
Bias Disparity in Recommendation Systems

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Virginia Tsintzou

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

October 2018

Examining Committee:

• Panayiotis Tsaparas, Associate Professor, Department of Computer Science &
Engineering, University of Ioannina (Supervisor)

• Nikos Mamoulis, Associate Professor, Department of Computer Science & En-
gineering, University of Ioannina

• Evaggelia Pitoura, Professor, Department of Computer Science & Engineering,
University of Ioannina

Table of Contents

List of Figures iii

List of Tables v

Abstract vi

List of Algorithms vi

Εκτεταμένη Περίληψη viii

1 Introduction 1

2 Related Work 4

3 Problem Definition 6
3.1 Definitions . 6
3.2 The Recommendation Algorithms . 8

3.2.1 User-based algorithms . 8
3.2.2 Item-based algorithms . 9

4 Evaluating Bias Disparity 15
4.1 Synthetic data generation . 15
4.2 Single group . 16
4.3 Symmetric Preferences . 19

4.3.1 Preference ratio in recommendations 19
4.3.2 Prediction precision for K neighbors 21
4.3.3 Impact of the number of recommendations 22
4.3.4 MAP of recommendations . 24

4.4 Asymmetric Preferences . 25

i

4.5 Varying group and category sizes . 28
4.5.1 Varying Group Sizes . 28
4.5.2 Varying Category Sizes . 30

4.6 Iterative Application of Recommendations 32
4.7 Bias disparity on real data . 34

4.7.1 Data and settings . 34
4.7.2 Gender bias . 34
4.7.3 Social bias . 36

5 Correcting Bias Disparity 39
5.1 GULM: Group Utility Loss Minimization 39
5.2 MULM: Maximum User Utility Loss Minimization 44
5.3 Evaluation of bias correcting algorithms 48

5.3.1 Prediction precision of correcting algorithms 48
5.3.2 Iterative application of correcting algorithms 48
5.3.3 MAP of recommendations . 51

6 Conclusions 54

Bibliography 55

ii

List of Figures

4.1 Output preference ratio PRR, single group case 18
4.2 PRR, symmetric case . 20
4.3 Ratio of candidate items in UserKNN, symmetric case 21
4.4 Average prediction precision for various K values 23
4.5 PRR for r from 1 to 50; input preference ratio PRS = 0.7 24
4.6 Average MAP of recommendations (Gi, Ci); the dashed lines show the

minimum, maximum and mean possible MAP according to the input
bias. 25

4.7 UserKNN, PRR(Gi, Ci), asymmetric case 26
4.8 ItemKNN, PRR(Gi, Ci), asymmetric case 26
4.9 CUserKNN, PRR(Gi, Ci), asymmetric case 27
4.10 CItemKNN, PRR(Gi, Ci), asymmetric case 28
4.11 Unbalanced group sizes; input preference ratio PRS(Gi, Ci) = 0.7 29
4.12 Unbalanced category sizes; input preference ratio PRS(Gi, Ci) = 0.7 . . 31
4.13 The evolution of the preference ratio in the data for different input pref-

erence ratios (PRS), after 5 iterations of (a) UserKNN, (b) ItemKNN,
(c) CUserKNN and (d) CItemKNN. Iteration 0 shows the original pref-
erence ratio of each dataset. 33

4.14 Average of accepted items per user on every iteration 33
4.15 The evolution of bias in the data, after 5 iterations of the recommenders:

(a) UserKNN, (b) ItemKNN, (c) CUserKNN and (d) CItemKNN. M:
BS(Male, Action), F: BS(Female, Romance). Iteration 0 shows the orig-
inal bias. 36

5.1 Prediction precision of correcting algorithms applied on (a) UserKNN,
(b) ItemKNN, (c) CUserKNN and (d) CItemKNN. 49

iii

5.2 The evolution of the preference ratio in the data for different input
preference ratios (PRS), after 5 iterations of GULM on recommenda-
tions of (a) UserKNN, (b) ItemKNN, (c) CUserKNN and (d) CItemKNN.
Iteration 0 shows the original preference ratio of each dataset. 50

5.3 The evolution of the preference ratio in the data for different input
preference ratios (PRS), after 5 iterations of MULM on recommenda-
tions of (a) UserKNN, (b) ItemKNN, (c) CUserKNN and (d) CItemKNN.
Iteration 0 shows the original preference ratio of each dataset. 51

5.4 Average of accepted items per user on every iteration 52
5.5 Average MAP of recommendations (Gi, Ci); the dashed lines show the

minimum, maximum and mean possible MAP according to the input
bias. 52

iv

List of Tables

4.1 Gender bias in action and romance . 35
4.2 Occupation bias in children’s and war 37
4.3 Occupation bias in animation and mystery 38

v

Abstract

Virginia Tsintzou, M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, October 2018.
Bias Disparity in Recommendation Systems.
Advisor: Panayiotis Tsaparas, Associate Professor.

Recommender systems have been applied successfully in a number of different
domains, such as, entertainment, commerce, and employment. Their success lies in
their ability to exploit the collective behavior of users in order to deliver highly
targeted, personalized recommendations. Given that recommenders learn from user
preferences, they incorporate different biases that users exhibit in the input data. More
importantly, there are cases where recommenders may amplify such biases, leading
to the phenomenon of bias disparity. Amplifying bias for different groups of users can
lead to isolating sensitive groups or indirect discrimination.
The goal of this thesis is to study bias disparity in recommender systems. To this

end, we define metrics for bias and bias disparity for recommendation systems. Then,
we consider variants of the K-Nearest Neighbors recommendation algorithms, and
we perform a systematic analysis of their behavior using synthetic data. The goal is to
understand the conditions under which those algorithms exhibit bias disparity, and
the long-term effect of recommendations on data bias. We observe that even moderate
amount of bias, and small biased groups can lead to significant bias amplification.
Using the Movielens dataset, we also present cases of real data where bias is observed
and confirm bias disparity on recommendations.
To address the problem of bias disparity, two algorithms that post-process recom-

mendations are considered. The algorithms re-rank the results of any recommenda-
tion algorithm in order to produce new sets of recommendations where bias disparity
is eliminated. Each bias correcting algorithm aims at providing useful recommenda-
tions by targeting the utility of the user group or the least satisfied user in the group.

vi

We conclude that correcting bias in recommendations slows down the polarization of
users in the long-term.

vii

Ε Π

Βιργινία Τσίντζου, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πληροφο-
ρικής, Πανεπιστήμιο Ιωαννίνων, Οκτώβριος 2018.
Προκατάληψη σε Συστήματα Συστάσεων.
Επιβλέπων: Παναγιώτης Τσαπάρας, Αναπληρωτής Καθηγητής.

Τα συστήματα συστάσεων έχουν μεγάλο πλήθος εφαρμογών, που συχνά βρίσκο-
νται στο διαδίκτυο. Για παράδειγμα, ηλεκτρονικά καταστήματα τα χρησιμοποιούν
για να προτέινουν προϊόντα στους χρήστες, μέσα κοινωνικής δικτύωσης προτείνουν
τη σύνδεση με άλλους χρήστες, μηχανές αναζήτησης εργασίας προτείνουν θέσεις
εργασίας σχετικές με τους χρήστες, κ.ά. Η χρησιμότητα και η αποτελεσματικότητα
των αλγορίθμων συστάσεων οφείλεται στο γεγονός ότι βασίζονται στις ιδιαίτερες
προτιμήσεις των χρηστών που συλλέγονται από τις αλληλεπιδράσεις τους με κά-
ποιο σύστημα. Τα μοντέλα συστάσεων ενσωματώνουν τις προτιμήσεις αυτές και
παράγουν πιο στοχευμένες προσωπικές συστάσεις. Οι επιλογές των χρηστών συ-
χνά χαρακτηρίζονται από διάφορες προκαταλήψεις. Η εκπαίδευση ενός μοντέλου
σε δεδομένα που χαρακτηρίζονται από τη μεροληψία των χρηστών, οδηγεί στην
αναπαραγωγή και αύξηση της προκατάληψης στις συστάσεις. Η αύξηση της προ-
κατάληψης στις συστάσεις σε συγκεκριμένες ομάδες χρηστών μπορεί να οδηγήσει
στην αναπαραγωγή στερεοτύπων, διακρίσεις και απομόνωση ευαίσθητων κοινωνι-
κών ομάδων.
Αυτή η εργασία έχει στόχο να μελετήσει την ανισότητα της προκατάληψης με-

ταξύ των δεδομένων προτιμήσεων των χρηστών και των συστάσεων των αλγορίθ-
μων. Ορίζουμε μετρικές για την προκατάληψη και την ανισότητα της προκατάλη-
ψης των συστημάτων συστάσεων. Επιλέγουμε τέσσερα διαφορετικά μοντέλα συ-
στάσεων που είναι διάφορες παραλλαγές του αλγορίθμου Κοντινότεροι Γείτονες
και δημιουργώντας συνθετικά δεδομένα, παρατηρούμε τη συμπεριφορά των αλ-
γορίθμων συστάσεων σε διάφορες περιπτώσεις με στόχο να κατανοήσουμε ποιες

viii

συνθήκες προκαλούν αύξηση της προκατάληψης στις συστάσεις. Επιπλέον, μελε-
τάμε την μακροπρόθεσμη επίδραση των μοντέλων ενσωματώνοντας τις συστάσεις
στα δεδομένα. Διαπιστώνουμε ότι ακόμη και στις περιπτώσεις που τα δεδομένα
προτιμήσεων των χρηστών χαρακτηρίζονται από μέτρια προκατάληψη ή υπάρχουν
μικρές ομάδες χρηστών με προκατάληψη, τότε οι συστάσεις μπορεί να οδηγηθούν
σε σημαντική αύξηση της προκατάληψης στα αποτελέσματα. Παρουσιάζουμε πε-
ριπτώσεις πραγματικών δεδομένων με προκατάληψη χρησιμοποιώντας το σύνολο
δεδομένων Movielens, οι οποίες επιβεβαιώνουν τα ευρήματα.
Τέλος, για να αντιμετωπιστεί το πρόβλημα της ανισότητας της προκατάληψης

στις συστάσεις, προτείνουμε δύο αλγορίθμους επεξεργασίας των συστάσεων από
οποιοδήποτε υπάρχον μοντέλο. Οι αλγόριθμοι αναδιατάσσουν τα αποτελέσματα
του αλγορίθμου συστάσεων και παράγουν νέα σύνολα συστάσεων που διατηρούν
σταθερή την προκατάληψη των δεδομένων εισόδου. Οι αλγόριθμοι διόρθωσης πα-
ράλληλα στοχεύουν να επιστρέφουν αξιόλογες συστάσεις που έχουν υψηλή χρησι-
μότητα, η οποία ορίζεται είτε για το σύνολο μιας ομάδας χρηστών, είτε ατομικά
για όλους τους χρήστες. Ο πρώτος αλγόριθμος ονομάζεται GULM και στοχεύει
οι νέες συστάσεις να έχουν χαμηλή απώλεια χρησιμότητας σε σχέση με τις αρχικές
συστάσεις, κατά μέσο όρο, για όλη την ομάδα χρηστών. Ο δεύτερος αλγόριθμος ονο-
μάζεται MULM και παράγει νέες συστάσεις οι οποίες δεν αδικούν κάποιο χρήστη
και ελαχιστοποιούν τη μέγιστη απώλεια χρήστη, δηλαδή την απώλεια χρησιμότητας
στο νέο σύνολο συστάσεων για το χρήστη σε σχέση με το αρχικό. Εξετάζουμε τη
συμπεριφορά των αλγορίθμων διόρθωσης και επιβεβαιώνουμε την αποδοτικότητά
τους.

ix

Chapter 1

Introduction

Decisions based on algorithmic results is a common phenomenon. However, blindly
relying on algorithms has proven to be risky, because results are not always objective.
In cases where a computer system reflects human values, we say that algorithmic bias
occurs. For example, algorithms that assess the risk of a prisoner in the USA to
reoffend, have been reported to produce biased results ([1], [2]). Blacks were 77%
more likely to be classified as higher risk of commiting a future crime, while whites
where more often classified as lower risk.

Biases have also occured in recommendation systems. Recommender systems have
found applications in a wide range of domains, including e-commerce, entertainment,
social media, news portals, and employment sites [3]. They are used for recommend-
ing products in shopping portals, entertainment content in video or music portals,
information in content portals, job opportunities in employment portals. They have
been proven to be extremely effective in predicting the preferences of the users, fil-
tering the available content to provide a highly personalized and targeted experience.
One of the most popular classes of recommendation systems is collaborative filtering.
Collaborative Filtering (CF) uses the collective behavior of all users over all items to
infer the preferences of individual users for specific items [3]. However, given the
reliance of CF algorithms on the input preferences, they are susceptible to biases that
may appear in the input data.
In this work, we consider biases with respect to the preferences of specific groups of

users (e.g., men and women) towards specific categories of items (e.g., different movie

1

genres). For example, a case of gender discrimination in recommendations occured
at the social platform Linkedin [4]. Following the search of the usually female name
”Andrea”, appeared the suggestion of the alternative search for ”Andrew” which is
commonly a male name. However, the oppositive suggestion for the search ”Andrew”
did not appear because of the bias in the input data used to train the recommendation
model.
Bias in recommendations is not necessarily always problematic. For example, it

is natural to expect gender bias when recommending clothes. However, gender bias
is undesirable when recommending job postings, or information content. Further-
more, we want to avoid the case where the recommender system introduces bias in
the data, by amplifying existing biases and reinforcing stereotypes. We refer to this
phenomenon, where input and recommendation bias differ, as bias disparity.
The goal of the thesis is to understand the emergence of bias disparity under differ-

ent conditions, and propose algorithms that correct it. We consider data that include
implicit feedback and recommendation algorithms that are alternative approaches of
K-Nearest Neighbors algorithm.
More specifically:

• We define notions of bias and bias disparity for recommender systems. Our
definitions capture the increase in probability of a user to prefer items from
specific categories.

• Using synthetic data we study different conditions under which bias disparity
may appear. We observe that even moderate amount of bias, and small biased
groups can lead to significant bias amplification. We also consider the effect of
the iterative application of recommendation algorithms on the bias of the data.

• Using the MovieLens1 dataset, we study cases where bias and bias amplification
appears in real data.

• We consider two algorithms that re-rank the results of the recommenders for
correcting bias disparity and study them experimentally.

The rest of the thesis is structured as follows. In Chapter 2, we review work
related to recommendation systems, bias in recommendations and classification and
fairness to users. In Chapter 3, we provide the main definitions of bias and bias

1MovieLens 1M: https://grouplens.org/datasets/movielens/1m/

2

disparity for recommendations, and describe the recommendation algorithms we use
in our experiments. We present experiments on the recommendation algorithms in
Chapter 4. In Chapter 5, we describe two algorithms that process recommendations
and correct bias disparity and in Chapter 6, we review our work and provide our
conclusions.

3

Chapter 2

Related Work

The problem of algorithmic bias, and its flip side, fairness in algorithms, has attracted
considerable attention in the recent years [5, 6]. In [7] they explore the risks of data-
driven algorithms as well as the requirements to ensure fairness. There is work related
to different applications, such as online search engines([8], [9]) or text mining ([10]).
Most existing work focuses on classification systems ([11], [12], [13], [14]), while there
is limited work on recommendation systems. One type of recommendation bias that
has been considered in the literature is popularity bias [15]. It has been observed that
under some conditions popular items are more likely to be recommended leading to
a rich get richer effect, and there are some attempts to correct this bias ([16], [17]).
Related to this is also the quest for diversity [18], where the goal is to include different
types of items in the recommendations.
These notions of fairness do not take into account the presence of different (pro-

tected) groups of users and different item categories that we consider in this work.
In [19] they assume different groups of users and items, they define two types of
bias and they propose a modification of the recommendation algorithm in [20] to
ensure a fair output. Their work focuses on fairness, rather than bias disparity, and
works with a specific algorithm. The notion of bias disparity is examined in [21]
but in a classification setting. In [22], they mention different causes of unfairness in
classification and they focus on indirect prejudice which they define as the statistical
dependence between a sensitive feature, such as gender, and a target variable of the
classifier, such as income.

4

Fairness in terms of correcting rating errors for specific groups of users was stud-
ied in [23] for a matrix factorization CF recommender. They use different measures
of unfairness, such as the value of inconsistency in estimation error between an ad-
vantaged and a disadvantaged group of users. They focus on decreasing those in-
consistencies of the predictions between the groups and treating them the same way.
However, this does not guarantee that the recommendations will not become more
biased, since recommendations that are equally biased are considered as fair.
The issue of fairness and bias is also relevant to ranking. In [24], they point out

that ranking positions influence the amount of attention the ranked subjects receive
and that position bias in rankings can lead to unfair distribution of opportunities such
as jobs. They suggest that improving equity of attention that users give to equally
relevant subjects is important and they propose a solution by swapping positions
among equally relevant subjects while retaining high ranking quality. Fairness in
ranking is also related to protected groups. In [25], they raise the issue of reducing
biases in the representation of an under-represented group along a ranked list. They
propose an algorithm for selecting a number of protected candidates over a proportion
threshold while maximizing utility. That is, either selecting most qualified candidates
or ranking with descending qualifications.
Application of recommenders has significant impact on user preferences in the

long-term. Feeding the recommendation systems with data of user preferences affects
the recommendations and consequently the future selections of the users. This feed-
back loop between user behavior and recommendations is examined in [26] where
they suggest that this loop creates confounded data and causes homogenization of
users, which is amplified every time the data go through the loop, without gaining
utility. They measure and report their findings on the impact of algorithmic con-
founding on a range of recommendation systems using synthetic data.
In this work, we examine fairness in recommendation systems in cases that pro-

tected groups may be affected. We aim at measuring bias in the data and defining
the conditions under which this is exaggerated, either in the short-term or in the
long-term, and propose ways of mitigating this exaggeration.

5

Chapter 3

Problem Definition

3.1 Definitions

3.2 The Recommendation Algorithms

3.1 Definitions

We consider a set of n users U and a set of m items I. We are given an associations
n ×m matrix S, where S(u, i) = 1 if user u has selected item i, and zero otherwise.
Selection may mean that user u liked post i, or that u purchased product i, or that
u watched video i. These observations are also known as ”implicit feedback data”,
where we do not have explicit ratings by the users on how much they liked (or not)
an item, but rather only binary information on whether they selected the item or not.
There are several applications where this kind of data are generated, and there is a
need for generating recommendations from such data.
We assume that users are associated with an attribute AU , e.g., the gender of the

user. The attribute AU partitions the users into groups, that is, subsets of users with
the same attribute value, e.g., men and women. We will typically assume that we have
two groups and one of the groups is the protected group. Similarly, we assume that
items are associated with an attribute AI , e.g., the genre of a movie, which partitions
the items into categories, that is, subsets of items with the same attribute value, e.g.,
action and romance movies.
Given the association matrix S, we define the input preference ratio PRS(G,C) of

6

group G for category C as the fraction of selections from group G that are in category
C. Formally:

PRS(G,C) =

∑
u∈G

∑
i∈C S(u, i)∑

u∈G
∑

i∈I S(u, i)
(3.1)

This is essentially the conditional probability that a selection is in category C given
that it comes from a user in group G.
To assess the importance of this probability we compare it against the probability

P (C) = |C|/m of selecting from category C when selecting uniformly at random. We
define the bias BS(G,C) of group G for category C as:

BS(G,C) =
PRS(G,C)

P (C)
(3.2)

Bias values less than 1 denote negative bias, that is, group G on average tends to select
less often from category C , while bias values greater than 1 denote positive bias, that
is, group G favors category C disproportionately to its size.
Defining bias and deciding when a group of users is biased in favor of an item

category, is complicated. Even though Eq. (3.2) takes into account the size of item
categories, it ignores the size of user groups. Including the size of groups in the bias
definition would allow us to compare the preference of different groups towards the
same item category. In this work, we are interested in examining bias as the preference
of a group towards an item category over other categories. Alternative definitions of
bias are left for future work.
Assume that the recommendation algorithm outputs for each user u a ranked list

of r items Ru. In our work we view the recommendation list as a set of r elements.
The collection of all recommendations can be represented as an associations matrix
R, where R(u, i) = 1 if item i is recommended for user u and zero otherwise. Given
the matrix R, we can compute the output preference ratio of the recommendation
algorithm, PRR(G,C), of group G for category C using Eq. (3.1), and the output
bias BR(G,C) of group G for category C.
To compare the bias of a group G for a category C in the input data S and the

recommendations R, we define the bias disparity, that is, the relative change of the
bias value.

BD(G,C) =
BR(G,C)−BS(G,C)

BS(G,C)
(3.3)

Our definitions of preference ratios and bias are motivated by concepts of group
proportionality, and group fairness considered in the literature [5, 6].

7

3.2 The Recommendation Algorithms

We consider the top-r recommendation problem, where we wish to determine which
are the r most suitable items to recommend to a particular user. We use neighborhood-
based collaborative filtering algorithms, and specifically, different variants ofK-Nearest-
Neighbors (KNN) algorithm adapted on implicit data. The notion of neighborhoods
will be defined for either users or items. Therefore, the algorithms are divided in
user−based and item−based according to the axis along which we consider neighbors,
and similar entities. In the case of user-based algorithms, predictions are derived from
the preferences of the users that are the most similar to the particular user for whom
we produce recommendations. Respectively, in item-based algorithms, the user’s own
preference on items that are the most similar to a particular item contributes to the
prediction for that item.
The algorithms use the preferences of users in the neighborhood or the association

between the user and items in the neighborhood to compute a utility value. This value
indicates how suitable is an item for a user, and therefore the items with the highest
utility are recommended to the user.
For similarity, we use the Jaccard similarity, JSim, computed using the matrix

S. Jaccard similarity between two sets of users or items I and J ,is the size of the
intersection of I and J , divided by the size of their union.

JSim =
|I ∩ J |
|I ∪ J |

(3.4)

In the selection of neighbors, ties of similarity may occur. Ties also happen at the
selection of the top-r items for recommendation based on their utility values. The
algorithms handle all cases of ties by selecting randomly.

3.2.1 User-based algorithms

We use two user-based algorithms that form neighborhoods of users that are similar
to the user for whom we want to find the top-r recommendations. The UserKNN
algorithm selects for each user the K most similar users, over all users. On the
other hand, users that have selected the item we want to predict, are considered
more relevant to the context of the particular prediction. Hence, we use the context
algorithm, CUserKNN. In CUserKNN, neighbors are users that are similar to user u
and have already selected the item i for which we want to calculate a utility value

8

for u.
As we see in Algorithm 3.1, the UserKNN first computes for each user, u, the set

NK(u) of the K most similar users to u. For user u and item i not selected by u, it
computes a utility value

V (u, i) =

∑
n∈NK(u) JSim(u, n)S(n, i)∑

n∈NK(u) JSim(u, n)
(3.5)

The utility value V (u, i) is the fraction of the similarity scores of the top-K most
similar users to u that have selected item i.
We expect UserKNN to define neighborhoods of users that are biased in favor of

the same item categories.
In CUserKNN (Algorithm 3.2), the K nearest neighbors are selected from the pool

of neighbors of u that have selected item i. To calculate the utility value V (u, i) for a
user u and an item i not selected by u, the algorithm finds the set of neighbors NK(u)

and sums their similarities to u. So the utility value is computed as follows.

V (u, i) =
∑

n∈NK(u)

JSim(u, n) (3.6)

The fact that the utility values are calculated without being normalized and are
based on the similarity values between user u and the neighbors that selected item
i, implies that it is easier for CUserKNN than the UserKNN to distinguish among
items.

3.2.2 Item-based algorithms

The item-based algorithms form neighborhoods of items and recommend items that
are similar to those that users have selected. The ItemKNN selects for each item the
K most similar items, over all items, while the CItemKNN selects neighbors of the
items from the pool of items that each user has selected. The algorithms compute
utility values for every user u and every item i not selected by u.
Specifically, ItemKNN (Algorithm 3.3) computes for each item, i, the set NK(i) of

the K most similar items to i. For user u and item i not selected by u, the algorithm
computes the utility value

V (u, i) =

∑
n∈NK(i) JSim(i, n)S(u, n)∑

n∈NK(i) JSim(i, n)
(3.7)

9

Algorithm 3.1 UserKNN
Input: K: number of nearest neighbors, r: number of recommendations,

S: associations matrix
Output: V : utility values matrix, R: recommendations matrix
1: for each user x do
2: for each user y ̸= x do
3: I(x)← items i for which S(x, i) = 1

4: I(y)← items i for which S(y, i) = 1

5: calculate Jaccard similarity

JSim(x, y)← |I(x) ∩ I(y)|
|I(x) ∪ I(y)|

6: end for
7: end for
8: for each user u do
9: for each item i /∈ S(u) do
10: NK(u)← find K most similar users to u.
11: calculate utility values

V (u, i)←

∑
n∈NK(u)

JSim(u, n) · S(n, i)∑
n∈NK(u)

JSim(u, n)

12: end for
13: end for
14: R← recommend r items to each user with highest utility values

The utility value V (u, i) is the fraction of the similarity scores of the top-K most
similar items to i that user u has selected.
As mentioned in [27], item-based algorithms are enabled to provide more rele-

vant recommendations since the recommendations occur based on each user’s own
ratings. We expect that this apllies also in our case of implicit feedback. Generally,
ItemKNN enables items in the long tail to receive relatively higher utility values than
in UserKNN. It is more possible that items in the long tail have neighbors that also
have less ratings and belong in the long tail. This occurs due to the Jaccard similarity
calculation. If an item i in the long tail was rated by a number of common users with

10

another item j, then the size of the union of users that rated both items is smaller if
j also comes from the long tail. That leads to higher similarity values among these
items.
In Algorithm 3.4 we see that CItemKNN follows CUserKNN in the selection of

neighbors. That is, for each user u and each item i not selected by u, it computes
the set NK(i) of the K closest items to i that were selected by u consist the set of
neighbors NK(i).
It then calculates the utility value

V (u, i) =
∑

n∈NK(i)

JSim(i, n) (3.8)

which is the sum of similarities of item i with its neighbors.
Clearly, the value of K cannot be larger than the number of ratings of user u. Also,

if K is equal to the number of selections of u in S, then the ratio PR of neighbors
for an item i is equal to the preference ratio of the user PRS(u). This way, the item
we predict, has more neighbors from the category of the user. In this case we expect
that the algorithm enables items from the category of the user for recommendation.

11

Algorithm 3.2 CUserKNN
Input: K: number of nearest neighbors, r: number of recommendations,

S: associations matrix
Output: V : utility values matrix, R: recommendations matrix
1: for each user x do
2: for each user y ̸= x do
3: I(x)← items i for which S(x, i) = 1

4: I(y)← items i for which S(y, i) = 1

5: calculate Jaccard similarity

JSim(x, y)← |I(x) ∩ I(y)|
|I(x) ∪ I(y)|

6: end for
7: end for
8: for each user u do
9: for each item i /∈ S(u) do
10: NK(u)← find K most similar users to u that have selected item i.

∀n ∈ NK(u) =⇒ S(n, i) = 1

11: calculate utility values

V (u, i)←
∑

n∈NK(u)

JSim(u, n)

12: end for
13: end for
14: R← recommend r items to each user with highest utility values

12

Algorithm 3.3 ItemKNN
Input: K: number of nearest neighbors, r: number of recommendations,

S: associations matrix
Output: V : utility values matrix, R: recommendations matrix
1: for each item x do
2: for each item y ̸= x do
3: U(x)← users u for which S(u, x) = 1

4: U(y)← users u for which S(u, y) = 1

5: calculate Jaccard similarity

JSim(x, y)← |U(x) ∩ U(y)|
|U(x) ∪ U(y)|

6: end for
7: end for
8: for each user u do
9: for each item i /∈ S(u) do
10: NK(i)← find K most similar items to i.
11: calculate utility values

V (u, i)←

∑
n∈NK(i)

JSim(i, n) · S(u, n)∑
n∈NK(i)

JSim(i, n)

12: end for
13: end for
14: R← recommend r items to each user with highest utility values

13

Algorithm 3.4 CItemKNN
Input: K: number of nearest neighbors, r: number of recommendations,

S: associations matrix
Output: V : utility values matrix, R: recommendations matrix
1: for each item x do
2: for each item y ̸= x do
3: U(x)← users u for which S(u, x) = 1

4: U(y)← users u for which S(u, y) = 1

5: calculate Jaccard similarity

JSim(x, y)← |U(x) ∩ U(y)|
|U(x) ∪ U(y)|

6: end for
7: end for
8: for each user u do
9: for each item i /∈ S(u) do
10: NK(i)← find K most similar items to i that user u has selected.

∀n ∈ NK(i) =⇒ S(u, n) = 1

11: calculate utility values

V (u, i)←
∑

n∈NK(i)

JSim(i, n)

12: end for
13: end for
14: R← recommend r items to each user with highest utility values

14

Chapter 4

Evaluating Bias Disparity

4.1 Synthetic data generation

4.2 Single group

4.3 Symmetric Preferences

4.4 Asymmetric Preferences

4.5 Varying group and category sizes

4.6 Iterative Application of Recommendations

4.7 Bias disparity on real data

In this Chapter, we will evaluate experimentally bias amplification for recommenda-
tion algorithms we consider. To understand the conditions that lead to the emergence
of bias amplification we will work with synthetic datasets with controlled degree of
bias. We also measure bias and bias amplification on real data, using the MovieLens
dataset.

4.1 Synthetic data generation

We create datasets of n users and m items. Each dataset consists of an n×m matrix S.
All datasets are implicit feedback datasets, that is, the generated matrices are binary. A
value S[u, i] = 1 denotes that user u has selected item i. Items are partitioned into two

15

categories C1 and C2 of size m1 and m2 respectively. Users consist one group G or in
most cases they are split into two groups G1 and G2 of size n1 and n2 respectively. We
assume that users in G1 tend to favor items in category C1, while users in group G2

tend to favor items in category C2. To quantify this preference, we give as input to the
data generator two parameters ρ1, ρ2, where parameter ρi determines the preference
ratio PRS(Gi, Ci) of group Gi for category Ci. For example, ρ1 = 0.7 means that 70%
of the ratings of group G1 are in category C1. In the case where we have one group
of users, we assume they prefer category C1 with preference ratio ρ.
The datasets we create consist of 1,000 users and 1,000 items. We assume that

each user selects 5% of the items in expectation and we recommend r = 10 items per
user. The presented results are average values of 10 experiments.
We perform sets of experiments that examine the role of the preference ratios, the

group and category sizes, the number of K neighbors, and the number of recommen-
dations r.

4.2 Single group

In this experiment, we have one user group G and two equal-size item categories C1

and C2. Users in G tend to favor C1 items with preference ratio ρ, which takes values
from 0.5 to 1, in increments of 0.05. In Figure 4.1, we plot the output preference
ratio PRR(G,C1) as a function of ρ for the four recommendation algorithms. Note
that in this experiment, bias is the preference ratio scaled by a factor of two. We report
preference ratios to be more interpretable. The dashed line shows when the output
ratio is equal to the input ratio and thus there is no bias disparity. We consider
different values for K , the number of neighbors. For CUserKNN and CItemKNN
we use lower K values, since we select neighbors that we know are relevant to the
prediction, unlike UserKNN and ItemKNN where neighbors are selected based on
the highest similarities.
UserKNN (Figure 4.1a) amplifies bias as input bias increases. For large K , bias

increases faster and for input PRS = 0.6, recommendations become completely biased.
Smaller K values amplify cause smaller bias disparity but also amplify the input bias.
In Figure 4.1b, we see that ItemKNN decreases bias for smaller input preference

ratios. For PRs > 0.65 bias is amplified. For larger K values when PRS = 0.95, bias

16

decreases significantly. Items in C2 have higher similarity with C1 items than with
other C2 items for high input bias. For PRS = 0.95, the 95% of the total ratings are
given to C1 items, so category C1 has stronger signal. It is more likely for a C2 item
to be selected by the same user at the same time with a C1 item than another C2

item. Since C2 items have as neighbors mostly C1 items that are highly preferred by
the users, the utility values of C2 items become higher than less biased cases, so C2

is competitive to C1 and is recommended more often. This explains the sudden drop
of output bias at that point. However, for complete input bias, C2 items have zero
similarity with any item so it is not possible to be recommended.
We examine the results for CUserKNN and CItemKNN (Figures 4.1c & 4.1d)

and even though they seem to have similar behavior, they have subtle but important
differences. In both cases bias increases rapidly and reaches its peak for PRS ≥ 0.6

but CUserKNN with large K values is more prone to amplifying bias, since it provides
almost completely biased recommendations for the least biased input (PRS = 0.55).
On the other hand, even though CItemKNN has less sharp increase of bias disparity
for smaller bias input, it appears to depend less on the number of neighbors K.
Generally, ItemKNN is more resilient than the other algorithms and has the smaller

bias disparity.

17

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.5

0.6

0.7

0.8

0.9

1

1.1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50
K=100
K=150
K=200

(a) UserKNN

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.5

0.6

0.7

0.8

0.9

1

1.1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50
K=100
K=150
K=200

(b) ItemKNN

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.5

0.6

0.7

0.8

0.9

1

1.1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50

(c) CUserKNN

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.5

0.6

0.7

0.8

0.9

1

1.1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50

(d) CItemKNN

Figure 4.1: Output preference ratio PRR, single group case

18

4.3 Symmetric Preferences

For the following experiments we will have two groups of users, G1 and G2, 1000
in total, and 1000 items split into two categories. we assume that the two groups
have equal size and the same preference ratios by setting ρ1 = ρ2 = ρ, where ρ takes
values from 0.5 to 1, in increments of 0.05. Categories C1 and C2 have equal size also.
We call this setting symmetric. In this section we perform experiments to evaluate the
behavior of the recommenders on datasets with the symmetric setting.

4.3.1 Preference ratio in recommendations

In Figure 4.2, we plot the output preference ratio of the recommenders PRR(G1, C1)

(eq. PRR(G2, C2)) as a function of ρ. A first observation for UserKNN (Figure 4.2a)
is that when the input bias is small (PRS ≤ 0.6), the output bias decreases or stays
the same. In this case, users have neighbors from both groups. For higher input bias
(PRS > 0.6), we have a sharp increase of the output bias, which reaches its peak for
PRS = 0.8. In these cases, the recommender polarizes the two groups, recommending
items only from their favored category.
Increasing the value of K increases the output bias. Adding neighbors increases

the strength of the signal, and the algorithm discriminates better between the items
in the different categories.
The ItemKNN (Figure 4.2b) is almost identical to UserKNN. This is reasonable

because of the symmetry of the associations of the input datasets and the symmetry
of the algorithms.
This applies to CUserKNN and CItemKNN also (Figures 4.2c & 4.2d). They ex-

hibit almost identical behavior. For small input bias (PRS ≤ 0.6), the output bias once
again decreases slightly or stays the same, while for PRS ≥ 0.75 recommendations
are completely biased. The main difference that we notice between the primary and
the context recommenders is that K has a different effect. The context algorithms
are more resilient to the value of K and even for smaller K the bias amplification is
sharp.
In Figure 4.3, we report the preference ratio for all candidate items for recom-

mendation for each user in the UserKNN algorithm. These are the items that have
non-zero utility according to our algorithm. We can think of this bias, as the bias in
the case where r takes the maximum possible value. The plot of the candidate items

19

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50
K=100
K=150
K=200

(a) UserKNN

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50
K=100
K=150
K=200

(b) ItemKNN

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50

(c) CUserKNN

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50

(d) CItemKNN

Figure 4.2: PRR, symmetric case

20

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ca
n

d
id

at
e

it
em

s
ra

ti
o

K=10
K=20
K=50
K=100
K=150
K=200

Figure 4.3: Ratio of candidate items in UserKNN, symmetric case

in ItemKNN is identical and we do not report it. Surprisingly, the candidate items are
less biased even for high values of the input bias. This shows that (a) utility propor-
tional to user or item similarity increases bias, (b) re-ranking may help in decreasing
bias.
It is not useful to report the ratio of candidate items in CUserKNN and CItemKNN.

In our datasets, the ratio of candidate items for these algorithms is always around
0.5, with the exception of the complete biased case (PRS(Gi, Ci) = 1). In that case,
items in one category Ci have zero similarity with items in the other category Ci, so
candidate items come only from each group’s preferred category.

4.3.2 Prediction precision for K neighbors

As we have seen in our experiments, our algorithms are sensitive to the number of
neighbors K that we consider. In order to understand what is the ”correct” number
of K , we use as a guide the performance of the recommender. We perform 5-fold
cross validation on each dataset and measure the precision of the prediction of the
four recommendation algorithms. We test UserKNN and ItemKNN for K up to 500.
For the context algorithms CUserKNN and CItemKNN, we do not consider values of
K larger than 50. That is, because they select as neighbors users that have rated an
item and items that were rated by a user respectively, and users and items in our
data have 50 ratings in expectation.
If R is the set of recommendations of an algorithm A for the train set, and test

is the set of the true selections of users left out of the training, then we measure

21

precision of the algorithm as follows:

precisionA =
1

5
·

5∑
fold=1

|R ∩ test|
|R|

The plot in Figure 4.4 is the average precision over all datasets with varying input
bias. UserKNN has higher precision in its predictions for K values close to 100. Even
though ItemKNN appears to have better precision for K ≥ 200, we want to avoid
using extremely large K values because normalizing the utility values with the sum
of similarities will lead to very small utility values and it will be difficult for the
recommender to discriminate among items. CUserKNN and CItemKNN have better
precision for very small K values. K = 10 is the preferred number of neighbors, since
precision is good and smaller values would not allow diversity among neighbors.
Any item in our datasets has probability 5% to be selected by a user and each

user selects items independently. Applying the UserKNN on the symmetric data, if
we expect at least 5 users that are neighbors to user u to have selected the same item
i, then we need K equal or larger than 100 because K · 5% ≥ 5 =⇒ K ≥ 100. It is
interesting that for K values smaller than 40, the recommended items are probably
suggested by only one user. This applies to ItemKNN also, due to the symmetry of
the data and of the selection of neighbors between the two algorithms. That is why
we will use K = 100 as the default value of K. For CUserKNN and CItemKNN we
select K = 10 as the default value.

4.3.3 Impact of the number of recommendations

To understand the role of the number of recommendations r, we will measure the
recommendation preference ratio for various values of r. We have G1 and G2 user
groups of equal size and C1 and C2 item categories of also equal size. The input pref-
erence ratio for each group is PRS(Gi, Ci) = 0.7. We plot the output preference ratio
of the recommendation algorithms PRR for values of r from 1 to 50. For UserKNN
and ItemKNN we use K = 100 and for CUserKNN and CItemKNN we use K = 10

number of neighbors. As we see in Figure 4.5, for any r, recommendations of any
recommender have amplified bias. The dashed line shows the input preference ratio
and as long as the ratio of recommendations is above it, they have bias increased.
UserKNN and ItemKNN always provide more biased recommendations than the

context recommenders. However, it is obvious that for biased input data, the bias

22

0 100 200 300 400 500
K neighbors

0.014

0.0142

0.0144

0.0146

0.0148

0.015

0.0152

0.0154

av
er

ag
e

p
re

d
ic

ti
o

n
 p

re
ci

si
o

n

(a) UserKNN

0 100 200 300 400 500
K neighbors

0.014

0.0145

0.015

0.0155

0.016

av
er

ag
e

p
re

d
ic

ti
o

n
 p

re
ci

si
o

n

(b) ItemKNN

0 10 20 30 40 50
K neighbors

0.014

0.0142

0.0144

0.0146

0.0148

0.015

0.0152

0.0154

av
er

ag
e

p
re

d
ic

ti
o

n
 p

re
ci

si
o

n

(c) CUserKNN

0 10 20 30 40 50
K neighbors

0.014

0.0142

0.0144

0.0146

0.0148

0.015

0.0152

0.0154

av
er

ag
e

p
re

d
ic

ti
o

n
 p

re
ci

si
o

n

(d) CItemKNN

Figure 4.4: Average prediction precision for various K values

23

10 20 30 40 50
number of recommendations

0.5

0.6

0.7

0.8

0.9

1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

UserKNN
ItemKNN
CUserKNN
CIitemKNN

Figure 4.5: PRR for r from 1 to 50; input preference ratio PRS = 0.7

in recommendations increases significantly regardless the amount of recommended
items. In any case, as r takes larger values, bias decreases and since the ratio of
candidate items (Figure 4.3) has negative bias disparity, for large values of r, recom-
mendations will also have negative bias disparity.

4.3.4 MAP of recommendations

In this experiment we want to understand how item categories rank according to
their utility value if we see recommendations as ranked lists per user. Users are more
likely to accept items that are ranked higher. Assume that a user will accept 6 out
of 10 recommendations and that the PRR of the set of recommendations is 0.7. The
ranking where all 7 Ci items are positioned on the top of the list will result in the
user accepting only Ci items. We consider this a highly biased ranking even though
the preference ratio of the top-10 recommendations may be 0.7, equal to that of the
input. On the other hand, if at the top 6 positions of the list we have 3 Ci items and
3 Ci, then the set of recommendations that the user will accept, is unbiased.
We use the symmetric setting of equal-sized user groups G1 and G2 and equal-

sized item categories C1 and C2 for varying input preference ratios from 0.5 to 1. For
number of users n and number of recommended items per user r, we will measure
the mean average precision (MAP) values of any recommendation algorithm A, as
follows:

MAPA =
1

n
· 1
r
·

n∑
u=1

r∑
p=1

I(p, u)

p

24

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0

0.2

0.4

0.6

0.8

1

M
A

P

UserKNN
ItemKNN
CUserKNN
CItemKNN
maxOutput
meanOutput
minOutput

Figure 4.6: Average MAP of recommendations (Gi, Ci); the dashed lines show the
minimum, maximum and mean possible MAP according to the input bias.

, where I(p, u) is the number of Ci items in recommendations of user u ∈ Gi, R(u),
at positions from 1 to p.
In Figure 4.6, we plot the MAP values of the recommendations of each algo-

rithm. The red dashed lines ”minOutput”, ”meanOutput” and ”maxOutput”, show
the minimum, the mean and the maximum possible MAP value for the average of
the output preference ratios of the algorithms. The ”maxOutput” shows the MAP
values in the case where all the recommended Ci items are ranked on the top of
the recommendation list, and the ”minOutput” shows the MAP values when all Ci

items are positioned on the bottom of the recommendation list. The ”meanOutput”
represents a random ranking.
We observe that for small preference ratio the ranking of items is random, which

is reasonable since there is not that much output bias either (Figure 4.2). There is a
point for PRS > 0.6 and for PRS < 0.75 where the recommenders have increasing
MAP values and get closer to the maximum MAP. This indicates that for Gi users,
Ci items are ranked a bit higher than Ci. Finally, for large input preference ratio, the
recommendations are completely biased and in that case we have MAP values equal
to 1 since there are only Ci items in the lists.

4.4 Asymmetric Preferences

In this set of experiments, the two groups have different bias preference ratios. We
want to understand how the degree of bias in one group affects the bias of the other

25

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
o

u
tp

u
t

p
re

fe
re

n
ce

 r
at

io

K=10
K=20
K=50
K=100
K=150
K=200

(a) group G1

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50
K=100
K=150
K=200

(b) group G2

Figure 4.7: UserKNN, PRR(Gi, Ci), asymmetric case

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50
K=100
K=150
K=200

(a) group G1

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50
K=100
K=150
K=200

(b) group G2

Figure 4.8: ItemKNN, PRR(Gi, Ci), asymmetric case

group. In our first experiment, group G1 has preference ratio ρ1 ranging from 0.5 to
1 while G2 has fixed preference ratio ρ2 = 0.5, that is, G2 is unbiased. We show the
recommendation preference ratio for groups G1 and G2 as a function of ρ1.
We observe that the UserKNN output bias of group G1 (Figure 4.7a) is amplified

at a rate much higher than in Figure 4.2a, while group G2 (Figure 4.7b) becomes
biased towards category C1. Surprisingly, the presence of the unbiased group G2,
rather than moderating the overall bias, it has an amplifying effect on the bias of G1,
more so than an opposite-biased group.
Furthermore, the unbiased group adopts the biases of the bias group. This is due

to the fact that the users in the unbiased group G2 provide a stronger signal in favor
of category C1 compared to the symmetric case where group G2 is biased over C2.
This reinforces the overall bias in favor of category C1.

26

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
o

u
tp

u
t

p
re

fe
re

n
ce

 r
at

io

K=10
K=20
K=50

(a) group G1

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50

(b) group G2

Figure 4.9: CUserKNN, PRR(Gi, Ci), asymmetric case

On the other hand, ItemKNN exhibits a more neutral behavior. The output bias of
group G1 in Figure 4.8a, decreases for smaller input bias (PRS ≤ 0.7) and increases
with a lower rate than UserKNN for larger input bias. Bias becomes amplified for
higher input bias than in the symmetric case (Figure 4.2b) because the unbiased
group shares its ratings in both categories and it is easier for items of category C2 to
have neighbors in C1.
The unbiased group G2 (Figure 4.8b) receives almost unbiased recommendations

from ItemKNN. When G1 has higher input bias, then G2 is pushed towards category
C2 for larger K values, rather than being drawn to C1.
Unlike ItemKNN, the context algorithms once again result in positive bias disparity

and behave similarly to UserKNN even though they result in biased recommendations
faster. In Figure 4.9 we see that CUserKNN has fully biased recommendations for
group G1 after a point, depending on K , and it is more sharp for larger K values,
while the CItemKNN recommendations are less affected by K but have also large bias
disparity.
The unbiased group G2 is completely drawn to category C1 by both context al-

gorithms because it is easier for them to discriminate items. We notice an interesting
point where CItemKNN for the unbiased group G2 has a decrease of bias disparity
for large input bias of group G1.
An interesting observation from this experiment is that ItemKNN behaves differ-

ently from the other recommenders. It tends to balance recommendations, and the
more biased group does not draw the unbiased group to its category. The unbiased
group impedes to a small extent the bias amplification of the biased group. UserKNN

27

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
o

u
tp

u
t

p
re

fe
re

n
ce

 r
at

io

K=10
K=20
K=50

(a) group G1

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50

(b) group G2

Figure 4.10: CItemKNN, PRR(Gi, Ci), asymmetric case

and the context recommenders are more prone to input bias and affect the unbiased
group significantly.

4.5 Varying group and category sizes

In this experiment we examine bias disparity with unbalanced groups and categories.

4.5.1 Varying Group Sizes

We first consider groups of uneven size. We set the size n1 of G1 to be a fraction ϕ of
the number of all users n, ranging from 5% to 95%. Both groups have fixed preference
ratio ρ1 = ρ2 = 0.7. Figure 4.11 shows the output preference ratio PRR(G1, C1) of the
recommendation algorithms as a function of ϕ. The plots of PRR(G2, C2) are the
mirror images of G1 plots, so we do not report them.
We observe that for ϕ ≤ 0.3 group G1 has negative bias disparity (PRR(G1, C1) <

0.7) when we apply the UserKNN recommender. For medium values of ϕ in [0.35, 0.5]

the bias of both groups is amplified, despite the fact that G1 is smaller than G2. The
increase is larger for the larger group, but there is increase for the smaller group as
well.
The context recommendation algorithms have also negative bias disparity for small

ϕ. That is, the small group is drawn by the larger group. It is reasonable that in
UserKNN and CUserKNN users in the small group have more neighbors from the

28

0 0.2 0.4 0.6 0.8 1
ratio ?

0

0.2

0.4

0.6

0.8

1
o

u
tp

u
t

p
re

fe
re

n
ce

 r
at

io

K=10
K=20
K=50
K=100
K=150
K=200

(a) UserKNN

0 0.2 0.4 0.6 0.8 1
ratio ?

0

0.2

0.4

0.6

0.8

1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50
K=100
K=150
K=200

(b) ItemKNN

0 0.2 0.4 0.6 0.8 1
ratio ?

0

0.2

0.4

0.6

0.8

1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50

(c) CUserKNN

0 0.2 0.4 0.6 0.8 1
ratio ?

0

0.2

0.4

0.6

0.8

1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50

(d) CItemKNN

Figure 4.11: Unbalanced group sizes; input preference ratio PRS(Gi, Ci) = 0.7

larger group. In the case of CItemKNN, items from the category preferred by the
larger group have higher utility values because they are not normalized compared
to ItemKNN. Again, the outputs of the context algorithms have resemblance with
those of the UserKNN and have complete bias in recommendations for the larger
group. However, CUserKNN shows more dependence on the value of K neighbors
than CItemKNN.
ItemKNN as we see in Figure 4.11b, behaves differently from all other the recom-

menders. For any group size, the recommendations have positive bias disparity. That
is, the two biased groups are polarized regardless of their size. However, ItemKNN
is more vulnerable to small biased user groups. For ϕ > 0.6, where G1 is the larger
group, bias disparity drops even though it remains positive. For small K and ϕ = 0.95,
we have PRR ≈ PRS. Smaller user groups with more gathered ratings in one cate-
gory, allow ItemKNN to select neighbor items from the same category and support
recommendations from the same category.

29

4.5.2 Varying Category Sizes

We now consider categories of uneven size. We set the size m1 of C1 to be a fraction
θ of the number items m, ranging from 5% to 95%. We assume that both groups
have fixed preference ratio ρ1 = ρ2 = 0.7. Figure 4.12 shows the recommendation
preference ratios PRR(G1, C1) of the four algorithms, as a function of θ. The plots of
PRR(G2, C2) are again the mirror images of these.
Note that as long as θ ≤ 0.7, group G1 has positive bias (greater than 1) for

category C1 since bias is equal to ρ1/θ. However, it decreases as the size of the category
increases.
We observe that when the category size is not very large (θ ≤ 0.5), the output bias

of UserKNN is amplified regardless of the category size. For θ > 0.7, G1 is actually
biased in favor of C2, and this is reflected in the output. There is an interesting range
[0.6, 0.7] where G1 is positively biased towards C1 but its bias is weak, and thus the
recommendation output is drawn to category C2 by the more biased group.
ItemKNN shows a similar behavior with UserKNN, since bias decreases when

the category becomes larger. Bias is amplified for θ < 0.8. The threshold where bias
disparity becomes negative is greater than the other recommenders (θ = 0.6) which
are more vulnerable to category size.
The context algorithms are very sharp and also amplify the output bias for θ < 0.6.

It s interesting to note that CItemKNN is not affected by the value of K.

30

0 0.2 0.4 0.6 0.8 1
ratio 3

0

0.2

0.4

0.6

0.8

1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50
K=100
K=150
K=200

(a) UserKNN

0 0.2 0.4 0.6 0.8 1
ratio 3

0

0.2

0.4

0.6

0.8

1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50
K=100
K=150
K=200

(b) ItemKNN

0 0.2 0.4 0.6 0.8 1
ratio 3

0

0.2

0.4

0.6

0.8

1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50

(c) CUserKNN

0 0.2 0.4 0.6 0.8 1
ratio 3

0

0.2

0.4

0.6

0.8

1

o
u

tp
u

t
p

re
fe

re
n

ce
 r

at
io

K=10
K=20
K=50

(d) CItemKNN

Figure 4.12: Unbalanced category sizes; input preference ratio PRS(Gi, Ci) = 0.7

31

4.6 Iterative Application of Recommendations

We observed bias disparity in the output of the recommendation algorithm. How-
ever, how does this affect the bias in the data? To study this we consider a scenario
where the users accept (some of) the recommendations of the algorithm, and we
study the long-term effect of the iterative application of the algorithm on the bias of
the data. More precisely, at each iteration, we consider the top-r recommendations
of the algorithm (r = 10) to a user u, and we normalize their utility values, by the
utility value of the top recommendation. We then assume that the user accepts a
recommendation with probability equal to the normalized score. The accepted rec-
ommendations are added to the data, and they are fed as input to the next iteration
of the recommendation algorithm.
We apply this iterative algorithm on a dataset with two equally but oppositely

biased groups, as described in Section 4.3. The results of this iterative experiment are
shown in Figure 4.13, where we plot the average preference ratio for each iteration.
Iteration 0 corresponds to the input data. For this experiment we set the value of
K to the default values we selected, 100 for UserKNN and ItemKNN, and 10 for
CUserKNN and CItemKNN.
We observe that even with the probabilistic acceptance of recommendations, there

is a clear long-term effect of the recommendation bias. For small values of input bias,
we observe a decrease in line with the observations in Figure 4.2. For these values
of bias, the recommender will result in reducing bias and smoothing out differences.
For larger values of preference ratio the bias in the data increases. Therefore, for
large values of bias the recommender has a reinforcing effect, which in the long
term will lead to polarized groups of users. However, it is interesting that CItemKNN
(Figure 4.13d) has the most modest behavior. After a number of iterations, the bias
disparity decreases. After iteration 4, it appears to have zero bias disparity for large
input preference ratios.
The most vulnerable algorithm in the long-term, is ItemKNN (Figure 4.13b). The

tendency to polarize biased groups that we have observed in Section 4.4, support
these results.
In Figure 4.14 we report the average number of recommendations that each

user accepts after every iteration of the recommender. We see that UserKNN and
CItemKNN from more than 8 average accepted recommendations per user at the

32

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1

p
re

fe
re

n
ce

 r
at

io
 P

R
S

(a) UserKNN

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1

p
re

fe
re

n
ce

 r
at

io
 P

R
S

(b) ItemKNN

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1

p
re

fe
re

n
ce

 r
at

io
 P

R
S

(c) CUserKNN

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1

p
re

fe
re

n
ce

 r
at

io
 P

R
S

(d) CItemKNN

Figure 4.13: The evolution of the preference ratio in the data for different input pref-
erence ratios (PRS), after 5 iterations of (a) UserKNN, (b) ItemKNN, (c) CUserKNN
and (d) CItemKNN. Iteration 0 shows the original preference ratio of each dataset.

1 2 3 4 5
iteration

0

2

4

6

8

10

av
g

 a
cc

ep
te

d
 it

em
s

p
er

 u
se

r

UserKNN
ItemKNN
CUserKNN
CItemKNN

Figure 4.14: Average of accepted items per user on every iteration

33

first iteration, drop to 6 at iteration 5. However, ItemKNN and CUserKNN remain
constantly above 8, which is why they have larger bias disparity in Figure 4.13.

4.7 Bias disparity on real data

4.7.1 Data and settings

In this set of experiments, we use the Movielens 1M dataset1. We select two groups
of users and two movie genres. To create the associations matrix S, we exclude items
that do not belong to one of the genres we selected and items that belong to both.
We also exclude users with no ratings for the items selected. We ignore the values of
ratings, and all specified ratings are considered positive associations with value 1 in
matrix S. Unspecified ratings are also considered unspecified associations with value
0 in S. In every experiment, we first measure input bias, bias in recommendations
and bias disparity. Secondly, we take a random sample of users from the larger group,
equal to the small group, in order to balance the user groups, and measure bias again.

4.7.2 Gender bias

Bias disparity of recommenders
We consider as categories the genres Action and Romance, with 468 and 463

movies. We extract a subset of users U that have at least 90 ratings in these categories,
resulting in 1,259 users. Users in U consist of 981 males and 278 females. In this
experiment we use number of neighbors K = 100 for UserKNN and ItemKNN, and
K = 10 for CUserKNN and CItemKNN.
In Table 4.1, we show the input/output bias and in parentheses the bias dispar-

ity for each group-category combination. The right part of the table reports these
numbers when the user groups are balanced, by selecting a random sample of 278
males.
We observe that males are biased in favor of Action movies while females prefer

Romance movies. The application of UserKNN increases the output bias for males
for which group the input bias is strong. Females are moderately biased in favor of
Romance movies. Hence, their output bias is drawn to Action items. We observe a

1MovieLens 1M: https://grouplens.org/datasets/movielens/1m/

34

Unbalanced Groups Balanced Groups

Action Romance Action Romance

UserKNN

M 1.39/1.77 (0.27) 0.58/0.17 (-0.70) 1.40/1.73 (0.24) 0.57/0.22 (-0.62)

F 0.97/1.43 (0.47) 1.03/0.54 (-0.48) 0.97/1.33 (0.37) 1.03/0.64 (-0.38)

CUserKNN

M 1.39/1.67 (0.20) 0.58/0.28 (-0.51) 1.41/1.68 (0.19) 0.56/0.27 (-0.51)

F 0.97/1.15 (0.18) 1.03/0.84 (-0.19) 0.97/1.06 (0.09) 1.03/0.94 (-0.09)

ItemKNN

M 1.39/1.43 (0.03) 0.58/0.54 (-0.07) 1.39/1.51 (0.09) 0.59/0.45 (-0.23)

F 0.97/0.60 (-0.39) 1.03/1.43 (0.39) 0.97/0.68 (-0.30) 1.03/1.34 (0.30)

CItemKNN

M 1.39/1.73 (0.24) 0.58/0.22 (-0.62) 1.40/1.42 (0.01) 0.57/0.55 (-0.04)

F 0.97/1.85 (0.91) 1.03/0.09 (-0.92) 0.97/1.71 (0.76) 1.03/0.24 (-0.77)

Table 4.1: Gender bias in action and romance

very similar picture for balanced data, indicating that the changes in bias are not due
to the group imbalance. CUserKNN has similar behavior but exhibits lower bias dis-
parity. The ItemKNN algorithm, as we observed in the experiments with the synthetic
data, polarizes the two groups by increasing their biases in both the unbalanced and
balanced cases. The stronger effect on the less biased group is observed in CItemKNN,
which results in almost complete opposite bias for the female group in the unbalanced
case. In the balanced case we have lower bias disparity but still significant.
Iterative application of recommenders
On the same setting of gender groups, we apply iteratively the recommendation

algorithms. We assume that after every iteration, users accept recommendations with
a probablility. We normalize the utility values of the recommendations of each user,
with the highest utility in each user’s recommendations list and we accept items with
that probability. In the associations matrix, we add the accepted items for each user
and measure the new input bias BS. Then we apply the recommenders on the new
associations.
In Figure 4.15, we plot the bias for 5 iterations of the four recommendation al-

gorithms. Iteration 0 indicates the original input bias. We consider again the cases

35

0 1 2 3 4 5
iteration

0.8

1

1.2

1.4

1.6

b
ia

s
B

S

M(Unbalanced)
M(Balanced)
F(Unbalanced)
F(Balanced)

(a) UserKNN

0 1 2 3 4 5
iteration

1

1.1

1.2

1.3

1.4

1.5

b
ia

s
B

S

M(Unbalanced)
M(Balanced)
F(Unbalanced)
F(Balanced)

(b) ItemKNN

0 1 2 3 4 5
iteration

0.8

1

1.2

1.4

1.6

b
ia

s
B

S

M(Unbalanced)
M(Balanced)
F(Unbalanced)
F(Balanced)

(c) CUserKNN

0 1 2 3 4 5
iteration

0.8

1

1.2

1.4

1.6

b
ia

s
B

S

M(Unbalanced)
M(Balanced)
F(Unbalanced)
F(Balanced)

(d) CItemKNN

Figure 4.15: The evolution of bias in the data, after 5 iterations of the recommenders:
(a) UserKNN, (b) ItemKNN, (c) CUserKNN and (d) CItemKNN. M: BS(Male, Action),
F: BS(Female, Romance). Iteration 0 shows the original bias.

of unbalanced and balanced groups. The line M shows the bias for males to action
(BS(Males, Action)), while F shows the bias for females and romance (BS(Females, Romance)).
We observe first that there is no significant difference between the balanced and

the unbalanced setting. We see that in the long-term, bias increases for Males that are
originally more biased, while Females have usually negative bias disparity and they
are drawn to the Action category. Once again, the ItemKNN has distinctive behavior
and polarizes the two groups, since they both have positive bias disparity.

4.7.3 Social bias

Biased groups occur also when we examine different occupations. An interesting
example includes students from kindergarten to 12th grade and people that have
retired. Students group has 195 users and Retired has 142. We apply the recom-
menders for K = 5 for CUserKNN and CItemKNN, and for K = 10 for UserKNN
and ItemKNN, since we have a smaller dataset.
As we see in Table 4.2, these groups are oppositely biased in the categories of

Children’s and War movies respectively. Children’s category has 249 items and War
has 141. The Retired group is completely biased in favor of War movies which is a
smaller and more dense item category. This results in ItemKNN increasing the bias

36

and drawing Students to War items. UserKNN and CUserKNN mitigate biases while
CItemKNN enables more recommendations from the larger category Children’s where
we have very large bias in the input. Similar to Table 4.1, the CItemKNN has high bias
disparity for the Retired group which is smaller and is drawn to the large category.

Unbalanced Groups Balanced Groups

Children’s War Children’s War

UserKNN

S 1.45/1.27 (-0.12) 0.67/0.80 (0.19) 1.45/1.28 (-0.12) 0.67/0.80 (0.19)

R 0.47/0.62 (0.33) 1.39/1.28 (-0.08) 0.47/0.60 (0.29) 1.39/1.29 (-0.07)

CUserKNN

S 1.45/1.24 (-0.14) 0.67/0.82 (0.23) 1.46/1.25 (-0.14) 0.66/0.82 (0.23)

R 0.47/0.60 (0.30) 1.39/1.29 (-0.07) 0.47/0.57 (0.23) 1.39/1.31 (-0.06)

ItemKNN

S 1.45/1.13 (-0.22) 0.67/0.90 (0.34) 1.41/1.14 (-0.19) 0.70/0.90 (0.29)

R 0.47/0.39 (-0.15) 1.39/1.44 (0.04) 0.47/0.45 (-0.03) 1.39/1.40 (0.01)

CItemKNN

S 1.45/1.63 (0.12) 0.67/0.54 (-0.19) 1.47/1.68 (0.14) 0.65/0.50 (-0.23)

R 0.47/0.82 (0.76) 1.39/1.13 (-0.19) 0.47/0.79 (0.70) 1.39/1.15 (-0.17)

Table 4.2: Occupation bias in children’s and war

Finally, we examine the group of Homemakers with 92 users and the Retired
with 142 users. We have two almost equal categories. Animation has 104 items and
Mystery has 105. We again use K = 5 for the context algorithms and K = 10 for the
primary.
In Table 4.3, we observe some bias amplification for CItemKNN in the balanced

case, where it has positive bias amplification for both groups in Animation, due to
the fact that there are more ratings in that category, therefore stronger signal. The
rest of the recommenders mitigate biases in any case. In the unbalanced case though,
we have more bias decrease for the smaller group than in the balanced case.

37

Unbalanced Groups Balanced Groups

Animation Mystery Animation Mystery

UserKNN

H 1.28/1.07 (-0.17) 0.72/0.93 (0.30) 1.28/1.13 (-0.12) 0.72/0.87 (0.22)

R 0.59/0.76 (0.27) 1.40/1.24 (-0.11) 0.62/0.79 (0.28) 1.38/1.21 (-0.12)

CUserKNN

H 1.28/1.08 (-0.16) 0.72/0.92 (0.28) 1.28/1.19 (-0.07) 0.72/0.81 (0.13)

R 0.59/0.70 (0.19) 1.40/1.29 (-0.08) 0.72/0.89 (0.23) 1.27/1.11 (-0.13)

ItemKNN

H 1.28/1.08 (-0.16) 0.72/0.92 (0.28) 1.28/1.11 (-0.14) 0.72/0.90 (0.25)

R 0.59/0.61 (0.03) 1.40/1.38 (-0.01) 0.58/0.62 (0.07) 1.42/1.38 (-0.03)

CItemKNN

H 1.28/1.27 (-0.01) 0.72/0.73 (0.02) 1.28/1.34 (0.04) 0.72/0.67 (-0.07)

R 0.59/0.67 (0.12) 1.40/1.33 (-0.05) 0.68/0.86 (0.26) 1.31/1.14 (-0.14)

Table 4.3: Occupation bias in animation and mystery

38

Chapter 5

Correcting Bias Disparity

5.1 GULM: Group Utility Loss Minimization

5.2 MULM: Maximum User Utility Loss Minimization

5.3 Evaluation of bias correcting algorithms

To address the problem of bias disparity, we consider two algorithms that performs
post-processing of the recommendations. Our goal is to adjust the set of items rec-
ommended to users so as to ensure that there is no bias disparity. Each algorithm
aims at producing new recommendations while maintaining high utility for the rec-
ommendation set.
We consider two algorithms: the GULM (Group Utility Loss Minimization) al-

gorithm, and the MULM (Maximum User Utility Loss Minimization). The GULM
algorithm targets on providing new recommendations that have the maximum pos-
sible average utility for the group of users, while MULM processes recommendations
in a way that the minimum utility of all recommendations is the maximum possible.

5.1 GULM: Group Utility Loss Minimization

The GULM algorithm processes a set of recommendations R and produces a new
set of recommendations RGULM that minimize the bias disparity of a group Gi in
categories Ci and Ci, while minimizing the group utility loss for Gi.

39

Abusing the notation, let R denote the set of user-item pairs produced by our rec-
ommendation algorithm, where (u, i) ∈ R denotes that u was recommended item i.
We will refer to the pair (u, i) as a recommendation. The set R contains r recommen-
dations for each user, thus, rn recommendations in total. Let V (R) =

∑
(u,i)∈R V (u, i)

denote the total utility of the recommendations in set R. Since R contains for each
user u the top-r items with the highest utility, R has the maximum utility.
We want to adjust the set R so as to minimize the bias disparity BD(Gi, Ci). Since

we have two categories, it suffices to minimize |BR(Gi, Ci) − BS(Gi, Ci)|. That is, the
absolute value of the difference of the bias of each group in R and the one in the
input data. Without loss of generality assume that BR(Gi, Ci) > BS(Gi, Ci). Let Ci

denote the category other than Ci. We decrease the output bias BR by swapping
recommendations (u, i) of category Ci with recommendations (u, j) of category Ci.
The GULM algorithm applies a simple greedy rule where at each step it swaps the
pair of recommendations that incur the minimum utility loss.
We define swapping (u, i) with (u, j) as swap s, and we say that s involves user u

and items i, j. That is,
s = ⟨(u, i), (u, j)⟩ (5.1)

The utility loss incurred by a swap s is

loss(s) = V (u, i)− V (u, j) (5.2)

That is, the difference of the utility values of item i that is replaced and the new item
j, for user u. Assume that S is the set of swaps for all users in the group G. If Su ⊆ S

is the set of swaps involving user u, then the user loss is the sum of losses incurred
by each swap for u. That is,

loss(u, S) =
∑
s∈Su

V (u, is)− V (u, js) (5.3)

If we perform all swaps in S, the group utility loss for G is the sum of losses incurred
by all swaps in S, or else the sum of user losses for all users in G.

loss(G,S) =
∑
s∈S

V (us, is)− V (us, js) (5.4)

From all the possible swaps that involve users in Gi, we select as candidate swaps
those that incur the minimum possible utility loss. The candidate swaps can be com-
puted by pairing for each user u the lowest-ranked unpaired recommendation (u, i) in

40

R from category Ci, with the highest-ranked unpaired recommendation (u, j) not in
R from category Ci as you can see in Algorithm 5.1 (lines:8-16). We perform swaps
like that with ascending loss of utility (Alg.5.1, line:17) until the desired number
of swaps has been performed (Alg.5.1, lines:20-23). The number of desired swaps
(Alg.5.1, line:19) is the one that minimizes the bias disparity BD(Gi, Ci). It is not
always possible to obtain the exact bias as in the input data, because the number of
necessary swaps may not be an integer number. The number of desired swaps is the
one that minimizes |BR(Gi, Ci)− BS(Gi, Ci)|. It is reasonable to expect a small error
in the results.
This algorithm is efficient, and it is easy to show that it is optimal, in the sense

that it will produce the set of recommendations with the highest utility among all
sets with no bias disparity.

Lemma 5.1. The algorithm GULM has the optimal group utility loss for a number of swaps
ℓ, compared to any algorithm that performs equal number of swaps.

Proof. Let P be the set of all possible swaps, and W the set of swaps we defined
through the matching process. For a user u, a set of possible swaps S, and a number
k, let

losso(u, S, k)

be the minimum (optimal) loss of performing k swaps from set S for user u. It is
easy to show that for any k, we have

losso(u,W, k) ≤ losso(u, P, k) (5.5)

If the optimal K swaps from S for user u are the K pairs of items i with items j,

(i1, j1), ..., (iK , jK)

then the loss of these swaps is losso(u, S,K):

losso(u, S,K) =
K∑
k=1

V (u, ik)−
K∑
k=1

V (u, jk) (5.6)

losso(u, S,K) is minimum when
K∑
k=1

V (u, ik) is the minimum possible and
K∑
k=1

V (u, jk)

is the maximum possible. Since, in W we select the i items for user u that minimize
the sum of utilities and the j items that maximize the sum of utilities for u, for K ,
they are the swaps with the optimal loss.

41

Let losso(S, k) be the minimum group loss of performing k swaps selected from set
S. We will show that

losso(W,k) ≤ losso(P, k) (5.7)

We have
losso(P, k) =

∑
u

losso(u, P, ku) (5.8)

where ku is the number of swaps for user u and the sum is over all involved users.
For the same users, using swaps only from W , we have

losso(W,k) =
∑
u

losso(u,W, ku) ≤
∑
u

losso(u, P, ku) = losso(P, k) (5.9)

Now for the set W it is trivial to show that the greedy is optimal, since we are
simply adding up the losses of independent swaps, and we just select the k smallest
numbers.

42

Algorithm 5.1 The GULM Algorithm
Input: S: associations matrix, R: recommendations matrix, V : utility values
Output: RGULM recommendations with BGULM ≈ BS

1: calculate biases BR and BS

2: for each item i do
3: if S(u, i) = 0 & R(u, i) = 0 then
4: C(u, i)← 1 find candidate pairs
5: end if
6: end for
7: if BR > BS then
8: for each user u do
9: LCi

← list of items i ∈ Ci, for which R(u, i) = 1, sorted by V ascending
10: LCi

← list of items i ∈ Ci, for which C(u, i) = 1, sorted by V descending
11: possible_swaps← min(|LCi

|, |LCi
|)

12: for i from 1 to possible_swaps do
13: x_item← LCi

(i); y_item← LCi
(i); loss← V (x_item)− V (y_item)

14: Swaps(i)← (u, x_item, y_item, loss) keep candidate swaps
15: end for
16: end for
17: sort Swaps by loss in ascending order
18: RGULM ← R

19: desired_swaps← calculate number of swaps that minimize |BR −BS|
20: for i from 1 to desired_swaps do
21: RGULM(Swaps(i).u, Swaps(i).x_item)← 0

22: RGULM(Swaps(i).u, Swaps(i).y_item)← 1

23: end for
24: else
25: replace Ci items with Ci

26: end if

43

5.2 MULM: Maximum User Utility Loss Minimization

The Minimize Maximum User Utility Loss MULM algorithm processes a set of rec-
ommendations R and produces a new set of recommendations RMULM that minimize
the bias disparity of a group Gi in categories Ci and Ci, while minimizing the max
user utility loss for Gi.
As described in Section ??, the GULM algorithm swaps recommendations of one

category with another, while we keep the utility loss for the group to the minimum
possible. However, this may result in some users having many swaps and incurring
high user utility loss, while others receive the original set of recommendations as they
were selected by the recommender, with no utility loss. To avoid mistreating a portion
of the users, we consider a different algorithm that adjusts the set of recommendations
R, so as to ensure that the bias in R is the same as the input bias, while minimizing
the maximum over all users utility loss. We call this algorithm Minimize Maximum
User utility Loss (MULM). MULM is optimal and results in the minimum possible
maximum user loss.
Assume that BR(Gi, Ci) > BS(Gi, Ci). We swap recommendations (u, i) of category

Ci with recommendations (u, j) of category Ci with a greedy algorithm. Unlike GULM,
this algorithm at each step takes into account the utility loss that each user incurred
in previous steps and selects the swap with the minimum total loss for a user. In
the Algorithm 5.2, you can see that we keep the additive loss for the user after we
perform a swap (lines:24-27).
Again the candidate swaps are computed by pairing for each user u the lowest-

ranked recommendation (u, i) in R from category Ci, with the highest ranked rec-
ommendation (u, j) not in R from category Ci and the number of the desired swaps
is the one that minimizes |BR(Gi, Ci)− BS(Gi, Ci)|. We perform the desired number
of swaps while we re-order the candidate swaps after each swap (Alg.5.2, line:28).
At step k, the swap sk is on the top of the list of candidate swaps and it will result
in the minimum increase of the maximum user utility loss. If swap sk replaces (u, i)
with (u, j) and has total user loss for u, lossk(u), then after we perform the swap, we
remove it from the candidate swaps list and update all other swaps for user u that
remain in the list, by adding lossk(u) to the loss of each swap. This way, we keep
track of the total loss every user incurred after a number of swaps. Finally, we sort
again the list of candidate swaps by ascending total user loss and proceed to the next

44

step.
After the desired number of the swaps, the bias of the updated recommendations

is the same as the input bias BS and the total utility loss is shared by as many users
as possible.

Lemma 5.2. The algorithm MULM has the optimal maximum user utility loss for a number
of swaps s, compared to any algorithm that performs equal number of swaps.

Proof. To prove the algorithm’s optimality, we assume that MULM is not optimal and
there is another solution that results in the optimal maximum user loss. We denote
with losso(u) and lossm(u) the utility loss of user u in the case of optimal and MULM
respectively. Let uo be the user with the maximum loss for optimal and um the user
with the maximum loss for MULM. We have

losso(uo) ≥ losso(u), ∀u (5.10)

and
lossm(um) ≥ lossm(u),∀u (5.11)

Assume for the purpose of contradiction, that

lossm(um) > losso(uo) (5.12)

From (5.10) and (5.12),
lossm(um) > losso(um) (5.13)

From (5.13), it must be that MULM makes more swaps for um than optimal. Since
both algorithms make the same number of swaps, then optimal must make at least
one more swap for some user than MULM. Let w be this user, then

losso(w) ≥ lossm(w) (5.14)

Take the point at which MULM makes the last swap that includes w. Since w is never
included in any further swaps, it must hold

lossm(w) ≥ lossm(u),∀u (5.15)

otherwise w should have been swapped. From (5.14) and (5.15),

losso(w) ≥ lossm(u),∀u (5.16)

45

and therefore,
losso(w) ≥ lossm(um) (5.17)

Using (5.10)
losso(uo) ≥ lossm(um) (5.18)

which contradicts our assumption (5.12).

46

Algorithm 5.2 The MULM Algorithm
Input: S: associations matrix, R: recommendations matrix, V : utility values
Output: recommendations RMULM with BMULM ≈ BS

1: calculate biases BR and BS

2: for each item i do
3: if S(u, i) = 0 & R(u, i) = 0 then
4: C(u, i)← 1 find candidate pairs
5: end if
6: end for
7: if BR > BS then
8: for each user u do
9: LCi

← list of items i ∈ Ci, for which R(u, i) = 1, sorted by V ascending
10: LCi

← list of items i ∈ Ci, for which C(u, i) = 1, sorted by V descending
11: possible_swaps← min(|LCi

|, |LCi
|)

12: for i from 1 to possible_swaps do
13: x_item← LCi

(i); y_item← LCi
(i); loss← V (x_item)− V (y_item)

14: Swaps(i)← (u, x_item, y_item, loss) keep candidate swaps
15: end for
16: end for
17: sort Swaps by loss in ascending order
18: RMULM ← R

19: desired_swaps← calculate number of swaps that minimize |BR −BS|
20: for i from 1 to desired_swaps do
21: RMULM(Swaps(1).u, Swaps(1).x_item)← 0

22: RMULM(Swaps(1).u, Swaps(1).y_item)← 1

23: for i from 1 to size(Swaps) do
24: if Swaps(i).u = Swaps(1).u then
25: Swaps(i).loss← Swaps(i).loss+ Swaps(1).loss

26: end if
27: end for
28: remove Swaps(1) and sort Swaps by loss in ascending order
29: end for
30: else
31: replace Ci items with Ci

32: end if
47

5.3 Evaluation of bias correcting algorithms

In this Section, we present the experiments that evaluate the behavior of the correcting
algorithms GULM and MULM.

5.3.1 Prediction precision of correcting algorithms

First, we measure the prediction precision of GULM and MULM applied on the
recommendations of each recommender. We use datasets with symmetric setting of
equal-size groups (G1, G2) and equal-size categories (C1, C2) with equal preference
ratios ρ1 = ρ2 = ρ, where ρ varies from 0.5 to 1, in increments of 0.05. To measure
the precision of predictions, we perform 5-fold cross validation on each dataset and
measure the average precision of recommendations R compared to the test set, for
each algorithm A:

precisionA =
1

5
·

5∑
fold=1

|R ∩ test|
|R|

In Figure 5.1 we present the results for each recommender and the correcting
algorithms applied to their recommendations. We observe that the correcting algo-
rithms have equal precision in every case. For input preference ratio PRS ≤ 0.65, they
have equal precision with the recommendation algorithm. This is reasonable because
as we observed in Section 4.3 and Figure 4.2, for small input preference ratio the
absolute value of bias disparity is small. Therefore, the correcting algorithms need
to perform only a small number of swaps that do not affect the precision. However,
after that point and for PRS > 0.65, the precision of the correcting algortihms drops.
This confirms that recommendations incur utility loss in order to minimize the bias
disparity.

5.3.2 Iterative application of correcting algorithms

By design, when we apply the GULM algorithm on the output of the recommendation
algorithm, we eliminate bias disparity (modulo rounding errors) in the recommenda-
tions. We consider the iterative application of the recommendation algorithm, in the
setting described in Section 4.6, again assuming that the probability of a recommen-
dation being accepted depends on its utility. The results are shown in Figures 5.2 &
5.3.

48

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

p
re

d
ic

ti
o

n
 p

re
ci

si
o

n

UserKNN
GULM
MULM

(a) UserKNN

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

p
re

d
ic

ti
o

n
 p

re
ci

si
o

n
ItemKNN
GULM
MULM

(b) ItemKNN

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.01

0.012

0.014

0.016

0.018

0.02

0.022

p
re

d
ic

ti
o

n
 p

re
ci

si
o

n

CUserKNN
GULM
MULM

(c) CUserKNN

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

p
re

d
ic

ti
o

n
 p

re
ci

si
o

n

CItemKNN
GULM
MULM

(d) CItemKNN

Figure 5.1: Prediction precision of correcting algorithms applied on (a) UserKNN, (b)
ItemKNN, (c) CUserKNN and (d) CItemKNN.

49

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1
p

re
fe

re
n

ce
 r

at
io

 P
R

S

(a) GULM on UserKNN

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1

p
re

fe
re

n
ce

 r
at

io
 P

R
S

(b) GULM on ItemKNN

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1

p
re

fe
re

n
ce

 r
at

io
 P

R
S

(c) GULM on CUserKNN

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1

p
re

fe
re

n
ce

 r
at

io
 P

R
S

(d) GULM on CItemKNN

Figure 5.2: The evolution of the preference ratio in the data for different input pref-
erence ratios (PRS), after 5 iterations of GULM on recommendations of (a) UserKNN,
(b) ItemKNN, (c) CUserKNN and (d) CItemKNN. Iteration 0 shows the original pref-
erence ratio of each dataset.

For values of preference ratio up to 0.65, we observe that bias remains more or
less constant after re-ranking. For larger values of preference ratio, there is some no-
ticeable increase in the bias when we apply GULM on recommendations of UserKNN
and ItemKNN, due to the fact that the recommendations introduced by GULM have
low probability to be accepted. Surprisingly, for UserKNN (Figure 5.2a) we have the
larger bias disparity even though it performed well without the correcting. In gen-
eral, as expected the bias increase id significantly smaller than before re-ranking. The
GULM appears to be effective on CUserKNN and CItemKNN.
MULM has similar results as we show in Figure 5.3. ItemKNN with MULM

has the largest bias disparity among the recommenders, as before re-ranking. Again,
correcting on UserKNN performs poorly. It is interesting that in any case of correcting,
the CUserKNN has little to none bias increase, even though without the re-ranking

50

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1
p

re
fe

re
n

ce
 r

at
io

 P
R

S

(a) MULM on UserKNN

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1

p
re

fe
re

n
ce

 r
at

io
 P

R
S

(b) MULM on ItemKNN

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1

p
re

fe
re

n
ce

 r
at

io
 P

R
S

(c) MULM on CUserKNN

0 1 2 3 4 5
iteration

0.4

0.6

0.8

1

p
re

fe
re

n
ce

 r
at

io
 P

R
S

(d) MULM on CItemKNN

Figure 5.3: The evolution of the preference ratio in the data for different input prefer-
ence ratios (PRS), after 5 iterations of MULM on recommendations of (a) UserKNN,
(b) ItemKNN, (c) CUserKNN and (d) CItemKNN. Iteration 0 shows the original pref-
erence ratio of each dataset.

it has significant positive bias disparity for large preference ratios.
In Figure 5.4, we show the average number of items that each user accepts after

every iteration. We notice that applying a correcting algorithm does not necessar-
ily result in users accepting less recommendations. The average accepted items after
applying a correcting algorithm is close to the average accepted items for the recom-
mender and in fact, the CItemKNN has less accepted items before the application of
the correcting algorithms, after the third iteration.

5.3.3 MAP of recommendations

With this experiment we want to understand how item categories rank according to
their utility value if we see recommendations as ranked lists per user. We again use
the symmetric setting of equal-sized user groups G1 and G2 and equal-sized item

51

1 2 3 4 5
iteration

0

2

4

6

8

10

av
g

 a
cc

ep
te

d
 it

em
s

p
er

 u
se

r

UserKNN
UKNN/GULM
UKNN/MULM
ItemKNN
IKNN/GULM
IKNN/MULM
CUKNN
CUKNN/GULM
CUKNN/MULM
CIKNN
CIKNN/GULM
CIKNN/MULM

Figure 5.4: Average of accepted items per user on every iteration

0.5 0.6 0.7 0.8 0.9 1
input preference ratio

0

0.2

0.4

0.6

0.8

1

M
A

P

UserKNN
ItemKNN
CUserKNN
CItemKNN
UKNN/GULM
IKNN/GULM
CUKNN/GULM
CIKNN/GULM
UKNN/MULM
IKNN/MULM
CUKNN/MULM
CIKNN/MULM
maxOutput
meanOutput
minOutput
maxInput
meanInput
minInput

Figure 5.5: Average MAP of recommendations (Gi, Ci); the dashed lines show the
minimum, maximum and mean possible MAP according to the input bias.

categories C1 and C2 for varying input preference ratios from 0.5 to 1. For n users
and r recommendations per user, we measure the mean average precision (MAP)
values of algorithm A, as follows:

MAPA =
1

n
· 1
r
·

n∑
u=1

r∑
p=1

I(p, u)

p

, where I(p, u) is the number of Ci items in recommendations of user u ∈ Gi, R(u),
at positions from 1 to p.
In Figure 5.5, we plot the MAP values of the recommendation algorithms and

the correcting algorithms applied on the recommendations of each recommender as
well. We remind that the red dashed lines ”minOutput”, ”meanOutput” and ”max-
Output”, show the minimum, the mean and the maximum possible MAP value for
the average of the output preference ratios of the algorithms. The green dashed lines
”minInput”, ”meanInput” and ”maxInput” indicate respectively the minimum, mean
and maximum possible MAP values for the input preference ratio. In the case of the

52

correcting algorithms, recommendations have preference ratio equal to the input. So
”maxInput” shows the MAP values in the case where all the recommended Ci items
are ranked on the top of the recommendation list, and the ”minInput” shows the
MAP values when all Ci items are positioned on the bottom of the recommendation
list. The ”meanInput” represents a random ranking.
We observe that the MAP values for the correcting algorithms show a random

ranking for PRS <= 0.6. For an average input preference ratio from PRS > 0.6 to
PRS < 0.75, the MAP values increase and for large input preference ratio we have
the maximum possible MAP. Ranking of items for the correcting algorithms is similar
to the one of the recommendation algorithms. For large input bias the Ci items are
positioned at the top of the recommendations lists. This is reasonable since we swap
recommendations of Ci that are ranked low, with items of Ci with less utility values.
This results in providing recommendations to the group with bias equal to the group’s
preference bias but retaining a position bias.

53

Chapter 6

Conclusions

In this thesis, we performed an experimental study of bias disparity in recommender
systems, and the conditions under which it may appear. Using synthetic data, we
observed that bias disparity can appear for moderately biased groups. Bias disparity
becomes stronger in the presence of unbiased users at most cases, even when the
biased group is small. Larger groups in general bias smaller groups, while smaller
categories lead to higher bias. The iterative application of the recommendation algo-
rithms will eventually amplify the data bias, when it is relatively large, even when
recommendations are accepted with a probability.
Our findings are confirmed by real data. However, they are characterized by vari-

ous uncontrolled conditions, such as the uneven distribution of ratings among users
of a group, and we need to explore them more.
Finally, we introduced two bias correcting algorithms that re-rank the results of

recommenders in order to minimize the bias disparity. The GULM algorithm produces
new recommendations that minimize the utility loss for the group of users while the
MULM minimizes the maximum over all users loss. We found that the correcting
algorithms are efficient and in the long-term they avert large bias disparity.
We view this analysis as a first step towards a systematic analysis of the factors

that cause bias disparity. We intend to investigate more recommendation algorithms,
and the case of numerical, rather than binary, ratings. Also, we want to examine
alternative definitions of bias.

54

Bibliography

[1] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, “Machine bias,” ProPublica, 23
May 2016.

[2] J. L. SKEEM and C. T. LOWENKAMP, “Risk, race, and recidivism: Predictive
bias and disparate impact*,” Criminology, vol. 54, no. 4, pp. 680–712, 2016.

[3] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,”
Adv. in Artif. Intell., vol. 2009, pp. 4:2–4:2, Jan. 2009.

[4] M. Day, “How linkedin’s search engine may reflect a gender bias,” The Seattle
Times, 31 August 2016.

[5] S. Hajian, F. Bonchi, and C. Castillo, “Algorithmic bias: From discrimination dis-
covery to fairness-aware data mining,” in Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, (New
York, NY, USA), pp. 2125–2126, ACM, 2016.

[6] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness through
awareness,” in Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, ITCS ’12, (New York, NY, USA), pp. 214–226, ACM, 2012.

[7] B. Lepri, J. Staiano, D. Sangokoya, E. Letouzé, and N. Oliver, “The tyranny of
data? the bright and dark sides of data-driven decision-making for social good,”
CoRR, vol. abs/1612.00323, 2016.

[8] A. Mowshowitz and A. Kawaguchi, “Measuring search engine bias,” Inf. Process.
Manage., vol. 41, pp. 1193–1205, 2005.

[9] S. Fortunato, A. Flammini, F. Menczer, and A. Vespignani, “Topical interests
and the mitigation of search engine bias,” Proceedings of the National Academy of
Sciences, vol. 103, no. 34, pp. 12684–12689, 2006.

55

[10] T. Bolukbasi, K. Chang, J. Y. Zou, V. Saligrama, and A. Kalai, “Man is to com-
puter programmer as woman is to homemaker? debiasing word embeddings,”
CoRR, vol. abs/1607.06520, 2016.

[11] G. Pleiss, M. Raghavan, F. Wu, J. M. Kleinberg, and K. Q. Weinberger, “On
fairness and calibration,” CoRR, vol. abs/1709.02012, 2017.

[12] M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi, “Fairness
beyond disparate treatment & disparate impact: Learning classification without
disparate mistreatment,” in Proceedings of the 26th International Conference on
World Wide Web, WWW ’17, (Republic and Canton of Geneva, Switzerland),
pp. 1171–1180, International World Wide Web Conferences Steering Committee,
2017.

[13] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised learn-
ing,” in Proceedings of the 30th International Conference on Neural Information Pro-
cessing Systems, NIPS’16, (USA), pp. 3323–3331, Curran Associates Inc., 2016.

[14] M. B. Zafar, I. Valera, M. G. Rogriguez, and K. P. Gummadi, “Fairness Con-
straints: Mechanisms for Fair Classification,” in Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics (A. Singh and J. Zhu, eds.),
vol. 54 of Proceedings of Machine Learning Research, (Fort Lauderdale, FL, USA),
pp. 962–970, PMLR, 20–22 Apr 2017.

[15] O. Celma and P. Cano, “From hits to niches?: Or how popular artists can bias
music recommendation and discovery,” in Proceedings of the 2Nd KDD Workshop
on Large-Scale Recommender Systems and the Netflix Prize Competition, NETFLIX
’08, (New York, NY, USA), pp. 5:1–5:8, ACM, 2008.

[16] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Correcting popularity bias
by enhancing recommendation neutrality,” in Poster Proceedings of the 8th ACM
Conference on Recommender Systems, RecSys 2014, Foster City, Silicon Valley, CA,
USA, October 6-10, 2014, 2014.

[17] G. Adomavicius, J. Bockstedt, S. Curley, and J. Zhang, “De-biasing user prefer-
ence ratings in recommender systems completed research paper,” in 24th Work-
shop on Information Technology and Systems, University of Auckland Business
School, 2014.

56

[18] M. Kunaver and T. Porl, “Diversity in recommender systems a survey,” Know.-
Based Syst., vol. 123, pp. 154–162, May 2017.

[19] R. Burke, N. Sonboli, and A. Ordonez-Gauger, “Balanced neighborhoods for
multi-sided fairness in recommendation,” in Proceedings of the 1st Conference
on Fairness, Accountability and Transparency (S. A. Friedler and C. Wilson, eds.),
vol. 81 of Proceedings of Machine Learning Research, (New York, NY, USA), pp. 202–
214, PMLR, 23–24 Feb 2018.

[20] X. Ning and G. Karypis, “Slim: Sparse linear methods for top-n recommender
systems,” in Proceedings of the 2011 IEEE 11th International Conference on Data
Mining, ICDM ’11, (Washington, DC, USA), pp. 497–506, IEEE Computer Society,
2011.

[21] J. Zhao, T. Wang, M. Yatskar, V. Ordonez, and K. Chang, “Men also like shop-
ping: Reducing gender bias amplification using corpus-level constraints,” CoRR,
vol. abs/1707.09457, 2017.

[22] T. Kamishima, S. Akaho, and J. Sakuma, “Fairness-aware learning through regu-
larization approach,” in Proceedings of the 2011 IEEE 11th International Conference
on Data Mining Workshops, ICDMW ’11, (Washington, DC, USA), pp. 643–650,
IEEE Computer Society, 2011.

[23] S. Yao and B. Huang, “Beyond parity: Fairness objectives for collaborative fil-
tering,” in Advances in Neural Information Processing Systems 30 (I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
eds.), pp. 2921–2930, Curran Associates, Inc., 2017.

[24] A. J. Biega, K. P. Gummadi, and G. Weikum, “Equity of attention: Amortizing
individual fairness in rankings,” CoRR, vol. abs/1805.01788, 2018.

[25] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. A. Baeza-Yates,
“Fa*ir: A fair top-k ranking algorithm,” CoRR, vol. abs/1706.06368, 2017.

[26] A. J. B. Chaney, B. M. Stewart, and B. E. Engelhardt, “How algorithmic con-
founding in recommendation systems increases homogeneity and decreases util-
ity,” CoRR, vol. abs/1710.11214, 2017.

57

[27] C. C. Aggarwal, Recommender Systems: The Textbook. Springer Publishing Com-
pany, Incorporated, 1st ed., 2016.

Author’s Publications

V. Tsintzou, E. Pitoura and P. Tsaparas, ”Bias disparity in recommendation systems”,
in International Workshop of Data and Algorithm Bias, Conference on Information and
Knowledge Management, CIKM’18, (Turin, Italy), 2018

Short Biography

Virginia Tsintzou was born in 1989. She comes from Zitsa, Greece, but she grew up
in Ioannina. She received her Engineer’s diploma in 2016 from the Department of
Computer Science & Engineering in the University of Ioannina. Her diploma thesis
has title ”Analysis and Prediction of Election Results with Twitter” and was completed
under the supervision of Professor Panayiotis Tsaparas. She continued her studies as
a M.Sc. student at the same department, focusing on Data Mining. She works under
the supervision of P.Tsaparas and the guidance of Professor Evaggelia Pitoura. She
is expected to graduate in 2018.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Related Work
	Problem Definition
	Definitions
	The Recommendation Algorithms
	User-based algorithms
	Item-based algorithms

	Evaluating Bias Disparity
	Synthetic data generation
	Single group
	Symmetric Preferences
	Preference ratio in recommendations
	Prediction precision for K neighbors
	Impact of the number of recommendations
	MAP of recommendations

	Asymmetric Preferences
	Varying group and category sizes
	Varying Group Sizes
	Varying Category Sizes

	Iterative Application of Recommendations
	Bias disparity on real data
	Data and settings
	Gender bias
	Social bias

	Correcting Bias Disparity
	GULM: Group Utility Loss Minimization
	MULM: Maximum User Utility Loss Minimization
	Evaluation of bias correcting algorithms
	Prediction precision of correcting algorithms
	Iterative application of correcting algorithms
	MAP of recommendations

	Conclusions
	Bibliography
	Short Biography

