
Detection of Predictable Temporal Changes in
Multidimensional Biological Sequences

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Nestor Timonidis

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN TECHNOLOGIES - APPLICATIONS

University of Ioannina

July 2017

Dedication

This thesis is dedicated to my family, which supported me all those years as a student,
and whose financial support made the elaboration of this thesis possible.

Acknowledgements

I would like to thank my thesis advisor Professor Aristidis Likas of Department of
Computer Science and Engineering at the University of Ioannina. The remarks of
Prof. Likas proved valuable for interpreting the results and comprehending the sub-
ject as well as the data. Moreover, this thesis would have not been completed without
his insights regarding the subject throughout the whole process, which formed the
directions we took and the outcome of this research.

Furthermore, I would like to thank Professor Sacha A.F.T. van Hijum from the Centre
for Molecular and Biomolecular Informatics of the Radboud University Medical Cen-
tre in Nijmegen, Netherlands, whose expertise in Biostatistics aided us in using Beta
Diversity threshold values for detecting spike occurrences in the analysis described
at chapter 3.

Author,
Nestor Timonidis.

Table of Contents

List of Figures v

List of Tables xiii

List of Algorithms xv

Abstract xvii

Εκτεταμένη Περίληψη xix

1 Introduction 1
1.1 Longitudinal Microbiome Data . 1
1.2 Thesis Contribution . 5

2 Machine Learning Methods 7
2.1 Introduction . 7
2.2 Classification Methods . 7

2.2.1 Classifier Evaluation . 7
2.2.2 Support Vector Machines . 9
2.2.3 Decision Trees . 12
2.2.4 k-Nearest Neighbors . 14
2.2.5 Linear Discriminant Classifier . 15
2.2.6 Stacked Autoencoders . 17

2.3 Clustering Methods . 20
2.3.1 K-means . 20
2.3.2 Silhouette Measure . 22
2.3.3 Agglomerative hierarchical clustering 24
2.3.4 Dip-dist criterion . 25

i

2.3.5 Agglodip . 26
2.4 Distance Measures . 27

2.4.1 Kullback-Leibler Divergence . 27
2.4.2 Jensen-Shannon Divergence . 28
2.4.3 Bray-Curtis Dissimilarity . 29

3 Spike Prediction 31
3.1 Spike Definition . 31
3.2 Research Goal . 34
3.3 Dataset . 34
3.4 Experimental Results . 36

3.4.1 Subset selection step: . 36
3.4.2 Overlap removal step: . 39
3.4.3 Time-point selection step . 39
3.4.4 Feature selection step: . 39
3.4.5 Classification step: . 39

4 Detecting Predictable Subsets 45
4.1 Introduction . 45
4.2 Spikeness measure . 46
4.3 Rank-based example selection . 47
4.4 Black-Box Classifier . 49
4.5 Predictability . 51
4.6 Rank-based vs random-based predictability 52
4.7 Experimental Results . 55

5 Detecting Predictable Changes 61
5.1 Problem Definition . 61
5.2 Discretization through clustering . 62
5.3 Patterns of Temporal Changes . 65
5.4 Predictability of Temporal Changes . 69
5.5 Detailed method description . 71

6 Experimental Results 75
6.1 Introduction . 75

ii

6.2 Discretization though clustering . 75
6.3 Patterns of Temporal Changes . 79
6.4 Predictability of Temporal Changes . 83

6.4.1 Balanced-Predictability . 85
6.4.2 Imbalanced Predictability . 92
6.4.3 Rank-Based vs Random-Based Predictability 96

6.5 Discussion . 98

7 Conclusion and Future Work 99
7.1 Conclusion . 99
7.2 Future Work . 101

Bibliography 104

iii

iv

List of Figures

1.1 Profiles of Community State Types, menses and Nugent Scores (def. 1.2)

for a number of subjects over a period of 16 weeks (Taken from [1]). X-

axis: time (weeks). Y-axis: subjects. The colors correspond to the 5 different

Community State Types as indicated by the legend above the figure. The circles

of each time-series correspond to the time-points, at which microbial samples

of the equivalent subject were taken for the analysis in [1]. The size of the

circle corresponds to its Nugent Score, while the squares of each time-series

correspond to the menses of the subjects. 4

2.1 Schematic representation of an autoencoder. The three network layers (input

- Layer L1, hidden - Layer L2, output - Layer L3), are shown from left to

right. Layer L2 acts as the representation of data. The lines connecting L1

to L2 represent the weights w, which together with the input values and the

bias b compose the encoder function (eq. 2.34), with f(x) being an activation

function. The equivalent lines from L2 to L3 represent the hidden layer weights

v, which together with the bias v0 and the encoder values h, compose the

decoder function (eq. 2.35), with g(x) being an activation function. 18
2.2 Schematic representation of a stacked autoencoder. The first layer (In-

put layer) is the input one. The next two hidden layers (1st hidden
layer and 2nd hidden layer) are the two sparse autoencoders stacked
in succession. The final layer (Softmax layer) is the output one, which
together with the 2nd hidden layer compose a two-layered neural net-
work trained with softmax activation function. The +1 neuron shown
in all layers corresponds to the bias term b. 20

v

3.1 Detection of Spikes with the Beta Diversity Spike Hypothesis. X-axis: time-

points values. Y-axis: beta diversity values. The first two horizontal lines from

the bottom indicated the borders between the baseline and the outlier areas.

The baseline area was defined as: [median - SD, median + SD] (SD: standard

deviation). The third horizontal line from bottom indicated the border between

spikes and non-spikes. 33
3.2 Indication of the beta diversity spike hypothesis in subject 28. X-axis: time-

points. Y-axis: beta diversity values. The beta diversity values have either a

normal deviation from the mean value (also referred to as a baseline level)

or a deviation exceeding the mean value and the standard deviation (also

referred to as an outlier 3.1), leading to a spike-like figure which was labeled

as a spike. Furthermore, the spike criterion (fig. 3.1) is met three times (time-

points 10-14, 17-21, 25-29), due to the fact that in at least two time-points

before and after each spike, the values have a normal deviation from average.

An example is the sequence of time-points 9-13 in both panels. Subsets like

these were considered as positive ones and were labeled in the subset selection

step. 37
3.3 Selected time-series subsets of subject 28. X-axis (in all panels): time-points.

Y-axis (in all panels): beta diversity values. The consecutive time-points meet

the beta diversity spike criterion and thus are labeled as positive. The subsets,

as referenced by the labels on the right are identified by their subject id and

a time-point number corresponding to tp1 on the x-axis. This number refers

to two time-points before the spike and thus is time-point t-2. For example

in the first panel, time-point 10 of subject 28 is time-point t-2 and thus the

spike occurs at time-point 12. 38
3.4 Performance of a number of classifiers for the spike prediction at t-3. X-axis:

names of the classifiers. Y-axis: LOT average accuracy. The generalization

performance of the models was evaluated with the leave-one-out CV method.

The highest classifier in terms of performance is the decision tree with 6.71e-01

accuracy. 40

vi

3.5 Performance of a number of classifiers for the spike prediction at t-2. X-axis:

names of the classifiers. Y-axis: LOT average accuracy. The generalization per-

formance of the models was evaluated with the leave-one-out CV method. The

highest classifier in terms of performance is SVM with linear kernel function

having 6.96e-01 accuracy. 41
3.6 Performance of a number of classifiers for the spike prediction at t-1. X-axis:

names of the classifiers. Y-axis: LOT average accuracy. The generalization

performance of the models was evaluated with the leave-one-out CV method.

The highest classifier in terms of performance is the decision tree having

6.71e-01 accuracy. 42

4.1 Histogram of spikeness values for Dt−2. X-axis: number of examples
with a spikeness value in a given range. Y-axis: spikeness values. The
blue color corresponds to the negative class. The red color corresponds
to the positive class. There is a small portion of positive examples
overlapping with negative ones at the first bin, with the lowest spikeness
examples, and there is a moderate overlap at the middle bin. Hence,
the gray zone is quite big on that dataset and indicates a non-optimal
data categorization. 55

4.2 Histogram of spikeness values for Dt−2 - top 10 positive and bottom 10 neg-

ative selected examples. X-axis: number of examples with a spikeness value

in a given range. Y-axis: spikeness values. The blue color corresponds to the

positive class. The red color corresponds to the negative class. There is no

overlap in the spikeness between the two classes, which indicates a better

data categorization than the equivalent one of 4.1. 56
4.3 Performance of a number of classifiers for the spike prediction at t-2 - top 10

positive and bottom 10 negative selected examples. X-axis: names of the clas-

sifiers. Y-axis: LOT average accuracy. This dataset is the result of rank-based

selection using the spikeness measure and selecting the top 10 positive and

bottom 10 negative examples. The generalization performance of the models

was evaluated with the leave-one-out CV method. The highest classifier in

terms of performance is the decision tree with 0.85 accuracy. 57

vii

4.4 Rank-based predictability of time-point t-2 (dataset Dt−2). X-axis: number

of selected examples. Y-axis: predictability. The number of selected examples

composing the dataset contains an equal number of top-ranked selected ex-

amples from the positive class and bottom-ranked selected examples from the

negative class. Therefore, in the case with 20 selected examples, the top-ranked

selected positive examples are 10 and the bottom-ranked selected negative ex-

amples are 10. The threshold value used is 0.7. At the final subset with 54

examples, the predictability (0.629) is lower than 0.7 and for that reason the

rank-based selection approach did not continue to include further examples

at the subset. 58
4.5 Random-based predictability of time-point t-2 (dataset Dt−2), for 20 selected

examples. X-axis: under-sampling repetitions. Y-axis: predictability. The num-

ber of selected examples composing the subset contains an equal number of

the positive and negative class. 59

5.1 Comparison of the two different ways for detecting Spikes, given a time-series

with 15 time-points. The diagram drawn at the top represents the beta diver-

sity spike hypothesis, where each time-point is represented by a beta diversity

value. The 1st number sequence bellow the diagram represents the discretiza-

tion approach, where each time-point is represented by its cluster or state.

The number sequence titled as Present Patterns, represents the patterns that

can be detected on that time-series, where symbol A represents similarity to

the previous state and B difference from the previous state. The first number

sequence from the bottom, titled as Time-points, represents the time-points of

the time-series . 65

6.1 Cluster labels assigned to time-points of two time-series for different clustering

approaches. Top panel: time-series 1. Bottom panel: time-series 10. X-axis (all

panels): labels per clustering approach. Y-axis (all panels): time-points. The

names of the clustering approaches are on the first column of each panel. The

labels of each approach are presented after having been matched with the

equivalent ones of Community State Type (section 5.2). 76
6.2 Normalized Mutual Information (NMI) between a number of clustering ap-

proaches and a reference clustering. X-axis: NMI values. Y-axis: names of the

clustering approaches. 77

viii

6.3 Similarity matrix between a number of clustering approaches. X-axis and

y-axis correspond to pairs of clustering approaches. Given a pair i-j, the

value corresponding to i-j is the global alignment score between clustering

approaches i and j . 78
6.4 Class label vectors assigned to time-points of two time-series for different

clustering approaches. Top panel: time-series 1. Bottom panel: time-series 10.

X-axis (all panels): class labels per clustering approach - dictated by pattern A-

B-A. Y-axis (all panels): time-points. The names of the clustering approaches

are on the first column of each panel. The final row in all panels corresponds

to the labeling that has been derived from voting. The voting threshold is

40%. The labels for each time-point are binary values representing a pattern

positive (0) or negative (1) time-point, where the pattern is the A-B-A. 80
6.5 Class label vectors assigned to time-points of two time-series for different

clustering approaches. Top panel: time-series 1. Bottom panel: time-series 10.

X-axis (all panels): class labels per clustering approach - dictated by pattern A-

B-B. Y-axis (all panels): time-points. The names of the clustering approaches

are on the first column of each panel. The final row in all panels corresponds

to the labeling that has been derived from voting. The voting threshold used

is 40%. The labels for each time-point are binary values representing a pattern

positive (0) or negative (1) time-point, where the pattern is the A-B-B. 81
6.6 Histogram of spikeness values for pattern A-B-A, estimated with the Jensen-

Shannon divergence measure. X-axis: number of examples with a spikeness

value in a given range. Y-axis: spikeness values. The blue color corresponds

to the positive class. The red color corresponds to the negative class. There is

a small portion of positive examples less than 20, overlapping with negative

ones in the range 0-0.2. There is another portion of positive examples less

than 20, overlapping with negative ones in the range 0.2-0.4. Further few

negative examples overlap with positives in the range 0.55-0.65. Hence, there

is impurity between the two classes but the portion of overlapping examples

is small. 82

ix

6.7 Histogram of spikeness values for pattern A-B-A, estimated with the Bray-

Curtis dissimilarity measure. X-axis: number of examples with a spikeness

value in a given range. Y-axis: spikeness values. The blue color corresponds

to the positive class. The red color corresponds to the negative class. There is

a small portion of positive examples less than 20, overlapping with negative

ones in the range 0-0.3. There is another portion of positive examples less than

20, overlapping with negative ones in the range 0.3-0.6. Further few negative

examples overlap with positives in the range 0.6-0.68 and 1. Hence, there is

impurity between the two classes but the portion of overlapping examples is

small. 83
6.8 Rank-based predictability for pattern A-B-A at time-point t-2. X-axis: number

of selected examples. Y-axis: predictability. Spikeness was estimated with the

Jensen-Shannon divergence measure. The number of selected examples com-

posing each subset contains an equal number of top-ranked selected examples

from the positive class and bottom-ranked selected examples from the nega-

tive class. Therefore, in the subset with 20 selected examples, the top-ranked

selected positive examples are 10 and the bottom-ranked selected negative

examples are 10. The threshold value used is 0.7. 86
6.9 Rank-based predictability for pattern A-B-B at time-point t-2. X-axis: number

of selected examples. Y-axis: predictability. Spikeness was estimated with the

Jensen-Shannon divergence measure. The number of selected examples com-

posing each subset contains an equal number of top-ranked selected examples

from the positive class and bottom-ranked selected examples from the nega-

tive class. Therefore, in the subset with 20 selected examples, the top-ranked

selected positive examples are 10 and the bottom-ranked selected negative

examples are 10. The threshold value used is 0.7. 87
6.10 Rank-based predictability for pattern A-A-B-A at time-point t-2. X-axis: num-

ber of selected examples. Y-axis: predictability. Spikeness was estimated with

the Jensen-Shannon divergence measure. The number of selected examples

composing each subset contains an equal number of top-ranked selected ex-

amples from the positive class and bottom-ranked selected examples from

the negative class. Therefore, in the subset with 20 selected examples, the

top-ranked selected positive examples are 10 and the bottom-ranked selected

negative examples are 10. The threshold value used is 0.7. 88

x

6.11 Rank-based predictability for pattern A-A-B-A-A at time-point t-2. X-axis:

number of selected examples. Y-axis: predictability. Spikeness was estimated

with the Jensen-Shannon divergence measure. The number of selected exam-

ples composing each subset contains an equal number of top-ranked selected

examples from the positive class and bottom-ranked selected examples from

the negative class. Therefore, in the subset with 20 selected examples, the

top-ranked selected positive examples are 10 and the bottom-ranked selected

negative examples are 10. The threshold value used is 0.7. 89
6.12 Rank-based predictability for pattern A-B-B at time-point t-1. X-axis: number

of selected examples. Y-axis: predictability. Spikeness was estimated with the

Jensen-Shannon divergence measure. The number of selected examples com-

posing each subset contains an equal number of top-ranked selected examples

from the positive class and bottom-ranked selected examples from the nega-

tive class. Therefore, in the subset with 20 selected examples, the top-ranked

selected positive examples are 10 and the bottom-ranked selected negative

examples are 10. The threshold value used is 0.7. 90
6.13 Rank-based predictability for pattern A-B-A at time-point t-2. X-axis: number

of selected examples. Y-axis: predictability. Spikeness was estimated with the

Bray-Curtis dissimilarity measure. The number of selected examples compos-

ing each subset contains an equal number of top-ranked selected examples

from the positive class and bottom-ranked selected examples from the nega-

tive class. Therefore, in the subset with 20 selected examples, the top-ranked

selected positive examples are 10 and the bottom-ranked selected negative

examples are 10. The threshold value used is 0.7. 91
6.14 Rank-based imbalanced predictability for pattern A-B-A at time-point t-2.

X-axis: number of selected examples. Y-axis: predictability. Spikeness was

estimated with the Jensen-Shannon dissimilarity measure. The number of

selected examples composing each subset contains an equal number of top-

ranked selected examples from the positive class and bottom-ranked selected

examples from the negative class until number 72. Afterwards, since the maxi-

mum number of positive examples (38) has been reached, the subsets selected

contain 38 positive examples and n-38 negative examples, where n is the size

of the subset. The threshold value used is 0.7. 93

xi

6.15 Rank-based imbalanced predictability for pattern A-B-B at time-point t-2.

X-axis: number of selected examples. Y-axis: predictability. Spikeness was

estimated with the Jensen-Shannon dissimilarity measure. The number of

selected examples composing each subset contains an equal number of top-

ranked selected examples from the positive class and bottom-ranked selected

examples from the negative class until number 124. Afterwards, since the

maximum number of positive examples (62) has been reached, the subsets

selected contain 62 positive examples and n-62 negative examples, where n

is the size of the subset. The threshold value used is 0.7. 94
6.16 Rank-based imbalanced predictability for pattern A-A-B-A at time-point t-

2. X-axis: number of selected examples. Y-axis: predictability. Spikeness was

estimated with the Jensen-Shannon dissimilarity measure. The number of

selected examples composing each subset contains an equal number of top-

ranked selected examples from the positive class and bottom-ranked selected

examples from the negative class until number 66. Afterwards, since the max-

imum number of positive examples (33) has been reached, the subsets selected

contain 33 positive examples and n-33 negative examples, where n is the size

of the subset. The threshold value used is 0.7. 95
6.17 Rank-based imbalanced predictability for pattern A-A-B-A-A at time-point

t-2. X-axis: number of selected examples. Y-axis: predictability. Spikeness

was estimated with the Jensen-Shannon dissimilarity measure. The number

of selected examples composing each subset contains an equal number of top-

ranked selected examples from the positive class and bottom-ranked selected

examples from the negative class, until number 44. Afterwards, since the max-

imum number of positive examples (22) has been reached, the subsets selected

contain 22 positive examples and n-22 negative examples, where n is the size

of the subset. The threshold value used is 0.7. 96
6.18 Random-based predictability for pattern A-B-A at time-point t-2 with 40

selected examples. X-axis: under-sampling repetitions. Y-axis: predictability.

The number of selected examples composing the subset contains an equal

number of the positive and negative class, hence 20 positive and 20 negative

examples. The positive and negative examples were selected randomly from

the dataset. 97

xii

List of Tables

3.1 Best classifiers and accuracies per dataset. 43

6.1 Total Coverage for all datasets per pattern (Jensen-Shannon). X-axis:
tested pattern. Y-axis: feature vectors per time-point. 91

6.2 Positive Coverage for all datasets per pattern (Jensen-Shannon). X-axis:
tested pattern. Y-axis: feature vectors per time-point. 92

xiii

xiv

List of Algorithms

4.1 Black-Box Classification . 50
5.1 Detecting Predictable Changes . 71

xv

xvi

Abstract

Nestor Timonidis, M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, July 2017.
Detection of Predictable Temporal Changes in Multidimensional Biological Sequences.
Advisor: Aristidis Likas, Professor.

This work investigates the predictability of interesting temporal changes between the
various states of a longitudinal microbiome dataset, whilst those changes occur at
time-points subsequent to the analyzed ones. Predictability has been defined as the
generalization performance of an optimal classification system built using a given
dataset and tested with a given measure. The temporal dataset used was a longitu-
dinal microbiome dataset containing information about the evolution of the relative
abundances of the vaginal microbiome of a number of women. Initially, the anal-
ysis focused on the prediction of double changes in microbial composition (named
as spikes), given the population relative abundances in previous time instances. The
constructed datasets were classified using several methods with accuracy about 70%
for the prediction of spikes.

Next we searched for subsets of the datasets being more predictable than the com-
plete dataset. A continuous measure describing the amount of temporal change be-
tween consecutive time-points, named spikeness was estimated for all time-points.
The dataset examples were ranked based on spikeness and data subsets were created
containing top-ranked positive and bottom-ranked negative examples. The classifica-
tion system used for measuring predictability (called black-box classifier), consisted
of a set of various classification models as well as external model parameters and the
output classification result for each data subset was obtained from the best perform-
ing model.

xvii

Based on the above ideas, a new automatic way of detecting predictable temporal
changes has been proposed. An approach called rank-based predictability was ap-
plied for estimating the predictability of gradually increasing subsets of the dataset,
which were selected based on the ranking of the examples. The methodology is based
on first transforming the time series into symbolic ones using clustering techniques
and then defining patterns of temporal change using a symbolic representation. Then
a two-class dataset was constructed given a pattern of temporal changes and its pre-
diction features. As a second step, the rank-based predictability approach was applied
to this dataset, as a way of estimating the predictability of temporal patterns. Patterns
of temporal changes with predictability greater than a user-specified threshold were
considered predictable. The experimental results using four temporal patterns indi-
cated that all temporal patterns were predictable for subsets having a high coverage
of the positive examples. Moreover, the results indicated that the predictability of the
rank-based subsets was always greater than the average predictability of randomly
selected subsets.

xviii

Ε Π

Νέστωρ Τιμονίδης, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πληροφο-
ρικής, Πανεπιστήμιο Ιωαννίνων, Ιούλιος 2017.
Εντοπισμός Προβλέψιμων Χρονικών Μεταβολών σε Πολυδιάστατες Βιολογικές Ακο-
λουθίες.
Επιβλέπων: Αριστείδης Λύκας, Καθηγητής.

Στην εργασία αυτή μελετάται η δυνατότητα πρόβλεψης μεταβάσεων μεταξύ των
διαφόρων καταστάσεων ενός χρονικά εξελισσόμενου μικροβιωματικού συνόλου δε-
δομένων. Ως προβλεψιμότητα ενός συνόλου δεδομένων ταξινόμησης ορίζεται η γε-
νικευτική ικανότητα ενός βέλτιστου συστήματος ταξινόμησης, κατασκευασμένου με
την χρήση του συνόλου δεδομένων και αξιολογούμενου με μία καθορισμένη με-
τρική. Στην εργασία αξιοποιήθηκε ένα μικροβιωματικό σύνολο δεδομένων, το οποίο
περιείχε πληροφορίες για την εξέλιξη του κολπικού μικροβιώματος ενός πλήθους γυ-
ναικών. Η ανάλυση σε αρχική φάση εστίασε στην πρόβλεψη διπλών μεταβολών στην
μικροβιωματική σύνθεση (ορισμένες ως spikes), με δεδομένες τις σχετικές αφθονίες
των πληθυσμών σε προγενέστερες χρονικές στιγμές. Τα σύνολα δεδομένων που κα-
τασκευάστηκαν, ταξινομήθηκαν με τη χρήση πολλαπλών μεθόδων ταξινόμησης με
περίπου 70% ακρίβεια στην πρόβλεψη των spikes.

Στην συνέχεια ασχοληθήκαμε με τον εντοπισμό υποσυνόλων ενός συνόλου δεδο-
μένων, τα οποία ήταν πιο προβλέψιμα από το αρχικό σύνολο δεδομένων. Ορίστηκε
μια συνεχής ποσότητα που ονομάστηκε spikeness, η οποία περιγράφει το μέγεθος
των χρονικών μεταβολών μεταξύ των διαδοχικών χρονικών στιγμών. Τα παραδείγ-
ματα των συνόλων δεδομένων κατατάχθηκαν με βάση το spikeness και δημιουρ-
γήθηκαν υποσύνολα δεδομένων τα οποία περιείχαν κορυφαίας-κατάταξης θετικά
και τελευταίας-κατάταξης αρνητικά παραδείγματα. Με τον τρόπο αυτό ορίστηκαν
υποσύνολα με ανώτερη προβλεψιμότητα σε σχέση με το αρχικό σύνολο. Το σύστημα

xix

ταξινόμησης που αξιοποιήθηκε για την μέτρηση της προβλεψιμότητας (ονομάστηκε
black-box classifier), απαρτίζονταν από ένα σύνολο διαφόρων μοντέλων ταξινόμη-
σης καθώς και εξωτερικών παραμέτρων για τα μοντέλα, ενώ η έξοδος-αποτέλεσμα
της ταξινόμησης για κάθε σύνολο δεδομένων λαμβάνονταν από το μοντέλο με την
καλύτερη επίδοση.

Με βάση τις παραπάνω ιδέες προτάθηκε μια νέα μέθοδος αυτόματου εντοπισμού
προβλέψιμων χρονικών μεταβολών. Ορίστηκε καταρχήν μια προσέγγιση με το όνομα
rank-based predictability για τον υπολογισμό της προβλεψιμότητας διαδοχικά αυξα-
νόμενων υποσυνόλων ενός συνόλου δεδομένων ταξινόμησης, τα οποία επιλέχθηκαν
με βάση την κατάταξη των παραδειγμάτων. Η προτεινόμενη γενική μεθοδολογία βα-
σίζεται καταρχήν στην διακριτοποίηση των χρονοσειρών σε συμβολικές με την χρήση
τεχνικών ομαδοποίησης και έπειτα στον καθορισμό μοτίβων χρονικών μεταβολών
με την χρήση μιας συμβολικής αναπαράστασης. Στην συνέχεια, κατασκευάστηκε
ένα σύνολο δεδομένων δύο κατηγοριών δοθέντος ενός μοτίβου χρονικών μεταβο-
λών και των χαρακτηριστικών για την πρόβλεψη. Σαν δεύτερο βήμα, η προσέγγιση
rank-based predictability εφαρμόστηκε στο σύνολο δεδομένων ούτως ώστε να υπο-
λογίσει την προβλεψιμότητα των χρονικών μοτίβων. Μοτίβα χρονικών μεταβολών
με προβλεψιμότητα μεγαλύτερη από ένα κατώφλι καθορισμένο από τον χρήστη, θε-
ωρήθηκαν ως προβλέψιμα. Το πειραματικά αποτελέσματα με την χρήση τεσσάρων
χρονικών μοτίβων υπέδειξαν πως όλα τα χρονικά μοτίβα ήταν προβλέψιμα για υπο-
σύνολα με υψηλή κάλυψη των θετικών παραδειγμάτων. Επιπλέον, τα αποτελέσματα
υπέδειξαν πως η προβλεψιμότητα των βασιζόμενων σε κατάταξη υποσυνόλων ήταν
πάντοτε μεγαλύτερη από την μέση προβλεψιμότητα τυχαία επιλεγμένων υποσυνό-
λων.

xx

Chapter 1

Introduction

1.1 Longitudinal Microbiome Data

1.2 Thesis Contribution

1.1 Longitudinal Microbiome Data

The human body harbors microorganisms that inhabit surfaces and cavities exposed
or connected to the external environment [2]. These microorganisms form complex
ecological communities that exist in each body site [3], have mutual relationships
with the host [2] and outnumber our own cells by at least a factor of 10 [3]. The
aggregate of these microorganisms (also referred to as microbiomes) in the human
organism is the human microbiota [4].
Little is known about the temporal dynamics of the microbiome communities. The
temporal dynamics are the changes of the microbiome communities through time. A
microbiota can change in terms of diversity and dominant taxa.

Definition 1.1. Taxon definition: populations of microorganisms like bacteria that
form a unit.

The taxa composing the human microbiome (bacteria, archaea and viruses) can be
measured by their relative abundances. The relative abundance of a taxon is a value
indicating its dominance at the given microbiome. The dominance is measured by

1

the percentage that the population of the microorganism has over the complete mi-
crobiome population.
Temporal variation refers to the difference in the microbiota across time. Interper-
sonal variation refers to the difference in the microbiota across persons. A longitudinal
analysis is based on sampling microbiome data from different time-points and differ-
ent persons. Therefore, temporal and interpersonal variation are both included in the
longitudinal analysis. The inclusion of the two variations can provide insight in the
temporal dynamics of the given microbial community [5]. This is because the micro-
bial community of a single subject can be analyzed in different time-points and thus
temporal changes can be tracked [6]. At the same time it can be compared with the
microbial community of different persons which can provide insight in the dynamics
of such community [5]. Downside is that more samples are generated per subject, so
fewer subjects are considered in a longitudinal study.
Data were gathered from Gajer’s et al. work in [1]. The research goal in [1] was the
description of the temporal dynamics in human vaginal microbiota. Specifically, the
vaginal bacterial communities of 32 women were analyzed over a period of 16 weeks
in terms of their composition. Five major classes characterizing the bacterial com-
munities were identified, and the analysis focused on the temporal rate of change in
the communities. There was an identification of both stable and instable communities
and the community stability was modeled using a log-linear mixed-effects model. The
results indicated that the variation found in microbial composition and high diversity
levels were not indicators of dysbiosis. Dysbiosis, as a term is used to describe the
imbalance of a microbial community inside or outside a host [7].
The dataset in [1] was derived from self-collected mid vaginal swabs of 32 women,
while this procedure occurred twice weekly for 16 weeks using a validated self-
collection protocol. A data set of 2,522,080 high-quality classifiable 16S rRNA gene
sequences was obtained from 937 samples with an average of 2692 ± 910 sequences
per sample. The relative abundances of 330 bacterial taxa at family, genus or species
levels that compose the vaginal microbiome of the subjects were estimated from the
rRNA sequences using the Ribosomal Database Project (RDP) Naive Bayes Classifier
[8]. Therefore this table contained information about the 330 relative bacterial abun-
dances of 32 women for approximately 30 time-points per subject.
Therefore, this dataset contained 937 examples and 330 features where:

1. the examples correspond to the microbiome of various subjects at various time-

2

points per subject,

2. the features correspond to the relative abundances of specific bacteria composing
the microbiome,

3. there exists a temporal relationship between examples belonging to the same
subject, meaning that they correspond to different time-points of the subject’s
time-series. Therefore, one could estimate the temporal distance between two ex-
amples of the same subject, wherein two consecutive time-point have a distance
of 4 days on average. However this approximation is not possible between exam-
ples of different subjects, because the microbiome sampling was asynchronous
for all subjects.

Besides the temporal relative abundances, additional information about the samples
(termed metadata) was also available:

1. The time in study that the sample was taken from.

2. The id of the subject.

3. Race.

4. Age.

5. Total Read Counts.

6. Community State Type. This state type is based on differences in species com-
position and their relative abundances according to [1]. The community state
types were 5 in total and labeled I,II,III,IV-A and IV-B. Each community state
type was dominated by a bacteria species. For example, community state type
III was dominated by L. iners, while community state type I was dominated by
L.crispatus [1].

The supplementary material of [1] also contained information on how the community
state types were estimated. Specifically, a dissimilarity matrix between the microbiome
of all time-points of all subjects of the dataset (937 microbiome instances in total) was
constructed with the use of the Jensen-Shannon divergence measure (section 2.4).
Afterwards, the agglomerative hierarchical clustering (section 2.3) was applied to
the proximity matrix. The silhouette measure (section 2.3) was used to measure the

3

clustering quality for various numbers of clusters. The highest mean silhouette value
found was for five clusters. Hence, these five clusters constituted the five commu-
nity state types which were used to characterize the state of each microbiome at its
corresponding time-point.

 Figure 1.1: Profiles of Community State Types, menses and Nugent Scores (def. 1.2) for a
number of subjects over a period of 16 weeks (Taken from [1]). X-axis: time (weeks). Y-axis:

subjects. The colors correspond to the 5 different Community State Types as indicated by

the legend above the figure. The circles of each time-series correspond to the time-points, at

which microbial samples of the equivalent subject were taken for the analysis in [1]. The size

of the circle corresponds to its Nugent Score, while the squares of each time-series correspond

to the menses of the subjects.

The time-points were numbered in the order they appeared. Therefore, the time-
point corresponding to the first sample was labeled as 1, the time-point of the second
sample as 2 and so on (fig. 1.1). The supplementary material also contained informa-

4

tion about the menstrual period of the subjects. More specifically, it contained visual
plots for each time-series in which the time-points corresponding with the menstrual
period were represented by a square symbol. Moreover, the analysis contained infor-
mation about the Nugent Score of the subjects for each time-point. The Nugent Score
was defined by Nugent et al. in [9], as:

Definition 1.2. Nugent Score: score which measures the bacterial vaginosis of a sub-
ject.

1.2 Thesis Contribution

The goal of this research is the investigation of the predictability of interesting changes
between the various states of longitudinal data, whilst those changes occur at time-
points subsequent to the analyzed ones.
This thesis aims in not only detecting temporal changes between the states of a time-
series, but as a step furthermore on detecting which of these changes are predictable.
Predictability is associated with the generalization performance of an optimal classi-
fication system. Moreover, a change can be considered predictable if its predictability
is greater than a specified threshold value. This goal is based on the hypothesis that
there exist temporal changes of discrete states characterizing time-series/longitudinal
data, which can be predicted from data available at time-points preceding the changes.
Chapter 2 focuses on the explanation of the basic machine learning methods as well
as the dissimilarity measures, used for classification, clustering and evaluation in this
research. In chapter 3, the analysis focuses on the prediction of double changes in
microbial composition, which have been named as spikes.
In chapter 4, the existence of subsets with predictability greater than the complete
dataset is being investigated. The predictability measure is defined as the general-
ization performance of an optimal classification system built using a given dataset
and tested with a given measure. Two different approaches are being compared for
detecting subsets with predictability greater than the complete dataset: rank-based
and random-based predictability.
Chapter 5 focuses on the detection of predictable temporal changes in the compo-
sition of the longitudinal microbiome dataset. The time-series are discretized into
symbolic ones with the use of clustering techniques. Afterwards, patterns of temporal
changes are being detected with the use of a symbolic representation. Finally, the
rank-based predictability approach is applied for estimating the predictability of the

5

temporal patterns.
Chapter 6 contains the experimental results of chapter 5. Each section of chapter 6
corresponds to the equivalent section of chapter 5, and provides a representation of
the results that are derived from the detection of predictable temporal changes in the
complete dataset. The chapter closes with the discussion of the experimental results.
The final chapter, chapter 7, has two sections. In the first section, the conclusion of
this research is being presented. The second and final section of this thesis contains
the future work references which can expand this research into new directions.

6

Chapter 2

Machine Learning Methods

2.1 Introduction

2.2 Classification Methods

2.3 Clustering Methods

2.4 Distance Measures

2.1 Introduction

This chapter focuses on the presentation of various machine learning methods and
distance measures that have been used throughout the thesis. The sections bellow
have been structured based on the category of the presented methods, which are:
classification methods, clustering methods and distance measures.

2.2 Classification Methods

2.2.1 Classifier Evaluation

The Cross-Validation method (also referred to as CV method) is a method used for
estimating generalization in classification problems. Generalization can be defined as
the ability of a supervised learning model (also referred to as classifier) to be able to
classify correctly examples that were not used in the training process [10].

7

The CV method utilizes the accuracy measure for estimating the generalization of a
classifier. The accuracy of a classifier is defined as the probability that a randomly
selected example of the dataset is classified correctly by the model [11]. Therefore:

accuracy = Pr(C(x) == y), (2.1)

where C is the classifier and x,y ∈ X, are the randomly selected example from dataset
X and its label. Given the classification of a number of examples, which are labeled
as positive or negative, an alternate definition of accuracy is:

accuracy =
TP + TN

TP + TN + FP + FN
, (2.2)

where:

1. TP = the number of positive examples classified correctly as positives (true
positives).

2. TN = the number of negative examples classified correctly as negatives (true
negatives).

3. FP = the number of negative examples classified incorrectly as positives (false
positives).

4. FN = the number of positive examples classified incorrectly as negatives (false
negatives).

In cases of imbalanced two-class datasets, where the number of examples belonging
to the one category is greater than the other, the f-measure is being used instead of
accuracy:

f −measure = 2
precision ∗ recall
precision+ recall

(2.3)

In the CV method, the dataset is partitioned into K-disjoint subsets (also referred
to as folds) with approximately equal size. Let D be considered the dataset and
D1, D2, .., DK its disjoint subsets [11].
For i=1,..K:

1. Di is used as the testing set and D\Di is used as the training set.

2. D\Di constructs a classifier using any classification algorithm.

3. Di is tested to the classifier.

8

4. accuracyi is estimated as the classification accuracy of the classifier for Di.

After the procedure has been completed for all K-folds, then the total Cross-Validation
accuracy is estimated as:

accuracy =

∑K
i=1 accuracyi

K
, (2.4)

which is the average for the accuracy of all folds [11].
The aforementioned procedure is also called as K-fold Cross-Validation. In case that
the K = N, where N is the number of examples, then the approach is called leave-
one-out Cross-Validation [11]. In leave-one-out (LOT) CV, each example x ∈ X is the
testing set, and for each x, the rest of the examples X\x compose the training set.
In this thesis, the leave-one-out Cross-Validation approach was used due to the small
size of the datasets being used.

2.2.2 Support Vector Machines

The support vector machines (also referred to as SVM) are a category of supervised
learning models used for regression and classification. The original SVM algorithm
was invented by Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 1963, but in its
present form was published by Vapnik and Corrina Cortes in 1995 [12]. In classifica-
tion analysis, support vector machines are used for two-class classification problems
and can be considered to be derived by linear models of the form:

y(x) = wTϕ(x) + b, x ∈ Rn. (2.5)

ϕ(x) refers to a feature map from input space x to a linearly separable space. There-
fore SVM can be extended to non-linear classification problems [10].
Linear models such as the aforementioned can present multiple solutions/decision
boundaries for class separation, (show proof of multiple local minima by the linear
classifiers such as perceptron). SVM on the other hand minimize the generalization
error by maximizing the margin dictated by the smallest distance between the deci-
sion boundary and the examples. For that reason, the decision boundary is selected
based on the margin maximization [10].

9

Implementation steps

In SVM, The maximum margin solution is dictated by the Lagrangian function:

L(w, b, a) =
1

2
|w|2+C

N∑
n=1

ξn −
N∑

n=1

an{tny(xn)− 1 + ξn} −
N∑

n=1

µnξn, (2.6)

where:

1. an ≥ 0 and µn ≥ 0 are the Lagrange multipliers.

2. x = (x1, x2, ..., xN) is the input space with N features and

3. w = (w1, w2, ..., wN) is a vector of real-valued weights assigned to each of the N
features.

4. ϕ(x) is the feature mapping of x to a linearly separable space

5. b is the bias.

6. y(xn) = wTϕ(x) + b (2.1), is the linear function defining the decision boundary
between two defined data classes. Therefore y(xn) = 0 for data points that are
on the decision boundary, y(xn) > 0 for data points that belong to the positive
class and y(xn) < 0 for data points that belong to the negative class.

7. tn ∈ {−1, 1} corresponding to the sign of y(xn), such that tn(wTϕ(x) + b) > 0 for
correct classification of example xn.

8. ξn is defined slack variable where:

ξn = |tn − y(xn)|, n = 1, 2.., N. (2.7)

Given the definition: ξn = 0 for data points that are on the side of the correct
margin boundary, ξn = 1 for data points that are on the decision boundary and
ξn > 1 for misclassified data points.

9. The parameter C > 0 exists as a constraint that creates a balance between the
minimization of training error and the control of overfitting. The higher the C
value, the smaller the margin and therefore the more prone to overfitting the
model is. The lower the C value, the higher the margin due to the slack variables
and therefore the more prone to training errors the model is [10].

10

For this constraint optimization problem, the Karush-Kuhn-Tucker (also referred to as
KKT) conditions must be satisfied:

an ≥ 0, (2.8)

tny(xn)− 1 + ξn ≥ 0, (2.9)

an{tny(xn)− 1 + ξn} = 0, (2.10)

µn ≥ 0, (2.11)

ξn ≥ 0, (2.12)

µn ∗ ξn = 0, (2.13)

where n = 1,...,N [10].
The problem with the above Lagrangian function is that it has 3 parameters: w,a,b.
However by considering the function as a primal one and solving the Lagrangian
dual of it, a more simplified problem is obtained:

L̃(a) =
N∑

n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm), (2.14)

where k(xn, xm) is a kernel function of two data points xn and xm, with:

k(xn, xm) = ϕ(xn) ∗ ϕ(xm), n = 1, .., N. (2.15)

The two constraints that have been derived from the dual function are:

box constraints : 0 ≤ an ≤ C, n = 1, ..., N, (2.16)

N∑
n=1

antn = 0, n = 1, ..., N. (2.17)

Several kernel functions can be used with SVM. The most frequently used are:

1. RBF or Gaussian kernel:

k(xn, xm) = exp(−||xn − xm||2

2σ2
) (2.18)

2. Linear kernel:
k(xn, xm) = xT

nxm (2.19)

11

3. Polynomial kernel:
k(xn, xm) = (xT

nxm + c)d, (2.20)

where c ≥ 0 is a free parameter and d is the polynomial degree.

4. Cosine kernel:
k(xn, xm) =

xT
nxm

||xn||2||xm||2
(2.21)

2.2.3 Decision Trees

The decision tree classifier is a category of classification models which are based on
decision trees. A decision tree is an acyclic graph in which, given a set of features
and a set of class labels, the nodes represent decision splits on features, based on
specific criteria, the branches represent possible decision outcomes and the leaf nodes
represent the class labels or decisions. The act of building a decision tree is referred
to as decision tree induction [13].
The induction of decision trees is a non-parametric approach for the construction of
classification models. Therefore, there are no requirements regarding the probabilistic
prior distributions of the classes, and the dataset is sufficient for the decision tree
construction [13].

Decision Tree Induction

A decision tree is defined by three types of nodes: the root node, with only outgoing
edges, the internal nodes, with one incoming and two or more outgoing edges, and
the leaf nodes with only incoming edges. Given a set of features, there is an expo-
nential number of decision trees that can be constructed [13]. Therefore, there has
been developed a number of efficient algorithms with the purpose of constructing an
suboptimal tree in a reasonable amount of time [13]. Some of the most efficient ones
are: Hunt’s algorithm, ID3, C4.5, SLIQ,SPRINT and CART.
Hunt’s algorithm is one of the earliest ones and served as a basis of many subsequent
decision tree algorithms [13]. Therefore, it’s general structure can be an asset for the
explanation of decision tree induction.

12

Attribute test condition and split measures

The way that a decision tree induction algorithm applies an attribute test condition
depends on the type of features. The possible feature types are four: binary, nominal,
ordinal and continuous [13]. In case of binary feature types, meaning that there are
two possible outcomes for each feature, a binary split is performed on each node. In
case of nominal feature types, the split is either binary or multi-way, meaning that
each node will have more than two children depending on the number of possible
outcomes. In case that a binary split is selected and there are more than two possible
outcomes, then the feature values will be merged in two groups for producing two
outcomes. Ordinal features can have binary or multi-way splits as long as there is no
violation of the order property of the feature values. Finally in continuous features,
a common approach is that all feature values are discretized into intervals which
represent the splits, and each new feature value is assigned to one of the possible
intervals [13].
Node impurity is measured by the distribution of classes at the children nodes after
a split has occurred. The more homogeneous the class distribution is at the children
nodes, the more impure the split is. If we consider a binary split at which the class
distribution of the first child node is (0,1) while the distribution of the second one is
(0.5,0.5), then the node impurity of the first one is zero, while the impurity of the
second one is the highest possible [13]. Node impurity serves as a basis for a number
of measures employed for finding the best split, with some of them being:

1.

Gini(t) = 1−
c−1∑
i=0

[p(i\t)]2, (2.22)

2.

Entropy(t) = −
c−1∑
i=0

p(i\t)log2p(i\t), (2.23)

3.
Classification_error(t) = 1−m

i
ax[p(i\t)], (2.24)

where c is the number of classes and p(i\t) the probability distribution of class i at
node t [13].

13

Advantages and Disadvantages

Decision tree induction algorithms have in worst case a time complexity of O(w),
with w being the maximum tree depth. Therefore, the decision tree algorithm is fast
with even large training datasets. Furthermore, the decision trees models have high
interpretability, meaning that a comprehension of the model is easy, especially in small
trees [13].
Moreover, while the algorithms are sensitive to noise, pruning techniques have been
employed for dealing with overfitting. Pruning techniques reduce the number of
tree branches, either by stopping their development during the training phase (pre-
pruning) or trimming them after the training phase (pre-pruning) In pruning, a data
subset known as validation set is used for measuring the generalization error as a
way of validating the technique [13].
As far as disadvantages of the decision tree induction algorithms are concerned, an
important one is that they are prone to overfitting on non-useful features, which limits
the generalization ability of the model to new data. For that reason, feature selection
techniques are useful in selecting the most important features for the training process
and increasing the classification accuracy. Furthermore, decision tree classifiers do not
have a good generalization to specific boolean problems like the parity function. The
parity function is a function whose value is 1 or 0 depending on whether the the
boolean features with the value TRUE have an even or odd number.

2.2.4 k-Nearest Neighbors

The k-Nearest Neighbors algorithm (also referred to as k-NN) is a non-parametric
approach used for classification and regression problems. The k-NN algorithm is
based on the nearest neighbors (NN) problem: determination of a data point which is
nearest to a given query point. This problem is applied in Geographical Information
Systems with the association of data points to geographical locations [14].
In a nearest neighbors classifier, the query point is the testing data point, while the
data point for determination belongs to the training dataset. Therefore, the label of a
testing data point x* is determined by the label of the training data point nearest to
it.
In a k-NN classifier with k > 1, the problem is extended to the determination of the k
training data points nearest to the testing data point x*, thus considered as k-nearest

14

neighbors. The class label of x* is determined by the majority vote of the k-nearest
neighbors: the class with the majority of the k- nearest neighbors belonging to it will
have its label assigned to x* [15].
The NN problem has been considered a special case of Parzen windows problem,
where the number of points kN = k is considered fixed, and the volume around the
points x is variable in order to include k points [16].
There are various distance measures which can be applied in the k-NN algorithm.
The Euclidean, Mahalanobis, Chebychev and Minkowski distance measures have been
used for continuous data, as well as the hamming distance for discrete data [16].
Spearman’s rank and Pearson correlation coefficients have also been applied in k-
NN at Bioinformatics problems such as gene expression microarray data classification
[17]. Finally, Dynamic Time Warping as a distance measure together with the 1-NN
classifier has been reported to achieve good results on time-series classification anal-
ysis [15]. In terms of selecting the number of neighbors k to be determined, k is
usually preferred to be an odd number in order to avoid ties in the majority vote.
However, in case that a tie occurs, a usual approach is the selection of the class label
belonging to the 1-nearest neighbor.
As far as advantages are concerned, k-NN is very simple as a non-parametric algo-
rithm. There is a lack of need for constructing a classification model with training
examples, due to the fact that the testing data points are classified based on their
proximity with the training data points [13]. Furthermore, the simplicity of k-NN
makes it useful for complex datasets. Finally there is no information loss during
classification, which makes k-NN highly interpretable on the results [13].

2.2.5 Linear Discriminant Classifier

The linear discriminant algorithm was introduced by Fisher in 1936 in [18], as a lin-
ear classification model with dimensionality reduction. Given a n-dimensional dataset
x and 2 classes C1 and C2, the idea is the projection of x in one dimension using the
linear function: y = wTx. Afterwards, a testing data point x* will be classified in C1 if
y(x∗) ≥ −w0, or otherwise in C2, with w0 being a threshold value [10].
The projection of a n-dimensional dataset into one dimension can lead to loss of in-
formation and therefore into an overlap of the two classes. For that reason, the linear
discriminant algorithm tries to find the optimal values of the weight component w,

15

such that the projection into one dimension minimizes the variance within classes
and maximizes the variance between classes [10].
The Fisher criterion is defined as the ratio of between class variance to within class
variance [10]. Therefore, the optimal weight component w is given by maximizing
the ratio.

J(w) =
wTSBw

wTSWw
=

(m2 −m1)
2

s21 + s22
[10], (2.25)

where:

1.
SB = (m2 −m1)(m2 −m1) (2.26)

is the between-class covariance matrix.

2.
SW =

∑
n∈C1

(xn −m1)(xn −m1)
T +

∑
n∈C2

(xn −m2)(xn −m2)
T (2.27)

is the within-class covariance matrix.

3.
m1 =

∑
n∈C1

xn

N1

, (2.28)

is the mean vector of class 1.

4.
m2 =

∑
n∈C2

xn

N2

, (2.29)

is the mean vector of class 2.

5.
s21 =

∑
n∈C1

(yn −m1)
2, (2.30)

is the within-class variance of class 1 after the projection to one dimension has
occurred.

6.
s22 =

∑
n∈C2

(yn −m2)
2, (2.31)

is the within-class variance of class 2 after the projection to one dimension has
occurred.

16

7.
yn = wTxn (2.32)

is the linear function.

By differentiating J(w) with respect to w and solving the system, the following equa-
tion is provided:

w ∝ S−1
W (m2 −m1), (2.33)

meaning that w is proportional to the difference of the class means and the inverse
of the within-class covariance matrix [10].
The algorithm is further known as Fisher’s linear discriminant, due to the fact that
the projected data construct a discriminant by selecting a threshold value w0 and
classifying data points into class 1 or class 2 based on whether y(x) ≥ −w0 or not
[10].

2.2.6 Stacked Autoencoders

Introduction

An autoencoder is a representation-learning artificial neural network, used for un-
supervised learning. Initially it was proposed by Hinton and Salakhutdinov in [19],
as a dimensionality reduction method for high dimensional data with the use of a
mutlilayer neural network.
Representation learning is the application of machine learning for discovering the
proper representation of data for increasing the performance of machine learning al-
gorithms [20]. Therefore, representation learning aims in finding the most important
features and an optimal mapping to a feature space which increases performance.
Deep neural networks deal with representation leaning, with the introduction of mul-
tiple hidden layers. Multiple hidden layers allow for representations of a dataset to
be expressed by simpler ones. The representations become increasingly more abstract
as the hidden layers are closer to the output one [20].

Autoencoder structure

The autoencoder is a neural network composed of one input, one hidden and one
output layer. The hidden layer, also referred to as h, acts as the representation of

17

the input [20]. The basic characteristic of the autoencoder that separates it from the
other neural networks, is that it seeks in copying its input to the output.
For that reason, the network is consisted of the encoder h = f(x), and the decoder r
= g(h) functions. For a perfect copy of the input to the output layer to be possible,
g(f(x)) = x. However, due to restrictions placed in autoencoders, g(f(x)) ̸= x, which
means that a perfect copy is not possible. Since the copy is achieved approximately,
the model prioritizes its inputs and selects the most important ones for copy. This
procedure leads to the model learning useful information about the data [20].
The encoder function of the autoencoder is given by the equation:

h = fw,b(x) = f(wTx+ b), (2.34)

The decoder function of the autoencoder is given by the equation:

r = gv,v0(h) = g(vTh+ v0) (2.35)

Figure 2.1: Schematic representation of an autoencoder. The three network layers (input -
Layer L1, hidden - Layer L2, output - Layer L3), are shown from left to right. Layer L2 acts

as the representation of data. The lines connecting L1 to L2 represent the weights w, which

together with the input values and the bias b compose the encoder function (eq. 2.34), with

f(x) being an activation function. The equivalent lines from L2 to L3 represent the hidden layer

weights v, which together with the bias v0 and the encoder values h, compose the decoder

function (eq. 2.35), with g(x) being an activation function.

18

Sparse Regularized Autoencoders

The minimization of the following loss function, describes the autoencoder’s learning
procedure:

L(g(f(x)), x) = ||g(f(x))− x||22 (2.36)

is the mean squared error between g and x, and n the input layer size.
While mean squared error is not the only loss function used, it is a frequently used
one [20]. Regularized autoencoders scale the encoder and decoder capacity based on
the complexity of the input distribution [20]. This scaling includes additional model
properties, like sparsity and robustness to noise or missing values [20].
An approach for autoencoder regularization is through the addition of the sparsity
penalty to the loss function:

L(x, g(f(x))) + Ω(h), (2.37)

where
Ω(h) = β

∑
i

|hi| (2.38)

is the sparsity penalty and β is the sparsity parameter.
Sparse autoencoders result in a large proportion of the input neurons having zero
output value for any given input. Therefore, as the sparsity constraint gets higher, the
network gets more selective in choosing an important proportion of the data input
and discarding the rest. Further approaches in regularized autoencoders include the
addition of the L2 regularization to the loss function:

L(x, g(f(x))) + β
∑
i

|hi|+ λwTw, (2.39)

where wTw is the L2 regularization, and λ is the regularization parameter.

Stacked Autoencoders

A frequently used deep neural network model for classification is the stacked au-
toencoder [21]. In stacked autoencoders, many sparse autoencoders are trained in
succession, with the characteristic the the hidden layer size gets smaller as the hid-
den layers are closer to the output layer [21].
As a next step, the softmax activation function is used for training a supervised neural

19

network between the final hidden layer, acting as the data representation, and the
output layer having a softmax function:

yj =
ezj∑C
k=1 e

zn
, where n = 1, .., C (2.40)

with z being an C-dimensional vector and C being the number of classes. The soft-
max activation function converts a C-dimensional vector with real values, to a C-
dimensional probability vector [10].
As a last step, with the weights optimized from the consecutive sparse autoencoders
and the training between the final hidden layer and the output one, the complete
neural network is now trained for a further optimization of the weights [21].

Figure 2.2: Schematic representation of a stacked autoencoder. The first layer (Input
layer) is the input one. The next two hidden layers (1st hidden layer and 2nd hidden
layer) are the two sparse autoencoders stacked in succession. The final layer (Softmax
layer) is the output one, which together with the 2nd hidden layer compose a two-
layered neural network trained with softmax activation function. The +1 neuron
shown in all layers corresponds to the bias term b.

2.3 Clustering Methods

2.3.1 K-means

K-means is considered to be one of the most important clustering algorithms. On
general terms, K-means is a prototype-based, partitional clustering algorithm with

20

the goal of finding a specified number of clusters, which are represented by their
centroids. In K-means, the centroid is the mean of a group of data belonging to the
same cluster [13].
K-means is usually applied to data belonging to a continuous n-dimensional space.
Furthermore, as in all prototype-based clustering algorithms, all data are considered
to belong to the same level of hierarchy [13].

Implementation steps

The K-means clustering technique is simple and can be broken down to 5 basic steps:

1. K data points from the n-dimensional space are selected randomly as initial
centroids. K is a user defined parameter and refers to the number of desired
clusters.

2. Each data point is assigned to its closest centroid in terms of distance. All points
assigned to a centroid compose a cluster and thus all K clusters are formed.

3. In each cluster, the mean of the data points assigned to it is estimated and
constitutes to the updated centroid of the cluster.

4. Step 2 is repeated.

5. The above procedure is continued until there is no change in the centroids [13].

Distance Measure and Objective function

In K-means, the notion of closest is being quantified with the use of a distance mea-
sure. The distance measure varies with the different types of data being applied to the
algorithm. The most frequently used distance measures are the euclidean distance,
for data points in euclidean space, and the cosine similarity for document data. How-
ever, Manhattan distance is also used for euclidean data, while the Jaccard measure
is used on document data [13].
The purpose of the objective function in K-means is the measurement of clustering
quality. The objective function depends on the distance measure between the points
and the centroids and thus is dependent on the different types of data [13]. The two

21

main data categories in K-means are data in Euclidean space and document data.
For data in Euclidean space, the objective function of data belonging to the Euclidean
space, and having the Euclidean as a distance measure, is the Sum of Squared Error
(also referred to as SSE). SSE is defined as the total sum of the Euclidean distances
between all points and their corresponding centroids.

SSE =
K∑
i=1

∑
x∈Ci

dist(ci, x)
2, (2.41)

with dist being the standard Euclidean distance between two points in Euclidean
space:

dist(ci, x) = ||ci − x||2. (2.42)

ci is the centroid of the ith cluster defined as:

ci =
1

mi

∑
x∈Ci

x. (2.43)

The main advantage of K-means is its computational simplicity. Its time complexity
is: O(NKq), where q is the number of iterations necessary for convergence, N is the
number of data and K is the number of clusters. Due to the fact that q and K are
fairly smaller than N, K-means is preferred for big data clustering.
Its main disadvantage however is that if we consider SSE as its objective function, SSE
is influenced to a great extent by the random initialization of the clusters. Different
initializations can lead to different cluster results and therefore finding the optimal
initial cluster centers is the basic problem of K-means clustering [13].

2.3.2 Silhouette Measure

The silhouette measure was introduced by Rousseeuw in 1987 [22], as a way of
measuring clustering quality, by comparing the dissimilarities within clusters and
between clusters.
Given a clustering solution, the silhouette measure creates silhouette values for all
data points [22]. For each data point i, a corresponding silhouette value has been
defined as s(i), and given by the following definition:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (2.44)

where

22

1. a(i) = the average proximity between data point i and all data points belonging
to the same cluster A.

2.
b(i) = min

C ̸=A
d(i, C), (2.45)

where d(i,C) = the average proximity between data point i and all data points
belonging to cluster C, where C is a different cluster from A.

Given the definition above and as far as the range of values of s(i) is concerned,
s(i) ∈ [−1,+1]. In cases where a cluster consists only of one data point, then s(i) is
set to zero due to the uncertainty of definition of a(i). The value -1 represents the
complete misclassification of data point i, while +1 indicates the assignment of i to a
very appropriate cluster [22].
The silhouette measure can be used to validate and interpret a clustering approach.
For that reason, the average silhouette value for all silhouette values is taken:

average(s) =

∑
i=1

ns(i)

n
, (2.46)

where n is the total number of data points.
A main advantage of the silhouette measure, is that as a measurement method is
not dependent on the clustering approach, but depends on the final partition of the
data points. Therefore, it can be used for optimization of the cluster analysis results,
by comparing the average silhouette of various clustering approaches applied to the
dataset.
A major disadvantage of silhouettes is its instability on extreme cases. In cases where
there is only one cluster, b(i) cannot be defined for a silhouette value. Finally, as
mentioned before, a(i) is set to zero in cases where a cluster consists of only one data
point, due to uncertainty. In cases where each data point constitutes a cluster, then
with a(i) = 0, according to the silhouette equation 2.44:

s(i) =
b(i)− 0

max(b(i), 0)
= 1. (2.47)

The silhouette value of 1 indicates a well-clustered data partition. However, this judg-
ment is not objective due to the fact that there is a lack of information on whether
the clustering quality can be improved, which in most cases of singleton clusters is
the case.

23

2.3.3 Agglomerative hierarchical clustering

Agglomerative hierarchical clustering is a category of clustering techniques belonging
to the broader category of hierarchical clustering. The agglomerative is the most
common of the two basic approaches of hierarchical clustering, with the other one
being the divisive hierarchical clustering [13].
Their main difference is that divisive hierarchical clustering starts with a single all-
inclusive cluster and splits the clusters based on a given criterion. Agglomerative
hierarchical clustering follows the reverse approach and starts with all data points as
individual clusters and merges them based on a criterion until all data points belong
to a single cluster.
A hierarchical clustering can be displayed graphically with the use of a dendrogram
or linkage tree, which is a diagram that contains the order in which the clusters were
merged or split, depending on the approach.

Implementation steps

1. At first, a proximity matrix is computed. In the beginning where each data point
composes a cluster, the proximity matrix is usually either a distance matrix or a
similarity matrix (matrix containing information about the similarity of all pairs
of data points). On the latter steps, where there exist clusters with more than
one data points, there are multiple approaches used and the most common of
them will be analyzed in the next subsection.

2. The closest two clusters based on the proximity matrix are being merged.

3. The proximity matrix is being updated based on the proximities of the clusters
after merging.

4. Step number 2 is repeated.

5. The termination condition for the above repetition is the existence of a single
cluster.

Proximity between clusters

There are many approaches regarding the proximity between clusters. The most com-
monly used are: MIN,MAX, Group Average, Centroid and Ward.

24

In the MIN clustering technique, proximity between two clusters is being measured
by the proximity of the closest two data points that belong to different clusters. In
the MAX clustering technique, proximity between two clusters is being measured by
farthest two data points that belong to different clusters. In Group Average clustering
technique, proximity between two clusters is being defined as the average proximity
between all pairs of data points from different clusters [13].
In the centroid method, the proximity between two clusters is defined by the distance
between their centroids. Finally, Ward’s method measures the proximity between
two clusters by measuring the increase of SSE that results from merging the clusters.
Therefore, at each iteration it merges the cluster-pair that minimize the SSE. In both
Centroid and Ward’s method, the clusters are represented by their centroids like in
K-means [13].

Advantages and Disadvantages

The main advantage of the agglomerative hierarchical clustering techniques is that
there is no requirement of the data points themselves and therefore a proximity
matrix is sufficient to be given as input. Furthermore, there is no constraint regarding
the type of distance or similarity measure that can be used to construct the initial
proximity matrix. Finally, they contain information about the hierarchical structure
of data which is important for problems like taxonomy creation.
The main weakness of the algorithm is its expense. The overall time complexity
of the agglomerative hierarchical clustering algorithm is O(m2log(m)), where m is
the number of data points. Therefore, this algorithm is not applied in big datasets.
Furthermore, all merges occurring during the algorithm are final, which can provide
bad clustering for high dimensional data [13].

2.3.4 Dip-dist criterion

The dip-dist criterion tests the empirical density distribution of a given dataset for
multi-modality. For a cluster to be assumed as unimodal, its empirical density should
have a single mode. A single mode is being defined as a region with a maximum
empirical density, while data observations have a decreasing density as they belong
further away from the mode. This assumption enables unimodal distributions such

25

as Gaussian or Student-t to generate clusters which can be identified with that test
[23].
The dip-dist criterion, takes as input a distance matrix created from the distances
between all data points belonging to the cluster, whose unimodality is to be tested.
The typical distance measure used is the euclidean one. The output of the criterion
is a dip value, estimated by applying the hartigan’s dip test to the dataset, and a
p-value of the hypothesis that the cluster’s distribution is unimodal [24].

2.3.5 Agglodip

Agglodip is an agglomerative clustering algorithm, based on the hartigan’s dip-test
[24], with the purpose of finding an optimal number of clusters and the creation of
clusters which are meaningful to the data. This algorithm is heavily influenced by
the dip-means algorithm [23], and tries to achieve the same result with a different
approach.
While dip-means gradually divides the clusters based on the unimodality test, until
all clusters are considered unimodal, agglodip reverses the approach: initially par-
titions the data to a large number of initial clusters and iteratively merges pairs of
clusters based on the unimodality test, until all clusters are considered unimodal.

Implementation steps:

1. Initially the data are being partitioned to a large number of clusters, with the
use of a parametric clustering algorithm like hierarchical clustering or k-means.
Since the algorithm is agglomerative, the initial number of clusters must be
greater or equal than the optimal one. For that reason the initial number of
clusters must be as large as possible. Alternatively, the number of initial clusters
can be equal to the number of data points, which means that each data point
composes a cluster, which is more computationally expensive than the previous
option.

2. Each possible pair of clusters (K∗(K−1)
2

, with K being the current number of
clusters), is being selected for merge.

3. Each one of the selected pairs is being tested with the dip-dist criterion. From

26

all possible tested pairs, only one will be merged. For a pair to be merged, the
p-value estimated by the dip-dist criterion, of the hypothesis that the cluster is
unimodal, must be greater than zero. Furthermore, for all pairs that satisfy that
criterion, the one with the lowest dip value will be merged.

4. Step 2 is being repeated.

5. The above procedure is being repeated until there is an iteration where all
possible merging pairs have been tested and there is no pair satisfying the
aforementioned criterion.

2.4 Distance Measures

2.4.1 Kullback-Leibler Divergence

The Kullback-Leibler divergence measure or relative entropy, also referred to as KL
divergence, was first introduced by Kullback and Leibler in 1951 [25], as a way of
measuring the relative entropy of two distributions. In entropy terms, given a dis-
tribution p(x) which is used for encoding information of x for transmission, the KL
divergence is defined as the additional amount of information required for decoding
x, which is encoded by a second distribution q(x) instead of p(x) [10]. On more gen-
eral terms, the KL divergence measures the divergence of a probability distribution
P(x) from a different one Q(x), given by:

DKL(P\\Q) =
∑
x

P (x)ln
P (x)

Q(x)
, x = x1, ..., xn, n ≥ 0. (2.48)

Given the definition 2.43, KL divergence represents the mean of the log fold change
between P and Q with respect to P [25].
Relative entropy is used in computer science, statistics and microbiology [25]. How-
ever, it has a number of limitations:

1.
DKL(P\\Q) ̸= DKL(Q\\P), (2.49)

meaning that there is a lack of symmetry in the measure [25].

27

2. In cases where
P (x) ̸= 0 and Q(x) = 0, (2.50)

DKL is infinite [25].

3. The smaller the P(x) and Q(x) values are, the less reliable the log fold change
estimates are [25].

2.4.2 Jensen-Shannon Divergence

The Jensen-Shannon divergence is a dissimilarity measure, introduced in [26] with
the purpose of overcoming the limitations of KL divergence.
Given two probability distributions P(x) and Q(x), where x = x1, ..., xn and n ≥ 0, the
measure is defined as:

DJS(P,Q) =
DKL(P,M) +DKL(Q,M)

2
, (2.51)

where
M =

P +Q

2
, (2.52)

is the average of P and Q. Furthermore, Lin in [26] proved the mathematical connec-
tion between Jensen-Shannon divergence and Shannon’s entropy with the following
equation:

DJS(P,Q) = H(
P +Q

2
)− H(P) +H(Q)

2
, (2.53)

where H(X) is the Shannon’s entropy measure given by:

H(X) = −
∑
j

P (xj)logP (xj). (2.54)

As far as symmetry is concerned,

DJS(P,Q) = DJS(Q,P). (2.55)

This is due to the fact that, given the Jensen-Shannon divergence definition, the
dissimilarity between P and Q is not measured directly, but by the relative entropy
between each of the two distributions and their average distribution M, and afterwards
by averaging the two relative entropies [26].
Furthermore, there are no cases where DJS is infinite. In KL divergence, infinite

28

values were produced by cases with P (X) ̸= 0 and Q(X) = 0, due to the division with
zero in (2.43). Let’s consider the case of a variable xi where P (xi) ̸= 0 and Q(xi) =
0.

M(xi) =
P (xi) +Q(xi)

2
=

P (xi)

2
̸= 0 (2.47). (2.56)

Therefore:
log

P (xi)

M(xi)
̸= inf ⇒ DKL(P\\M) ̸= inf (2.57)

and
log

Q(xi)

M(xi)
̸= inf ⇒ DKL(Q\\M) ̸= inf (2.58)

The union of equations (2.52) and (2.53) lead to:

DJS(Q\\M) ̸= inf. (2.59)

The same proof is valid for cases where P (xi) = 0 and Q(xi) ̸= 0 [26].

2.4.3 Bray-Curtis Dissimilarity

Bray-Curtis dissimilarity was introduced by Bray and Curtis in [27], as a dissimilarity
measure between the composition of two different communities. Given two samples
u and v, the Bray-Curtis dissimilarity measure has been defined as:

BCuv = 100

∑
i |ui − vi|∑
i |ui + vi|

(2.60)

or
BCuv =

∑
i |ui − vi|∑
i |ui + vi|

, (2.61)

where:

• ui ≥ 0 is the relative abundance of the ith taxon (def. 1.1) present in sample u,

• vi ≥ 0 is the relative abundance of the ith taxon present in sample v.

Both of the definitions have been used to define the Bray-Curtis dissimilarity mea-
sure and their difference is in scaling. A sample can be considered as anything with
the form of a group or community, while the term relative abundance refers to the
presence or absence of a taxon in a community.
The Bray-Curtis dissimilarity measure is frequently used by ecologists and environ-
mental scientists [28]. Specific characteristics regarding the measure are:

29

1. The measure takes the value zero when u = v.

2. The measure takes its maximum value (1 or 100 depending on the definition)
when the two samples have no taxa in common.

3. The dissimilarity between two samples is not affected by the inclusion of a third
sample in the analysis.

4. The dissimilarity between two samples is not affected by the inclusion or exclu-
sion of taxa absent in both samples.

5. The dissimilarity between two samples is not affected by a simple change in
scale of the samples.

6. The measure combines the information of both the total change and relative
change between the composition of two samples [28].

A major problem of the measure is its instability when there is a sparsity in the
samples. In cases where two samples have only one present taxon (its value is greater
than zero), their dissimilarity can vary between 0, if they are from the same species,
and 1 or 100 depending on the definition, if they are from different species. Further-
more, in case that all taxa are absent and therefore the two samples contain only zero
values, the measure cannot be defined due to the division with zero according to the
definition [28].

30

Chapter 3

Spike Prediction

3.1 Spike Definition

3.2 Research Goal

3.3 Dataset

3.4 Experimental Results

3.1 Spike Definition

Before the explanation of the term spike, the clarification of the terms beta diversity
and changes in microbial composition is important.
Beta diversity has been defined as the difference in species and genus composition
between two communities or sites [29]. The microbial composition or makeup is the
microbial genus and species composition of the microbiome at a specific time-point,
dictated by the presence and absence of specific bacterial genera and species. There-
fore, changes in microbial composition are dictated by changes in the presence and
absence of bacteria belonging to the microbiome.
The dynamic behavior of the microbiome indicated cases where the microbial com-
position changed to a new one and afterwards retreated to the previous one. Double
changes of that nature were categorized as spikes. Given two microbial compositions
a and b, the spike could be described by the pattern: a-b-a.
Initially, changes in microbial composition were quantified with the use of the beta

31

diversity. The purpose of this quantification was to identify double changes which
could be considered as spikes. The Bray-Curtis dissimilarity (eq. 2.61) was used to
measure the beta diversity between two consecutive time-points of the microbiome.
Therefore, given two consecutive time-points named t1 and t2, where t1 < t2, beta
diversity was estimated as: beta diversityt2 = BCt1,t2 , where BC is the Bray-Curtis
dissimilarity between t1 and t2. In case that a time-point was the first of a time-series,
its beta diversity value was zero due to the fact that there was a lack of previous
time-point for diversity estimation.
According to the beta diversity approach, the spike was defined by statistical terms.
Specifically, beta diversity values were considered as either baseline or outliers (Fig.
3.1). A spike was dictated by a baseline (def. 3.2) beta diversity at a time-point
defined as t-1, followed by a rapid increase in the beta diversity of the microbiome
on outlier levels (def. 3.1) at time-point t, succeeded by a preservation to outlier
levels at time-point t+1 and drop to the baseline levels at time-point t+2. The reason
for the outlier restrictions at time-points t and t+1 was due to that the beta diversity
indicated dissimilarity. Hence, a change from composition a to b and then back to a
again, would be associated with a dissimilarity above baseline levels.
While the above approach indicated changes in composition above baseline and later
retreat to baseline levels, it was still not evident whether the retreat was at composition
a or a new composition c. In case that it changed to a completely new composition,
there could be no interpretation regarding the microbiome dynamics. For that reason
the retreat to the initial composition a was assumed.
The aforementioned hypothesis about the changes in beta diversity interpreted as
changes in microbial composition, was named as the beta diversity spike hypothesis
and served as a way of identifying spikes.

Definition 3.1. Outlier criterion for time-point t:
beta_diversityt ← outlier if beta_diversityt > median+ SD.

Definition 3.2. Baseline criterion for time-point t:
beta_diversityt ← baseline if beta_diversityt ∈ [median− SD,median+ SD].

Definition 3.3. Beta Diversity Criterion for spike occurrence at time-point t:
beta_diversityt−2 ← baseline ∩ beta_diversityt−1 ← baseline ∩ beta_diversityt ←
outlier ∩ beta_diversityt+1 ← outlier ∩ beta_diversityt+2 ← baseline

32

Area with outlier values (< median – SD)

Area with outlier values (> median + SD)

Area with baseline values

Baseline upper limit
(median + SD)

Baseline lower limit
(median – SD)

Border between
Acceptable and
Non acceptable
Spikes:
Median + 2*SD

t-2
t-1

t t+1

t+2

Figure 3.1: Detection of Spikes with the Beta Diversity Spike Hypothesis. X-axis: time-points
values. Y-axis: beta diversity values. The first two horizontal lines from the bottom indicated

the borders between the baseline and the outlier areas. The baseline area was defined as:

[median - SD, median + SD] (SD: standard deviation). The third horizontal line from bottom

indicated the border between spikes and non-spikes.

For a value to be considered as a spike (fig. 3.1), it must have been regarded as
an outlier (definition 3.1). Cut-off values of that nature were commonly used in
the micro-array data analysis [30]. The time-point in which a spike occurred was
referred to as time-point t. The previous time-points were referred to as time-points
t-1, t-2, t-3, etc. Similarly the next time-points were referred to as time-point t+1, t+2,
etc. As figure 3.1 indicated, acceptable spikes were spikes belonging to a subset of
time-points ranging from time-points t-2 until t+2 and satisfying the beta diversity
spike criterion (definition 3.3).

33

3.2 Research Goal

The goal of the research was the investigation of whether future spike occurrences
could be predicted. This goal was based on the hypothesis that there existed bacteria
from the human vaginal microbiome, whose relative abundances could be used to
predict spikes.
The term prediction implied a temporal relationship between the predictor and pre-
dicted variables. Therefore, for a spike occurrence to be predicted by bacteria values,
the values had to be present at an earlier time-point than the spike. In case that in
a given time-series a spike occurrence was at time-point t, the abundances at earlier
time-points t-1, t-2 and t-3 were considered as possible candidates for testing the
prediction hypothesis. The average temporal distance between two time-points of the
dataset was 4 days. Therefore, time-points t-1,t-2 and t-3 indicated an approximate
time-frame of maximum 12 days before the spike. This time-frame was considered
suitable for prediction, as a time-frame greater than 12 days was considered too dis-
tant for any correlation.
The occurrence of spikes was identified with the beta diversity spike hypothesis (sec-
tion 3.1). Moreover, machine learning classification methods (section 2.2) were used
for investigating the spike prediction hypothesis. Therefore, classifiers were built and
applied a dataset, consisted of a number of bacterial relative abundances at various
time-points (t-1, t-2 and t-3).

3.3 Dataset

As mentioned in chapter 1.1, the initial longitudinal dataset contained information
about the evolution of the vaginal microbiome of 32 subjects for 16 weeks, sampled
at approximately 30 time-points per subject. Therefore, by considering as an example
the microbiome of a given subject at a given time-point, the dataset contained 937
examples in total. For each example, the microbiome consisted of the relative abun-
dances of 330 bacteria. Therefore the dataset features were 330 in total (section 1.1).
A number of steps were taken for pre-processing the aforementioned dataset and
investigating the beta diversity spike hypothesis:

34

1. Subset selection step:
Each subset of 5 consecutive time-points from each time-series was labeled as
positive or negative depending on if it met the beta diversity spike criterion or
not (3.3). In the time-series of figure 3.1 for example, the subset of time-points
∈ [t− 2, t+ 2] would be labeled as positive due to the fact that it met the beta
diversity spike criterion. On the other hand, every other subset from that figure
would be included in the negative category.

2. Overlap removal step: the subset selection step was performed with a sliding
window approach, meaning that all subsets of time-points were categorized
consecutively, with the second time-point t-2 of a given subset to be time-point
t-3 of the next one. Therefore, there existed cases with various subsets of the
same class belonging to close time-frames and thus having similar values. For
that reason a time-constraint was placed between subsets of the same class.
Subsets being closer than 6 time-points from chronologically older subsets were
removed. The same was applied for negative class subsets being close to positive
class subsets, in order to avoid cases where the time-points used for prediction
in the negative class were associated with a spike.

3. Time-point selection step: From each five consecutive time-points selected, the
first corresponded to time-point t-2, the second to time-point t-1, the third to
time-point t, the fourth to time-point t+1, the fifth to time-point t+2. Therefore,
the spike positive/negative time-point was the third one. For predicting the
spike, the data points used for analysis would have to belong to a time-point
earlier than the third one. There were was a selected time-frame ∈ [t− 1, t− 3]

which corresponded to how much back in time was the prediction analysis de-
sired to be performed. Therefore, in this step the desired time-point for analysis
was selected.

4. Feature selection step: The complete dataset was very sparse, which was due
to the absence of the majority of bacteria at a given time-point. The bacteria
constituted the features of the dataset. For that reason, from each dataset created
at the previous step, there was always a number of features whose values were

35

zero for all examples of the dataset. Therefore these features, were removed
from the analysis.

5. Classification step: Given the two-class dataset, constituted from the previous
steps, the next step was the application of classification algorithms for the pre-
diction of spikes. The classification algorithms used in the analysis were: deci-
sion trees, k-nearest neighbor, linear discriminant classifier and support vector
machines (section 2.2). The classifiers were evaluated with the leave-one-out
Cross-Validation method (eq. 2.4), while the classification measure used was
the accuracy measure, since the datasets were balanced with respect to classes.

3.4 Experimental Results

Each step mentioned in section 3.3 for the analysis of spike prediction, was analyzed
separately as shown in the next subsections. The results contain visual representations
of the analysis, followed by a discussion of the results.

3.4.1 Subset selection step:

In this step, subsets of time-series were selected and categorized as positive or negative,
based on the beta diversity spike criterion (def. 3.3), as mentioned in section 3.1.
Figures 3.1 and 3.2 contained examples of positively categorized examples.

36

Figure 3.2: Indication of the beta diversity spike hypothesis in subject 28. X-axis: time-
points. Y-axis: beta diversity values. The beta diversity values have either a normal deviation

from the mean value (also referred to as a baseline level) or a deviation exceeding the mean

value and the standard deviation (also referred to as an outlier 3.1), leading to a spike-like

figure which was labeled as a spike. Furthermore, the spike criterion (fig. 3.1) is met three

times (time-points 10-14, 17-21, 25-29), due to the fact that in at least two time-points before

and after each spike, the values have a normal deviation from average. An example is the

sequence of time-points 9-13 in both panels. Subsets like these were considered as positive

ones and were labeled in the subset selection step.

37

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Subject 28 timepoint 10

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Subject 28 timepoint 17

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Subject 28 timepoint 25

Figure 3.3: Selected time-series subsets of subject 28. X-axis (in all panels): time-points. Y-
axis (in all panels): beta diversity values. The consecutive time-points meet the beta diversity

spike criterion and thus are labeled as positive. The subsets, as referenced by the labels on

the right are identified by their subject id and a time-point number corresponding to tp1 on

the x-axis. This number refers to two time-points before the spike and thus is time-point t-2.

For example in the first panel, time-point 10 of subject 28 is time-point t-2 and thus the spike

occurs at time-point 12.

38

3.4.2 Overlap removal step:

As mentioned in section 3.3, selected subsets that were close to previous subsets less
than 6 time-points were removed. From the initial selected subsets of the dataset, the
remaining subsets after removal were 72. From the 72 examples, the 37 were labeled
as positives and the rest 42 as negatives.

3.4.3 Time-point selection step

For each selected subset, the third one was the spike positive or negative one. The
spike positive/negative ones was named as time-point t (section 3.1). A time-frame
∈ [t-3,t-1] was selected since it indicated approximately 12 days before the spike oc-
currence. Earlier time-points were considered two early for an objective prediction to
be possible. Therefore, each of the three time-points were assembled from all subsets
and constructed 3 separate datasets. Since the subsets were 79 in total, each of the
three datasets contained 72 examples, with 37 positive and 42 negative ones. Those
datasets were named as: Dt−3, Dt−2 and Dt−1.

3.4.4 Feature selection step:

From the total 330 features of the three datasets, the remained ones after the feature
selection step were:

1. Dt−3: 179 features,

2. Dt−2: 182 features,

3. Dt−1: 188 features.

3.4.5 Classification step:

The following classification models (section 2.2) were applied to the datasets Dt−3,
Dt−2 and Dt−1:
Decision tree,
k-NN with the Euclidean distance measure,
k-NN with the Jensen-Shannon divergence measure,

39

k-NN with the Bray-Curtis dissimilarity measure,
Linear discriminant classifier,
SVM with RBF kernel function,
SVM with linear kernel function,
SVM with Jensen-Shannon kernel function:

k(xn, xm) = exp(−JS(xn, xm)

σ
), (3.1)

where σ is the scaling factor and xn, xm are two data points of the dataset,
SVM with Bray-Curtis kernel function:

k(xn, xm) = exp(−BC(xn, xm)

σ
), (3.2)

where σ is the scaling factor and xn, xm are two data points of the dataset.
Stacked-Autoencoders with two autoencoders.
Bellow are the results of the classification performance per dataset, for all aforemen-
tioned applied classification models:

Figure 3.4: Performance of a number of classifiers for the spike prediction at t-3. X-axis:
names of the classifiers. Y-axis: LOT average accuracy. The generalization performance of the

models was evaluated with the leave-one-out CV method. The highest classifier in terms of

performance is the decision tree with 6.71e-01 accuracy.

40

The optimal parameters applied to each model used in figure 3.4 were:
Decision tree: minimum size of leaves = 6, minimum size of parent nodes: 1,
Euclidean k-NN: nearest neighbor number = 1,
Jensen-Shannon k-NN: nearest neighbor number = 3,
Bray-Curtis k-NN: nearest neighbor number = 3,
Linear discriminant classifier: discriminant type = diagonal covariance matrix,
RBF SVM: box constraint = 10, kernel scale = 6,
Linear SVM: box constraint = 10, kernel scale = 10,
Jensen-Shannon SVM: box constraint = 1000, kernel scale = 8,
Bray-Curtis SVM: box constraint = 100, kernel scale = 6. Stacked-Autoencoders: number
of hidden layers = 2, number of hidden neurons (hidden layer 1) = 16, number of
hidden neurons (hidden layer 2) = 15 , encoder activation function (both hidden
layers) = saturating linear, decoder activation function (both hidden layers) = satu-
rating linear, L2 regularization = 10e-04, sparsity regularization β = 10e-04, sparsity
proportion h = 0.05.

Figure 3.5: Performance of a number of classifiers for the spike prediction at t-2. X-axis:
names of the classifiers. Y-axis: LOT average accuracy. The generalization performance of the

models was evaluated with the leave-one-out CV method. The highest classifier in terms of

performance is SVM with linear kernel function having 6.96e-01 accuracy.

41

The optimal parameters applied to each model used in figure 3.5 were:
Decision tree: minimum size of leaves = 8, minimum size of parent nodes: 22,
Euclidean k-NN: nearest neighbor number = 9,
Jensen-Shannon k-NN: nearest neighbor number = 1,
Bray-Curtis k-NN: nearest neighbor number = 3,
Linear discriminant classifier: discriminant type = diagonal covariance matrix,
RBF SVM: box constraint = 1, kernel scale = 7,
Linear SVM: box constraint = 1, kernel scale = 1.0e-05,
Jensen-Shannon SVM: box constraint = 1, kernel scale = 1,
Bray-Curtis SVM: box constraint = 1, kernel scale = 1,
Stacked-Autoencoders: number of hidden layers = 2, number of hidden neurons (hidden
layer 1) = 10, number of hidden neurons (hidden layer 2) = 8, encoder activation
function (both hidden layers) = saturating linear, decoder activation function (both
hidden layers) = saturating linear, L2 regularization = 10e-04, sparsity regularization
β = 10e-02, sparsity proportion h = 0.5.

 Figure 3.6: Performance of a number of classifiers for the spike prediction at t-1. X-axis:
names of the classifiers. Y-axis: LOT average accuracy. The generalization performance of the

models was evaluated with the leave-one-out CV method. The highest classifier in terms of

performance is the decision tree having 6.71e-01 accuracy.

42

The optimal parameters applied to each model used in figure 3.6 were:
Decision tree: minimum size of leaves = 8, minimum size of parent nodes: 18,
Euclidean k-NN: nearest neighbor number = 1,
Jensen-Shannon k-NN: nearest neighbor number = 1,
Bray-Curtis k-NN: nearest neighbor number = 8,
Linear discriminant classifier: discriminant type = diagonal covariance matrix,
RBF SVM: box constraint = 1000, kernel scale = 7,
Linear SVM: box constraint = 1000, kernel scale = 10,
Jensen-Shannon SVM: box constraint = 1, kernel scale = 1,
Bray-Curtis SVM: box constraint = 1000, kernel scale = 3,
Stacked-Autoencoders: number of hidden layers = 2, number of hidden neurons (hidden
layer 1) = 36, number of hidden neurons (hidden layer 2) = 35, encoder activation
function (both hidden layers) = saturating linear, decoder activation function (both
hidden layers) = saturating linear, L2 regularization = 10e-03, sparsity regularization
β = 15e-02, sparsity proportion h = 10.

Table 3.1: Best classifiers and accuracies per dataset.

Dataset Best Model Accuracy Model Name

Dt−1 6.71e-01 decision tree

Dt−2 6.96e-01 linear-kernel SVM

Dt−3 6.71e-01 decision tree

Table 3.1 indicated for all three datasets the highest classification accuracy close to
0.7. Therefore, according to the results there was an optimal prediction accuracy close
to 0.7 for time-points t-3, t-2 and t-1 before the spike-positive/negative time-point t.
Furthermore, the optimal prediction accuracies for t-3,t-2 and t-1 were close to each
other (0.67, 0.69 and 0.67), with the highest one corresponding to time-point t-2.
The classification results indicated a sub-optimal prediction of spikes. For that reason,
new ways of measuring changes in microbial composition were investigated, as shown
at the next chapter.

43

44

Chapter 4

Detecting Predictable Subsets

4.1 Introduction

4.2 Spikeness measure

4.3 Rank-based example selection

4.4 Black-Box Classifier

4.5 Predictability

4.6 Rank-based vs random-based predictability

4.7 Experimental Results

4.1 Introduction

Following the results of chapter 3 (table 3.1), a new research question arose. The
research question was whether there exist subsets of a given dataset, whose classifi-
cation performance for a given classifier is greater than that of the complete dataset.
In case that such a subset exists, the examples should not have been selected ran-
domly for an interpretation of the results to be possible. Therefore, the identification
of a deterministically selected subset with improved classification performance over
the complete dataset, implies the existence of a selection criterion that differentiates
this subset from the rest of the dataset.
Furthermore, for a deterministically selected subset to exist, its selection criterion

45

must be based on a property of the examples. A possible approach would be rank-
ing the dataset examples based on such property and assembling a subset with the
most important ones, either positive or negative. Initially however, this measurable
criterion had to be defined. For that reason, new ways of characterizing spikes were
investigated as shown at the next section.

4.2 Spikeness measure

The spike was defined in binary terms, so a given time-series subset was either con-
sidered to have a spike or not. But what about a time-series subset whose composition
was not clear on whether it changed significantly or not? For that reason spikeness
was defined as a continuous ordinal measure which measured the amount of change
in microbial composition at a given time-series subset.
Continuous values could provide a more sensitive measure for estimating changes
in the microbial composition than a threshold value. Therefore, spikeness could be
considered as a more sensitive approach to defining spikes than using thresholds
based on dissimilarity indices. Hence, high spikeness values were high indicators of
a spike occurrence. On the other hand prediction of low spikeness values could still
reveal important information, given the fact that even a small decline from the base-
line diversity levels could be indicative of changes in microbial composition.
There are were two possible approaches by which spikeness could be defined. The
first was the use of absolute differences between two consecutive time-points as a mea-
sure of change, with the use of a dissimilarity measure like Bray-Curtis (eq. 2.61)
or Jensen-Shannon (eq. 2.51).
The second way was the use of relative differences based on a baseline value. In this
approach the absolute compositional difference between each time-point and its pre-
vious one, were taken as a first step and represented the diversity at each time-point.
At the second step, the standard deviation of the diversity was estimated through a
local sliding window. Therefore, for sliding window size equal to n, the standard de-
viation of time-point t was estimated by taking into account time-points in the range
∈ [t − n − 1, t + n − 1]. The sliding window approach was preferred over estimating
the total standard deviation of a time-series, due to the fact that it took into account

46

local changes in diversity which were lost when taking all time-points into account.
The final step was the division of all diversities with their local standard deviation to
achieve normalization.
At the initial analysis, the second approach was preferred because the relative differ-
ences provided information of difference with regards to the surrounding differences.
A value of 3 indicates a diversity which exceeds 3 times the standard deviation and
is in direct contract to a value of 0.5 which indicates a diversity close to the average.
The final step was common in both approaches. By having the diversities of time-
points estimated in absolute or relative terms, spikeness was estimated as the mini-
mum value from the diversities of two consecutive time-points. Therefore, spikeness
was given by the following definition:

spikeness = min(
diversityt

SD
,
diversityt+1

SD
), (4.1)

in case of relative differences or

spikeness = min(diversityt, diversityt+1) (4.2)

in case of absolute differences. The reason why two time-points were used in the
process instead of one, was due to the fact that a spike was defined by a change
in a new state, quickly followed by the retreat to the old one. In diversity terms, it
was defined as a notable increase in high diversity which indicated the change to a
new state, followed by high diversity one time-point later which indicated the change
to the old state (section 3.1). Therefore, for a spike to be quantified, the lowest of
the two values had to be higher than the baseline levels. By comparing spikeness
to the quantification of spikes with the beta diversity spike criterion (definition 3.3,
section 3.1), the two time-points used for spikeness estimation would represent the
time-points t and t+1. Pairs of time-points with high spikeness value were expected
to be associated with spike occurrences and pairs of time-points with low spikeness
value were expected not to be associated with spikes.

4.3 Rank-based example selection

Rank-based example selection was defined as the process of selecting a subset of the
dataset based on a ranking that has been applied on its examples.

47

The measure used to rank the dataset was spikeness. The ranking was at descending
order, hence the highest ranking examples were considered as top examples, while
the lowest ones were considered as bottom examples.
Two assumptions were made following the ranking of the dataset based on spike-
ness (eq. 4.1). The first assumption was that examples which were close or equal
to the highest ranked one, had a significantly different feature distribution than the
ones which were closest or equal to the lowest ranked one, and could be classified
more effectively than other subsets of a dataset given a classifier. Since spikeness
implied a rate of change, examples with low spikeness were considered to have a
significantly different microbiome from the ones with high spikeness. The same as-
sumption implied that examples which were ranked in a middle zone, had similar
feature distribution and could be classified more ineffectively than the rest. A dataset
subset which included the examples with a medium ranking was named as the gray-
zone.
The second assumption was that examples labeled as positives would be ranked
higher than the negative ones. This assumption was due to the fact that spike-positive
examples indicated high spikeness and vice versa. If this assumption was false, then it
would imply an incorrect categorization of the examples. However, the categorization
made was based on an approximate approach (section 3.1) and hence was prone to
errors. For that reason, there was expected to exist some sort of overlap between the
two classes, with examples of the positive class being ranked lower than examples of
negative ones.
The combination of the two assumptions lead to many possible scenarios. The worst
case scenario was that the the top examples of the positive class had lower or equal
spikeness value on average than the top examples of the negative class. In this sce-
nario, the classes of the dataset were considered to be similarly distributed and thus
a satisfiable classification was not possible.
The best case scenario was that all top examples of the positive class had higher
spikeness value than all top examples of the negative class. Moreover, all bottom
examples of the negative class had lower spikeness value than all bottom examples
of the positive class. Therefore, the bottom positive and top negative examples were
expected to have a closer or equal ranking to the middle one than the highest and
lowest ones, thus being situated in the middle of the ranking spectrum. In this sce-
nario, difficulty in classification between the two classes was expected to be, if any, in

48

the examples belonging to that middle area. The middle area with the mixed positive
and negative examples was, in this case, the gray-zone.
As far as the methodology for rank-based selection is concerned, given a ranking
threshold α and a dataset D with two classes C1 and C2:

1. rank the examples for C1 and C2 separately,

2. select the top α% examples of the C1 and the bottom α% examples of C2,

3. construct a new dataset Dselected, based on the selected examples of the previous
step and their corresponding labels,

4. classify Dselected given a classification model,

5. evaluate the classification performance of the model.

In case that the classification performance of a model was considered unsatisfac-
tory, meaning that it did not exceed a desired threshold, then: either the percentage
of selected ranked examples included examples from the gray-zone, or the feature
distribution between the two classes was highly similar.

4.4 Black-Box Classifier

A black-box classifier has been defined as a classification system consisted of a set of
various classification models and external model parameters, in which the classifica-
tion result for a given dataset is obtained from the best performing model.
A black-box classifier was different than ensemble classifiers. In ensemble classifiers,
classification has been performed by using an ensemble of different parameters, dif-
ferent subsets of training examples and different classification methods, and the final
prediction of an unknown example has been given by the majority vote of all trained
models of the ensemble [31]. In black-box classification, classification was performed
by using a set of different parameters, all training examples and different classification
methods, and the final prediction of an unknown example was given not from voting
but by the trained model with the best classification accuracy.
A black-box has been defined as a system that given an input, provided an output
without observability of the internal procedures. The same definition was applied
to the black-box classifier. While a number of different classification methods with

49

external model parameters were being applied to a given dataset, the only output
provided was the optimal classification accuracy, without knowledge of the classifi-
cation method or the parameters used. Hence, the system was a black-box classifier.
The following steps describe the process being used for black-box classification:

Algorithm 4.1 Black-Box Classification
Input: X: Dataset of size NxM.
1: y: labels of X.
2: Models: Vector of size KxL, where Modelsij corresponds to the ith classification
model applied to the system jth combination of parameters for model i.

3: LOT_CV : leave-one-out Cross-Validation measure.
Output: Generalization_Performance: generalization performance of the Black-Box

classifier.
4: accuracy ⇐ ∅
5: for i← 1; i← K; i← i+ 1 do
6: for j ← 1; j ← L; j ← i+ 1 do
7: accuracy ∪ LOT_CV (modelsij, X, y), meaning that the ith model with the jth

combination of parameters is applied to the dataset (X,y) and evaluated with
LOT_CV .

8: end for
9: end for
10: Generalization_Performance ⇐ max(accuracy), meaning that the maximum

leave-one-out accuracy found in the analysis is considered as the Generaliza-
tion_Performance of the Black-Box classifier.

The main advantage of the black box classifier was that, given the limitations of the
applied dataset and classifiers, the classification performance would be as high as
possible. This was due to the use of different and varying classification methods, and
the exhaustive trial of different possible parameters.
The main disadvantage was its heavy computational cost and the time complexity
that the method had. This was obvious due to the sum of the time complexities
and computational expenses of all models participating at the ensemble. The main
reason why this approach was preferred for classification in the analysis despite its
disadvantage, was that the datasets applied were small (< 500 examples and < 300

50

features), and thus the method did not slow down the experimentation process.

4.5 Predictability

Predictability was defined as the generalization performance of an optimal classifi-
cation system built using a given dataset (X, y) ∈ D, where X is the dataset matrix
and y is the label vector, and tested with a given evaluation measure. Since there
was not a deterministic approach of constructing an optimal dataset, it could only be
constructed approximately. The inclusion of more classification methods with more
possible tested parameters per method, would increase the probability of a better
generalization ability, leading to a more optimal system and a more objective pre-
dictability.
In terms of practical application, predictability was tested on the dataset with the
use of the black-box classifier. The black-box classifier was designed, constructed and
tested based on the idea of predictability, serving as an approximation of the optimal
classification system. Furthermore, the measure used for estimating the generaliza-
tion ability was accuracy, while the evaluation measure used was leave-one-out (LOT)
Cross-Validation (eq. 2.4).
There was no prior knowledge regarding the predictability of a dataset and the only
way of estimating it was by applying it to a classification system like the black-box
classifier. The black-box classifier provided a heuristic approach for estimating pre-
dictability, while a more optimal approach was not possible. For that reason, the
black-box classifier was assumed to estimate the highest possible predictability for a
dataset. Given that assumption, the focus shifted on finding datasets with high pre-
dictability.
Since predictability implied an optimal classification performance, it was used as a
measure for investigating the research question of section 4.1: whether there exist sub-
sets of a given subset, whose predictability is higher than that of the complete dataset.

51

4.6 Rank-based vs random-based predictability

Predictability was used as a measure for investigating the research question of section
4.1. The question would be investigated by the partition of the dataset to a number
of subsets, estimation of their predictability and comparison of their results with
the complete dataset predictability. There existed multiple ways of selecting subsets
for the approach. However, as mentioned in section 4.1, the subset selection of a
given dataset could be either random or by a selection criterion. For the second case,
rank-based selection with the spikeness measure was used as a criterion (eq. 4.1).
Therefore, the two possible ways for subset selection were named as: random-based
and rank-based predictability.
In random-based predictability, the idea was the selection of multiple subsets from
a given dataset, by choosing random examples for each subset. The subsets would
contain an equal number of positive and negative examples for it being balanced as
a dataset. The predictability of each subset would be estimated with the black-box
classifier. Finally, each subset would be compared with the complete dataset in terms
of predictability. As mentioned in section 4.1, the problem with a random-based
predictability was the lack of interpretation in the results. Even if the dataset had a
lower predictability than a randomly selected subset, the results did not provide an
answer to the question. This was due to that a proper interpretation for the quan-
titative difference in the results could not be given. Also, a possible explanation for
the existence of such a subset was a highly noisy dataset that provided no value to
the analysis.
On the other hand, rank-based predictability provided a selection criterion that ranks
the examples. Therefore, in case that such a subset existed and was selected with
the rank-based approach, then the results could be contributed to the ranking of
the selected examples. Last but not least, its predictability must have been equal or
higher than randomly-selected ones, in order to be considered significant. In the op-
posite case, the results were not significant for the reasons mentioned in the previous
paragraph. In case that it did exceed the randomly-selected ones, then the ranking
provided a possible interpretation to the results.
One more important information about rank-based predictability, was that the size of
predictable subset was associated with its importance. This was due to the fact that big
subsets made up a larger proportion of the dataset than smaller ones. Therefore, big

52

predictable subsets indicated that a large proportion of the dataset was predictable.
In the case that the complete dataset was not considered predictable, subsets like the
aforementioned could still provide quantitative information regarding its predictabil-
ity, which would be lost if a rank-based selection approach was not applied.
In rank-based predictability, the examples of a given dataset were ranked based on
their spikeness. Afterwards, the most important ones given selected and assembled a
subset, whose predictability was estimated with the black-box classifier. Since there
was not a strict definition on example importance, their importance was defined by
their ranking. In section 4.3, the idea of the gray-area was introduced which was
composed by a number of examples, which had a highly similar feature distribution
and thus were difficult in being classified. In this analysis, the gray-area was assumed
to be composed by examples having a ranking close to the mean. Examples with a
ranking closer or equal to the highest and lowest ones, were named as the top and
bottom examples and assumed to be classified more easily than the gray-area ones.
Their difference in classification lead to a difference in predictability, since predictabil-
ity was associated with classification performance. For that reason, top and bottom
examples were considered more important in rank-based predictability.
However, it was still not evident which threshold could define the separation of top
and bottom examples from the gray-zone. The problem was that such a threshold
was highly dependable on the feature distribution of each dataset. For that reason,
an incremental approach was applied:

1. the examples for C1 and C2 were ranked based on spikeness with descending
order, where C1 and C2 are the two classes of the dataset.

2. A value k was defined. The k-highest ranked examples of the positive class
were considered as top, and the k-lowest ranked examples of the negative class
were considered as bottom. The rest of the examples were considered as the
gray-zone.

3. The top and bottom examples constructed the subset k, Dk.

4. The predictability of Dk was estimated as the optimal classification accuracy of
the black-box classifier, where subset k was given as input to it.

5. if Dk was greater or equal to the generalization threshold, where generalization
threshold was given as user input, then the algorithm proceeded to step 7.

53

6. if predictability of Dk was less than the generalization threshold, then the algo-
rithm halted.

7. k = k + 1

8. Step number 3 was repeated.

9. The iterations continued until k was equal to the number of positive examples.

With the aforementioned approach, the predictability of a big number of subsets could
be estimated. For big datasets however, this approach was computational and time
demanding. Hence, the predictability threshold was used for filtering out insignificant
subsets. A subset having less predictability than the complete dataset could not pro-
vide an answer to the research question of 4.1 and was thus considered insignificant.
Moreover, there was a lack of a measure which quantified predictability in terms of
the size of the dataset. Two measures were included in the analysis for that pur-
pose, named as total coverage and positive coverage. Total coverage was defined as
the proportion of total examples in the dataset which were included on the largest
predictable subset Dk. Positive coverage was defined as the proportion of positive
examples in the dataset which were included on the largest predictable subset Dk.
Positive and total coverage provided a link between predictability and dataset size.
Therefore, besides the information on the number of predictable subsets detected,
the coverages provided information regarding the predictable portion of the dataset.
Hence, the two coverages along with predictability were returned as outputs of the
rank-based predictability approach.
Finally, the incremental approach was based on the assumption of the gray-zone
and its estimation was provided by the algorithm: the algorithm started with a small
number of examples belonging to the extreme ends of the ranking spectrum and
incrementally included more examples being closer to the mean than the highest and
lowest one in terms of ranking. As soon as a subset was considered as insignificant,
the latest examples included were considered to be part of the gray-zone. There-
fore, the gray-zone had been found. In case that the maximum number of positive
examples had been reached, then two possible hypotheses existed:

1. there was no gray-zone,

2. the gray-zone existed, but it was composed by negative examples not being

54

selected by the algorithm. These examples were ranked higher than the higher
selected ones, and their inclusion would cause an imbalanced dataset.

As shown at the next chapter, the 2nd hypothesis was investigated by the inclusion of
more negative examples, creating an imbalanced dataset and new approaches were
used for its optimal classification.

4.7 Experimental Results

Spikeness:

Figure 4.1: Histogram of spikeness values for Dt−2. X-axis: number of examples with a
spikeness value in a given range. Y-axis: spikeness values. The blue color corresponds
to the negative class. The red color corresponds to the positive class. There is a small
portion of positive examples overlapping with negative ones at the first bin, with
the lowest spikeness examples, and there is a moderate overlap at the middle bin.
Hence, the gray zone is quite big on that dataset and indicates a non-optimal data
categorization.

55

Rank-based example selection:

Figure 4.2: Histogram of spikeness values for Dt−2 - top 10 positive and bottom 10 negative

selected examples. X-axis: number of examples with a spikeness value in a given range. Y-axis:

spikeness values. The blue color corresponds to the positive class. The red color corresponds

to the negative class. There is no overlap in the spikeness between the two classes, which

indicates a better data categorization than the equivalent one of 4.1.

The optimal parameters applied to each classifier (classifiers from section 2.2) used
in rank-based example selection were:
Decision tree: minimum size of leaves = 4, minimum size of parent nodes: 1,
Euclidean k-NN: nearest neighbor number = 5,
Jensen-Shannon k-NN: nearest neighbor number = 1,
Bray-Curtis k-NN: nearest neighbor number = 7,
Linear discriminant classifier: discriminant type = diagonal covariance matrix,
RBF SVM: box constraint = 1.0e-05, kernel scale = 9,
Linear SVM: box constraint = 1.0e-05, kernel scale = 0.1,
Jensen-Shannon SVM: box constraint = 1, kernel scale = 1,
Bray-Curtis SVM: box constraint = 1.0e-05, kernel scale = 1.
Stacked-Autoencoders: number of hidden layers = 2, number of hidden neurons for
hidden layer 1 = 10, number of hidden neurons for hidden layer 2 = 8, sparsity
regularization β = 1000, L2 regularization = 1000, sparsity proportion h = 1, encoder
activation function (for both hidden layers) = saturating linear function, decoder

56

activation function (for both hidden layers) = saturating linear function.
The selection of the top 10 positive and bottom 10 negative examples of dataset Dt−2,
indicated a lack of overlap between the spikeness values of two classes (fig. 4.2). The
classification performance of various classifiers on the subset (fig. 4.3) was higher in
all cases than the complete dataset one (fig. 3.5), with a notable difference between
their optimal accuracies (0.69 at the complete dataset and 0.85 at the subset). This
result indicated a correlation between the ranking of a subset’s selected examples and
classification performance. For that reason, predictability was used for measuring the
performance of the selected subsets.

Figure 4.3: Performance of a number of classifiers for the spike prediction at t-2 - top 10
positive and bottom 10 negative selected examples. X-axis: names of the classifiers. Y-axis:

LOT average accuracy. This dataset is the result of rank-based selection using the spikeness

measure and selecting the top 10 positive and bottom 10 negative examples. The generalization

performance of the models was evaluated with the leave-one-out CV method. The highest

classifier in terms of performance is the decision tree with 0.85 accuracy.

Black-box classifier and Predictability:
Figures 3.4, 3.5 and 3.6 were indicative examples of a black box-classifier. In case
that the shown classifiers operated inside a black-box system, with the dataset as input

57

and the optimal accuracy as output, then all these figures could indicate the internal
processes of a black-box classifier. One more detail was that such a system must
have also been experimented with as many different combinations of external model
parameters as possible, and keep the model with the best performance. Furthermore,
in section 4.5 it was mentioned that predictability was estimated with the use of a
black-box classifier as its output. Therefore, by considering the classifiers of figures
3.4, 3.5 and 3.6 as internal processes of a black-box classifier with datasets Dt−3, Dt−2

and Dt−1 as input, then the predictability for each case would be: 6.71e-01, 6.96e-01
and 6.71e-01. The classification models applied in rank-based example selection for
Dt−2 were used to construct the Black-box classifier.
Rank-based vs random-based predictability:

Figure 4.4: Rank-based predictability of time-point t-2 (dataset Dt−2). X-axis: number of

selected examples. Y-axis: predictability. The number of selected examples composing the

dataset contains an equal number of top-ranked selected examples from the positive class

and bottom-ranked selected examples from the negative class. Therefore, in the case with 20

selected examples, the top-ranked selected positive examples are 10 and the bottom-ranked

selected negative examples are 10. The threshold value used is 0.7. At the final subset with

54 examples, the predictability (0.629) is lower than 0.7 and for that reason the rank-based

selection approach did not continue to include further examples at the subset.

Figure 4.4 displayed the results of random-based predictability for dataset Dt−2. The

58

maximum number of examples with predictability higher than 0.7 was 52, composed
by the 26 top positive and 26 bottom negative examples. As far as the dataset cov-
erage was concerned:
Total Coverage: 0.65
Positive Coverage: 0.70

The positive coverage indicated that almost 3 out of 4 positive examples were pre-
dictable. The total coverage was smaller than the positive coverage. However, this
was reasonable due to that the maximum number of positive predictable examples
was 70% of the total ones. Since the positive examples were less than the negative
ones, the percentage of negative examples included in the biggest predictable sub-
set was 61%. This did not necessary indicate that more negative examples were not
predictable, but since the maximum number of positive examples had been reached,
there was no point in included more negative examples.

Figure 4.5: Random-based predictability of time-point t-2 (dataset Dt−2), for 20 selected

examples. X-axis: under-sampling repetitions. Y-axis: predictability. The number of selected

examples composing the subset contains an equal number of the positive and negative class.

59

As shown in figure 4.5, an experiment was performed for comparing the predictabil-
ity between the rank-based and random-based predictability approach for a given
dataset. The dataset Dt−2 was applied to the random-based approach. The random-
based approach was applied 10 times with 10 randomly selected examples from the
positive and 10 randomly selected examples from the negative class. The reason why
20 examples were selected for the experiments was because as shown at figure 4.2,
were highly pure in terms of distribution between the two classes.
The predictability was estimated with the black-box classifier. Therefore, the 10 under-
sampling repetitions estimated 10 predictability values (fig. 4.5), which were com-
pared with the equivalent one of the rank-based predictability approach for 20 se-
lected examples (fig. 4.4). At the rank-based approach, the predictability for 20
examples was 0.85. From the random-based approach, only 2 repetitions had 0.85
predictability, with the rest being bellow that value and the average predictability
being 0.75.
Hence, the rank-based approach produced higher predictability than the average pre-
dictability of the random-based approach. Moreover, the highest value estimated by
the random-based approach was equal to the rank-based one. The experiments in-
dicated that the subsets of Dt−2 ranging from size 20 until 2K, where K was the
number of positive examples, were significant (section 4.6), and that the spikeness
ranking provided a possible interpretation to the results of that chapter.

60

Chapter 5

Detecting Predictable Changes

5.1 Problem Definition

5.2 Discretization through clustering

5.3 Patterns of Temporal Changes

5.4 Predictability of Temporal Changes

5.5 Detailed method description

5.1 Problem Definition

Temporal changes between various states present in time-series data, were simply
referred to as changes. A state was considered to be a discrete or symbolic charac-
terization of the data distribution at a given time-point. A change was considered
predictable if it could be predicted by feature values at time-points previous than the
ones at which the change occurred. Therefore, the detection of predictable changes
was defined as the detection of temporal changes between states in time-series data,
capable of being predicted at previous time-points.
There have existed multiple types of temporal changes that could be present in time-
series data. One of these possible types was the spike. The limitations of the approach
used for identifying spikes, was that the criterion for separating examples into posi-
tives and negatives, was based on the beta diversity hypothesis that a spike occurred
according to specific fluctuations in the beta diversity of specific time-series subsets

61

(section 3.1). Moreover, the beta diversity spike hypothesis (def. 3.3) was specifically
adapted to the spike pattern: a-b-a, where a and b were different states of the time-
series data. But what about the patterns of change a-b-b or a-b-c? For that reason, a
general approach had to be applied for change identification. However, since changes
refer to changes in state, the states of a given time-series dataset had to be defined first.

5.2 Discretization through clustering

Since a state was considered to be a discrete (symbolic) characterization of the data
distribution at a given instance, the various states of a given dataset were identified
through discretization. The discretization of the dataset was achieved with clustering.
The advantage of clustering as an approach for data discretization, has been that
all examples of the dataset could be represented by the cluster label at which they
belong to. The cluster representations lead to a discrete form of the dataset. Given
three examples, named example 1, example 2 and example 3, and the three corre-
sponding classes, named a,b and c, at which they belonged to, the examples could
be characterized as: a,b,c, meaning that they have been discretized. Therefore, each
cluster label has become the state that represented all its example-members. As men-
tioned in section 1.1, metadata were available at the supplementary material of [1],
from which the dataset was parsed. An important metadata was the Community State
Types (referred to CST for abbreviation), which were based on differences in species
composition and their relative abundances. The CST were 5 in total and character-
ized every time-point of the complete dataset. In other words, the CST constituted
the initial discretization of the data that could be used for the analysis.
The Community State Types, as the clustering work of [1] could eliminate the need of
any further discretization of the dataset. However, any form of clustering was prone
to errors. For that reason, multiple clustering approaches were used with the intent
of identifying states which the community state type approach might erroneously did
not. The idea of multiple clustering approaches, was to implement a form of ensemble
clustering, based on the assumption that: temporal changes in state not identified by
one clustering might have been identified by the rest. For that reason, many cluster-
ing approaches were used. Since there was no knowledge about the optimal number

62

of clusters, non-parametric clustering algorithms were preferred. The final clustering
approaches applied were:

1. agglomerative hierarchical clustering with the Jensen-Shannon divergence mea-
sure and silhouette measure for estimating the optimal number of clusters,

2. agglomerative hierarchical clustering with the Bray-Curtis dissimilarity measure
and silhouette measure for estimating the optimal number of clusters,

3. agglomerative hierarchical clustering with the euclidean distance measure and
silhouette measure for estimating the optimal number of clusters,

4. agglodip clustering with the Jensen-Shannon divergence measure,

5. agglodip clustering with the Bray-Curtis dissimilarity measure,

6. agglodip clustering with the euclidean distance measure.

While the algorithms were two in total, the different proximity measures constructed
different proximity matrices and thus produced different results. Therefore, 6 clus-
tering approaches were applied in total.
The next step was the matching of the clustering labels. Every clustering approach
produced a number of clusters, each with its own labels. In order for a comparison
between the results of the various clustering approaches to be possible, there must
have been knowledge regarding the correspondence between their labels. This was
achieved with the use of a simple algorithm for matching the clustering labels. The
CST labels were used as the reference ones, since they were initially used in the
analysis at [1] where the dataset was taken from. Therefore all clustering approaches
matched their labels with the Community State Type ones. The Community State
Type clustering contained categorical values : I,II,III,IV-A,IV-B. Since the clustering
labels contained nominal numerical values, the first step was the conversion of the
Community State Type values to nominal ones:

1. The Community State Type labels were converted to: 1,2,3,4,5, where 1 repre-
sented I, 2 represented II, 3 represented III, 4 represented IV-A and 5 repre-
sented IV-B.

2. The next steps were similar for all different approaches. Given the labels assigned
to the entire dataset by a clustering approach, a cost matrix was constructed

63

between the community state type clustering and the clusters of the approach.
The matrix size was nxm, where n was the total number of CST clusters, and
m the total number of clusters for the approach. The costij , where i referred to
a cluster from the approach and j referred to a cluster from CST, was estimated
as the number of times a data point/example was assigned to cluster i in the
approach and cluster j in CST. The pair i-j with the highest score was matched,
meaning that cluster i was considered to match with cluster j. Therefore the
label of i was updated: labeli = labelj.

3. The pair i-j was removed from the matching algorithm. Furthermore, since
cluster i was matched, all data points belonging to cluster i were removed from
both CST and the approach. Step number 2 continued until all clustering labels
were matched.

4. There existed cases where the number of clusters for both approaches was not
equal. In those cases, the matching was valid for only k clusters, where k is the
number of clusters of the approach with the least clusters between the two. The
unmatched clusters retained their original labels.

A number of techniques were applied for measuring the clustering solutions. The
first technique was the normalized mutual information (also referred to as NMI). The
NMI was applied between the final clusters of each applied clustering approach, and
the CST clusters. The higher the NMI values were, the closer to the CST ones were
considered to be. While this was not a pure indicator for clustering quality, it added
another parameter to the clustering evaluation. The information that many clustering
approaches provided similar clusters, strengthened the hypothesis that the clustering
solutions were good.
Finally, a similarity matrix was between all clustering approaches was constructed,
for testing the aforementioned hypothesis. The similarity matrix was constructed with
the use of the Needleman-Wunsch algorithm [32], which is frequently used in Bioin-
formatics analysis for aligning amino-acid and nucleotide sequences.

64

5.3 Patterns of Temporal Changes

After the matching of the various clusterings, which represented states of the dataset,
the next step was the detection of changes in state. Temporal changes in state were
considered as patterns. Hence, a spike was one possible temporal pattern. The exhaus-
tive search for every possible pattern on the dataset was time-demanding and thus
not preferred. For that reason, the patterns searched in the analysis were predefined.

1 1 4 1 1 2 1 1 1 1 3 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Spike detection approach no 1: Beta
Diversity spike hypothesis

Spike detection approach no 2: Data
discretization through clustering

Time-points

A A B A A B A A A A B A A A A

Present Patterns:

Figure 5.1: Comparison of the two different ways for detecting Spikes, given a time-series
with 15 time-points. The diagram drawn at the top represents the beta diversity spike hy-

pothesis, where each time-point is represented by a beta diversity value. The 1st number

sequence bellow the diagram represents the discretization approach, where each time-point is

represented by its cluster or state. The number sequence titled as Present Patterns, represents

the patterns that can be detected on that time-series, where symbol A represents similarity to

the previous state and B difference from the previous state. The first number sequence from

the bottom, titled as Time-points, represents the time-points of the time-series

65

Furthermore, the patterns were not dependent on specific states, but on the differ-
ences between consecutive states through time. An example has been the pattern
a-b-c, given three consecutive time-points t1,t2 and t3. This pattern, has not indicated
that a state named a was succeeded by a state named b, which was succeeded by a
state named c. Contrary to that its actual interpretation has been that: (state of t1)
̸= (state of t2) ̸= (state of t3). Similarly, a-b-a could be interpreted as: (state of t1) ̸=
(state of t2), (state of t2) ̸= (state of t3) and (state of t1) = (state of t3).
The identification of a given pattern at the dataset was performed for each clustering
approach separately. Figure 5.1, presents a visual contrast between the discretization
through clustering and the beta diversity approach (def. 3.3) for detecting spikes.
Moreover, it presents the correspondence of states or beta diversity values, to the pat-
terns of temporal changes present in a time-series. In comparing the two approaches,
the discretization approach was less prone to errors than the first one, since the errors
could only be accounted to bad clustering quality, which could be corrected by better
clustering or a clustering ensemble like in section 5.2. The threshold values of the
first approach were more prone to errors, since they were dictated by the median
and standard deviation of the local region of the time-series. The local region of the
time-series, whose size was dictated by a sliding window approach (section 3.3),
was considered to take into account the local fluctuations in diversity and was thus
preferred over the complete time-series. The problem with the local region was the
lack of a way of estimating an optimal length that could take into account the local
changes. Therefore, the selection of an optimal window size was done by a visual
observation of the time-series. For that reason, a bad window size selection could
lead to a bad labeling of the datasets, which could explain the non-optimal results
for spike prediction (table 3.1, section 3.4).
Therefore, the detection of patterns of temporal changes could be described as: the
process of matching a symbolic representation of time-points to patterns of tempo-
ral changes between those representations, and detecting the pattern of interest. The
following algorithm describes the steps taken for pattern detection:

1. The clustering labels were assigned in time-series, meaning that the clustering
label of a given example was assigned to the time-series at the time-point at
which the example belonged to.

2. For each time-series:

66

(a) a sliding window was applied for scanning the time-series, with window
size equal to the length of the pattern. For example, pattern a-b-a had
length 3 and therefore all feature vectors of 3 consecutive time-points were
scanned.

(b) Each subset of time-points fitting to the window size, was checked on
whether it matches the pattern or not. The matching was performed with
the following way: the first cluster label appearing at the sequence was
assigned to the first symbol of the pattern and so on. Afterwards, all cluster
labels were matched to the symbols they were assigned to. For example,
given the pattern a-b-a and the states 2-3-2, 2 would be assigned to a and
3 would be assigned to b. Therefore, 2-3-2 would get matched to a-b-a. In
the case of 2-3-3, the subset would get matched to a-b-b, which is different
than a-b-a.

(c) In case that a subset of time-points did match the pattern, then the middle
time-point was considered as the pattern positive one, and the label 0 was
assigned to the feature vectors of the three previous time-points (t-1,t-2,t-3),
meaning that their future time-point (1,2 or 3 time-points later respectively)
was associated with the pattern. In case that it did not match the pattern,
then the same procedure happened with the difference that the label 1 was
assigned to the feature vectors of time-points t-1,t-2 and t-2, meaning that
their future time-point was not associated with the pattern.

(d) Furthermore, the examples/data points corresponding to time-points t-1,t-2
and t-3 were stored for constructing the dataset.

(e) The spikeness of each pattern positive/negative example was estimated.
This time, the absolute differences approach was preferred over the rela-
tive differences approach for investigating possible changes in the analysis
results. The Jensen-Shannon (eq. 2.51) and Bray-Curtis (eq. 2.61) measures
were both used as possible measures for estimating spikeness (eq. 4.1).
The spikeness value was also stored for the construction of the dataset.

3. After the time-series of all time-points were scanned, three datasets were con-
structed. The stored examples corresponding to time-points t-1, t-2 and t-3
constructed three separate datasets, Xt−1, Xt−2 and Xt−3, with each one corre-
sponding to the temporal proximity between the examples and the pattern posi-

67

tive/negative ones. Examples having the same position/row in all three datasets,
had the same class label, since they belonged to time-points t-1,t-2 and t-3 before
the same temporal change.

4. Since the spikeness for all pattern positive/negative time-points was estimated,
a vector with all spikeness values was constructed. This vector had equal size
to the number of examples and would be used for further analysis.

Since this pattern identification algorithm was applied to the dataset for each clus-
tering solution separately, there existed a different label vector for each solution.
Therefore, the next step was the ensemble of the clustering solutions. The ensemble
would be used to define the final label vector y of the dataset. The ensemble solution
was similar to the one used in ensemble classification [31], where a majority vote is
used for classifying a testing example.
For i=1,..,n, where n is the number of examples in the dataset, and given a voting
threshold votingthr

1. positivei was estimated, where positivei refers to the percentage of 0 (positive
class) values assigned to the ith example for all label vectors.

2. if positivei ≥ votingthr, then: yi = 0,
else: yi = 1.

The output result of the methodology was the label vector y that contained the final
label value. Similar to the methodology used for predicting spikes in section 3.3,
the overlap removal step was applied to the data. The difference from the previous
approach was that according to the methodology of detecting predictable changes, the
time-points t-1,t-2 and t-3 used for prediction were gathered and assembled datasets
before the removal of overlapping examples. Furthermore, a time-constraint of 2
time-points was applied for removing examples being closer to chronologically older
ones from the same time-series and the same class on the dataset. The reason for a
less strict constraint was that the 6 time-points used in the spike prediction analysis
(chapter 3) produced a very small dataset with 79 examples in total (section 3.4)
and thus a larger dataset was desired. While the removal of overlapping examples
did not provide a dataset as pure as the spike prediction one, a temporal-proximity
of 2 time-points ensured that all time-points of the same class would be at least 8
days distant from each other.

68

Hence, the detection of temporal changes lead to the following output results used
for further analysis:
(Xt−3, y) ∈ Dt−3, (Xt−2, y) ∈ Dt−2 and (Xt−3, y) ∈ Dt−1 and spikeness.

5.4 Predictability of Temporal Changes

Given the definitions of predictability (section 4.5) and temporal changes (section
5.3), predictability of temporal changes was defined as: the generalization perfor-
mance of an optimal classification system built using a given dataset and tested on a
given evaluation measure.
Since an optimal classification system could only be approximately constructed (sec-
tion 4.5), it was assumed that the results of a classification system were optimal. A
dataset was considered predictable if its predictability exceeded a desired threshold
(section 4.5). Therefore, the analysis focused on detecting predictable subsets of the
dataset, since the experimentation results of section 4.7 indicated the existence of
such subsets. The most important reason for finding predictable subsets, was that
predictable subsets that made up a significant proportion of the dataset, provided
quantitative information regarding its predictability (section 4.7).
As far as methodology was concerned, the classification system applied was the black-
box classifier (section 4.4). The evaluation measure used was leave-one-out CV (eq.
2.4). The detection of predictable subsets was achieved with the rank-based pre-
dictability approach. For the rank-based selection (section 4.3), the ranking measure
used was spikeness (eq. 4.1).
The datasets used for analysis were: (Xt−3, y) ∈ Dt−3, (Xt−2, y) ∈ Dt−2 and (Xt−1, y) ∈
Dt−1, as well as the spikeness vector.
The steps taken for constructing the dataset, from the initial detection of cluster-
states to the application of the rank-based predictability approach, were similar to
the ones described for the prediction of spikes in section 3.3. The steps taken for
discretization of the dataset and the detection of changes in state were equivalent
to the subset selection and time-point selection steps. The rank-based predictability
step was equivalent to the classification step. The overlap removal step was applied
with the less strict time-constraint of 2 time-points. Finally, the feature selection step
was applied for features whose total value in a given dataset was zero. Therefore,

69

despite the differences in the approaches used, the methodology for the detection of
predictable changes at the given longitudinal dataset could be considered as an auto-
mated way of predicting spikes and similar changes, contrary to the spike prediction
approach where changes were detected based on a hypothesis (section 3.1).

70

5.5 Detailed method description

Algorithm 5.1 Detecting Predictable Changes
Input: Xinitial: Initial Dataset of size NxM.
1: TsX : longitudinal time-series correspondent to the dataset with L time-series, Y
time-points per time-series and W features per time-point where: LxYxW = NxM.

2: cluster_approaches: matrix with K clustering approaches, K ∈ N .
3: votingthr = cluster voting threshold.
4: Input_Pattern: Pattern whose predictability is to be estimated.
5: dissimilarity_measure: measure that will be used for estimating spikeness.
6: Black_Box: black box classifier.
7: generalizationthr: generalization threshold of predictability.
8: lower_bound = lower bounds on rank-based example selection.
9: upper_bound = upper bounds on rank-based example selection.
Output: Predictability, where Predictability is a vector of size upper_bound −

lower_bound, for all dataset subsets selected in the process.
10: Total_Coverage: Percentage of total predictable examples of the dataset.
11: Positive_Coverage: Percentage of positive predictable examples of the dataset.
12: Discretization through clustering phase
13: for i⇐ 1; i ≤ K; i⇐ i+ 1 do
14: cluster_labelsi ⇐ cluster_approachi(Xinitial)

15: discrete_TSi ⇐ passing the labels of cluster_labelsi to TsX

16: class_labeli ⇐ ∅
17: end for
18: windowsize⇐ size(Input_Pattern)

19: Xt−1, Xt−2, Xt−3 ← ∅
20: Patterns of temporal changes detection phase
21: for Time-series in discrete_TSi do
22: for time − point ⇐ 3; time − point ≤ size(Time − series) − windowsize; time −

point⇐ time− point+ windowsize; do
23: pattern_tp← time−point+windowsize/2, is the time-point within the sliding

window frame where the temporal change is expected to happen.

71

24: for i← 1; i ≤ K; i← i+ 1 do
25: subset ← discrete_TSi(time − point) ∪ discrete_TSi(time − point +

1), ..,∪discrete_TSi(time− point+ windowsize)

26: matching ⇐ match subset with pattern.
27: if matching is correct then
28: class_labeli ∪ 0, 0 indicates pattern detection
29: else
30: class_labeli ∪ 1, 1 indicates non-pattern detection
31: end if
32: end for
33: Xt−1 ∪X(pattern_tp− 1)

34: Xt−2 ∪X(pattern_tp− 2)

35: Xt−3 ∪X(pattern_tp− 3)

36: if pattern is associated with a single change in state then
37: spikeness ∪ dissimilarity_measure(pattern_tp− 1, pattern_tp)
38: else
39: spike1 ← dissimilarity_measure(pattern_tp− 1, pattern_tp)
40: spike2 ← dissimilarity_measure(pattern_tp, pattern_tp+ 1)

41: spikeness ∪min(spike1, spike2)

42: end if
43: end for
44: end for
45: class_labels⇐ ∅
46: y ⇐ ∅
47: for i← 1; i ≤ K; i← i+ 1 do
48: class_labels ∪ class_labeli
49: end for

72

50: for i← example ∈ class_labels do
51: positivei ← #[class_labels(i)=0]

K

52: if positivei ≥ votingthr then
53: y ∪ 0

54: else
55: y ∪ 1

56: end if
57: end for
58: Predictability of temporal changes phase
59: Dt−1 ← (Xt−1, y), Dt−2 ← (Xt−2, y) and Dt−3 ← (Xt−3, y)

60: Dsel ← selection between Dt−1, Dt−2 and Dt−3

61: partitionDsel into C1 ← positive class examples, and C2 ← negative class examples.
62: C1 ← rank(spikeness, C1), C2 ← rank(spikeness, C2) , C1 and C2 are ranked on

descending order
63: Predictability ← ∅
64: for k ← lower_bound; k ≤ upper_bound; k ← k + 1 do
65: Top_Positive← the first k examples from C1

66: Bottom_Negative← the last k examples from C2

67: Dk ← Top_Positive ∪Bottom_Negative

68: predictabilityk ← Black_Box(Dk)

69: if predictabilityk ≥ generalizationthr then
70: Break - the detection of predictable subset ceases.
71: else
72: Predictability ∪ predictabilityk

73: end if
74: end for
75: Positive_Coverage← k

size(C1)

76: Total_Coverage← k
size(Dsel)

73

74

Chapter 6

Experimental Results

6.1 Introduction

6.2 Discretization though clustering

6.3 Patterns of Temporal Changes

6.4 Predictability of Temporal Changes

6.5 Discussion

6.1 Introduction

The methodological steps described in the algorithm 5.1 of chapter 5, were followed
for experimentation and analysis. Each section of this chapter corresponds to the
equivalent section of chapter 5, where various plots are used for visualizing the results.

6.2 Discretization though clustering

As mentioned in section 5.2, six different clustering approaches were applied to the
complete dataset, which were named in short as: Jensen-Shannon Agglodip, Bray-
Curtis Agglodip, Euclidean Agglodip, Jensen-Shannon Agglomerative, Bray-Curtis
Agglomerative and Euclidean Agglomerative.
The criterion for estimating the optimal number of clusters at the agglomerative
hierarchical approaches was the mean silhouette value (section 2.3) for all data points

75

of the dataset. The criterion for estimating the optimal number of clusters at the
Agglodip approaches was the dip-dist criterion (section 2.3), which in order to be
utilized optimally was applied to all possible pairs of data points. Therefore, in the
Agglodip approaches all possible pairs of data points were tested with the dip-dist
criterion from the beginning.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

3 3 3 3 3 3 3 4 3 5 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3

3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3

3 3 3 3 3 3 3 5 3 5 5 5 5 3 3 3 3 3 3 3 3 5 5 3 3 3 3 3 3

3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 3

3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 3

3 3 3 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 3 3 3 3 3 3

4 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 3 3 3 3 3 3 3 3 5 5 5 3 5

1 3 3 3 3 3 3 3 1 1 1 3 1 5 5 5 1 3 3 3 1 3 3 1 5 5 1 1 5

3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 3 3 3 3 3 3 3 3 5 3 5 5 5

3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 3 3 3 3 3 3 3 3 5 3 3 4 3

3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 5 3 5 3 3 3 3 3 3 3 3 3 3 3 5 3

3 4 3

Time-series
1:

Bray-Curtis
Agglodip

Jensen-Shannon
Agglodip

Euclidean
Agglodip

Bray-Curtis
Agglomerative

Jensen-Shannon
Agglomerative

Euclidean
Agglomerative

Community State
Type

Time-series
10:

Bray-Curtis
Agglodip

Jensen-Shannon
Agglodip

Euclidean
Agglodip

Bray-Curtis
Agglomerative

Jensen-Shannon
Agglomerative

Euclidean
Agglomerative

Community State
Type

Figure 6.1: Cluster labels assigned to time-points of two time-series for different clustering
approaches. Top panel: time-series 1. Bottom panel: time-series 10. X-axis (all panels): la-

bels per clustering approach. Y-axis (all panels): time-points. The names of the clustering

approaches are on the first column of each panel. The labels of each approach are presented

after having been matched with the equivalent ones of Community State Type (section 5.2).

76

The cluster labels were matched with the equivalent ones from Community State Type
(CST), since CST was used as the reference clustering (section 5.2). The CST labels
in nominal form were: 1,2,3,4 and 5. The clustering results for each approach, after
the matching with CST, were:

1. Jensen-Shannon Agglodip:
4 clusters with the labels 1,2,3 and 5.

2. Bray-Curtis Agglodip:
5 clusters with the labels 1,2,3,4 and 5.

3. Euclidean Agglodip:
4 clusters with the labels 1,2,3 and 5.

4. Jensen-Shannon Agglomerative:
5 clusters with the labels 1,2,3,4 and 5.

5. Bray-Curtis Agglomerative:
5 clusters with the labels 1,2,3,4 and 5.

6. Euclidean Agglomerative:
4 clusters with the labels 1,2,3 and 5.

Figure 6.2: Normalized Mutual Information (NMI) between a number of clustering ap-
proaches and a reference clustering. X-axis: NMI values. Y-axis: names of the clustering

approaches.

77

Figure 6.1 presented examples of cluster label from all clustering approaches and
after having been matched with CST, assigned to their equivalent time-points for two
indicative time-series. The reference clustering for the NMI at figure 6.2, was the
CST. The highest NMI in figure 6.2 was given by the Jensen-Shannon agglomerative
approach, which was reasonable given that the reference clustering was obtained with
the same approach. The reason why both clusterings were not completely identical,
with an NMI of 1, was that the CST clustering was performed on the rRNA gene
sequence data. The analysis at the gene sequence data on [1], produced the relative
abundances used to construct the dataset (section 1.1) of this research. Therefore
in the transition between rRNA gene sequences and relative abundances there was
information loss leading to the deviation between the two clustering approaches.

29,28125 24,96875 19,875 24,53125 23,15625 24,15625

24,96875 29,28125 19,84375 24,375 22,75 24,46875

19,875 19,84375 29,28125 19,9375 18,5 21,125

24,53125 24,375 19,9375 29,28125 27,46875 26,8125

23,15625 22,75 18,5 27,46875 29,28125 26,03125

24,15625 24,46875 21,125 26,8125 26,03125 29,28125

Similarity
Matrix

Bray-Curtis
Agglodip

Jensen -
Shannon
Agglodip

Euclidean
Agglodip

Bray-Curtis
Agglomerative

Jensen-
Shannon

Agglomerative
Euclidean

Agglomerative

Bray-Curtis
Agglodip

Jensen-
Shannon
Agglodip

Euclidean
Agglodip

Euclidean
Agglomerative

Euclidean
Agglomerative

Euclidean
Agglomerative

Figure 6.3: Similarity matrix between a number of clustering approaches. X-axis and y-axis
correspond to pairs of clustering approaches. Given a pair i-j, the value corresponding to i-j

is the global alignment score between clustering approaches i and j

The alignment algorithm used in figure 6.3 was the Needleman-Wunsch algorithm.
Since the solutions did not correspond to amino-acids or nucleotides, a simple iden-
tical matrix was given as input. The identical matrix was used for assigning a high

78

score, considered as alignment, between pairs of the same solution and a lower score,
considered as misalignment, between pairs of different solutions, which would be the
same for all possible pairs. Furthermore, since the Needleman-Wunsch algorithm has
taken amino-acids or nucleotides as input, each cluster label was represented by a
unique amino-acid symbol. After the conversion of cluster labels to amino-acids, the
alignment was applied.
The solutions were aligned for each time-series separately, and the final alignment
was estimated by averaging the similarity matrices of all time-series. The alignment
was time-series wise and not for the complete dataset, since the changes of states of
time-points inside each time-series had to be taken into account for the similarity
estimation.
The solution with the lowest alignment scores (fig. 6.3) was Euclidean Agglodip. For
that reason, this solution was removed from further analysis. The alignment scores
for the rest of the solutions (fig. 6.3) were highly identical, which strengthened the
hypothesis of a good clustering quality. Hence, the five remaining solutions were used
for further analysis since their scores indicated clustering similarity.

6.3 Patterns of Temporal Changes

A number of patterns of temporal changes were tested on whether they could be
detected for all time-series and for all clustering solutions used. The patterns tested
were: A-B-A, A-B-B, A-B-A-A and A-A-B-A-A.
Figure 6.4 displayed the results on pattern detection for pattern A-B-A at two in-
dicative time-series. An indicative example of pattern A-B-A was the subset 7-8-9
of time-series 1 (fig. 6.4, top panel). The clustering labels of this subset for the
aforementioned approaches were: 3-4-3, 3-5-3 or 3-1-3 (fig. 6.1). The classification
labels of those time-points for the aforementioned approaches in figure 6.4 were:
1-0-1, indicating that the pattern was detected correctly. Similarly, all pattern positive
time-points for all time-series were detected correctly.

79

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0 1

Voted Labels 1 1 1 1 1 1 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 0 1

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

1 0 1 1 0 1

1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

Voted Labels 1 0 1

Pattern
A-B-A:

Time-series
1:

Bray-Curtis
Agglodip

Jensen-Shannon
Agglodip

Bray-Curtis
Agglomerative

Jensen-Shannon
Agglomerative

Euclidean
Agglomerative

Time-series
10:

Bray-Curtis
Agglodip

Jensen-Shannon
Agglodip

Bray-Curtis
Agglomerative

Jensen-Shannon
Agglomerative

Euclidean
Agglomerative

Figure 6.4: Class label vectors assigned to time-points of two time-series for different clus-
tering approaches. Top panel: time-series 1. Bottom panel: time-series 10. X-axis (all panels):

class labels per clustering approach - dictated by pattern A-B-A. Y-axis (all panels): time-

points. The names of the clustering approaches are on the first column of each panel. The

final row in all panels corresponds to the labeling that has been derived from voting. The vot-

ing threshold is 40%. The labels for each time-point are binary values representing a pattern

positive (0) or negative (1) time-point, where the pattern is the A-B-A.

80

Pattern A-B-B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1

Voted Labels 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1

1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

Voted Labels 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1

Time-series
1:

Bray-Curtis
Agglodip

Jensen-Shannon
Agglodip

Bray-Curtis
Agglomerative

Jensen-Shannon
Agglomerative

Euclidean
Agglomerative

Time-series
10:

Bray-Curtis
Agglodip

Jensen-Shannon
Agglodip

Bray-Curtis
Agglomerative

Jensen-Shannon
Agglomerative

Euclidean
Agglomerative

Figure 6.5: Class label vectors assigned to time-points of two time-series for different clus-
tering approaches. Top panel: time-series 1. Bottom panel: time-series 10. X-axis (all panels):

class labels per clustering approach - dictated by pattern A-B-B. Y-axis (all panels): time-

points. The names of the clustering approaches are on the first column of each panel. The

final row in all panels corresponds to the labeling that has been derived from voting. The

voting threshold used is 40%. The labels for each time-point are binary values representing

a pattern positive (0) or negative (1) time-point, where the pattern is the A-B-B.

Figure 6.5 displayed the results on pattern detection for pattern A-B-B at the same
time-series as figure 6.4. An indicative example of pattern A-B-B was the subset
8-9-10 of time-series 1, for all approaches except Bray-Curtis Agglodip (fig. 6.5, top
panel, second row). The clustering labels of this subset for the aforementioned ap-
proaches were: 1-3-3, 4-3-3 or 5-3-3. The classification labels of those time-points for

81

the aforementioned approaches in figure 6.5 were: 1-0-1, indicating that the pattern
was detected correctly. Similarly, all pattern positive time-points for all time-series
were detected correctly.

The same experiments were performed for all time-series and for all patterns. The
voting threshold used for voting in all clustering approaches whether a pattern detec-
tion was true or not, was 0.4. The classification labels of all time-series were merged
and constituted the classification vector label y. Finally, the spikeness measure (eq.
4.1) for all examples was estimated with the absolute differences approach using both
the Jensen-Shannon (eq. 2.51) and Bray-Curtis (eq. 2.61) measures (figs. 6.6 and
6.7).

Figure 6.6: Histogram of spikeness values for pattern A-B-A, estimated with the Jensen-

Shannon divergence measure. X-axis: number of examples with a spikeness value in a given

range. Y-axis: spikeness values. The blue color corresponds to the positive class. The red

color corresponds to the negative class. There is a small portion of positive examples less

than 20, overlapping with negative ones in the range 0-0.2. There is another portion of

positive examples less than 20, overlapping with negative ones in the range 0.2-0.4. Further

few negative examples overlap with positives in the range 0.55-0.65. Hence, there is impurity

between the two classes but the portion of overlapping examples is small.

82

Figure 6.7: Histogram of spikeness values for pattern A-B-A, estimated with the Bray-

Curtis dissimilarity measure. X-axis: number of examples with a spikeness value in a given

range. Y-axis: spikeness values. The blue color corresponds to the positive class. The red

color corresponds to the negative class. There is a small portion of positive examples less

than 20, overlapping with negative ones in the range 0-0.3. There is another portion of

positive examples less than 20, overlapping with negative ones in the range 0.3-0.6. Further

few negative examples overlap with positives in the range 0.6-0.68 and 1. Hence, there is

impurity between the two classes but the portion of overlapping examples is small.

6.4 Predictability of Temporal Changes

The detection of temporal changes resulted in 3 datasets, (Xt−3, y) ∈ Dt−3, (Xt−2, y) ∈
Dt−2 and (Xt−1, y) ∈ Dt−1 (section 5.4), and two spikeness vectors (one for the Bray-
Curtis and one for the Jensen-Shannon measure), for each pattern separately leading
to 12 datasets in total used for experimentation. After the removal of overlapping
examples and selection of non-zero features, the number of examples and features
remaining for each dataset was:
Pattern: A-B-A
Xt−3 : 433 examples, 268 features.
Xt−2 : 433 examples, 251 features.
Xt−1 : 433 examples, 272 features.
positive examples: 38

83

y : 433 labels, spikeness : 433 values.
Pattern: A-B-B
Xt−3 : 455 examples, 267 features.
Xt−2 : 455 examples, 266 features.
Xt−1 : 455 examples, 272 features.
positive examples: 64
y : 455 labels, spikeness : 455 values.
Pattern: A-A-B-A
Xt−3 : 421 examples, 261 features.
Xt−2 : 421 examples, 256 features.
Xt−1 : 421 examples, 258 features.
positive examples: 32
y : 421 labels, spikeness : 421 values.
Pattern: A-A-B-A-A
Xt−3 : 400 examples, 262 features.
Xt−2 : 400 examples, 257 features.
Xt−1 : 400 examples, 258 features.
positive examples: 22
y : 400 labels, spikeness : 400 values.

The estimation of spikeness for pattern A-B-B was different than the rest 3 pat-
terns. Pattern A-B-B implied that there existed a single change in state contrary to
the double change found in spikes. For that reason, spikeness was estimated as:
diversityt, where diversityt was either Jensen-Shannon or Bray-Curtis dissimilarity
between t and t-1, and time-points t-1 and t corresponded to A and the first B from
A-B-B. The rest of the patterns were estimated with the absolute differences approach
as mentioned in section 4.2.
The classification models (section 2.2) used to construct the Black-Box classifier were
the ones used in section 4.7. Three experiments were conducted, which tested the
predictability of the 4 patterns for the three datasets. At the first experiment, named
balanced predictability, rank-based predictability was applied to all datasets for all
patterns with spikeness estimated by both Jensen-Shannon and Bray-Curtis mea-
sures. The subsets selected contained initially 10 top positive and 10 bottom negative
examples and gradually increased in size until they contained K top positive and K

84

bottom negative examples, were K = number of positive examples in the dataset.
At the second experiment, named imbalanced predictability, the above procedure was
repeated, with the difference that the initial subsets selected contained K top posi-
tive examples and K+1 bottom negative examples. The negative examples gradually
increased in size, 1 new bottom ranked example added at a time, until predictabil-
ity was lower than 0.7 or the total number of negative examples had been reached.
Since, the class distribution was imbalanced the problem was corrected in LOT CV
(section 2.2) with the following way: for each testing example, there existed 11 dif-
ferent under-samplings of the training data that produced balanced training sets.
Each under-sampled training set classified the testing example and produced a label-
output. The majority class label from all 11 different outputs was the one assigned to
the testing example.
At the final experiment conducted, random-based predictability was applied to a
dataset for k positive and negative examples, for multiple repetitions, and the aver-
age predictability was compared with the rank-based predictability.

6.4.1 Balanced-Predictability

Initially, the dataset Dt−2 was selected for testing the predictability of examples repre-
senting the feature vector at time-point t-2 for all patterns. Moreover, spikeness was
measured with the Jensen-Shannon divergence index.
Figures 6.8, 6.9, 6.10 and 6.11 indicated the rank-based predictability of the dataset
containing examples present 2 time-points before the temporal change occurrence, for
the 4 patterns and with Jensen-Shannon as a measure for estimating spikeness. For
all patterns and for all tested rankings, the predictability was higher than the 0.7
threshold value which was also used at the predictability experiments of section 4.7.
Moreover, the highest predictability found in all patterns was 1, indicating a zero
generalization error. Furthermore, in all cases the predictability of a pattern with top
K positive and bottom K negative was >= 0.7. Therefore, the results indicated that
the selection of positive examples and a number of bottom ranked examples equal to
the positive ones for training, created subsets which predicted the tested patterns.

85

Figure 6.8: Rank-based predictability for pattern A-B-A at time-point t-2. X-axis: number

of selected examples. Y-axis: predictability. Spikeness was estimated with the Jensen-Shannon

divergence measure. The number of selected examples composing each subset contains an

equal number of top-ranked selected examples from the positive class and bottom-ranked

selected examples from the negative class. Therefore, in the subset with 20 selected examples,

the top-ranked selected positive examples are 10 and the bottom-ranked selected negative

examples are 10. The threshold value used is 0.7.

86

Figure 6.9: Rank-based predictability for pattern A-B-B at time-point t-2. X-axis: number
of selected examples. Y-axis: predictability. Spikeness was estimated with the Jensen-Shannon

divergence measure. The number of selected examples composing each subset contains an

equal number of top-ranked selected examples from the positive class and bottom-ranked

selected examples from the negative class. Therefore, in the subset with 20 selected examples,

the top-ranked selected positive examples are 10 and the bottom-ranked selected negative

examples are 10. The threshold value used is 0.7.

87

Figure 6.10: Rank-based predictability for pattern A-A-B-A at time-point t-2. X-axis: num-
ber of selected examples. Y-axis: predictability. Spikeness was estimated with the Jensen-

Shannon divergence measure. The number of selected examples composing each subset con-

tains an equal number of top-ranked selected examples from the positive class and bottom-

ranked selected examples from the negative class. Therefore, in the subset with 20 selected

examples, the top-ranked selected positive examples are 10 and the bottom-ranked selected

negative examples are 10. The threshold value used is 0.7.

88

Figure 6.11: Rank-based predictability for pattern A-A-B-A-A at time-point t-2. X-axis:

number of selected examples. Y-axis: predictability. Spikeness was estimated with the Jensen-

Shannon divergence measure. The number of selected examples composing each subset con-

tains an equal number of top-ranked selected examples from the positive class and bottom-

ranked selected examples from the negative class. Therefore, in the subset with 20 selected

examples, the top-ranked selected positive examples are 10 and the bottom-ranked selected

negative examples are 10. The threshold value used is 0.7.

The experimentation continued with datasets Dt−1 and Dt−3, as well as repeated
again with the Bray-Curtis measure for estimating spikeness. Since the spikeness with
Bray-Curtis had different distribution than with Jensen-Shannon (figs. 6.6, 6.7), the
ranking was different and thus predictability was different than before.
Figure 6.12 contained information regarding the rank-based predictability for pattern
A-B-B at Dt−1 with the Jensen-Shannon measure. Its average predictability was 0.912
and was higher in comparison to the equivalent one at Dt−1 with the Jensen-Shannon
measure, which was 0.781. This result strengthened the hypothesis that time-points
closer to a temporal change than others, have been expected to be better predictors
than the rest. Similar results were found for the rest of the patterns at Dt−1.
Figure 6.13 contained similar information for pattern A-B-A with the Bray-Curtis
measure. Its average predictability was 0.82 and was higher in comparison to the

89

equivalent one at Dt−2 with the Jensen-Shannon measure, which was 0.79. While
the result did not indicate an optimality of the measure for estimating spikeness
(eq. 4.1) over Jensen-Shannon, it did indicate that this measure was as effective as
Jensen-Shannon in rank-based example selection.

Figure 6.12: Rank-based predictability for pattern A-B-B at time-point t-1. X-axis: number
of selected examples. Y-axis: predictability. Spikeness was estimated with the Jensen-Shannon

divergence measure. The number of selected examples composing each subset contains an

equal number of top-ranked selected examples from the positive class and bottom-ranked

selected examples from the negative class. Therefore, in the subset with 20 selected examples,

the top-ranked selected positive examples are 10 and the bottom-ranked selected negative

examples are 10. The threshold value used is 0.7.

90

Figure 6.13: Rank-based predictability for pattern A-B-A at time-point t-2. X-axis: number
of selected examples. Y-axis: predictability. Spikeness was estimated with the Bray-Curtis

dissimilarity measure. The number of selected examples composing each subset contains an

equal number of top-ranked selected examples from the positive class and bottom-ranked

selected examples from the negative class. Therefore, in the subset with 20 selected examples,

the top-ranked selected positive examples are 10 and the bottom-ranked selected negative

examples are 10. The threshold value used is 0.7.

As far as coverage of the aforementioned datasets was concerned, the results were
summarized in tables 6.1 and 6.2. Note that positive coverage is equal to 1 in almost
all cases.

Table 6.1: Total Coverage for all datasets per pattern (Jensen-Shannon). X-axis: tested
pattern. Y-axis: feature vectors per time-point.

Dataset/Pattern ABA ABB AABA AABAA

Dt−1 0.17 0.16 0.18 0.19

Dt−2 0.17 0.16 0.18 0.19

Dt−3 0.09 0.16 0.18 0.19

91

Table 6.2: Positive Coverage for all datasets per pattern (Jensen-Shannon). X-axis:
tested pattern. Y-axis: feature vectors per time-point.

Dataset/Pattern ABA ABB AABA AABAA

Dt−1 1 1 1 1

Dt−2 1 1 1 1

Dt−3 0.52 1 1 1

6.4.2 Imbalanced Predictability

The imbalanced predictability was tested for all patterns at Dt−2. The imbalanced
subsets were classified as clarified in the beginning of that section. For each subset,
the results from balanced and imbalanced predictability were gathered together, and
the subsets were presented in an ascending order. Furthermore, the f-measure was
used to estimate the classification performance of the black-box classifier models, since
the accuracy measure is not suitable for imbalanced datasets.
According to the predictability results in figures 6.14, 6.15, 6.16 and 6.17, the
number of selected bottom negative examples has been extended for all patterns in
greater numbers than the positive ones. The four tested patterns were predictable for
a number of subsets constructed with the extended bottom negative examples and
all positive examples. For all predictable patterns, the maximum number of negative
examples was greater than the positives. While the total coverage was not large, it
indicated the borders between the gray-zone and the top and bottom examples (sec.
4.3).

92

Figure 6.14: Rank-based imbalanced predictability for pattern A-B-A at time-point t-2. X-
axis: number of selected examples. Y-axis: predictability. Spikeness was estimated with the

Jensen-Shannon dissimilarity measure. The number of selected examples composing each

subset contains an equal number of top-ranked selected examples from the positive class

and bottom-ranked selected examples from the negative class until number 72. Afterwards,

since the maximum number of positive examples (38) has been reached, the subsets selected

contain 38 positive examples and n-38 negative examples, where n is the size of the subset.

The threshold value used is 0.7.

93

Figure 6.15: Rank-based imbalanced predictability for pattern A-B-B at time-point t-2. X-
axis: number of selected examples. Y-axis: predictability. Spikeness was estimated with the

Jensen-Shannon dissimilarity measure. The number of selected examples composing each

subset contains an equal number of top-ranked selected examples from the positive class

and bottom-ranked selected examples from the negative class until number 124. Afterwards,

since the maximum number of positive examples (62) has been reached, the subsets selected

contain 62 positive examples and n-62 negative examples, where n is the size of the subset.

The threshold value used is 0.7.

94

Figure 6.16: Rank-based imbalanced predictability for pattern A-A-B-A at time-point t-2.

X-axis: number of selected examples. Y-axis: predictability. Spikeness was estimated with

the Jensen-Shannon dissimilarity measure. The number of selected examples composing each

subset contains an equal number of top-ranked selected examples from the positive class

and bottom-ranked selected examples from the negative class until number 66. Afterwards,

since the maximum number of positive examples (33) has been reached, the subsets selected

contain 33 positive examples and n-33 negative examples, where n is the size of the subset.

The threshold value used is 0.7.

95

Figure 6.17: Rank-based imbalanced predictability for pattern A-A-B-A-A at time-point t-

2. X-axis: number of selected examples. Y-axis: predictability. Spikeness was estimated with

the Jensen-Shannon dissimilarity measure. The number of selected examples composing each

subset contains an equal number of top-ranked selected examples from the positive class

and bottom-ranked selected examples from the negative class, until number 44. Afterwards,

since the maximum number of positive examples (22) has been reached, the subsets selected

contain 22 positive examples and n-22 negative examples, where n is the size of the subset.

The threshold value used is 0.7.

6.4.3 Rank-Based vs Random-Based Predictability

The random-based predictability procedure was repeated 10 times, and the mean,
standard deviation, minimum and maximum values of all outputs were estimated.

96

Figure 6.18: Random-based predictability for pattern A-B-A at time-point t-2 with 40 se-

lected examples. X-axis: under-sampling repetitions. Y-axis: predictability. The number of

selected examples composing the subset contains an equal number of the positive and nega-

tive class, hence 20 positive and 20 negative examples. The positive and negative examples

were selected randomly from the dataset.

Figure 6.18 included the results of random-based predictability at time-point t-2, for
pattern A-B-A with 20 randomly selected positive and 20 randomly selected negative
examples, repeated 10 times. The results indicated predictability values with: mean =
0.735, standard deviation = 0.109, minimum value = 0.6, maximum value = 1. Despite
the mean being bellow 0.79, which was the equivalent predictability of the rank-based
approach, the maximum value exceeded it. This could be contributed to the fact that
while 40 examples were selected, the rank-based predictability experiments for A-
B-A (fig. 6.8) produced predictable subsets with maximum size = 76. Therefore,
in case that the top 20 positive and bottom 20 negative examples were not selected,
there were still 18 top positive and 18 bottom negative examples which, if randomly
included in the subset, could produce high predictability values.

97

6.5 Discussion

The rank-based predictability of pattern ABA at time-point t-3 indicated a maxi-
mum predictable subset of both 20 top positive and 20 bottom negative examples
for Jensen-Shannon and 22 top positive and 22 bottom negative examples for Bray-
Curtis. Therefore, positive coverage in the first case was 52% and in the second case
57%. For the rest of the patterns in time-point t-3 and for all patterns in time-points
t-2 and t-1 with both dissimilarity measures, which accounted for 22 cases in total, the
positive coverage was 100% (table 6.2). Hence, the coverage for the positive examples
was complete in almost all cases which indicated that the spikeness distribution of
positive examples was differentiated than the bottom negative ones with size equal
to the positives (indicative examples in figures 6.6 and 6.7).
Moreover, the results of rank-based predictability for pattern ABA with 40 selected ex-
amples (fig. 6.8) were reasonable when compared to the equivalent ones of random-
based predictability (fig. 6.18). As shown in subsection 6.4.3, the existence of highly
predictable random subsets could be accounted to the complete coverage of positive
examples for most of the cases, as shown in the above paragraph. Moreover, the
average random predictability did not exceed in any experiment the equivalent rank-
based one (sub. 6.4.3), which indicated the superiority of selecting subsets based on
spikeness, in terms of predictability.
The predictability per time-point for all patterns indicated that Dt−1 had higher val-
ues (indicative example in fig. 6.12), which could be interpreted as: predictors closer
to a temporal change have been more accurate than the rest.
The comparison between the two dissimilarity measures used in terms of predictabil-
ity indicated that the predictability of patterns for all time-points was quite similar
between the Bray-Curtis and Jensen-Shannon approach for estimating spikeness (in-
dicative example in fig. 6.13). Therefore, Bray-Curtis as a measure for estimating
spikeness was proved to be as effective as Jensen-Shannon in terms of rank-based
example selection.
Finally, the total coverage was not high (table 6.1). However, in all cases negative
coverage was higher than positive coverage which indicated that there existed a de-
cent percentage of negative examples which were differentiated from the positive ones
in black-box classification.

98

Chapter 7

Conclusion and Future Work

7.1 Conclusion

7.2 Future Work

7.1 Conclusion

This research investigated the predictability of temporal changes between various
states in a longitudinal dataset composed of vaginal microbiome data. Initially, the
analysis focused on the prediction of double changes in microbial composition, which
were named as spikes. A hypothesis associating the spikes with fluctuations in the
beta diversity of the time-points was made. According to that hypothesis, time-points
present 1-3 time-points before a spike positive or negative one, were labeled as posi-
tive or negative. With regards to the temporal distance between a labeled time-point
and a spike positive or negative one, datasets were constructed with the two categories
and were classified with various classification models. The classification performance
per dataset was associated with the predictability of the spike.
The classification results for all datasets were close to 0.7. To test for better results, sub-
sets of the datasets with classification performance greater than the complete dataset
were examined. A continuous measure describing the amount of change in compo-
sition between consecutive time-points, named spikeness was estimated for all time-
points. The examples of each dataset were ranked based on spikeness and subsets
based on the ranking were constructed. This procedure was named as rank-based

99

selection. Moreover, a new measure was used for quantifying the predictability of
the various datasets and their subsets. Hence, predictability was defined as the gen-
eralization performance of an optimal classification system applied on a dataset and
tested with a given measure. A dataset was considered predictable if its predictability
exceeded a user-specified threshold. The optimal classification system was the black-
box classifier, at which a given dataset was classified by a set of various classification
models and external model parameters, wherein the classification results were derived
from the best performing model. Finally, gradually increasing subsets of the dataset
based on the top ranked positive and bottom ranked negative examples were tested
on their predictability until the subsets contained K top ranked positive and K bot-
tom ranked negative examples, were K was equal to the number of positive examples.
This methodology was named as rank-based predictability and was compared with
the predictability of randomly selected subsets. The results were satisfactory, since
rank-based predictability indicated the existence of subsets with higher predictability
than the complete dataset and higher or equal predictability to randomly selected
ones.
Furthermore, the detection of spikes based on the beta diversity hypothesis was prone
to errors. Moreover, according to this hypothesis, manually included thresholds were
used to label the examples in the two categories. To automate the approach, a new
way of detecting temporal changes was used. Instead of threshold values, the feature
vectors at all time-points were discretized and represented by a symbolic value called
state. The discretization was applied through clustering and thus the states were the
clustering labels. Patterns of temporal changes in state like the spike, were detected
with the use of a symbolic representation. The detection of the temporal patterns indi-
cated a number of time-points as pattern positive or pattern negative. Feature vectors
at time-points preceding the pattern positive/negative examples by 1-3 time-points
were labeled as positive or negative ones and a number of datasets was constructed
again based on the time-point distance from the pattern positive/negative one. The
rank-based predictability approach was applied to the datasets, with various dissim-
ilarity measures estimating spikeness which was used for ranking. The predictability
results were compared with the random-based ones and exceeded their average pre-
dictability indicating that the rank-based predictability approach was superior to the
random-based approach. Rank-based predictability was tested for a number of dif-
ferent temporal patterns, for a big number of subsets, different time-points preceding

100

the changes and different ways of measuring spikeness. The conclusion made from
the analysis was that the tested patterns were predictable for subsets having a high
coverage of the positive examples.

7.2 Future Work

As far as future work is concerned, the most important work could be the appli-
cation of the algorithm for detecting predictable changes in other real time-series
or longitudinal datasets. Even without pre-processing, the dataset used contained
937 time-points and thus its size was small in comparison to other available time-
series datasets. Therefore, it has been of major interest to test the algorithm on larger
datasets, as well as datasets of different origin like macro-economic time-series.
Another future work could be the inclusion of more classifiers to the black-box for
a more optimal generalization performance. Since the black-box classifier utilized the
most optimal classifier at a time, additional classifiers could increase the probability
of improved classification accuracy. An example of alternative classification models
for testing would be Bayesian Networks. As mentioned in [33], Multi-level Temporal
Bayesian Networks have been useful in analyzing hierarchical health care data and
thus could be applied to longitudinal or time-series data. However, statistical machine
learning models have worked optimally with large datasets, and thus larger dataset
than the one used in this analysis would be preferred.
The algorithm for detecting predictable temporal changes was based on discretizing
the data on states. Discretization was prone to errors since it was based on a major-
ity voting of clustering approaches, for whom the clustering performance optimality
could not be certain. A different approach would be the detection of temporal changes
based on continuous instead of discrete values. Instead of clustering the data, each
time-point could be represented by its dissimilarity in composition with the previous
one, as used in the analysis for estimating spikeness and for the beta diversity spike
hypothesis. Since all time-points could be represented by a continuous value, then
the ranking could be performed without class labels: the top k and bottom k exam-
ples would be chosen based on spikeness or another dissimilarity value, where k is
user defined, and they would constitute the positive and negative category applied to
rank-based predictability. Hence, instead of being pre-defined based on discretization,

101

class labeling would be performed for each rank-based selected subset separately. The
advantage of this approach is that it is not affected by clustering errors and is based
on direct dissimilarity between two consecutive time-points.
Another future work reference would be the implementation of feature selection to
the rank-based predictability approach. After the predictability of each selected subset
of the dataset has been estimated, a feature selection algorithm would be applied for
selecting the most important features of the subset that were responsible for the re-
sult. The information of feature importance would be valuable in fields like Biology.
By taking as an example the relative abundances of bacteria used in this thesis, the
discovery of the most important bacteria in predictable subsets could lead the biol-
ogists into discovering important properties of those bacteria or searching for useful
existing information.
Moreover, there is further work to be made with regards to prediction of temporal
changes. The feature vectors used for estimating predictability of temporal changes
belonged to time-points t-1, t-2 and t-3 before the pattern positive/negative time-point
t. Earlier time-points like t-4, t-5 and t-6 could be included in the analysis in order
to comprehend how backwards in time can feature vectors be selected for estimating
predictability.
Furthermore, the datasets used in the analysis contained a positive and a negative
category. The negative category was the category of examples for whom the pattern
for search was not detected. However, despite the fact the the negative examples did
not correspond to the searched pattern, they could correspond to another pattern of
temporal change. Examples such as the aforementioned are indicative of temporal
changes in state. There are two possible approaches for utilizing such examples in
the analysis. The first approach, would be the estimation of predictability through a
multi-class classification in which each pattern detected in the analysis would consti-
tute a class/category. The examples which did not correspond to a pattern would be
included in a negative class. A second approach, would be to include the examples
corresponding to all detected patterns to a positive category. In this case, predictabil-
ity would be estimated through a two-class classification in which the number of
positive examples would be greater than in the current approach.
Finally, more clustering approaches could be applied to the discretization phase of
detecting predictable temporal changes. Hierarchical clustering methods would still
be preferred, since the number of clusters is not user defined. A divisive hierarchical

102

clustering method could be applied, with number of clusters decided based on an eval-
uation measure like Silhouette (section 2.3). Furthermore, the dip-means algorithm
could be applied, since it utilizes the dip-dist criterion like the agglodip algorithm
(section 2.3), and its performance on clustering was superior when compared with
various clustering methods [23].

103

104

Bibliography

[1] P. Gajer, R. Brotman, G. Bai, J. Sakamoto, U. Schütte, X. Zhong, S. Koenig,
L. Fu, Z. Ma, X. Zhou, Z. Abdo, L. Forney, and J. Ravel, “Temporal dynamics
of the human vaginal microbiota,” Science Translational Medicine, vol. 4, no. 132,
p. 132ra52, 2012.

[2] J. Ravel, P. Gajer, Z. Abdo, G. Schneider, S. Koenig, S. McCulle, S. Karlebach,
R. Gorle, J. Russell, C. Tacket, R. Brotman, C. Davis, K. Ault, L. Peralta, and
L. Forney, “Vaginal microbiome of reproductive-age women,” Proceedings of the
National Academy of Sciences (PNAS), vol. 108, no. 1, p. 4680–4687, 2011.

[3] E. Costello, C. Lauber, M. Hamady, N. Fierer, J. Gordon, and R. Knight, “Bacterial
community variation in human body habitats across space and time,” Science,
vol. 326, no. 5960, pp. 1694–1697, 2009.

[4] J. Willey, L. Sherwood, and C. Woolverton, Prescott’s Microbiology. McGraw Hill,
ninth ed., 2013.

[5] M. Nakai and W. Ke, “Statistical models for longitudinal data analysis,” Applied
Mathematical Sciences, vol. 3, no. 40, pp. 1979–1989, 2009.

[6] G. van Belle, D. Lloyd, P. Heagerty, and T. Lumley, Biostatistics: a methodology for
the Health sciences. John Wiley and Sons Inc, second ed., 2004.

[7] C. Tamboli, C. Neut, P. Desreumaux, and J. Colombel, “Dysbiosis in inflammatory
bowel disease,” Journal of Clinical Microbiology (JCM), vol. 53, no. 1, p. 1–4, 2004.

[8] Q. Wang, G. Garrity, J. Tiedje, and J. Cole, “Naïve bayesian classifier for rapid
assignment of rrna sequences into the new bacterial taxonomy,” Applied and
Environmental Microbiology, vol. 73, no. 16, p. 5261–5267, 2007.

105

[9] R. Nugent, M. Krohn, and S. Hillier, “Reliability of diagnosing bacterial vaginosis
is improved by a standardized method of gram stain interpretation,” Journal of
Clinical Microbiology (JCM), vol. 29, no. 2, pp. 297–301, 1991.

[10] C. M. Bishop, Pattern Recognition and Machine Learning. Information Science and
Statistics, Springer, first ed., 2006.

[11] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation
and model selection,” in Proceedings of the 14th international joint conference on
Artificial intelligence (IJCAI), vol. 2, pp. 1137–1143, Morgan Kaufmann Publishers
Inc, 1995.

[12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, 1995.

[13] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Pearson, first ed.,
2005.

[14] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is ”nearest neigh-
bor” meaningful?,” in ICDT: International Conference on Database Theory, pp. 217–
235, 1999.

[15] N. Tomašev, K. Buza, K. Marussy, and P. Kis, “Hubness-aware classification, in-
stance selection and feature construction: Survey and extensions to time-series,”
Studies in Computational Intelligence, vol. 584, pp. 231–262, 2014.

[16] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic Press,
fourth ed., 2008.

[17] P. Jaskowiak and R. Campello, “Comparing correlation coefficients as dissim-
ilarity measures for cancer classification in gene expression data,” in Brazilian
Symposium on Bioinformatics, pp. 231–262, 2011.

[18] R. Fisher, “The use of multiple measurements in taxonomic problems,” Annals
of eugenics, 1936.

[19] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

106

[20] Y. Bengio, I. Goodfellow, and A. Courville, Deep Learning. MIT Press, first ed.,
2015.

[21] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise train-
ing of deep networks,” in Advances in Neural Information Processing Systems 19,
pp. 153–160, MIT Press, 2006.

[22] P. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20,
pp. 53–65, 1987.

[23] A. Kalogeratos and A. Likas, “Dip-means: an incremental clustering method for
estimating the number of clusters,” in Advances in Neural Information Processing
Systems 25 (NIPS 2012), pp. 2402–2410, 2012.

[24] J. Hartigan and P. Hartigan, “The dip test of unimodality,” The Annals of Statistics,
vol. 13, no. 1, pp. 70–84, 1985.

[25] S. Kullback and R. Leibler, “On information and sufficiency,” The Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[26] J. Lin, “Divergence measures based on the shannon entropy,” IEEE Transactions
on Information Theory, vol. 37, no. 1, pp. 37:–145, 1991.

[27] J. Bray and J. Curtis, “An ordination of the upland forest communities of south-
ern wisconsin,” Ecological monographs, vol. 7, no. 4, pp. 325–349, 1957.

[28] K. Clarke, J. Paul, and M. Chapman, “On resemblance measures for ecological
studies, including taxonomic dissimilarities and a zero-adjusted bray–curtis co-
efficient for denuded assemblages,” Journal of Experimental Marine Biology and
Ecology, vol. 330, no. 1, pp. 55–80, 2006.

[29] J. Jacobs, “Using β-diversity and similarity/dissimilarity indices to measure di-
versity across sites, communities, and landscapes,” tech. rep., Semantics Scholar,
2008.

[30] Y. Leung and D. Cavalieri, “Fundamentals of cdna microarray data analysis,”
TRENDS in Genetics, vol. 19, no. 11, pp. 649–659, 2003.

107

[31] T. Dietterich, “Ensemble methods in machine learning,” in Proceedings of the First
International Workshop on Multiple Classifier Systems, pp. 1–15, Springer-Verlag,
2000.

[32] S. Needleman and C. Wunsch, “A general method applicable to the search for
similarities in the amino acid sequence of two proteins,” Journal of Molecular
Biology 1970, vol. 48, no. 3, pp. 443–453, 1970.

[33] M. Lappenschaar, A. Hommersom, P. Luca, J. Lagro, and S. Visscher, “Multi-
level bayesian networks for the analysis of hierarchical healthcare data,” Artificial
Intelligence in Medicine, vol. 57, no. 3, pp. 171–183, 2013.

108

Short Biography

Nestor Timonidis was born in 1991 in Thessaloniki, Greece. He received his Diploma
degree from the Department of Computer Science and Engineering of the University
of Ioannina, Greece, in 2015. His Diploma Thesis was based on the development of
an agglomerative clustering algorithm and its application on face image clustering.
Since then, he has been a Master student at the ”Informatics” Postgraduate Program
of the same Department, with specialization in Technologies-Applications. In 2014
he was an intern at Qbase R&D, where he participated at the development of the
Alexilio project, an intelligent system that provided smart indications to alert peo-
ple from overexposure to solar radiation. In 2016, he was an intern at the Centre
for Molecular and Biomolecular Informatics (CMBI) of Radboud University Medical
Centre in Nijmegen, Netherlands. His research interests include Machine Learning
methods (Clustering and Classification) and their application on Life Sciences and
Systems Biology.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Longitudinal Microbiome Data
	Thesis Contribution

	Machine Learning Methods
	Introduction
	Classification Methods
	Classifier Evaluation
	Support Vector Machines
	Decision Trees
	k-Nearest Neighbors
	Linear Discriminant Classifier
	Stacked Autoencoders

	Clustering Methods
	K-means
	Silhouette Measure
	Agglomerative hierarchical clustering
	Dip-dist criterion
	Agglodip

	Distance Measures
	Kullback-Leibler Divergence
	Jensen-Shannon Divergence
	Bray-Curtis Dissimilarity

	Spike Prediction
	Spike Definition
	Research Goal
	Dataset
	Experimental Results
	Subset selection step:
	Overlap removal step:
	Time-point selection step
	Feature selection step:
	Classification step:

	Detecting Predictable Subsets
	Introduction
	Spikeness measure
	Rank-based example selection
	Black-Box Classifier
	Predictability
	Rank-based vs random-based predictability
	Experimental Results

	Detecting Predictable Changes
	Problem Definition
	Discretization through clustering
	Patterns of Temporal Changes
	Predictability of Temporal Changes
	Detailed method description

	Experimental Results
	Introduction
	Discretization though clustering
	Patterns of Temporal Changes
	Predictability of Temporal Changes
	Balanced-Predictability
	Imbalanced Predictability
	Rank-Based vs Random-Based Predictability

	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Short Biography

