
Service Management in NoSQL Data Stores via
Replica-group Reconfigurations

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Evdoxos Bekas

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

July 2017

Examining Committee:

• Δημακόπουλος Βασίλειος, Αναπληρωτής Καθηγητής, Τμήμα Μηχανικών Η/Υ
και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων

• Μαγκούτης Κωνσταντίνος (Επιβλέπων), Επίκουρος Καθηγητής, Τμήμα Μη-
χανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων

• Πιτουρά Ευαγγελία, Καθηγήτρια, Τμήμα Μηχανικών Η/Υ και Πληροφορικής,
Πανεπιστήμιο Ιωαννίνων

Acknowledgements

I would like to thank my supervisor, Prof. Kostas Magoutis, for all the guidance
advice and motivation he has provided throughout my time of research and writing
of this thesis.
Furthermore, I would like to thank Prof. Vassilios V. Dimakopoulos and Prof.

Evaggelia Pitoura for agreeing to participate in my examination committee and for
their comments on my thesis draft.

Table of Contents

List of Figures iii

List of Tables v

Abstract vi

Εκτεταμένη Περίληψη vii

1 Introduction 1
1.1 Objectives . 3
1.2 Thesis structure . 4

2 Background 5
2.1 Related work . 5
2.2 Systems used in this thesis . 8

2.2.1 RethinkDB . 8
2.2.2 Containers and Docker . 11
2.2.3 Kubernetes . 13

3 Design 16
3.1 Architecture . 16
3.2 The impact of simultaneous hot-spots across data-store cluster 20
3.3 Handling infrastructure-related cross-layer notifications 21

4 Implementation 23
4.1 Cross layer management . 23
4.2 Reconfiguration controller . 27

i

5 Evaluation 30
5.1 Research questions . 30
5.2 Evaluation of the cross-layer management prototype 31

5.2.1 Reactive adaptivity to unscheduled downtime of a node 32
5.2.2 Proactive adaptivity to scheduled node downtime 33
5.2.3 Offloading a brief hot-spot via reconfiguration 33
5.2.4 Offloading a brief hot-spot via proactive reconfiguration 35
5.2.5 Offloading a longer-term hot-spot via reconfiguration and replica

migration . 36
5.3 Cost-benefit analysis of adaptation actions 37

5.3.1 Determining the break-even point for individual hot-spot spikes 37
5.3.2 Simultaneous hot-spots across data-store cluster 42

6 Conclusions and Future Work 45
6.1 Conclusions . 45
6.2 Future work . 46

Bibliography 47

ii

List of Figures

1.1 Reconfiguration on a primary-backup replication system 2

2.1 Updating the contents of table_config via the web console 12
2.2 Sharding and replication via the web console [1] 13
2.3 Kubernetes architecture [2] . 15

3.1 Reconfiguration manager architecture 17
3.2 Two hot-spots apply simultaneously on nodes 1 and 3 19
3.3 Probability of 8 different hot-spots to affect a majority of replicas of a

particular shard consisting of 3 replicas on a 8 node cluster 21

4.1 Reconfiguration manager implementation on Google Container Engine . 24
4.2 The experimental testbed . 26
4.3 Reconfiguration manager architecture. 28

5.1 Reactive vs. proactive adaptivity to downtime of a node (Node 1) . . . 31
5.2 Reactive adaptivity to unscheduled downtime of a node (scenario of

Figure 5.1a) . 31
5.3 Proactive adaptivity to scheduled downtime of a node (scenario of Fig-

ure 5.1b) . 32
5.4 Offloading a hot-spot (Node 1): Brief vs. long-lasting hot-spot 34
5.5 Offloading a brief hot-spot via reconfiguration (scenario of Figure 5.4a) 34
5.6 Offloading a brief hot-spot via proactive reconfiguration (scenario of

Figure 5.4a) . 35
5.7 Offloading a brief hot-spot via proactive reconfiguration (scenario of

Figure 5.4a) . 35
5.8 CPU utilization on hot-spot node (including all activities) 37

iii

5.9 Mean operation latencies under a 1s hot spot (95% reads - 5% writes,
Configuration C1)) . 38

5.10 Mean operation latencies under a 2s hot spot (95% reads - 5% writes,
Configuration C1)) . 38

5.11 Mean operation latencies under a 3s hot spot (95% reads - 5% writes,
Configuration C1)) . 39

5.12 Mean operation latencies under a 1s hot spot (50% reads - 50% writes,
Configuration C2)) . 40

5.13 Mean operation latencies under a 2s hot spot (50% reads - 50% writes,
Configuration C2)) . 41

5.14 Mean operation latencies under a 3s hot spot (50% reads - 50% writes,
Configuration C2)) . 41

5.15 Impact of reconfiguration vs. that of hot-spot of increasing duration
(95% reads - 5% writes) . 43

5.16 Impact of reconfiguration vs. that of hot spot of increasing duration
(50% reads - 50% writes) . 43

5.17 SLO violations when reconfiguring around two simultaneous 8 sec hot-
spots on random servers (50% reads - 50% writes, Configuration C2).
White bars correspond to cases where no shards have two of their
replicas on the impacted servers. 44

iv

List of Tables

5.1 Summary of RethinkDB configurations 39

v

Abstract

Evdoxos Bekas, M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, July 2017.
Service Management in NoSQL Data Stores via Replica-group Reconfigurations.
Advisor: Kostas Magoutis, Assistant Professor.

Internet-scale services increasingly rely on NoSQL data store technologies for scalable,
highly available data persistence. Workload variations or imbalances in data-store re-
source utilization typically require adaptation actions that involve movement of data
(e.g., migrating data between nodes) and thus involve high overhead. In this thesis
we propose the use of low-cost adaptation actions based on targeted reconfigura-
tions of replica groups as an effective way to offer rapid response to performance
degradation (such as when a node experiences a temporary resource shortage). Such
reconfigurations can be exercised and controlled by a management system that uses
measurement-based analysis to ensure they are only applied when their benefit out-
weighs their cost. Such a management system may also leverage external cross-layer
notifications from an underlying container management system (CMS) about resource-
specific conditions that are expected to impact the data store. We evaluate a prototype
implementation of the management system in the context of the RethinkDB data store
on Google Container Engine with the Kubernetes CMS, and on a dedicated cluster,
using the Yahoo Cloud Serving Benchmark. Our results demonstrate that low-cost
data-store adaptation actions can improve overall system manageability, availability,
and performance, and that events exposed by the CMS can be leveraged to drive
proactive adaptation actions, improving overall quality of service.

vi

Ε Π

Εύδοξος Μπέκας, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πληροφο-
ρικής, Πανεπιστήμιο Ιωαννίνων, Ιούλιος 2017.
Διαχείριση κατανεμημένων αποθετηρίων δεδομένων τύπου NoSQL μέσω αναδιορ-
γανώσεων ομάδων αντιγράφων.
Επιβλέπων: Κώστας Μαγκούτης, Επίκουρος Καθηγητής.

Οι συνεχώς αυξανόμενες ανάγκες των διαδικτυακών εφαρμογών για υψηλή από-
δοση και διαθεσιμότητα στην αποθήκευση δεδομένων έχουν οδηγήσει στη δημιουρ-
γία μιας νέας κατηγορίας κατανεμημένων αποθετηρίων δεδομένων (data stores)
γνωστή με τον όρο NoSQL. Τα NoSQL συστήματα είναι βελτιστοποιημένα ως προς
την επεκτασιμότητα και την κλιμακωσιμότητα σε σύγκριση με τα συστήματα SQL
(δηλαδή με τα DBMS). Σε περιπτώσεις όπου υπάρχουν μεταβολές στον φόρτο
εργασίας ή δεν είναι εφικτή η δέσμευση των απαιτούμενων υπολογιστικών πό-
ρων από τα αποθετήρια δεδομένων, απαιτείται να γίνουν ενέργειες προσαρμογής
οι οποίες περιλαμβάνουν μετακίνηση δεδομένων από κόμβο σε κόμβο εισάγοντας
υψηλό φόρτο στο σύστημα. Στην παρούσα εργασία προτείνουμε την χρήση ενερ-
γειών προσαρμογής χαμηλού κόστους βασισμένες σε στοχευμένες αναδιοργανώσεις
ομάδων αντιγράφων όταν ένας κόμβος αντιμετωπίζει μια προσωρινή υπερφόρτωση.
Αναδιοργανώσεις αυτού του τύπου μπορούν να προγραμματιστούν και εκτελεστούν
από ένα σύστημα διαχείρισης του αποθετηρίου δεδομένων, εκτιμώντας την αποτε-
λεσματικότητά τους με βάση ανάλυση συστηματικών μετρήσεων, που υποδεικνύει
πότε το πλεονέκτημα από τη χρήση του μηχανισμού υπερβαίνει το κόστος του. Ένα
τέτοιο σύστημα διαχείρισης μπορεί επίσης να αντλήσει σημαντικά πλεονεκτήματα
από τη χρήση διαστρωματικών (cross layer) ειδοποιήσεων από σύστημα διαχείρι-
σης υποδομής για επικείμενα γεγονότα (όπως κατάρρευση ή υπερφόρτωση) που
αφορούν πόρους του συστήματος και που εκτιμάται ότι θα επηρεάσουν την από-
δοση και διαθεσιμότητα του αποθετηρίου. Στα πλαίσια της εργασίας αυτής υλο-

vii

ποιούμε ένα τέτοιο σύστημα διαχείρισης με βάση το αποθετήριο RethinkDB και το
σύστημα διαχείρισης υποδομής Kubernetes, στην υποδομή Google Container Engine
και σε υποδομή τοπικού cluster, με φόρτο παραγώμενο από το Yahoo Cloud Serving
Benchmark.
Τα πειράματα που εκτελέστηκαν έχουν ως σκοπό να δείξουν τα οφέλη μια τέ-

τοιας αρχιτεκτονικής για την διαχείριση αναδιοργανώσεων ομάδων δεδομένων. Εξε-
τάζονται οι περιπτώσεις όπου γίνεται προδραστική αναδιοργάνωση ενός RethinkDB
cluster βασιζόμενη σε ειδοποίηση (notification) ότι κάποιος κόμβος επρόκειτο να
τερματιστεί, καθώς και σε περιπτώσεις όπου ένας κόμβος βρίσκεται υπό συνθή-
κες υψηλού φόρτου που δεν οφείλονται στο αποθετήριο δεδομένων. Με αυτή την
ανάλυση στοχεύουμε να προσδιορίσουμε εάν οι προδραστικές ενέργειες προσαρ-
μοστικότητας, στην περίπτωση που προηγουμένως έχει ληφθεί ειδοποίηση για τον
τερματισμό κάποιο κόμβου, μπορούν να βελτιώσουν την απόδοση σε σχέση με την
περίπτωση οπού ο τερματισμός του κόμβου γίνει χωρίς προειδοποίηση.
Επιπρόσθετα, πραγματοποιήθηκε πειραματική ανάλυση συγκρίνοντας την επί-

δραση, βάση δοθέντων Service-Level Objectives (SLOs), περιόδων υψηλού φόρτου
(hot-spots) διαφορετικής διάρκειας στην επίδοση, σε σχέση με την επίδραση των
αναδιοργανώσεων ομάδων δεδομένων που πραγματοποιήθηκαν για την αποφυγή
αυτών των hot-spot με βάσει τα ίδια SLOs. Το κόστος της αναδιοργάνωσης ομάδων
αντιγράφων για την αποφυγή υψηλού φόρτου είναι μικρότερο σε σχέση με την περί-
πτωση όπου δεν εκτελείται καμία ενέργεια (αναδιοργάνωσης ομάδων αντιγράφων),
ακόμα και για περιπτώσεις όπου η διάρκεια που επηρεάζεται ένας κόμβος από
υψηλό φόρτο είναι αρκετά μικρή. Επίσης σύμφωνα με την ανάλυση που πραγματο-
ποιήθηκε (θεωρητική και πειραματική) η αποτελεσματικότητα του μηχανισμού ανα-
διοργάνωσης ομάδων αντιγράφων μειώνεται δραστικά με την αύξηση των κόμβων
που επηρεάζονται ταυτόχρονα από υψηλό φόρτο. Επομένως, είναι αποδοτικότερο
–όταν είναι εφικτό– να προγραμματίζεται η ανάθεση εργασιών υψηλού φόρτου έτσι
ώστε να ελαχιστοποιείται ο χρόνος που συμβαίνουν ταυτόχρονα.
Τα αποτελέσματα υποδεικνύουν ότι ο μηχανισμός προσαρμογής βασιζόμενος

στις στοχευμένες αναδιοργανώσεις ομάδων αντιγράφων μπορεί να βελτιώσει ση-
μαντικά την διαθεσιμότητα, διαχειρισιμότητα, και να συνεισφέρει στην τήρηση των
στόχων απόδοσης των εφαρμογών. Ταυτόχρονα, οι ειδοποιήσεις από σύστημα δια-
χείρισης υποδομής για επικείμενα γεγονότα που αναμένεται να επηρεάσουν την
απόδοση του αποθετηρίου επιτρέπουν την εφαρμογή προδραστικών ενεργειών δια-

viii

χείρισης της ποιότητας των παρεχομένων υπηρεσιών.

ix

Chapter 1

Introduction

1.1 Objectives

1.2 Thesis structure

The rapid growth of Internet-scale applications starting in the early 2000s created
the need for new distributed data stores that offer superior scalability and elasticity
compared to what was possible with traditional SQL servers, giving rise to a new
class of data stores referred to as NoSQL systems [3, 4, 5]. Since the inception of
early NoSQL systems, research on improving the quality of service offered by dis-
tributed NoSQL data stores has led to the incorporation of autonomic features such
as automated addition of new nodes or removal of crashed nodes, load balancing,
elasticity, etc. A challenge with currently available adaptation actions on data stores
however is that they typically require data movement and are thus expensive: For
example, changing the primary key of a large table is known to be a costly and time
consuming operation [6]. Load balancing performed by moving data across nodes,
either by migrating replicas or by moving records across shards, are both expensive
operations [7]. Adapting to varying workload via elasticity actions is known to take
a significant amount of time and resources [8].
In systems which use primary-backup replication with a “strong leader” [9, 10,

11, 12, 13, 14], write operations (and often reads as well) are satisfied by any majority
of replicas, which always involves the leader. The leader (or primary) typically takes
a higher load than follower replicas (or backups). A recent example of a lightweight

1

R
3

Writes/reads

R
2

R
1

R
N

. . .

majority

Leader

R
N-1

R
1

Writes/reads

R
2

R
3

R
N

. . .

majority

Leader

R
N-1

Reconfiguration

Figure 1.1: Reconfiguration on a primary-backup replication system

adaptation action that was shown to be beneficial in such systems, is to reconfigure
replica groups as can be seen in Figure 1.1, by moving the leader away from nodes that
are, or will soon be, heavily loaded [15]. In this way, a certain level of load balancing
is feasible at low cost (the short availability lapse that such reconfigurations entail),
occasionally leading to large benefits. A primary goal of the research in this thesis
is to systematically explore the benefits possible through the use of this adaptation
mechanism in achieving service-level objectives over NoSQL systems. While previous
work demonstrated the benefits of the mechanism internally within a specific data
store and to address a specific resource challenge [15], the work in this thesis demon-
strates a more general use in the context of a reconfiguration controller that can address
a wider-range of incidents affecting quality of service.
On the infrastructural front, the growing adoption of container technologies has

brought container management systems [16, 17, 18, 19] (CMS) to the forefront of in-
frastructure management for large-scale data centers. Large cloud service providers
such as Amazon, Google, and IBM are nowdays offering container clouds such as the
Amazon EC2 Container Service [20], Google Container Engine [21] and IBM Bluemix
Container Service [22]. NoSQL data stores are now available in containerized distri-
butions that can be deployed in commercial and open-source CMSs. Just as over any
tiered virtualization solution however, containerized data stores have limited infor-
mation about the underlying infrastructure managed by a CMS, such as forthcoming
disruptions affecting virtualized resources (decommissioning and replacement of a
physical node, interference of resources across co-located workloads, etc). Our sec-

2

ond goal in this thesis is to enable and leverage a communication path between a CMS
and a NoSQL data store, to notify the latter about infrastructure activities impacting
its resources, as a way to drive proactive adaptation policies. We aim to show that
the lightweight replica-group reconfiguration mechanism, when used proactively in
response to infrastructure-level events provided by the underlying CMS, can improve
data store load balancing and availability, without involving data movement actions.
Key to the enablement of such lightweight adaptation actions is explicit control

over replica roles and their placement in data stores through a programmatic API.
Such support is offered by systems such as RethinkDB [23] and MongoDB [24]. We
chose to base the prototype of our architecture on the former due to its more straight-
forward cluster management API [25], but our implementation can be extended to
cover the latter as well [13]. Such support is not ubiquitous in NoSQL data stores
however, as replica roles and locations are not controllable in some data stores (e.g.,
using consistent hashing [26, 3, 27]) or are controlled internally.

1.1 Objectives

Our objectives in this thesis are the following: First, we aim to design an architecture
for managing replica-group reconfigurations, at the core of which will be a reconfig-
uration controller that decides on appropriate reconfiguration actions when receiving
events such as upcoming decommission or temporary load imbalance in the data-
store cluster. We implement a prototype in the context of a specific NoSQL document
store (RethinkDB) that is interoperable with a container management system (Ku-
bernetes). The prototype can leverage events and associated upcalls by the container
management system to drive cross-layer management policies that automatically map
infrastructure events (such as new node added, node to be decommissioned) to data-
store adaptation actions.
Second, we aim to perform an experimental evaluation demonstrating the bene-

fits of such a management architecture in two scenarios on Google Container Engine
deployments: Proactively reconfiguring a RethinkDB cluster on advance notification
that a RethinkDB server is going to be decommissioned, and restoring service when
a new server is available; and reconfiguring a RethinkDB cluster in the event of
a hot-spot affecting performance of a RethinkDB server. This experimental evalua-

3

tion aims to determine whether proactive adaptivity actions in the case of previously
announced downtime of a node can reduce the performance impact that would oth-
erwise be experienced if the downtime was unscheduled (e.g., a crash), and whether
load balancing actions via replica-group reconfigurations are effective in reducing the
performance impact of hot-spots (overloaded nodes) on data store performance.
Finally, we aim to conduct an experimental analysis comparing the impact of

performance hot-spots of different durations on service-level objectives (SLOs), to the
impact of replica-group reconfigurations enacted to mask those hot-spots, on the same
SLOs. This experimental analysis aims to answer the question of when does the cost of
replica-group reconfigurations outweigh their benefits under different assumptions on
hot-spot characteristics, especially their duration. For improved accuracy, experiments
in this part of the thesis were planned to be carried out in a private computer cluster.
Its results can be used to direct the process of deciding effective actions in the replica-
group reconfiguration controller.

1.2 Thesis structure

The rest of this thesis is organized as follows: In Chapter 2 we describe background
and related work, in Chapter 3 we outline the design of our service management
architecture, and in Chapter 4 our prototype implementation. In Chapter 5 we present
the evaluation of our prototype, highlighting key results, and finally in Chapter 6 we
conclude.

4

Chapter 2

Background

2.1 Related work

2.2 Systems used in this thesis

2.1 Related work

In this section we provide background on NoSQL systems and their adaptation poli-
cies, container-management systems (CMS), along with a more in-depth description
of two components with which our prototype interacts, RethinkDB and Kubernetes,
relating to previous research along the way.
NoSQL data stores [4] are a new class of distributed data stores that appeared in

the early 2000’s [5] to satisfy the need of Internet applications for scalable storage of
tabular data. They provide applications with a data abstraction that resembles tradi-
tional database tables offering semantics that lie between those offered by traditional
databases (deemed too heavyweight to scale) and parallel file systems (lightweight but
whose abstraction is too low-level to suit Internet applications). Adaptivity policies in
data stores have been explored in the past. Cogo et al. [28] describe an approach to
scale up stateful replicated services using replica migration mechanisms. They imple-
mented an infrastructure called FITCH (Fault- and Intrusion-Tolerant Cloud computing
Hardpan) to support dynamic adaptation of replicated services in cloud environments.
They review several technical solutions regarding dynamic service adaptation and
correlate them with motivations to adapt found in production systems, which they

5

want to satisfy with FITCH, such as increasing or reducing the number of computing
instances, increasing and reducing the size or capacity of resources, moving replicas
to different cloud providers or replacing faulty replicas. They show that it is possible
to augment the dependability of such services through proactive recovery with min-
imal impact on their performance. Moreover, the use of FITCH allows both services
to adapt to different workloads through scale-up/down and scale-out/in techniques.
Konstantinou et al. [7] describe a generic distributed module, DBalancer, that can

be installed on top of a typical NoSQL data-store and provide a configurable load
balancing mechanism. Balancing is performed by message exchanges and standard
data movement operations supported by most modern NoSQL data-stores. While
these approaches achieve adaptivity to a certain extent, they operate at the level
of the application/NoSQL data store and cannot apply proactive policies based on
advance information available at the infrastructure level. Cross-layer interaction be-
tween distributed storage systems and the underlying managed infrastructure has
been explored by Papaioannou et al. [29], where co-location of virtual machines on
the same physical host is detected by the middleware or exposed by the storage sys-
tem (HDFS) to ensure that the placement of replicas avoids failure correlation to the
extent possible. Wang et al. [30] propose cross-layer cooperation between VM host-
and guest-layer schedulers for optimizing resource management and application per-
formance.
In systems which use primary-backup replication with a “strong leader” [9, 10, 11,

12, 13, 14], write operations (and often reads as well) are satisfied by any majority of
replicas, which always involves the leader. The leader (or primary) typically takes a
higher load than follower replicas (or backups). Standard adaptation solutions avail-
able in stateless systems, such as steering load away from a temporarily overloaded
server via load-balancing actions, are not easily applicable to data stores since this
requires data migrations, a heavyweight and time-consuming activity. Replica-group
reconfigurations, used in this thesis, is a lightweight alternative that is especially fit
for temporary overload conditions in data stores. Previous work using replica group
reconfigurations to mask the impact of underperforming primaries includes ACa-
Zoo [15], a data store that triggers re-elections at replica groups with primaries on
nodes that are about to engage in heavy compaction activities, typical in systems using
log-structure merge (LSM) trees. By moving the primary role of a replica group away
from a node that is about to either become overloaded or to crash, we ensure better

6

performance (as the primary will not block progress of the entire replica group) and
availability. In this thesis we use similar replica-group reconfigurations when notified
about infrastructure-level events by the CMS.
Borg [16, 17] was the first container-management system developed at Google at

the time container support was becoming available in the Linux kernel. It aims to pro-
vide a platform for automating the deployment, scaling, and operations of application
containers across clusters of hosts. Borg manages both long-running latency-sensitive
user-facing services and CPU-hungry batch jobs. It takes advantage of container tech-
nology for better isolation and for sharing machines between these two types of ap-
plications, thus increasing resource utilization. Omega [18], also developed at Google,
has similar goals to Borg. It stores the state of the cluster in a centralized Paxos-based
transaction-oriented store accessed by the different parts of the cluster control plane
(such as schedulers), using optimistic concurrency control to handle conflicts. Thus
different schedulers and other peer components can simultaneously access the store,
rather than going through a centralized master.
Kubernetes [19] is an open source container-cluster manager originally designed

by Google and inspired by Borg and Omega, donated to the Cloud Native Computing
Foundation [31]. We describe Kubernetes in more detail in Section 2.2.3. Google
offers Kubernetes as the standard CMS in Google Container Engine (termed GKE) [21]
within Google Cloud Platform. Another commercial CMS is Amazon’s EC2 Container
Service (ECS). ECS, like Kubernetes and Google’s GKE, supports lifecycle hooks [32],
namely upcall notifications of instance bootstrap or termination, an important cross-
layer management primitive leveraged by our architecture.
Prior work on cluster management services includes Autopilot [33], an early ap-

proach to automate datacenter operations. Other approaches to cluster and datacenter
management opting for a goal-oriented declarative style, have been a subject of re-
search for some time [34]. Cross-layer management has previously been explored as
way to break through the transparency enforced by multiple organizational layers in
distributed systems [35, 36].

7

2.2 Systems used in this thesis

2.2.1 RethinkDB

RethinkDB [23] is an open-source document oriented, horizontally scalable NoSQL
database. It stores JSON documents with dynamic schemas, and supports shard-
ing (horizontal partitioning) and replication and has its own query language called
ReQL [37] to express operations on JSON documents. RethinkDB is the first open-
source, scalable JSON database built from the ground up for the realtime web. It
inverts the traditional database architecture by exposing an a new access-model and
instead of polling for changes is able to continuously push the updated query results
to applications in realtime.

NoSQL schema

RethinkDB is a schema less database and it stores documents on logical containers
which called tables. A table does not require any particular structure of it’s contents
but its generally beneficial for all documents it the same table to have the same
structure, as it simplifies organization and management. RethinkDB documents are
hierarchical, dynamically typed JSON objects consisting of key-value pairs and can be
either a collection of name/value pairs or a ordered list of values. Each document is
uniquely identified by a key within a table.

Realtime push architecture

RethinkDB features an option named changefeed [38] which is a build-in change noti-
fication system that can be used to simplify the development of real-time applications.
Traditionally a client was able to be aware of a change in a database only by querying
the database itself. In RethinkDB clients can subscribe to database changes and be
notified automatically once there is any change without emerging a polling mecha-
nism. RethinkDB realtime push architecture reduces dramatically the time and effort
necessary to build realtime applications compared to traditional polling technique
which is cost prohibitive in many cases. The changefeed option can be applied for a
table, a document or a query and can be configured to throttle the delivery of infor-
mation to reduce network traffic. For example a changefeed might be configured to
wait for N changes before sending a response to the listening application.

8

Sharding and Replication

RethinkDB features a web-based administration dashboard that simplifies sharding
and replication management shown in Figure 2.2, and offers information about data
distribution as well as monitoring and data exploration features. RethinkDB uses B-
Tree indexes and makes a special effort to keep them and the metadata of each table
in memory, so as to improve query performance. Cache memory size in RethinkDB
is set automatically in accordance with total memory size, but can also be manually
configured.
RethinkDB implements sharding automatically, evenly distributing documents

into shards using a range sharding algorithm [14] based on table statistics and pa-
rameterized on the table’s primary key. In the event of primary replica failure, one
of the secondaries is arbitrarily selected as primary, as long as a majority of the
voting replicas for each shard remain available. To overcome a single-node failure
a RethinkDB cluster must be configured with three or more servers, tables must be
configured to use three or more replicas, and a majority of replicas should be available
for each table. If the failed server is a backup, performance is not affected as progress
is possible with a surviving majority.
An important management feature offered by RethinkDB is its programmatic clus-

ter management API [25] accessible via ReQL queries to automate different types of
reconfiguration. Internally, RethinkDB maintains a number of system tables that ex-
pose database settings and the internal state of the cluster. An administrator can use
ReQL through a language like Javascript to query and interact with system tables
using conventional ReQL commands, just as with any other RethinkDB table. To
exercise granular control over sharding and replication, the administrator uses the
table_config table as shown in Figure 2.1, which contains documents with information
about the tables in a database cluster, including details on sharding and replication
settings.
RethinkDB offers three primary commands for managing shards and replicas:

• table_create, for creating a table with a specified number of shards and replicas.

• reconfigure, for changing sharding and replication settings of a table (number of
shards, number of replicas, identity of primary), after determining the current
status via table_config. The location of replicas can be changed via updates to
table_config. An example shown in Listing 2.1 where a reconfiguration applied

9

to a table, creating four shards with three replicas each.

Listing 2.1: Table Reconfiguration

r . t a b l e (’ users ’) . r e con f igure (shards =4 ,
r e p l i c a s =3). run (conn)

• rebalance, for achieving a balanced assignment of documents to shards, after
measuring the distribution of primary keys within a table and picking split
points. Listing 2.2 illustrates an example of this case.

Listing 2.2: Table rebalance

r . t a b l e (’ users ’) . reba lance ()

Consistency guarantees

RethinkDB chooses strong defaults for update consistency, and weak defaults for
reads. By default, updates (inserts, writes, modifications, deletes, etc) to a key are
linearizable, which means they appear to take place atomically at some point in time
between the client’s request and the server’s acknowledgement. For reads, the default
behavior is to allow any primary to service a request using its in-memory state, which
could allow stale or dirty reads.
RethinkDB defaults will not acknowledge writes until they’re fsynced to disk.

Users may obtain better performance at the cost of crash safety by relaxing the table’s
or request’s durability setting from hard to soft. As with all databases, the file system,
operating system, device drivers, and hardware must cooperate for fsync to provide
crash safety. In this analysis, we use hard durability and do not explore crash safety.
RethinkDB allows tuning write safety at table level by using the table_config table

and setting write_acks to one of the following values:

• majority, is the default option meaning writes will be acknowledged when a
majority of replicas have confirmed their writes.

• single, meaning writes will be acknowledged when a single replica acknowledges
it

Unlike write safety, read safety is controllable on a per-request basis and there are
three available options:

10

• single is the default and returns values that are in memory (but not necessarily
written to disk) on the primary replica

• majority will only return values that are safely committed on disk on a majority
of replicas. This requires sending a message to every replica on each read, so it
is the slowest but most consistent.

• outdated will return values that are in memory on an arbitrarily-selected replica.
This is the fastest but least consistent.

Finally, RethinkDB lets the administrator control the durability of a table. This
can be done at table level by utilizing the table_config and setting durability mode option
to one of the following values:

• hard writes are committed to disk before acknowledgements are sent

• soft writes are acknowledged immediately after being stored in memory

Other Features

RethinkDB provides some other features as well which listed below.

• server tags used to associate table replicas with specific servers, physical machines,
or data centers.

• dump command line utility allows the data export from a live cluster

2.2.2 Containers and Docker

Containers

A container image is a lightweight, stand-alone, executable package of a piece of soft-
ware that includes everything needed to run it: code, runtime, system tools, system
libraries, settings. Containers isolate software from its surroundings, for example dif-
ferences between development and staging environments and help reduce conflicts
between teams running different software on the same infrastructure.

11

Figure 2.1: Updating the contents of table_config via the web console

Docker

Docker [39] is a tool designed to make it easier to create, deploy, and run applications
by using containers. Docker allows applications to use the same Linux kernel as the
system that they’re running on and only requires applications be shipped with things
not already running on the host computer. This gives a significant performance boost
and reduces the size of the application. Docker Engine on Linux relies on another
technology called control groups [40] (cgroups). A cgroup limits an application to
a specific set of resources. Control groups allow Docker Engine to share available
hardware resources to containers and optionally enforce limits and constraints.

12

Figure 2.2: Sharding and replication via the web console [1]

2.2.3 Kubernetes

Kubernetes [19] is an open-source platform for automating deployment, scaling, and
operations of application containers (such as Docker) across clusters of hosts, pro-
viding container-centric infrastructure. It supports more container runtimes than just
Docker, however Docker is the most commonly known runtime, and it helps to de-
scribe pods in Docker terms. Kubernetes architecture is depicted in Figure 2.3 [2]. At
its core is a shared persistent store (etcd [41] in Figure 2.3) with components watching
for changes to relevant objects. State in Kubernetes is accessed exclusively through a
domain-specific REST API that applies higher-level versioning, validation, semantics,
and policy, in support of clients.
In Kubernetes, servers that perform work are known as nodes. Node servers have

a few requirements that are necessary to communicate with the master components,
configure the networking for containers, and run the actual workloads assigned to
them. Each Kubernetes node comprises an on-machine agent called a kubelet, and

13

a component analyzing resource usage and performance characteristics of running
containers called cadvisor. Kubernetes core components are the following:

Pods

A pod is the basic building block of Kubernetes, the smallest and simplest unit in
the Kubernetes object model that can be created or deployed. Represents a running
process on the cluster. It encapsulates an application container (or, in some cases,
multiple containers), storage resources, a unique network IP, and options that govern
how the containers should run. A Pod represents a unit of deployment that can be a
single instance of an application in Kubernetes, which might consist of either a single
container or a small number of containers that are tightly coupled and that share
resources.

Service

A service is a unit that acts as a basic load balancer and ambassador for other con-
tainers. A service groups together logical collections of pods that perform the same
function to present them as a single entity. It is an interface to a group of contain-
ers so that consumers do not have to worry about anything beyond a single access
location. By deploying a service, administrator can be gain discover-ability and can
simplify his container designs.

Replication Controller

A more complex version of a pod is a replicated pod. These are handled by a type
of work unit known as a replication controller. A replication controller is a framework
for defining pods that are meant to be horizontally scaled. The replication controller
is delegated responsibility over maintaining a desired number of copies. This means
that if a container temporarily goes down, the replication controller might start up
another container. If the first container comes back online, the controller will kill off
one of the containers.

ReplicaSet

ReplicaSet is the next-generation Replication Controller. The only difference between a
ReplicaSet and a Replication Controller is the selector support. ReplicaSet supports a

14

Figure 2.3: Kubernetes architecture [2]

newer set-based selector requirements whereas a Replication Controller only supports
equality-based selector requirements.

Deployments

Deployments are intended to replace Replication Controllers. They provide the same
replication functions (through Replica Sets) and also the ability to rollout changes
and roll them back if necessary.

Horizontal Pod Autoscaler

Horizontal Pod Autoscaliner [42] was built to automate elasticity actions. Using an
autoscaling algorithm automatically scales the number of pods in a replication con-
troller, deployment or replica set based on observed CPU utilization (or, with alpha
support, on some other, application-provided metrics). The Horizontal Pod Autoscaler
is implemented as a Kubernetes API resource and a controller. The resource deter-
mines the behavior of the controller. The controller periodically adjusts the number
of replicas in a replication controller or deployment to match the observed average
CPU utilization to the target specified by user. The Horizontal Pod Autoscaler is not
utilized in our case since is not applicaple for isolated performance hot-spots

15

Chapter 3

Design

3.1 Architecture

3.2 The impact of simultaneous hot-spots across data-store cluster

3.3 Handling infrastructure-related cross-layer notifications

3.1 Architecture

Our goal in this thesis is to explore the benefits possible through the use of replica
groups reconfigurations in achieving service-level objectives over NoSQL systems. Re-
sponding to overload conditions in data stores has been addressed in previous work
using control theory, by means of elasticity, rebalancing, and throughput arbitration
controllers [8, 43, 44]. Lim et al. [8] showed that it is possible to use an integral
controller for increasing or decreasing cluster size in response to average server CPU
exceeding or dropping under a target (reference) threshold. An associated rebalancing
controller regulates data movement bandwidth aiming to achieve time / performance
impact goals. Karlsson et al. [43] showed that it is possible to use an adaptive inte-
gral controller to arbitrate system throughput via throttling actions, achieving service
differentiation, when the overall system is operating close to capacity. However, while
throttling is an effective short-term remedy and a way to enforce performance differ-
entiation, an underprovisioned system should in the long term be expanded via an
elasticity action.

16

Current or upcoming activity that leads

to resource imbalance (hot-spot)

Client application

Node 1 Node 2 Node N

NoSQL data store

Infrastructure management

Management API

Monitor NoSQL and application

Actuator

Monitor infrastructure

Infrastructure-level

cross-layer notifications

Controller

Reconfigure RG

Operator

Reconfiguration manager

Reconfigure or sustain?

How to reconfigure?

How to schedule hot-spots?

Response-time monitoring

Figure 3.1: Reconfiguration manager architecture

In this thesis we consider a case of performance overload where neither an elastic-
ity nor a throttling action offers an effective remedy. This is the case of a temporary
performance hot-spot, either due to an external cause that reduces node capacity or due
to a periodic background activity siphoning off node resources, where paying the cost
of rebalancing (either moving data to a new node or rebalancing among the existing
nodes) is not an effective solution, as the hot-spot is not expected to last long enough
relative to the time-scale needed to rebalance data. This is a case where replica-group
reconfigurations are expected to be an appropriate action to take to regulate a system
towards maintaining a target (objective) response time for client workloads.
Figure 3.1 depicts the architecture of the reconfiguration manager. Monitoring is

performed at the application, NoSQL data store, and infrastructure levels. While the
manager may have monitoring access to the application and NoSQL data store lay-
ers through well-defined APIs, communication with the infrastructure management
system is typically harder and not always available. Section 5.3 exemplifies such com-
munication via notifications sent by a container management system to the reconfig-
uration manager, however the reconfiguration manager may operate even without
such communication.
The manager monitors response-time at the application layer and CPU usage

across nodes at the NoSQL data store. If response time violations are detected in
conjunction with skewed overload conditions of a temporary nature (duration T) on
a node, the controller may decide to actuate replica-group reconfigurations moving
primaries off of that node. Note that the manager cannot rely on response-time mea-

17

surements alone (as it may be unable to determine whether replica-group reconfigu-
rations are the appropriate type of response to exceeding a response-time objective),
or CPU measurements alone (as an isolated overload condition may not necessarily
lead to violation of a response-time objective).
We define as skewed overload the condition where some node Ni experiences high

utilization (U) (exceeding 80%) while also exceeding the cluster average utilization
by 30%:

U(Ni) ≥ 80% and
U(Ni) ≥ 130% × average(U(N1), . . . , U(Nn))

The constants 80% and 130% have been empirically determined to work well
in detecting node overload conditions, distinguishing from a uniformly overloaded
system that would justify increasing capacity through an elasticity action. Determining
the exact values that would maximize the benefit from adaptation actions is a subject
of ongoing research.
The time and placement of hot-spots can be known in advance when they are

expected to happen (or scheduled) at specific times. Their duration can often be
estimated via straightforward calculations, for example when nodes perform data-
related reorganization and management activities such as compactions [15] and their
duration depends on the amount of data processed, available network bandwidth,
etc. Workload prediction has been demonstrated in the past using ARIMA-based
time-series prediction [45].
The controller must decide when to apply reconfiguration(s) and to ensure that

their benefit outweighs their cost. In general, the key action points for the reconfigu-
ration controller are:

1. When to reconfigure shard(s): It is cost-effective to reconfigure when the primary
is heavily impacted for some amount of time and the benefit of reconfiguration out-
weighs the cost (mainly the outage incurred due to leader elections). The cross-over
point between reconfiguring or sustaining the hot-spot depends on the intensity of
the hot-spot as well as on the load level of the NoSQL data store. In general it is
possible to adaptively determine the cross-over point through online measurements
as demonstrated in our experimental evaluation.

2. Where to move each shard’s primary: Primaries should be moved to machines
not experiencing a hot-spot, in a balanced manner. Note that is not always possible

18

Node 1 Node 2 Node 3 Node N-1

Si

Si_r1

Shards

Si_r2 Si_r3

Sj

Sj_r1

PRIMARY

Sj_r2

Node N

Sj_r3

PRIMARY

Figure 3.2: Two hot-spots apply simultaneously on nodes 1 and 3

to spread primaries evenly across all normally-loaded nodes, since available options
are constrained by the current locations of the replicas.

3. How to schedule hot-spots, if such control is possible: When such control is
possible, the aim should be to avoid simultaneously impacting a majority of replicas
of any shards.

In Section 5.3 we will exhibit an experimental methodology to determine the cost-
benefit cross-over point for specific cases of workloads and data-store configurations
and demonstrate the importance of points (2) and (3) in implementing an effective
reconfiguration manager. To quantitatively compare the impact of a hot-spot to that
of reconfigurations applied to mask the hot-spot, on a response-time service-level
objective (SLO), we introduce a penalty function (P) that measures the effect of one or
more actions on a SLO L, over a specific time interval T divided into n samples.

P =
n∑

i=1

li − L, if li > L

0, otherwise
(3.1)

where li is the mean latency at the i-th sample, L is the latency target, and n is
the number of samples over the selected time interval T . Intuitively, P measures the
extent to which latency SLOs were violated by successful operations during T .
Figure 3.2 provides an example of the more intricate issues facing the manager.

Two hot-spots H1 and H2 are impacting nodes 1 and 3 hosting the primaries of
shards i and j (Si_r2 and Sj_r2) respectively. A reconfiguration controller could decide

19

to reconfigure shards i and j and move primaries away from nodes 1 and 3. Selecting
any node currently not experiencing a hot-spot, or not about to experience one as far
out in the future as possible, would be a good choice. Reconfigurations are expected
to help when their benefit outweighs their cost (see evaluation Section 5.3), and
when a majority of replicas are not simultaneously experiencing a hot-spot, since
data-store operations typically require acknowledgments from a majority of nodes to
make progress. Note that in Figure 3.2, shard Si has two out of its three replicas on
nodes 1 and 3, both impacted by hot-spots. Thus reconfiguration is not going to help
with access to shard Si. A solution to this problem is to delay H2 so that it does not
overlap with H1, if such control (the ability to schedule the execution of hot-spots) is
possible.

3.2 The impact of simultaneous hot-spots across data-store cluster

In this section we study the problem of simultaneous hot-spots from a theoretical
standpoint and we aim to show that the potential of adaptation actions to mask load
imbalances diminishes with an increasing number of simultaneous hot-spots. Thus,
given values of N, for the number of nodes, S, for the number of shards, R for the
number of replicas per shard, and H for the number of simultaneous hot-spots, we
want to calculate the probability Ptotal that the hot spots affects more than majority(R)
replicas of some shards is drastically increased as H increases. We start by calculating
the probability P(Si) that the i-th shard S with R replicas is affected by the hot-spots.
Considering that every hot-spot affects at most one node, P(Si) can be calculated with
equations 3.2 and 3.3. Finally, using the addition rule for probability 3.5 we calculate
Ptotal. (

N

H

)
= NPH =

N !

H!(N −H)!
(3.2)

(
R

Rmajority

)
= RPRmajority

=
R!

Rmajority!(R−Rmajority)!
(3.3)

P (Si) =

∑R
i=Rmajority

(
R

Rmajority

)(
N−R
H−i

)(
N
H

) , H ≥ Rmajority . (3.4)

20

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hot-spots

P
ro

b
a
b
ili

ty
 P

(S
)

Figure 3.3: Probability of 8 different hot-spots to affect a majority of replicas of a
particular shard consisting of 3 replicas on a 8 node cluster

Ptotal = P (S1 ∪ ... ∪ Ss) =
S∑

i=1

P (Si)−
S∑
i<j
i,j∈S

P (Si ∩ Sj) + P (S1 ∩ ... ∩ Ss) (3.5)

Figure 3.3 depicts the probabilities that a number of simultaneous hot-spots (1
through 7) affects a majority of replicas of a particular shard consisting of three repli-
cas on a eight node cluster. Using Equation 3.5 we can calculate the probability Ptotal,
of at least a majority of any shard is affected by a hot-spot. In our evaluation we have
experimentally determined that even with two randomly-placed simultaneous hot-
spots on an 8-node cluster with 3 replicas per shard, replica-group reconfigurations
cannot fully mask the effect of the hot-spots in 70% the cases (Section 5.3.2).

3.3 Handling infrastructure-related cross-layer notifications

The reconfiguration manager is able to intermediate between the infrastructure manage-
ment and data-store layers as seen in the lower part of Figure 3.1. Its main purpose
is to set goals regarding data store deployment (e.g., number of servers backing a
cluster) and to reconfigure a cluster when notified about events of interest by the
infrastructure layer, namely

• New server (pod) joined the cluster

• Server about to be decommissioned

• Server about to experience performance interference

21

Note that these are events that the NoSQL data store could not determine on
its own without cross-layer notifications from the infrastructure management layer.
They are typically produced by human operators or automatically by infrastructure
management systems, such as the Kubernetes CMS used in this work. The next
chapter provides implementation details.

22

Chapter 4

Implementation

4.1 Cross layer management

4.2 Reconfiguration controller

4.1 Cross layer management

A full implementation of our cross-layer management architecture of Figure 3.1 com-
prises a container management system (CMS) at the lower layer, managing the infras-
tructure, and a containerized NoSQL data store at the top, deployed over a number of
pods (Figure 4.1). For concreteness and without loss of generality, in what follows we
describe our implementation using Kubernetes and RethinkDB concepts. However,
the architecture can accommodate other CMS and data stores, such as the Amazon
EC2 Container Service (ECS) and MongoDB respectively.
The resources (pods) of a data store cluster are described in a Kubernetes deploy-

ment spec. The manager uses Kubernetes’ ReplicaSetmechanism [46] to set the desired
goal on the number of pods that should be available to support the RethinkDB cluster.
Kubernetes performs liveness monitoring through its internal heartbeat mechanism
as well as application-specific liveness probes [47]. After detecting a pod failure, it
deploys a new RethinkDB pod to maintain the replication1 goal. The manager is im-
plemented as a containerized node.js RESTful Web service, deployed in a dedicated

1In this context, replication refers to the number of RethinkDB servers backing a cluster, not the
number of data replicas backing a shard.

23

Management API

Cluster

Pod

HTTP

HTTP

Events

Actions

ReplicaSet

Container hooks

hook Manager
Actions

ActionsEvents

Monitor

Heapster

Figure 4.1: Reconfiguration manager implementation on Google Container Engine

pod managed by Kubernetes. The specific events it handles and actions it undertakes
are described below:

Events. The manager exposes endpoints invoked by container hooks to communicate
events relating to the infrastructure (pods) where RethinkDB is deployed. A hook
provides information to a container about events in the container’s management
lifecycle. As soon as a hook is received by a container’s hook handler, a HTTP call
is executed to the corresponding manager endpoint. We utilize two existing types of
hooks:

• PreStop, raised before termination of a container. The container will not termi-
nate until the manager acknowledges the HTTP call.

• PostStart, raised after the creation of a container.

We envision a third type of hook:

• PerfWarning, carrying notification of impending performance interference that
will impact a specific pod.

The PerfWarning hook will enable a manager to respond with proactive adapta-
tion actions aiming to mask the impact of such interference. To evaluate the benefits

24

of a PerfWarning hook, we approximate its functionality at the manager by period-
ically polling the Heapster container cluster monitoring service (Figure 2) to detect
when a pod Pi in the cluster becomes resource-limited. Heapster, natively supported
in Kubernetes, collects cluster compute resource usage metrics and exports them via
REST endpoints. By polling Heapster periodically, the manager can detect skewed
overload conditions (as defined earlier), namely a pod Pi exhibiting high utilization
(exceeding 80%) while also exceeding the cluster average utilization by 30%:

U(Pi) ≥ 80% and
U(Pi) ≥ 130% × average(U(P1), . . . , U(Pn))

Actions. A PreStop hook is handled by the manager by demoting2 all replicas on
that pod. This will mask the impact of the pod’s impending decommission: With
success of read/write operations on RethinkDB (as well as many other replicated
data stores) being dependent on the availability of a majority of replicas, loss of
a single backup replica per shard (data partition) will not affect performance. Our
evaluation (Sections 5.2.1 and 5.2.2) shows that the impact of reconfiguration (brief
unavailability of a shard) is lower than that of unannounced node crash, as the latter
includes the additional overhead (timeouts) of detecting the failure.
A PostStart may convey different types of events: First, it may be that the new

pod is a replacement of a recent crash (i.e., restores the size of the cluster). The master
needs to be involved here because although a newly bootstrapping RethinkDB server
can check if the specific RethinkDB cluster it intends to join is online and then join it,
the RethinkDB runtime cannot automatically reconfigure the cluster to utilize the new
node. Thus in the event of a PostStart hook from a replacement node, the manager
balances the cluster by migrating replicas to the new pod, restoring pre-crash state.
If the new pod is increasing cluster size, which happens when expanding capacity
during an elasticity action, the manager will decide to perform replica migrations to
the new pod so as to increase the overall capacity of the cluster.
In the event that the manager detects an overload condition on one of the pods

using monitoring (approximating a PerfWarning event) in an otherwise normally-
loaded cluster, it decides to perform reconfigurations demoting primaries hosted on
the overloaded node. As demonstrated in our evaluation (Sections 5.2.3 and 5.2.4),
this provides rapid response to the performance degradation experienced by the

2Switch their role from primary to backup, electing other primaries.

25

S4_r3

Node 1 Node 2 Node 3 Node 4

Google Container Engine

S1_r1 S1_r2

S2_r1

S1_r3

S2_r2

S2_r3
S3_r1

S3_r2

S3_r3

S4_r1S4_r2

primary

primary

primary

primary

pod 1

pod 2

pod 3
pod 4

managed

Figure 4.2: The experimental testbed

application.
The use of reconfiguration actions to rapidly ease an overload condition on a single

node does have a drawback if the overload condition is expected to last a long time.
Since replicas on the overloaded node are not updated frequently, a subsequent failure
of a second node may leave some of the shards with less than a majority of live and up-
to-date replicas, reducing their performance. This eventuality is demonstrated in the
experiment of Subsection 5.2.5. Thus, if the manager receives feedback that an isolated
overload condition is expected to last a long time, it should opt to reconfigure and
migrate replicas outside of an overloaded node. Implementation of such functionality
would require the ability to predict the duration of performance interference and
convey it as a parameter to PerfWarning.
The manager invokes the RethinkDB management API to perform the following

operations:

• movePrimariesFromServer: Demote primaries of all shards hosted at a given server.
This is performed by retrieving the table configuration through table_config and
then re-assigning shard primaries to other servers in a balanced manner by
applying updates to table_config.

• movePrimariesFromNode: Demote primaries of all shards hosted at all servers of a
given node. This is performed using the Kubernetes API to retrieve the servers
(pods) placed at a given node and then applying movePrimariesFromServer on
each of them.

• addServer: Include a new server to the configuration of a table using the reconfigure

26

command.

• createReplica: Create replica of a shard on a specific server (pod) updating the
table_config.

The above described management architecture supports the following scenarios
evaluated in this thesis:

Unscheduled downtime of a node. RethinkDB is able to adapt to a crashed server
(pod) without the engagement of the manager through standard replication recov-
ery mechanisms. When a new pod is made available by Kubernetes, the manager is
notified through the PostStart hook, understands that it is replacement server, and
proceeds to reconfigure the cluster.

Scheduled downtime of a node. In this case, the manager is notified when a pod
is about to be decommissioned through the PreStop hook. It then reconfigures Re-
thinkDB to demote all primaries hosted at that pod. When a new pod becomes
available, actions are similar to the previous case.

Hot-spot node(s) impacting application performance. Through the Heapster moni-
toring API, the manager is able to detect a hot-spot on a node. In such case it demotes
primaries hosted there. If the manager detects a uniformly overloaded status across
the cluster, it decides to allocate a new pod and migrate a subset of replicas to it.

Our cross-layer management architecture was implemented as a service written in
Javascript using NodeJS framework, about 600 lines of code (LOC). The service was
containerized using Docker and deployed to cluster managed by Kubernetes CMS.

4.2 Reconfiguration controller

The reconfiguration manager is continuously monitoring for violations of the response-
time SLO and for skewed overload conditions (hot-spots) on data-store nodes. It may
also receive advance notification of hot-spots to occur in the data-store. When called
to decide on whether to apply a reconfiguration or to sustain a hot-spot, the reconfig-

27

Service-level objective L

Hotspot expected at

node N, duration T

Training phase

If expecting time overlap,

propose delay

Reconfigure shards whose

primaries lie on node N or

do not reconfigure

Reconfiguration

Manager

Metric P

Hot-spot duration T

Figure 4.3: Reconfiguration manager architecture.

uration controller uses prior knowledge comparing the SLO penalty (Equation (3.1))
of that type of hot-spot compared to the SLO penalty of reconfigurations to mask that
hot-spot (as for example in Figures 5.15 and 5.16). Key parameters are the duration
and resource-intensity of the hot-spot and the fraction of data it affects.
Hot-spot intensity is always considered high in our experiments, consuming at

least 90% of CPU. The duration of the hot-spot is an independent variable in our
experiments as seen in Figures 5.15 and 5.16. The larger the fraction of the total
data-set on shards whose primary lies on the impacted node, the stronger the impact
of the hot-spot (and that of reconfigurations). The RethinkDB data store used in
our current implementation initially creates as many shards as nodes (servers) in the
cluster, thus the likelihood is that each node will be hosting the primary of a single
shard at any time. Over time however, changes such as the additional or removal of
nodes and replica-group reconfigurations, change the number of shard primaries per
node. The size of each shard also varies over time. With multiple shards per node, the
controller may decide to fine tune the amount of shards reconfigured, reducing the
duration of outage (affecting a smaller fraction of the overall data) but also reducing
the benefit as some shards will still have primaries on the overloaded node.
Figure 4.3 depicts the key elements of the reconfiguration manager. The manager

receives as input a user-specified service-level objective (SLO) setting an upper bound

28

L on response time. Given this information, the reconfiguration manager starts collect-
ing targeted systematic measurements, calculating the penalty function P for different
hot-spot durations and different responses to the hot-spot, namely either trying to
mask it with appropriate reconfiguration actions or not (sustaining the hot-spot).
This outcome of this training phase is a graph such as depicted in the upper right
corner of Figure 4.3 and studied experimentally in Section 5.3. Such graphs typically
comprise two curves: One representing the increasing performance cost of sustaining
increasingly long hot-spots, and another representing the near-constant cost of recon-
figuring around the hot-spot. The cross-over point between the two curves determines
the hot-spot duration after which the benefit of reconfiguration justifies its cost, and
thus the controller will recommend applying it. While it may appear that comput-
ing this graph may be a time-consuming and performance-impacting process, our
experimental evaluation indicates that cross-over points are typically found in short
hot-spot durations (1-3 sec), thus in reality we expect to require measurements at 3-5
points to be able to pin-point the cross-over point. The possibility of pre-computing
and storing such graphs is also practically relevant, however their computation over
a training phase has the benefit of being adaptive to different system sizes, degrees
of replication, SLOs, etc.
Assuming the controller has computed the penalty function vs. hot-spot duration

graphs, it is able to decide on the appropriate action to take when receiving notifi-
cations about a forthcoming hot-spot to affect node N for a duration of T seconds.
First, if the manager determines that the hot-spot may overlap with one or more
other hot-spots about to take place, it may decide to recommend that it be postponed
if possible. This decision is based on our theoretical analysis (Section 3.2) and experi-
mental results (Section 5.3.2) suggesting that reconfiguration may not be able to fully
mask several simultaneously occuring hot-spots. If no overlap is detected, the man-
ager will use the penalty function vs. hot-spot duration graph to determine whether
a reconfiguration on shards whose primaries lie on node N (where the hot-spot is
going to act upon) is beneficial or not.
In our prototype we have implemented and experimented mainly with the training

phase described above, involving setting up systematic measurements to compute
penalty-function vs. hot-spot duration graphs and from them, determining the cross-
over points. The evaluation of this part of our prototype is described in Section 5.3.

29

Chapter 5

Evaluation

5.1 Research questions

5.2 Evaluation of the cross-layer management prototype

5.3 Cost-benefit analysis of adaptation actions

5.1 Research questions

We perform a series of experiments aiming to address the following three research
questions:

1. Does proactive adaptivity in the case of previously announced downtime of a
node reduce the performance impact that would otherwise be experienced if the
downtime was unscheduled (e.g., a crash)?

2. Can load balancing actions via replica group reconfigurations reduce the per-
formance impact of hot-spots (overloaded nodes) on data store performance?

3. When does the cost of replica-group reconfigurations outweigh their benefits
under different assumptions on hot-spot characteristics, especially their dura-
tion?

Research questions (1) and (2) are investigated in the context of the cross-layer man-
agement prototype deployed in the Google Container Engine (GCE) where Kubernetes

30

S4_r3

Node 1 Node 2 Node 3 Node 4

Google Cοntainer Engine

S1_r1 S1_r2

S2_r1

S1_r3

S2_r2

S2_r3
S3_r1

S3_r2

S3_r3

S4_r1S4_r2

primary

primary

primary

primary

pod 1

pod 2

pod 3
pod 4

managed

Crash

When detecting the crash, elect primary replicas,

resume service

(a) Reactive adaptivity to unscheduled

downtime of a node

At announcement, move primaries off of Node 1,

resume service

S4_r3

Node 1 Node 2 Node 3 Node 4

Google Container Engine

S1_r1 S1_r2

S2_r1

S1_r3

S2_r2

S2_r3
S3_r1

S3_r2

S3_r3

S4_r1S4_r2

primary

primary

primary

primary

pod 1

pod 2

pod 3
pod 4

managed

Announcing downtime

(b) Proactive adaptivity to scheduled

downtime of a node

Figure 5.1: Reactive vs. proactive adaptivity to downtime of a node (Node 1)

0

10

20

30

40

50

60

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation Normal Operation

Pod Shutdown

Reconfiguration

(a) Mean operation latency during recon-

figuration phase.

0
200
400
600
800

1000
1200
1400
1600
1800

Time (s)

O
p

e
ra

ti
o

n
s

/s
e

c
o

n
d Normal Operation

Normal Operation

Reconfiguration

Pod Shutdown

(b) Throughput during the reconfigura-

tion and restoration phase.

Figure 5.2: Reactive adaptivity to unscheduled downtime of a node (scenario of
Figure 5.1a)

is natively supported, whereas question (3) is investigated in a dedicated private clus-
ter to avoid resource constraints in GCE and to achieve the low statistical noise needed
in these experiments.

5.2 Evaluation of the cross-layer management prototype

Experimental testbed. The experiments were conducted on a 4-node container
cluster on Google Cloud Engine. Each node has 2 vCPUs (2.6 GHz Intel Xeon E5
with hyperthreading), 13GB of RAM, and a solid-state drive (SSD) for persistent
storage. Each GCE node hosts one Kubernetes pod containing a RethinkDB server
(Figure 4.2). RethinkDB is configured for 4 shards. Each pod initially contains 3
replicas of 3 different shards. Each replica is denoted Si_rj, which stands for “shard
i, replica j”, where i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3}. The YCSB benchmark [48] is

31

0

10

20

30

40

50

60

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

Reconfiguration
Move Primary

Pod Shutdown
Reconfiguration

New Primary

Normal Operation

(a) Mean operation latency during recon-

figuration phase.

0
200
400
600
800

1000
1200
1400
1600
1800

Time (s)

O
p

e
ra

ti
o

n
s

/s
e

c
o

n
d

Normal Operation

Reconfiguration
Move Primary

Pod Shutdown

Reconfiguration
New Primary

Normal Operation

(b) Throughput during the reconfigura-

tion and restoration phase.

Figure 5.3: Proactive adaptivity to scheduled downtime of a node (scenario of Fig-
ure 5.1b)

configured for Workload A (50% reads, 50% updates) [49], 16 client threads, and
load target of 1000 operations/sec. RethinkDB is configured for soft durability (writes
are acknowledged immediately). The software versions used are Kubernetes 1.4.8 and
RethinkDB 2.3.5.
We first look into the benefits of proactive vs. reactive adaptation when a Re-

thinkDB server is decommissioned. We note that proactive adaptation is only possible
with a previous announcement of downtime, while reactive adaptation makes sense
only in the case of unscheduled downtime (e.g., crash).

5.2.1 Reactive adaptivity to unscheduled downtime of a node

This scenario is illustrated in Figure 5.1a. Figure 5.2a depicts YCSB latency and
throughput during execution. At 150s a server is decommissioned (“pod shutdown”)
causing all replicas hosted there to crash. Crashed primary replicas cause a brief pe-
riod of unavailability, out of which RethinkDB recovers (at 165s) by electing a new
primary for those crashed. At 180s a new node is made available by Kubernetes (via
the ReplicaSet mechanism) and joins the RethinkDB cluster. The manager initiates
the creation of replicas at the new node via a reconfiguration of the YCSB table, caus-
ing RethinkDB to start backfilling (transfering state to) simultaneously all the replicas.
After the replicas are created, some of them are assigned primaries to restore balance.
The performance impact of this process is seen at 220s–260s.

32

5.2.2 Proactive adaptivity to scheduled node downtime

A different scenario involving a scheduled maintenance activity that will take down
a node (Node 1) is illustrated in Figure 5.1b. Unlike the previous case, the manager
is notified in advance and thus reconfigures the RethinkDB table to demote any pri-
maries hosted at Node 1 (electing primaries at other nodes), aiming to reduce impact
on cluster performance. In Figure 5.3a we observe that reconfiguration takes place
at 140s. Decommissioning Node 1 at 170s has only a small impact on performance.
The new server joins the cluster at 200s, at which point the manager starts back-

filling replicas there. Finally, the manager reconfigures the table again at 195s to
promote an appropriate number of backup replicas into primaries (one in this case)
on the new server to reach a well-balanced table configuration. Comparing Figure 5.2
to Figure 5.3 makes it clear that proactive adaptivity leads to smoother performance
overall.

We next turn our attention to adaption actions performed by the manager in the
context of a load imbalance on some node in the cluster. To evaluate the benefits of
adaptation in this case, we set up a third experiment in which a resource-intensive
process kicks in on one of the nodes in the cluster at some point in time, draining
CPU resources and impacting the overall performance of the cluster. The cause of the
impact is the fact that the affected node hosts the primary replica of one of the shards
in the cluster, and thus all operations addressing this shard are being delayed. This
challenge can be addressed as described below:

5.2.3 Offloading a brief hot-spot via reconfiguration

The next scenario is illustrated in Figure 5.4a. As shown in Figure 5.5a, at 100s a
resource-intensive activity drains resources on a cluster node, with significant impact
on overall cluster performance as operation latency surges from about 5ms to 80-
120ms while throughput drops from 1000 ops/sec to 200 ops/sec. Drastically reduced
performance is due to those shards (replica groups) whose primaries are hosted
at the affected node. At about 170s the manager decides to start a reconfiguration
of RethinkDB cluster nodes, demoting any primaries hosted at the affected node
and electing primaries in other nodes in the cluster (making sure to spread load

33

S4_r3

Node 1 Node 2 Node 3 Node 4

Google Container Engine

S1_r1 S1_r2

S2_r1

S1_r3

S2_r2

S2_r3
S3_r1

S3_r2

S3_r3

S4_r1S4_r2

primary

primary

primary

primary

pod 1

pod 2

pod 3
pod 4

managed

Move primaries off of Node 1, resume service
Fewer resources available for

a short period of time

(a) Temporary offload via replica-group

reconfiguration

Move primaries off of Node 1, then

migrate replicas off of Node 1, resume service

S4_r3

Node 1 Node 2 Node 3 Node 4

Google Container Engine

S1_r1 S1_r2

S2_r1

S1_r3

S2_r2

S2_r3
S3_r1

S3_r2

S3_r3

S4_r1S4_r2

primary

primary

primary

primary

pod 1

pod 2

pod 3
pod 4

managed

Fewer resources available for

a long period of time

Crash

(b) Long-term offload: replica reconfigu-

ration and migration

Figure 5.4: Offloading a hot-spot (Node 1): Brief vs. long-lasting hot-spot

0

20

40

60

80

100

120

140

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation High CPU Load

Reconfiguration
Move Primary

Reconfiguration
Reassign Primary

(a) Mean operation latency during recon-

figuration phase

0
200
400
600
800

1000
1200
1400
1600
1800

Time (s)

O
p

e
ra

ti
o

n
s

/s
e

c
o

n
d

Normal Operation High CPU Load

Reconfiguration
Move Primary

Reconfiguration
Reassign Primary

(b) Throughput during the reconfigura-

tion and restoration phase

Figure 5.5: Offloading a brief hot-spot via reconfiguration (scenario of Figure 5.4a)

uniformly). The affected node now hosts only backup replicas, no longer posing an
impact on performance: Each shard is backed by three replicas, and any two nodes
(some majority) are sufficient for reads/writes to the shard to make progress.
After reconfiguration of the cluster, latency is restored to about 10ms, significantly

better than during the surge (80-120ms). As the YCSB node is producing load at a
constant rate of 1000 ops/sec, service-side request queues are building a backlog dur-
ing the surge. The throughput rise at 190s is due to the emptying of those queues.
At 310s, the manager initiates a reconfiguration of the cluster back to its original
state, promoting a replica to a primary on Node 1, better balancing load. This brings
latency down to pre-surge levels of about 10ms. CPU utilization at Node 1 during the
reconfiguration and restoration phase is illustrated in Figure 5.8.

34

0

20

40

60

80

100

120

140

160

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation High CPU Load

Reconfiguration
Move Primary

Reconfiguration
Reassign Primary

(a) Mean operation latency during recon-

figuration phase

0
200
400
600
800

1000
1200
1400
1600
1800

Time (s)

O
p

e
ra

ti
o

n
s

/s
e

c
o

n
d

Normal Operation High CPU Load

Reconfiguration
Move Primary

Reconfiguration
Reassign Primary

(b) Throughput during the reconfigura-

tion and restoration phase

Figure 5.6: Offloading a brief hot-spot via proactive reconfiguration (scenario of Fig-
ure 5.4a)

0

20

40

60

80

100

120

140

160

Time (s)

L
a

te
n

c
y

 (
m

s
)

Pod
Shutdown

Replica
Reconciliation

Hot-spot
Fades away

High CPU Load

(a) Mean operation latency during server

failover without migrating backups

0

20

40

60

80

100

120

140

160

Time (s)

L
a

te
n

c
y

 (
m

s
)

Replica Migration

Pod
Shutdown

High CPU Load

Hot-spot
Fades away

(b) Mean operation latency during server

failover after migrating backups

Figure 5.7: Offloading a brief hot-spot via proactive reconfiguration (scenario of Fig-
ure 5.4a)

5.2.4 Offloading a brief hot-spot via proactive reconfiguration

This scenario shows the benefit of applying the reconfiguration action proactively, in
advance of the hot-spot. As shown in Figure 5.6, a reconfiguration is applied at 80s
prior to the resource-intensive activity coming into effect at that node at 110s. As our
implementation does not yet support a predictive implementation of PerfWarning
event (Section 4.1), this is triggered manually in this case. The proactive action is
able to mask completely the adverse effect of the hot-spot on application performance.
After the end of the resource-intensive activity, another reconfiguration restores the
replica roles (promoting a primary) on the affected node.
Reconfiguration by reassigning shard primaries is an effective short-term remedy

to maintain performance in the presence of a temporary hot-spot. However, a down-
side is that it leaves the system vulnerable to service unavailability in the case of a

35

subsequent crash, as is demonstrated next:

5.2.5 Offloading a longer-term hot-spot via reconfiguration and

replica migration

The next scenario is illustrated in Figure 5.4b. This experiment focuses on the time
following the movement of primaries off of Node 1 in the previous experiment and
while the hot-spot is still on (lasts longer in this case). To focus on the behavior during
a subsequent crash we show results starting at 370s into the run. We focus on the two
possible outcomes that may occur when a second node (Node 4) crashes, depending
on whether new instances of the replicas located in Node 1 have been created on
other nodes prior to the crash on Node 4 (Figure 5.7b) or not (Figure 5.7a).
In Figure 5.7a we observe that the pod crash on Node 4 at about 450s results

in severe performance degradation. The crash of Node 4 brings down 3 replicas
(of different shards), one of which is a primary and two are backups. Shards with
replicas in Nodes 1 and 4 are now left with two replicas, one of which outdated
(on Node 1) since replicas there were not updated quickly enough. Reads are thus
delayed in the interval 450s-550s while the slow replicas are “catching up” (being
reconciled) through backfilling. Even after reconciliation (550s-680s), replicas at the
hot-spot node continue to delay progress, since the shard depends on them to form
a majority.
We next consider the case where the manager migrates replicas out of Node 1

(400s-500s in Figure 5.7b), an action that poses a slight latency cost during data
transfer. The migration lasts for about 100s as the replicas are migrated one by one
to reduce the performance impact. However, crash of a pod at 535s has now little
effect on performance, as all shards have at least two up-to-date replicas to satisfy read
and write operations from. Replica migrations are a worthwhile action in this case
since the hot-spot lasted longer and the system was more vulnerable to a subsequent
crash.
When possible, providing the manager with knowledge on the time duration of

a hot-spot can guide the choice of an appropriate policy: reconfigure shards (de-
mote primaries on a hot-spot node) if the hot-spot is expected to be short, otherwise
reconfigure and migrate replicas out of a hot-spot node.

36

0

20

40

60

80

100

120

Time (s)

C
P

U
 u

s
a

g
e

 (
%

)

Figure 5.8: CPU utilization on hot-spot node (including all activities)

5.3 Cost-benefit analysis of adaptation actions

In previous experiments we considered hot-spots of a long duration, where the re-
configuration action always turned out to be beneficial. However, for shorter hot-spot
spikes a question that comes up is whether the cost of the reconfiguration action
itself (the availability lapse incurred by the leader switch) may outweigh the benefits.
In what follows, we carry out an experimental cost-benefit analysis considering both
simple hot-spot spikes as well as concurrent occurences of such spikes across cluster
nodes.

Experimental testbed. Our experimental testbed is a cluster of 9 servers, each
equipped with a dual-core (four hardware threads) AMD Opteron™275 processor
clocked at 2.2GHz with 12GB of main memory. All servers run Ubuntu 14.04 64-
bit with a 3.14.1 Linux kernel and are interconnected via a 1Gb/s Ethernet switch.
Servers used as RethinkDB data nodes store data on a dedicated 300GB 15,500 RPM
SAS drive, so as to not interfere with the base 72GB 10,000 RPM SCSI drive used by
the OS. All hard drives are formatted with ext4.

5.3.1 Determining the break-even point for individual hot-spot

spikes

In this scenario we aim to determine the point at which the cost of a replica-group
reconfiguration on performance outweighs its benefits in masking a temporary hot-
spot. To achieve this we perform experiments with hot-spots of varying duration
and compare their impact on performance (without a reconfiguration) to the impact
of a reconfiguration action prior to the hot-spot with a subsequent reconfiuguration
restoring the balance of replica roles on the cluster. To quantitatively compare the two

37

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

30

35

40

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

P=2

P=8

1s

High CPU Load

(a) Normal operation without reconfigu-

ration

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

30

35

40

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

1s

High CPU Load

Reconfiguration
Reassign Primary

P=8

P=36

Reconfiguration
Move Primary

(b) Proactive reconfiguration and restora-

tion

Figure 5.9: Mean operation latencies under a 1s hot spot (95% reads - 5% writes,
Configuration C1))

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

30

35

40

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

P=5

P=18

2s

High CPU Load

(a) Normal operation without reconfigu-

ration

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

30

35

40

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

2s

High CPU Load

Reconfiguration
Reassign Primary

P=17

P=37

Reconfiguration
Move Primary

(b) Proactive reconfiguration and restora-

tion

Figure 5.10: Mean operation latencies under a 2s hot spot (95% reads - 5% writes,
Configuration C1))

cases we use the penalty function (P) introduced in Equation (3.1) using a sampling
period of 500ms.
We calculate P during hot-spots by selecting T such that it fully includes the

duration of the hot-spot, divide T to 500ms samples, set li to the average measured
response-time during sample i, and directly apply the penalty function. One issue
we had to face was how to calculate P when reconfigurations were involved during
T , as operations issued during reconfigurations fail. To achieve this, we measure the
number of failed operations, say 1200 (or roughly 600 during each reconfiguration)
on a run that averaged 6000 ops/sec, and thus deduce that each reconfiguration lasts
about 100ms. One question we faced was what response-time to attribute to the 600
operations that failed, given the fact that RethinkDB throws an exception to them
and those operation are counted as unsuccessful1. We decided to consider the 600

1YCSB does not reissue failed operations, it rather gives up on them and continues with the issuing

38

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

30

35

40

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

P=5

P=28

3s

High CPU Load

(a) Normal operation without reconfigu-

ration

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

30

35

40

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

3s

High CPU Load

Reconfiguration
Reassign Primary

P=28

P=36

Reconfiguration
Move Primary

(b) Proactive reconfiguration and restora-

tion

Figure 5.11: Mean operation latencies under a 3s hot spot (95% reads - 5% writes,
Configuration C1))

Name # Nodes Read policy Write policy Durability Replicas/shard Data-set size (rows)
C1 8 primary replica primary replica soft 3 1 million
C2 8 primary replica majority soft 3 1 million
C3 4 primary replica primary replica soft 3 1 million
C4 8 primary replica majority soft 3 6 million

Table 5.1: Summary of RethinkDB configurations

operations that failed during a reconfiguration as a single operation that lasts for
the full amount of the outage (i.e., 100ms). This is a reasonable assumption as an
application that would persist on re-issuing the operation would have succeded to
complete it at the end of the reconfiguration period. Since we use 500ms samples
and reconfiguration takes 100ms of one such sample, we calculate the mean latency
li of that sample as

li =
1

5
∗ 100ms+

4

5
∗ average r/t of successful ops over i (5.1)

We conducted experiments measuring P under different hot-spot durations for
two different workload types. Figures 5.9, 5.10 and 5.11 depict executions for YCSB
workload B (95%-5% reads/writes) on configuration C1 (Table 5.1) under hot-spots
of duration 1, 2, 3 sec. Figures 5.12, 5.13 and 5.14 depict executions for YCSB work-
load A (50%-50% reads/writes) on configuration C2 (Table 5.1) under hot-spots of
duration 1, 2, 3 sec. In Figures 5.12a, 5.13a, 5.14a no reconfiguration is taking place
to mask the hot-spot, whereas in Figures 5.12b, 5.13b, 5.14b a reconfiguration is ap-
plied just prior to the hot-spot and after it. We report average YCSB latency at 500ms

of subsequent operations.

39

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

120

140

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

P=7

P=21

1s

High CPU Load

(a) Normal operation without reconfigu-

ration

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

120

140

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

1s

High CPU Load

Reconfiguration
Reassign Primary

P=21
P=34

Reconfiguration
Move Primary

(b) Proactive reconfiguration and restora-

tion

Figure 5.12: Mean operation latencies under a 1s hot spot (50% reads - 50% writes,
Configuration C2))

intervals with the hot-spot occuring at t=50 sec. We calculate P with two different
SLO targets, 5ms and 10ms, and report averages of P over 10 runs.
Average latency for both reads and writes under the 95%-5% workload is 2ms,

increasing under the 50%-50% workload to 3ms due to more and costlier write opera-
tions. We observe that in the case of 95%-5% (Figures 5.9, 5.10, 5.11), reconfiguration
has a higher cost that sustaining the hot-spot, across hot-spots of duration 1–3 sec. In
the case of 50%-50% however (Figures 5.12, 5.13, 5.14) we observe the opposite for
hot-spot durations of 2 and 3 sec, namely that the impact of reconfiguration is lower
than that of the hot-spot (without reconfiguration). Thus, in this case it makes sense
to decide to reconfigure rather than sustain the hot-spot. However, for a hot-spot that
lasts 1 sec, sustaining the hot-spot is more cost-effective than reconfiguring around it
(Figures 5.12).
To systematically compare the impact of reconfiguration around a hot-spot versus

that of the hot-spot itself without reconfiguration, and determine the break-even
point, we carry out systematic measurements of P under different configurations and
hot-spots of increasing duration, depicting results in Figures 5.15, 5.16.
Figure 5.15 depicts the impact of a hot-spot of increasing duration on SLO on

configuration C1 (Figure 5.15a) and C3 (Figure 5.15b) with 95%-5% reads/writes
(YCSB workload B). The results depicted in Figure 5.15 are averages over eleven
experiments with low standard deviation. In both cases, reconfiguration before and
after a spike exhibits a near-constant cost, as expected, since it is independent of the
duration of the hot-spot, whereas the cost of not reconfiguring increases with the
duration of the hot-spot. Reconfiguration becomes cost-effective with an SLO target

40

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

120

140

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

P=34

P=74

2s

High CPU Load

(a) Normal operation without reconfigu-

ration

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

120

140

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

2s

High CPU Load

Reconfiguration
Reassign Primary

P=23
P=35

Reconfiguration
Move Primary

(b) Proactive reconfiguration and restora-

tion

Figure 5.13: Mean operation latencies under a 2s hot spot (50% reads - 50% writes,
Configuration C2))

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

120

140

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

P=61

P=94

3s

High CPU Load

(a) Normal operation without reconfigu-

ration

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

120

140

Time (s)

L
a

te
n

c
y

 (
m

s
)

Normal Operation

3s

High CPU Load

Reconfiguration
Reassign Primary

P=22
P=34

Reconfiguration
Move Primary

(b) Proactive reconfiguration and restora-

tion

Figure 5.14: Mean operation latencies under a 3s hot spot (50% reads - 50% writes,
Configuration C2))

of 5ms for T ≥ 5 sec for 8 nodes and T ≥ 4 sec for 4 nodes. The lower cross-over
point for 4 nodes can be explained as follows: With the same data set size being laid
out on fewer shards, each shard is now twice the size compared to that with 8 nodes.
As a result, a hot-spot has a stronger impact on overall performance for the same
duration compared to Figure 5.15a, raising the penalty curve higher compared to
8 nodes. Thus it becomes cost-effective to use reconfiguration starting from shorter
(about 3 seconds long upwards) hot-spots.
Next, we study the case where more nodes in each shard are involved in the com-

pletion of a request by setting up RethinkDB to require a majority of acks during a
write (Configuration C2) and increase the proportion of writes in the mix to 50%-
50% reads/writes (YCSB workload A). Our results indeed show higher response time
(average of 3ms compared to about 2ms under 95%-5%) due to more costly write
operations. We thus have set the SLO higher to 10ms in this case. Figure 5.16a de-

41

picts the results with the same dataset size showing that the cross-over point is lower
(at about 1.5 sec) compared to previous experiments, making reconfiguration cost-
effective for shorter hot-spots. As this is a heavier workload, even a short hot-spot
results to large SLO violations, making the cost of reconfiguration equal to that of a
hot-spot of the same duration (recall that reconfiguration lasts ≈100ms each way). To
test the effect of a larger dataset that does not fully fit the node caches, we repeated
the previous experiment with increased number of rows (6 million, Configuration C4)
and depict the results in Figure 5.16b. The average latency in this case is at 3.5ms,
increased by about 15% compared to the previous case. As such, hot-spots now have
a stronger impact compared to the cost of reconfiguration (Figure 5.16b).

5.3.2 Simultaneous hot-spots across data-store cluster

We next examine policies under more complex hot-spot patterns. With operations
involving a majority of nodes in a shard, reconfiguration should not help if a majority
of nodes of a shard are hosted on nodes experiencing simultaneous hot-spots. Thus
if hot-spots overlap in time, it may pay off to schedule them so that they never
simultaneously execute on nodes that host replicas of the same shards.
To validate this hypothesis we perform experiments in which we randomly sched-

ule two simultaneous 8-second hot-spots in an 8-node cluster using 50%-50% read-
s/writes (YCSB workload A) with Configuration C2. Prior to the hot-spots we apply
reconfigurations aiming to mask both of them (two reconfigurations moving primaries
away from the two impacted nodes, two additional reconfigurations to bring them
back after the hot-spot is over), and compute the P penalty function for each execu-
tion with an SLO of 5ms. The initial placement of replicas is performed by RethinkDB
(one shard primary per node, backups spread evenly across nodes, no two replicas
of the same shard on the same node). Figure 5.17 depicts the P metric averaged over
8 repetitions of 30 YCSB runs, each randomly placing tw o hot-spots on the cluster
and lasting for about 100 sec (500K ops). White bars correspond to cases where the
random choice of hot-spot nodes yields no shard with two of its replicas on them. In
these cases reconfigurations work as intended since by moving the primaries away,
both shards can make progress with 2 out of 3 nodes in normally-loaded servers. In
other experiments where some shard has two of its replicas on the impacted nodes,

42

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

0

50

100

150

200

250

300

No Reconfigurations

Reconfigurations

Hog Duration (s)

P
2
 M

e
tr

ic

SLO: 5ms

(a) Configuration C1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

0

50

100

150

200

250

300

No Reconfigurations

Reconfigurations

Hog Duration (s)

P
2
 M

e
tr

ic

SLO: 5ms

(b) Configuration C3

Figure 5.15: Impact of reconfiguration vs. that of hot-spot of increasing duration
(95% reads - 5% writes)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

50

100

150

200

250

300

No Reconfigurations

Reconfigurations

Hog Duration (s)

P
2
 M

e
tr

ic

SLO: 10ms

(a) Configuration C2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

50

100

150

200

250

300

No Reconfigurations

Reconfigurations

Hog Duration (s)

P
2
 M

e
tr

ic

SLO: 10ms

(b) Configuration C4

Figure 5.16: Impact of reconfiguration vs. that of hot spot of increasing duration
(50% reads - 50% writes)

reconfigurations are not helpful since even after reconfiguring the shard does not
have a majority of normally-loaded nodes to make progress with.
Given that in Figure 5.17 we observe 21 out of 30 runs (70%) being impacted under

two simultaneous hot-spots on 8 nodes, we expect that random placement of more
simultaneous hot-spots will have even more drastic impact on cluster performance,
with replica-group reconfiguration unable to mask their effect on affected shards. It is
thus important for our reconfiguration controller to aim for scheduling the execution
of hot-spots to avoid overlap, when such control is possible.

43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

200

400

600

800

1000

1200

1400

1600

Experiment number

P
 m

e
tr
ic

Figure 5.17: SLO violations when reconfiguring around two simultaneous 8 sec hot-
spots on random servers (50% reads - 50% writes, Configuration C2). White bars
correspond to cases where no shards have two of their replicas on the impacted
servers.

44

Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.2 Future work

6.1 Conclusions

In this thesis we presented a cross-layer service management architecture for NoSQL
data stores that leverages replica-group reconfigurations as a lightweight adaptation
mechanism to reduce the impact of events such as node decommissioning or tem-
porary hot-spots on data store performance. The architecture can utilize advance
notifications about infrastructure activities provided by infrastructure management
systems, functionality that has only recently been made available over standard vir-
tualized infrastructures. In particular, in our prototype notification about nodes go-
ing down is provided by the Kubernetes container management system through the
container-hooks notification mechanism, also available in other container manage-
ment systems. Our prototype bridges between the Kubernetes container management
system and containerized deployments of the RethinkDB NoSQL data store. Our eval-
uation on the Google Container Engine demonstrates that cross-layer management
delivers the availability benefits of proactively handling the departure of a data-store
server, as well as the performance benefits of masking the performance impact of a
hot-spot through lightweight replica reconfigurations. Our experimental analysis and
comparison of the cost of reconfiguring replica-groups to mask a temporary hot-spot

45

versus the cost of sustaining (without reconfiguration) the impact of the hot-spot
shows that reconfigurations are cost-effective even for very short hot-spots (a few
seconds), depending on the amount of load already placed on data-store servers. We
have determined (theoretically and experimentally) that the effectiveness of reconfig-
uration actions diminishes with the number of hot-spots that simultaneously occur on
the cluster. It is thus worthwhile –when possible– to defer (or otherwise schedule by
actions of the reconfiguration controller) the occurrence of hot-spots so as to reduce
their overlap in time.

6.2 Future work

An interesting direction for future work is to evaluate the benefits of the use of the
replica-group reconfiguration management architecture developed in this thesis in a
real setting, such as in masking the impact of hot spots produced by background
activities in data-stores. Examples of such activities include asynchronous periodic
snapshots, long garbage collections, data compaction / reorganization activities in data
stores, or other ephemeral I/O or CPU-intensive activities that have a measurable
impact on data store performance, especially under heavy application workloads. In
such a study it would be interesting to evaluate scheduling policies that orchestrate
hot-spot activities in terms of placement and time, to ensure that hot-spots have
overall minimal impact on performance.

46

Bibliography

[1] “RethinkDB cluster management UI.” https://www.rethinkdb.com/docs/

sharding-and-replication/. Accessed: 2017-06-21.

[2] “Kubernetes.” https://en.wikipedia.org/wiki/Kubernetes. Accessed: 2017-01-
07.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly
available key-value store,” in Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, (Stevenson, WA, USA), October 14-17,
2007.

[4] F. Gessert and N. Ritter, “Scalable data management: NoSQL data stores in re-
search and practice,” in 32nd IEEE International Conference on Data Engineering,
ICDE 2016, Helsinki, Finland, May 16-20, 2016, 2016.

[5] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler, “Scalable, distributed
data structures for internet service construction,” in Proceedings of the 4th Confer-
ence on Symposium on Operating System Design & Implementation (OSDI ’00), (San
Diego, California), 2000.

[6] M. Ghosh, W. Wang, G. Holla, and I. Gupta, “Morphus: Supporting Online Re-
configurations in Sharded NoSQL Systems,” in Proceedings of the 2015 IEEE In-
ternational Conference on Autonomic Computing, ICAC ’15, (Washington, DC, USA),
July 7-10, 2015.

[7] I. Konstantinou, D. Tsoumakos, I. Mytilinis, and N. Koziris, “DBalancer: Dis-
tributed Load Balancing for NoSQL Data-stores,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’13, (New York,
NY, USA), June 22-27, 2013.

47

https://www.rethinkdb.com/docs/sharding-and-replication/
https://www.rethinkdb.com/docs/sharding-and-replication/
https://en.wikipedia.org/wiki/Kubernetes

[8] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic storage,”
in Proc. of the 7th International Conference on Autonomic Computing (ICAC’10),
(Washington, DC, USA), 2010.

[9] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “Distributed systems
(2nd ed.),” ch. The Primary-backup Approach, pp. 199–216, 1993.

[10] D. Ongaro and J. Ousterhout, “In search of an understandable consensus al-
gorithm,” in Proc. of 2014 USENIX Conference on USENIX Annual Technical
Conference (USENIX ATC’14), pp. 305–320, 2014.

[11] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance broadcast
for primary-backup systems,” in Proc. of 2011 IEEE/IFIP 41st International
Conference on Dependable Systems&Networks (DSN ’11), pp. 245–256, 2011.

[12] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new primary copy
method to support highly-available distributed systems,” in Proceedings of the
Seventh Annual ACM Symposium on Principles of Distributed Computing (PODC
’88), pp. 8–17, 1988.

[13] “MongoDB replication.” https://docs.mongodb.com/manual/replication/. Ac-
cessed: 2017-01-07.

[14] “RethinkDB Architecture.” https://www.rethinkdb.com/docs/architecture/. Ac-
cessed: 2017-01-07.

[15] P. Garefalakis, P. Papadopoulos, and K. Magoutis, “ACaZoo: A Distributed Key-
Value Store Based on Replicated LSM-Trees,” in 33rd IEEE International Sym-
posium on Reliable Distributed Systems, SRDS 2014, October 6-9, 2014, (Nara,
Japan).

[16] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,
“Large-scale cluster management at Google with Borg,” in Proceedings of the
European Conference on Computer Systems (EuroSys), (Bordeaux, France), April
22-24, 2015.

[17] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, Omega,
and Kubernetes,” Queue, vol. 14, pp. 10:70–10:93, Jan. 2016.

48

https://docs.mongodb.com/manual/replication/
https://www.rethinkdb.com/docs/architecture/

[18] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega: Flex-
ible, Scalable Schedulers for Large Compute Clusters,” in Proceedings of the 8th
ACM European Conference on Computer Systems, EuroSys ’13, (Prague, Czech Re-
public), April 14-17, 2013.

[19] “Kubernetes.” http://kubernetes.io/. Accessed: 2017-01-07.

[20] “Amazon EC2 Container Service.” https://aws.amazon.com/ecs/. Accessed: 2017-
01-07.

[21] “Google Container Engine.” https://cloud.google.com/container-engine/. Ac-
cessed: 2017-01-07.

[22] “IBM Bluemix Container Service.” https://www.ibm.com/cloud-computing/

bluemix/containers. Accessed: 2017-01-07.

[23] “RethinkDB.” https://www.rethinkdb.com/. Accessed: 2017-01-07.

[24] “MongoDB.” https://www.mongodb.com/. Accessed: 2017-01-07.

[25] “RethinkDB cluster management API.” https://rethinkdb.com/blog/1.

16-release/. Accessed: 2017-01-07.

[26] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah, “Serving
Large-scale Batch Computed Data with Project Voldemort,” in Proceedings of the
10th USENIX Conference on File and Storage Technologies, FAST’12, (San Jose,
CA), February 14-17, 2012.

[27] “Basho Riak NoSQL database.” http://docs.basho.com/riak/kv/. Accessed:
2017-01-07.

[28] V. V. Cogo, A. Nogueira, J. Sousa, M. Pasin, H. P. Reiser, and A. N. Bessani,
“FITCH: supporting adaptive replicated services in the cloud,” in Procedings of
13th IFIP International Conference Distributed Applications and Interoperable Systems
(DAIS 2013), (Florence, Italy), June 3-5, 2013.

[29] I. Kitsos, A. Papaioannou, N. Tsikoudis, and K. Magoutis, “Adapting data-
intensive workloads to generic allocation policies in cloud infrastructures,” in
Proceedings of Network Operations and Management Symposium (NOMS), (Hawaii,
USA), pp. 25–33, April 16-20, 2012.

49

http://kubernetes.io/
https://aws.amazon.com/ecs/
https://cloud.google.com/container-engine/
https://www.ibm.com/cloud-computing/bluemix/containers
https://www.ibm.com/cloud-computing/bluemix/containers
https://www.rethinkdb.com/
https://www.mongodb.com/
https://rethinkdb.com/blog/1.16-release/
https://rethinkdb.com/blog/1.16-release/
 http://docs.basho.com/riak/kv/

[30] L. Wang, J. Xu, and M. Zhao, “Application-aware cross-layer virtual machine
resource management,” in Proceedings of the 9th International Conference on Auto-
nomic Computing, ICAC ’12, (San Jose, CA, USA), September 17-21, 2012.

[31] “Cloud Native Computing Foundation.” https://www.cncf.io/. Accessed: 2017-
01-07.

[32] “Autoscaling lifecycle hooks.” http://docs.aws.amazon.com/autoscaling/latest/

userguide/lifecycle-hooks.html. Accessed: 2017-01-07.

[33] M. Isard, “Autopilot: Automatic data center management,” SIGOPS Operating
Systems Review, vol. 41, pp. 60–67, Apr. 2007.

[34] K. Bhargavan, A. Gordon, T. Harris, and P. Toft, “The Rise and Rise of the
Declarative Datacentre,” Tech. Rep. MSR-TR-2008-61, Microsoft Research, May
2008.

[35] A. Papaioannou, D. Metallidis, and K. Magoutis, “Cross-layer management of
distributed applications on multi-clouds,” in IFIP/IEEE International Symposium
on Integrated Network Management, IM 2015, 11-15 May, 2015, (Ottawa, ON,
Canada), May 11-15, 2015.

[36] K. Magoutis, M. Devarakonda, N. Joukov, and N. G. Vogl, “Galapagos: Model-
driven discovery of end-to-end application-storage relationships in distributed
systems,” IBM J. Res. Dev., vol. 52, no. 4, 2008.

[37] “ReQL.” https://www.rethinkdb.com/docs/introduction-to-reql/. Accessed:
2017-01-07.

[38] “RethinkDB changefeeds mechanism.” https://rethinkdb.com/docs/

changefeeds/. Accessed: 2017-06-21.

[39] “Docker.” https://www.docker.com/. Accessed: 2017-06-21.

[40] “cgroups.” https://www.freedesktop.org/wiki/Software/systemd/

ControlGroupInterface/. Accessed: 2017-06-21.

[41] “etcd distributed key-value store.” https://github.com/coreos/etcd. Accessed:
2017-01-07.

50

https://www.cncf.io/
http://docs.aws.amazon.com/autoscaling/latest/userguide/lifecycle-hooks.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/lifecycle-hooks.html
https://www.rethinkdb.com/docs/introduction-to-reql/
https://rethinkdb.com/docs/changefeeds/
https://rethinkdb.com/docs/changefeeds/
https://www.docker.com/
https://www.freedesktop.org/wiki/Software/systemd/ControlGroupInterface/
https://www.freedesktop.org/wiki/Software/systemd/ControlGroupInterface/
https://github.com/coreos/etcd

[42] “Kubernetes Horizontal Pod Autoscaling.” https://kubernetes.io/docs/tasks/

run-application/horizontal-pod-autoscale/. Accessed: 2017-06-21.

[43] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance differentiation
for storage systems using adaptive control,” Trans. Storage, vol. 1, pp. 457–480,
Nov. 2005.

[44] C. R. Lumb, A. Merchant, and G. A. Alvarez, “Façade: Virtual storage devices
with performance guarantees,” in Proceedings of the 2nd USENIX Conference on
File and Storage Technologies (FAST’03), (San Francisco, CA), 2003.

[45] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Harmony: Dynamic
heterogeneity-aware resource provisioning in the cloud,” IEEE Transactions on
Cloud Computing, vol. 2, no. 1, pp. 14–28, 2014.

[46] “Kubernetes ReplicaSets.” http://kubernetes.io/docs/user-guide/replicasets/.
Accessed: 2017-01-07.

[47] “Kubernetes liveness probe.” https://kubernetes.io/docs/tasks/. Accessed:
2017-01-07.

[48] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-
marking Cloud Serving Systems with YCSB,” in Proceedings of the 1st ACM Sym-
posium on Cloud Computing, SoCC ’10, (Indianapolis, Indiana, USA), June 10-11,
2010.

[49] “YCSB Core Workloads.” https://github.com/brianfrankcooper/YCSB/wiki/

Core-Workloads. Accessed: 2017-01-07.

51

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
http://kubernetes.io/docs/user-guide/replicasets/
https://kubernetes.io/docs/tasks/
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

Author’s Publications

Research work in the context of this thesis resulted in the following publication:

• E. Bekas and K. Magoutis, “Cross-layer management of a containerized NoSQL
data store,” in IFIP/IEEE International Symposium on Integrated Network Man-
agement, IM 2017, 8-12 May, 2017, (Lisbon, Portugal), May 8-12, 2017.

Short Biography

Evdoxos Bekas is a graduate student at the M.Sc. program of the department of
Computer Science and Engineering (CSE), University of Ioannina, Greece. Since 2016
he is a member of the Distributed Systems Group at CSE. He received his B.Sc. degree
in Computer Science from the University of Ioannina in 2015. His research interests
include distributed systems, cloud applications, and performance improvement of
distributed applications.

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Objectives
	Thesis structure

	Background
	Related work
	Systems used in this thesis
	RethinkDB
	Containers and Docker
	Kubernetes

	Design
	Architecture
	The impact of simultaneous hot-spots across data-store cluster
	Handling infrastructure-related cross-layer notifications

	Implementation
	Cross layer management
	Reconfiguration controller

	Evaluation
	Research questions
	Evaluation of the cross-layer management prototype
	Reactive adaptivity to unscheduled downtime of a node
	Proactive adaptivity to scheduled node downtime
	Offloading a brief hot-spot via reconfiguration
	Offloading a brief hot-spot via proactive reconfiguration
	Offloading a longer-term hot-spot via reconfiguration and replica migration

	Cost-benefit analysis of adaptation actions
	Determining the break-even point for individual hot-spot spikes
	Simultaneous hot-spots across data-store cluster

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Author's Publications
	Short Biography

