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Abstract

Dimitris Triantis, M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, November 2017.
Functionally Weighted Convolutional Neural Networks.
Advisor: Konstantinos Blekas, Assistant Professor.

In this thesis we introduce a new convolutional model where the weights are
functions of a continuous variable, instead of a discrete indexed kernels. Consequently,
we create an infinite size kernel for the convolutional layer, thus we obtain infinite
feature maps as the output of the layer which become an integral over the introduced
continuous variable. The gain is a drastic reduction of parameteres, accompanied by a
superior generalization performance. To evaluate the quality of this new network, we
conducted a series of experiments among some established computer vision datasets
obtaining some very promising results.
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Ε Π

Δημήτρης Τριάντης, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πληρο-
φορικής, Πανεπιστήμιο Ιωαννίνων, Νοεμβριος 2017.
Functionally Weighted Convolutional Neural Networks.
Επιβλέπων: Κωνσταντίνος Μπλέκας, Αναπληρωτής Καθηγητής.

Τα Νευρωνικά δίκτυα βαθιάς μάθησης αποτελούν έναν τομέα της Μηχανικής
Μάθησης με έντονο επιστημονικό ενδιαφέρον τα τελευταία έτη. Τα δίκτυα αυτά
έχουν παρόμοια αρχιτεκτονική με τα κλασσικά νευρωνικά δίκτυα, αλλά διαφέρουν
στον τρόπο και την τοπολογία της εισόδου των δεδομένων. Η ιδιαιτερότητα των
δικτύων αυτών εντοπίζεται στην ικανότητά τους να παράγουν «πλούσια» και ποιο-
τικά χαρακτηριστικά των αρχικών δεδομένων, χρησιμοποιώντας ένα μηχανισμό απο-
τελούμενο από ένα πεπερασμένο πλήθος φίλτρων. Τα συνελικτικά νευρωνικά δίκτυα
είναι η πιο γνωστή μορφή νευρωνικών δικτύων βαθιάς μάθησης και χρησιμοποιού-
νται σε ποικίλες εφαρμογές μηχανικής όρασης και αναγνώρισης. Σημαντικό ρόλο
στην ανάπτυξη αυτού του τύπου των νευρωνικών δικτύων διαδραμάτισε η εξέλιξη
της υπολογιστικής ισχύος των πληροφοριακών συστημάτων.

Στην παρούσα εργασία μελετάται μια νέα μεθοδολογία κατασκευής συνελικτι-
κών δικτύων χρησιμοποιώντας φίλτρα ή kernels συναρτησιακής μορφής. Αυτό έχει
ως αποτέλεσμα την ταυτόχρονη επιβολή στα δεδομένα άπειρων σε πλήθος φίλτρων,
που οδηγούν σε ποιοτικότερα χαρακτηριστικά με σημαντικά μικρότερο αριθμό πα-
ραμέτρων, διευκολύνοντας έτσι τη γενικευτική ικανότητα της μεθόδου. Μία πα-
ραλλαγή της μεθόδου είναι η χρήση kernels συναρτησιακής μορφής, όχι στο συνε-
λικτικό επίπεδο παραγωγής χαρακτηριστικών, αλλά στο fully-connected layer του
CNN, όπου επιτελείται το τελικό στάδιο του μηχανισμού αναγνώρισης.

Η προτεινόμενη μεθοδολογία αξιολογείται πειραματικά πάνω σε προβλήματα
ταξινόμησης χρησιμοποιώντας γνωστά σύνολα δεδομένων υπολογιστικής όρασης

viii



(MNIST και CIFAR-10), ενώ συγκρίνεται και με γνωστές αρχιτεκτονικές CNNs της
βιβλιογραφίας.
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Chapter 1

Introduction

The mystery of how brain sifts signals from senses and elevates them to the level of
conscious awareness drove much of the early interest in deep neural networks among
artificial intelligence pioneers, who hoped to build an intelligent system through
reverse-engineering the brain’s learning rules. The first known computational model
of neural networks was formalized in 1943 by neurophysiologist Warren McCulloch
and mathematician Walter Pitts [2] whose work discusses how neurons in the brain
might work. They used a combination of algorithms they called “threshold logic” to
mimic the thought process. Since then, deep learning is evolving steadily. The first
convolutional neural networks were used in 1979 by Kunihiko Fukushima [3] who
designed an artificial neural network called Neocognitron, employing multiple pool-
ing and convolutional layers. Neocognitron networks resembled modern versions, but
were trained with a reinforcement strategy of recurring activation in multiple layers.

When Rumelhart, Williams, and Hinton [4] demonstrated back propagation brought
a breakout in the field, and showed how some of the neural networks limitations may
be overcome. It had been invented a decade sooner, but the first computer experi-
ments demonstrating it can generate useful representations were published in 1986.
In 1989, Yann LeCun [5] provided the first practical demonstration of backpropaga-
tion on convolutional neural networks, constructing a system which was eventually
used to read the numbers of handwritten checks. Around the year 2000, The Van-
ishing Gradient Problem appeared. It was discovered that for deeper archichitectures,
the gradient signal was deminishing as it propagated to the lower layers of the net-
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work. This was a fundamental problem for neural networks with gradient-based
learning methods. The source of the problem were multiple reasons, from which the
most significant turned out to be certain activation functions. One early approach to
the solution were used to solve this problem were layer by layer pre-training using
autoencoders [6] and restricted boltzman machines [7].

Within the next decade, parallel architecture found its use in the gaming industry.
Gaming industry represents a big market, which provided generous funding for the
development of high performance chips with parallel architecture. Computationally
poweful chips became relatively cheap and available for the masses which greatly
fueled research in the artificial intelligence field. The boosted computing speed came
along with an immense increase on volume, speed and different sources of data,
allowing that way to construct deeper neural network models capable of recognizing
very complicated patterns. An iconic work that formed the modern trend towards
deep learning methods, was published in 2012 by Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton, titled “ImageNet Classification with Deep Convolutional Networks”
[8] and is widely regarded as one of the most influential publications in the field. This
was the first time a model performed so well on the historically difficult ImageNet
dataset, utilizing techniques that are still used today, like dropout and non-saturating
activation functions. With all those astonishing achievments, deep neural networks
have established as very effective methods and have made prominent contributions
across a broad spectrum of industries. Their value is widely appreciated in a variety
of applications, among which are medical imaging, autonomous driving, and weather
forecasting to name but a few.

Motivated by the great success of convolutional neural networks, in this thesis we
propose a new convolutional model. We observe that convolutional neural networks,
despite their parameter sharing properties, utilize an extensive number of parameters
in order to achieve fair results on demanding problems, thus issues like over-fitting
emerge. To this end we propose a functionally weighted convolutional neural network
which employs weights as functions of a continuous variable, instead of a discrete
index. This way we create infinite feature maps through an infinite kernel, gain-
ing a drastic reduction in the number of parameters, accompanied by an improved
generalization performance.

This thesis consists of three chapters. In the first chapter, we make a thorough
analysis behind the theory and the structure of a neuron which is the fundamental
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building block of the network and we continue with a discussion of the learning
process and the basic concepts behind related to feedforward neural networks and
convolutional networks. We analyze their main properties and some widely used
practices. In the second chapter we introduce and mathematically define our proposed
method for a functionally weighted neural network. We give examples of the how it
is structured, the way it can employ different activation functions and how it engages
the convolutional operation. In the last chapter we give a brief description of the
framework, the benchmark datasets and the implemementation details we chose for
the evaluation of our method and, consequently, we present the results for the chosen
dasets for a variety of configurations of our network.
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Chapter 2

Deep Neural Networks

2.1 Neural Networks

2.2 Neural Network Training

2.3 Convolutional Neural Networks (CNNs)

2.1 Neural Networks

Aritificial Neural Networks are algorithms within the machine learning used for the
construction of models for supervised and unsupervised learning. Inspired by biolog-
ical nervous systems, an Artificial Neural Network (ANN) is an information processing
paradigm that is inspired by the way biological nervous systems, such as the brain,
process information. The key element of this paradigm is the novel structure of the
information processing system. It is composed of a large number of highly intercon-
nected processing elements (neurones) working in unison to solve specific problems.
ANNs, like people, learn by example. An ANN is configured for a specific application,
such as pattern recognition or data classification, through a learning process. The
learning proccess of biological systems involves adjustments to the synaptic connec-
tions that exist between the neurones, likewise Neural Networks learn in a similar
way.

A feedforward neural network is a network composed of computational units
which are called neurons. An artificial neuron is a computational unit which makes a
particular computation based on other units it is connected to. Neurons are organized
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Figure 2.1: Artificial Neural Network.

in layers, where there are no connections between neurons of the same layer, but
are fully connected to each other in succesive layers. They are called feedforward
neural networks because all the computations follow the same direction. The data
flows in the direction of oriented edges and ends at the output neurons. The result
is interpreted from the values obtained in the output neurons, hence they can be
interpreted as a directed acyclic graph. Neurons that receive stimuli from outside the
network are called input neurons, those whose outputs are used externally are called
output neurons. Neurons that receive stimuli from other neurons and whose output
is a stimulus for other neurons are known as hidden neurons.

The objective of a feedforward network is to approximate some function f ∗. For
example for a classifier, y = f*(x) maps an input x to a category y. A feedforward
network defines a mapping y = f(x; θ) and learns the value of the parameters θ that
result in the best function approximation. An artificial neuron has d inputs repre-
sented as a vector x ∈ Rd, where each input i ≤ i ≤ d has an assigned weight w1...wd,
it performs computations and feeds the result to the next layer neurons. Weighted
input values are combined and run through an activation function producing some
output y as shown in figure 2.1.

Assume we have a neuron j with input xj = (x1j, ..., xdj), weights w1...wd and bias
θj the pre-activation of the neuron is computed as:

ξj = 1 +
d∑

j=1

wijxij + θj . (2.1)

Where we consider the sigmoid as activation function:

f(a) =
1

1 + e−a
. (2.2)
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Then the output yi of the neuron j is computed:

yj = f(ξj) = f(
d∑

j=1

wijxij + θj) . (2.3)

Considering an Artificial Neural Network contains k output neurons in the output
layer, we obtain the output of the network as y = (y1...ym). A more general definition
of an ANN is given in [1].

2.1.1 Perceptron

The simplest neural network architecture is the perceptron that consists of one fully
functional neuron. A perceptron is a single neuron which computes a linear combina-
tion of an input vector with some weights and then passεσ it through a nonlinearity
to make decisions. Its output is taken directly by Equation 2.3. The most basic ac-
tivation function is the binary step function, which produces strictly binary outputs.
By definition the single perceptron forming a trivial network uses the step function,
though the most commonly function used as an activation function is the sigmoid.
In 2.3b we can see the sigmoid function which produces a continuous output.

Single perceptron neuron is too trivial for solving complex tasks. Simple ANNs can
be extended to the multilayer perceptron network (MLP) to address more complex
tasks. As we will discuss in the next section, for the training of an MLP, continuous
functions are more suitable for gradient based learning, because we can easily calculate
their derivative which is important for the weight adjustment.

2.1.2 Multilayer Perceptrons

The Multilayer perceptrons (MLPs) is a feed-forward neural network consisting of
multiple mutually interconnected layers of neurons. The motivation behind it is over-
coming the limitation of the perceptrons which is solvινγ problems strictly on linear
decision surfaces. Multilayer perceptrons overcome this problem by combining multi-
ple neurons organized in layers in order to obtain more compex functions composed
through several simpler ones.

MLPs have the advantage of creating nonlinear decision surfaces which are suit-
able for solving nonlinearly separable problems. The hidden layers transform the
input space by computing feature representations of the input attempting to make
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the problem linearly separable. These feature representations are fed to the output
layer which is essentially a linear classifier solving the problem βυ using linear deci-
sion surfaces in the new space. Therefore, feature representations make the problem
easier for the linear classifier at the output layer to solve. Activation functions in the
hidden units make the neural network able to construct functions with higher de-
gree of nonlinearity; thus, the decision surfaces are more complex which makes the
network more flexible into solving more challenging problems.

Figure 2.2: Structure of one hidden layer MLP.

Considering the structure of an MLP, perceptrons are arranged into k ≥ 2 layers.
Let us consider a network M with k layers. The set of neurons is split into mutually
disjunct subsets called layers L1, ..., Lk. The network layers are stacked one onto each
other, L1 being the inut layer, L2, ...Lk−2 being the hidden layers and Lk being the
output layer. All edges are oriented in the direction from the input layer L1 towards
the output layer Lk. Each neuron in layer Li is connected to every neuron in layer Li+1.
In other words, all neighboring layers form complete bipartite graphs. The output of
the network is computed sequentially, layer by layer, starting with the input layer by
directly assigning y0 = x, x0 = y−i−1 for the layer Li and y−k for the output layer Lk.
The weights and the activation function are given by the network, thus the output of
each layer depends only on the output of the previous layer.

7



Rectified Linear Units

As we previously discussed in 2.1.1 with the introduction of the concept of the hidden
layer, it is required to choose an activation function that will be used to compute the
hidden layer values. In modern neural networks, the default recommendation is to
use the rectified linear unit, or ReLU [9], defined as:

g(z) = max(0, z) . (2.4)

Applying this function which is illustrated in figure 2.3a to the output of a linear
transformation yields a nonlinear transformation. The function remains very close to
linear, however, in the sense that is a piecewise linear function with two linear pieces.

(a) The rectified linear activation

function (RELU).

(b) Graph of the Logistic function.

Figure 2.3: Graphs for the logistic and rectified linear activation functions.

The necessity for rectified linear units appeared due to the fact that logistic and
hyperbolic tangent networks suffer from the vanishing gradient problem, where the
gradient essentiallly becomes 0 after a certain amount of training, which stops all
learning in that section of the network. ReLU units are only 0 gradient on one side,
thus they produce a strong signal during the training procedure. Because rectified
linear units are nearly linear, they preserve many of the properties that make linear
models easy to optimize with gradient-based methods, whereas they also preserve
many of the properties that make linear models generalize well.
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2.2 Neural Network Training

In this thesis, we will focus on training examples from labelled datasets. Such datasets
consists of input data and their corresponding labels witch are expected as network
outputs. The process of learning from a labelled dataset is referred as supervised
learning. The aim of the learning process is to find the optimal parameters and
structure of the network for solving the given task. Before the training process starts,
network parameters need to be initialized. Initial values are often chosen randomly,
however using some heuristics may lead to a faster parameter adjustment towards the
optimal values. Learning is then carried out on the training set by feeding the training
data through the network. It is an iterative process, where the outputs produced on
each input from the training set are analyzed and the network is repeatedly being
adjusted to produce better results. The network is considered to be trained after
reaching the target performance on the training data.

2.2.1 Cost function

In order to evaluate the abilities of a machine learning algorithm, designing an aquan-
titative measure of its performance is needed. For tasks such as classification, the
measurement of the model’s accuracy is being obtained. Accuracy is the proportion
of examples for which the model produces the correct output. The equivalent infor-
mation measures the error rate, i.e the proportion of examples for which the model
produces an incorrect output. The most common approach on modern networks is
maximizing the log-likelihood for whom a given set of parameters θ of the model,
can result in a prediction of the correct class at each input sample.

The output of the model y = (z) can be interpreted as a probability y that input z
belongs to one class (t = 1), or probability 1−y that z belongs to the other class (t = 0)

in a two-class classification problem. We note this down as: P (t = 1|z) = (z) = y. The
neural network model will be optimized by maximizing the likelihood that a given
set of parameters of the model can result in a prediction of the correct class of each
input sample. The parameters θ transform each input sample i into an input to the
logistic function zi. The likelihood maximization can be written as:

argmax
θ

L(θ|t, z) = argmax
θ

n∏
i=1

L(θ|ti, zi). (2.5)

The likelihood L(θ|t, z) can be rewritten as the joint probability of generating t and z
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given the parameters θ : P (t, z|θ). Since P (A,B) = P (A|B)�P (B), this can be written
as P (t, z|θ) = P (t|z, θ)P (z|θ). Since we are not interested in the probability of zz
we can reduce this to: L(θ|t, z) = P (t|z, θ) =

∏n
i=1 P (ti|zi, θ). Since ti is a Bernoulli

variable, and the probability P (t|z) = y is fixed for a given we can rewrite this as:

P (t|z) =
n∏

i=1

P (ti = 1|zi)ti ∗ (1− P (ti = 1|zi))1−ti

=
n∏

i=1

ytii ∗ (1− yi)
1−ti

(2.6)

Since the logarithmic function is a monotone increasing function we can optimize the
log-likelihood function argmax

θ

logL(θ|t, z). This maximum will be the same as the

maximum from the regular likelihood function. The log-likelihood function can be
written as:

logL(θ|t, z) = log
n∏

i=1

ytii ∗ (1− yi)
1−ti

=
n∑

i=1

tilog(yi) + (1− ti)log(1− yi)

(2.7)

Minimizing the negative of this function (minimizing the negative log likelihood)
corresponds to maximizing the likelihood. This error function ξ(t, y) is known as the
cross-entropy error function or the log-loss:

E(t, y) = −logL(θ|t, z)

= −
n∑

i=1

[tilog(yi) + (1− ti)log(1− yi)]

= −
n∑

i=1

[tilog(σ(z) + (1− ti)log(1− σ(z))]

(2.8)

In multi-class classification, there is some need for probability distribution over a
discrete variable with n possible values, which corresponds to n different classes. The
2.8 function can be generalized as:

L(ti, yi) = −
C∑
i=1

tilog(yi) (2.9)

where C is the number of classes, in order to output a multiclass categorical probabil-
ity distribution by the softmax function. The softmax function takes a C-dimensional
vector z as input and outputs a C-dimensional vector y of real values between 0 and
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1. This function is a normalized exponential and is defined as:

yc = softmax(z)c =
ezc∑C
d=1 e

zd
for c = 1 · · ·C. (2.10)

Probability distributions based on exponentiation and normalization are common
throughout the statistical modeling literature, where we normalize over unnormalized
probability distributions. Here, the unnormalized probability distribution is zc which
is the preactivation of the output layer neurons. Many objective functions other than
the log-likelihood do not work as well with the softmax function. Specifically, objective
functions that do not use a log to undo the exp of the softmax fail to learn when
the argument to the exp becomes very negative, causing the gradient to vanish. In
particular, squared error is a poor loss function for softmax units and can fail to
train the model to change its output, even when the model makes highly confident
incorrect predictions (Bridle, 1990).

2.2.2 Back Propagation

When we use a feedforward neural network to accept an input x and produce an
output ŷ, information flows forward through the network. The input x provides
the initial information that then propagates up to the hidden units at each layer
and finally produces ŷ. This is called forward propagation. During training, forward
propagation can continue onward until it produces a scalar cost J(θ). The back-
propagation algorithm [4] allows the information from the cost to then flow backward
through the network in order to compute the gradient.

Computing an analytical expression for the gradient is straightforward, but nu-
merically evaluating such an expression can be computationally expensive. The back-
propagation algorithm does so using a simple and inexpensive procedure. The term
back-propagation is often misinterpreted as the whole learning algorithm for multi
layer neural networks. Actually, back-propagation refers only to the method for com-
puting the gradient, while another algorithm, such as stochastic gradient descent, is
used to perform learning using this gradient. Furthermore, back-propagation is often
misunderstood as being specific to multi-layer neural networks, but in principle it
can compute derivatives of any function.

We will describe how to compute the gradient ∇xf(x, y) for an arbitrary function
f , where x is a set of variables whose derivatives are desired, and y is an additional
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Algorithm 2.1 Backpropagation learning algorithm
for d in data do
Forwards Pass
Starting from the input layer, use eq. ?? to do a forward pass trough the
network, computing the activities of the neurons at each layer.

Backwards Pass
Compute the derivatives of the error function with respect to the output layer
activities
for layer in layers do
Compute the derivatives of the error function with respect to the inputs of
the upper layer neurons
Compute the derivatives of the error function with respect to the weights
between the outer layer and the layer below
Compute the derivatives of the error function with respect to the activities
of the layer below

end for
Updates the weights.

end for

set of variables that are inputs to the function but whose derivatives are not required.
In learning algorithms, the gradient we require is the gradient of the cost function
with respect to the parameters ∇θJ(θ). We start by deriving the gradient of the loss
at the output of the neural network. We use the softmax activation of the ith output
unit as described in 2.10, and the cross entropy error function for multi-class output
as stated in 2.9.

Starting from the output layer the derivation of the classification loss would be
given by:

∂

∂f(x)ij
[− log(f(x)y)] = − 1y=c

f(x)y
(2.11)

where 1y=c is the indicator function, c a given class and y the true class of x. The
numerator is multiplied by the indicator function because if y ̸= c, then −logf(x)y is
constant with respect to f(x)c. Hence its gradient is given by:

∇f(x)[− log(f(x)y)] =
−e(y)

f(x)y
(2.12)

where e(y) is the one-hot vector of y which is everywhere 0 except the position where
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y = c. The derivative gradient of the loss with respect to the preactivations of the
input layer is given by:

∂

∂a(L+1)(x)c
[− log(f(x)y)] = f(x)c − 1y=c (2.13)

It is the same formula as in the case of the logistic output units. The values themselves
will be different, because the predictions y will take on different values depending on
whether the output is logistic or softmax, but this is an elegant simplification. The
same procedure as before could be followed to obtain an analytic expression for each
neuron of each hidden layer, but in this case, things are getting complicated at the
lower layers of the network. Thus, the chain rule of calculus is used. It obtains the
gradients of each layer in a highly efficient way. With the use of the chain rule the
gradient for weights in the top layer would be:

∂E

∂wij

=
∂E

∂yj

∂yj
∂zj

∂zj
∂wij

(2.14)

By recursively computing the gradient of the error with respect to the activity of each
neuron, we can compute the gradients for all weights in a network.

2.2.3 Optimization techniques

The goal of a machine learning algorithm is to minimize the expected generalization
error, or equivalently to minimize the corresponding objective function where the
expectation is taken across the data-generating distribution. This quantity is known
as risk. If we knew the true distribution of the data, risk minimization would be an
optimization task solvable by an optimization algorithm. The simplest way to convert
a machine learning problem back into an optimization problem is to minimize the
expected loss on the training set. This replaces the true distribution p(x, y) with
the empirical distribution p(x, y) defined by the training set. We now minimize the
empirical risk. The training process based on minimizing this average training error
is known as empirical risk minimization.

Gradient Descent

Feedforward networks can be seen as efficient nonlinear function approximators based
on using gradient descent to minimize the error in a function approximation. The
gradient descent optimization method calculates, as the name suggests, the gradient
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of the function containing the optimization parameters. The parameters are then up-
dated in the direction where the magnitude of the gradient descend is the steepest.
This is optimally iterated until the magnitude of the gradient is close to zero which
means that the parameter space has reached a local minimum. In reality the opti-
mization is terminated when the loss is below a threshold value. The parameter θt is
updated according to:

θt = θt−1 − αf(θt−1) (2.15)

where f is the function containing the parameters and α is the step size for the
optimization, which is often called learning rate. It determines how quickly the θ

parameters are updated. Gradient descent has the shortcoming that update of pa-
rameters is always exactly proportional to change of gradient. This might become a
problem when the gradient change slows down. Another downfall of this method is
that the whole data set has to be processed to perform one update of the parameters.

Stochastic Gradient Descent

To improve the optimization the Stochastic Gradient Descent (SGD) [10] method is
able to update the parameters in every iteration according to:

θt = θt−1 − αf(θt−1;xi; yi) (2.16)

This method could improve the convergence rate as opposed to the gradient descent
method, but also make it fluctuate more and it may have trouble finding the exact
minimum.

Mini-batch optimization

A compromise of these two methods is the minibatch optimization method. The mini-
batch optimization uses the data samples of a small batch and computes the gradient
as an average of the gradients of each data sample according to:

θt = θt−1 − αf(θt−1;xi:i+n; yi:i+n) (2.17)

where n is the size of the batch.

Momentum

Stochastic Gradient Descent has trouble navigating ravines, i.e. areas where the sur-
face curves much more steeply in one dimension than in another, which are common
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around local optima. In these scenarios, SGD oscillates across the slopes of the ravine
while only making hesitant progress along the bottom towards the local optimum.
Momentum is a method that helps accelerate SGD in the relevant direction and damp-
ens oscillations. It does this by adding a fraction γ of the update vector of the past
time step to the current update vector:

vt = γvt−1 + α∇θf(θ)

θt = θt−1 − vt
(2.18)

where α is the learning rate, γ is the momentum constant and v is the updated
vector. Essentially, when using momentum, it can be interpreted like pushing a ball
down a hill. The ball accumulates momentum as it rolls downhill, becoming faster
on the way, until it reaches its terminal velocity, if there is air resistance, i.e. γ < 1.
The same happens to the parameter updates. The momentum term increases for
dimensions whose gradient’s point is in the same directions and reduces updates for
dimensions whose gradients change directions. As a result, it gains faster convergence
and reduced oscillation.

ADAM

The ADAM (Adaptive Moment Estimation) optimization [11] is a development of the
momentum optimization which adapts the learning rate to the parameters, performing
larger updates for infrequent and smaller updates for frequent parameters. This is
done by using two momentum constants β1 and β2 and two momentum vectors mt

and vt. Then the weight update in each step is:

gt = ∇f (θ) (2.19)

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

(2.20)

where g2t should be interpreted as the element-wise multiplication of the gradients
and mt, vt are estimates of the first moment (the mean) and the second moment (the
uncentered variance) of the gradients respectively. Asmt and vt are initialized as zero’s
vectors, the authors of ADAM observe that they are biased towards zero, especially
during the initial time steps or when the decay rates are small. They counteract these
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biases by computing bias-corrected first and second moment estimates:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(2.21)

They then use them to update the parameters:

θt+1 = θt −
α√
v̂t + ϵ

m̂t (2.22)

The steps of ADAM are described in the following way:

• mt is the first order momentum and is calculated as the convex combination of
the previous first order momentum and the gradients. This can be compared
to the momentum 2.18.

• vt is the second order momentum and is calculated in a similar way as the
first order momentum as a convex combination of the previous second order
moment and the element wise multiplicated gradients.

• m̂t and v̂t are the bias-corrected momentums. These operations are done to
decrease the influence of the bias arisen from the initializations of mt and vt.
Since β1, the influence of this operation, will decrease as the number of iterations
increases then m̂t converges to mt and v̂t converges to vt.

• The parameters θ are then updated using the bias-corrected momentums and
the step size λ, The term ϵ is used to prevent division with zero.

The authors propose default values of 0.9 for β1, 0.999 for β2, and λ = 10−8. They
show empirically that ADAM works well in practice and compares favorably to other
adaptive learning-method algorithms.
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2.2.4 Regularization

The ability to learn is the key concept of neural networks. A substantial problem
in machine learning is how to create an algorithm that performs well not just on
the training data, but also on new inputs. Many strategies used in machine learning
are explicitly designed to reduce the test error, possibly at the expense of increased
training error. These strategies are known as regularization. In the context of modern
neural netwoks, most regularization strategies are based on regularizing estimators.
Regularization of an estimator works by trading increased bias for reduced variance.
An effective regularizer is one that makes a profitable trade, reducing variance sig-
nificantly while not overly increasing the bias.

L2 regularization

L2 regularization is perhaps the most common form of regularization. It can be
implemented by penalizing the squared magnitude of all parameters directly in the
loss function. That is, for every weight w in the network, we add the term λ1

2
w2 to

the loss function:
L′(w) = L(w) + λ

1

2
w2 (2.23)

where E is the loss function and λ is the regularization strength. It is common to
see the factor of 1

2
in front because then the gradient of this term with respect to

the parameter w is simply λw instead of 2λw. The L2 regularization has the intuitive
interpretation of heavily penalizing peaky weight vectors and preferring diffuse weight
vectors. It has the appealing property of encouraging the network to use all of its
inputs a little; rather that some of its inputs a lot.

L1 regularization

L1 regularization is another relatively common form of regularization, where for each
weight w in the network, we add the term λ|w| to the loss function:

L′(w) = L(w) + λ|w| (2.24)

It is possible to combine the L1 regularization with the L2 regularization λ1 | w |
+λ2w

2, which is also referred to as Elastic net regularization [12]. The L1 regular-
ization has the intriguing property that it leads the weight vectors to become sparse
during optimization, i.e. very close to exactly zero. In other words, neurons with L1
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regularization end up using only a sparse subset of their most important inputs and
become nearly invariant to the noisy inputs.

Dropout

A very effective, yet simple, way of regularization method for modern neural net-
works was introduced in 2014 [13]. In a sense it helps to view dropout as a form of
ensemble learning. In ensemble learning we use a number of weaker classifiers, train
them separately and then at test time we use them by averaging the responses of all
ensemble members. Since each classifier has been trained separately, it has learned
different aspects of the data and their mistakes are different. Combining them helps
to produce a stronger classifier, which is less prone to overfitting. Random Forests
or Gradient Boosting Tree’s are typical ensemble classifiers. One ensemble variant is
bagging, in which each member of the ensemble is trained with a different subsam-
ple of the input data, and thus has learned only a subset of the whole possible input
feature space.

Figure 2.4: Dropout Regularizartion method.

Dropout can be seen as an extreme version of bagging. At each training step of
a batch, the dropout procedure creates a different network by randomly removing
some units, which is trained using backpropagation. Conceptually, then, the whole
procedure is a kin to using an ensemble of many different networks, which were
created at each step, with each one trained with a single sample. At test time the
whole network uses all units but with scaled down weights for each of them.
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2.3 Convolutional Neural Networks (CNNs)

Convolutional networks, introduced by Yann LeCun in 1989 [5], are a type of neural
network specialized in processing data that has a known grid-like topology. Data
with grid-like topology includes time-series, which can be thought of as a 1-D grid,
taking samples at regular time intervals, and image data, which can be thought of as
a 2-D grid of pixels. Convolutional neural networks have gained a special status over
the last few years as an especially promising form of deep learning. The fundamental
difference between fully connected and convolutional neural networks is the pattern
of connections between consecutive layers. In the fully connected case, as the name
might suggest, each unit is connected to all of the units in the previous layer In a
convolutional layer of a neural network, on the other hand, each unit is connected to
a, typically small, number of nearby units in the previous layer. Furthermore, all units
are connected to the previous layer in the same way, with the exact same weights and
structure. This leads to an operation known as convolution, giving the architecture
its name.

It has been popular to describe neural networks in general, and specifically con-
volutional neural networks, as biologically inspired models of computation. At times,
claims go as far as to state that these mimic the way the brain performs computations.
Convolutional neural networks kind of follow that pattern. Each convolutional layer
looks at an increasingly larger part of the image as we go deeper into the network.
Most commonly, this will be followed by fully connected layers that in the biologically
inspired analogy act as the higher levels of visual processing dealing with global in-
formation. Convolutional Neural Networks have introduced some great novelties like
parameter sharing, local connectivity and sampling layers which will be described in
the next setions.

2.3.1 Convolution

The name convolutional neural network indicates that the network employs a math-
ematical operation called convolution. It is defined as the integral of the product of
two functions from which the one shifts within a domain, and it is typically denoted
with an asterisk:

y(t) = x(t) ∗ h(t) =
∫ ∞

−∞
x(τ)h(t− τ)dτ (2.25)

19



We can interpret the convolution operation as thinking of y as a smooth estimation of
x which shifts in a domain t where h is a weighted average operation in a τ domain.
Convolution is defined for any functions for which the above integral is defined and
may be used for other purposes besides taking weighted averages. In convolutional
network terminology, the first argument, x, is often referred to as the input, and the
second arguement h is referred as the kernel. The output is sometimes referred as
the feature map. When working with data on a computer we will have to discritize
the operation, the integral of 2.25 will then be:

y(t) = x(t) ∗ h(t) =
∞∑

τ=−∞

x(τ)h(t− τ) (2.26)

For image data there is usually a use of convolutions over more than one axis at
a time. For example, when using a two-dimensional image I as input and a two-
dimensional kernel K , the convolution is denoted as:

S(i, j) = (I ⋆ K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.27)

Convolution is commutative, meaning it can equivalently be written as:

S(i, j) = (I ⋆ K)(i, j) =
∑
m

∑
n

K(i−m, j − n)I(m,n) (2.28)

The commutative property of convolution arises because of the flipped kernel relative
to the input, in the sense that as m increases, the index into the input increases, but
the index into the kernel decreases. The only reason to flip the kernel is to obtain the
commutative property. While the commutative property is useful for writing proofs,
it is not usually an important property of a neural network implementation. On
the contrary, many neural network libraries implement a related function called the
cross-correlation:

S(i, j) = (I ⋆ K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.29)

Many machine learning libraries implement cross-correlation but call it convolution.
In the context of machine learning, the learning algorithm will learn the appropriate
values of the kernel in the appropriate place, so an algorithm based on convolution
with kernel flipping will learn a kernel which is flipped relative to the kernel learned
by an algorithm without the flipping.
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Figure 2.5: 2-D convolution. Figure reproduced from [1].

Discrete convolution can be viewed as multiplication by a matrix, but the matrix
has several entries constrained to be equal to other entries. For a univariate discrete
convolution, each row of the matrix is constrained to be equal to the row above
shifted by one element. In two dimensions, a block circulant matrix corresponds to
convolution. In addition to these constraints that several elements are equal to each
other, convolution usually corresponds to a very sparse matrix. An example of a
discrete convolution is given in figure 2.5.

2.3.2 Local connectivity

Traditionally the fully-connected network architectures that were discussed in the
previews sections use matrix multiplication by a matrix of parameters with a sepa-
rate parameter, describing the interaction between each input unit and each output
unit. This means that every output unit interacts with every input unit. When deal-
ing with high-dimensional inputs such as images it is impractical to connect every
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neuron to all neurons in the previous volume. On the contrary, Convolutional neural
networks connect each neuron to only a local region of the input volume. This is
accomplished by making the kernel smaller than the input. This means that it stores
fewer parameters, which reduces the memory requirements of the model, computing
the output requires fewer operations and improves its statistical efficiency. The spatial
extent of this connectivity is a hyperparameter called the receptive field of the neuron.
The receptive field for a layer is the part of the input that a single pixel in the output
of that layer depends on.

Figure 2.6: Receptive field of a Convolutional Neural Network.

In a Convolutional Neural Network, the receptive field of a layer is the spatial
dimensions of the filter kernel. In figure 2.6 we present an example where every
hidden layer neuron has a local receptive field of region 5x5 pixels. The receptive
field for the entire network is the region of the input of the network that affects
a single pixel in the network output. By making the network deeper, the receptive
field is increased linearly. Due to the properties of the forward and backward pass
in the loss function the gradient of the central pixels of the receptive field has a
larger magnitude. The distribution of the impact of the receptive field is Gaussian
and decays rather quickly from the center yielding an effective receptive field that is
only a small part of the theoretical receptive field [14]. Moreover, in convolutional
neural networks a hidden unit is connected to all input channels, for example in
RGB images a hidden unit has connections with three different channels, while in
gray-scale images it has connections with a single channel. Different hidden units are
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connected to different patches of the input image, such that the image is covered with
the receptive fields for every hidden unit. All the above describe the connectivity of
each neuron in a Convolutional layer. There are three important hyperparameters for
the implementation of a convolutional layer, the size of the output volume, stride and
zero-padding.

• The depth of the output volume corresponds to the number of filters we would
like to use. Each filter is learning to look for something different from the input.
For example, if the first Convolutional Layer takes as input the raw image, then
different neurons along the depth dimension may activate in presence of various
oriented edges, or blobs of color.

• The stride is the value based on which we slide the filter at every step of the
convolution. When setting the stride at 1 then the filters move one pixel at a
time. When the stride is 2 then the filters jump 2 pixels at a time as they slide
around. This will produce smaller output volumes spatially.

• The procedure of Zero-padding is adding a layer of pixels with zero value all
the way around the input image. Zero-padding preserves the information at the
image borders. If we use convolutional layers without zero-padding, the size of
the feature maps is reduced after each convolutional layer and the information
at the image borders is trimmed and cannot be exploited.

2.3.3 Parameter sharing

Parameter sharing refers to using the same parameter for more than one function in
a model. In a traditional neural net, each element of the weight matrix is used exactly
once when computing the output of a layer. As it was mentioned before, during a
convolution operation a kernel slides through the whole input, thus each member of
the kernel is used at every position of the input, which means that rather than learning
a separate set of parameters for every location, we learn only one set, which is the
kernel. This does not affect the runtime of forward propagation, which still is O(kxn),
but it does further reduce the storage requirements of the model to k parameters.
Convolution is thus dramatically more efficient than dense matrix multiplication in
terms of the memory requirements and statistical efficiency.
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In the case of convolution, the particular form of parameter sharing causes the
layer to have a property, called equivariance to translation. This property means
that when the input changes, the output changes in the same way, more specifically, a
function f is equivarient to a function g if f(g(x)) = g(f(x)). In the case of convolution,
if we let g be any function that translates the input, i.e shifts it, then the convolution
function is equivariant to g. For example, let I be a function giving image brightness
at integer coordinates. Let g be a function mapping one image function to another
image function, such that I ′ = g(I) is the image function with I ′(x, y) = I(x−1, y).
This shifts every pixel of I one unit to the right. If we apply this transformation to
I , then apply convolution, the result will be the same as if we applied convolution
to I , then applied the transformation g to the output. Equivariance means that if we
move an object in an image, its detected features will be moved by the same amount
at the feature map. This suggests that if we have a kernel that detects, for example
horizontal edges and convolve an image with this kernel, in the output feature map,
edges will be detected in all possible positions. Thus, in each feature map specific
features based on the kernel that is used are detected. Equivariance means that if we
move an object in an image, its detected features will be moved by the same amount
at the feature map. This suggests that if we have a kernel that detects, for example
horizontal edges and convolve an image with this kernel, in the output feature map,
edges will be detected in all possible positions. Thus, in each feature map specific
features based on the kernel used are detected.

2.3.4 Subsampling Layer

A typical layer of a convolutional network consists of three stages. In the first stage,
the layer performs several convolutions at the same time to produce a set of linear
activations. In the second stage, each linear activation is run through a nonlinear
activation function, such as the rectified linear activation function. The third stage is
the pooling or subsampling function, which replaces the output of the network at a
certain location with a summary statistic of the nearby outputs, i.e pooling is a way
of reducing the dimension of the input by choosing the most responsive node of a
given interest region. The two most usual pooling operations are max pooling and
average pooling which operate as shown in figure 2.8.
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Figure 2.7: Parameter Sharing in Convolutional Neural Networks.

Figure 2.8: Max and Average pooling.

The max pooling operation (Zhouand Chellappa, 1988) reports small local neigh-
borhoods of feature maps, and computes the maximum of the activations on each
patch. The new pooled feature map of the max pooling layer is constructed by re-
placing the neighborhood pixel of the feautre map with their respective maximum.
The max pooling operation is defined as:

h
(n)
ijk(x) = max

p,q
h
(n−1)
(i,j+p,k+q)(x) (2.30)
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where p and q are indexes of a patch of the feature map h
(n−1)
i of the previous layer,

which is a convolutional layer and h
(n)
ijk(x) is the corresponding pooled value for the

i-th resulting feature map at position (j, k) of the current max pooling layer. Max
pooling is performed in non overlapping regions which means that if we pool l×l
regions, neighboring regions are l pixels apart which results in feature maps with
reduced size.

Another pooling operation is average pooling. It is the same concept as max pool-
ing though instead of the maximum it computes the average of every local neighbor-
hood. The average pooling operation is defined as:

h
(n)
ijk(x) =

1

m2

∑
p,q

h
(n−1)
(i,j+p,k+q)(x) (2.31)

In all cases pooling helps with a significant reduce of the size of a feature map,
additionally if one chooses the pooling regions to be contiguous areas in the image
and only pools features are generated from the same hidden units, these pooling units
will then be translation invariant. This means that the same pooled feature will be active
even when the image undergoes small translations. Translation-invariant features are
often desirable in many tasks. For example, if you were to take a classifier which
needs to classify images of digits, and translate a digit left or right, you would want
your classifier to still accurately classify it as the same digit regardless of its final
position. An example is given in figure 2.9.

2.3.5 Architecture of a CNN

A convolutional network consists mainly of convolutional, pooling and fully con-
nected layers. The model is composed of two main parts, the feature extraction part
and the classification part. The feature extraction part consists of convolutional fol-
lowed by pooling layers, though pooling layers are not necessary to be placed after
each convolutional layer. In this part the network learns represantations of the given
dataset, which provides discrimination across different classes. Those representations
are learned through the learning process of the convolutional kernels with back-
propagation.
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Figure 2.9: Example of learned invariances. A pooling unit that pools over multiple
features that are learned with separate parameters can learn to be invariant to trans-
formations of the input. Here we show how a set of three learned filters and a max
pooling unit can learn to become invariant to rotation.

Figure 2.10: Example of a typical Convolutional Neural Network structure.

The classification part of the model is where the network uses the learned features
from the previous part to classify the data. This part consists of a fully connected neu-
ral network which has as an input the vectorized output of the last convolutional’s or
pooling’s layer. At the output of the fully connected layer a softmax activation layer
which gives the normalized class probabilities as an output. A forward propagation
in a Convolutional neural network consists of providing an image as input to the
convolutional network and flowing the structure described above, in order to finally
compute class predictions at the output layer of the network as illustrated in the figure
2.10. There are also alternative architectures [15] proposed where the deep convolu-
tional networks are first trained using supervised objectives to learn good invariant
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hidden latent representations and then feed the corresponding hidden variables of
data samples into linear or kernel SVM’s instead of a softmax layer.

Convolutional Neural Networks learn hierarchical feature representations, which
means that they learn more complicated concepts through simpler features. The first
convolutional layers learn simple features such as edges, the next layers combines
these edges to construct more complicated features such as parts of an object and as
we go on, they add more levels of abstraction, and eventually in the last convolutional
layers highly abstract features are obtained. This happens because a convolutional
layer computes each feature map as a weighted combination of the input channels.
Hence, the convolutional kernels are learned in a way, such that the weighted com-
bination of the input channels can provide meaningful higher level representations.

As for the convolutional layer’s sizing patterns there are some hyperparameters
for which common rules of thumb are followed in order to adjust them. First of all the
input layer (that contains the image) should be divisible by 2 many times. Common
numbers include 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. common
ImageNet ConvNets), 384, and 512. The convolutional layers should be using small
filters e.g. 3x3 or at most 5x5, using a stride of 1, and crucially, padding the input
volume with zeros in such way that the convolutional layer does not alter the spatial
dimensions of the input. The pool layers are in charge of downsampling the spatial
dimensions of the input. The most common setting is to use max-pooling with 2x2
receptive fields and with a stride of 2.

CNN case studies

• LeNet-5 [16], illustrated in figure 2.11, which was developed by Yann LeCun
in 1990s is a pioneering convolutional network architecture that was used to
read zip codes, digits, etc.

• AlexNet [8] was the first work that popularized Convolutional Networks in Com-
puter Vision, developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton.
The AlexNet was submitted to the ImageNet ILSVRC challenge in 2012 and sig-
nificantly outperformed the second runner-up. The Network had a very similar
architecture to LeNet, but was deeper, bigger, and featured Convolutional Layers
stacked on top of each other.

• GoogLeNet [17]; the ILSVRC 2014 winner. Its main contribution was the de-
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Figure 2.11: The pioneering convolutional architecture LeNet-5.

velopment of an Inception Module that dramatically reduced the number of
parameters in the network.

• VGGNet [18] developed by Karen Simonyan and Andrew Zisserman that became
known as the VGGNet. Its main contribution was in showing that the depth of
the network is a critical component for good performance.

• Residual Network [19] developed by Kaiming He et al. was the winner of
ILSVRC 2015. It features special skip connections and a heavy use of batch
normalization. The architecture is also missing fully connected layers at the
end of the network. Residual Networks are currently the state of the art Convo-
lutional Neural Network models and are the default choice for using ConvNets
in practice.
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Chapter 3

Functionally Weighted Convolutional
Neural Networks (FWCNNs)

3.1 Introduction

3.2 Functionally Weighted Neural Networks (FWNNs)

3.3 Functionally Weighted Convolutional Neural Networks (FWCNNs)

3.1 Introduction

One striking fact about Artificial Neural Networks is that they are known as universal
approximators. i.e they are capable of approximating any measurable function to any
desired degree of accuracy. More precisely, in [20] there is a proof which states that for
any continuous function f on a compact set K , exists a feedforward neural network
having only one hidden layer, which uniformly approximates f within an arbitrary
ϵ > 0 on K. This property gives Artificial Neural Networks no theoritical constraint
for the success of accuracy, considering that they are applied at both classification
and regression. Any lack of success of the network is due to inadequate learning,
insufficient number of hidden units or the lack of a deterministic relationship between
the input and the target.

There has been a vast literature of neural network architectures and approaches
trying to solve problem of over-training a network which leads to poor generalization.
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Empirical observation has shown that given two networks with similar performance
on a training dataset, the one with the fewer parameters is likely to generalize better.
Several techniques have been developed aiming to improve the networks generaliza-
tion; for instance weight decay and weight bounding. These methods make use of an
additional set, the validation set, i.e they partition the data into three subsets; the the
training, the validation and the test subset. Training may end up in several candidate
models i.e networks with different weight values. Then the validation set is used
to pick the best performing model, and finally the test set will give the estimation
for the size of the expected error on unseen data. Another framework for model-
ing, [21] is through sparse supervised learning models which utilize only a subset of
the training data, discarding unnecessary samples based on certain criteria. Sparce
models widely used are, among others, the Lasso [22], the Support Vector Machines
(SVMs) [23] and the Revelance Vector Machines (RNMs) [24]. Sparce learning ap-
plies L1 regularization, leading to penalized regression schemes, or sparse priors on
the model parameters under the Bayesian framework [25]. Another popular regular-
ization method within the modern neural networks is Dropout [13]. This approach
employs a stohastic procedure for node removal during the training phase, reducing
model parameters in order to avoid overfitting.

3.2 Functionally Weighted Neural Networks (FWNNs)

In this section we introduce a new type of neural network, the Functionally Weighted
Neural Networks, with weights that depend on a continuous variable, instead of the
traditional discrete index. This network employs a small set of adjustable parameters
and at the same time employs a superior generalization performance as indicated by
an ample set of numerical experiments. The idea of replacing the indexed parameters
with continuous functions has been previously considered in [26], through a different
setting and with different rather limited implementation settings. However since then,
no further followups have been spotted in the literature. In order to give a loose
definition behind the concept of our proposed method we may compare the definition
of a traditional MLP layer which is given in 3.1.

f(x) =
∑

πϕ(x; θ) (3.1)
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Equation 3.1 describes the sum of the activations of every hidden unit at any hidden
layer of an MLP. In comparison, at an FWNN we now define one infinite hidden unit
at any given hidden layer, turning the sum of the hidden units into an integral for
the new defined layer.

f(x) =

∫
π(s)ϕ(x; θ(s))ds (3.2)

Radial basis functions (RBF) are known to be suitable for function approximation.
An RBF network with K Gaussian activation nodes can be written as:

NRBF (x; θ) = π0 +
K∑
j=1

πjϕ(x;µj , σj)

=
K∑
j=1

πjexp

(
−|x− µj|2

2σ2
j

)
,

(3.3)

where x,µj ∈ Rn and θ = {πj,µj , σj}Kj=1 denotes collectively the network parameters
to be determined via the training procedure. The total number of parameters is given
by the expression:

NRB
var = K(2 + n) + 1, (3.4)

which grows linearly with the number of network nodes. Thus we define the Func-
tionally weighted Neural Network for the RBF activations in correspondence to 3.4
as:

NFW (x; θ) =

∫ 1

−1

ds√
1− s2

π(s)exp

(
−|x− µ(s)|2

2σ(s)2

)
, (3.5)

where we applied the following transitions:

πj −→ π(s) (3.6)

µj −→ µ(s) (3.7)

σj −→ σ(s) (3.8)
K∑
j=1

−→
∫ 1

−1

ds√
1− s2

(3.9)

The weight model-functions w(s),µ(s), σ(s) are parametrized and these parameters
are collectively denoted by θ. We model the parameters as polynomial forms, denoted
as:

π(s) =
Lπ∑
j=0

πjs
j (3.10)
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µ(s) =

Lµ∑
j=0

µjs
j (3.11)

σ(s) =
Lσ∑
j=0

σjs
j (3.12)

Note that µj∀0, ..., Lµ and µ(s) are vectors in Rn. Therefore, the set of adjustable
parameters becomes:

θ = {{πj}Lπ
j=0, {µij}n,Lµ

i=1,j=0, {σj}Lσ
j=0} (3.13)

with a total parameter given by:

NFW
var = (1 + Lπ) + n(Lµ + 1) + (Lσ + 1)

= Lπ + nLµ + Lσ + n+ 2
(3.14)

We may interpretate the proposed scheme as a network with infinite number of nodes,
since the integral may be expressed as a sum of an infinite number of terms:∫ b

a

f(s)ds = lim
m→∞

b− a

m

m∑
i=1

f

(
a+ i

b− a

m

)
(3.15)

In order to evaluate the integrals we use the following accurate Guass-Chebyshev
quadrature: ∫ 1

−1

ds√
1− s2

f(s) ≈ π

M

M∑
i=1

f(si) (3.16)

where s is given by:

si = cos

(
2i− 1

2M
π

)
. (3.17)

Where M is the number of integration points. One may be misled and interpret the
above sum as an RBF network with M Gaussian nodes. This is not true since this sum
is only a numerical approximation scheme for evaluating the integral. The Remann
approximation scheme defined in equation 3.15 is a sum of an infinite number of
terms.

The Functionally Weighted Neural Network can be also modeled with a logistic
sigmoid as activaton function, in correspondence to 2.3 which is denoted as:

NFW (x; θ) =

∫ 1

−1

ds√
1− s2

π(s)
1

1 + e−w(s)x
(3.18)
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where we can intepret π(s) as a weighted average for the infinite activation functions
where in analogy to the RBF’s weights, its polynomial form is denoted as:

π(s) =
Lπ∑
j=0

πjs
j (3.19)

and the a(x) is the preactivations of the network:

w(s)x =
d∑

k=1

wj(s)xj + w0(s) (3.20)

where wk(s) is a polynomial form denoted as:

wk(s) =
Lw∑
k=0

wkjs
j (3.21)

with j denoting the degree of the π(s). AgainM is not the number of the hidden units,
we only make use of one infinite hidden unit whereM is the numerical approximation
for evaluating the integral.

Figure 3.1: A typical FWNN architecture.

In figure 3.1 we illustrate an FWNN single hidden layer architecture for classifica-
tion. In the figure we can observe from the amount of connections, that the proposed
method requires only but a few weights for the hidden and output layers.
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3.3 Functionally Weighted Convolutional Neural Networks (FWC-

NNs)

As we already stated convolutional layers are a state-of-the-art method for acquir-
ing features from image data, though they demand a great deal of stacked layers in
order to obtain satisfying results, thus our motivation for the FWCNN is to achieve
the extraction of good features with the use of infinite size kernels. With an equiv-
alent way of defining the Functionally Weighted Neural Network with a sigmoid
activation function we study the same formulation for the FWCNN’s, by having con-
tinuous 2-d kernels instead of the traditional discrete 2-d kernels that are used for the
convolutional layers. Practicaly the only adjustment from FWNN is switching from
matrix multiplications into convolutions operations, which changes the preactivation
sum 3.20 into a convolution operation and modeling the vectorized weights from a
2-dimension kernel into one infinite kernel:

w(i,j)k(s) =
Lw∑
k=0

w(i,j)kls
l (3.22)

where we keep the weighted average of the activations π(s) as it is, denoted at 3.19
and the model as it is denoted at 3.18.

Figure 3.2: Convolution with an infinite modeled kernel.

In favor of strengthening the intuition behind the 2-dimension convolution of
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functionally weighted convolutional neural networks; in figure 3.2 we illustrate the
comparison between them and a traditional 2-dimension convolution as shown in
figure 2.5. Notice we only use one infinite kernel on each layer of the proposed
architecture.

The remarkable leverage of our method is taking advantage of the parameter
sharing property from the traditional convolutional neural networks and it unifies it
with the properties of an FWNN, having as a result a massive minimization in the
number of parameters of the layer. Furthermore it combines the FWNN architecture at
the output layer which gives us the ability to discard entirely the need for a traditional
neural network at the classification part of the network. Note that the biggest portion
of parameters of a CNN is at the classification part where an immense number of
feature maps is being vectorized in order to feed the classifier. The total number of
parameters on a FWCNN is given by:

NFWCNN
var = n(Lπ + 1) + (Lw + 1) +Ksize + Csize +N + I (3.23)

Where K is the size of the kernel used for the convolution, C is the number of the
input channels (e.g 1 if the input is a grayscale image, 3 if the input is an RGB
image), N is the number of classes and I is the dimension of the input image. Note
that the I parameters concern the preactivation which feeds the output layer of our
network meaning that after performing the convolution we can add a max pooling
layer therefore we trim at half the number of parameters of I in consequence of
reducing the dimension of the input.

Figure 3.3: Typical FWCNN architecture.

36



As mentioned in 2.3.5, CNNs learn hierarchical feature representations, which
means they learn more complicated concepts through simpler features; first convolu-
tional layers learn simple features such as edges and as we go on to the next layers,
they add more levels of abstraction and eventually in the last convolutional layers
highly abstract features are obtained. Having the ambition to create an architecture
with more than one layers for the Functionally Weighted Convolutional Neural Net-
work topology in order to create an hierarchical feature representation we attempt
the approach of convoluting with an infinite modeled kernel the infinite feature maps
that were produced from the previous FWCNN layer.

Figure 3.4: 2-Layer FWCNN architecture.

The implementation for this aproach was motivated by a typical Convolutional
layer; where the number of the output feature maps is not decided by the size of the
layers input. In a typical CNN layer for every output feature map, the input feature
maps are convolved with a separated kernel and subsequently are summed up; in
this sence we defined the infinite output number of feature maps of the FWCNN as
infinite, which in our method is the approximation step number for the computation
of the integral. In the next chapter we perform a variety of experiments for evaluating
this approach and making the comparison of unknown parameter numbers between
traditional CNNs and the proposed model.
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Chapter 4

Experimental Results

4.1 Google Tensorflow Machine Learning Library

4.2 Description of datasets

4.3 Implementation details

4.1 Google Tensorflow Machine Learning Library

TensorFlow [27] is one of the most popular machine learning frameworks, created
by Google, which operates at large scale and in heterogeneous environments. Tensor-
Flow uses dataflow graphs to represent computation, shared state, and the operations
that mutate that state. It maps the nodes of a dataflow graph across many machines
in a cluster, and within a machine across multiple computational devices. Data in
TensorFlow are represented as tensors. Tensors are geometric objects that describe
linear relations between geometric vectors, scalars and other tensors. Elementary ex-
amples of such relations include the dot product, the cross product, and linear maps.
Everything in TensorFlow is based on creating a computational graph. Nodes of the
graph represent methematical operations while the graph edges repressent the mul-
tidimensional data arrays (tensors) communicated by them. This leads to a low-level
programming model in which one can define the dataflow graph and then create a
Tensorflow session to run parts of the graph across a set of local or remote devices.
Dataflow is a common programming model for parallel computing and has several
advantages that TensorFlow leverages.
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Figure 4.1: Computation graph of a simple Tensorflow operation.

• Parallelism; by using explicit edges to represent dependencies between opera-
tions, it is easy for the system to identify operations that can execute in parallel.

• Distributed execution. By using explicit edges to represent the values that flow
between operations, it is possible for TensorFlow to partition a program across
multiple devices attached to different machines. TensorFlow inserts the neces-
sary communication and coordination between devices.

• Compilation; TensorFlow’s XLA compiler can use the information of a dataflow
graph to generate faster code by fusing together adjacent operations.

4.2 Description of datasets

We evaluated our methods on two popular benchmark datasets, MNIST and CIFAR-
10.

MNIST dataset [28] has been widely used as a benchmark for testing classifica-
tion algorithms in handwritten digit recognition systems. MNIST is an abbreviation
for Mixed National Institute of Standards and Technology database. This database
is created by mixing the original samples of NIST’s database. The database has two
parts; training samples that were taken from American Census Bureau employees
and the test samples that were taken from American high school students. The origi-
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nal NIST’s database is too hard, therefore the MNIST database was constructed from
NIST’s Special Database 3 and Special Database 1 which contain binary images of
handwritten digits. The samples that were taken from American Census Bureau em-
ployees, training database, was very cleaner than the samples that were taken from
American high school students, test database. By combining 30000 samples from
first dataset and 30000 samples from second dataset, the Mixed NIST training set
was created. 60000 test samples were collected to constitute the test dataset, but only
10000 of patterns are now available on MNIST webpage. The first 5000 examples of
the test set are taken from the original NIST training set and the last 5000 are taken
from the original NIST test set. The MNIST is widely used for training and testing
in the field of machine learning.

Figure 4.2: Sample of images from the MNIST dataset.

CIFAR-10 [29] is another established computer-vision dataset used for object
recognition on which we evaluated our method. It is a labeled subset of the 80 mil-
lion tiny image dataset. It is called CIFAR-10 dataset, after the Canadian Institute for
Advanced Research, which funded the project and was collected by Alex Krizhevsky,
Vinod Nair and Geoffrey Hinton. It consists of 60,000 32x32 color images containing
one of 10 object classes, with 6000 images per class. There are 50000 training images
and 10000 test images.
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Figure 4.3: Sample of images from the CIFAR-10 dataset.

The dataset is divided into five training batches and one test batch, each with
10000 images. The test batch contains exactly 1000 randomly-selected images from
each class. The training batches contain the remaining images in random order, but
some training batches may contain more images from one class than another. Between
them, the training batches contain exactly 5000 images from each class. The classes
are airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck which are
completely mutually exclusive.

4.3 Implementation details

To evaluate our methods we performed a variety of experiments, on different ar-
chitectures and hyperparameters, in order to choose the best performing network
configurations for the MNIST and CIFAR-10 datasets. The evaluation metric of our
method is classification accuracy which we are trying to maximize for every class.
Neural Networks have several sensitive hyperparameters that affect the performance
of the network which can lead to undefitting and overfitting issues. Thus we perform
hyperparameter tuning for the selection of the fittest values. There are two popu-
lar methods for choosing hyperparameters, grid search and random search. In grid
search, sets of values are defined for each hyperparameter and all possible combina-
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tions of hyperparameters values are exploited. Random search [30] is another way for
parameter tuning for deep learning models, which proposes to sample independently
each hyperparameter from a different hyperparameter distribution. For cross valida-
tion we split the training set in training and validation set, where we train our models
with the trainining set and select the best hyperparameters based on the performance
on the validation set. We set the validation set as the 20% of the training set for
both the MNIST and CIFAR-10 datasets. For every experiment we train our models
using the ADAM [11] optimization algorithm with setting the hyperparameters at the
authors proposed values of 0.9 for β1, 0.999 for β2, but we applied exponential decay
to the learning rate λ. We initialized λ at 0.1 and we applied decay with a base of 80%
every some steps. The steps value for the decay of λ differ according to the dataset
and the complexity of the model, though it is set in a range of [800, 2000]. We used
Rectified Linear Units as an activation function for every experiment we conducted.

The training was done using a quad-core Intel i5-4590 CPU and an NVIDIA
Titan X Pascal GPU. The implementation was written in Python version 2.7.2 with
the Tensorflow machine learning library version 1.2.0.

4.3.1 Evaluation on the MNIST dataset

Functionally Weighted Neural Network on the MNIST dataset

We tested various architectures for the evaluation of our method on the MNIST
dataset. Starting with a single layer FWNN we performed a series of experiments for
different Lπ and Lw degrees. The data was processed in batches of 128 samples and
trained for 50 epochs.

We tested different polynomial degrees of Lw and Lπ for a Functionally Weighted
Neural Network, as presented in table 4.1, measuring the classification accuracy in
the test set and as expected, we obtain the best results for the highest poloynomial
degrees.
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Table 4.1: FWNN experiments on various polynomial degrees results.

Polynomial Degree Lπ = Lw Test Accuracy # of trainable Parameters

3 0.766 2385

4 0.866 3180

5 0.878 3975

6 0.852 4770

7 0.901 5565

8 0.888 6360

9 0.903 7155

... ... ...

21 0.924 16695

For a setting of values from a range [9...14] we did not see any important im-
provement on the classification accuracy. We tested a range of degrees coming to the
extreme value of 21 which gave the best performance for the given dataset.

Figure 4.4: Best performing FWNN with polynomial Lπ = Lw degree of 21 on MNIST.

At a degree of 21 we obtain a test accuracy of 0.924 with a total number of 16695
trainable parameters. We performed the same experiments adding L2 regularization
to the network. Through exploring different values, we achieved the best results with
a regularization λ value of 0.00001. We illustrate a fraction of the experiments at
figures 4.5.
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(a) Lπ = Lw = 3 (b) Lπ = Lw = 7 (c) Lπ = Lw = 9

(d) Lπ = Lw = 3 (e) Lπ = Lw = 7 (f) Lπ = Lw = 9

Figure 4.5: The figures (a), (b) and (c) show the implementation results without any
regularization while the figures (d), (e) and(f) show the networks performance with
regularization.

We achieved slightly better results when applied regularization at the weights of
the network, though the differences were small having a standard deviation of 0.05
in accuracy. The reason is the small number of trainable parameters, judging from
the improved results when applying regularization in the next experiments shown,
where the number of trainable parameters exceed the number of 100000.

Functionally Weighted Convolutional Neural Network on the MNIST dataset

We performed a variety of experiments to evaluate the Functionally Weighted Con-
volutional Neural Network topology, starting again with different polynomial degrees
for Lw and Lπ. We trained the network for 40 epochs with and without weight
regularization.
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Table 4.2: FWCNN testing accuracy results on various polynomial degrees.

Polynomial degree Lπ Test Accuracy # of trainable Parameters

4 0.975 7908

5 0.978 9885
6 0.973 11862

7 0.973 13839

... ... ...

10 0.972 19770

11 0.977 21747

12 0.972 23724

We achieved best performance at Lw = Lπ = 5, whose loss function values at every
step are illustrated in figure 4.7. Again the results after having the same experiments
with applying L2 regularization were not worth mentioning. The accuracy result
is much superior than the FWNN results considering the fact that we managed to
produce it with 51.2% less parameters. The unforseen outcome of the results though,
was the case that the polynomial degree didnt seem to heavily affect the result, thus we
could not improve thickly the testing accuracy no matter the raise of the polynomial
degrees, as illustrated in 4.6.

Figure 4.6: FWCNN test accuracy results on various polynomial degrees.
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Figure 4.7: Loss function values at every step for best performing FWCNN configu-
ration.

2-layer Functionally Weighted Convolutional Neural Network on the MNIST
dataset

As described in 3.3 we studied the approach of stacking more than one FWCNN
layers on top of each other anticipating to get the combination of better features
at each layer and conducted experiments on the MNIST dataset. As a result, we
managed to overcome the 97% testing accuracy of the 1-layer implementation, with
just a marginal increase in the number of parameters.

(a) Lπ = Lw = 4 (b) Lπ = Lw = 4

Figure 4.8: Loss function values at every step (a), Validation and Testing accuracies
(b) for best performing 2-layers FWCNN configuration on MNIST.

The best results we achieved for the 2-layer was at a polynomial degree of 10,
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with a test accuracy of 0.985 and a total number of 23080 trainable parameters.

4.3.2 Evaluation on the CIFAR-10 dataset

Comparing to the MNIST dataset, CIFAR-10 is a far harder problem to solve, even
for state-of-the-art classifiers. Thus, to obtain fair results, the implementations of our
method we tested, were more complex. We first performed experiments with an 1-
layer implementation for various Lπ and Lw polynomial degrees. We got the best
performance in 200 epochs of training, for Lπ = 50, Lw = 30 and a regularization
scale of λ = 0.00005, with a total of 130700 trainable parameters. Note that the number
of parameters on these configurations is excessively higher than the ones that were
tested on the MNIST dataset, thus regularization of the weights boosts the method’s
test accuracy. Note that we applied regularization only on Lπ weights, which is the
larger value. On the 1-layer implementation we succeed a 59% test accuracy.

(a) No weight regularization. (b) L2 regularization with a λ = λ =

0.00005 on Lπ weights.

Figure 4.9: Validation and Testing accuracies comparison, with (a) and without (b)
weight regularization for best performing 1-layer configuration FWCNN configuration
on CIFAR-10.

We experimented with various architectures, with different size of kernels, number
of FWCNN layers and implemented max-pooling layers in between which drastically
downsized the number of parameters; trying to achieve a fair proportion of the best
test accuracy and architecture simplicity. Results of 2 and 3-layer are illustrated in
figure 4.10.
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(a) 2-layer FWCNN, Lπ = 50, Lw =

30 with a regularization λ = 0.00008

and 2 max-pooling layers.

(b) 3-layer FWCNN, Lπ = 50, Lw =

10 with a regularization λ = 0.00008

and 2 max-pooling layers.

Figure 4.10: Results of 2 and 3-layer FWCNN architecures on CIFAR-10.

The most successful configuration was a 6-layer architecture; with 2 max-pooling
layers and polynomial degrees of Lπ = 50, Lw = 20, at 232900 parameters, we
achieved a 71.3% accuracy.

Figure 4.11: 6-layer FWCNN architecture.

Combination of FWNN and CNNs on the CIFAR-10 dataset

We also tried another approach by substituting the fully connected layers of a tra-
ditional Convolution neural network implementation with a functionally weighted
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neural network. We tested a 2-layer convolutional layer which produced 64 feature
maps at each layer, with 5x5 kernels. In the fully connected layer we used 2-layers
with 256 and 128 hidden units, in comparison with the functionally weighted were
we used 30 and 10 polynomial degree for the Lπ and Lw respectively. As seen in
figure 4.12 results are really promising.

Figure 4.12: CNN with FWCNN classifier comparison with a traditional CNN.
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Chapter 5

Conclusion

In this thesis, we studied deep learning techniques on neural networks with a focus
on convolutional neural networks and introduced a new convolutional model, the
functionally weighted convolutional network. We presented the dominance of the
model considering the immense decrease in the number of unknown parameters and
presented the flexibility of the model in constructing different architectures merged
with the state-the-art methods.

In the experimental evaluation we conducted a variety of experiments on popular
datasets. We conducted an extensive search on a variety of hyperparameters like
learning rates, number of layers etc. with a primary focus on the hyperparameters
of the degrees of the polynomial modeled weights. Furthermore we investigated the
possibility of using a FWNN as a classifier on modern CNN architectures that are used
for feature extraction. Although our model’s results are comparable alone with simple
CNN architectures we hold a strong belief into fine tuning our model for improved
results.

Given the encouraging results obtained from the experiments there are several
research directions to be followed in future work. At first it would be interesting to
test an implementation in which we will try to produce features with more than one
infinite kernel. Another research direction is to consider alternative approaches for
the activation functions and how we could maybe introduce radial basis functions to
the operation of convolution and finding an approach for parameter sharing between
RBFs kernels centers and widths.
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It would also be important to test our model on different datasets and problems;
like text or signal classification. It is also interesting to conduct a more detailed anal-
ysis on the produced infinite feature maps. Visualizing the weights would possibly
show us the regularization strength of the network; knowing that noisy patterns on
filters can be an indicator of a network that hasn’t been trained for long enough, or
possibly has a very low regularization strength. Finally, another important visualiza-
tion technique is also important; the visualization of the feature maps in order to get
an understanding of what the neuron is looking for in its receptive field.
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