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Carpal Tunnel Syndrome (CTS) is a medical situation where the median nerve is
compressed while traveling through the tunel of human wrist. The resulting symp-
toms affect the 5% of the general population and the diagnosis of the syndrome is
mainly based on Nerve Conduction Studies (NCS), a procedure of electrical conduc-
tion of finger nerves. The resulting signals are inspected by the neuro-physiologists
and specific characteristics are measured in order to decide about the existence of the
syndrome.

The diagnosis of CTS is still controversial. Many researchers claim that since no
more accurate method has been found, the NCS (Nerve Conduction Studies) should
be considered as the gold standard of CTS diagnosis, while others insist that the
remarkable instances of false negative results and the absence of correlation between
NCS findings and clinical symptoms should lead to the establishment of an alternative
method of CTS grading scale.

In this thesis, after evaluating the existing signal features, we propose two addi-
tional techniques to the diagnosis of CTS; the first one consists of more geometric
characteristics of the signal than those that are applied today and the second one is a
feature which arises from the implementation of an algorithm called Dynamic Time
Warping and examine if it can identify patterns in our time-series data.

Our results show that geometric characteristics in addition to Dynamic Time Warp-
ing feature can ameliorate the accuracy of our model to predict the CTS grading
severity and also increase the sensitivity and specificity values of today methods.

x



Ε Π

Προκόπιος Κοντογιάννης, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και
Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Φεβρουάριος 2017.
Αυτόματη Διάγνωση του Συνδρόμου του Καρπιαίου Σωλήνα με Εφαρμογή υπαρχό-
ντων και Νέων Χαρακτηριστικών από το σήμα.
Επιβλέπων: Γεώργιος Μανής, Επίκουρος Καθηγητής.

Το Σύνδρομο του Καρπιαίου Σωλήνα, αποτελεί την πιο συχνή πάθηση του μέσου
νεύρου και αφορά μία μεγάλη μερίδα του γενικού πλυθησμού (περίπου το 5%).
Το μέσο νεύρο διέρχεται μέσω ενός τούνελ που υπάρχει στον ανθρώπινο καρπό,
ονομάζεται Καρπιαίος Σωλήνας και αποτελείται από τένοντες, χόνδρους και το
μέσο νεύρο. Έτσι, ενώ το ωλένειο νεύρο διέρχεται από τον καρπό αλλά έξω από
τον καρπιαίο σωλήνα, το μέσο νέυρο είναι το μόνο νεύρο το οποίο διασχίζει τον
καρπιαίο σωλήνα.

Αυτός ακριβώς είναι και ο λόγος που ο νευροφυσιολογικός έλεγχος θεωρείται
σήμερα η πιο αποτελεσματική μέθοδος διάγνωσης του συνδρόμου. Με τη διενέργεια
ηλεκτρικής αγωγιμότητας των νεύρων, επιθεωρούνται κάποια χαρακτηριστικά από
τα προκύπτοντα σήματα και πραγματοποιείται σύγκριση μεταξύ των χαρακτηρι-
στικών του μέσου και του ωλένειου νεύρου. Επειδή το μέσο νέυρο επηρεάζεται ενώ
το ωλένειο δεν επηρεάζεται από το σύνδρομο, η μεταξύ τους σύγκριση αναμένεται
να καταδείξει την ύπαρξη του συνδρόμου.

Παρόλα αυτα όμως η αποτελεσματικότητα του ΗλεκτροΝευροΓραφήματος είναι
αρκετά αμφισβητίσιμη. Αφενός δεν είναι αμελητέα τα περιστατικά που, ενώ εμφανί-
ζουν την κλινική εικόνα του συνδρόμου, έχουν φυσιολογική ηλεκτρική αγωγιμότητα,
αφετέρου δεν παρουσιάζεται σημαντική συσχέτιση μεταξύ αγωγιμότητας και κλι-
νικών αποτελεσμάτων. Μόλις το 2000, παρουσιάστηκε και θεωρήθηκε αποδεκτή η
κλίμακα του J. Bland, η οποία δείχνει μία συσχέτιση κάποιων χαρακτηριστικών των
σημάτων με τα κλινικά συμπώματα των περιστατικών και έγινε δεκτή (στα κύρια
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σημεία της) από την AAN (American Association of Neurology) ως βάση για την ευ-
ρέως χρησιμοποιούμενη κλίμακα από τότε και στο εξής σε κάθε έρευνα που αφορά
τη σοβαρότητα του συνδρόμου.

Έτσι, πρόσφατες έρευνες έχουν στραφεί στην μέθοδο του Υπερηχογραφήματος
του καρπού για τη διάγνωση του Συνδρόμου του Καρπιαίου Σωλήνα, χωρίς ωστόσο
να αποδεικνύουν ότι το υπερηχογράφημα αποτελεί από μόνη της αξιόπιστη μέθοδο
διάγνωσης.

Σε αυτή τη διατριβή, ερευνούμε την απόδοση των χαρακτηριστικών που χρησι-
μοποιούνται σήμερα. Ελέγχουμε τη συσχέτιση κάθε χαρακτηριστικού χωριστά με
την υπάρχουσα κλίμακα καθώς και την απόδοση των πιο γνωστών ταξινομητών με
το σύνολο αυτών των χαρακτηριστικών.

Επίσης ακολουθούμε την ίδια διαδικασία για νέα χαρακτηριστικά που προκύ-
πτουν από τα σήματα της ηλεκτρικής αγωγιμότητας των νεύρων, και δεν έχουν
αξιολογηθεί μέχρι σήμερα, με σκοπό την εύρεση χαρακτηριστικών που δεν εξαρτώ-
νται από τον ανθρώπινο παράγοντα.

Τέλος χρησιμοποιώντας τον αλγόριθμο της Δυναμικής Στρέβλωσης του Χρόνου,
ελέγχουμε τη συσχέτιση του χαρακτηριστικού που προκύπτει, με τη χρησιμοποιού-
μενη κλιμάκωση, καθώς και με την κλινική εικόνα των ασθενών και αναλύουμε τα
αποτελέσματα. Η εμφανής αποτελεσματικότητα του αλγορίθμου στην αναγώριση
ομοιοτήτων μεταξύ των σημάτων μας αλλά και αυτή κάποιων εκ των γεωμετρι-
κών χαρακτηριστικών των σημάτων, βελτιώνει την απόδοση των ταξινομητών, και
δημιουργεί προυποθέσεις για τη συνδρομή του στην καθιέρωση μιας νέας πιο απο-
τελεσματικής κλιμάκωσης της σοβαρότητας των περιστατικών του Συνδρόμου του
Καρπιαίου Σωλήνα και άλλων παθήσεων.

xii



C 1

I

1.1 Objective

1.2 Contribution

1.3 Structure

1.1 Objective

Carpal Tunnel Syndrome despite being a medical situation that affects the 5% of the
general population, it still cannot be thoroughly diagnosed and current techniques
have significant values of both false negatives and false positives subjects.

The objective of our thesis is to examine the existing features in order to evaluate a
potential automatic diagnosing tool and novel features that outcome from the resulted
signals of Nerve Conduction Studies, the most accurate method of electrical conduction
of human nerves, and propose these features to be detected for the diagnosing ,
treating and understanding of other complicated cases too.

1.2 Contribution

Diagnosing of CTS is still problematic and NCS although the most reliable method, is
not yet an undeniable technique of standardizing the grading scale of CTS’ severity.
Besides, the actual machines do not make any prediction about the existence of the
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syndrome and thus, the doctor is not given any kind of diagnosis. In this thesis,
through classification methods, we try to automate the procedure of diagnosing the
CTS.

In our research we propose several novel signal geometric characteristics and a
novel method by applying DTW (Dynamic Time Warping) algorithm. Both proce-
dures have never been tested before in the diagnosis of CTS. More specifically DTW
is rarely used before for time-defined diseases; although DTW is implemented only
for time series data, it is not used in diagnosing a syndrome that is totally defined by
the time a curve (or more) turns up.

The novel geometric features and the DTW algorithm can be implemented in
many other cases on future, driving the researchers to focus on more than the usual
extracted features of signals and time series data. Besides, the grading of the severity
of CTS is not yet fully established and our proposals give more options to those who
will do this in the future.

1.3 Structure

This thesis is structured as follows:
In Chapter 2 we present the basic concepts for understanding the Carpal Tunnel

Syndrome. We explain the Nervous System by emphasizing on the difference between
motor and sensory nerves and then we focus on carpal tunnel, the passage through
which travels the median nerve. We also present the symptoms of the syndrome, its
diagnostic methods and finally the Nerve Conduction Studies, which are the process
of electrical conduction of the nerves and their different techniques of conducting
sensory and motor nerves to evaluate the existence of CTS. Most important studies
and reviews are also presented during the analysis of the diagnosis of CTS.

Chapter 3 presents our case study; the descriptive statistics of our sample, the
clinical symptoms, potential exclusions and resulted NCS findings. Hence, we describe
our groups of severity.

In Chapter 4, we describe the common features that are used today as outputs of
the NCS in order to decide about the presence of the syndrome. Then, we analyze
each one separately in purpose of examining their contribution to the final diagnosis.

In Chapter 5, we use five very popular and up-to-date classifiers in order to
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evaluate their accuracy and determine the possibility of automatic diagnosis of the
syndrome.

In chapter 6, we present novel features for the resulted signals. They are geometric
characteristics with physical meaning that may play significant role in the diagnosis
of the syndrome. Finally, we use the classifiers of Chapter 4 to evaluate their accuracy.

Chapter 7 examines another new feature, that has never also be tested in the
diagnosis of CTS: the Dynamic Time Warping (DTW) algorithm. We present the
algorithm, its logic, studies that focus on it and finally we experiment with it as a
feature of NCS in our case study. At the end, we propose the wavelet transform for
decomposition of the resulted signal before applying the DTW algorithm.

The last Chapter displays the conclusion and a discussion of our results, especially
those of DTW algorithm, and potential future work on several time-series cases.
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C 2

T C T S (CTS)

2.1 The Nervous System

2.2 The Carpal Tunnel

2.3 The Syndrome

2.4 Symptoms of CTS

2.5 Diagnosis of CTS

2.6 Nerve Conduction Studies (NCS)

2.1 The Nervous System

2.1.1 Definition

The nervous system is composed of the central nervous system (CNS) and the periph-
eral nervous system (PNS), plus several organs that play the role of sensors. Sensory
nerve fibers transfer the sensory stimuli, which is processed and then delivered from
the motor nerve fibers to muscles. The nervous system coordinates all these parts to
retain balance, by transporting information to and from different functional parts of
the body, through electrical and chemical signals. The brain and the spinal cord com-
pose the CNS, while the PNS is composed of sensory and ganglia neurons, plus other
nerves that connect the neurons to each other and to the CNS. The interconnection
of these regions is implemented by composite neural trails.
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2.1.2 Definition of Neuron

The human body is composed of billion neurons, electrically excitable body cells that
consist of a dendrite, a short extension with branches that play the role of the antenna
for receiving information into its cell body and an axon, a much longer extension that
carries the signals for transmitting this information.

2.1.3 Motor and Sensory Nerves

In order to carry the information in the form of signal between the CNS and other
regions of the body, nerves are divided into motor and sensory nerves. They are
both path of the Peripheral Nervous System and they consist of motor and sensory
neurons respectively.

Sensory nerves receive information from the sense organs, they carry the signal
from the receptors to the Central Nervous System and then the signal could be carried
to the brain or to a motor nerve. So while sensory nerves carry information to the
CNS, Motor Nerves, on the other hand, carry signals from the CNS to a gland/muscle,
which then contracts.

Mixed nerves are the nerves that consist of motor and sensory neurons, thus they
have the ability to carry the stimuli information from the sensor to the CNS and
then carry back the processed information from the CNS to the muscle. The whole
transmission occurs in milliseconds and provides human body with the efficiency to
fast react to environmental incentives.

2.2 The Carpal Tunnel

Carpal tunnel is a narrow canal which is structured by bones plus an upper strong
layer of connective tissue, known as transverse ligament, and is situated on the pal-
mar side of the wrist. It is a passageway (tunnel); several flexor tendons plus the
median nerve, which is a mixed nerve, pass through it. The median nerve is the only
nerve that travels through this canal in the wrist and is responsible for the feeling on
palmar side of four fingers (dig1, dig2, dig3 and dig4).
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Figure 2.1: The tunnel; only median nerve passes through

As shown on figure 2.1 1, the median nerve is branched into four fingers, but only
at the left side of the 4th digit. This is because at the right side of this finger, it is the
ulnar nerve that is branched into it.

2.3 The Syndrome

Carpal tunnel syndrome (CTS) is the most common of all entrapment neuropathies,
since it affects almost the 5% of the general population [1] and is caused by the
compression of the median nerve beneath the transverse ligament in the carpal tunnel.
Since the canal is narrow, when any of the nine long flexor tendons passing through it
become swollen or degenerated, the narrowing of the canal often results in the median
nerve (the only nerve that passes through the tunnel) to squeeze or compress.

Carpal tunnel syndrome is often the result of a combination of factors that increase
pressure on the median nerve and tendons in the carpal tunnel, rather than a problem
with the nerve itself. Most likely the disorder is due to a congenital predisposition -
the carpal tunnel is simply smaller in some people than in others. Other contributing
factors include trauma or injury to the wrist that cause swelling, such as sprain or
fracture; overactivity of the pituitary gland; hypothyroidism; rheumatoid arthritis;
mechanical problems in the wrist joint; work stress; repeated use of vibrating hand
tools; fluid retention during pregnancy or menopause; or the development of a cyst

1nuevamentes.net/2014/12/el-sindrome-del-tunel-carpiano.html
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or tumor in the canal. In some cases no cause can be identified.
There is little clinical data to prove whether repetitive and forceful movements of

the hand and wrist during work or leisure activities can cause carpal tunnel syndrome.
Other disorders such as bursitis and tendonitis have been associated with repeated
motions performed in the course of normal work or other activities. Writer’s cramp
may also be brought on by repetitive activity.

2.4 Symptoms of CTS

The compression of median nerve shown on figure 2.2 2 results in:

• Pain and/or Numbness (Tingling)

Carpal tunnel develops slowly. At first, the patient will notice it at night or in
the morning. The feeling is similar to the ”pins-and-needles” sensation one gets
when a hand falls asleep. During the day, the patient feels pain or tingling when
holding things, like a phone or a book, or when driving. Shaking or moving
the fingers usually helps ameliorate the situation. Carpal tunnel syndrome can
also cause a feeling of numbness in the hands. Some people feel like their
fingers are swollen, even though no swelling is present, or they may have trouble
distinguishing between hot and cold.

• Weakness

As carpal tunnel syndrome progresses, the sense of weakness in the thumb and
first two fingers will start, and it may be difficult to make a fist or grasp objects.
The patient starts dropping things, or has problems doing things like holding
a utensil or buttoning a shirt.

2en.wikipedia.org/wiki/Carpal_tunnel_syndrome/media/File : Carpal_Tunnel_Syndrome.png
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Figure 2.2: The carpal tunnel syndrome; the median nerve compressed

2.5 Diagnosis of CTS

Apart from the clinical examination, the doctor should confirm the existence of CTS
by implementing electrodiagnostic test (EDX). In this test, electrodes are placed on
the hands and wrists, and small electric shocks are applied to measure how quickly
the median nerve transmits impulses.

The same test can be omitted to Ulnar and Radial nerves, for both sensory and
motor parts of each nerve. These diagnostic tests that evaluate the electrical conduction
of both Motor and Sensory nerves for the Ulnar, Median and Radial Nerves are called
Nerve Conduction Studies (NCS) and they considered to be the gold standard [1],
although argued [2, 3], in the diagnosis of CTS.

The most significant concept of NCS is the comparison of the median nerve NCS
features with another nerve’s same features. The accuracy relies upon the fact that
only the median nerve travels in carpal tunnel and the comparison with a nerve that
passes outside the canal could provide reliable results. So given the NCS features, the
difference of the value from one feature of the Median nerve minus the value of the
corresponding feature of the Ulnar nerve provides significant information about the
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presence and the severity of CTS, especially when comparing different nerves at the
same finger (i.e. dig4).

Another field of interest in the diagnosis of the syndrome is the Ultra/Sound of
the carpal tunnel, but the results are not yet very promising and U/S is applied as an
additional method to ensure the existence of the CTS [4].

2.6 Nerve Conduction Studies (NCS)

As mentioned above, Nerve Conduction Studies (NCS) are the electrodiagnostic tests
that are performed to nerves in order to examine their ability of electrical conduction.
From the resulting signal, the neurologist, nowadays, pays attention to the following
features:

• Conduction Velocity

• Onset Latency

• Amplitude and/or Area

The most important measures are considered to be the velocity and the onset
latency [5, 6, 7]. Very often the term NCV (Nerve Conduction Velocity) is used because
of misunderstanding, since velocity is referenced as the gold standard of NCS [8].

2.6.1 Performing Sensory NCS

To perform a Sensory Nerve Conduction Study (S-NCS) one stimulates the peripheral
nerve from a finger and the electrodes are recording the response, as presented on
figure 2.3 3

The Onset Latency is defined as the time it takes (in milliseconds) for the electrical
signal to travel from stimulus to response site where we placed the electrodes. The
CV is the velocity of that traveling, measured in mm/ms (same as meters/sec).

2.6.2 Performing Motor NCS

To perform a Motor Nerve Conduction Study (M-NCS) one stimulates the peripheral
nerve and the electrodes are recording the muscle response. Usually we perform the

3clinicalgate.com/nerve-conduction-studies-and-electromyography
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Figure 2.3: Sensory Nerve Conduction Studies

M-NCS twice, once the stimulus is placed at the elbow and then at the wrist. The
recording site is always the same so as to be able to calculate the velocity between
segments using the difference between the latencies, as presented on figure 2.4 4

2.6.3 Issues of NCS

Despite being the most accurate test, NCS current tests lack of standardized diag-
nostic criteria resulting to false positives and false negatives since NCS cannot detect
abnormality in 16-34 % of subjects with clinical CTS [1].

Another disadvantage of NCS is that the current extracted features do not cor-
relate with symptoms [3] and thus a commonly accepted grading scale has not yet
been defined. Additional to this, each laboratory has different values of features ref-
erenced as normal and this results to increasing the necessity of a standard method
of grading [2].

The absence of a widely approved grading scale, motivate many scientists to use
arbitrary grading scales [5] and others to choose one among the most commonly
approved grading scales, such as J Bland’s scaling [9]. Thus the American Associa-
tion of Neuro-muscular and Electro-diagnostic Medicine offered a proposal [10] as a
starting point to develop consensus for a non-arbitrary grading scheme.

4clinicalgate.com/nerve-conduction-studies-and-electromyography
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Figure 2.4: Motor Nerve Conduction Studies

This starting point was also the basis of the decision made by the doctors and
neuro-physiologists of our case that is presented on next chapter, and is following
these main rules:

• Mild CTS

– Prolonged Distal Sensory Latency

– Normal Distal Motor Latency

– All amplitudes are normal

• Moderate CTS

– Prolonged Distal Sensory and Motor Latencies

– Probability for Decrease of Amplitudes

• Severe CTS

– Undetectable or very Prolonged Sensory Potentials

– Low Amplitudes of Mixed Response

– Very Prolonged Distal Motor Latencies

In this thesis this proposal is used to grade the CTS hands, in order to evaluate
the new methods and characteristics of the resulted signals. Only in cases where one
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instance had issues of more than one category (e.g. normal distal motor latency -
mild CTS, but significant decrease of amplitudes - moderate CTS), the severity of the
syndrome is decided in combination with clinical symptoms, else only NCS findings
where taking into account.
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C 3

O C S

3.1 Case Study

3.1 Case Study

In our study we included 39 volunteers, 29 patients and 10 healthy subjects (control
group). The patients visited the Neurological Clinic at the University Hospital of
Ioannina between 2013 and 2015 because of Carpal Tunnel Syndrome’s symptoms
in any of their hands and they agreed to have their results used for research purposes.
The control group consists of 10 volunteers who were apparently healthy.

Subjects of both groups have signed that they agree to get their anonymous results
(clinical symptoms and NCS findings) used for research purposes. The collection of
all included data has been approved by the administration of the clinic.

3.1.1 Clinical Symptoms and Exclusions

Clinical diagnosis of CTS required the presence of at least one of the following symp-
toms:

• Pain

• Numbness

• Weakness
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Table 3.1: Sample Statistics.

Characteristics CTS Patients (n = 29) Control Subjects (n = 10)

N (%)

Women 26 (89) 7 (70)

Mean (SD)

Age (years) 47.93 (12.92) 41.3 (9.14)

Weight (kgr) 72.55 (13.97) 66.50 (10.23)

Height (cm) 163.35 (7.68) 166 (8.94)

BMI (kgr/cm2) 27.23 (5.15) 24.13 (3.16)

Among the 29 patients we excluded one woman who suffered from MS. Rest
patients did not suffer from any other relative disease such as diabetes mellitus,
endocrine or neurological disorders.

The final study included 53 CTS hands and 19 healthy hands.

3.1.2 Descriptive Statistics

Our subjects’ physical characteristics are shown on table 3.1

3.1.3 Grading Scale

All hands were categorized according to their NCS findings and according to their
symptoms also. For the symptoms’ categorization, three pair of factors were counted;

• Pain Presence and Pain Duration (in months)

• Numbness Presence and Numbness Duration (in months)

• Weakness Presence and Weakness Duration (in months)

For NCS categorization, the recent literature was took into account.

3.1.4 Resulting Signals

Nerve conduction studies were applied to all subjects at the laboratory of the clinic,
using their EMG/NCS product, a Dantec Keypoint from Natus.
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Figure 3.1: Typical form of a Sensory NCS signal.

Figure 3.2: Typical form of a Motor NCS signal.

Motor nerve conduction studies performed for both ulnar and median nerves at
both sides and Sensory nerve conduction studies performed at digits 2 and 4 for
the median nerve and at digits 4 and 5 for the ulnar nerve. Also Sensory nerve
conduction studies were performed for radial nerves at both sides.

The applied Nerve Conduction Studies (NCS) resulted in a set of signals for each
study as shown in table 3.2.

Sensory Nerve Conduction Studies For digits 2, 4 and 5 (median and ulnar sensory
nerves) the sensory conduction studies result signals of the form of figure 3.1.

The motor distal and proximal signal of both median and ulnar nerves, have the
typical form of figure 3.2.

The sampling frequency of sensory and motor signals are 48 kHz and 24 kHz,
respectively.

3.1.5 Resulting NCS Groups

The 72 hands were divided by the doctor in 4 groups using the recommended grading
scale mentioned above (section 2.6.3):
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• 19 hands from control group A (no CTS)

• 10 hands from group B (mild CTS)

• 17 hands from group C (moderate CTS)

• 19 hands from group D (severe CTS)

Apart from the control group, there are more 3 hands of patients that had one-
hand CTS and so the other hand was included in control group.

Additionally there are 4 hands of patients with CTS clinical symptoms, who visited
the hospital complaining for pain and/or numbness, but doctor found no NCS abnor-
malities. These hands were also included in control group, making 26 the hands of
group A.
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C 4

C F

4.1 Introduction

4.2 Sensory Amplitude (μV)

4.3 Sensory Conduction Velocity (CV in m/s)

4.4 Sensory Onset Latency (in ms)

4.5 Sensory Peak Latency (in ms)

4.6 Sensory Peak - Onset Latency (in ms)

4.7 Sensory Area (in ms*uV)

4.8 Motor Distal and/or Proximal Amplitude

4.9 Motor Distal and/or Proximal Takeoff Latency

4.10 Motor Conduction Velocity

4.11 Results

4.1 Introduction

In this chapter we focus on the main features that are extracted from Nerve Conduc-
tion Studies (NCS), since they are considered today as the most significant ones, in
neurophysiology, for the diagnosis of Carpal Tunnel Syndrome (CTS).

To analyze them deeply, we examine each feature separately and also in combi-
nation with every other corresponding feature. That means, we compare all features
for both median and ulnar sensory nerves and also we compare all features for both
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distal and proximal motor nerves. The sensory nerve comparison is made for every
pair of available NCS fingers:

• median vs ulnar at digit 4

• median at digit 4 vs ulnar at digit 5

• median at digit 2 vs ulnar at digit 5

• median at digit 2 vs ulnar at digit 4

Since the basis of hands’ grouping was the comparison between median and ulnar
nerves at digit 4, the bias against other finger comparison certainly exists.

4.2 Sensory Amplitude (μV)

4.2.1 Amplitude Definition

There are multiple amplitudes of conduction that can be calculated when referring
to curves with no-opposing edges. The machine gives to the doctor the amplitude
defined as the length of the perpendicular to the line connecting the two edges, as
shown on figure 4.1a.

Figure 4.1: Machine’s Amplitude and Area.

(a) The Machine-given Amplitude. (b) The Sensory Area.

In this section, we examine all alternative definitions of amplitude and we propose
the one that fits best our data.
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4.2.2 The machine-given amplitude

The machine calculates the amplitude described in figure 4.1.

4.2.3 Maximum Value Amplitude

Another definition of amplitude could be the maximum value, meaning the distance
from the onset point. This definition ignores the existence of the negative curve and
indicates the physical meaning of max μV a nerve conducted.

4.2.4 Maximum minus Minimum Value Amplitude

An alternative definition of amplitude is to estimate the distance between the max
and min peaks of a curve. In this definition, the negative amplitude is weighted equal
to the positive one.

4.3 Sensory Conduction Velocity (CV in m/s)

Conduction Velocity is calculated by dividing the distance between the stimulator and
the recorders by the duration before the conduction started; it is considered to be the
gold standard of Nerve Conduction Studies (NCS) so that very often the term NCS is
replaced by the term NCV (Nerve Conduction Velocity).

4.4 Sensory Onset Latency (in ms)

Onset Latency is the time in milliseconds the stimulus travels through the nerve. It is
common to claim the existence of the syndrome if the difference of latencies at dig4
between ulnar and median nerves exceeds 0.5 ms.

4.5 Sensory Peak Latency (in ms)

The Peak point is always following the onset point and its latency is defined as the
time the stimulus need while travelling through the nerve to achieve the maximum
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conduction value. Actually, it is the peak value of the signal.

4.6 Sensory Peak - Onset Latency (in ms)

A rare feature that is measured is the difference between the two latencies, meaning
the Peak minus the Onset latency.

4.7 Sensory Area (in ms*uV)

The area given by the machine is calculated by the borders of the curve as shown on
figure 4.1b.

4.8 Motor Distal and/or Proximal Amplitude

In motor nerves the amplitude of the curve is defined as the total distance between
the two edges. It is equal to the maximum minus minimum value difference.

4.9 Motor Distal and/or Proximal Takeoff Latency

The take-off point of motor nerves is in accordance to the onset point of the sensory
nerves; the point where the stimulus conducts the muscle at the recording area.

4.10 Motor Conduction Velocity

The conduction velocity of a motor nerve is not defined for both the distal and
proximal NCS; it comes from the combination of both of them. So, there is one
velocity that can be measured and is defined as the velocity (m/s) with which the
stimulus travels through the motor nerve.
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4.11 Results

Due to few number of subjects for each group, we used the Kruskal-Wallis statistical
test to get our p-values. It equals to a non-parametric one-way ANOVA test that
does not assume normal distribution and is an appropriate method for ordinal (for
3 groups and more) data-sets. The alpha level was set to .01.

The results of our experiments are as follows:

• Sensory Amplitude
The results of our testings between all possible comparisons indicated that the
comparison between median at digit 2 and ulnar nerve at digit 4 gave the best
discrimination between most groups (figure 4.2).

Figure 4.2: Machine’s Amplitude boxplots.

(a) Median - Ulnar at dig4. (b) Median dig2 - Ulnar dig4.

All results are shown at table 4.1

Table 4.1: Machine’s Amplitude p-values between groups.

Comparisons All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

median 4 - ulnar 4 0.00000013 0.03344378 0.08737528 0.00876483

median 2 - ulnar 4 0.00000000 0.01180829 0.13847672 0.00092576

median 2 - ulnar 5 0.00000282 0.12790785 0.34227921 0.00684216

median 4 - ulnar 5 0.00005327 0.11229830 0.28749542 0.05751940

median 4 - 2 0.56363495 0.41235518 0.93944001 0.54332693

ulnar 4 - 5 0.62226213 0.62976661 0.84936062 0.67053345
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• Maximum Value Amplitude
The results and boxplot are shown on figure 4.3a and on table 4.2. According
to them, this amplitude is the most important among all the amplitudes that we
discuss in this section, but still with overlapping notches.

Figure 4.3: Max and Max - Min Value Amplitude boxplots.

(a) Max Value Amplitude . (b) Max- min Amplitude.

Table 4.2: Max Value Amplitude p-values between groups.

Comparisons All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

median 4 - ulnar 4 0.00000001 0.00986819 0.12864314 0.00238703

median 2 - ulnar 4 0.00007637 0.13287038 0.70404297 0.03096931

median 2 - ulnar 5 0.01023459 0.34939958 0.96969816 0.05180401

median 4 - ulnar 5 0.00006823 0.19210231 0.49412454 0.01038538

median 4 - 2 0.74377622 0.65004536 0.34227921 0.87430472

ulnar 4 - 5 0.19776605 0.34939958 0.70404297 0.90325745

• Max minus Min Value Amplitude
No significant results were extracted from the analysis of this kind of amplitude;
the results are shown on table 4.3 and figure 4.3b.

In conclusion, although the amplitude of the sensory nerves’ signal is getting
decreased as the CTS is grading, the confidence interval criterion of 99 per cent,
is not met.

• Sensory Conduction Velocity
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Figure 4.4: Conduction Velocity boxplot.

Table 4.3: Max - Min Value Amplitude p-values between groups.

Comparisons All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

median 4 - ulnar 4 0.00000003 0.22272408 0.06269391 0.00089358

median 2 - ulnar 4 0.00002154 0.22272408 0.25445058 0.02092134

median 2 - ulnar 5 0.00051746 0.16469483 0.54332693 0.04490615

median 4 - ulnar 5 0.00000133 0.06127455 0.24657629 0.02272782

median 4 - 2 0.92254773 0.55152256 0.42503065 0.92503065

ulnar 4 - 5 0.90751846 0.84265906 0.76120799 0.52339298

The resulted p-values confirmed the recent literature about the importance of
CV in grading the severity of the syndrome. The digit 4 comparison between
median and ulnar nerves fitted best our group discrimination, as shown on
figure 4.4 and on table 4.4

• Sensory Onset Latency
Since this feature plays important role in grading scaling, the results shown on
figure 4.5a and on table 4.5 are as expected, of the most discriminating.

• Sensory Peak Latency
From our results, we can claim it is a significant feature in the diagnosis of CTS,
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Table 4.4: Conduction Velocity p-values between groups.

Comparisons All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

median 4 - ulnar 4 0.00000000 0.00001768 0.01630917 0.00016944

median 2 - ulnar 4 0.00000000 0.00010730 0.11061207 0.00023617

median 2 - ulnar 5 0.00000000 0.01010495 0.02499823 0.00023597

median 4 - ulnar 5 0.00000000 0.00047887 0.00305280 0.00047443

median 4 - 2 0.00023066 0.05628089 0.21460826 0.34227921

ulnar 4 - 5 0.09274439 0.11388761 0.07114651 0.20186788

Figure 4.5: Latencies Median - Ulnar at dig4.

(a) Onset Latency. (b) Peak Latency.

and in some finger comparisons between groups, unexpectedly, we received
better results than those that we received by the Onset latency measurement.
The results are shown on table 4.6 and the box-plot on figure 4.5b

• Sensory Peak minus Onset Latencies
The results in table 4.7 and figure 4.6a show that no significant discrimination
can be determined, according to this feature’s results.

• Sensory Area
The results (table 4.8 and figure 4.6b) did not indicate any importance of the
measurement of the area.

• Motor Distal and/or Proximal Amplitude
The comparison between distal and proximal amplitudes, showed no signifi-
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Table 4.5: Onset Latency p-values between groups.

Comparisons All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

median 4 - ulnar 4 0.00000000 0.00000192 0.00046258 0.00000199

median 2 - ulnar 4 0.00000000 0.00002518 0.01184912 0.00001475

median 2 - ulnar 5 0.00000000 0.00018193 0.00488710 0.00000591

median 4 - ulnar 5 0.00000000 0.00000546 0.00046989 0.00000168

median 4 - 2 0.00000001 0.00065571 0.12769666 0.00026113

ulnar 4 - 5 0.54502994 0.45023424 0.96945660 0.18197572

Table 4.6: Sensory Peak Latency p-values between groups.

Comparisons All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

median 4 - ulnar 4 0.00000000 0.00000344 0.00009658 0.00000168

median 2 - ulnar 4 0.00000000 0.00008261 0.00023927 0.00000512

median 2 - ulnar 5 0.00000000 0.00008310 0.00232174 0.00000509

median 4 - ulnar 5 0.00000000 0.00000444 0.00028188 0.00000169

median 4 - 2 0.00000004 0.00265028 0.34152598 0.00028297

ulnar 4 - 5 0.63336286 0.83014893 0.71589030 0.17062459

cant discrimination, confirming the recent literature that only the comparison
between ulnar and median distal amplitudes is remarkable.

Because of the non-sensitivity of the motor ncs and in combination with the fact
that the grading of CTS scaling assumes a motor decrease in order to bounce
from mild to moderate group and a remarkable decrease to transit from mod-
erate to severe group, we expected significant discrimination only between the
two last groups, and that was verified by the results, as shown in figure 4.7a.

• Motor Distal and/or Proximal Takeoff Latency
In addition to the amplitude, also the Takeoff latency between distal median
and ulnar nerves, indicates a strong feature (figure 4.7b), while the comparison
between distal and proximal measurements did not achieve any significant result
at all.

Our results verified that this feature is more important than the previous one.

• Motor Conduction Velocity
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Table 4.7: Peak - Onset Latency p-values between groups.

Comparisons All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

median 4 - ulnar 4 0.03527300 0.34531717 0.14645245 0.17657217

median 2 - ulnar 4 0.00048542 0.63591522 0.13590321 0.03830345

median 2 - ulnar 5 0.00010043 0.26379900 0.26104989 0.02335438

median 4 - ulnar 5 0.01120085 0.55817997 0.35100282 0.08023567

median 4 - 2 0.00000004 0.00265028 0.34152598 0.00028297

ulnar 4 - 5 0.30489489 0.04605874 0.38079477 0.86567469

Table 4.8: Area p-values between groups.

Comparisons All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

median 4 - ulnar 4 0.00000377 0.16469483 0.08056876 0.01505061

median 2 - ulnar 4 0.00001700 0.07411592 0.62142683 0.02266622

median 2 - ulnar 5 0.00510865 0.15993325 0.59485342 0.00896805

median 4 - ulnar 5 0.01129998 0.37937843 0.93944001 0.03668277

median 4 - 2 0.60212577 0.37977547 0.40331757 0.67605281

ulnar 4 - 5 0.45162710 0.65004536 0.59485342 0.71537845

Because of being robust (much less sensitive than in sensory nerves) the feature
of motor conduction velocity did not give discriminant results. None of distal
and proximal motor CV gave discriminant output for any of groups, figure 4.8
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Figure 4.6: Motor Conduction Velocity (distal and proximal).

(a) Motor CV for median - ulnar distal

nerves.

(b) Motor CV for median - ulnar proximal

nerves.

Figure 4.7: Motor Amplitude and Takeoff Latency.

(a) Motor Amplitude for median - ulnar

distal nerves.

(b) Motor Takeoff Latency for median -

ulnar distal nerves.
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Figure 4.8: Motor Conduction Velocity (distal and proximal).

(a) Motor CV for median - ulnar distal

nerves.

(b) Motor CV for median - ulnar proximal

nerves.
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C 5

C

5.1 Introduction

5.2 Logistic Regression

5.3 K-Nearest Neighbor (KNN)

5.4 Decision Tree

5.5 Support Vector Machine (SVM)

5.6 Naive-Bayes

5.7 Feature Selection

5.8 Leave-one-out Cross Validation and Results

5.1 Introduction

Since automatic classification methods have never been applied to the existing fea-
tures of Nerve Conduction Studies, in this chapter five main classifiers are being
implemented in order to examine their results and create a model that can outcome
the severity or even the existence of the syndrome:

• Logistic Regression

• K-nearest neighbor (KNN)

• Decision Trees
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• Support Vector Machines

• Naive Bayes

To avoid multicollinearity problems, the most significant differences have been
taken into consideration. The median - ulnar at digit 4 for the sensory nerves and
the median - ulnar at distal for the motor nerves.

The labels assigned were of two kind; the doctor’s grading scale and the clinical
symptoms.

5.2 Logistic Regression

As a case of Generalized Linear Model, logistic regression can be seen from the same
perspective of linear regression, but with two main differences:

• the label class is multinomial (binary or ordinal distribution)

• the outcome are probabilities in (0,1)

In our case, we use the Ordinal Logistic Regression, since our outcomes are ordinal
labels of a syndrome severity. The name of the regression is obviously coming from
the famous logistic function:

f(t) =
1

1 + e−t
(5.1)

which has the advantage of giving outcomes only between (0,1) that are interpreted
as probabilities.

After implementing an Ordinal Logistic Regression model, we can handle the
results to predict the outcome of an unseen observation. Besides, we can handle
the results by interpreting the coefficients in the out-coming equations. In our case,
because of the existence of four severity class labels, we will have to handle three
equations. Each one expresses the log odds of the syndrome to be equal or less severe
than a certain class. So, the first equation will give the coefficient of each predictor for
the log odds to represent a healthy subject. The second equation will represent the
log odds of the first two classes (healthy and mild CTS) against the last two classes
(moderate and severe CTS). The third equation represent the log odds of the last
class against the first three.
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The reason why we are referring the log odds and not the probabilities term, is
based upon the logit function, and there is no need for normalisation of our data:

f(t)

1− f(t)
= eb0+b1∗x1+.. (5.2)

In order to compare the results between NCS grading and clinical symptoms, we
also made one experiment with merged categories (the mild and the moderate CTS),
because the clinical categorization should only have three categories in order not to
be arbitrary: The category with no-symptoms, the severe category that felt weakness,
and the middle category that felt only pain and/or numbness, but no weakness.

The accuracy of our model is shown on table 5.1. The classifier’s results confirmed
the literature in the field of non-correlation between symptoms and NCS findings.

5.3 K-Nearest Neighbor (KNN)

KNN is a classifier that implements a very simple algorithm, trying to find the k
nearest observations of a new data point and label it according to the labels of these
k observations. The majority, meaning the label with biggest population, wins. ΚΝΝ
belongs to lazy and instance-based learning algorithms. It is memory-based, because
it uses the training instances that must always remember, so as to make a decision
about a new entrance. Thus, it does not come with a generalization ready results,
but decides after the receiving of a query. After the training phase the model stores
the training data and in the testing phase the model assign a label to a data point
according to the majority of most similar seen data.

The number k is defined by the user. In fact, the term ’nearest’ is also defined
by the user. In this chapter we use the default and most common similarity, the
Euclidean Distance metric, which is defined as:

dist =

√√√√ n∑
i=1

(xi − yi)2 (5.3)

while in next chapter we also implement a custom metric distance.
After making the decision about the metric distance, we examined many possible

values of k. For the value of
k = 3 (5.4)
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our model showed the most significant results, especially in diagnosing the Carpal
Tunnel Syndrome, the accuracy was almost 95 %.

5.4 Decision Tree

Decision tree is a classifier whose name came from its structure. The tree form of the
classifier corresponds each input variable to a node and each target variable to a leaf.
Thus, the path from the root to a leaf represents all the values of the input variables.
Each node conducts a binary splitting of an attribute value.

The learning of the tree is implemented by examining every possible split of each
attribute. Then the best split is chosen according to the optimization criterion which
is the Gini’s Diversity Index. In general a diversity index reflects to the quantitative
distinct types of a dataset and their ratio inside it. The gdi (Gini’s Diversity Index)
is an index of such a type, since it reflects to the probability that if two instances are
taken from a dataset, these are of the same type:

gdi = 1−
∑
i

p(i)2 (5.5)

Building a decision tree from our data through recursive partitioning and creating
the nodes corresponding to the attribute values by splitting them through the gdi
criterion is the process of making a model of a tree shaped classifier.

Then to classify unseen data, the model passes the corresponding attributes to its
decision maker process and without needing to remember all training data, assigns
to it the analogous label, by just following the already made decision rules.

In our experiments, the decision tree classifier has an accuracy of 96% of diag-
nosing the Carpal Tunnel Syndrome.

5.5 Support Vector Machine (SVM)

The goal of an SVM classifier is to find a hyperplane that can discriminate the classes
of our data. This hyperplane is a margin between each class and the bigger it is the
better the differentiation has been conducted. To construct the best hyperplane, the
algorithm uses a subset of the training instances that will be closest to the hyperplane.
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The vector consisted of these instances is called support vector, since this subset
of training dataset supports the creation of the hyperplane. The equation of the
hyperplane is:

wT ∗ xi + b = 0 (5.6)

In order to differentiate the classes the following equation is being used:

f(x) = wT ∗ xi + b (5.7)

with the goal to achieve a positive sign for one class and a negative sign for the
other class:

f(x) ≥ 0, classA

f(x) < 0, classB

So, in order to maximize the margin, since the best discrimination is when the hy-
perplane’s distance for both classes’ instances is the biggest possible and in real world
most classes are not perfectly separable, the problem is becoming a minimization cost
function:

minf(w) =
||w||2

2
+ C

N∑
i=1

ξi (5.8)

where

ξi = 0

for totally separable problems, as it provides an estimate error of the decision bound-
ary, and the function is finally induced to the following objective function:

f(x) = sign

( l∑
i=1

(aiyi(x..xi) + b)

)
(5.9)

The most important advantage of an SVM classifier is that it can transform a
nonlinear problem to a linear one, but in an alternative space. This can be done
using the kernel trick. The kernel trick uses a new space Φ(x) and then a linear
decision boundary make the instances separable in the transformed space. In fact, we
replace the inner product with the kernel function and then the same methodology is
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being applied to construct a linear decision boundary. The kernel function is actually
a similarity function, decided by the user.

To train an SVM classifier for instances with more than two classes, we reduce the
multiclass problem into multiple binary classifications. In our thesis we implemented
the one class vs the rest classes approach, after normalizing all data.

5.6 Naive-Bayes

The naive Bayes classifier is based upon the famous Bayes theorem. For that reason
the classifier is trying to model probabilistic relationships between the set of attributes
and the classes. Although the model assumes no dependence between the attributes
and in real world this assumption does not really exist, it is commonly accepted that
NB classifiers works well.

The Bayes theorem states:

P (Y |X) =
P (X|Y )P (Y )

P (X)
(5.10)

The classifier in the training phase calculates, through the Bayes Theorem, the
posterior probabilities of an instance to belong to each class granted the attributes.
By comparing these probabilities, the biggest value wins and its class is assigned to
the unseen instance.

Its advantage is that there is no need of computing each combination’s class-
conditional probability of an instance X (given class Y), but only the conditional
probability of each attribute Xi. Although, these attributes are supposed to be in-
dependent and they are not, the simplicity of computing each attribute separately
usually gives significant accuracy. The final instance conditional probability is com-
ing from the product of the attributes’ conditional probability.

In our experiments, although there is a strong relationship between our data’s
attributes (for example latency and velocity are certainly strongly correlated), the NB
classifier has an accuracy of 96% in diagnosing the syndrome.
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5.7 Feature Selection

In order to ameliorate the performance of our models we applied a custom sequential
feature selection. We performed the tests to a probabilistic model (naive Bayes) and
a kernel based model (SVM).

At first, we started by defining as the initial set the one which is consisted of all
the features. Starting from the motor NCS features we excluded each one from the
original set and then tested the performance of the model. If none of the two models
gave better results, we eliminated the feature from the current set. After proceeding
so with every feature, we continued by defining as our initial subset the current set of
features which came up after the examination of every feature and we started adding
each one feature to our model following the same order of the previous step; we
started adding the motor NCS features and we kept only the features that increased
any of our models’ performance.

5.8 Leave-one-out Cross Validation and Results

K-fold cross validation is called the technique of partitioning the data set into k
subsets of equal size. One of these subsets is used as test data and the rest k-1 subsets
are used as training data. The validation process is being repeated k times, since each
subset must play the role of the test data exactly once. In the special case where k=N
(N: number of instances) the k-fold cross validation is induced to leave-one-out cross
validation, which means that we train all the data but one instance, which plays the
role of the testing data. In this thesis, because of the small number of instances and
the small probability of over-fitting the model, we used the leave-one-out process for
each classifier.

The selected features that gave the best results after following the process described
on the previous section are the following:

• Sensory Onset Latency

• Sensory Conduction Velocity

• Sensory Max Value Amplitude

• Motor Take-off Latency
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Table 5.1: Accuracy of Classifiers.

4 classes 3 classes 3 classes-Clinical Ctrl-Patients Ctrl-Patients Clinical

Logit

71.23 % 81.72 % 51.95 % 80.52 % 79.57 %

SVM

82.43 % 94.04 % 68.67 % 95.13 % 86.91 %

KNN

66.23 % 72.08 % 53.95 % 84.71 % 74.03 %

D-Tree

70.68 % 80.52 % 55.39 % 96.10 % 77.92 %

Naive-Bayes

80.92 % 90.13 % 65.49 % 94.81 % 85.32 %

The results in terms of accuracy, of each classifier are shown on table 5.1.
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C 6

N F

6.1 Introduction

6.2 Global Sensory Area

6.3 Full Duration at Half Maximum (FDHM)

6.4 Left, Upper Left, Down Left and Right, Upper Right and Down Right Areas

6.5 Tangents and Fitting Slopes

6.6 Results for each Feature

6.7 Classification Results

6.1 Introduction

In this chapter we present the geometric features we extracted from the signal in
order to evaluate them. The main goal (and also the motivation of finding such
features) of the extraction process, was to keep the features independent from the
manual detection of the curves by the doctor. In this way we exclude the human
factor and we construct automatic features. We also excluded the common features
and the alternative definitions of the amplitude that were presented in chapter 4 and
have already been evaluated.

In order to characterize the result of an experiment as significant, a low p-value
is not enough if it is only referred to the discrimination of two random groups. For
example, if an area feature gives a significant differentiation for the severe CTS it

37



cannot be determined as remarkable, since the curve is being extremely distorted,
and one can notice the severity of the syndrome without the aid of any automatic
technique. On the contrary, if the discrimination exists between the control and the
mild CTS groups, the result is absolutely significant because the early CTS is not
obvious and the recent research has not made big steps in finding the gold standard
of diagnosing the mild CTS.

6.2 Global Sensory Area

After examining the machine given area, we found that there is no significant results
in diagnosing the Carpal Tunnel Syndrome. For this reason we defined a new type
of area as shown in figure 6.1b. The new area is giving significance to the ’negative’
curve and treats it as it was positive, since the physical meaning of this small negative
curve is the depolarization of cells’ membranes.

Figure 6.1: Definition of Machine’s and Our Area.

(a) The Machine-given Area. (b) New defined Area.

We can define the global area feature as the sum of A1 and A2, where A1 is the
positive curve’s area and A2 the negative one.
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6.3 Full Duration at Half Maximum (FDHM)

FDHM is an alternative to FWHM (full width at half maximum), since we use the
term duration because of time reference of our signals. It is defined as the duration
(the width in x-axis) of the signal between the points where the y-values are taking
the half of the maximum value, as shown on figure 6.2a.

Figure 6.2: FDHM and alternative sub-areas of a sensory curve.

(a) Full Duration at Half Maximum. (b) New defined sub areas.

6.4 Left, Upper Left, Down Left and Right, Upper Right and Down

Right Areas

From figure 6.2b, we present the definition of the four main subareas which are
divided by the FDHM line of x-axis and the peak-to-zero line of y-axis:

• Upper Left Area

• Down Left Area

• Upper Right Area

• Down Right Area

and then, from these partitions of areas we define the following areas:

• Left Area as the sum of Upper and Down Left areas

• Right Area as the sum of Upper and Down Right areas
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• Up Area as the sum of Upper Left and Upper Right areas and

• Down Area as the sum of Down Left and Down Right Area.

All these areas were considered as features, and also all the possible ratios between
each other; then we experimented each one alone for the median nerve and then in
comparison with the corresponding feature of the ulnar nerve.

We conducted this process for both sensory and motor nerves. The motor NCS
consists of two curves, a positive and a negative one, so we implemented the process
for both of them.

6.4.1 All other possible ratios

In order to complete the areas experiment, we computed the significance of all possible
ratios between the areas:

• Upper Left Area/Left Area

• Down Left Area/Down Area

• Upper Left Area/Upper Area

• Left Area/Global Area

• Upper Area/Global Area

• Upper Left Area/Global Area

6.5 Tangents and Fitting Slopes

In this section the features of two kind of slopes are presented for both left and right
side of each curve and their discriminating ability is being examined.

6.5.1 The tangent of theta

The first type of slope is defined as the tangent of the angle theta of the line that
connects the onset (start) point and the peak (max-amplitude) point.
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Figure 6.3: Left and Right TanTheta Feature definitions.

(a) Left Tangent. (b) Right Tangent.

tan(θ) = f(peak)− f(onset)

peak − onset
(6.1)

and the analogous definition is coming from the right side of each curve. Both
definitions are shown on figure 6.3, and were implemented also for the negative
curves of the signals.

tan(θ) = f(offset)− f(peak)

offset− peak
(6.2)

The left negative tangent, however, can fairly differentiate the the syndrome groups
from the control group, when compared the median - ulnar nerves.

On the contrary, the motor NCS findings did not serve any significant result by
the tangents of every side of all curves.

The most significant results of sensory tangents are shown on table 6.1.

6.5.2 The fitting slope

Another extracted feature, is the fitting slope, meaning the line that best fits all the
data points of the left and then the right side of the curve, using the least squares
method, by minimizing the sum of squared errors of the fitting line.
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Table 6.1: Sensory tangents features.

Comparisons All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

Left Positive

median-ulnar 4 0.00000064 0.15624627 0.06269391 0.02090932

median 4 0.00000000 0.10602875 0.00004812 0.00000598

Left Negative

median-ulnar 4 0.00000130 0.00060187 0.93011051 0.03531743

median 4 0.00000003 0.31731051 0.00286375 0.04904607

Right Positive

median-ulnar 4 0.00000011 0.02006083 0.14887949 0.02468220

median 4 0.00000000 0.22272408 0.00022895 0.00006634

6.6 Results for each Feature

In this section we present the results of our new features. In ratios instances, we
display those which not demand human’ s interference, e.g. upper left / upper area,
except from cases of other ratios where there exist remarkable outcomes.

• Global Sensory Area
The results showed no significance for all of the three type of areas: A1, A2
and Global Area = A1 + A2 alone and in every possible combination between
median and ulnar nerves of all digits.
In this experiment we also computed the expanded total area: we followed the
curve until its end, meaning until the time when it becomes zero by crossing
the x-axis, but again the area did show not at all significant result in diagnosing
the syndrome or discriminating two categories of severity between each other.
To conclude, the feature of global area of any type, and in many possible al-
ternative definitions of the term area, should not be considered as a significant
feature in the diagnosis of CTS.
Results are shown on figure 6.4.

• FDHM
The FDHM experimentation resulted in significant outcomes, not only from the
comparison between fingers but also as a standalone feature. As shown on figure
6.5 and on table 6.2 the median - ulnar at digit 4 comparison gave the best
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Figure 6.4: Area and Expanded Total Area comparison median - ulnar 4.

(a) New Defined Area median - ulnar at

dig4.

(b) Expanded Area median - ulnar at

dig4.

results, but also the median fdhm at digit 4 gave remarkable, even if they are
not better than the comparison between median - ulnar, results. Until now this
is the only feature that can give significant p-values and discriminant box-plots
as solo, without the comparison of median and ulnar nerves. For both features,
the last group, that of severe CTS, is not significantly discriminated.

Table 6.2: Fdhm p-values between groups.

Comparisons All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

median-ulnar 4 0.00001594 0.00074779 0.00606262 0.17332437

median 4 0.00037206 0.04211000 0.02239443 0.24777272

• Sensory Left and Right Areas
These features did not give any significant result of the sensory nerves in dif-
ferentiating any pair of the four levels of CTS (figure 6.6).

• Sensory Upper and Down Areas
For the sensory nerve, only between the obviously separated groups these fea-
tures gave significant results, between the control and the moderate CTS and
between the mild and the severe CTS. However this is not a requesting potential
of an automatic process. The most significant issue in our thesis should be to
recognize two nearby classes and specifically the Control against the Mild CTS
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Figure 6.5: FDHM comparison median - ulnar 4 and FDHM solo median 4.

(a) FDHM median - ulnar at dig4. (b) FDHM only median at dig4.

Figure 6.6: Left and Right Areas comparison median - ulnar 4.

(a) Area Left median - ulnar at dig4. (b) Area Right median - ulnar at dig4.

class. This would lead to an almost perfect diagnosing of the syndrome. Results
are shown on figure 6.7.

• Sensory Upper Left and Right Areas
Due to broaden variance of the Upper areas for the mild CTS group, none
feature gave remarkable results (figure 6.8).

• Sensory Down Left and Right Areas
No differentiation between controls and CTS groups was obtained, as shown in
figure 6.9.
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Figure 6.7: Upper and Down Areas comparison median - ulnar 4.

(a) Upper Area median - ulnar at dig4. (b) Down Area median - ulnar at dig4.

• Sensory Upper Left / Upper Area
No discrimination between controls and CTS groups was obtained, as displayed
in figure 6.10a

• Sensory Upper Left / Left Area
No differentiation between controls and CTS groups was obtained, as shown in
figure 6.10b

• Sensory Upper Left /Global Area
Analogous to previous features’ results (figure: 6.11a).

• Sensory Upper /Global Area
No detection of CTS was achieved, figure 6.11b.

• Sensory Left and Right Tangent Theta
The results of sensory nerves’ tangent gave significant discrimination between
the most nearby classes of CTS severity. The best results were given by the left
tangent of the solo median nerve at digit 4. The comparison between median
and ulnar nerves also gave remarkable results, but not as such of the median
standalone corresponding feature. On the other hand, the median - ulnar com-
parison for the left tangent of the negative curve of sensory nerves gave better
outcomes than the solo median feature. For all comparisons there always exists
a pair of groups that there is no discriminating ability between them. The results
are shown on figures 6.12 and 6.13
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Figure 6.8: Upper Left and Right Areas comparison median - ulnar 4.

(a) Upper Left Area median - ulnar at

dig4.

(b) Upper Right Area median - ulnar at

dig4.

• Sensory Left and Right Fitting Slope
The sensory NCS left and right slopes gave analogous but worst than the cor-
responding tangents results. 6.14 and 6.15

• Motor Distal and Proximal Left and Right Areas
The motor Right Area for both Distal and Proximal NCS, of positive curves, gave
significant outcomes. The importance of the results comes from the fact that it
performs a significant separation between the control group and the rest. This
is a surprise, because the motor nerve is known as robust and non-sensitive in
early CTS, while the outcome is totally unbiased, since for the construction of
the grading scale the motor findings do not play any role between the no-CTS
and the mild CTS groups. The motor NCS findings are used to separate the mild
from the moderate and the moderate from the severe group.

The results are shown on figure 6.16.

• Motor Distal and Proximal Up and Down Areas
The motor nerve did not either give significant results for any of these features
in any of its curves.

• Motor Distal and Proximal Upper Left and Right Areas

The experiments lead to similar to the Right Areas results: The sensory nerve
did not outcome significant results while the motor distal and proximal NCS
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Figure 6.9: Down Left and Right Areas comparison median - ulnar 4.

(a) Upper Left Area median - ulnar at

dig4.

(b) Down Right Area median - ulnar at

dig4.

of Upper Right areas can decide for the existence of the syndrome. As before,
the comparison between median and ulnar nerve do not come with significant
results.

The results are shown on figure 6.17.

• Motor Distal and Proximal Down Left and Right Areas
The results for these features were analogous to the previous experiments. The
motor distal and proximal Down Right Area gives significant discrimination
between the control group and the rest syndrome groups.

• Motor Distal and Proximal Upper Left / Upper Area
This ratio is not depended upon human’ s detection of the curve, but did not
outcome any important conclusion, as shown on figure 6.18.

• Motor Distal and Proximal Left and Right Tangent Theta
The tangents of all kinds did not give good results (figure 6.19).

• Motor Distal and Proximal Left and Right Fitting Slope
The slopes did not give powerful results (figure 6.20).

• Motor Distal and Proximal FDHM
For both curves the FDHM feature did not output significant results (6.21).
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Figure 6.10: Upper Left to Upper and Upper Left to Left Area Ratio comparison
median - ulnar 4.

(a) Upper Left Area median - ulnar at

dig4.

(b) Down Right Area median - ulnar at

dig4.

Figure 6.11: Upper Left to Upper and Upper Left to Left Area Ratio comparison
median - ulnar 4.

(a) Upper Left Area median - ulnar at

dig4.

(b) Down Right Area median - ulnar at

dig4.
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Figure 6.12: Sensory Left TanTheta median 4 and comparison median - ulnar 4.

(a) Left TanTheta median at dig4. (b) Left TanTheta median - ulnar at dig4.

Figure 6.13: Sensory Right TanTheta median 4 and comparison median - ulnar 4.

(a) Right TanTheta median at dig4. (b) Right TanTheta median - ulnar at

dig4.
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Figure 6.14: Sensory Left Slope median 4 and comparison median - ulnar 4.

(a) Left Slope median at dig4. (b) Left Slope median - ulnar at dig4.

Figure 6.15: Sensory Right Slope median 4 and comparison median - ulnar 4.

(a) Right Slope median at dig4. (b) Right Slope median - ulnar at dig4.
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Figure 6.16: Right Motor Areas from Distal and Proximal NCS.

(a) Right Area for motor distal. (b) Right Area for motor proximal.

Figure 6.17: UpRight Motor Areas from Distal and Proximal NCS.

(a) UpRight Area for motor distal. (b) UpRight Area motor proximal.
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Figure 6.18: UpRight Motor Areas from Distal and Proximal NCS.

(a) Ratio of Upper Left to Upper for motor

distal.

(b) Ratio of Upper Left to Upper for motor

proximal.

Figure 6.19: Tangents for Distal and Proximal NCS.

(a) Best tangent for motor distal (left). (b) Best tangent for motor proximal (left).
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Figure 6.20: UpRight Motor Areas from Distal and Proximal NCS.

(a) Best slope for motor distal (left). (b) Best slope for motor proximal (left).

Figure 6.21: FDHM for Distal and Proximal NCS.

(a) FDHM for motor distal. (b) FDHM for motor proximal.
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6.7 Classification Results

In order to evaluate again the findings of our experiments according to the new
geometric features, we constructed the same classifiers of Chapter 5, using the same
parameters. Our dataset firstly only consisted of the new features, but then we proceed
with the addition of the main features that were presented to the previous chapter,
so as to examine a potential amelioration of our model.

At the first part, all the features covered in previous sections of this chapter are
used to construct an SVM and an Naive Bayes classifier. Then, we computed the
cross-validation leave-one-out type and we started eliminating each feature one by
one. Although we started from the high p-values features, only if the accuracy in-
creased, after removing the variable, for all iterations, we eliminated that feature per-
manently. The result was such noticeable that from 31% accuracy (when all features
were included) we ended up with three features and 71% accuracy.

From this process the remaining features are the same with the most significant
features of our geometric characteristics, which means:

• the motor right area of the distal positive curve

• the sensory right tangent theta at digit 4

• the sensory FDHM for median - ulnar difference at digit 4

The accuracy of all classifiers as models with these three variables are presented
on table 6.3

At the second part of our process, we added the remained attributes to the original
common features of the previous chapter. As shown in the results at table 6.4 for
most of the classifiers the model accuracy increased in the field of prediction of the
exact class label of CTS severity.

However, the classifiers’ accuracy values of the Controls vs rest groups of CTS
comparison, has decreased after the addition of the geometric features. This would
be flattering if it was combined with optimistic results from the perspective of clinical
symptoms, but as we can notice at columns 3 and 5 of the referencing table, the
differentiation between clinical classes also gave worst results. The target of finding
a new set of features with remarkable enough results in NCS grading accuracy and
better than the existing results in clinical correlation remains unsatisfied.
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Table 6.3: The models of the three most important geometric features.

4 classes 3 classes 3 classes-Clinical Ctrl-Patients Ctrl-Patients Clinical

Logit

54.55 % 63.64 % 59.09 % 81.82 % 82.47 %

SVM

73.88 % 86.22 % 71.87 % 89.66 % 87.48 %

KNN

57.14 % 66.54 % 51.69 % 84.42 % 83.12 %

D-Tree

63.64 % 83.02 % 72.73 % 87.01 % 74.38 %

Naive-Bayes

71.43 % 74.03 % 56.42 % 81.42 % 79.26 %

Table 6.4: Accuracy of supplementary Classifiers.

4 classes 3 classes 3 classes-Clinical Ctrl-Patients Ctrl-Patients Clinical

Logit

77.92 % 83.12 % 55.19 % 83.77 % 74.03 %

SVM

91.17 % 94.15 % 71.44 % 95.13 % 89.06 %

KNN

74.03 % 79.22 % 56.10 % 88.05 % 87.01 %

D-Tree

81.82 % 81.17 % 56.49 % 94.81 % 85.71 %

Naive-Bayes

87.01 % 89.61 % 65.94 % 90.91 % 81.72 %
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C 7

D T W (DTW)

7.1 Introduction

7.2 About Dynamic Time Warping (DTW)

7.3 DTW as feature of Nerve Conduction Studies

7.4 DTW and Clinical rating

7.5 DTW after Wavelet Transformation

7.6 Results and Further Examination

7.1 Introduction

Dynamic Time Warping (DTW) is an algorithm implemented in times series on the
purpose of finding similarities between signals. The goal of findings similarities is to
recognize an individual shape, no matter the speed of its action. As its name defines,
DTW warps the signals in the dimension of x-axis (time dimension) non-linearly.

In short terms DTW is trying to find the best alignment between two signals under
certain conditions. It is widely used to recognize patterns in sound (voice) [11] and in
activities (walking -running). Its implementation is based upon the fact that similar
patterns indicate the same individual that takes an activity.

For example a person’ s time series sound signal when speaking normally and
when speaking rapidly is expected to give significant similarity when these two signals
are been tested though DTW algorithm.
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For the same reason, the tracking time series signal of a walking activity of a person
and a running activity of the same person, should give high similarity, while the
comparison between a walking activity of this person should output small similarity
when compared with walking or running activity tracking of another person.

In other words, DTW abstracts the feature of speed from two signals and compares
their shapes.

Apart from speech and activity recognition, the DTW algorithm is lately used for
on-line signature recognition and shape matching applications.

In this chapter, we examine the implementation of DTW algorithm in the diagnosis
of Carpal Tunnel Syndrome, by implicating it for every possible pair of signals, so
as to determine if it can decide for similarities between time series signals of CTS
affected and CTS non-affected nerves.

The main concept is that since DTW can match shapes, and we have data of
nerves that have their NCS affected by the syndrome and other nerves that are not,
the algorithm could detect high similarity between non affected nerves and small
similarity between affected and non-affected nerves.

On the other hand, CTS is a syndrome for the diagnosis of whom the feature
of speed is the most important. Conduction Velocity and Onset Latency are speed
parameters and are nowadays considered to be the gold standard in the diagnosis of
CTS, but DTW abstracts the time.

7.2 About Dynamic Time Warping (DTW)

Since, Euclidean distance between time series is not an appropriate distance metric
to cluster and classify signals because of potential varying lengths, phase shifting
and existence of delays the DTW algorithm is doing well in allowing (and ignoring)
acceleration of signals along the time dimension [12]. The process of finding the
best mapping between two signals by expanding or compressing works under certain
restrictions.

The goal of DTW algorithm is to find the mapping path (along a distance matrix)
with minimized overall cost.

Considering:

• two time series x and y of lengths m and n respectively,
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• a cost matrix M of size m ∗ n

• a path p as an ensemble of pairs of points x and y that starts from point [1,1]
and ends to point [m,n] of the matrix M

Then the path [p(1, 1), p(xi, yj), ....., p(m,n)] is optimal, if it minimizes the overall
distance of equation 7.1 with the following conditions:

• Boundary Condition: p1=p(1, 1) and pk=p(m,n)

• Monotonicity Condition: nk ⩾ ..... ⩾ n2 ⩾ n1 and mk ⩾ ..... ⩾ m2 ⩾ m1

• Step size Condition: For any pair (i,j) in the path, the possible next pairs are
restricted to (i+1,j), (i,j+1), (i+1,j+1).

k∑
i=1

|x(pxi)− y(pyi)| (7.1)

In the algorithm 7.1 we present our implementation of DTW for finding the cost
Matrix D, in Matlab. In the algorithm 7.2 we present the algorithm of finding the
Optimal Warping Path.

In order to visualize the technique of DTW, we are going to implement the whole
process to a sample of our data. The curves of a control subject (sensory median and
ulnar nerves at digit 4) and of a patient, are been evaluated under the process of
DTW, following these steps:

• Compute and Visualize Euclidean Distance Matrix.

• Compute and Visualize DTW (Accumulated) Cost Matrix.

• Backtracking for finding the optimal warp path.

• Visualize the optimal pair of time alignments.

7.2.1 Visualization of Distance and Accumulated Cost Matrices

To compute the euclidean distance matrix between two time series we calculate the
equation of 7.2.

To compute the accumulated cost we calculate the equation 7.3 by implementing
the algorithm 7.1
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Algorithm 7.1 Dynamic Time Warping.
1: function D ⇐ mydtw(s1, s2)

2: n1 ⇐ size(s1, 1);

3: n2 ⇐ size(s2, 1);

4: D ⇐ zeros(n2, n1);

5: D(1, 1) ⇐ norm(s1(1, 1)− s2(1, 1));

6: for i=2:n1 do
7: cost ⇐ norm(s1(i, 1)− s2(1, 1));

8: D(1, i) ⇐ cost+D(1, i− 1);

9: end for
10: for i=2:n2 do
11: cost ⇐ norm(s1(1, 1)− s2(i, 1));

12: D(i, 1) ⇐ cost+D(i− 1, 1);

13: end for
14: for j=2:n1 do
15: for i=2:n2 do
16: cost ⇐ norm(s1(j, 1)− s2(i, 1));

17: D(i, j) ⇐ cost+min([D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)]);

18: end for
19: end for
20: return D

21: end

E(i, j) =
√
(x(i)− y(j))2 (7.2)

D(i, j) = E(i, j) +min[D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)] (7.3)

The distance matrices for euclidean and accumulated costs, are shown on figure
7.1 for the control and on figure 7.2 for the patient subject.

The darkest the blue is, the smaller the distance and the accumulated cost are.
It is obvious that the diagonals of both the matrices consist of low cost cells, which
means that the distance between similar points of the signals are closest than the
points of large variance in time domain.
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Figure 7.1: Control’s Visualization of (a) Euclidean Distance and (b) Accumulated
Cost.

(a) Euclidean Distance. (b) Accumulated Cost (DTW).

7.2.2 Backtracking for finding the Optimal Warp Path

We can convert the problem of finding the path of minimum distance into a dynamic
programming problem that can be solved in O(mn) time.

Since we have constructed the matrix of DTW using the algorithm 7.1, we can
easily now use backtracking method to find the path with the minimal distance; we
start form D(m,n) and we move backwards to the lowest cost cells. The algorithm of
backtracking the optimal path is presented on algorithm 7.2

The visualization of the path alongside the matrices is shown on figures 7.3 and
7.4

7.2.3 Visualization of regarding alignments

The presented process has as output a single path, the optimum one, from which
every point of a signal is aligned with another point of the other signal. Using the
extracted path, we can visualize the alignment for each pair of time series as shown
on figure 7.5.

The last cell of the path, meaning the p(n,m) which is the most down-right cell
of the accumulated cost (DTW) Matrix and is equal to D(n,m), is been extracted and
used as a stand-alone feature to describe the similarity between two time-series. As
shown on figure 7.6 this feature, one number, the value of the last cell of the D Matrix,
can do very well in making decisions about the existence of the syndrome.
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Figure 7.2: Patient Visualization of (a) Euclidean Distance and (b) Accumulated Cost.

(a) Euclidean Distance. (b) Accumulated Cost (DTW).

In next section we examine this feature in all possible combinations of all existing
signals.
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Figure 7.3: Control’s Visualization of Path Warping at (a) Euclidean Distance and (b)
Accumulated Cost.

(a) Path Warping at Euclidean Distance. (b) Path Warping at Accumulated Cost

(DTW).

Figure 7.4: Patient Visualization of Path Warping at (a) Euclidean Distance and (b)
Accumulated Cost.

(a) Path Warping at Euclidean Distance. (b) Path Warping at Accumulated Cost

(DTW).
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Algorithm 7.2 Optimal Warp Path.
1: n1 ⇐ size(s1, 1);

2: n2 ⇐ size(s2, 1);

3: path ⇐ [n1, n2];

4: s ⇐ size(path, 1);

5: i ⇐ n1;

6: j ⇐ n2;

7: while (i > 1&&j > 1) do
8: if i == 0 then
9: j ⇐ j − 1

10: else {if j == 0}
11: i ⇐ i− 1

12: else
13: if D(i− 1, j) == min([D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)]) then
14: i ⇐ i− 1;

15: else {if D(i, j − 1) == min([D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)])}
16: j ⇐ j − 1;

17: else
18: i ⇐ i− 1;

19: j ⇐ j − 1;

20: end if
21: end if
22: s ⇐ s+ 1;

23: path(s, 1) ⇐ i;

24: path(s, 2) ⇐ j;

25: end while
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Figure 7.5: Curves Alignments Visualization of a (a) patient and (b) a Control.

(a) Alignment of a patient’s NCS Curves. (b) Alignment of a control’s NCS Curves.

Figure 7.6: Box-Plot of DTW for CTS and no-CTS groups.D(n,m) can effectively
discriminate controls vs CTS subjects
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7.3 DTW as feature of Nerve Conduction Studies

In this section we present the experiments that we implemented for the evaluation
of DTW as a feature extraction method, customized to our data. For the unbiased
evaluation of the DTW, several issues must be taken into account:

• Which part of signal to include.

• What normalization (if) must be done [13].

• Which are the candidate pairs for DTW implementation.

In order to construct a fair model of the best possible feature concerning the
DTW, we have conducted every possible pair of digits, nerves, etc by implementing
an exhaustive comparison for all pairs of every existing signal.

In addition, we experimented the DTW algorithm, for every kind of normalization,
by trying both keeping and ignoring the size proportions between signals of each pair.

Finally, we concluded several different partitions of each signal; the complete
signal, the complete filtered (detrended) signal, the curve between the onset and the
offset point and a partition concerning an extension of the curve before and after its
start and its end point respectively.

7.3.1 Implementing DTW

After making all possible experiments, we concluded that the median and ulnar
nerves’ curves at digit 4 is the most appropriate pair for implementing DTW and
that during normalization, no proportional scaling should be kept. The results as
shown on figures 7.7 and 7.8 and on table 7.1, indicated that the best discrimination
between groups of CTS is being occurred when the curves are transformed to the
same scale, confirming the recent literature [13]. It is remarkable to mention that
the feature of DTW, when constitutes the only feature of our previous mentioned
classifiers using one-leave-out cross validation, an average accuracy of 80% has been
reached in diagnosing the existence of the syndrome.

Additionally, the implementation of DTW on motor nerves in every possible pair,
is not appropriate for the discrimination of the CTS existence.
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Figure 7.7: Ploting curves after (a) ignoring and (b) keeping their proportions.

(a) No Ratio scale. (b) Ratio scale.

Table 7.1: DTW p-values after keeping and ignoring their proportions.

Ratios All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

No Ratio scale 0.00000000 0.00249993 0.00141832 0.00269128

Ratio scale 0.00000000 0.16630201 0.00209141 0.00010677

Figure 7.8: Ploting curves after (a) keeping and (b) ignoring their proportions.

(a) No Ratio scale. (b) Ratio scale.
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7.4 DTW and Clinical rating

It is widely acceptable that NCS do not correlate with symptoms. In this section we
examine the correlation of DTWwith the clinical data and the potential contribution of
DTW in the increase of performance of NCS correlation with symptoms. To implicate
this, we calculate Pearson and Spearman correlations for both DTW and Conduction
Velocity features, at first separately and then in combination with each other. The
Conduction Velocity is chosen because of being considered the gold standard in the
diagnosis of the syndrome.

7.4.1 Spearman’s Correlation

Spearman correlation is a ranking correlation; to examine the correlation between
two attributes X and Y, Spearman technique ranks the attributes of both and replaces
the values of attributes by its ranks. Then it calculates the difference between each
pair and sums the squared results.

Its coefficient is calculated as Pearson’s correlation but for the ranking values
that have replaced the attribute values. When all ranking are distinct integers it is
calculated by the type shown on equation 7.4.

ρ = 1− 6 ∗
∑

di
2

n(n2 − 1)
(7.4)

Since, the purpose of this approach is to compare two vectors, the one of dtw and
the other of conduction velocity, we calculate the Spearman correlation for both and
we compare the results.

Our clinical data are composed by the following three characteristics:

• Months of Pain

• Months of Numbness

• Months of Weakness

A custom way of performing reliable ranking for these data, since we already
know that the weakness is the most severe symptom and the other two are of equal
significance, is the following type:

severity = max(months(pain),months(numbness)) +months(weakness) ∗ 1000 (7.5)
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By multiplying the duration of weakness, we ensure that the severe symptoms
will rank after the others and in a logical order between them; the control group will
certainly rank before the mild and moderate subjects since they have a value of zero;
the intermediate groups will rank in the middle according to their duration of CTS
symptoms.

The multiplication of weakness by one thousand times, does not play any negative
role, but is used only for ranking latter. The scaling is not important in Spearman
correlation, because it converts the values to rankings.

In order to confirm the contribution of DTW feature to the increase correlation of
NCS with the clinical symptoms, we also calculated several logical symptoms’ rankings
(in months):

• each symptom’s duration separately

• maximum duration of symptoms

• sum of symptoms’ durations

Table 7.2: Spearman Correlation Coefficients for DTW, CV and Mutual rankings
against Ranking of Symptoms.

Ranking Type DTW CV Mutual

custom equation .54 .55 .61

maximum duration .55 .55 .60

sum of durations .57 .59 .64

pain or numbness .59 .57 .62

pain and numbness .59 .60 .65

weakness duration .31 .38 .42

7.4.2 Pearson’s Correlation

Pearson’s correlation is defined as the covariance of two attributes divided by their
standard deviations.
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Table 7.3: Pearson’s Correlation Coefficients for DTW, CV and Mutual rankings against
Ranking of Symptoms.

Ranking Type DTW CV Mutual

custom equation .34 .30 .36

maximum duration .32 .42 .44

sum of durations .34 .46 .47

pain or numbness .36 .46 .47

pain and numbness .31 .48 .47

weakness duration .35 .31 .37

7.5 DTW after Wavelet Transformation

In this section we present the implementation of Dynamic Time Warping to the
decomposed outcomes of the wavelet transforms of our signals for the most popular
mother wavelets.

7.5.1 Definition of Wavelets

The need for a transform that could give enough information about the time resolution
in frequency domain came up with the reveal of wavelets, an old idea - the first wavelet
was introduced in 1910 by Haar - that is now used to many applications like the jpeg
format of an image.

Wavelets are finite curves (waves) with amplitude that starts at zero and ends to
zero. Its oscillation is symmetric about the y-axis and its area algebraic value is also
zero, since it is symmetric about the x-axis too.

7.5.2 Wavelet Transform

Before discovering the wavelet transform, the researchers had only few options for
the frequency resolution of time series data:

• Fourier Transform (FT)

The most popular method for analyzing a signal in frequency domain is the
Fourier Transform, which can interpret the original time-series as a sum of
cosine functions and is defined by the equation 7.6
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X(F ) =

∫ ∞

−∞
x(t)e−j2πFtdt (7.6)

By multiplying the original signal with the analysis function, we can get the
frequency resolution of it. However the final X(F) function, has no information
about the time resolution, which in many cases is very important.

• Short Time Fourier Transform (STFT

The requirement of time resolution in the frequency domain, has driven to an
alternative to FT technique, the Short-Time FT. In this process we implement
a window of fixed sized, for which we transform the signal alongside its width.

X(τ, F ) =

∫ ∞

−∞
x(t)w(t− τ)e−j2πFtdt (7.7)

The disadvantage of this method is the inflexibility of the window’s size, which
restrict the process to obtain only certain frequencies and time resolution anal-
ysis.

• Wavelet transform

In contrast with the two previous methods. the wavelet transform can obtain
both time and frequency resolution analysis. This is achieved by replacing the
window size by a term called scaling; the wavelet can be stretched or shrink
about x-axis and as a result we can obtain adequate resolutions for both time
and frequency domains.

X(a, b) =

∫ ∞

−∞
x(t)Ψ(a, b)dt (7.8)

Because of the inverse proportion between scaling and frequency value, if we
stretch the wavelet we make the value of a larger than 1 and we obtain the
low frequencies of the signal, however we have poorer time resolution. On the
contrary, if we stretch the wavelet by making the value of a smaller than 1 we
obtain high frequencies and very precise time resolution.

This advantage can give us the power of using wavelets to detect smaller varying
or abrupt changes of a signal, by using larger or smaller scaling factor of the
chosen wavelet respectively.
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Apart from scaling, the shifting property is used to align the wavelet with the
desired extracted feature.

The wavelet transform is consisted of two main kind of transforms:

• The Discrete Wavelet Transform (DWT)

Scaling: 2j (j=1,2,3,4,..)

Translation: m ∗ 2j (m=1,2,3,4,..)

• The Continuous Wavelet Transform (CWT)

Real positive values for both scaling and shifting properties.

These transforms categories are based on how the wavelets are scaled and shifted.
The DWT accepts only integer values as the power of two for scaling property and
integer values as multiplier for the translation property.

7.5.3 DTW for DWT

In our signals we performed the Discrete Wavelet Transform and then processed with
Dynamic Time Warping algorithm in order to examine the appropriate wavelet and
the best level of decomposition. To achieve this, we examined all existing popular
mother wavelets:

• Morlet

• Daubechies

• Coifflets

• Biorthogonal

• Symlets

and we tested each one until the level of 9.
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Table 7.4: DTW for DWT of Daubechies wavelets for level 2 (best level).

Mother All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

Haar 0.00000000 0.00970296 0.00072267 0.00237405

db2 0.00000000 0.00047072 0.00030767 0.00095025

db3 0.00000000 0.00173249 0.00108744 0.00699532

db4 0.00000000 0.00152936 0.00209141 0.00237405

db5 0.00000000 0.00317262 0.00141832 0.00555352

db7 0.00000000 0.00702795 0.00161652 0.00269128

Table 7.5: DTW for DWT of Coifflets and Biorthogonal for level 2 (best level).

Mother All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

coif1 0.00000000 0.00449412 0.00161652 0.00183993

coif2 0.00000000 0.00563377 0.00269128 0.00269128

coif3 0.00000000 0.00872450 0.00344469 0.00783543

coif4 0.00000000 0.00970296 0.00209141 0.01505061

bior1.1 0.00000000 0.00790297 0.00083277 0.00327496

bior1.3 0.00000000 0.00503486 0.00054662 0.00072267

bior1.5 0.00000000 0.00629621 0.00108744 0.00493836

Table 7.6: DTW for DWT of Symlets for level 2 (best level).

Mother All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

sym2 0.00000000 0.00047072 0.00030767 0.00095025

sym4 0.00000000 0.00503486 0.00209141 0.00269128

sym8 0.00000000 0.00783518 0.00399413 0.00493836

sym16 0.00000002 0.02884823 0.00072267 0.01670340
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7.6 Results and Further Examination

In this section we examine which result gave the best performance for DTW feature,
we compare the classifiers of DTW and CV to evaluate the importance of our new
feature and finally we compute the Sensitivity and Specificity of both features. But at
very first, we examine the homogeneity of the control group.

The results of Wavelet Transform are shown on tables 7.4, 7.5, 7.6 indicating
that level 2 of the wavelets db2 give better results than the implementation of DTW
without any filtering. Only the levels of significant results are presented.

On table 7.3 the correlation coefficients of Pearson correlation are presented. De-
spite the low value coefficients, DTW still contributes in increasing the coefficient of
Conduction Velocity attribute.

For spearman correlation, the results indicated that DTW values gave almost equal
correlation to conduction velocity, namely 0.53 vs 0.55 respectively. However, when
normalizing the values of DTW and CV features, the combination of two is giving a
correlation coefficient of 0.61, while the correlation coefficient between DTW and CV
ρ = 0.67.

The Spearman’s correlation coefficients are shown on table 7.2 for all grading
clinical scales.

7.6.1 Differentiate Control and Patient Groups

Since, at previous chapters, we accepted the labels given by the doctors as standard
we, then, included 7 more hands in our control group. However, it is time to evaluate
their importance according to DTW feature; we excluded these instances and we
created two more tiny groups:

• group AA
The three hands of non bilateral CTS (one-hand CTS gave the label of no-CTS to
opposite ”healthy” hand). Although NCS was applied to these hands and they
were of no-CTS diagnosis, the fact of opposite hand’ s dysfunction may affect
the healthy too.

• group BB
The hands of subjects which visited the hospital due to CTS symptoms, but they
had no-CTS diagnosis.
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The results of this experiment was noticeable (figure 7.9), indicating that both cate-
gories should not be taken into account considering the control labeling.

Figure 7.9: DTW boxplots for (a) mixed and (b) separated AA and AB groups.

(a) AA and BB groups are merged. (b) AA and BB groups are separated.

7.6.2 Comparison of DTW vs CV

In order to evaluate the importance of DTW, we compare it with CV performance,
since Conduction Velocity is considered as the gold standard in CTS diagnosis through
NCS. We construct the same 5 classifiers of previous chapters and we compare their
results. As shown on figure 7.10 and table 7.7, DTW gave some lower p-values and
more discriminative results. If we take into account the bias in favor of CV, as the
basis of group labeling, the DTW’ s results are really notable.

Table 7.7: DTW vs CV p-values.

Feature All Groups Ctrls vs Mild Mild vs Mod. Mod. vs Severe

DTW 0.00000000 0.00047072 0.00030767 0.00095025

CV 0.00000000 0.00008735 0.01630917 0.00016944

These impressive results prompted us to compare the DTW and CV features in
terms of classification. In order to examine the sensitivity and specificity performance
of DTW we present them on table 7.8.

The ROC curves for SVM classifier are presented in order to confirm the importance
of DTW results against a biased feature, on figure 7.11 and table 7.9.
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Figure 7.10: CV vs DTW boxplots.

(a) CV (b) DTW

Figure 7.11: CV vs DTW ROCs.

(a) NCS grading (b) Clinical grading

Finally, we examine the contribution of DTW feature to our classification model
of chapters 5 and 6. The results are presented on table 7.10 and we should mention
that after proceeding with the feature selection that we have explained to previous
chapters, the geometric features did not play any important role; it seemed like the
DTW feature overlapped the significance of our geometric features and gave better
results when added to the models of chapter 5, while the addition of geometric
features of chapter 6, did not ameliorate after the presence of DTW.
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Table 7.8: Sensitivity and Specificity of DTW in comparison with CV.

SVM K-NN N BAYES

Accuracy (4 groups)

DTW 0.68 0.53 0.66

CV 0.59 0.55 0.63

Accuracy (Ctrls - CTS)

DTW 0.89 0.88 0.82

CV 0.91 0.92 0.91

Sensitivity

DTW 0.91 0.74 0.95

CV 0.72 0.83 0.83

Specificity

DTW 0.89 0.93 0.73

CV 0.95 0.95 0.95

Table 7.9: Area Under Curve for DTW vs CV features.

Feature AUC NCS AUC Clinical

DTW 0.953 0.946

CV 0.989 0.961

7.6.3 DTW as distance metric of a KNN classifier

A state-of-the-art classifier in pattern recognition of time series data is considered to
be the knn classifier using as distance metric the DTW distance [14].

In such cases the input data are the signals and then knn computes the DTW
distance (D(n1,n2)) of each pair of them. In our case study the knn classifier that
we implemented with DTW as distance metric, did not work; the accuracy of .35
and .74 for all classes and for control vs patients groups respectively is explained by
the fact that two signals are necessary for the diagnosis of CTS, the median and the
ulnar nerve NCS comparison. When one puts all signals to the classifier, the pairwise
option for certain nerves cannot be detected. Thus, the classifier computes the DTW
distances of all signals with each other, but this comparison makes no physical sense
in our case.

76



Table 7.10: Accuracy of our final Classifiers.

4 classes 3 classes 3 classes-Clinical Ctrl-Patients Ctrl-Patients Clinical

Logit

74.58 % 89.56 % 62.26 % 88.24 % 84.43 %

SVM

89.33 % 94.10 % 69.67 % 95.90 % 89.38 %

KNN

67.86 % 78.64 % 56.45 % 88.48 % 78.32 %

D-Tree

71.24 % 82.03 % 58.48 % 96.10 % 77.92 %

Naive-Bayes

86.11 % 92.56 % 67.52 % 94.81 % 87.55 %

7.6.4 Motor Nerves’ DTW Results

The process of sensory nerves, was also applied to the motor nerves, but no importance
of DTW algorithm was obtained at distal or proximal signals (figure 7.12).

Figure 7.12: DTW for Distal and Proximal Curves.

(a) Motor Distal DTW Feature (b) Motor Proximal DTW Feature
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8.1 Discussion

8.2 Future Work

8.1 Discussion

The purpose of our research was to evaluate the existing characteristics for the diag-
nosis of CTS and also to propose more features that could ameliorate the accuracy
of a diagnostic model. Besides, we aimed to contribute in the field of establishing a
robust grading scale of the syndrome’s severity.

We have extracted and presented several geometric features with indicating physi-
cal meaning of nerve compression and also Dynamic Time Warping (DTW) algorithm
which are applied for first time for diagnosing of CTS.

Although the classification of CTS severity groups is biased, our results show that
the existing features can do better in terms of accuracy, sensitivity and specificity. The
groups were decided by the doctor taking into account the features that we used for
our classification model.

On the contrary, some geometric features, gave significant results despite the fact
of not been taken into consideration when the doctor made the groups of severity.
This classification model is unbiased and indicated that some of these features can
play important role in diagnosing the syndrome.

The most surprising feature, however, was not but the implementation of the DTW
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algorithm. The non-linear alignment of two signals, those resulted from median and
ulnar at digit 4 NCS, indicated a strong discriminating ability between all groups.
Especially when the signals are decomposed by the wavelet transform on level 2, the
dtw characteristic gave even more significant results.

Although CTS is defined, mostly, as the duration from the stimulus point until
the response of the nerve, which means that is a time-defined case, DTW eliminated
the time factor and identified pattern differences between affected (median) and non-
affected (ulnar) curves. When time factor was added to dtw model, the accuracy
was better than any other from our models. Additionally, DTW alone, gave same
correlation with clinical symptoms that can give the existing (biased) features.

Hence, we can certainly claim our contribution to the improvement of the current
methods in several fields of biomedical signals. Our novel signal characteristics and/or
the DTW algorithm can be used as significant extracted features even for time-defined
diseases, syndromes and medical situations.

8.2 Future Work

The future work that could be motivated by our thesis may be branched into three
main directions:

• Evaluation of our results through a large database of CTS groups

This is the most obvious continuation of our work, since the small amount of
subjects in our case study cannot lead to a robust generalization of our results.
However, the significant results of the DTW algorithm make us think that they
can be confirmed at larger data-sets.

• DTW and geometric features’ contribution to a robust CTS grading scale

The controversial opinions about scaling the CTS severity can be decreased by
the use of DTW algorithm to assist the establishment of an undeniable grading
scale with eliminated false outputs.

• DTW and proposed geometric features for other time-series data

The significant results of our experiments, especially those of DTW, can be used
to diagnosing several medical situations. For instance, each ECG signal of a
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patient and a healthy subject, when compared at their curves, instead of being
compared at the whole signal (starting from QRS curve and ending to T curve)
using DTW algorithm might discriminate the disease better than this happens
nowadays.
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