
Similarity in Temporal Graphs

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Antonis Koursoumis

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

February 2017

Examining Committee:

• Evaggelia Pitoura, Professor, Department of Computer Science and Engineer-
ing, University of Ioannina (Advisor)

• Panayiotis Tsaparas, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina

• Nikos Mamoulis, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina

Table of Contents

List of Figures iii

List of Tables v

List of Algorithms vi

Abstract vii

Εκτεταμένη Περίληψη viii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contribution . 2
1.4 Outline . 2

2 Related Work 3
2.1 Graphs . 3
2.2 Temporal and Evolving Graphs . 4
2.3 Temporal Measures . 5
2.4 Summary . 5

3 Models and Algorithms 7
3.1 Graphs . 7

3.1.1 Temporal Graphs . 7
3.1.2 Evolving Graphs . 8

3.2 Similarity . 8
3.2.1 Evolving SimRank . 12
3.2.2 Temporal SimRank . 16

i

3.3 Distance . 18
3.3.1 Evolving Distance . 20
3.3.2 Temporal Distance . 20

3.4 Centrality . 22
3.4.1 Evolving Centrality . 23
3.4.2 Temporal Centrality . 24

3.5 Diameter . 24
3.5.1 Evolving Diameter . 25
3.5.2 Temporal Diameter . 25

3.6 Top-k Measurements and Rankings . 25
3.6.1 Most Similar or Close Over Time Range 25
3.6.2 Drop/Increase Over Time Range 25
3.6.3 Average Node Similarity or Distance 26
3.6.4 Most similar neighbors count . 26

4 Evaluation 27
4.1 Tools . 27
4.2 Datasets . 28

4.2.1 Directed Arxiv HEP-PH . 28
4.2.2 DBLP . 29

4.3 Tuning the Algorithms . 31
4.3.1 Neighbors . 31
4.3.2 Dataset Sample Size . 35
4.3.3 Structural and Temporal Decay 36

4.4 Static, Evolving and Temporal . 40
4.4.1 Performance . 40
4.4.2 Values . 44

4.5 Ranking the results . 47
4.5.1 Top-k most similar . 47
4.5.2 Drop / increase over time range 49
4.5.3 Average Node Scores . 49
4.5.4 Most similar neighbors count . 51

5 Conclusion and future work 53
5.1 Contribution . 53

ii

5.2 Applications . 54
5.3 Future Work . 54

Bibliography 56

iii

List of Figures

3.1 In this case, using only the temporal continuity of the paths, node (C)
would be analysed first by Djikstra and thus, edge (D)-(C) cannot be
included in the path because its time is larger than that of edge (C)-(A).
However, in the case of edge (C)-(B), edge (D)-(C) can be included in
the path. Based on the default definition though, (C) is first visited from
node (A) at time 2001 and is blocking all other nodes from visiting him. 21

4.1 Bipartite DBLP example. Nodes (a), (b) and (c) are authors and nodes
(1), (2), (3) and (4) are publications. Edges connecting them include
the year of publication attribute. 30

4.2 Undirected DBLP example. Nodes (a) and (b) coauthored a publication
in year 2003, nodes (c) and (a) coauthored a publication in year 2001
etc. 30

4.3 In figure (a), nodes (A) and (B) both have a single common neighbor,
node (C), maximizing their similarity. In figure (b) the same nodes
have multiple common neighbors and some uncommon ones, so their
similarity will never reach the maximum value. 32

4.4 Percentage of top-k similarity pairs whose degree equals the minimum
degree for all three datasets . 33

4.5 Pair percentage over similarity score using two-hop calculation. 34
4.6 Pair percentage over similarity score using three-hop calculation. 34
4.7 Pair percentage over similarity score using four-hop calculation. 35
4.8 Similarity scores for each temporal decay value on the Undirected

DBLP dataset. 37
4.9 Similarity scores for each temporal decay value on the Bipartite DBLP

dataset. 38

iv

4.10 Similarity scores for each temporal decay value on the Directed Arxiv
dataset. 39

4.11 Construction times of all graphs for different node counts. 41
4.12 Memory requirements for each implementation. 42
4.13 Execution times for all Simrank implementations 42
4.14 Execution times for all Distance implementations 43
4.15 Memory requirements for all Simrank implementations 44
4.16 Memory requirements for all Distance implementations 44
4.17 Percentage of nodes that moved between the top and bottom 50% of

similarity scores . 45
4.18 Percentage of nodes that moved between the top and bottom 10% of

similarity scores . 46
4.19 Percentage of nodes that had their value change for less than 10% . . . 46
4.20 Venue similarity scores over the years 1995-2005 based on temporal

SimRank on Bipartite DBLP. 51

v

List of Tables

4.1 Directed Arxiv HEP-PH Dataset Statistics 28
4.2 Undirected DBLP Dataset Statistics . 29
4.3 Final dataset node / edges count based on sampling conducted 36
4.4 Top 10 Arxiv most similar publications using static SimRank 47
4.5 Top 10 undirected DBLP author pairs using static SimRank 47
4.6 Top 10 bipartite DBLP author pairs using Evolving SimRank 48
4.7 Top 10 bipartite DBLP author pairs using Temporal SimRank 49
4.8 Top 10 nodes with the highest average node similarity using temporal

SimRank on bipartite DBLP . 50
4.9 Nodes with neighbours whose similarity score exceeds 0.2 using Di-

rected Arxiv and Temporal SimRank . 52
4.10 Nodes with neighbours whose similarity score exceeds 0.2 using Bi-

partite DBLP and Temporal SimRank. 52

vi

List of Algorithms

3.1 Recursive SimRank for Static Graphs . 10
3.2 SimRank for Static Graphs . 11
3.3 Aggregate SimRank for Evolving Graphs 14
3.4 Average SimRank score calculation for Evolving Graphs 15
3.5 SimRank for Temporal Graphs . 18
3.6 Basic Shortest Path Implementation using Djikstra Algorithm 19
3.7 Temporal Path Implementation of the Djikstra Algorithm 22

vii

Abstract

Antonis Koursoumis, M.Sc. in Computer Science, Department of Computer Science
and Engineering, University of Ioannina, Greece, February 2017.
Similarity in Temporal Graphs.
Advisor: Evaggelia Pitoura, Professor.

In all modern networks, calculating metrics and ranking nodes according to their
inherent characteristics is a vital part of their analysis. It helps by providing infor-
mation of the structure of the network, the association and importance of nodes, as
well as presenting characteristics and information of the network itself. The main
problem lies in redefining already existent models and algorithms that are built for
static networks to also apply their calculations, effectively, on networks that evolve
over time. This must not be done by completely excluding node structure or other
information they already include but by extending them to also calculate temporal
metrics. Such a change is essential due to the amount of data being extracted ev-
eryday whose components include rich temporal information. This work focuses on
altering distance, diameter and centrality metrics as well as the SimRank algorithm to
fit temporal data extracted from two different datasets restructured in three different
graph implementations; an undirected, a directed and a bipartite one. The resulting
definitions, models and implementations are analyzed and ranking algorithms were
used to evaluate their significance.

viii

Ε Π

Αντώνης Κουρσούμης, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πλη-
ροφορικής, Πανεπιστήμιο Ιωαννίνων, Φεβρουάριος 2017.
Ομοιότητα σε Εξελισσόμενους Γράφους.
Επιβλέπων: Ευαγγελία Πιτουρά, Καθηγήτρια.

Με την εξέλιξη των αυτόματων εργαλείων συλλογής δεδομένων, η δυνατότητα
μας να δημιουργούμε και να αποθηκεύουμε πληροφορία έχει αυξηθεί δραματικά
τις τελευταίες δεκαετίες. Μεγάλο μέρος αυτής της πληροφορίας χρησιμοποιεί την
δομή γράφων για την οργάνωση των δεδομένων. Οι γράφοι αποτελούν ένα κεντρικό
κομμάτι της σύγχρονης εποχής. Υπάρχουν παντού. Πολλοί από αυτούς αλλάζουν
συνεχώς με το πέρασμα του χρόνου. Βασικότερα παραδείγματα αυτής της εξέλιξης
είναι τα πληροφοριακά δίκτυα του διαδικτύου και τα κοινωνικά δίκτυα που περιέ-
χουν εκατομμύρια ή και δισεκατομμύρια ακμές και κόμβους. Η ανάλυση τέτοιων
γράφων, που αντιπροσωπεύουν τέτοιο πλήθος εξελισσόμενης και διασυνδεδεμένης
πληροφορίας, βρίσκει πολλαπλές εφαρμογές. Η ανάλυση δομών στα σύγχρονα κοι-
νωνικά δίκτυα, η μελέτη καταναλωτικών προτύπων σε ηλεκτρονικά καταστήματα
και η ανάλυση των αλληλεπιδράσεων πρωτεϊνών σε βιοϊατρικά δίκτυα είναι λίγα
μόνο παραδείγματα.
Στον τομέα των γράφων, υπάρχει μεγάλο πλήθος αλγορίθμων που κύριο σκοπό
έχουν την εξαγωγή μετρικών και την κατάταξη στοιχείων του γράφου ανάλογα με
αυτές. Παρόλα αυτά, οι γράφοι αυτοί δεν περιέχουν καμία πληροφορίας σχετικά
με την εξέλιξη των στοιχείων τους στην πάροδο του χρόνου. Σε αυτή την εργασία,
αναλύονται πολλαπλοί τρόποι μετατροπής τέτοιων αλγορίθμων και δομών, με κύριο
στόχο την εφαρμογή τους σε γράφους οι οποίοι εξελίσσονται στον χρόνο. Τέτοιοι
γράφοι περιέχουν πληροφορία που δεν μπορεί να εξαχθεί με την χρήση των στατι-
κών αλγορίθμων.
Αρχικά αναλύεται η δυνατότητα μετατροπής ενός από τους κυριότερους αλγορίθ-

ix

μους μέτρησης ομοιότητας κόμβων σε γράφους, του SimRank, προκειμένου να εξάγει
την ίδια πληροφορία, αποτελεσματικά, από χρονικά εξελισσόμενους γράφους. Στη
συνέχεια μελετώνται, με τον ίδιο στόχο, αλγόριθμοι για την μέτρηση απόστασης,
κεντρικότητας και διαμέτρου. Τέλος, παρουσιάζονται τα αποτελέσματα αυτών των
μετατροπών και αναλύεται η αποτελεσματικότητά τους μέσω της εφαρμογής τους
σε πραγματικά, εξελισσόμενα δεδομένα.
Κύριος στόχος αυτής της εργασίας είναι να παρουσιάσει την σημαντικότητα της με-
τατροπής υπαρχόντων αλγορίθμων ώστε να δουλεύουν σε εξελισσόμενα δεδομένα
καθώς και της αποτελεσματικότητα μίας τέτοιας μετατροπής.

x

Chapter 1

Introduction

1.1 Motivation

1.2 Problem Statement

1.3 Contribution

1.4 Outline

1.1 Motivation

Social networks, communication network analysis, or road networks are only three
examples out of the field of graphs that change in time. Graphs that change in time are
graphs that receive or lose nodes or edges or have their attributes changed over a time
period. A lot of research in this field can be found that defines temporal graphs [1]
[2] [3]. Recent research focuses on the evolution of traditional graph algorithms and
metrics to work on the temporal versions of graphs. Despite the amount of the work
conducted, there are a lot of algorithms and measures that are not yet converted, to
work on a temporal basis and whose implementation and analysis poses an interesting
challenge. If their modification to fit on temporal data is successfull, they can enable
a deeper analysis and understanding of modern networks. Based on this, this work
implements multiple metrics and ranking algorithms to run on temporal graphs and
analyses the results.

1

1.2 Problem Statement

As of today, there exists no temporal representation of SimRank, one of the most
prevalent algorithms for similarity measurement in graphs. In addition, work has
been done towards modifying traditional graph measurements such as centrality,
distance and diameter to work on evolving graphs [4] [5] but there has been no
implementation of the resulting temporal formulas and thus, no evaluation either.
Such changes can enhance the traditional static algorithms to work on their evolving
networks and reveal underlying information that would otherwise be inaccessible.
The change of static algorithms to work on evolving networks is not limited on the
algorithms listed here. The methodology required to achieve such changes can also be
analyzed and experimented on to figure if it can fit more algorithms and definitions.

1.3 Contribution

This work focuses on modifying the SimRank definition so that it works fast, effi-
ciently and in-memory on different temporal graphs. Such graphs are bipartite and
undirected collaboration networks and a directed citation network. In addition, cen-
trality, distance and diameter temporal formulas are defined and implemented in
order to measure the same graphs. Multiple versions of SimRank are analyzed to
find out which one is best suited for which set of data and find sufficient definitions
and algorithms. Apart from the apparent contribution of new algorithms and defini-
tions that fit on evolving graphs, the methodology used to modify said algorithms can
also be analysed and extended to fit different algorithms and definitions. Finally, all
resulting measures and ranks were analysed and evaluated using multiple rankging
algorithms proposed throughout this work.

1.4 Outline

Chapter 2 contains a survey of the related work. Chapter 3 introduces all definitions
and theoretical solutions as well as the corresponding data models and algorithms
used. Chapter 4 evaluates the results of the implementation. Finally, Chapter 5 con-
cludes the work and suggests possible future research.

2

Chapter 2

Related Work

2.1 Graphs

2.2 Temporal and Evolving Graphs

2.3 Temporal Measures

2.4 Summary

2.1 Graphs

On the field of graph databases, the need for handling of enormous datasets led to
a research spree in previous years that created both a solid data model basis as well
as multiple commercial implementations of systems that support those models. An-
gles and Gutierrez present the work that has been conducted in the area of graph
database modeling, concentrating on data structures, query languages and integrity
constraints [6]. Jouili and Vansteenberghe present a distributed graph database com-
parison framework that analyses and compares the main commercial implementations
on the field [7]. Based on graph theory that preceded these models and engines, mul-
tiple works were published around calculating measures based on them. Basic graph
measures such as centrality, diameter, pair distance and others were analysed. Agar-
wal and Mahata [8] analysed social graphs to better understand ties between nodes
and find ways to promote them. Based on the field of graphs and the modeling of the
web as such, Page, Brin, Motwani and Winograd developed PageRank [9], a ranking

3

algorithm for web and citation networks, who then was used by Google as the core
algorithm of its search engine. In addition, and of great importance to this work, Jeh
and Widom developed SimRank [10], an algorithm that calculates similarity based on
the structure of a network. Rothe et al. expanded SimRank and Personalized PageR-
ank to CoSimRank [11] by creating equivalent formalizations that are faster or more
accurate. In addition, Fogaras and Rácz introduced algorithms [12] to compute such
metrics on a bigger scale. Sun and Han went ahead and listed [13] most of the ranking
algorithms proposed over the years. Finally, many more graph measures and metrics
were proposed and analysed over the years creating numerous new fields around
graph databases.

2.2 Temporal and Evolving Graphs

However, the evolution of technologies led to the evolution of the graphs and given
the seer size of the data stored and processed every day, more information became
available. The main attribute that could be further analysed was time and so, tem-
poral graphs were defined. Kostakos [1] introduced the idea of temporal graphs as a
representation that encodes temporal data into graphs while retaining the temporal
information of the original data. He also included a number of metrics that can be
used to study such graphs. Temporal graphs are split in two distinct categories: tem-
poral and evolving [2]. The former include lifetime information for nodes and edges
and the latter handle time as consecutive snapshots of the graph where a node or
edge exists if it is present on the corresponding snapshot. Some, went ahead to use
such evolving networks [14] to analyse the main properties and how they connect
to the evolution and underlying structure. They found that in the case of evolving
graphs, given specific network structure, the evolution of the network can sometimes
be dominated by effects solely linked to structural properties. This analysis was part
of the motivation of this work given that the resulting evaluation showed that struc-
tural information can be as important as temporal in the case of evolving graphs.
This is the main reason that SimRank was chosen to implement both the structural
and temporal similarity rankings in the same measure.

4

2.3 Temporal Measures

At the same time that temporal and evolving graphs emerged, metrics started being
defined for them. Mainly metrics that were already present for static graphs but
would help analyse the temporal versions as well. Rozenshtein and Gionis defined
and implemented PageRank for temporal graphs [15] where activity is represented by
time sequences. On the other hand, Mariani and Medo [16] as well as Bahmani and
Kumar [17] revealed flaws in the mix of PageRank and temporal data and suggested
ways to solve such issues. The former experimented on real data and resulted that the
static PageRank approach is inappropriate for many systems and suggested that time-
dependent algorithms based on temporal linking patterns are used instead to rank
the nodes. Kumar et al tackled the issue of computing PageRank on temporal graphs
and suggested a stylized model and algorithm of graph crawling to counter the naive
method of the original PageRank. Some of the changes suggested in these works are
also included in this analysis as part of the changes applied on the SimRank algorithm.
Nicosia et al. [4] redefined various terms and metrics to fit time-varying graphs and
proposed multiple extensions in that direction. Santoro et al. [5] also defined multiple
temporal and atemporal indicators for both evolving and temporal graphs. Part of
their analysis was also implemented in this work in order to more efficiently modify
the measuring algorithms and their corresponding definitions. In specific, their use of
journeys instead of traditional graph paths lied at the core of the change suggested in
this work. Kossinets and Watts [18] defined and analyzed homophily on an evolving
social network. Tong, Papadimitriou, Faloutsos and Yu used [19] many of these
measures to monitor and try to corellate them with node proximity in an evolving
network and finally, on the modeling part of the field, Campos, Mozzino and Vaisman,
recently [3] proposed a new model and query language to handle attribute graphs
on a real GDB.

2.4 Summary

Although many have defined temporal and evolving graphs and metrics for them,
algorithms remain that do not have temporal equivalents. Changes can be made to
define new metrics and help by extending the analysis of temporal and evolving
graphs. The flaws discovered in ranking algorithms [16] [17] highlight and enhance

5

the necessity to make changes as the ones used in this work to fit evolving data.
Metrics defined and described by Nicosia and Santoro [4] [5] also help create a good
basis for the evaluation of our own models and algorithms. Finally, all others [15] [18]
[19] helped us figure out the ways to handle algorithms and metrics and how they
can be tuned correctly to fit temporal data as well as evaluate our results. This work
focuses on fixing absences of the field and hopes to help by providing definitions, as
well as experimental results towards that goal.

6

Chapter 3

Models and Algorithms

3.1 Graphs

3.2 Similarity

3.3 Distance

3.4 Centrality

3.5 Diameter

3.6 Top-k Measurements and Rankings

3.1 Graphs

3.1.1 Temporal Graphs

Typically, graph structures are used to represent relationships between entities such
as individuals or organisations. These relationships are not solely instantiated in a
single point in time. On the contrary, in most graph networks, there is temporal
information. Recent digital and communication technologies enabled us to capture
an unprecedented scale of data about many aspects of human behaviour, such that
its temporal richness is adequately preserved. Processing these data in order to model
them and create a graph structure that successfully expresses both their static and
temporal attributes enabled us to define temporal graphs. Temporal graphs are a
graph structured modeled to include temporal information about all its elements.

7

The most usual representation used in this work, is nodes and/or edges of the graph
including a list of their active temporal periods. A temporal graph is a graph in which
connections between vertices are active at specific times. Let G = (V,E) be a temporal
graph, where V is the set of vertices of G and E is the set of edges of G. An edge
e ∈ E is a triplet (u, v, t, λ) where u, v ∈ V, t is the starting time, λ is the traversal
time to go from u to v starting at time t, and t+ λ is the ending time. Such a graph
denotes temporal information that let us discover new knowledge and patterns not
available in non-temporal graphs.

3.1.2 Evolving Graphs

Evolving graphs on the other hand, consist of snapshots, corresponding to instances
of the graph that can be analysed independently to extract knowledge. It is defined
as a sequence of consecutive graph snapshots eG = (Gts, ..., Gte that have the same
set of vertices V, but different sets of edges Et, where t = ts, ..., te the temporal range
that the graph represents. The set of edges of each graph snapshot Gt includes all
edges that exist in time t.

3.2 Similarity

Similarity is defined as a real-valued function that measures the distance of two objects
on a chosen dimension or set of dimensions. Usually a similarity value is higher if
the objects are similar and lower otherwise.
SimRank is a similarity measure, applicable in any domain with object-to-object

relationships, that rates similarity based on the relationship of objects with other
objects. Effectively, it is a measure which considers two objects to be more similar the
more they are connected to similar objects. If we denote similarity between objects as
s(a, b) ∈ [0, 1] then in the case of a = b, s(a, b) is defined to be 1. In any other case,

s(a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(Ii(a), Ij(b))

where C is a constant between zero and one denoting the uncertainty of the calculation
(a structural decay) and |I(a)| and |I(b)| are the number of in-neighbours of nodes a
and b respectively. Finally, Ii(a) and Ij(b) are the respective in-neighbors of nodes a

8

and b.
The main issue with calculating SimRank, on both static and temporal graphs, is

the complexity of the operation. To counter this, in their original paper[10], Jeh and
Widom proposed some pruning methods to speed up the calculation and reduce the
size required to store the graphs. Given that this work calculates and stores everything
in memory, such techniques are mandatory and more had to be developed to render
the calculation possible in terms of time and space complexity.
The basic SimRank algorithm, in contrast to the definition of SimRank, doesn’t

use a recursive function but a converging sequence of finite iterations. In practice
this means that for every pair of nodes, we only use the close neighbors (one-hop
and two-hop) of each node to calculate the similarity score, which is then stored
in an adjacency matrix. Every iteration of the algorithm uses the scores produced
in the previous iteration (with the only information at the first iteration being the
similarity of every node with itself that is, by definition, equal to 1). This creates
an algorithm that does not use any recursion and does not require excess memory
to store all possible pair similarities. Jeh and Widom, also proved that using the
non-recursive version, the similarity scores converge after, about, five iterations to the
values produced by the corresponding recursive function. This further enables us to
use it.
As is seen in Algorithm 3.2, we do not create a n ∗ n adjacency matrix to store

similarities as in the recursive implementation. Instead, we store a pair similarity only
if the pair exists and has a non-zero similarity score. This is also extended by the
original paper, where neighbors that are more than two hops away are also ignored
due to the convergence of their similarity values, with the main node, to 0. This
enables us to skip an n ∗ n calculation altogether and only calculate the SimRank
scores of every node with its corresponding one-hop and two-hop neighbors. Thus,
two different functions are created to return those neighbors based on the graph that
is being analysed. These functions are changed to fit the underlying graph accordingly
(directed, undirected or bipartite). Algorithm 3.1 presents the default implementation
with no pruning and full recursion that calculates the similarity of two nodes in the
graph. Algorithm 3.2 is the implementation used as the basis for our work and
uses the pruning methods and non-recursive techniques analysed above to calculate
all-pair similarity in the graph.

9

Algorithm 3.1 Recursive SimRank for Static Graphs
1: g← graph
2: c← decay
3: if node_a = node_b then
4: return 1
5: end if
6: neighbors_a = neighbors of node_a
7: neighbors_b = neighbors of node_b
8: if !neighbors_a or !neighbors_b then
9: return 0
10: end if
11: similarity = 0
12: for n_a in neighbors_a do
13: for n_b in neighbors_b do
14: pair_sim = sim(n_a, n_b)
15: similarity += pair_sim
16: end for
17: end for
18: return similarity * c / neighbors_a * neighbors_b

10

Algorithm 3.2 SimRank for Static Graphs
1: g← graph
2: c← decay
3: n← nodes
4: mi← iterations
5: oldsim← previous similarity scores
6: sim← current similarity scores
7: for n do
8: sim[n][n] = 1
9: oldsim[n][n] = 0
10: end for
11: for iteration in (0, mi) do
12: oldsim = deepcopy of sim
13: for node_one in n do
14: valid_neighbors = oneHopNeighbors + twoHopNeighbors of node_one
15: for node_two in valid_neighbors do
16: if node_one == node_two then
17: continue
18: end if
19: similarity_one_two = 0
20: for neighbor_node_one in oneHopNeighbors(g, node_one) do
21: for neighbor_node_two in oneHopNeighbors(g, node_two) do
22: similarity_one_two += oldsim[neighbor_node_one][neighbor_node_two]
23: end for
24: end for
25: neighbor_combinations = #node_one neighbors * #node_two neighbors
26: sim[node_one][node_two] = c * similarity_one_two / neighbor_combinations
27: end for
28: end for
29: end for

11

3.2.1 Evolving SimRank

The main goal of this work is to incorporate similarity measurements in a tempo-
ral context. To achieve this, several methods have been proposed and analysed. The
main method is aggregation over time, with the addition of a temporal decay that
decreases the importance of neighbors that exist temporally further from the main
node. Extending this definition, we define another solution that also includes future
snapshots in the calculation. The core calculation remains the same. However, in-
cluding future snapshots to the calculation changes the results. More on this in the
next chapter.

Average Score and Temporal Decay

In this method, we calculate the SimRank score of a node pair and also, apply a
cumulative decay. The decay depends on the temporal distance of the neighbor from
the final snapshot of the calculation. Given D the temporal decay factor, tn the time
instance of the final snapshot of the graph and ta, tb the time instances that a and b

exist in, we define an evolving SimRank calculation by altering the default SimRank
definition to

sD(a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(Ii(a), Ij(b))D
td

where
td = tn −

ta + tb
2

is the average temporal distance of both in-neighbors from the last time instance of
the graph. This ensures that the furthest the in-neighbors are, temporally, from the
final time instances of the graph the less they contribute to the overall similarity score.
Note here that an evolving graph is a graph that is split into snapshots that

correspond to the various time units in the graph. This means that only edges and
their nodes, that exist in the corresponding snapshot, exist in the snapshot. However,
a step for the preprocessing of the graph, that ensures it is split in snapshots based
on time, would be really expensive computationally. To counter this, we modify the
one-hop and two-hop neighbors functions to incorporate time and only return nodes
that are connected to the main node through an edge that existed at the given time. To
implement this, the main algorithm has to be changed so that the SimRank calculation
takes place each snapshot for all iterations and after the calculation is complete, hold

12

a sum of all snapshot scores for each pair. The final sum is then divided by the
total number of snapshots to calculate the average. The calculation can be seen in
Algorithm 3.3. Algorithm 3.4 shows the final part of the Aggregate SimRank for
Evolving graphs where all pair aggregate values are divided by the total number of
snapshots to get the final average similarity score. The corresponding one-hop and
two-hop neighbors functions are changed so that they only return neighbors on the
given snapshot. Note also, that the one-hop and two-hop neighbors functions are
built so that they also calculate neighbors for a range of snapshots. This is to make
them reusable for all other temporal algorithms as well. These functions also change
to fit the different datasets that are used for the experiments.

13

Algorithm 3.3 Aggregate SimRank for Evolving Graphs
1: g← graph, n← nodes of g
2: c← decay, d← temporal decay
3: mi← iterations
4: time_start← starting time, time_end← final time
5: aggregate← aggregate similarity score
6: for instance in (time_start, time_end + 1) do
7: oldsim← previous similarity scores
8: sim← current similarity scores
9: for iteration in (0, mi) do
10: oldsim = deepcopy of sim
11: for node_one in n do
12: valid_neighbors = oneHopNeighbors + twoHopNeighbors for instance
13: for node_two in valid_neighbors do
14: if node_one == node_two then
15: continue
16: end if
17: similarity_one_two = 0
18: for neighbor_node_one in oneHopNeighbors(g, node_one, instance) do
19: for neighbor_node_two in oneHopNeighbors(g, node_two, instance) do
20: similarity_one_two += oldsim[neighbor_node_one][neighbor_node_two]
21: end for
22: end for
23: neighbor_combinations = #node_one neighbors * #node_two neighbors
24: sim[node_one][node_two] = c * similarity_one_two / neighbor_combinations
25: if iteration == mi - 1 then
26: temporal_decay = d ** (time_end - instance)
27: aggregate[node_one][node_two] += sim[node_one][node_two] * temporal_decay
28: end if
29: end for
30: end for
31: end for
32: end for

14

Algorithm 3.4 Average SimRank score calculation for Evolving Graphs
1: time_start← starting time
2: time_end← final time
3: aggregate← aggregate similarity score
4: for node in aggregate do
5: for neighbor in node do
6: aggregate[node_one][neighbor] /= |time_end - time_start|
7: end for
8: end for

±x Snapshots

The ±x approach mimics that of Temporal Decay, using a cumulative decay for each
snapshot away from the main one. However, only ± snapshots of the full graph are
used to calculate the similarity of node pairs. Similar to the temporal decay algorithm,
given D the decay factor, tn the time of the nth snapshot of the graph and ta, tb the
snapshot of the graph that a and b connect to their in-neighbors, we define ±x
similarity of nodes a and b as

stn±x(a, b) =
C

|Itn±x(a)||Itn±x(b)|

|Itn±x(a)|∑
i=1

|Itn±x(b)|∑
j=1

s(Ii(a), Ij(b))D
td

where
td =

(|ta − tn|) + (|tb − tn|)
2

is the average distance of both in-neighbors from the nth snapshot of the graph.
Similar to the temporal decay method, this ensures that nodes that are temporally
closer to the main snapshot contribute more to the similarity score.
To implement this method, the same calculation takes place as in the average scores

method but we consider that pair similarity is influenced only by nodes x snapshots
away from the given snapshot, not pre-existing it. For example, in the datasets we are
using, if we were interested in the similarity of a node pair at year 2000, only nodes
that were connected to the given pair at 1998-2002 would be considered given x is
equal to 2. The initial algorithm calculates decay based on the absolute value of the
difference of the year of the edge so that is also treated successfully using the same
algorithm.

15

3.2.2 Temporal SimRank

In a temporal graph, where all temporal information is available on each edge, we
can analyse the graph based on the actual temporal sequence. This means calculating
the similarity of nodes based on the similarity of incoming nodes that only existed
in previous temporal points. In addition, the traversal time that is required to get
from the neighbor to the node under consideration must not exceed the temporal
distance of the two. SimRank is proven to be equivalent to the time in which two
random walkers are expected to meet, at the same node, if they started at nodes a

and b and randomly walked the graph backwards[10]. Based on this, we define the
temporal version of this to be equivalent to the time it takes two random walkers to
meet, at the same node, if they started at nodes a and b and randomly walked the
graph backwards, choosing only nodes that, temporally, pre-existed the node under
analysis and whose traversal time does not exceed the temporal distance between the
two making sure that a valid temporal sequence is followed. For example, walker
Wa arriving to node a from node v at t(v, a) would jump to an incoming neighbor
u of node a if the time t(a, u) is lower than t(v, a) + λ(a) where λ(a) is the time the
walker has to wait on node a. In different cases the traversal time λ refers to the edge
between two nodes denoting the time it takes to cross that edge and move to another
node. The definition remains the same.
Using this method the default definition of SimRank changes to

sTemp(a, b, t(u, a), t(v, b)) =
C

|Itla (a)||Itlb (b)|

|Itla (a)|∑
i=1

|Itlb (b)|∑
j=1

s(Ii(a), Ij(b), t(a, Ii(a)), t(b, Ij(b)))Davg

where
tla = t, ∀t < t(u, a) + λ(a),

tlb = t,∀t < t(v, b) + λ(b),

the average decay is

Davg =
Dt(u,a)−t(a,Ii(a)) +Dt(v,b)−t(b,Ij(b))

2

and t(x, y) the time of the edge between node x and node y.
Temporal SimRank is defined completely different from its evolving counterpart,

in the sense that nodes have to follow a temporal sequence. This means that a node
can only be considered connected to nodes that pre-existed it and whose starting time

16

does not exceed the ending time plus the traversal time of the previous node. This
also means that a pairs similarity can only be measured at a specific time for both
nodes.
Based on the above definition, the temporal similarity of two nodes depends on

the similarity of all their neighbors that, temporally, pre-existed them. Because of this,
an approach similar to that of the evolving SimRank is not possible. If we wanted to
implement an algorithm that calculated it, we would have to either set a maximum
history limit (which limits the available knowledge by removing time instances) or
calculate all similarities for every year preceding the one under consideration because
every similarity on year x depends on the similarity scores of its neighbors on year
x− 1 (which increases the time and space complexity exponentially). To counter that
and because we can still set some structural constraints, the recursive implementation
of SimRank can be altered to take time into consideration. This can only be done
because there are strict stopping conditions for the recursion. One condition is that
(due to the fact that we are moving backwards in time) neighbors that pre-existed
will eventually not exist, ending the recursion due to reaching the end of the dataset.
The second condition is the same as in all other implementations. It is that neighbors
more than two hops away are considered non-similar and are thus, terminating the
recursion returning zero as their similarity score. In case we want to be more loose
on the definition, we can allow three-hop neighbors to be considered although the
complexity increases further. Of course, we are still including a temporal decay factor
stating that connections further back in time are less important for the similarity
score. The final decay was set equal to the average between each edges specific decay
given that their difference from the edge under consideration may vary. For finding
the similarity over multiple snapshots, we just average the scores for each snapshot.
Finally, it should also be noted that traversal time in our datasets is considered to
be at all times equal to one snapshot so it is ommited and all pre-existing nodes are
picked instead. Algorithm 3.5 includes all the aforementioned changes.

17

Algorithm 3.5 SimRank for Temporal Graphs
1: g← graph
2: c← decay, d← temporal decay
3: y_a← snapshot of edge a, y_b← snapshot of edge b
4: node_a← node a, node_b← node b
5: hop← how many hops the algorithm has done
6: if node_a = node_b then
7: return 1
8: end if
9: if hop ≥ 2 then
10: return 0
11: end if
12: neighbors_a = neighbors of node_a where (node_a, neighbor_a).snapshot < y_a
13: neighbors_b = neighbors of node_b where (node_b, neighbor_b).snapshot < y_b
14: if !neighbors_a or !neighbors_b then
15: return 0
16: end if
17: similarity = 0
18: for n_a in neighbors_a do
19: for n_b in neighbors_b do
20: edge_a = (node_a, n_a).snapshot
21: edge_b = (node_b, n_b).snapshot
22: hop += 1
23: pair_sim = sim(n_a, n_b, edge_a, edge_b, hop)
24: similarity += pair_sim * ((d**(y_a-edge_a) + d**(y_b-edge_b))/2)
25: end for
26: end for
27: return similarity * c / neighbors_a * neighbors_b

3.3 Distance

The distance between two nodes of a graph is the number of edges in a shortest path
connecting them. In the case of a directed graph the distance d(u, v) between two

18

nodes u and v is defined as the length of a shortest path from u to v consisting of
directed edges, provided at least one such path exists. So, the problem of calculating
distance in an evolving or temporal graph is modified and the shourtest journey is
calculated instead between two nodes.
For the shortest path calculation (which is the basic unit for all other metrics) we

use algorithm 3.6. It is an implementation of Djikstra for an unweighted graph.

Algorithm 3.6 Basic Shortest Path Implementation using Djikstra Algorithm
1: g← graph
2: source← source node
3: target← target node
4: paths = empty dictionary
5: visited = empty dictionary
6: distances = empty dictionary
7: fringe = empty heap
8: fringe.push((0, source))
9: while fringe do
10: dist, u = fringe.pop
11: if u in distances then
12: continue
13: end if
14: distances[u] = dist
15: if u == target then
16: break
17: end if
18: for v in u.neighbors do
19: uv_dist = distances[u] + 1
20: if v not in visited or uv_dist < visited[v] then
21: visited[v] = uv_dist
22: fringe.push((uv_dist, v))
23: paths[v] = paths[u] + v
24: end if
25: end for
26: end while

19

3.3.1 Evolving Distance

In the case of evolving graphs, the definition of a shortest path remains the same as
that of a static graph. We calculate the shortest path of all pairs of nodes of the graph,
for each snapshot, and then divide it by the number of snapshots, resulting in the
average shortest path length. In addition, we can analyse the change of the shortest
path between nodes for each snapshot.

3.3.2 Temporal Distance

In temporal graphs the definition of a path has to change to that of a journey. We will
define [5] a journey as a temporal extension of the notion of path. More specifically,
a journey J is defined as J = {(e1, t1), (e2, t2), ..., (ek, tk)}, such that {e1, e2, ..., ek} is a
walk in our graph. J is considered a journey in our graph if and only if ∀i, 1 ≤ i < k, ei

exists in ti and ti+1 > ti. Journeys can be thought of as paths over time from a source
to a destination and therefore have both a topological and a temporal length. Their
topological length is equal to the number of nodes they consist of. The temporal
length is the temporal difference between the first and last step of the journey (the
time that the first and last edges exist in). All definitions of distance, centrality and
diameter are changed to include the definition of journey instead of that of a path.
To implement an algorithm that uses journeys to calculate distance, we only

changed the neighbor selection part of the Djikstra algorithm. That part of the al-
gorithm now requires that all neighboring nodes pre-exist the node under analysis.
However, marking a node as visited, from an edge that existed at time t, means that
we are limiting all paths to pre-exist that specific moment. In the case that the node
is visited on time t1 where t > t, then we are excluding possible paths. Figure 3.1
shows an example.

20

(B)

(A)

(C) (D)

2004

2005
2001

2002

Figure 3.1: In this case, using only the temporal continuity of the paths, node (C)
would be analysed first by Djikstra and thus, edge (D)-(C) cannot be included in the
path because its time is larger than that of edge (C)-(A). However, in the case of edge
(C)-(B), edge (D)-(C) can be included in the path. Based on the default definition
though, (C) is first visited from node (A) at time 2001 and is blocking all other nodes
from visiting him.

To counter this issue, in the case of algorithm 3.6, despite changing only the
condition of neighboring nodes obeying to a temporal continuity, we add an extra
conditional statement that checks if the edge that visited an already visited node
before, has a lower time unit of the edge under consideration. In the example of
Figure 3.1, Djikstra would check node (C) through the edge (B)-(C) that has a larger
time variable than edge (C)-(A) and so, it would remove (C) from the visited nodes
and reconsider him as a path candidate altogether. The solution is to include the
time that our algorithm reaches a the node through an edge. This means that a
node is considered visited only in a specific time and if the algorithm reaches it at
a time greater than the previous (which means that there might be paths available
that were excluded before) the node will be added back to the heap with a different
time. Algorithm 3.7 presents the proposed solution.

21

Algorithm 3.7 Temporal Path Implementation of the Djikstra Algorithm
1: g← graph
2: source← source node
3: target← target node
4: start_time← start time
5: end_time← end time
6: paths = empty dictionary
7: visited = empty dictionary
8: distances = empty dictionary
9: fringe = empty heap
10: fringe.push((0, source, start_time))
11: while fringe do
12: dist, u, y = fringe.pop
13: if (u, y) in distances then
14: continue
15: end if
16: distances[(u, y)] = dist
17: for v in u.neighbors where (v, u).time < y do
18: uv_time = (v, u).time
19: uv_dist = distances[(u, y)] + 1
20: if v in visited but in smaller time or v not in visited or uv_dist < visited[(v,

uv_time)] then
21: visited[(v, uv_time)] = uv_dist
22: fringe.push((uv_dist, v, uv_time))
23: paths[(v, uv_time)] = paths[(u, y)] + v
24: end if
25: end for
26: end while

3.4 Centrality

In graph theory and network analysis, indicators of centrality identify the most im-
portant vertices within a graph. Centrality concepts were first developed in social

22

network analysis, and many of the terms used to measure centrality reflect their so-
ciological origin. There are three different measures of centrality. Degree centrality,
closeness centrality and betweeness centrality.

Degree centrality [20] is defined as the number of links incident upon a node. It
can be easily calculated by measuring the degree of each node. In the case of directed
graphs, we define in-degree and out-degree the number of incoming edges and the
number of outgoing edges respectively.

CD(u) = deg(u)

Closeness centrality is the average length of the shortest path between the node
and all other nodes in the graph.

C(u) =

∑
v d(v, u)

|v|
where v all nodes of the graph despite u and d(v, u) the shortest path between v and
u.

Betweeness centrality of a node is equal to the number of times the node acts as
a bridge along the shortest path between two other nodes. For each pair of nodes
(s, t) in the graph:

CB(u) =
∑

s̸=u̸=t∈V

σst(v)

σst

where σst is the total number of shortest paths from node s to node t and σst(u) is
the number of those paths that pass through u.

3.4.1 Evolving Centrality

Evolving Degree Centrality, based on the definition of evolving graphs, is equal to
the average degree of incoming nodes, on each snapshot of the evolving graph. To
implement it in evolving graphs, we only need to average the scores over all the
snapshots.
Evolving Closeness Centrality is equal to the average of the average lengths of all
the shortest paths between the node and all other nodes, on each snapshot of the
evolving graph. In practice, we calculate the closeness centrality score as defined for
static graphs for each graph snapshot and then find the average score. To calculate
it for an evolving graph, an averaging needs to be conducted as does in the case of

23

Degree Centrality.
Evolving Betweeness Centrality is equal to the average of the betweeness centrality
scores of the node on each consecutive snapshot of the evolving graph. The imple-
mentation remains the same as above.

3.4.2 Temporal Centrality

Temporal Degree Centrality of a node u at time t, is equal to

CtempD(u, t) = |It−1(u)|+ |Ot+1(u)|

where |It−1(u)|, |Ot+1(u)| are the counts of incoming nodes at time t− 1 and outgoing
nodes at time t+1 respectively. To calculate a total we use the average of the individual
time scores.
Temporal Closeness Centrality is equal to

CtempC(u) =

∑
v dj(v, u)

|v|

where v all nodes of the graph despite u and dj(v, u) the length of the shortest journey
between v and u. To implement it we only need to use the of the temporal Djikstra
given in the Temporal Distance subsection
Temporal Betweeness Centrality is equal to

CtempB(u) =
∑

s ̸=u̸=t∈V

σjst(v)

σjst

where σjst is the total number of shortest journeys from node s to node t and σjst(u)

is the number of those journeys that pass through u. Again, the implementation uses
the Temporal Djikstra suggested above.

3.5 Diameter

Diameter is defined as the length of the largest shortest path of a graph.

diameter = max(SP (G))

where SP (G) is a list of the lengths of all shortest paths in graph G.

24

3.5.1 Evolving Diameter

In the case of evolving graphs, the definition of diameter remains the same as that
of a static graph. We calculate the diameter of the graph for each snapshot and then
divide it by the number of snapshots, resulting in the average graph diameter. In
addition, we can analyse the change of the diameter of the graph for each snapshot.
The implementation is just an averaging of the individual snapshot scores.

3.5.2 Temporal Diameter

In temporal graphs the definition of diameter changes slightly so that it becomes
equal to the length of the maximum shortest journey of the graph. To implement,
we use the Temporal Djikstra algorithm provided above.

3.6 Top-k Measurements and Rankings

To analyse and evaluate our algorithms as well as the datasets they run on, multiple
nodes and node pairs measurements and ranking algorithms are used. This helps
by providing a more fine-grained analysis of the data. When referring to node pairs,
we are referring solely to similarity and distance measures. When referring to sin-
gle nodes, ranking and all other measures can be used. Note that all the following
algorithms are run after the completion of the measuring algorithms analysed above.

3.6.1 Most Similar or Close Over Time Range

This algorithm returns the Top-k pairs that have the highest similarity score over a
set range of time. For example, if we want to find the Top-k most similar pairs for a
time range, first, a calculation of the similarities or distances would be conducted for
each of the given time snapshots and then we would rank them based on the final
score.

3.6.2 Drop/Increase Over Time Range

This algorithm corresponds to all measures analysed above. It can be used to rank
the drop or increase of pair similarity and distance, single node rank and centrality or

25

even diameter. To calculate this the difference of the measure between the first and last
time unit is used and everything is ranked thereafter. If a more fine-grained approach
is required for analysis purposes, multiple smaller time ranges can be queried.

3.6.3 Average Node Similarity or Distance

This algorithm returns the average similarity or distance of a node with its close
neighbors (based on the closeness limits set in each experiment). The total sum of
the measure with each of its neighbors is calculated and divided by the total number
of the neighbors.

3.6.4 Most similar neighbors count

Finally, the most similar neighbors count algorithm returns the number of neighbors
(distance limited by the maximum number set in each experiment) that has a higher
similarity measure than the threshold set in the experiment. For example, if a node
has 10 neighboring nodes with which his similarity is higher than a threshold T , the
algorithm will return 10 as the result.

26

Chapter 4

Evaluation

4.1 Tools

4.2 Datasets

4.3 Tuning the Algorithms

4.4 Static, Evolving and Temporal

4.5 Ranking the results

4.1 Tools

For the creation and handling of the graphs, Python 3.5.2 with the NetworkX 1.10
library was used. NetworkX includes a plethora of static graph algorithms such as
distance algorithms and similarity algorithms but none of them was used due to
the importance of the base algorithm being tunable in order to work for temporal
graphs. Only a few of the variables of these graphs could be changed and thus
weren’t sufficient for this works requirements. The graph model, management engine
and algorithms were all created from scratch. The library was only used to handle
the graph units (nodes, edges and attributes on both). In addition multiple Python
libraries were used to assist with mathematical calculations and speed some parts of
the algorithms up.
For parsing the graphs, only Python was used in the case of the Arxiv Dataset.

For the DBLP dataset, the graph readers were written in Java 8. However, the graph
was, once again, structured in Python.

27

4.2 Datasets

In order to measure all metrics on representative datasets and extend their definition
to include bipartite, directed and undirected graphs alike, three different implemen-
tations were used including data from two different datasets.

4.2.1 Directed Arxiv HEP-PH

Arxiv HEP-PH[21] (high energy physics phenomenology) citation graph is from the
e-print arXiv and covers all the citations within a dataset of 34,546 papers with
421,578 edges. When a paper i cites a paper j, the graph contains a directed edge
from i to j. If a paper cites, or is cited by, a paper outside the dataset, the graph does
not contain any information about this. The papers included in the dataset cover the
period from January 1993 to April 2003 (124 months). It begins within a few months
of the inception of the arXiv, and this represents essentially the complete history of
its HEP-PH section.

Table 4.1: Directed Arxiv HEP-PH Dataset Statistics

Nodes 34546
Edges 421578
Nodes in largest WCC 34401 (0.996)
Edges in largest WCC 421485 (1.000)
Nodes in largest SCC 12711 (0.368)
Edges in largest SCC 139981 (0.332)
Average clustering coefficient 0.2848
Number of triangles 1276868
Fraction of closed triangles 0.05377
Diameter (longest shortest path) 12
90-percentile effective diameter 5

To conduct the experiments, the dataset is, first, loaded in-memory and all nodes
are created. Then, all edges are added and for each edge, the source nodes meta
data is parsed and processed (there were multiple date template inconsistencies) to
include the cite year as an attribute on the corresponding edge.

28

4.2.2 DBLP

The DBLP[22] computer science bibliography contains the metadata of over 1 million
publications, written by over 300 thousand authors in several thousands of journals
or conference proceedings series. Although DBLP started with a focus on database
systems and logic programming (hence the acronym), it has grown to cover all dis-
ciplines of computer science. In practice, it is a collaboration network representing
authors as nodes and co-authorship between them as edges connecting them at the
time of the publication.

Table 4.2: Undirected DBLP Dataset Statistics

Nodes 317080
Edges 1049866
Nodes in largest WCC 317080 (1.000)
Edges in largest WCC 1049866 (1.000)
Nodes in largest SCC 317080 (1.000)
Edges in largest SCC 1049866 (1.000)
Average clustering coefficient 0.6324
Number of triangles 2224385
Fraction of closed triangles 0.1283
Diameter (longest shortest path) 21
90-percentile effective diameter 8

Bipartite DBLP

To construct a bipartite representation of DBLP, we load the whole dataset in memory
and then create a publication node, for every publication listed and an author node,
pointing to that publication at the year (year information included as attribute on the
edge) it was published, for every author included in the publication. If the author
node already exists in the dataset, we just add an extra edge instead of creating a
new one. An example can be seen in Figure 4.1.

29

year
=20

11
(a)

(b)

(c)

(1)

(2)

(3)

(4)

Figure 4.1: Bipartite DBLP example. Nodes (a), (b) and (c) are authors and nodes
(1), (2), (3) and (4) are publications. Edges connecting them include the year of
publication attribute.

Undirected DBLP

To construct an undirected representation of DBLP, we load the whole dataset in
memory and then create one node for each author. For each publication, we create
an undirected edge between all author pairs included in the publication with an
attribute stating the year the publication was published. An example can be seen in
Figure 4.2.

(a)

(b)

(c)

(d)

(e)

yea
r =

200
1 year =

2003

year = 2005

Figure 4.2: Undirected DBLP example. Nodes (a) and (b) coauthored a publication
in year 2003, nodes (c) and (a) coauthored a publication in year 2001 etc.

30

4.3 Tuning the Algorithms

In order to evaluate the results, the main variables of the algorithms and metrics
proposed, have to be tuned so that the dataset information is better represented. The
main targets of this tuning is reducing the memory and computing requirements
without sacrificing any information. In addition, the variables of the algorithms are
tuned to better represent the scores calculated. Variables such as temporal and struc-
tural decay, the number of hops in which neighbors are still considered similar to one
another and even the time range in which algorithms are run are some of the many
that have to be tuned to better extract the underlying knowledge of each dataset. In
the next subsections, we analyse the best choices of values for all variables based on
experimental results. The static version of SimRank was used to tune the variables that
do not include time. Its evolving version uses it for each snapshot so everything that
applies to the static version applies to the evolving version as well. Given that multi-
ple experiments had to be executed and an experiment including the entirety of our
datasets would take a long period of time, we calculated all changes to the datasets
using a random sample consisting of 25% of the number of nodes in the original
datasets. Choosing a subset of the nodes and not the edges, creates a representative
set to tune the algorithms without removing essential structural information.

4.3.1 Neighbors

Due to the size and time requirement of a n∗n calculation on datasets of this size, the
datasets have to be filtered and sampled without altering the underlying information.
The first step is calculating how many hops an effective pair similarity calculation
includes and how many neighbors included nodes should have.

Degree threshold

It is essential to exclude nodes with degree lower than a threshold from our calcula-
tion. In many cases, node pairs are toping the similarity and metrics charts due to lack
of other neighbors. For example, if two nodes only have a single, common neighbor,
then their similarity will, almost certainly, be equal to the maximum allowed similar-
ity. If we compare this to a pair of nodes that have four common neighbors pointing
to both of them and one or more neighbors not pointing to them then, the results

31

are, as stated before, dominated and not representing the underlying information.
Figures 4.3a and 4.3b better illustrate this example.

(A) (B)

(C)
(a) Single Common Neighbor

(A) (B)

(b) Multiple Common Neighbors

Figure 4.3: In figure (a), nodes (A) and (B) both have a single common neighbor,
node (C), maximizing their similarity. In figure (b) the same nodes have multiple
common neighbors and some uncommon ones, so their similarity will never reach
the maximum value.

On all experiments conducted, nodes that represent structures like the one seen in
Figure 4.3a completely dominate the structures that look like Figure 4.3b and thus
a degree limit is introduced for all nodes in our datasets. Essentially, if a node has a
degree of more than 6, it will not be included in the graph. Experiments showed that
when 3 was the minimum degree, 100% of the top-k pairs had the minimum number
of edges. At 4, this number dropped to 50% and at 6, it went down to 10%, which is
considered sufficient due to it converging for every increment from that point on. As
a result, a degree limit of 6 was introduced in our graphs. Figure 4.4 illustrates this.

32

3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Minimum Degree

To
p-
k
no
de
pa
ir
s
pe
rc
en
ta
ge

Arxiv
Undirected DBLP
Bipartite DBLP

Figure 4.4: Percentage of top-k similarity pairs whose degree equals the minimum
degree for all three datasets

Number of hops

In addition to node degree, the distance between two nodes can also be limited.
Experimental results from the original paper [10] state this limit to be equal to 2.
To make sure that the same number fits our data, we experimented with maximum
hops equal to 3 and 4. Given that we have already excluded nodes with degree less
than 6, going up to 4-hop neighbors can make the algorithm much more expensive
to calculate. However, despite the complexity, in Figures 4.5, 4.6 and 4.7, it can be
seen that the similarity of most 3-hop and 4-hop pairs is lower than the similarity
of 2-hop pairs. Specifically, 90% of the 3-hop pairs have a lower similarity score
than the 5th percentile of the 2-hop pairs. This percentage increases to 96% for 4-
hop neighbors. Including more neighbors in our calculation might, in turn, change
the similarity scores of all other nodes. This, however, didn’t seem to be the case.
Only two pairs of the 100 top pairs changed when including 3-hop neighbors to the
calculation. Between including 3-hop and 4-hop neighbors, the top 100 list of pairs

33

didn’t change at all.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

Similarity Score

Pe
rc
en
ta
ge
of
Pa
ir
s

Arxiv
Undirected DBLP
Bipartite DBLP

Figure 4.5: Pair percentage over similarity score using two-hop calculation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

Similarity Score

Pe
rc
en
ta
ge
of
Pa
ir
s

Arxiv
Undirected DBLP
Bipartite DBLP

Figure 4.6: Pair percentage over similarity score using three-hop calculation.

34

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

Similarity Score

Pe
rc
en
ta
ge
of
Pa
ir
s

Arxiv
Undirected DBLP
Bipartite DBLP

Figure 4.7: Pair percentage over similarity score using four-hop calculation.

4.3.2 Dataset Sample Size

Because the space and time complexity of many of the algorithms and metrics used
is prohibiting the full analysis of large-size datasets (such as the one million edges
of DBLP), sampling has to be used to limit the time required for the experiments to
run and better filter the results. The removal of nodes that have a degree less than
6 led to a significant decrease in size for the Arxiv dataset. From 22.000 nodes and
350.000 edges, it went down to 9.000 nodes and 150.000 edges. An approximate
60% decrease. Given that a graph this size can be analyzed by most of the proposed
algorithms in around 15 minutes (given the hardware used), no further dataset size
reduction was conducted to not risk altering the results. In the case of undirected
DBLP, however, the beginning 456.000 nodes and 1.4 million corresponding edges
got reduced to 121.000 nodes and 700.000 edges by applying the 6-degree limit.
In addition, the bipartite version of DBLP only had author nodes with less than 6
publications removed and had its numbers drop from 902.000 nodes and 1.3 million
edges to 480.000 nodes and 610.000 edges. Both of the DBLP datasets required a
sampling method due to their size. A reasonable variable to target for this, is time.
It must be noted that only 9.000 authors (with more than 6 collaborations) exist
in the DBLP dataset between 1959 and 2000. This means that 112.000 new people
published their research in the past 16 years. This is equal to 7.000 new authors
every year. To decrease them even further, a maximum of 5.000 publications were
chosen at random from each year. This reduced the size of the dataset to 30.000

35

nodes and 110.000 edges which is manageable and representative of the data. For
case studies conducted, no maximum number of publications was applied. The only
limits applied were year limits and node degree ones. All results can be seen in Table
4.3.

Table 4.3: Final dataset node / edges count based on sampling conducted

Arxiv DBLP
Type Directed Undirected Bipartite

Original Size 22.000 / 350.000 456.000 / 1.400.000 902.000 / 1.300.000

low degree removed 9.000 / 150.000 121.000 / 700.000 480.000 / 610.000

5.000 per year chosen - / - 30.000 / 110.000 130.000 / 230.000

4.3.3 Structural and Temporal Decay

The original SimRank paper (and all other relevant papers) suggests that a structural
decay of C = 0.8 is used. Furthermore, a sufficient value must be found for the
temporal decay introduced in the temporal versions of the suggested algorithm. 0.2,
0.4, 0.6, 0.8 and 1 where the main candidates for the temporal decay value. This
choice depends on how much we require time to be essential to the calculation of the
scores. We compared them by running the SimRank algorithm for all three datasets
using all different values. The results can be seen per dataset in Figures 4.8, 4.9 and
4.10. The evolving version of SimRank was used to calculate the scores.

36

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8

1

Similarity Score

Pe
rc
en
ta
ge
of
Pa
ir
s

0.2
0.4
0.6
0.8
1

Figure 4.8: Similarity scores for each temporal decay value on the Undirected DBLP
dataset.

37

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8

1

Similarity Score

Pe
rc
en
ta
ge
of
Pa
ir
s

0.2
0.4
0.6
0.8
1

Figure 4.9: Similarity scores for each temporal decay value on the Bipartite DBLP
dataset.

38

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8

Similarity Score

Pe
rc
en
ta
ge
of
Pa
ir
s

0.2
0.4
0.6
0.8
1

Figure 4.10: Similarity scores for each temporal decay value on the Directed Arxiv
dataset.

It is apparent that having a greater temporal decay value increases the detail
of the scores and forces a more equal distribution of similarity values. This does
not, however, change the results. This means that the proportion of all pair scores
remains the same (given that they are all multiplied by the same number, be it higher
or lower). The value 1 cannot be used for our experiments because having a temporal
decay of 1 means that time difference has no implication on scores. To have a better
representation of all similarity values and being able to analyse the results in depth
due to their distribution, the 0.8 value was chosen for the temporal decay variable.

39

4.4 Static, Evolving and Temporal

4.4.1 Performance

Many of the algorithms used shared parts. To calculate the evolving SimRank we used
the same algorithm core as its static counterpart and only used different algorithms to
obtain node neighbors based on the temporal information. The same stands for all the
evolving versions of distance, centrality and diameter where everything is calculated
for each snapshot using the base algorithms and then, aggregated and averaged over
all years the calculation took place in. On the other hand, all temporal versions of
the algorithms used a different implementation core and so, performance changed
drastically.

Graph creation

Because the same algorithms for creating the graph were used for all implementations,
the only difference lies in the dataset structure and not in the algorithm analysing the
dataset. However, some extra steps and loops were taken by some of the construction
algorithms and thus, Figure 4.11a presents the construction times, for each dataset
reading algorithm, for three different sizes. Figure 4.11b presents the same results
but without setting the degree limit for each node. As can be seen, the inclusion of
the degree limit does not affect the times. This is due to the fact that the graph is
always constructed in its entirety and then re-parsed node by node and nodes that do
not meet the requirements are removed. Despite node count, the inclusion or not of
degree limits is irrelevant to the pre-processing time. Nonetheless, static, evolving and
temporal algorithms, all used the same graphs created this way so further comparison
bears no importance.

40

9k 15k 25k 50k

5

5.5

6

6.5

Arxiv DBLP Un DBLP Bip

(a) Degree limit 6

9k 15k 25k 50k

5

5.5

6

6.5

Arxiv DBLP Un DBLP Bip

(b) Degree limit 0

Figure 4.11: Construction times of all graphs for different node counts.

The whole graph is stored and all calculations are conducted exclusively in mem-
ory. This means that a low memory footprint is essential. The graph itself does not
take up much memory. It is created using adjacency dictionaries that store each nodes
neighbors and attribute dictionaries that store each nodes and edges attributes (such
as time). The advantage of using dictionaries is that only the connections that exist
can be created and no n∗n list is required. Figure 4.12 shows the base requirements,
before running the algorithms, for the dataset sizes each implementation used. As
stated before, Arxiv used 9.000 nodes and 150.000 edges. DBLP included 23.000
nodes and 100.000 edges. Memory-wise the undirected version of DBLP is the most
effective, explained by the fact that it only stores the minimum number of edges. This
happens because each author gets connected to few authors over the course of the
calculation (only a few have reached 120 collaborations, the average node degree is
way lower). On the other hand, in the Bipartite version, every author is connected
to multiple papers (sometimes up to 220) and thus, the memory required for storing
all those edges is way higher. Arxiv also has an increased average node degree due
to most papers citing more than 20 other papers and it is apparent that the memory
requirement is also higher than the undirected DBLP graph (the node and edge count
is significantly lower than that of DBLP). For comparison, the figure also includes
the memory required if no limitations were set on the dataset.

41

Arxiv DBLP Un DBLP Bip

200

400

600

800

M
em
or
y
(M
B
)

Preprocessed Unprocessed

Figure 4.12: Memory requirements for each implementation.

Algorithm Execution

The SimRank algorithm is a slow algorithm that, even with all changes conducted,
requires a significant amount of memory. Its static version is the most slow and
heavy version on all three datasets due to the size of the dataset and available nodes
/ edges. Calculating the Evolving version of the algorithm drops time and memory
requirements due to the size of snapshots and splitting / reduce of complexity of the
calculation. The temporal calculation drops requirements even further. Figure 4.13
presents the results.

Arxiv DBLP Un DBLP Bip

500

1,000

1,500

2,000

Ti
m
e
(s
)

Static Evolving Temporal

Figure 4.13: Execution times for all Simrank implementations

42

In the case of the other graph measures we analysed in the previous chapter,
Distance and Degree Centrality are the only calculatable metrics in terms of time.
Figure 4.14 presents the results for Distance calculations. All centrality calculations
and the diameter calculation are all dependent on the calculation of distance, be it
temporal or evolving. However, due to the high time and space complexity of all the
algorithms (apart from degree centrality), their calculations are ommited.

Arxiv DBLP Un DBLP Bip
400

600

800

1,000

1,200

1,400

Ti
m
e
(s
)

Static Evolving Temporal

Figure 4.14: Execution times for all Distance implementations

Of course, memory is a huge issue when calculating any of the metrics used in this
work. The structures used to store the results take up most of the space required by
the algorithms and even after applying all limitations and optimizations require lots
of MB to work. As is expected, the Static implementation requires the most memory to
calculate due to the fact that there are more node pairs available whose distance has to
be calculated. Evolving has less and Temporal even less than that. The high difference
between undirected DBLP and bipartite DBLP is due to the bipartite implementations
inclusion of publications in addition to the undirecteds authors. Results are presented
in figure 4.15.

43

Arxiv DBLP Un DBLP Bip

2,000

4,000

6,000

M
em
or
y
(M
B
)

Static Evolving Temporal

Figure 4.15: Memory requirements for all Simrank implementations

Similarly, 4.16 presents the memory requirements to calculate Distance in our
graphs.

Arxiv DBLP Un DBLP Bip

2,000

4,000

6,000

8,000

M
em
or
y
(M
B
)

Static Evolving Temporal

Figure 4.16: Memory requirements for all Distance implementations

4.4.2 Values

Memory and execution times are not the only changes of the algorithms. The main
difference lies in the values of the node pairs. The significant difference is that 100% of
the node pairs analysed by Static Simrank, Evolving SimRank and Temporal SimRank
have different scores. This is expected because the calculation changes between all

44

three algorithms. However, the value changes of node pairs is significant. Between the
Static and Evolving implementations of the algorithms 4.17a presents the percentages
of nodes that moved from the top 50% of scores to the bottom 50%. Same percentages
are presented for Evolving and Temporal implementations in figure 4.17b.

Arxiv DBLP Un DBLP Bip
40

42

44

46

48

43

48

41

N
od
es
(%
)

(a) Static to Evolving

Arxiv DBLP Un DBLP Bip

16

18

20

21

16

19

(b) Evolving to Temporal

Figure 4.17: Percentage of nodes that moved between the top and bottom 50% of
similarity scores

This strengthens the requirement to further analyze the temporal and evolving
implementations and try to justify the changes. This becomes more apparent if we
compare the same percentages for nodes that moved from the top 10% to the bottom
10% which is a huge drop or increase of score. Figure 4.18 presents the results.
Finally, approximately 42% of the graph nodes are disconnected when calculating the
distance in the evolving implementation using the snapshots and 69% of the graph
nodes are disconnected when only accepting time respecting journeys. Also, more
than 80% of the shortest paths between pairs that aren’t disconnected are increased
in size when using snapshots and more than 85% of them are increased using the
temporal implementation. This is expected due to the fact that any non temporal
shortest path is always a lower bound for any temporal or evolving distance.

45

Arxiv DBLP Un DBLP Bip

14

16

18
18

16

13

N
od
es
(%
)

(a) Static to Evolving

Arxiv DBLP Un DBLP Bip

4

6

8

6

3

8

(b) Evolving to Temporal

Figure 4.18: Percentage of nodes that moved between the top and bottom 10% of
similarity scores

Finally, figures 4.19a and 4.19b show the percentage of nodes that had a change
for less than 10% of their value moving between static, evolving and temporal im-
plementations. It is apparent that moving away from a static calculation, towards an
evolving one, completely changes the importance of node connections and enhances
the temporal elements of the graph. This also shows how important temporal infor-
mation can be to determining any measure on social graphs. SimRank is one of the
many algorithms that can produce totally different results if the temporal dimension
is accounted for.

Arxiv DBLP Un DBLP Bip

3

4

5

3

5

4

N
od
es
(%
)

(a) Static to Evolving

Arxiv DBLP Un DBLP Bip

4

4.5

5
5

4 4

(b) Evolving to Temporal

Figure 4.19: Percentage of nodes that had their value change for less than 10%

46

4.5 Ranking the results

Ranking the resulting similarity scores and metrics, produced by the algorithms pro-
posed and analyzed in the previous chapters, can provide us with important infor-
mation about the datasets used, as well as the validity of the algorithms. Ranking,
averaging, drops / increases and average values are only a few of the rankings that
can be applied to the data. Below are the most representative results of the data used.

4.5.1 Top-k most similar

In the case of ranking the similarity of nodes using the static algorithm of SimRank
the results are previewed in Tables 4.4 and 4.5.

Table 4.4: Top 10 Arxiv most similar publications using static SimRank

”Supersymmetry of Black Strings in D=5 Supergravities” & ”Finite Action in d5 Gauged Supergravity and Dilatonic Conformal Anomaly”

”On the Hyperbolic Structure of Moduli Spaces With 16 SUSYs” & ”String Universality”

”Mind the Gap” & ”Exact Renormalization Group Equations. An Introductory Review”

”On Open/Closed String Duality” & ”Constistency COnditions for Holographic Duality”

”Gauge Consistent Wilson Renormalization Group II: Non-Abelian Case” & ”Optimised Renormalisation Group Flows”

”Finite gravitational action for higher derivative and stringy gravities” & ”More on counterterms in the gravitational action and anomalies”

”Convergence of derivative expansions of the renormalization group” & ”Optimised Renormalisation Group Flows”

”Towards a loop representtation for quantum canonical supergravity” & ”M theory as a matrix extension of Chern-Simons theory”

”Conformal dynamics of quantum gravity with torsion” & ”Conformal anomaly of (2,0) tensor multiplet in d6 and AdS/CFT correspondence”

”PhreMology–calibrating M-branes” & ”Calibrated Geometries and Non Perturbative Superpotentials in M-Theory”

Table 4.5: Top 10 undirected DBLP author pairs using static SimRank

”Julio Ortega” & ”Alberto Prieto”

”David Grace” & ”Alexandros Kaloxylos”

”Nicolas Marin” & ”Maria J. Martin Bautista”

”Lalit M. Patnaik” & ”K. R. Venugopal”

”Karin Coninx” & ”Kris Luyten”

”Ester Bernado-Mansilla” & ”David E. Goldberg”

”Alexander Koller” & ”Massimo Poesio”

”Wendy Doube” & ”Thomas B. Hilburn”

”Veda C. Storey” & ”Jeffrey Parsons”

”Danny Dig” & ”Sarfraz Khurshid”

It should be noted here that most of the resulting pairs are in some cases authors

47

with some collaborations between them or that exist in the same field regardless of
years of co-existence (some pairs have publications on the same field five or more
years apart). This is natural due to the fact that we are not yet including time in
the calculation and thus, just being connected with similar authors will increase the
similarity.
Moving from the static to the evolving version changes the results. In the case of
Arxiv, all of the publications, as in the static version, share the same theme but all
top 10 pairs include publications that were published in a two year maximum range.
In the static version, the year ranges were far greater (the pair in ninth place shared
the same topic but had a 7 year difference). In the case of bipartite and undirected
DBLP, the evolving version seems to work more efficiently. Most author publications
line up much better temporally the closer we move to the final snapshot of the graph.
The bipartite DBLP results can be seen in 4.6.

Table 4.6: Top 10 bipartite DBLP author pairs using Evolving SimRank

”Nachum Dershowitz” & ”Lior Wolf”

”Xabiel G. Paneda” & ”David Melendi”

”Matthew Hennessy” & ”Sophia Drossopoulou”

”Thilo Kielmann” & ”Aart van Halteren”

”Shai Shalev-Shwartz” & ”Ihab F. Ilyas”

”Marie-Laure Boucheret” & ”Ridha Bouallegue”

”Stathes Hadjiefthymiades” & ”Giannis F. Marias”

”Victor Maojo” & ”Jose Crespo”

”Ayoub Al-Hamadi” & ”Philipp Werner”

”Branislav Kusy” & ”Raja Jurdak”

It can be seen here that most of the pairs share many recent common co-coauthorships
and collaborations. This shows that our algorithm is, indeed, counting the similarity
correctly. Note though, that many share more than one common coauthors (research
teams) that further enhance the score due to them being pointed by many nodes on
many occasions.
In the case of the temporal version of SimRank, pair cases with long-term collabo-
rations were really high in the score table. Results from the bipartite DBLP dataset
using the temporal version of SimRank are listed in Table 4.7.

48

Table 4.7: Top 10 bipartite DBLP author pairs using Temporal SimRank

”Gunther Palm” & ”Ayoub Al-Hamadi”

”Sung-Gi Min” & ”Sachin Sharma”

”Christian Colombo” & ”Gerardo Schneider”

”Daniel Roviras” & ”Ridha Bouallegue”

”Maarten van Steen” & ”Spyros Voulgaris”

”Bin Li” & ”Jiwu Huang”

”Vishal M. Patel” & ”Rama Chellappa”

”George Bebis” & ”Mircea Nicolescu”

”Christoph Koch” & ”Immanuel Trummer”

”Branislav Kusy” & ”Raja Jurdak”

Here, there are fewer collaborations and more co-coauthorships. Most authors
share common coauthors on different publications. However, this share is consistent
through a long year range and thus, the temporal version of SimRank ranks them
higher. The ones in the higher places share more recent co-coauthorships and thus
have their scores further increased by that.

4.5.2 Drop / increase over time range

In the case of drop or increase the sets are dominated by pairs of authors that had
many common co-authors over a time range and then stopped having any at all or
vice versa. This was due to the author stopping the publication process altogether
and not moving on to another field. Because of this, listing the author pairs doesn’t
present any important information due to this. Furthermore, this analysis cannot be
conducted in publications from Arxiv due to their temporal uniqueness (a paper is
published once and referenced in random intervals from then on).

4.5.3 Average Node Scores

The top 10 authors with the highest average node similarity with their one and
two-hop neighbors are listed in Table 4.8. Additionally, in the case of venues, in the
bipartite version of DBLP, there is some important information ranking them by the
average similarity scores. Given that venues do not exist in the structure, for every

49

year in the time range, all publication similarity scores for that year were summed and
the average score for each venue for each year was calculated. 10 venues were used
for this: VLDB, ICDE, SIGMOD, EDBT, KDD, WWW, SIGIR, ICDM, CIKM, SDM.
The calculation was conducted over 10 years (1995-2005). The resulting scores are
analyzed in Figure 4.20.

Table 4.8: Top 10 nodes with the highest average node similarity using temporal
SimRank on bipartite DBLP

”J. K. Aggarwal”

”Vijay Kumar”

”Dong Wang”

”H.Vincent Poor”

”Mubarak Shah”

”Ajay Kumar”

”Ying Wang”

”Barry L. Nelson”

”Tarek F. Abdelzaher”

”Larry S. Davis”

50

1,995 1,996 1,997 1,998 1,999 2,000 2,001 2,002 2,003 2,004 2,005
2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

Years

Av
er
ag
e
Sc
or
e

CIKM
VLDB
ICDE

SIGMOD
EDBT
KDD
WWW
SIGIR
ICDM
SDM

Figure 4.20: Venue similarity scores over the years 1995-2005 based on temporal
SimRank on Bipartite DBLP.

4.5.4 Most similar neighbors count

To calculate the most similar neighbors count we need to set a threshold for the nodes
that will be included in the ranking. We set this threshold equal to 0.2 given that
there is, in all experiments, a sufficient portion of the similarity scores in that range
(about 40%). Given that, Tables 4.9 and 4.10 present the resulting rankings.

51

Table 4.9: Nodes with neighbours whose similarity score exceeds 0.2 using Directed
Arxiv and Temporal SimRank

Name # neighbours with similarity >threshold

The Large N Limit of Superconformal Field Theories and Supergravity 310

Anti De Sitter Space and Holography 219

Gauge Theory Correlators from Non-Critical String Theory 208

Large N Field Theories, String Theory and Gravity 190

Monopole Condensation, And Confinement In N=2 Supersymmetric Yang-Mills Theory 172

Dirichlet-Branes and Ramond-Ramond Charges 165

String Theory Dynamics in Various Dimensions 147

M Theory As A Matrix Model: A Conjecture 142

Monopoles, Duality and Chiral Symmetry Breaking in N=2 Supersymmetric QCD 131

Table 4.10: Nodes with neighbours whose similarity score exceeds 0.2 using Bipartite
DBLP and Temporal SimRank.

Name # neighbours with similarity >threshold

Jake K. Aggarwal 26

Dong Wang 26

Alex Galis 25

Barry L. Nelson 25

Vipin Kumar 25

Ying Wang 25

Larry S. Davis 24

Qiang Ji 24

Mubarak Shah 23

Santosh Kumar 23

In the case of Arxiv, the publications found on the top ranks are both central papers
to their respective fields and are cited by a really high number of publications. The
corresponding number of nodes using the static SimRank is close to 200% higher
which shows how much the similarity diminishes as the time between publication
and citation increases. In the case of the Bipartite DBLP dataset a similar trend can
be seen. All authors have a high amount of collaborations but the more recent the
publications, the higher the score.

52

Chapter 5

Conclusion and future work

5.1 Contribution

5.2 Applications

5.3 Future Work

5.1 Contribution

This thesis introduces the problem of changing different algorithms, used to mea-
sure various metrics, such as pair similarity, graph diameter, pair distance and others
to successfully be applied to graphs structured to incorporate temporal information.
Solving this problem allows us to discover deeper relations between nodes and infor-
mation concerning the underlying structure, that would otherwise be impossible to
measure. Additionally, a methodology can be extracted that can be applied to various
other algorithms so that similar results are achieved.
Along the way, a plethora of definitions, algorithms and implementations have been
created, tuned and analyzed exploring the problem of changing a static algorithm
to a temporal one in depth. Specifically, a formal definition has been given for both
evolving and temporal versions of a pre-existing algorithm that measures similar-
ity (SimRank), the definition of path has been changed to be applied in temporal
information as a ’journey’ and its inclusion in pre-existing measuring algorithms
for centrality, diameter and distance has been analyzed. Furthermore, the suggested
theory and changes were implemented using Python and the NetworkX library for

53

graph management and results were analyzed after applying the algorithms on three
datasets of different structure and data and executing them entirely in the main ma-
chine memory.
Finally, representative results of each implementation were presented and ranked in
various ways utilizing average values, value drops and increases over time ranges,
finding the count of the most similar among the graph and others. All algorithms
could not be tuned to fit all data so some generalizations were required but, given
sufficient time, the modifications proposed can be tuned further and better.
Naturally, some of the proposed algorithms could not be executed on our datasets
due to time and space complexity. Also, some of the proposed variables of the algo-
rithms are considered to equal their base values in order to fit the dataset (a sufficient
networks that includes traversal times and has sufficient structural and temporal in-
formation to accomodate it could not be obtained so traversal times are in all cases
considered to be equal to one time instance).

5.2 Applications

This project has resulted in a documented, tested and fully working algorithm for
measuring similarity on evolving and temporal networks. This algorithm can be used
in various projects. It can enhance link prediction and suggestion engines, help with
the statistical analysis of large graphs, introduce new ways of indexing information
or be extended to work on more cases and more in depth. The measuring algorithms
proposed can be tested given sufficient tuning and space / time resources. By tuning
them, they can also be used in various research topics and extended to be incorporated
in actual systems that require measuring of temporal information of networks.

5.3 Future Work

Apart from the already potential improvements / tunings and tests to the algorithms
proposed, multiple future extensions can be proposed.
A first important extension would be including more algorithms and modifying them
from static only implementations to temporal ones. Another, would be changing the

54

temporal implementation to be able to run without requiring recursive algorithms,
while being able to maintain the whole graph history. This is rather difficult due to the
potential space and time requirements of such a change. Additionally, the definition
of ’journey’ can be extended in multiple other algorithms that use paths and those
algorithms can also be applied to temporal data. Finally, indexes based on scores
can be created for faster look-up of the more ’central’ or ’important’ nodes of the
networks (based on each definition).

55

Bibliography

[1] V. Kostakos, “Temporal graphs,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 388, no. 6, pp. 1007–1023, 2009.

[2] U. Khurana, “An introduction to temporal graph data management,” tech. rep.,
Technical report, May, 2012.

[3] A. Campos, J. Mozzino, and A. Vaisman, “Towards temporal graph databases,”
arXiv preprint arXiv:1604.08568, 2016.

[4] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora, “Graph
metrics for temporal networks,” in Temporal Networks, pp. 15–40, Springer, 2013.

[5] N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and F. Amblard, “Time-
varying graphs and social network analysis: Temporal indicators and metrics,”
arXiv preprint arXiv:1102.0629, 2011.

[6] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM Computing
Surveys (CSUR), vol. 40, no. 1, p. 1, 2008.

[7] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph databases,”
in Social Computing (SocialCom), 2013 International Conference on, pp. 708–715,
IEEE, 2013.

[8] N. Agarwal and D. Mahata, “Grouping the similar among the disconnected blog-
gers,” Social Media Mining and Social Network Analysis: Emerging Research: Emerg-
ing Research, p. 54, 2013.

[9] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation rank-
ing: Bringing order to the web.,” Technical Report 1999-66, Stanford InfoLab,
November 1999. Previous number = SIDL-WP-1999-0120.

56

[10] G. Jeh and J. Widom, “Simrank: a measure of structural-context similarity,”
in Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 538–543, ACM, 2002.

[11] S. Rothe and H. Schütze, “Cosimrank: A flexible & efficient graph-theoretic sim-
ilarity measure.,” in ACL (1), pp. 1392–1402, 2014.

[12] D. Fogaras and B. Rácz, “Scaling link-based similarity search,” in Proceedings of
the 14th international conference on World Wide Web, pp. 641–650, ACM, 2005.

[13] Y. Sun and J. Han, “Ranking methods for networks,” in Encyclopedia of Social
Network Analysis and Mining, pp. 1488–1497, Springer, 2014.

[14] G. Kossinets and D. J. Watts, “Empirical analysis of an evolving social network,”
science, vol. 311, no. 5757, pp. 88–90, 2006.

[15] P. Rozenshtein and A. Gionis, “Temporal pagerank,” in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pp. 674–689, Springer,
2016.

[16] M. S. Mariani, M. Medo, and Y.-C. Zhang, “Ranking nodes in growing networks:
When pagerank fails,” Scientific reports, vol. 5, 2015.

[17] B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal, “Pagerank on an evolv-
ing graph,” in Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 24–32, ACM, 2012.

[18] G. Kossinets and D. J. Watts, “Origins of homophily in an evolving social net-
work,” American journal of sociology, vol. 115, no. 2, pp. 405–450, 2009.

[19] H. Tong, S. Papadimitriou, S. Y. Philip, and C. Faloutsos, “Proximity tracking
on time-evolving bipartite graphs,”

[20] “Centrality - wikipedia.” https://en.wikipedia.org/wiki/Centrality. (Accessed
on 02/15/2017).

[21] “Kdd cup 2003 - datasets.” https://www.cs.cornell.edu/projects/kddcup/

datasets.html, August 2003. (Accessed on 01/11/2017).

[22] “dblp: computer science bibliography.” http://dblp.uni-trier.de/. (Accessed
on 01/11/2017).

57

https://en.wikipedia.org/wiki/Centrality
https://www.cs.cornell.edu/projects/kddcup/datasets.html
https://www.cs.cornell.edu/projects/kddcup/datasets.html
http://dblp.uni-trier.de/

Author’s Publications

[1] Kermanidis, K. L., Karydis, I., Koursoumis, A., & Talvis, K. (2014). Combining
Language Modeling and LSA on Greek Song “Words” for Mood Classification. Inter-
national Journal on Artificial Intelligence Tools, 23(02), 1440007.

[2] Brilis, S., Gkatzou, E., Koursoumis, A., Talvis, K., Kermanidis, K. L., & Kary-
dis, I. (2012, September). Mood classification using lyrics and audio: A case-study in
greek music. In IFIP International Conference on Artificial Intelligence Applications
and Innovations (pp. 421-430). Springer Berlin Heidelberg.

[3] Koursoumis, A., E., Founta, A. M., Talvis, K., Mprilis, S., ... & Kermanidis, K.
L. (2012, May). Learning to case-tag modern greek text. In Hellenic Conference on
Artificial Intelligence (pp. 353-360). Springer Berlin Heidelberg.

Short Biography

I grew up loving computers and everything related to modern technology.

I graduated from the Informatics Department of the Ionian University, in Greece,
in February 2014. On the same month, I joined the computer science departments
post-graduate program in the University of Ioannina and am working on getting my
Master’s degree since.

I worked one year for Senseworks Ltd. as a full stack web developer and since
then I work as a freelance web developer. I have been a part of both research groups
and software development groups and grew to like the latter more. However, my
experience on the former helped me evolve in many ways.

I generally find myself working better and more efficiently in a team rather than
alone.

On my spare time I like going out with friends, watching movies and tv-series, sup-
porting the local football team and playing games, be it video games or tabletop pen
and paper ones.

I am also a member of the Pan-hellenic Philanthropic Association ”Bread & Ac-
tion” and help collect and distribute donated goods to families living in poverty in
Epirus, Greece.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Motivation
	Problem Statement
	Contribution
	Outline

	Related Work
	Graphs
	Temporal and Evolving Graphs
	Temporal Measures
	Summary

	Models and Algorithms
	Graphs
	Temporal Graphs
	Evolving Graphs

	Similarity
	Evolving SimRank
	Temporal SimRank

	Distance
	Evolving Distance
	Temporal Distance

	Centrality
	Evolving Centrality
	Temporal Centrality

	Diameter
	Evolving Diameter
	Temporal Diameter

	Top-k Measurements and Rankings
	Most Similar or Close Over Time Range
	Drop/Increase Over Time Range
	Average Node Similarity or Distance
	Most similar neighbors count

	Evaluation
	Tools
	Datasets
	Directed Arxiv HEP-PH
	DBLP

	Tuning the Algorithms
	Neighbors
	Dataset Sample Size
	Structural and Temporal Decay

	Static, Evolving and Temporal
	Performance
	Values

	Ranking the results
	Top-k most similar
	Drop / increase over time range
	Average Node Scores
	Most similar neighbors count

	Conclusion and future work
	Contribution
	Applications
	Future Work

	Bibliography
	Author's Publications
	Short Biography

