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Abstract

Ermioni Mastora, M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, February 2017.
Robust Incremental Hidden Conditional Random Fields for Action Recognition.
Advisor: Christoforos Nikou, Associate Professor.

Human action recognition is a challenging topic of computer vision research and
continues to receive a keen interest due to the variety of applications that can be used.
The creation of a supervised system able to understand and automatically recognize
low-level actions and high-level activities is the core problem that these applications
attempt to solve. A promising probabilistic graphical model that has been recently
proposed for the recognition task is Hidden Conditional Random Fields (HCRF).
However, the number of hidden variables that the model incorporates remains a
severe limitation of the HCRF due to the fact that the user is asked to make an
advance and intuitive assumption for this parameter.
In this thesis, we address this limitation by proposing a new model, called Ro-

bust Incremental Hidden Conditional Random Fields (RI-HCRF), which estimates the
number of hidden states incrementally. Multiple Hidden Markov Models (HMM) are
created whose parameters are defined by the potentials of the original HCRF graph.
Starting from a small number of hidden states and increasing their number incremen-
tally, the Viterbi path is computed for each HMM. The method seeks for a sequence
of hidden states, where each variable participates in a maximum number of optimal
paths. Therefore, variables with low participation in optimal paths are rejected. In
addition, a robust mixture of Student’s t-distributions is imposed as a regularizer to
the parameters of the model.
The proposed method is tested in six publicly available datasets using different

feature representations. The a priori knowledge of the optimal number of hidden

viii



variables and the t-distributed parameters lead to a more robust estimation frame-
work for the classification task. The experiment results show that RI-HCRF estimates
successfully the number of hidden states and outperforms all state-of-the-art models
that were used as baseline.
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Ε Π

Ερμιόνη Μάστορα, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πληροφο-
ρικής, Πανεπιστήμιο Ιωαννίνων, Φεβρουάριος 2017.
Εύρωστα, Αυξητικά, Κρυφά Στοχαστικά Υπό Συνθήκη Πεδία για Αναγνώριση Δρα-
στηριότητας.
Επιβλέπων: Χριστόφορος Νίκου, Αναπληρωτής Καθηγητής.

Το πρόβλημα της αναγνώρισης ανθρώπινης κίνησης παραμένει μια μεγάλη πρό-
κληση και αποτελεί ένα αρκετά ενεργό θέμα έρευνας για το πεδίο της μηχανι-
κής όρασης. Η οπτική ανάλυση του περιεχομένου των εικονοσειρών κεντρίζει το
ενδιαφέρον πολλών ερευνητών καθώς διαθέτει ένα μεγάλο εύρος εφαρμογών. Οι
εφαρμογές αυτές περιλλαμβάνουν: συστήματα παρακολούθησης και καταγραφής
εικόνας, ανάλυση αθλητικών βίντεο, συστήματα υγειονομικής περίθαλψης, αλληλε-
πίδραση ανθρώπου-ρομπότ είτε ανθρώπου-υπολογιστή και πολλές ακόμη. Ο στόχος
τους είναι η δημιουργία ενός συστήματος το οποίο είναι σε θέση να κατανοεί και
αναγνωρίζει αυτόματα ενέργειες χαμηλού επιπέδου καθώς και υψηλού επιπέδου
δραστηριότητες. Ωστόσο, η αναγνώριση πολύπλοκων ανθρώπινων δραστηριοτήτων
στον πραγματικό κόσμο είναι μία δύσκολη διαδικασία λόγω της ομοιότητας κά-
ποιων κινήσεων, των μεταβολών στο φόντο, της φωτεινότητα, της κλίμακα είτε της
μερικής εμφάνισης των εικονιζόμενων ατόμων.
Το πλήθος και η διάσταση των εικονοσειρών που είναι πλέον διαθέσιμα τα τε-

λευταία χρόνια είναι αρκετά μεγάλα και η περιληπτική αναπαράσταση τους είναι
πλέον απαραίτητη. Συνεπώς, οι εικονοσειρές θεωρούνται ως μία συλλογή από το-
πικά χωροχρονικά χαρακτηριστικά. Διαχρονικά έχουν προταθεί πολλά μοντέλα για
την αναγνώριση κίνησης αλλά πρόσφατα η έρευνα έχει στραφεί στην χρήση και τη
δημιουργία νέων γραφικών μοντέλων. Τα κρυφά υπό συνθήκη τυχαία πεδία απο-
τελούν ένα πιθανοτικό μοντέλο όπου οι εξαρτήσεις μεταξύ των χωροχρονικών χα-
ρακτηριστικών μπορούν να αποτυπωθούν και να αναπαρασταθούν υπό την μορφή
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ενός γράφου. Το μοντέλο αυτό έχει επιτύχει μεγάλη αύξηση στο ποσοστό επιτυχίας
πολλών συνόλων δεδομένων σε σχέση με παλιότερα μοντέλα όμως, έχει ένα βασικό
μειονέκτημα. Ο καθορισμός του αριθμού των κρυμμένων καταστάσεων, όπου το
μοντέλο περιλαμβάνει, είναι μία παράμετρος και ζητείται από τον χρήστη να την
καθορίσει συνήθως ενστικτωδώς εκ των προτέρων.
Στόχος αυτής της εργασίας είναι η εξάλειψη αυτού του μειονεκτήματος προτεί-

νοντας ένα νέο μοντέλο, που ονομάζεται εύρωστα, αυξητικά, κρυφά, στοχαστικά
υπό συνθήκη πεδία, η οποία προσθέτει στα κρυφά υπό συνθήκη πεδία μία αυξητική
μέθοδο για την εκτίμηση του αριθμού των κρυμμένων καταστάσεων του μοντέλου.
Για τον καθορισμό των κρυμμένων καταστάσεων δημιουργούνται πολλαπλά κρυμ-
μένα Μαρκοβιανά μοντέλα όπου οι παράμετροι τους ορίζονται χρησιμοποιώντας τις
συναρτήσεις του γραφήματος των κρυφών υπό συνθήκη πεδίων. Ξεκινώντας από ένα
μικρό αριθμό κρυφών καταστάσεων και αυξάνοντας τον αριθμό τους σταδιακά, το
βέλτιστο μονοπάτι (Viterbi) υπολογίζεται για κάθε Μαρκοβιανό μοντέλο. Η μέθο-
δος επιδιώκει μια αλληλουχία των κρυφών καταστάσεων, όπου κάθε κατάσταση
συμμετέχει σε μεγάλο πλήθος βέλτιστων μονοπατιών. Ως εκ τούτου, οι καταστά-
σεις με χαμηλή συμμετοχή στα βέλτιστα μονοπάτια απορρίπτονται. Επιπλέον, η
εύρωστη μεικτή κατανομή Student t προστίθεται στο μοντέλο ως την κατανομή που
ακολουθούν οι παράμετροι του.
Η απόδοση της προτεινόμενης μεθόδου έχει εκτιμηθεί σε έξι σύνολα δεδομένων

όπου για κάθε σύνολο χρησιμοποιήθηκαν διαφορετικά χωροχρονικά χαρακτηριστικά
για την αναπαράστασή τους. Η προτεινόμενη μέθοδος εξετάζεται στην αναγνώριση
χειρονομιών, κινήσεων, δραστηριοτήτων, εκδηλώσεων και κατηγοριών συμπεριφο-
ράς. Ως αποτέλεσμα, συμπαιραίνουμε πως η εκ των προτέρων γνώση του βέλτιστου
αριθμού των κρυμμένων καταστάσεων και οι Student t κατανεμημένες παράμετροι
οδήγησαν σε ένα πιο εύρωστο μοντέλο ταξινόμησης. Τα αποτελέσματα των πει-
ραμάτων δείχνουν ότι το μοντέλο μας προσδιορίζει με επιτυχία τον αριθμό των
κρυμμένων καταστάσεων και ξεπερνά την απόδοση όλων των μοντέλων που χρησι-
μοποιήθηκαν για σύγκριση.
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Chapter 1

Introduction

1.1 Research Background

1.2 Motivation and Objectives

1.3 Contributions

1.4 Thesis outline

1.1 Research Background

The human visual system with the presence of light rays has the capability to assimi-
late, process and interpret information from its surrounding environment. Our visual
perception is able to shape the physical world and recognize complex concepts, actions
and interactions. Human action recognition has been an active and important area
developed in the field of computer vision. The term action refers to an activity that
can be a composition of simple movements (gestures) of body parts, which illustrate
the motion of a person. Action recognition pertains to the study and development
of models that can classify an action. The motivation of this area is to duplicate the
ability of the human eye and map a label or automatically recognize the performed
action in a video sequences.
A tremendous amount of human actions-video recordings has been generated,

uploaded or stored in recent years. As a consequence, vision-based action recognition
has become a challenging and applicable task to many types of ongoing actions. Vi-
sual surveillance systems, behavioral biometrics, human-computer interaction, video

1



retrieval and sports video analysis are some important instances of these applications.
Therefore, the implementation of action recognition algorithms is a significant impact
factor in real world, demonstrated by the growing body of research these years.
The recognition of human activities is a challenging task due to the degree of

intra and inter-class variations between the multimedia contents. Intra-class differ-
ences indicate anthropometric differences (size, gender, shape) among subjects and
variations in the way, spread and speed of the action. Inter-class differences make
reference to actions which do not differ much such as walking and jogging. Addition-
ally, factors which advance the complication of this task may be considered such as
record settings, background, type of audio-visual data, view-point, partial occlusion
and lighting effects. As a result, the development of a general classification technique,
which can be invariant to these variations, has received a significant attention in vision
research.
There exist an extensive amount of action recognition techniques in the literature.

The common framework they share is the use of features extracted from videos, for
the recognition task. Features can reduce the complexity and dimension, sometimes
are robust to noise, can discard the unnecessary information and can be rich de-
scriptors over intra and inter class variations. According to Poppe’s survey [7], action
recognition methods, based on the feature representation they use, may be classified
into two main categories: global and local.
Global methods based on holistic representation of an action [2], treat a video se-

quence or an image as one entity. Widely applied representations are silhouettes,
optical flow or gradient, edges and motion trajectory. In holistic representations,
spatio-temporal features are learned directly from sequential frames in a video. As a
consequence of their ability to exploit large amounts of visual information and simul-
taneously preserve spatial and temporal structures of an ongoing action in a video,
they have recently received significant attention [8–10]. However, holistic represen-
tations often require background segmentation and body tracking because of their
sensitivity to occlusions and variations. Therefore, they need a pre-processing step,
which is computationally expensive and impracticable in the majority of scenarios.
Local methods based on local representation of an action, use spatio-temporal

interest points (STIPs) to express an action instance. The collection of local descrip-
tors or local spatio-temporal local patches (features) extracted by STIPs represent the
whole video sequence. This representation is less sensitive to occlusions and variations

2



than the holistic one. In real-world scenes, it can be considered as state-of-the-art per-
formance for action recognition tasks while it is combined with a bag-of-word (BOW)
representation. Laptev et al. [11] proposed an extension of 2-D Harris corner detector
to 3-D through the addition of time dimension. As interest points were indicated
those where the image values showed significant variations in all dimensions. Inter-
est points are usually described by histograms of gradients (HOG) and histograms of
optical flows (HOF). There is a huge number of research for the estimation interest
points. Among them, Dollar et al. [12] used temporally Gabor filters, Rapantzikos et
al. [13] used discrete wavelet transform in temporal and spatial direction of the video
and Scovanner et al. [14] extended 2D SIFT descriptor to 3D.

1.2 Motivation and Objectives

The design and selection of features for image and video representation have received
a lot of intention and an extensive research in the literature. Nowadays, there is a
large portfolio of features that serves a variety of applications and capable to fulfill
different kind of application’s demands. These features may be simple or complex,
adopted by online or offline mode techniques, and used universally or for a specific
application domain. Therefore, a huge collection of feature has been proposed over
the years.
On the other hand, the number of proposed action recognition systems is not

comparable to the feature’s detectors. At the present time, methods like k-Nearest
Neighbor (kNN) [15] and Support Vector Machines (SVM) [16] are still widely used
because of their effectiveness and simplicity. However, these models are not designed
for sequential data and can not encode into their structure dependencies among the
features of the same action. Consequently, the problem that we address in this thesis
is learning action categories from supervised data. We employ Hidden Conditional
Random Fields (HCRF) [17], as a prominent and advanced classification method
suitable to this task.
HCRF is a generalization of Conitional Random Fields (CRF) [18]. It is a powerful

discriminative classification model, which engages into its structure hidden variables.
These hidden variables have been proved to improve the performance of the model
[19, 20] and are able to capture the motion pattern of an action. HCRF learn not
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only the hidden variable that discriminate one action category from all the others,
but also models the spatial structures (dependencies) of image parts and temporal
structures of video frames. Additionally, it allows the features of sequential frames
to be overlapping and dependent on each other. As a result, it relaxes the restrictive
and unrealistic independence assumption, which was used by other models.
However, like all models HCRF has its limitations. The number of hidden variables

is not available and need to be fixed in advance. Setting an intuitive number of hidden
variables with respect to the number of action categories or human poses during the
performance of the action is not always correct. The common technique to this kind
of problem, is to run the model trying different numbers of hidden variables and use
a cross validation criterion to define the optimal one. Though, a technique like that
is computationally expensive.
The objective of this thesis is to design and implement a technique that auto-

matically estimates the optimal number of hidden variables in HCRF given a specific
dataset. Along with this, in order to improve the recognition rate of the HCRF model
we assume that the parameters of the model follow a mixture of Student’s t dis-
tribution. The Student’s t distribution is more robust to outliers compared to the
Gaussian distribution that was originally proposed and can be exploited to improve
the classification performance in the presence of abnormal values.

1.3 Contributions

The main contribution of this work is two-fold.
First, the main contribution comes in the form of a novel machine learning model

for action recognition. We designed and implemented a novel, robust and incremental
hidden conditional random field model. Driven by our goal to find a solution to
the limitation of the estimation of the hidden variables, we propose an improved
and extended version of the model. Based on the given observation sequences, our
model is able to define in advance the optimal number of hidden variables using
a Viterbi-like procedure. As a consequence, the apriori knowledge of the hidden
variables is essential for the model to avoid a computationally expensive and trial-
and-error process. Moreover, the model parameters follow a mixture of Student’s t
distribution, which makes the model robust to outliers. This adjustment has improved
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the performance of our model. We call the proposed model robust incremental hidden
conditional random field (RI-HCRF).
Second, we applied our RI-HCRF action recognition system to six publicly available

and challenging dataset. We showed that the design of our system is well suited to
human - human interactions and the recognition performance of our system yielded a
remarkable improvement. The layer of hidden variables, that interlace through time, is
able to learn the relationships of the interaction and enable the model to comprehend
the nature of these activities. One of the datasets reached for the first time a recognition
accuracy rate of 100% while the rest of datasets achieved a recognition rate greater
or equal to 89%. The model was applied using different feature configurations.

1.4 Thesis outline

This thesis is organized as follows:
In Chapter 2, the background and the related work for recognition systems in

literature is presented.
In Chapter 3, the theory of HCRF is given: how the model is formulated, the

conditional probabilistic model that uses for the classification, the way that learns
its parameters and how inference can be achieved for a new observation sequence
conditioned on these parameters.
In Chapter 4, our new model for action recognition, RI-HCRF, is first presented:

the formulation of the model, the proposed algorithm for the automatic estimation of
optimal number for hidden variables, the incorporation of the mixture of Student’s t
distribution to the model and finally the training and the inference of the model.
In Chapter 5, a detailed description of the datasets, the features and implementa-

tion is given. Moreover, the evaluation of the discriminatory properties of our model
compared to three others, which where used as baseline, is described.
In Chapter 6, are summarized our contributions and discussion for future work.
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Chapter 2

Related Work

Since the 1980s till nowadays, human action recognition remains a complex problem
and a very active research area in computer vision. The information and multimedia
explosion on the internet has resulted to a growing number of videos sequences and
the imperative need for machine learning techniques to understand and analyze them.
There are several surveys [7, 21–25] that provide a detailed overview of approaches
reported in the literature, dedicated to human motion analysis and recognition from
different research perspectives and communities.
According to Poppe’s survey [7], the proposed recognition approaches for various

human actions may be categorized into two main groups:

• classifiers used for direct classification of spatio-temporal features

• temporal state-space models used for action classification directly in the time
domain.

The first group refers to classifiers that define the action without explicitly mod-
eling variations in time, such as: kNN [2, 26–28], SVM [29–31], relevance vector
machines (RVM) [32] and boosting frameworks [33–35]. These classifiers are usually
used for approaches that are proposing new feature descriptors. Also, the afore-
mentioned classifiers can be used either separately or combined together e.g., the
bag-of-words framework [36] uses SVM or boosting for the classification of the fre-
quency histogram of the feature descriptors). However, these nonstructural models
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assume that there is no correlation between descriptors, as they are considered to be
identical and independently distributed (IID).
Apart from the conventional classifiers, probabilistic graphical models have more

recently been applied. Their graph consist of nodes (states) and edges, so they are
able to represent the probability distribution through their structure. These models
belong to the second group of recognition approaches and can be either generative
or discriminative. Generative models learn the joint distribution of observations and
action class labels, while discriminative models learn the conditional distribution of
action class labels given the observations.
A typical example of a generative approach is the Hidden Markov Model (HMM)

[37], which has been traditionally, widely used in the literature. However, in order to
keep the modeling of the joint distribution tractable, HMM makes two independence
assumptions: 1) the probability of a certain hidden state at time n only depends on
the hidden state at time n−1 and 2) the observations are considered independent of
each other. Unlike the first assumption, the second one has a very limited validity
and becomes a severe weakness of the HMM.
Discriminative models overcome the restrictive independence assumption of HMM,

by allowing dependencies among the observations on different time scales. They can
use multiple overlapping features, which is more suitable to complex data such as
video sequencies. Also, discriminative models learn the differences between action
categories instead of learning the modeling of each action separately. Two represen-
tative and widely used examples of the discriminative models are the Conditional
Random Field (CRF) [18] and the Hidden Conditional Random Field (HCRF) [17].
CRF is a powerful classifier and commonly applied with good performance in

activity recognition [38, 39]. Though, CRFs need a label to be assigned for each
observation (e.g., each time step in a sequence), which is not provided in the majority
of datasets and is a time-consuming procedure to be done manually. To overcome
this limitation, HCRF was proposed as a method able to label sequences as a whole,
by introducing an extra layer with hidden variables to the model’s structure.
The HCRF model finds successful applications in various fields such as ges-

ture recognition [40–42], action recognition [43–50], phone and speech recogni-
tion [51–55], handwriting recognition [56, 57], image and recordings segmentation
[58,59], recognition of emotion and behavioral attributes [60–63], medicine [64,65],
robotics [66–69] and many others. Aiming to improve the performance of the model,
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a large number of HCRF variants have been proposed by changing the topology,
the training process and the feature function of the model. Song et al. [47] changed
the topology of the model and proposed three multi-view HCRFs considering the
action factorized into multiple views (e.g., body postures and hand shapes). Morency
et al. [40] proposed a Latent-Dynamic Conditional Random Field (LDCRF), which
includes a class label per observation and can be applied on unsegmented sequences.
Vrigkas et al. [49] proposed active-HCRF+, a method that combines privileged infor-
mation and active learning. The model needs to learn the weights of the privileged
information that was added as an extra input of different modality. Wang et al. [44]
introduced a Max-Margin HCRF, which maximizes the margin of hyperplanes be-
tween the correct and incorrect labels. Wang and Mori [43] proposed a model that
combines large-scale global features and local patch features under the unified frame-
work of HCRF. Also, Bousmalis et al. [62] proposed the infinite HCRF (iHCRF), a
nonparametric model capable of automatically learning the optimal number of hid-
den states for a classification task. The model sets a hierarchical Dirichlet processes
as prior to potentials of the model and learns its hyperparameters with an effective
Markov-chain Monte Carlo sampling technique. Later, the same authors proposed a
Variational HCRF [63], a generalized framework for infinite HCRF model and a novel
variational inference approach that will converge faster reducing the computational
cost. Finally, many hybrid models of HCRF have been proposed in the literature
aiming to exploit the advantages of the combined methods in order to built a better
classifier with a well-accentuated discrimanative ability [56,59, 70, 71].
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Chapter 3

Hidden Conditional Random Fields

3.1 Introduction

3.2 The Model Formulation

3.3 Conditional Probabilistic Model

3.4 Learning and Inference

3.1 Introduction

The CRF is a graphical model widely used in various applications due to its efficient
results. It combines interactions in consecutive labels and observed data. The data are
not usually provided with their part labels that CRF needs and the manual assignment
of the part labels will be a troublesome work especially for big data or video content.
To overcome these difficulties Hidden Conditional Random Fields (HCRFs) have

been proposed as an extension of CRF. HCRF is a chain CRF introduced with an
additional layer of structured hidden variables with dependencies among them. Hid-
den Conditional Random Fields are able to deal with more structured and complex
data. Empirically, the classification performance in generative graphical models us-
ing hidden variables (e.g., HMM) has been improved and successfully addressed in a
variety of problems. The integration of hidden variables also simplifies the complex
joint distribution. The bag of words commonly use the conditional independence as-
sumption which is relaxed in the HCRF case. The existence of direct link between
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the labels and the hidden states is also a useful structure. Finally, HCRFs are able
to model spatial and temporal variations in observation sequences, which is a major
capability for human activity that incorporate elementary or primary actions.

3.2 The Model Formulation

The classification task aims to map each observation sequence x = {x1, x2, ..., xT} to its
actual label y. Every component xj of the observation sequence is a local observation
and is represented by a feature vector ϕ(xj) ∈ Rd, where d is the dimensionality of the
representation as it was defined at Quattoni et al. [17]. Every label y is a member of a
set Y that denote the set of all possible actions, for example, Y = {walk, run, jump}.
For each time step t, the observation node is linked to the label node through the addi-
tional sub-structed layer of hidden variables. The hidden variables h = {h1, h2, ..., hT}
are the part labels which are assigned to each observation during the training phase
and are not observable in the training sequence. Hidden variables belong to a finite
set hi ∈ H, where H represent the set of all possible hidden part labels. The use of
hidden variables intents to capture the structure and movement patterns in the input
space whilst they permit the inclusion of complex dependencies in the observation
sequences.
An HCRF is expressed by an undirected graph. As a graph G = (V , E), it consists

of nodes (V) that represent the variables and edges (E) that express the correlation
between them. The factor graph G is defined by a conditional probability distribution.
Essentially, the graph G exploits the connectivity between hidden variables to discover
potential dependencies. The illustration of the factor graph of the model is shown in
Fig.3.1.
We assume that the graphical model forms a tree structure because, according to

Quattoni et al. [17], the performance is not only equivalent to more densely connected
graphical models but also reduces the computational complexity of the model. The
rectangles in the graph correspond to unary potentials ψ1, ψ2 and pairwise potential
function ψ3. The linear combination of these potentials gives the potential function
Ψ(y, h, x; θ) ∈ R, which is parametrised by θ. The model parameter θ consist of three
components θ = {θ1, θ2, θ3} which are used to measure the compatibility between
the observation sequences, the hidden variables and the class labels. Given the above
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Figure 3.1: Illustration of the HCRF model. Each circle in the graph represents a
variable, and each square represents a factor in the model.

definitions, the potential function is given by:

Ψ(y, h, x; θ) =
∑
j∈V

θ1 · ψ1(xj, hj) +
∑
j∈V

θ2 · ψ2(y, hj) +
∑

(i,j)∈E

θ3 · ψ3(y, hi, hj). (3.1)

The first two terms of the summation are called node terms and the last one edge
term according to the nature of the relationship that they model.
The unary potential function θ1 · ψ1(xj, hj) models the relationship between the

hidden variable hj and the feature vector xj and is expressed by:

θ1 · ψ1(xj, hj) =
∑
a∈H

θ1aj · 1{hj=a} · xj
, (3.2)

where 1(·) is the indicator function. This function is equal to 1 when its argument is
true and equal to 0 otherwise. Obviously, the length of the vector θ1 is (d×|H|).
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The unary potential function θ2 · ψ2(y, hj) models the relationship between the
class label y and the hidden variable hj and is expressed by:

θ2 · ψ2(y, hj) =
∑
a∈Y

∑
b∈H

θ2a,b · 1{y=a} · 1{hj=b}. (3.3)

The length of the θ2 is (|Y|×|H|).
The pairwise potential function θ3 · ψ3(y, hi, hj) models the relationship between

the class label y and the hidden variable hj and hj and is expressed by:

θ3 · ψ3(y, hi, hj) =
∑
a∈Y

∑
b∈H

∑
c∈H

θ3a,b,c · 1{y=a} · 1{hi=b} · 1{hj=c}. (3.4)

This component (θ3), represents the edges (links) between the hidden variables and
it could be considered identical to the transition matrix of the HMM, though in HCRF
model case there is a transition matrix for every possible class label. The length of
the θ3 is (|Y|×|H|×|H|).

3.3 Conditional Probabilistic Model

The conditional probabilistic model of the HCRF is defined by:

P (y, h|x, θ) = expΨ(y, h, x; θ)∑
y′∈Y

∑
h expΨ(y′, h, x; θ)

, (3.5)

where y denotes the class labels, h denotes the hidden variables or the hidden part
labels, x denotes the input observation sequence and θ denotes the parameters of
the model. The denominator of the fraction is the partition function and it is a
normalization constant term equivalent to the expectation of the unnormalised model
over all possible classes y and all possible hidden variables h.
The posterior probability of a class label y , given an observation sequence x is

calculated by marginalizing over all hidden variables h:

P (y|x, θ) =
∑
h

P (y, h|x, θ) =
∑

h expΨ(y, h, x; θ)∑
y′∈Y

∑
h expΨ(y′, h, x; θ)

. (3.6)

If the hidden variables h are observed and there is a single class label y then the
conditional probability of P (h|X) becomes a regular CRF. By the use of the Bayes’
rule in equations (3.5) and (3.6) we can compute the joint probability of assigning a
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set of hidden variables to an observation sequence when the class label and parameters
are known:

P (h|y, x, θ) = P (y, h|x, θ)
P (y|x, θ)

=
eΨ(y,h,x;θ)∑
h e

Ψ(y,h,x;θ)
. (3.7)

Similar to a CRF model, the aim is to maximize the conditional probability P (y|x, θ).
The following objective function is used to learn the parameters θ:

L(θ) =
∑
i

logP (yi|xi; θ)−
1

2σ2
∥θ∥2, (3.8)

where the first term the conditional log-likelihood on the input data and the second
term is the log of a Gaussian prior, used as penalty term. The role of the penalty term is
to avoid overfitting by assuming that the parameters θ of the model follow a Gaussian
distribution with variance σ2, P (θ) ∼ exp

(
− 1

2σ2∥θ∥2
)
to constrain ∥θ∥. The optimal

weights θ⋆ are learned by maximizing the objective function θ⋆ = argmax
θ

L(θ).

3.4 Learning and Inference

The estimation of the optimal parameter θ⋆ = argmax
θ

L(θ) can not be done analyti-

cally. Therefore, the iterative method of limited memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) [72] is employed. LBFGS is the most efficient and the most popular
Quasi-Newton update formula among all gradient-based methods and works well for
high-dimensional vectors. This iterative method computes repeatedly the objective
function L(θ) and its derivatives with respect to parameter θ. To reduce the compu-
tational complexity instead of storing and updating the entire inverse Hessian matrix,
LBFGS stores and updates only the information from the past m iterations. The in-
troduction of hidden states to the probabilistic model leads to a non convex objective
function. As a result, the iterative method will usually get stuck in local extrema of
the cost function, while the global extrema is not guaranteed that it will be reached.
The derivative of the objective function for a given sample of the training set may

be written as:
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∂L(θ)
∂θ

=
∑
t

∂Lt(θ)

∂θ
− θ

σ2

=
∑
t

∂(log(P (yt|xt; θ))
∂θ

− θ

σ2

=
∑
t

∂
(
log

∑
h expΨ(yt,h,xt;θ)∑

y′∈Y
∑

h expΨ(y′,h,xt;θ)

)
∂θ

− θ

σ2

=
∑
t

∂
(
log

∑
h expΨ(yt, h, xt; θ)− log

∑
y′∈Y

∑
h expΨ(y′, h, xt; θ)

)
∂θ

− θ

σ2
.

(3.9)

The estimation of the derivative of the objective function requires the calculation of
the first order partial derivatives ∂L(θ

k
)

∂θ
k
with respect to θk where k ∈ {1, 2, 3}. Therefore,

the partial derivative of the the objective function takes the following form:

∂L(θ)
∂θ

k

=
∑
t

∂
(
log

∑
h expΨ(yt, h, xt; θ)− log

∑
y′∈Y

∑
h expΨ(y′, h, xt; θ)

)
∂θk

− θk
σ2

=

∑
h expΨ(yt, h, xt; θ) · ∂Ψ(yt,h,xt;θ)

θk∑
h expΨ(yt, h, xt; θ)

−
∑

y′∈Y
∑

h expΨ(y′, h, xt; θ) · ∂Ψ(y′,h,xt;θ)
θk∑

y′∈Y
∑

h expΨ(y′, h, xt; θ)
− θk
σ2

=
∑
h

P (h|yt, xt; θ)
∂Ψ(yt, h, xt; θ)

θk
−

∑
y′∈Y

∑
h

P (y′, h|xt; θ)
∂Ψ(y′, h, xt; θ)

θk
− θk
σ2

(3.10)

The derivative of the objective function is a time consuming task due to the num-
ber of hidden states. Assuming there are T observation sequences, the number of
possible hidden variables h is |H|T . Equation (3.10) requires the calculation of two
marginalized probabilities. These quantities can be estimated using the belief propa-
gation algorithm [73] as follows:

∀y ∈ Y , Z(y|x; θ) =
∑
h

eΨ(y,h,x;θ), (3.11)

∀y ∈ Y , ∀j ∈ V, ∀α ∈ H, P (hj = α|y, x; θ) =
∑

h:hj=α

P (h|y, x; θ), (3.12)
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∀y ∈ Y , ∀(j, k) ∈ E, ∀α ∈ H, ∀b ∈ H, P (hj = α, hk = b|y, x; θ) =
∑

h:hj=α,hk=b

P (h|y, x; θ).

(3.13)
In equation (3.11), the partition function is described as the summation over

all possible hidden variables. The marginal probability over an individual variable
hj is defined in (3.12) while the marginal probability over pairs of variables (hj ,
hk) is defined in (3.13). Thus, the first derivative with respect to θ1, by taking into
consideration (3.10) and (3.2) is:

∂L(θ)
∂θ1

=
∑
h

P (h|yt, xt; θ)
∂Ψ(yt, h, xt; θ)

θ1
−

∑
y′∈Y

∑
h

P (y′, h|xt; θ)
∂Ψ(y′, h, xt; θ)

θ1
− θ1
σ2

=
∑
h

P (h|yt, xt; θ)
∑
j∈V

ψ1(xt, hj)−
∑
y′∈Y

∑
h

P (y′, h|xt; θ)
∑
j∈V

ψ1(xt, hj)−
θ1
σ2
.

By replacing (3.11) and (3.12) in the latter equation, it takes the form:

∂L(θ)
∂θ1

=
∑
j∈V

∑
α∈H

P (hj = α|yt, xt; θ)ψ1(xt, hj)

−
∑
y′∈Y

∑
j∈V

∑
α∈H

P (hj = α, y′|xt; θ)ψ1(xt, hj)−
θ1
σ2
. (3.14)

In the same way, the first derivative with respect to θ2 using (3.10) and (3.3) is:

∂L(θ)
∂θ2

=
∑
h

P (h|yt, xt; θ)
∂Ψ(yt, h, xt; θ)

θ2
−

∑
y′∈Y

∑
h

P (y′, h|xt; θ)
∂Ψ(y′, h, xt; θ)

θ2
− θ2
σ2

=
∑
h

P (h|yt, xt; θ)
∑
j∈V

ψ2(yt, hj)−
∑
y′∈Y

∑
h

P (y′, h|xt; θ)
∑
j∈V

ψ2(y
′, hj)−

θ2
σ2
.

By replacing (3.11) and (3.12) in the latter equation, it takes the form:

∂L(θ)
∂θ2

=
∑
j∈V

∑
α∈H

P (h = α|yt, xt; θ)ψ2(yt, hj)

−
∑
y′∈Y

∑
j∈V

∑
α∈H

P (hj = α, y′|xt; θ)ψ2(y
′, hj)−

θ2
σ2
.

(3.15)
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Similarly, the first derivative with respect to θ3 using (3.10) and (3.4) is:

∂L(θ)
∂θ3

=
∑
h∈H

P (h|yt, xt; θ)
∂Ψ(yt, h, xt; θ)

θ3
−

∑
y′∈Y

∑
h∈H

P (y′, h|xt; θ)
∂Ψ(y′, h, xt; θ)

θ3
− θ3
σ2

=
∑
h∈H

∑
h′∈H

P (h|yt, xt; θ)
∑

(i,j)∈E

ψ3(yt, hi, hj)

−
∑
y′∈Y

∑
h∈H

∑
h′∈H

P (y′, h|xt; θ)
∑

(i,j)∈E

ψ3(y
′, hi, hj)−

θ2
σ2
.

By replacing (3.11) and (3.13) in the latter equation, it takes the form:

∂L(θ)
∂θ3

=
∑

(i,j)∈E

∑
α∈H

∑
b∈H

P (hi = α, hj = b|yt, xt; θ)ψ3(yt, hi, hj)

−
∑
y′∈Y

∑
(i,j)∈V

∑
α∈H

∑
b∈H

P (hi = α, hj = b, y′|xt; θ)ψ3(y
′, hi, hj)−

θ2
σ2

(3.16)

Hence the value and the derivative of the objective function can be estimated and
the model is able to learn its parameters θ⋆ = {θ⋆1, θ⋆2, θ⋆3}. Therefore, these parameters
are used to find the class label for a given input observation, which constitutes the
inference process. The class label for a new input is determined by:

y⋆ = argmax
y∈Y

P (y|x; θ⋆). (3.17)

Also, in the case of linear HCRF models, the backward-forward inference algorithm
can be used.
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Chapter 4

Robust Incremental Hidden Conditional
Random Fields

4.1 Introduction

4.2 Formulation of the model

4.3 Estimation of the number of hidden variables

4.4 A student’s t-mixture prior on the model parameters

4.5 Learning and Inference

4.1 Introduction

HCRF seems to be a very promising approach in many application domains, due to
its ability of relaxing strong independence assumption and exploiting temporal and
spatial variations, via its graphical structure and links among the variables.
In the related literature, many researchers proposed a hybrid model. A combina-

tion of generative and discriminative models has been proved successfull in improving
the performance of the classical models [70]. Motivated by this approach, some works
combined HCRF with HMM. Soullard et al. [57] introduced a HMM-based weighting
in the conditional probability of the HCRF which constrains the discriminative learn-
ing, yielding improved accuracy. On the other hand, Zhang et al. [45] used HMM to
make hidden variables ’observable’ to HCRF so the objective function can be convex.
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However, the search of the optimal number of hidden variables remain a limitation
of the model. The majority of the previous works, define the number of hidden
variables in a intuitive manner or with exhaustive, computationally expensive and
time consuming repeated evaluation of the model, for a given set of potential hidden
variables. Bousmalis et al. [62] introduced Infinite Hidden Conditional Random Fields
(iHCRF), a nonparametric model that estimates the number of hidden variables. The
model assumes that the potentials of the HCRF are sampled directly from a set of
Hierarchical Dirichlet Processeses and its hyperaparameters are learned using the
sampling that removes hidden variables not presented in the samples.
In this work, a Robust Incremental Hidden Conditional Random Field (RI-HCRF)

is proposed, which addresses two major issues in standard HCRFs. At first, the pro-
posed model incrementally estimates the optimal number of hidden variables using
a Viterbi-like procedure. Additionally, it uses a mixture of Student’s t distribution as
prior to the parameters of the model that leads to a model robust to outliers.

4.2 Formulation of the model

We consider a dataset D = {x(k), y(k)}Nk=1 of N labeled observations. Here, the ob-
servation xk = {x1, x2, ....xT} corresponds to the kth video sequence that consists of
T frames, and yk is the kth class label defined in a finite label set Y. Each obser-
vation xk can be represented by a feature vector ϕ(xki ) ∈ Rd, which is a collection
of several features extracted from the ith frame in a video sequence. Also, each ob-
servation sequence xk is associated with a corresponding hidden variable sequence
hk = {h1, h2, ....hT}, where hk ∈ H.
The model aims to find the most probable label y for a given observation x and the

model parameter vector θ by maximizing the conditional probability P (y|x; θ). The
highest conditional probability P (y|x; θ) indicates that the video sequence most likely
belongs to class y. The conditional probability P (y|x; θ) is defined as the summation
of exponentials of potential functions over all possible hidden variables h:

P (y|x, θ) =
∑
h

P (y, h|x, θ) =
∑

h expΨ(y, h, x; θ)∑
y′∈Y

∑
h expΨ(y′, h, x; θ)

, (4.1)

where the potential function that specifies dependencies in the model, is given by:
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Ψ(y, h, x; θ) =
∑
j∈V

θ1 · ψ1(xj, hj) +
∑
j∈V

θ2 · ψ2(y, hj) +
∑

(i,j)∈E

θ3 · ψ3(y, hi, hj). (4.2)

Following the work of HCRF presented in the previous Chapter, the RI-HCRF
model can be represented by an undirected graph G = (V , E). Each variable, observed
(video frame) and unobserved (hidden variable) is a node V in the graphical model
G and dependencies among them are presented by edges E . The nodes are linked
following the sequence of the video frames and form a linear chain graph.

4.3 Estimation of the number of hidden variables

In order to estimate the optimal number of hidden variables we propose a method
which follows an iterative procedure. The method seeks for a sequence of hidden
variables, where each variable participates in a maximum number of optimal paths.
Therefore, variables with low participation in optimal paths are rejected.
We call the summation of unary potentials (Eqs. 3.2, 3.3) node potentials and the

pairwise potential (Eq. 3.4) edge potential. The node potentials for a given label y = α,
for all observations and all possible hidden variables can be represented in a matrix
form as follows:

Np = [npij]S×T =


θ111 · x1 + θ21α θ112 · x2 + θ21α . . . θ11T · xT + θ21α

θ121 · x1 + θ22a θ122 · x2 + θ22a . . . θ12T · xT + θ22α
... ... . . . ...

θ1S1
· x1 + θ2Sα θ1S2

· x2 + θ21α . . . θ1ST
· xT + θ2Tα

 ,

where S is the number of hidden variables and T is the number of frames of the
video sequence. The edge potentials for a given label y = α, express the compatibility
between a pair of hidden variables and can be represented by the following square
matrix:

Ep = [epij]S×S =


θ311 θ312 θ313 . . . θ31S

θ321 θ322 θ323 . . . θ32S
... ... ... . . . ...

θ3S1
θ3S2

θ3S3
. . . θ3SS

 .
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In order to bring all values of the Np matrix in the range [0,1] we use the normalizing
function:

Np
′
=

1

max (Np)−min (Np) · (Np−min (Np)), (4.3)

where min (Np) and max (Np) are the minimum and maximun value of Np respec-
tively. This kind of normalization is also known as unity-based normalization. The
normalization of the values of the Np matrix is done so that all the input variables
have the same treatment in the model and its parameters are not scaled with re-
spect to the units of the inputs. As a result, we will end up with smaller standard
deviations, which can suppress the effect of outliers. Additionally, we construct a
stochastic matrix based on the Ep, with each row summing to 1, by applying the
following equation:

Ep′ =
Ep[i, j]∑S
j=1Ep[i, j]

. (4.4)

In order to define the number of hidden variables, we employ multiple HMMs. A
HMM is specified by:

• The set of hidden variables h = {h1, h2, ..., hT} and a set of parameters Λ =

{π,A,B}.

– π is a vector that collects the prior probabilities of hi, i ∈ {1, 2, .., T} being
the first hidden variable of a state sequence.

– A is a matrix that collects the transition probabilities of moving from one
hidden variable to another.

– B is the matrix that collects the emmision probabilities, which characterize
the likelihood of a certain observation x, if the model is in hidden variable
hi.

Let us consider that the normalized node potentials are the entries of the emission
probability matrix, the edge potentials are the entries of the transition probability
matrix and there is a vector of initial probabilities π, where each hidden variable is
equally probable to be first in the sequence:

π1×S =
1

S
· 1S . (4.5)

20



Given the above definitions we are able to determine an HMM and the optimal
hidden variable sequence for a given label y = α, using the Viterbi algorithm. This
algorithm makes use of two variables: δt(i) and ϕt(i). The former variable estimates
the probability of the most probable path ending in hidden variable i at time t while
the latter keeps track of the “best path” ending in hidden variable i at time t:

δt(i) = max
h1,h2,...,hT−1

P (h1, h2, ..., hT−1, hT = i, x1, x2, .., xT |π,Ep,Np
′
), (4.6)

ϕt(i) = argmax
h1,h2,...,hT−1

P (h1, h2, ..., hT−1, hT = i, x1, x2, .., xT |π,Ep,Np
′
). (4.7)

The illustration of the proposed method for the estimation of the optimal number
of hidden variables is shown in Fig. 4.1

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

𝑳𝒂𝒃𝒆𝒍𝒔 ×  𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 

Figure 4.1: Illustration of the iterative and incremental method for the estimation of
the optimal number of the hidden variables.
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The proposed method learns the optimal number of hidden variables following an
incremental learning approach. It starts by setting an initial number S = |H| ≥ 1 for
the hidden variables and I for the maximum number of iterations. In each iteration,
all optimal paths for every video sequence and for every label are estimated using the
Viterbi algorithm. Also, the frequency of appearance of each hidden state in all paths
is calculated. There is a termination criterion which is based on the frequency of
each hidden variable to be lower than a threshold (τ). If this criterion is not satisfied,
the number of hidden variables is increased by one and the process of calculating
optimal paths and frequencies is repeated. If the criterion is satisfied, we move to the
next iteration and a voting for the most probable number of hidden variables in the
current iteration takes place. When all iterations are finished the optimal number of
hidden variables is the one with the majority of votes. A detailed description of the
proposed method is presented in Algorithm 4.1.
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Algorithm 4.1 Estimation of the optimal number of hidden states S⋆

Require: D = {x(k), y(k)}Nk=1, S, I

Ensure: S⋆

1: for iteration = 1 to I do
2: while 1 do
3: Set S the initial number of hidden variables and initialize θ randomly
4: for each x(k) = {x1, x2, . . . , xT} ∈ D, α ∈ Y , do
5: Np[m,n] =

∑
m∈H(θ1mn · 1{hn=m}x

(k)
n ) +

∑
α∈Y

∑
m∈H(θ2mα · 1{hn=m} · 1{y=α})

Np′ = f(Np) {the normalized node potentials matrix}
6: Ep[m,n] =

∑
a∈Y

∑
m∈H

∑
n∈H θ3a,m,n · 1{y=a} · 1{hb=m} · 1{hc=n}

Ep′ = Ep[m,n] = Ep[m,n]∑S
n=1 Ep[m,n]

{the edge potentials matrix}
7: for i = 1 to S do
8: δ1(i) = πiNp

′[i, 1]

9: ϕ1(i) = 0

10: end for
11: for t = 2 to T do
12: for i = 1 to S do
13: δt(i) = Np′[i, t] ·maxi(δt−1(i)Ep

′[i, t])

14: ϕt(i) = argmaxi(δt−1(i)Ep
′[i, t])

15: end for
16: end for
17: hT = argmaxi(δT (i))
18: for t = T − 1 to 1 do
19: ht = ϕt+1(ht+1)

20: end for {optimal path for the kth observation and the label α is {h1, h2, . . . , hT}}
21: end for
22: if frequency f(·) of each hidden variable ≥ threshold then
23: S = S + 1

24: else
25: vote as Stemp(iteration) = S

26: break
27: end if
28: end while
29: end for
30: S⋆ = max(f(Stemp)) is the number with the majority of votes

23



4.4 A student’s t-mixture prior on the model parameters

A finite mixture model is a statistical distribution, derived by the combination or
the mixture of other distributions. Each individual distribution, part of the model,
is called mixture component while the weights associated with each component are
called mixture weights. This approach is powerful and flexible in modeling complex
data since it exploits and combine the properties of each individual probability density
function. Over the years, finite mixture models have been applied in many fields due
to their nature of being efficient and mathematically tractable. Great attention has been
paid to Gaussian mixture models [74–76] because of their computational convenience.
However, Gaussian mixture models have shown sensitivity not only to outliers but
also to small amount of data. As a result, Student’s t mixture models have been
proposed to overcome the problems of Gaussian models.
The Student’s t mixture model has a pdf with heavier or longer tails and gives

reduced weight to the observations that are in the tail area, in the estimation of its
parameters. In that way, it provides robustness to outliers and less extreme estimates
of the posterior probabilities of component membership of the mixture model, accord-
ing to McLachlan and Peel [77]. Additionally, each Student’s t component originates
from a wider class of elliptically symmetric distributions with an additional robustness
tuning parameter called the degrees of freedom ν.
Let us assume that the parameters θ of the RI-HCRF follow a mixture model with

three Student’s t components instead of following a Gaussian distribution P (θ) ∼
exp

(
− 1

2σ2∥θ∥2
)
. Taking into consideration that the parameter vector θ describes three

different relationships among observations, hidden variables and labels, we expect that
each component will correspond and to one of these relationships. In that way, the
method relies on the partitioning of the parameter vector using a Student’s t mixture
model and identify, preserve and enhance the differences between these partitions for
a better classification result. The choice of Student’s t components has been made
because of their robustness.
However, by making the above assumption the problem of setting the mixture

weights arises. In order to find the best weights for the mixture model in advance, we
will need to do an exhaustive search and check multiple combinations of probable
values of mixture weights. To avoid that computational prohibitive approach, we
decide, at the end of each iteration of parameters training, to estimate dynamically
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the best fitted mixture model for parameters θ.
Let vector parameter θ = {θ′1, θ′2, . . . , θ′M} consists of M weights, where M = (d ×

|H|)+(|Y|×|H|)+(|Y|×|H|×|H|). Each parameter θ follows a univariate t-distribution
with mean µ, variance σ2 and ν ∈ [0,∞) degrees of freedom when, given the weight
u, the parameter θ has the univariate normal with mean µ and variance σ2/u:

θ|ν, σ2, µ, u ∼ N(µ, σ2/u), (4.8)

and weight u follows a Gamma distribution parameterized by ν:

u ∼ Γ
(ν
2
,
ν

2

)
. (4.9)

By integrating out the weights from the joint density leads to the density function
of the marginal distribution:

p(θ; ν, µ, λ) =

∫ ∞

0

N(θ|µ, u/σ2)Γ
(
u|ν
2
,
ν

2

)
du

=
Γ(ν+1

2
)

Γ(ν
2
)

( λ

πν

) 1
2
(
1 +

λ(θ − µ)2

ν

)− ν+1
2
,

(4.10)

where the inverse scaling parameter λ (similar to precision) is the reciprocal of vari-
ance (λ = (σ2)−1). Also, it can be shown that for ν → ∞ the Student’s t-distribution
tends to a Gaussian distribution. Moreover, for ν > 1, µ is the mean of θ and for ν > 2,
the variance of θ is ν(λ(ν − 2))−1. The t-distribution is used to estimate probabilities
based on incomplete data or small samples.
The best fitted mixture with Student’s t-components can be obtained by maximiz-

ing the likelihood function using the EM algorithm [77]. A K-component mixture of
t-distributions is given by:

ϕ(θ,Ω) =
K∑
i=1

πip(θ; νi, µi, λi), (4.11)

where θ denotes the observed data vector and Ω = {Ωi}Ki=1 the mixture parameter set
with Ωi = {πi, νi, µi, λi}. For the mixing proportions of the ith component πi, we have
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that:

0 ≤ πi ≤ 1, i ∈ {1, 2, . . . , K},
K∑
i=1

πi = 1. (4.12)

The complete-data vector for the EM framework is given by:

θc = (θT , zT1 , z
T
2 , . . . , z

T
M , u

T
1 , u

T
2 , . . . , u

T
3 )

T , (4.13)

where z1, . . . , zM are the component-label vectors and zij = (zj)i defines whether the
observation θ′j, j ∈ {1, 2, . . . ,M} belongs to the ith component or not, by taking the
value 1 and 0 respectively. Despite the augmentation of the observed data with zj, it
is convenient to view the observed data as still being incomplete and introduce into
the complete-data vector the additional missing data u1, . . . , uM because the variances
depend on the degrees of freedom. So, the E-step on the (t + 1)th iteration of the
EM algorithm requires the calculation of the posterior probability that the datum θ′j

belongs to the ith component of the mixture:

zt+1
ij =

πt
ip(θ

′
j; ν

t
i , µ

t
i, λ

t
i)∑K

m=1 p(θ
′
j; ν

t
m, µ

t
m, λ

t
m)
, (4.14)

and the expectation of the weights for each observation:

ut+1
ij =

νti + 1

νti + λi(θ′j − µi)2
. (4.15)

The update equations of the respective mixture model parameters are provided
by maximizing the log-likelihood of the complete data:

πt+1
i =

1

M

M∑
j=1

ztij, (4.16)

µt+1
i =

∑M
j=1 z

t
iju

t
ijθ

′
j∑M

j=1 z
t
iju

t
ij

, (4.17)

λt+1
i =

∑M
j=1 z

t
iju

t
ij(θ

′
j − µt

i)
2∑M

j=1 z
t+1
ij

. (4.18)

At last, the degrees of freedom for each component are computed as the solution
to the equation:
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log
(νt+1

i

2

)
− ψ

(νt+1
i

2

)
+ 1− log

(νti + 1

2

)
+

∑M
j=1 z

t
ij(logutij − utij)∑M

j=1 z
t
ij

+ ψ
(νti + 1

2

)
= 0, (4.19)

where ψ(x) = ∂(ln(Γ(x))
∂(x)

is the digamma function. There is no closed form solution for
ν, so it has to be found numerically. An extended description for the EM algorithm
for Student’s t mixture model can be found in [77].

4.5 Learning and Inference

Aiming to maximize the conditional probability P (y|x, θ), RI-HCRF use the following
objective function to train the parameters θ:

L(θ) =
N∑
i=1

logP (yi|xi; θ)︸ ︷︷ ︸
L1

+ log
( K∑

k=1

πkp(θ; νk, µk, λk)
)

︸ ︷︷ ︸
L2

, (4.20)

where the first term L1 is the conditional log-likelihood of the input data and the
second term L2 represents the best fitted Student’s t mixture model on parameter
vector θ, obtained by the EM algorithm described in 4.4. The optimal weights θ⋆ are
learned by maximizing the objective function θ⋆ = argmax

θ

L(θ).

The derivative of the objective function for a given sample of the training set may
be written as:

∂L(θ)
∂θ

=
∂L1t(θ)

∂θ
+
∂L2t(θ)

∂θ
.

(4.21)

In section 3.4 a detailed description for the calculation of the derivative of the
conditional log-likelihood L1t was presented. The analytical expression of L2t is given
by:
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L2t = log
( K∑

k=1

πkp(θ; νk, µk, λk)
)

= log
(
π1p(θ; ν1, µ1, λ1) + . . .+ πkp(θ; νk, µk, λk)

)
= log

(
π1

Γ(ν1+1
2

)

Γ(ν1
2
)

( λ1
πν1

) 1
2
(
1 +

λ1(θ − µ1)
2

ν1

)− ν1+1
2

+ . . .

+ πk
Γ(νk+1

2
)

Γ(νk
2
)

( λk
πνk

) 1
2
(
1 +

λk(θ − µk)
2

νk

)− νk+1

2

)
.

(4.22)

Therefore, the derivative of L2t can be written as:

∂L2t(θ)

∂θ
=
∂ log

(
π1p(θ; ν1, µ1, λ1) + . . .+ πkp(θ; νk, µk, λk)

)
∂θ

=
∂(π1p(θ;ν1,µ1,λ1))

∂θ
+ . . .+ ∂(πkp(θ;νk,µk,λk))

∂θ

π1p(θ; ν1, µ1, λ1) + . . .+ πkp(θ; νk, µk, λk)

=

∑K
k=1 πkp(θ; νk, µk, λk)

(
− λk(νk+1)(θ−µk)

1+λk(θ−µk)2

)∑K
k=1 πkp(θ; νk, µk, λk)

(4.23)

The training task for the learning of θ⋆ can be done using the LBFGS method [72],
since the value and the derivative of the objective function may be calculated. The
inference task is to find the label for a given input using these parameters:

y⋆ = argmax
y∈Y

P (y|x; θ⋆).

A description of the overall RI-HCRF method is presented in Algorithm 4.2.

28



Algorithm 4.2 RI-HCRF Training
Require: D = {x(k), y(k)}Nk=1, S0 = |H|, where {h1, h2, ...hT} ∈ H , I , MaxIter, τ
Ensure: θ⋆

1: while iteration < I do
2: Initialize θ randomly
3: for each x(k) = {x1, x2, . . . , xT} ∈ D, α ∈ Y , do
4: Create an HMM with parameters according to Eqs (4.3,4.4,4.5)
5: Calculate the Viterbi path for each HMM
6: end for
7: Calculate the f(·), frequency of appearance, for

hi, i = {1, 2, ...T} in all paths



Alg. 4.1
8: if the f(hi) ≥ τ then
9: S = S + 1, go to 2.
10: else
11: vote Stemp(iteration) = S, iteration = iteration+ 1,

S = S0, go to 1.
12: end if
13: end while
14: Given S⋆ = max(f(Stemp)), initialize θ randomly
15: while iteration < MaxIter do
16: Estimate the parameters of the mixture of Students t for θ using the EM algo-

rithm
17: Update RI-HCRF gradients (Eq. (4.21)) using LBFGS
18: end while
19: return θ⋆
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Chapter 5

Experimental Results

5.1 Description of datasets

5.2 Features

5.3 Models and implementation details

5.4 Results and Discussion

In this chapter we evaluate the classification performance of our proposed method
RI-HCRF and the performance of three other methods used as baseline: SVM [78]),
CRF [18] and HCRF [17]. The models will be evaluated on six publicly available
benchmark datasets and aim to tackle different problems of action recognition. The
structure of this chapter is organized as follows: first, a description of the datasets
will be given; second, the feature representation that is used in each dataset will
be described; next, implementation details will be given and finally, a performance
analysis of the conducted experiments will be made.

5.1 Description of datasets

Arm Gesture Dataset: a gesture database that was used by Wang et al. [1] and consist
of 724 sequences and six gestures: Expand Horizontally (EH), Expand Vertically (EV),
Shrink Vertically (SV), Point and Back (PB), Double Back (DB) and Flip Back (FB).
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In EH gesture, the actor begins with both arms close to the hips, moves both arms
laterally apart and retracts back to the resting position. In EV gesture, the arms move
vertically apart and return to the resting position. In SV gesture, both arms begin
from the hips, move vertically together and back to the hips. In PB gesture, the actor
points with one hand and beckons with the other. In DB gesture, both arms beckon
towards the user. Finally, in FB gesture, the actor simulates holding a book with one
hand while the other hand makes a flipping motion. The gestures were performed by
13 actors, and an average of 90 gestures were collected per class. The illustration of
these gestures are shown in Fig 5.1, where the green arrows are the motion trajectory
of the fingertip and their direction symbolizes the direction of the performed gesture.

Figure 5.1: Representative frames of the Arm Gesture Dataset [1].

Weizmann dataset: a dataset that was used by Blank et al. [2] and consists of
10 different actions: bend, jack for jumping jack, jump for jump forward on two
legs, pjump for jump in place on two legs, run, side for gallop sideways, skip, walk,
wave1 for wave one hand and the last wave2 for wave two hands. This dataset
contains 93 videos at 180×144 pixel resolution, 25 frames per second and records of
9 different actors performing the actions in front of a static camera and homogeneous
outdoor backgrounds. Lena, of the actors, performs the actions run, skip and walk
twice, starting the action from the opposite direction each time. It also provides a
background subtraction mask for each video frame. Figure 5.2 illustrates a sample
frame of each action from the Weizmann dataset.

Parliament dataset: a dataset that was created by Vrigkas et al. [3] and contains
228 video sequences at 320 × 240 pixel resolution and 25 frames per second. This
dataset keeps records of 20 different individuals speaking in the Greek parliament and
includes 3 statements of human behavior: friendly, aggressive and neutral, depending
on the intensity of the political speech and the specific individual’s movements (Fig.
5.3).This dataset helps to understand human interactions.
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Figure 5.2: Representative frames of the Weizmann dataset [2].

Figure 5.3: Representative frames of the Parliament dataset [3].

Two-person interaction (TPI): a dataset that was introduced by Yun et al. [4]
and includes approximately 300 video sequences, which represent the way that two-
person interact. This interaction is captured by a Microsoft Kinect sensor. Seven differ-
ent actors perform 8 different interactions: approaching, departing, kicking, pushing,
shaking hands, hugging, exchanging objects, and punching (Fig. 5.4). The dataset also
contains three-dimensional coordinates of 15 joints for each person at each frame.

TV human interaction (TVHI) a dataset proposed by Patron et al. [5] with 300
video sequences, range from 30 to 600 frames, collected from over 20 different TV
shows. In these videos are represented four kinds of interactions:hand shakes, high
fives, hugs and kisses. Each class contains 50 video sequences while the remaining
100 videos belong to negative examples (e.g., clips that do not contain any of the
aforementioned interactions). The intra degree and inter-class diversity among the
videos is very high due to the different actors, variations in scale and angle of the
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Figure 5.4: Representative frames of the TPI dataset [4].

camera and make this dataset suitable example of real world problems. Figure 5.5
depicts some representative frames of the TVHI dataset.

Figure 5.5: Representative frames of the TVHI dataset [5].

Unstructured social activity attribute (USAA): The USAA dataset was used by
Fu et al. [6] and it contains eight different semantic class videos of social occa-
sions:birthday party, graduation party, music performance, non-music performance,
parade, wedding ceremony, wedding dance, and wedding reception (Fig. 5.6). It has
a collection of around 100 videos per class for training and testing. Each video is
annotated with 69 attributes that can be broken down into five broad classes: ac-
tions, objects, scenes, sounds, and camera movement. The USAA dataset is a subset
of Columbia consumer video database (CCV), which contains 9,317 YouTube videos
and 20 semantic categories.
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Figure 5.6: Representative frames of the USAA dataset [6].

5.2 Features

Body joint configuration: For the evaluation of our method on Arm Gesture
dataset we used the features that were provided by the dataset. Each actor was
asked to perform these gestures in front of a stereo camera and a stereo-tracking
algorithm [79] was used to estimate the head, torso, arms and forearms, by a 3D
cylindrical body model. A redundant parameterization composed of 2D joint angles
and 3D Euclidean coordinates for left/right shoulders and elbows define the 20D
input observations, corresponding to each frame.

Spatio-temporal interest points (STIP): We used STIP [11] as a compact repre-
sentation of the video sequences of Weizmann dataset. The descriptors are Histograms
of Oriented Gradients (HOG) and Histograms of Optical Flow (HOF), computed on a
3D video patch in the neighborhood of each detected STIP, which captures the hu-
man motion between frames. The patch is partitioned into a grid with 3x3x2 spatio-
temporal blocks. HOG and HOF descriptors are then computed for all blocks and
are concatenated into a 72-dimensional vector and 90-dimensional vector descriptors
respectively.

Synchronized feature cues: In order to provide more information to the classi-
fier and enchance the efficiency of STIP features we used synchronized feature cues
proposed by Vrigkas et al. [49, 50]. A fusion of audio-visual features is used in the
Parliament dataset where the visual features are represented by STIP. Similarly, in
TVHI the visual features are represented by STIP and the provided annotations of
the dataset (locations and bounding boxes for the actors, head orientations and the
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pairs of intracting subjects). Mel-frequency cepstral coefficients (MFCCs) [80] and
their first and second order derivatives form the audio feature vector of dimension
39. The audio signal was processed over 10 ms using a Hamming window with
25% overlap and sampled at 16 KHz. Finally, the TPI dataset, was represented by
pose-visual feature vectors. Specifically, the pose refers not only to the positions of
the locations of the joints for each person in each frame, but also to six more fea-
ture types concerning joint distance, joint motion, plane, normal plane, velocity, and
normal velocity as described by Yun et al. [4]. The visual representation of the video
data, is summarized by STIP features.

Features produced by 3D Convolutional Neural Networks (C3D): A method
used by Du Tran et al. [81], that extracts features by convolving 3D kernels with the
cube formed by stacking multiple adjacent frames. As a result the method is able
to select features from both spatial and temporal dimensions and consequently it is
able to capture motion information encoded in multiple consecutive frames. Given
the input frames, C3D produces multiple channels. The combination of information
from all channels is the final feature representation by a 1024D vector for Parliament,
TPI and USAA datasets and by a 256D vector for TVHI dataset.
All types of features used for each dataset in our method are summarized in Table

5.1.

5.3 Models and implementation details

The evaluation of our model has been conducted on gesture, action and behavior
datasets, which were mentioned above. Also, we trained a multi-class Support Vector
Machine (SVM) [82], using (LIBSVM [78]), as a first baseline framework. SVM builds
a model that assigns new examples to one class or the other by maximizing the margin
of the hyper-planes that is used to separate the observation data. In this model we set
the one against all multi-class method, the cost c = 1 and the width of the Gaussian
kernel g = 0.2. The values for these parameters were determined by cross-validation
by combining the values c = 10k1 , with k1 ∈ {−1, 0, 1, 10, 100} and gamma = k2 · 10−1,
with k2 ∈ {1, 2, . . . , 10, 50, 100}.
As a second baseline, we trained a single CRF chain model [18] where every class

had a corresponding hidden variable. In the standard CRF the model predicts a class
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Datasets Features Dimension

Arm Gesture [1] Angles and coordinates of joints 20

Weizmann [2] STIP 162

Parliament [3]
STIP 162
MFCC 39
C3D 1024

TPI [4]
STIP 162
Pose 15
C3D 1024

TVHI [5]

STIP 162
Head orientations 2

MFCC 39
C3D 256

USAA [6] C3D 1024

Table 5.1: Types and dimension of features for each dataset.

label for each frame in a sequence, in contrast to the rest of the models which predict
a label for the entire sequence.
A hidden conditional random field model, was also used as a third baseline

method, to prove the efficiency of the HCRF model to learn the hidden dynamics
between the video sequences of different action categories.
Finally, in RI-HCRF the threshold used in the proposed method for the automatic

learning of the optimal number of hidden variables was set to take values from a
discrete set τ ∈ {0.001, 0.005, 0.01, 0.02, 0.05} and the number of iteration was set to
I = 30. The number of components for the mixture of Student’s t distribution was set
to K=3. The model parameters were randomly initialized and the experiments were
repeated 5 times.
The number of hidden variables varied from 3 to 18 for both HCRF and RI-HCRF

models, in order to examine the performance of the models with the same number
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of hidden variables.

5.4 Results and Discussion

5.4.1 Evaluation on the Arm Gesture dataset

In the Arm Gesture dataset we used 10-fold cross validation to split into training and
test sets. In Fig.5.7 the classification accuracy with respect to the number of hidden
variables for both HCRF and RI-HCRF models is depicted.

Arm Gesture dataset [1]

Figure 5.7: Classification accuracy with respect to the number of hidden states for the
Arm Gesture dataset [1].

We can observe that the proposed model (RI-HCRF) seems to perform better
than the standard HCRF. Also, the recognition accuracy for both models appears to
decrease as the number of hidden variable increases. In the majority of hidden states,
they have a similar behavior or similar fluctuations of accuracy. In particular, when
the accuracy for one method increases/decreases from state to state the same applies
for the other method.
Fig.5.8 indicates the optimal number of hidden states that was predicted by im-

plementing Algorithm 4.1. The prediction of the optimal number of hidden states
is accurate, since it is identical to the state that both models achieved the highest
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recognition score in the conducted experiments (Fig.5.7).

Figure 5.8: Estimation of the optimal number of hidden variables by the proposed
RI-HCRF algorithm for the Arm Gesture dataset [1]. The number of hidden states
that do not appear in the horizontal axis received zero votes.

The resulting confusion matrices of the 3 baseline methods and the RI-HCRF are
presented in Fig. 5.9. The matrices for HCRF and RI-HCRF correspond to the optimal
number of hidden variables. It is worth mentioning that the SVM and CRF incorrectly
classify the Expand Vertically (EV) and Double Back (DB) gestures. Moreover, CRF,
HCRF and RI-HCRF perfectly recognize Expand Horizontally (EH), Double Back
(DB) and Flip Back (FB) respectively.
A detailed representation of the results for the Arm Gesture dataset is shown in

Table 5.2. The table presents the mean recognition accuracy and its standard devia-
tion. Comparing the results of the proposed RI-HCRF with the other three baseline
methods it may be seen that RI-HCRF achieves the highest accuracy score with the
lowest standard deviation.
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Arm Gesture dataset [1]

(a) SVM (b) CRF

(c) HCRF (d) RI-HCRF

Figure 5.9: Confusion matrices for the classification results for the Arm Gesture
dataset [1].

Categories

Method Overall FB SV EV DB PB EH

SVM 93.64 ± 3.6 94.32 ± 6.1 96.58 ± 4.4 90.68 ± 12.0 86.36 ± 6.1 96.65 ± 5.3 97.78 ± 4.6
CRF 96.53 ± 1.4 98.82 ± 4.0 97.07 ± 4.9 92.14 ± 9.4 93.56 ± 6.2 98.02 ± 3.1 100 ± 0
HCRF 98.48 ± 0.7 96.59 ± 5.6 98.29 ± 3.6 99.15 ± 2.6 100 ± 0 98.88 ± 2.3 96.67 ± 7.5
RI-HCRF 99.03 ± 1.1 100 ± 0 98.29 ± 3.5 98.31 ± 3.6 99.24 ± 2.4 99.44 ± 1.7 98.89 ± 3.5

Table 5.2: Averaged recognition accuracies of all methods for the Arm Gesture dataset
[1] (mean ± st. dev.).
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5.4.2 Evaluation on the Weizmann dataset

A 9-fold leave-one-actor-out cross validation was used in order to split the Weizmann
dataset into training and test sets. The results of the classification accuracy with respect
to the number of hidden variables for both HCRF and RI-HCRF models are presented
in Fig.5.10.

Weizmann dataset [2]

Figure 5.10: Classification accuracy with respect to the number of hidden states for
the Weizman dataset [2].

It may be observed that RI-HCRF outperforms the standard HCRF, since it has
always better accuracy score for every tested hidden state. HCRF reach 93.59% accu-
racy for 10 hidden states and with the same number of hidden states RI-HCRF reach
96.67%. Similar to Arm Gesture dataset, these two models seems to share the same
pattern of accuracy variations.
The results of the automatic estimation of the optimal number of hidden variables

are presented in Fig.5.11, where the value of 10 for the hidden states has collected
the 73% of the votes. The predicted optimal number of hidden variables confirms the
experimental results obtained by exhaustive search shown in Fig.5.10.
The confusion matrices for all models are depicted in Fig. 5.12. RI-HCRF classifies

correctly seven of the ten actions, in contrast to other baseline methods, which reach
100% accuracy for 5 or less actions. Moreover, the smallest classification error between
classes belongs to the proposed RI-HCRF method. It is worth to be noted that the
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Figure 5.11: Estimation of the optimal number of hidden variables by the proposed
RI-HCRF algorithm for the Weizmann dataset [2]. The number of hidden states that
do not appear in the horizontal axis received zero votes.

Weizmann dataset has actions that are very similar to each other. So, the large intra-
class variability implies that different actions may be strongly confused.
The average recognition accuracy and its standard deviation for each model and

each action category are presented in Table 5.3. The large values of standard deviation
are a result of the leave one actor out cross validation that was used to split this
dataset. There was one video sequence for testing of each action class, apart from
Lena’s case.

Categories
Method Overall Bend Jack Jump Pjump Run Side Skip Walk Wave1 Wave2

SVM 88.18 ± 13.9 100 ± 0 100 ± 0 77.78 ± 44.1 88.89 ± 33.3 100 ± 0 100 ± 0 77.00 ± 44.1 100 ± 0 66.67 ± 50.0 77.78 ± 44.1
CRF 95.48 ± 4.0 89.72 ± 14.38 100 ± 0 84.86 ± 34.1 81.09 ± 36.3 99.02 ± 2.6 100 ± 0 100 ± 0 100 ± 0 78.45 ± 50.0 89.29 ± 33.3
HCRF 93.59 ± 4.8 100 ± 0 88.89 ± 33.3 88.89 ± 33.3 100 ± 0 90 ± 16.67 100 ± 0 90.0 ± 33.3 100 ± 0 100 ± 0 77.78 ± 44.1

RI-HCRF 96.67 ± 5.0 100 ± 0 100 ± 0 88.89 ± 33.3 100 ± 0 100 ± 0 88.89 ± 33.3 90 ± 33.3 100 ± 0 100 ± 0 100 ± 0

Table 5.3: Averaged recognition accuracies of all methods for the Weizmann dataset
[2] (mean ± st. dev.).
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Weizmann dataset [2]

(a) SVM (b) CRF

(c) HCRF (d) RI-HCRF

Figure 5.12: Confusion matrices for the classification results for the Weizmann dataset
[2].

5.4.3 Evaluation on the Parliament dataset

The Parliament dataset will be described in two parts, with respect to the the fea-
ture representation that was used. The first part will refer to the results extracted
from dataset’s representation of features which were produced by a 3D convolu-
tional neural network. As for the second part, it will refer to the results extracted
from a representation of fusion and synchronized features. In both parts, a 5-fold
cross validation was used to create the train and test sets.

Parliament dataset expressed by C3D features
The recognition accuracy of HCRF and RI-HCRF models as the number of hidden

variables increases is given in Fig. 5.13. We may observe that steep variations occur
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Parliament dataset [3]

Figure 5.13: Classification accuracy with respect to the number of hidden states for
the Parliament dataset [3] using C3D features.

in accuracy score for both models. In brief, the recognition accuracy falls and rises
drastically from one hidden variable to another. These variations may be caused by
the initialization of the parameters of the models. The highest accuracy score of HCRF
(89.04%) is reached for 4 hidden states and the highest accuracy score of RI-HCRF
(89.46%) is reached for 4, 14 and 16 hidden states. In this dataset as the number of
hidden variables increases the accuracy score is kept high for both models, in contrast
to Arm Gesture and Weizmann datasets behavior.
The automatic estimation of the optimal number of hidden variables indicated

number 4 to be the most suitable candidate (Fig. 5.14) and concurrent agreed with
the experimental results presented in Fig. 5.13.
The confusion matrices of all methods indicate a high confusion between aggres-

sive and friendly behavior, while neutral behavior seems to be more recognizable as
it is shown in Fig. 5.15
The average recognition accuracy and its standard deviation for each model and

each action category are presented in Table 5.4. RI-HCRF has the lowest deviation
in the overall accuracy rate and in the majority of action categories. Comparing the
mean accuracy rate, our proposed method outperforms the state of the art models
that where used as baseline in this work.
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Figure 5.14: Estimation of the optimal number of hidden variables by the proposed
RI-HCRF algorithm for the Parliament dataset [3] using C3D features. The number
of hidden states that do not appear in the horizontal axis received zero votes.

Categories
Method Overall Aggressive Friendly Neutral

SVM 73.28 ± 9.0 65.75 ± 8.7 71.11 ± 13.2 84.62 ± 14.4
CRF 85.54 ± 7.0 82.19 ± 12.8 83.33 ± 15.2 92.31 ± 5.4
HCRF 89.04 ± 8.1 87.67 ± 10.6 86.67 ± 12.7 93.85 ± 6.4

RI-HCRF 89.46 ± 6.5 84.93 ± 12.8 88.89 ± 11.7 95.38 ± 4.2

Table 5.4: Averaged recognition accuracies of all methods for the Parliament dataset
[3] using C3D features (mean ± st. dev.).

Parliament dataset expressed by synchronized and fusion features
The graphical representation of the recognition accuracy rate with respect to

changes in the number of hidden variables, for the proposed method RI-HCRF and

44



Parliament dataset [3]

(a) SVM (b) CRF

(c) HCRF (d) RI-HCRF

Figure 5.15: Confusion matrices for the classification results for the Parliament dataset
[3] using C3D features.

the standard HCRF, is presented in Fig. 5.16. The RI-HCRF and HCRF methods re-
quire four hidden states to reach the best recognition accuracy, which is 82.85% and
85.5% respectively. As the number of hidden states increases, the accuracy for both
models, is getting higher scores but not equivalent to the highest. Also, the accuracy
for both models is the same or approximately equal when 14, 15, 16 and 17 hidden
variables are used.
The results of automatic estimation of the optimal number of hidden variables

are shown in Fig. 5.17 and lead to the conclusion that the use of 4 hidden states
will be enough and able to exploit and distinguish sub-stuctures in the models. The
predicted optimal number of hidden variables is equal to the optimal number derived

45



Figure 5.16: Classification accuracy with respect to the number of hidden states for
the Parliament dataset [3] using synchronized and fusion features cues.

from the exhaustive search (Fig. 5.16).

Parliament dataset [3]

Figure 5.17: Estimation of the optimal number of hidden variables by the proposed
RI-HCRF algorithm for the Parliament dataset [3] using synchronized and fusion
features cues. The number of hidden states that do not appear in the horizontal axis
received zero votes.
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The confusion matrices of all methods for the dataset are given in Fig. 5.18.
Comparing confusion matrices of the dataset’s representation expressed by C3D and
synchronized-fusion features we can note that each representation outlines and de-
scribes better different action classes. In particular, using the C3D representation all
methods tend to identify better the neutral class whereas the use of synchronized-
fusion representation helps the methods to recognize better the aggressive class. As
a result, a fusion of those two representations may lead to higher accuracy score for
the whole dataset.
The statistical information about the recognition accuracy for each action category

and the overall score is summarized in Table 5.5. This table shows the mean accuracy
accompanied by the standard deviation for each model. A comparison between Table
5.5 and Table 5.4 leads to the conclusion that C3D representation is better for this
dataset attaining better accuracy results.

Categories
Method Overall Aggressive Friendly Neutral

SVM 75.45 ± 3.15 98.63 ± 2.9 65.56 ± 7.2 63.08 ± 6.4
CRF 82.12 ± 1.7 100 ± 0 75.65 ± 5.7 70.38 ± 10.5
HCRF 82.85 ± 2.5 94.52 ± 5.9 81.11 ± 6.3 72.31 ± 6.4

RI-HCRF 85.5 ± 3.1 95.89 ± 6.3 78.89 ± 4.6 83.08 ± 3.4

Table 5.5: Averaged recognition accuracies of all methods for the Parliament dataset
[3] using synchronized and fusion features cues (mean ± st. dev.).

5.4.4 Evaluation on the TPI dataset

The TPI dataset will be described in two parts. In the first part, the results extracted
from the C3D representation of the dataset will be presented while in the second
one the results obtained using the synchronized-fusion feature representation will
be discussed. In order to split the dataset into training and test set a 5-fold cross
validation was used in both dataset’s representations.

TPI dataset expressed by C3D features
The illustration of recognition accuracy for RI-HCRF and HCRF models is depicted

in Fig. 5.19. We may observe that RI-HCRF model achieves a recognition rate of
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Parliament dataset [3]

(a) SVM (b) CRF

(c) HCRF (d) RI-HCRF

Figure 5.18: Confusion matrices for the classification results for the Parliament dataset
[3] using synchronized and fusion features cues.

94.5% while the standard HCRF achieves a recognition rate of 91.53%. Also, both
models in this configuration share the same variability pattern and for some hidden
states the accuracy scores do not have a significant difference.
The results of the prediction of the optimal number of hidden states is shown

in Fig. 5.20. The value of 9 turns out to be the most probable number of hidden
state that should be used by the models. A prediction that is in fully agreement with
the experimental results conducted in an exhaustive search approach. Also, we may
observe that the number of candidates is lower compared to the previous results
and this may be a result of the small number of features that is provided in this
configuration of the dataset.
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TPI dataset [4]

Figure 5.19: Classification accuracy with respect to the number of hidden states for
the TPI dataset [4] using C3D features.

Figure 5.20: Estimation of the optimal number of hidden variables by the proposed
RI-HCRF algorithm for the TPI dataset [4] using C3D features. The number of hidden
states that do not appear in the horizontal axis received zero votes.
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The confusion matrices of all methods for the dataset are given in Fig. 5.21. RI-
HCRF and CRF classifies correctly reach 100% accuracy for the approaching action
while the shaking hands action seems to be the less distinct action for all employed
methods.

TPI dataset [4]

(a) SVM (b) CRF

(c) HCRF (d) RI-HCRF

Figure 5.21: Confusion matrices for the classification results for the TPI dataset [4]
using C3D features.

The average recognition accuracy and its standard deviation for each model and
each action category are presented in Table 5.6. It is also worth noting that RI-HCRF
has the lowest deviation in the overall accuracy rate and in the majority of action
categories. A comparison between the mean accuracy rate of the models indicates
that RI-HCRF has the best results.
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Categories

Method Overall Approach Depart Kick Push Shake Hands Hug Exchange Objects Punch

SVM 94.27 ± 4.3 95.24 ± 9.9 90.70 ± 16.2 95.00 ± 11.2 95.12 ± 11.2 88.89 ± 16.2 90.48 ± 13.6 97.44 ± 6.4 97.37 ± 6.4
CRF 93.67 ± 3.5 100 ± 0 95.35 ± 9.9 90.0 ± 16.3 95.12 ± 9.9 83.33 ± 17.0 90.48 ± 13.6 92.31 ± 11.1 94.74 ± 7.3
HCRF 91.53 ± 3.7 97.62 ± 5.5 93.02 ± 6.3 92.5 ± 16.7 92.68 ± 10.1 77.78 ± 21.7 95.24 ± 11.2 94.87 ± 11.2 81.58 ± 11.8

RI-HCRF 94.75 ± 3.2 100 ± 0 95.35 ± 6 92.5 ± 11.1 95.12 ± 9.9 88.89 ± 16.2 95.24 ± 11.1 94.87 ± 11.1 92.11 ± 11.4

Table 5.6: Averaged recognition accuracies of all methods for the TPI dataset [4]
using C3D features (mean ± st. dev.).

TPI dataset expressed by synchronized and fusion features
In Fig. 5.22 the bar representation of recognition accuracy with respect to the

number of hidden variables is shown. RI-HCRF achieves a recognition accuracy rate of
89.37% while the standard HCRF achieves a recognition rate of 86.97%. The accuracy
score for both models is decreased in this configuration of the dataset comparing to
the previous one with C3D features. Furthermore, it seems that when the number of
hidden states increases for both feature representations of this dataset the accuracy is
getting high scores maybe due to the number actions and their intra-class variability.

TPI dataset [4]

Figure 5.22: Classification accuracy with respect to the number of hidden states for
the TPI dataset [4] using synchronized and fusion features cues.

The results of our method for the proposed optimal number of hidden states
is given in Fig. 5.23 and indicates a model with 8 hidden variables. The highest
scores for both HCRF and RI-HCRF are achieved using 8 hidden states and there is
a total agreement between the optimal number of hidden variables derived from the
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prediction procedure and the exhaustive search depicted in (Fig. 5.22).

Figure 5.23: Estimation of the optimal number of hidden variables by the proposed
RI-HCRF algorithm for the TPI dataset [4] using synchronized and fusion features
cues. The number of hidden states that do not appear in the horizontal axis received
zero votes.

The confusion matrices of all methods for the dataset are given in Fig. 5.24. The
two of the four models (CRF and HCRF) are able to recognize perfectly not only
the approaching action but also the exchange objects and punch actions for the TPI
dataset expressed by synchronized and fusion features. On the other hand, RI-HCRF
has satisfactory results and seems to recognize better actions like shaking hands and
pushing that confuse all other models used in this work.
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TPI dataset [4]

(a) SVM (b) CRF

(c) HCRF (d) RI-HCRF

Figure 5.24: Confusion matrices for the classification results for the TPI dataset [4]
using synchronized and fusion features cues.

The summary of the above results is given by Table 5.7, where the average recog-
nition accuracy and its standard deviation for each model and each action category
are presented. A comparison between the mean accuracy rate of the models indicates
that RI-HCRF has the best results.

Categories

Method Overall Approach Depart Kick Push Shake Hands Hug Exchange Objects Punch

SVM 81.53 ± 6.8 81.82 ± 18.63 71.43 ± 47.1 95.45 ± 8.9 82.5 ± 11.1 55.56 ± 20.9 50.00 ± 17.6 100 ± 0 92.59 ± 10.6
CRF 87.29 ± 4.4 100 ± 0 61.38 ± 35.1 97.61 ± 5.4 89.00 ± 14.0 66.82 ± 30.1 56.62 ± 14.2 100 ± 0 100 ± 0
HCRF 86.97 ± 2.6 100 ± 0 71.43 ± 18.2 90.91 ± 12.5 77.5 ± 10.4 61.11 ± 25.2 75.0 ± 17.6 100 ± 0 100 ± 0

RI-HCRF 89.37 ± 2.7 96.97 ± 6.3 57.14 ± 38.1 90.91 ± 22.36 95 ± 6.8 83.33 ± 22.36 75 ± 17.68 93.94 ± 7.8 96.3 ± 7.4

Table 5.7: Averaged recognition accuracies of all methods for the TPI dataset [4] using
synchronized and fusion features cues (mean ± st. dev.).
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5.4.5 Evaluation on the THVI dataset

In same way like Parliament and TPI datasets, the TVHI dateset will be described in
two parts:

1. TVHI dataset expressed by C3D features

2. TVHI dataset expressed by synchronized and fusion features,

where each part will be an evaluation of a different representation of the dataset. The
test and the training sets are obtained by a 5-fold cross validation that was used in
order to split the dataset.

TVHI dataset expressed by C3D features
The bar representation shown in FIg. 5.25 refers to the accuracy rate of the

standard HCRF and our proposed model RI-HCRF with respect to the number of
hidden variables. As we can see, the recognition accuracy rate of HCRF and R-HCRF
is 93.0% and 93.5% respectively for each model using 7 hidden states Also, they seem
to have the lowest accuracy using 4 hidden variables in Ri-HCRF case and using 9
hidden variables in the HCRF case. Apart from the first state, our model seems to
outperform the standard HCRF.

TVHI dataset [5]

Figure 5.25: Classification accuracy with respect to the number of hidden states for
the TVHI dataset [5] using C3D features.
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The prediction results for the optimal number of hidden variables is given in Fig.
5.26, where the value of 7 is the most probable. The prediction and the exhaustive
experimental results agree and point the same optimal number.

Figure 5.26: Estimation of the optimal number of hidden variables by the proposed
RI-HCRF algorithm for the TVHI dataset [5] using C3D features. The number of
hidden states that do not appear in the horizontal axis received zero votes.

The confusion matrix of each method used in this work for the TVHI dataset, is
shown in Fig. 5.27. We can observe that the SVM is able to recognize better hand
shake and hug actions, the CRF is able to recognize better the hand shake action
while HCRF and RI-HCRF are able to recognize better the high five one.
Table 5.8 summarizes the statistical information about the evaluation of the TVHI

dataset expressed by C3D features. This table presents for each model, the mean
accuracy accompanied by the standard deviation of each action class and the overall
score. A comparison between these scores shows that RI-HCRF achieves better results
than all baseline methods.

TVHI dataset expressed by synchronized and fusion features
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TVHI dataset [5]

(a) SVM (b) CRF

(c) HCRF (d) RI-HCRF

Figure 5.27: Confusion matrices for the classification results for the TVHI dataset [5]
using C3D features.

Categories
Method Overall Hand Shake High Five Hug Kiss

SVM 91.00 ± 5.5 94.00 ± 8.9 90.00 ± 7.0 94.00 ± 5.5 86.00 ± 15.1
CRF 92.82 ± 3.2 93.73 ± 7.8 93.37 ± 9.9 93.19 ± 5.4 91.98 ± 6.5
HCRF 93.0 ± 2.0 92.0 ± 5.4 94.0 ± 8.9 92.0 ± 4.4 92.0 ± 8.3

RI-HCRF 93.5 ± 2.2 94.0 ± 5.4 96.0 ± 5.4 92.0 ± 4.4 92.0 ± 8.3

Table 5.8: Averaged recognition accuracies of all methods for the TVHI dataset [5]
using C3D features (mean ± st. dev.).
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The illustration of the recognition accuracy of HCRF and RI-HCRF models with
respect to the number of hidden variables is depicted in Fig. 5.28. By observing, we
can notice that HCRF and RI-HCRF reach an accuracy rate of 99.5% and 100% using
using 9 hidden states. Moreover, we can see that a large number of hidden variables
seems to confuse the models than to enhance their accuracy results because when the
number of hidden variables increases the accuracy of the models decreases rapidly.

TVHI dataset [5]

Figure 5.28: Classification accuracy with respect to the number of hidden states for
the TVHI dataset [5] using synchronized and fusion features cues.

The optimal number of hidden variables according to the prediction results of our
models is 9 (Fig. 5.29) and is identical to the optimal number of hidden variables
obtained by the experimental results presented in Fig. 5.28.
The confusion matrices of all methods for the dataset are given in Fig. 5.30. The

CRF and RI-HCRF models are able to recognize perfectly all the actions while HCRF
and SVM are able to recognize perfectly only 3 and 2 actions respectively.
The average recognition accuracy accompanied by its standard deviation for each

model and each action category are presented in Table 5.9. Comparing Tables 5.9 and
5.8 we can note that the synchronized and fusion features representation achieves
better results in TVHI in contrast to Parliament and TPI for which the C3D repre-
sentation has better accuracy scores.
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Figure 5.29: Estimation of the optimal number of hidden variables by the proposed
RI-HCRF algorithm for the TVHI dataset [5] using synchronized and fusion features
cues. The number of hidden states that do not appear in the horizontal axis received
zero votes.

Categories
Method Overall Hand Shake High Five Hug Kiss

SVM 85.50 ± 4.8 100 ± 0 74.00 ± 8.9 100.00 ± 0 68.00 ± 14.0
CRF 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
HCRF 99.5 ± 1.5 100 ± 0 98.0 ± 6.3 100 ± 0 100 ± 0

RI-HCRF 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

Table 5.9: Averaged recognition accuracies of all methods for the TVHI dataset [5]
using synchronized and fusion features cues (mean ± st. dev.).
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TVHI dataset [5]

(a) SVM (b) CRF

(c) HCRF (d) RI-HCRF

Figure 5.30: Confusion matrices for the classification results for the TVHI dataset [5]
using synchronized and fusion features cues.

5.4.6 Evaluation on the USAA dataset

In the USAA dataset we used a 5-fold cross validation to split the dataset into train-
ing and test sets and the C3D feature representation is used to express the dataset.
The results of the recognition accuracy score with respect to the number of hidden
variables is depicted in Fig. 5.31 for both HCRF and RI-HCRF models. The results
show that RI-HCRF with a small difference, achieves a better accuracy score ( 91.81%
) than HCRF ( 91.58% ). Also, both models reach their best scores using 10 hidden
states. By taking a closer look at the results we can observe that our proposed model
keeps higher accuracy scores than the standard HCRF, in every number of hidden
variables that was used.
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USAA dataset [6]

Figure 5.31: Classification accuracy with respect to the number of hidden states for
the USAA dataset [6] using C3D features.

The prediction results for the optimal number of hidden variables is given in
Fig. 5.32 and indicate the value of 10 to be the most probable number of hidden
variables. The predicted number of hidden states is identical to the actual optimal
number derived from the conducted experiments presented in Fig. 5.31.
The confusion matrix for each method used in this work for the USAA dataset, is

shown in Fig. 5.33. We can observe that the social occasion that is recognized better
from all the methods is birthday party while the wedding reception seems to have
cause the most of confusion.
In Table 5.10 the statistical information about the evaluation of the USAA dataset

expressed by C3D features is summarized. The mean accuracy accompanied by the
standard deviation of each action class and the overall score are presented by the
foregoing table. A comparison of the results leads to the conclusion that RI-HCRF
outperforms all the baseline methods with the lowest standard deviation in the ma-
jority of the results.
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Figure 5.32: Estimation of the optimal number of hidden variables by the proposed
RI-HCRF algorithm for the USAA dataset [6] using C3D features. The number of
hidden states that do not appear in the horizontal axis received zero votes.

Categories
Method Overall Birthday Graduation Music Non-music Parade Ceremony Dance Reception

SVM 91.28 ± 1.4 95.45 ± 3.2 94.51 ± 5.2 88.20 ± 6.0 87.85 ± 5.8 94.77 ± 3.8 89.81 ± 8.7 93.71 ± 2.3 81.63 ± 9.0
CRF 90.62 ± 1.6 94.33 ± 2.7 92.57 ± 3.3 87.85 ± 6.9 87.04 ± 11.5 95.13 ± 3.4 88.30 ± 5.0 93.33 ± 4.3 82.90 ± 8.4
HCRF 91.58 ± 1.5 93.75 ± 5.3 92.86 ± 2.5 87.64 ± 5.8 90.06 ± 7.0 94.19 ± 3.6 92.99 ± 5.3 93.14 ± 4.3 85.71 ± 9.0

RI-HCRF 91.81 ± 1.1 96.02 ± 3.1 92.86 ± 2.5 88.20 ± 6.4 88.95 ± 9.8 95.93 ± 3.3 90.45 ± 3.3 94.29 ± 2 84.69 ± 8

Table 5.10: Averaged recognition accuracies of all methods for the USAA dataset [6]
using C3D features (mean ± st. dev.).
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USAA dataset [6]

(a) SVM (b) CRF

(c) HCRF (d) RI-HCRF

Figure 5.33: Confusion matrices for the classification results for the USAA dataset [6]
using C3D features.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.2 Limitations and Future Work

6.1 Conclusions

Video analysis has experienced a rapid rise of interest and research from the computer
vision community due to the colossal number of videos provided, uploaded or stored.
The main focus of this work is video content analysis involving graphical models. In
this thesis we have introduced a novel approach that uses the multimedia content
and its spatial and temporal dynamics for the recognition of human activities. This
approach is an extension of the standard HCRF that aims to a better, robust and
efficient recognition model.
Graphical models, which incorporate hidden variables in their structure, face the

problem that the number of hidden variables need to be fixed by the user in advance.
Our model, RI-HCRF, has been proposed in order to automatically infer the number
of hidden variables from the input data. Also, a mixture model with three Student’s
t components is coupled to the RI-HCRF model as a prior to the parameters of the
model because of its robustness to outlier values.
We have evaluated our model on six different benchmark datasets used for human

action recognition. The challenge of these datasets is found in the resolution of videos,
the heterogeneous background, the non static camera, the large number of clips and
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the high intra-class similarity between videos for certain classes. The evaluation of
RI-HCRF has been done on several types of feature representations and has been
compared to three others state of the art methods.
According to the experimental results, we conclude that the use of the incremental

approach for the estimation of the hidden variables has been successful. Our method
is able not only to estimate the optimal number of hidden variables correctly but also
to mark a small neighborhood in which the optimal number is included.
In Fig. 6.1 the distribution of the trained parameters of a random fold for all

datasets and their representations that were used in this work are shown. In the
majority of the datasets the mixture distribution is visible and its components are
distinct and not fully overlapping. Arm Gesture, Parliament and TVHI datasets, which
use the fusion features representation are the datasets that the mixture model is not
clear and maybe this is a result of the small number of parameters they use.
RI-HCRF has been proven a robust method with much potential and able to ob-

tain satisfactory results, with better performance compared to the baseline models.
However, in case of C3D representation of the datasets, its performance was compa-
rable to the HCRF model. The reason of this result is the small set of features that
C3D representation involves. Therefore, models discriminative power is similar to
each other. Also, the C3D representation has been informative enough that a simpler
method like a multi-class SVM was able to achieve good results.
Additionally, RI-HCRF and the other graphical models are suited to rich and

overlapping features like synchronized and fusion ones. They seem to handle and
understand better this kind of features in comparison with the standard multi-class
SVM. Though, they achieve a lower overall classification accuracy than using 3D
features derived from Convolutional Neural Networks.
The final conclusion from the conducted experiments is that each feature rep-

resentation characterizes better different action category of the datasets due to the
way and criterions the features were extracted. The number and the type of different
modalities of the features (body joints location and orientation, intensity of voice and
colour, space-time variations and texture) creates their heterogeneity and ability to
describe each action from an alternative prospective.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.1: Distribution of the parameters θ of the RI-HCRF of a random fold for
all datasets. (a) Arm Gesture dataset [1], (b) Weizmann dataset [2], (c) Parliament
dataset [3] using C3D features, (d) Parliament dataset [3] using fusion features, (e)
TPI dataset [4] using C3D features, (f) TPI dataset [4] using fusion features, (g) TVHI
dataset [5] using C3D features, (h) TVHI dataset [5] using fusion features, (i) USAA
dataset [6] using C3D features

6.2 Limitations and Future Work

One important limitation of our model is the dependence on the initialization of
its parameters. The training of RI-HCRF is a challenging non-convex optimization
problem and the possibility of getting stuck in local optima is high. The change of
the objective function of the model from a non-convex to a convex one would be the
best solution.
Also, the total performance of the model depends on the efficiency of the feature

detector. The more efficient the detector is, the higher the recognition accuracy can
be achieved. A small number of features, which that can hold enough information
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for the dataset can not only reduce the dimension of the video content but also
the complexity of the model. It should be noted that the choice of features and the
classification model should fit to each other. Thus, a fusion of C3D and STIP features
may be a powerful combination for graphical models and especially for the structural
modeling method RI-HCRF. A fusion of the dense STIP and the informative C3D
features, could lead to a better representation of the datasets with higher recognition
accuracy scores.
Despite the huge amount of research in the field of action recognition the recent

decades, the need for a generic recognition system still exists. Building a generic
model, able to classify correctly multiple action classes and successfully applicable to
big data of the real wold systems, is a challenging task that should be further studied
in the future.
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