguez and B. Scholkopf. Influence maximization in continuous time
diffusion networks. In 29th International Conference on Machine Learning (ICML),
2012.

Andreas D.M. Gunawan, Bhaskar DasGupta, and Louxin Zhang. A decomposition
theorem and two algorithms for reticulation-visible networks. Information and Com-
putation, 252:161 — 175, 2017.

M. S. Hecht and J. D. Ullman. Characterizations of reducible flow graphs. Journal
of the ACM, 21(3):367-375, 1974.

M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-vertex
strongly connected components in quadratic time. In Proc. 42nd Int’l. Coll. on
Automata, Languages, and Programming, pages 713-724, 2015.

G. F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong artic-
ulation points in linear time. Theoretical Computer Science, 447:74-84, 2012.

R. Jaberi. Computing the 2-blocks of directed graphs. RAIRO-Theor. Inf. Appl.,
49(2):93-119, 2015.

R. Jaberi. On computing the 2-vertex-connected components of directed graphs.
Discrete Applied Mathematics, 204:164 — 172, 2016.

T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph.
ACM Transactions on Programming Languages and Systems, 1(1):121-41, 1979.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
June 2014.

E. K. Maxwell, G. Back, and N. Ramakrishnan. Diagnosing memory leaks using
graph mining on heap dumps. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’10, pages 115-124, 2010.

R. M. McConnell, K. Mehlhorn, S. Ndher, and P. Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119-161, 2011.

L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using dominators for solving con-
strained path problems. In Proc. 8th International Conference on Practical Aspects
of Declarative Languages, pages 73-87, 2006.

G. Ramalingam and T. Reps. An incremental algorithm for maintaining the domi-
nator tree of a reducible flowgraph. In POPL, pages 287-296, 1994.

32

[37] V. C. Sreedhar, G. R. Gao, and Y. Lee. Incremental computation of dominator trees.
ACM Transactions on Programming Languages and Systems, 19:239-252, 1997.

[38] R. E. Tarjan. Finding dominators in directed graphs. SIAM Journal on Computing,
3(1):62-89, 1974.

[39] R. E. Tarjan. Testing flow graph reducibility. J. Comput. Syst. Sci., 9(3):355-365,
1974.

[40] T. Tholey. Linear time algorithms for two disjoint paths problems on directed acyclic
graphs. Theoretical Computer Science, 465:35-48, 2012.

33

APPENDIX A

FIGURES CORESPONDING TO TABLE 4.4

Bitcoin

100% -
90% -
80% -
70% -
60% -

i Skipped
50% - M Bridges
40% - m Reachable
30% -
20% -
10% -

0% T T T T T
5 10 20 50 75
Figure A.1: Bitcoin statistics
Advogato

100% -
90% -
80% -
70% -
60% -

w Skipped
50% - .

M Bridges
20% m Reachable
30% -
20% -
10%

0% - T T T T T
5 10 20 50 75

Figure A.2: Advogato statistics

34

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Amazon_302

10 20 50 75 100

w Skipped
W Bridges
W Reachable

Figure A.3: Amazon-302 statistics

Soc-epinion
 Skipped
W Bridges
m Reachable
‘ 10 ‘ 20 ‘ 50 ‘ 75 ‘
Figure A.4: soc-epinion statistics
web-Berkstan

w Skipped
M Bridges
M Reachable

10 20 50 75 100

Figure A.5: web-Berkstan statistics

35

web-google

50 75

100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
0% . .
5 10 20

w Skipped
W Bridges
W Reachable
Figure A.6: web-google statistics
WikiTalk
100% -
90%
80% -
70% -
60% -
 Skipped
50% - W Bridges
40% - m Reachable
30% -
20% -
10% -
0% - T T T T T
5 10 20 50 75
Figure A.7: WikiTalk statistics
amazon-601
w Skipped
M Bridges
M Reachable

100% -
90% -
80% -
70% -
60% -
50%
40% -
30% -
20%
10% -
0% T T T T T
5 10 20 50 75

Figure A.8: Amazon-601 statistics

36

SHORT VITAE

Konstantinos Giannis received his diploma in Computer Science Engineering (2016) from
the Department of Computer Science & Engineering, University of Ioannina, Greece.
His research interests are the design and analysis of algorithms, algorithms engineering,
algorithmic graph theory and artificial intelligence. Konstantinos worked as a teaching
assistant of the undergraduate courses "Data Structures" and "Oparating Systems", in
the Department of Computer Science & Engineering, University of loannina. He also
worked as a junior researcher in the european project PRIDE.

