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Abstract

Antonis Matakos, M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, June 2017.
Measuring and Moderating Opinion Polarization in Online Social Networks.
Advisor: Panayiotis Tsaparas, Associate Professor.

The polarization of society over controversial social issues has been the subject of
study in social sciences for decades [22, 33]. The widespread usage of online social
networks and social media and the tendency of people to connect and interact with
like-minded individuals has only intensified the phenomenon of polarization [4]. In
this thesis, we consider the problem of measuring and reducing polarization of opin-
ions in a social network. Using a standard opinion formation model [15], we define
the polarization index, which, given a network and the opinions of the individuals
in the network, it quantifies the polarization observed in the network. Our measure
captures the tendency of opinions to concentrate in network communities, creating
an echo-chamber. Given a numerical measure of polarization in the network, we con-
sider the problem of reducing polarization by convincing individuals (e.g., through
education, exposure to diverse viewpoints, or incentives) to adopt a more neutral
stand towards controversial issues. We formally define the ModerateInternal and
ModerateExpressed problems, and we prove that both our problems are NP-hard.
By exploiting the linear-algebraic characteristics of the opinion formation model we
design polynomial-time algorithms for both problems, and efficient heuristics. We
conduct our experiments on real-world datasets, with data from twitter representing
well-known controversies. We demonstrate the validity of our metric, by compar-
ing against other metrics, and observing the obtained value in both polarized and
non-polarized settings. We also showcase the efficiency and the effectiveness of our
algorithms and heuristics in practice.
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Ε Π

Αντώνης Ματάκος, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πληροφο-
ρικής, Πανεπιστήμιο Ιωαννίνων, Ιούνιος 2017.
Τίτλος Διατριβής.
Επιβλέπων: Παναγιώτης Τσαπάρας, Επίκουρος Καθηγητής.

Η πόλωση της κοινωνίας πάνω σε αμφιλεγόμενα κοινωνικά ζητήματα έχει υπάρ-
ξει ως αντικείμενο έρευνας στις κοινωνικές επιστήμες εδώ και δεκαετίες [22, 33].
Η διαδεδομένη χρήση των online κοινωνικών δικτύων και social media αναμενό-
ταν να κάνει τους ανθρώπους πιο ανοιχτούς σε διαφορετικές ιδεές, νοοτροπίες και
απόψεις, και φαινόταν σαν ένα βήμα προς τον εκδημοκρατισμό και την διαποικί-
ληση των κοινωνιών. Όμως, η εύκολη πρόσβαση σε άφθονη πληροφορία και η τάση
των ανθρώπων να συνδέονται και να αλληλεπιδρούν με ομοϊδεάτες, έχει οδηγήσει
στο αντίθετο αποτέλεσμα. Σαν συνέπεια, αντί να γεφυρωθεί το χάσμα μεταξύ των
ανθρώπων, το φαινόμενο της πόλωσης έχει γίνει πιο έντονο [4]. Η πόλωση κατα-
κερματίζει την κοινωνία σε ομάδες, με αποτέλεσμα την κατάπτωση του δημόσιου
διαλόγου και της αλληλοκατανόησης μεταξύ των διάφορων πλευρών, καταστρέφο-
ντας την ομαλή και δημοκρατική λειτουργία των κοινωνιών. Συνεπώς, η δημιουργία
μηχανισμών για την μείωση της πόλωσης είναι ζήτημα υψίστης σημασίας.
Σε αυτή τη διατριβή, θεωρούμε το πρόβλημα της μέτρησης και της μείωσης της

πόλωσης των απόψεων σε ένα κοινωνικό δίκτυο. Χρησιμοποιούμε ένα καθιερωμένο
μοντέλο σχηματισμού απόψεων [15], το οποίο υποθέτει ότι κάθε χρήστης έχει μια
εσωτερική άποψη που είναι σταθερή, και μια εκφραζόμενη άποψη που εξαρτά-
ται από την εσωτερική του άποψη και τις εκφραζόμενες απόψεις του κοινωνικού
δικτύου. Με βάση αυτό το μοντέλο ορίζουμε το polarization index, το οποίο, δεδομέ-
νου ενός δικτύου και εσωτερικών απόψεων των ατόμων στο δίκτυο, ποσοτικοποιεί
την παρατηρούμενη πόλωση στο δίκτυο. Η μετρική μας συλλαμβάνει την τάση των

viii



απόψεων να συγκεντρώνονται σε δικτυακές κοινότητες, δημιουργώντας θαλάμους
αντήχησης(echo-chambers).
Δοθείσας μιας αριθμητικής μετρικής της πόλωσης στο δίκτυο, θεωρούμε το αλ-

γοριθμικό πρόβλημα της μείωσης της πόλωσης πείθοντας άτομα(για παράδειγμα,
μέσω μόρφωσης, έκθεσης σε ποικίλες απόψεις ή δίνοντας κίνητρα) να υιοθετήσουν
μια πιο ουδέτερη στάση προς αμφιλεγόμενα ζητήματα. Ορίζουμε τυπικά τα Mod-
erateInternal, όπου μετριάζουμε τις εσωτερικές απόψεις των χρηστών, και Moder-
ateExpressed προβλήματα, όπου μετριάζουμε τις εκφραζόμενες απόψεις. Από υπο-
λογιστικής άποψης, αποδεικνύουμε ότι και τα δύο προβλήματα είναι NP-δύσκολα.
Εκμεταλλευόμενοι τα αλγεβρικά χαρακτηριστικά του μοντέλου σχηματισμού από-
ψεων, σχεδιάζουμε πολυωνυμικού χρόνου αλγορίθμους και για τα δύο προβλήματα,
καθώς και αποτελεσματικούς ευριστικούς. Διεξάγουμε τα πειράματα μας σε δεδο-
μένα απο τον πραγματικό κόσμο, με δεδομένα απο το twitter που αφορούν γνωστές
διαμάχες. Επιδεικνύουμε την εγκυρότητα της μετρικής, συγκρίνοντας με άλλες με-
τρικές, και παρατηρόντας την τιμή που μας δίνει για πολωμένα και μη-πολωμένα
περιβάλλοντα. Τέλος, αποδεικνύουμε την αποδοτικότητα και την αποτελεσματικό-
τητα των αλγορίθμων μας στην πράξη.

ix



Chapter 1

Introduction

1.1 Scope

1.2 Roadmap

1.1 Scope

In the past decades, online social networks and social media have emerged as the
primary vehicle for the public discourse. Today, discussions take place primarily
on Facebook and Twitter, where information and viewpoints are exchanged, and
opinions are shaped. In this new world, users have easy access to information, but
also to a public podium and a broad audience for their opinions. A consequence
of this paradigm shift is the displacement of traditional media as the primary news
outlet, as the networked public sphere provides anyone with an outlet to speak,
inquire, and investigate.
Empowering ordinary users to express and share their opinions online seems like

a step towards making individuals more open to different ideas, cultures, and view-
points, and thus making societies overall more democratic and diverse. Nevertheless,
it has been observed that the easy and uninhibited access to information and expres-
sion often leads to the opposite effect. Users tend to favor content that agrees with
their existing worldview, and create connections with like-minded individuals, creat-
ing “echo-chambers”. Without any kind of moderation, current social-media platforms
gravitate towards a state in which net-citizens are constantly reinforcing their existing
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opinions. Additionally, social networks mostly provide personalized content, that the
users are most likely to find agreeable. The end effect is that users get entrenched in a
confine of comforting information — a ”filter bubble”. Filter bubbles have been linked
to increased partisanship and amplified ideological segregation. In such cases, instead
of smoothing the differences, online social networks reinforce them, thus leading to
increased polarization [4, 5].
Online polarization has been observed over a variety of issues and topics, ranging

from frivolous (the dress controversy1) to decisive and consequential (the increasing
divide in US politics2). Polarization separates individuals into sides that have little or
no communication with and understanding of each other, and has a corrosive and
detrimental effect to the functioning of communities, societies, and democracies. It is
thus of critical importance to devise mechanisms for reducing polarization. This is
typically achieved by raising awareness and educating individuals about the different
sides of an issue, with the goal of moderating extreme opinions and reaching a
common ground. This is an arduous and costly process that may span a generation
to yield results.
In this thesis, we take an algorithmic approach to the problem of measuring

and reducing polarization. In order to measure polarization, we consider a popular
opinion formation model [15]. In this model, opinions are modeled as real numbers
ranging from -1 to 1, depending on the viewpoint of the user. Each user u has an
internal opinion su that is given as input and it is fixed, and an expressed opinion zu

that depends on their own internal opinion and the expressed opinions in their social
network. Using a random walk interpretation of the opinion formation model, we can
interpret zu as the expected opinion that node u will reach when taking a random
walk in the social network. High value of zu implies that the user is surrounded
mostly by single-minded individuals with extreme opinions, while low value implies
that the social network of u adopts moderate and diverse opinions. We view the
absolute value |zu| as a measure of the degree of the polarization of user u. Given
the vector of expressed opinions z for the whole network, the length of the opinion
vector ∥z∥2 captures the degree of polarization in the network. We refer to ∥z∥2 as
the polarization index π(z) of the network.
Given this numeric measure of polarization, we are interested in algorithms for
1https://en.wikipedia.org/wiki/The_dress
2http://www.people-press.org/2014/06/12/political-polarization-in-the-american-public/
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reducing polarization in the network. We assume that we can reduce polarization by
convincing people (through education or other means) to adopt a more moderate
opinion. Given a budget value k, we want to find the best set of k individuals in
the network, such that convincing them to moderate their opinions (in our model,
set their opinion value to zero) will minimize the polarization index of the network.
We consider two variants of this problem: the ModerateInternal problem, and the
ModerateExpressed problem. In the ModerateInternal problem we moderate the
internal opinion of the users, that is, for each user u in the selected set we set su = 0.
This is the case where through education we expose users to the viewpoint of the
other side, and lead them to adopt a moderate viewpoint. In the ModerateExpressed
problem we moderate the expressed opinions, that is, for each user u in the selected
set we set zu = 0. This is a case where we give incentives to users to adopt a moderate
public opinion, and propagate a balanced viewpoint.
From the computational point of view, we prove that both problems are NP-hard.

We propose algorithms that exploit the properties of the opinion formation model so
as to efficiently construct the solution set, as well as efficient heuristics. We experiment
on real datasets and we demonstrate the effectiveness of our algorithms in decreasing
polarization.
In summary, in this thesis we make the following contributions:

• We define a novel polarization index for quantifying polarization in a network,
based on the opinions of users under a popular opinion formation model [15].
Our measure takes into account both the existing opinions of the users, and the
network structure. To the best of our knowledge we are the first to use this model
to measure polarization.

• We define two novel problems, ModerateInternal and ModerateExpressed for
reducing polarization in a network. We show that both problems are NP-hard,
and propose efficient algorithms for solving them. Our algorithms exploit a linear-
algebraic view of the opinion-formation model we adopt.

• We experiment on real data, including a Twitter network from 2016 US Elections.
We demonstrate that our polarization index is successful in capturing polarization,
by comparing the value that it takes in different opinion settings, and against other
state-of-the-art metrics. We also showcase and that our algorithms are effective in
reducing polarization, and are efficient in practice.
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1.2 Roadmap

The thesis is structured as follows. In Chapter 2 we review related work on mea-
suring and reducing polarization, opinion formation models, and opinion mining. In
Chapter 3 we define the polarization index, and provide the intuition behind it. In
Chapter 4 we define and study the ModerateInternal problem, and in Chapter 5 the
ModerateExpressed problem. Chapter 6 presents the experimental evaluation of our
metric and algorithms, and Chapter 7 concludes the thesis. Appendix A contains the
full proof for the NP-hardness of the ModerateInternal problem.
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Chapter 2

Related work

2.1 Filter bubbles and echo chambers

2.2 Quantifying and reducing polarization

2.3 Opinion Mining

2.4 Influence and Opinion Maximization

Although, to the best of our knowledge, we are the first to introduce and study
the ModerateExpressed and the ModerateInternal problems, our work is related to
recent work on polarization and opinion maximization.

2.1 Filter bubbles and echo chambers

While social media have the potential to expose individuals to more diverse view-
points, they can also limit exposure to attitude-challenging information, which leads
to a radicalization of attitudes and false perceptions about events. This has led to the-
ories about the effects of “echo-chambers” [4, 5, 18], where users are only exposed to
information by like-minded individuals, and “filter bubbles” [4, 31], where algorithms
only present personalized content that agrees with the user’s attitude. Recent lines
of work [18] have investigated the strength of echo chambers and filter bubbles, and
found that opinion-challenging information reduces the likelihood of a news story’s
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exposure.

2.2 Quantifying and reducing polarization

The phenomenon of polarization has been the subject of study in social sciences for
decades [22, 33]. There has been a lot of work on measures for quantifying the
polarization observed in online social networks and social media [2, 10, 16, 20, 3, 11]
and model its emergence [11, 34]. The main characteristic of those works is that the
measures proposed are based on the structural characteristics of the underlying graph
and they do not consider the existing opinions, or an opinion formation model, when
quantifying polarization. Vicario et al. [13] study polarization while incorporating
opinion dynamics, assuming a variation of the Bounded Confidence Model (BCM).
This variation of the model, has the limitation that it can only converge in states where
opinions form clusters of a single value. The closest to our definition is the notion of
tension for measuring polarization [6, 11], which focuses on pairwise disagreements
of opinions over the edges of the network. The metric does not consider the overall
distribution of opinions, and it will fail to detect the emergence of echo-chambers in
the network, where like-minded individuals only interact with each other.
Given the negative effects of polarization and fragmentation on the well-being

and the well-functioning of societies there has been work that focuses on methods
for decreasing polarization. Such studies focus on proposing mechanisms that will
expose online social-media users to content that is not necessarily aligned with their
prior beliefs. The work in this direction can be split into work that focuses on (a) how
to present information to users and (b) who to approach with the new information.
In terms of (a) there has been work focusing on user studies as well as the design
of the appropriate interfaces that predispose users positively towards diverse ideas
presented to them [29, 28, 35]. Clearly, our work is complementary to the above as
we focus on the algorithmic aspects of decreasing polarity.
In terms of who to approach, the recent work by Garimella et al. [17] considers the

introduction of edges that will reduce the observed polarization in a social network.
Although this work is related to ours, it focuses on graph-theoretic measures of
polarization and does not take into consideration the opinions of individuals neither
does it explicitly consider an opinion-formation model. Furthermore, it considers the
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addition of links, rather than the moderation of opinions. Therefore, both our model
and our problem are different from that in [17].

2.3 Opinion Mining

In our work we assume that we are given user opinions as input, and we focus
on using these opinions to measure and moderate polarization. In our experiments
we assume that opinions can be inferred by the actions of the users (membership
in known communities, or following specific accounts). In networks where we have
information about the attributes of the users, or the content they contribute, it may
be possible to obtain more fine-grained and nuanced opinion values by applying
opinion mining and sentiment analysis techniques [26]. Opinion mining deals with
the inference of the semantics of a given text. Concept-based techniques have come to
prominence recently [8, 7], along with new neural network approaches, using deep
neural networks [32, 9]. Our framework for measuring and moderating polarization
can be extended to include an opinion mining algorithm as the first step of the
pipeline.

2.4 Influence and Opinion Maximization

At a high level, our work is also related to the line of work on influence and opinion
maximization [23, 19]. In these works the goal is to select a set of individuals that will
adopt a product or an opinion so as to maximize the overall adoption in the network.
The closest to ours is the work of Gionis et al. [19], where the goal is to find a set
of individuals who will change their opinion (internal or expressed), such that the
sum of expressed opinions is maximized. Both our work and theirs assume the same
opinion-formation model. However, our goal is different; rather than maximizing
the positive expressed opinion we aim at minimizing the polarization index. The
difference in the objectives results in differences in the problem properties and the
algorithmic techniques that need to be developed.
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Chapter 3

The Polarization Index

In this chapter, we define the polarization index we will use in the thesis, and we
provide the necessary background for understanding and analyzing our metric.
Throughout the thesis, we consider a social graph G = (V,E) with n nodes and

m edges. Each edge (i, j) is associated with a weight wij ≥ 0, which expresses the
strength of the connection between i and j, and the influence they exert to each other.
We adopt the opinion-formation model of Friedkin and Johnsen [15], which as-

sumes that every person i in the network has a persistent internal opinion si, and an
expressed opinion zi which depends both on their internal opinion si and the expressed
opinions of their neighbours. More precisely, the expressed opinion of node i is com-
puted as the weighted average of their internal opinion and the expressed opinions
of the neighbours of i, N(i), in G:

zi =
wiisi +

∑
j∈N(i)wijzj

wii +
∑

j∈N(i)wij

, (3.1)

where wii denotes the importance that node i places on their own opinion. It has
been shown that if every person i iteratively updates their expressed opinion, then
the expressed opinions converge to a unique opinion vector z.
In our setting, opinions can be both positive and negative. Thus, we assume that

they take values in the interval [−1, 1], where -1 reflects a negative opinion, and 1 a
positive one, while 0 corresponds to a neutral position.
In the absence of any polarization all users would express a neutral opinion, i.e.,

zi = 0 for all i ∈ V . The absolute value of the opinion of a user |zi| captures how
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extreme the user opinion is. We quantify polarization in the network by measuring
how far we are from the state of complete neutrality. We measure this by looking
at the length of the vector z under the L2

2 norm. To make the value of our metric
independent of the size of the network, we normalize by the number of nodes in the
graph. More formally, we have the following definition.

Definition 3.1 (Polarization Index). Given a network G = (V,E) and the opinion
vector z defined over the nodes of the network, we define the polarization index π(z)
as: π(z) = ∥z∥2

n
.

We now give some additional background and intuition behind our metric. First,
an equivalent way of obtaining the expressed opinion vector z from the internal opinion
vector s is the following [6]: if L is the Laplacian matrix of graph G = (V,E), and I
is the identity matrix, then z = (L+ I)−1 s. We will refer to the matrix Q = (L+ I)−1

as the fundamental matrix.
Second, there is a direct connection between the opinion formation model, and

random walks with absorbing nodes, as it is shown in [19]. More specifically, given
the graph G = (V,E), with n vertices, and weights wij for the edges (i, j) ∈ E, we
construct the augmented graph H = (V ∪X,E ∪R) as follows. For each vertex vi ∈ V ,
we add a new vertex xi in X. We also add a directed edge (vi, xi) in R, with weight
wii. The node xi corresponds to the internal opinion of node vi.
Now consider a random walk on graph H that starts from a vertex v ∈ V . The

nodes in X are absorbing. That is, when reaching these nodes, the random walk
terminates. For each absorbing node xi we can compute the probability P (xi | vj),
that the random walk that started from vj terminates at node xi. It was shown
in [19] that Q(j, i) = P (xi | vj), that is, the j-th row of the matrix Q is a probability
distribution over all nodes in X. Therefore, we have that

zj =
n∑

i=1

P (xi | vj)si.

We can think of the probability P (xi | vj) as the probability that node vj adopts
the opinion of node vi. This probability depends on the structure of the graph: the
more the paths that connect vj with node vi, the higher the probability P (xi | vj).
The probability is also affected by the weights wij and wii since they determine the
probability that a specific edge is followed. For example, high wii weight means that
the user is more likely to be absorbed in his own opinion node than follow a path
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(a) G1: Random graph (b) G2: Echo chamber graph

(c) G3: Community structure

with random opinion assign-

ment

Figure 3.1: Three examples of graphs for the polarization index.

in the graph to some other node. The expressed opinion of node zj is the expected
value of the internal opinion of the node at the point of absorption.
The implications of this connection are the following. For a specific node vj , the

value |zj| is minimized if node vj has equal probability to reach positive and negative
opinions, that is, it has a balanced view of the opinions in the network. On the other
hand, if the user is trapped in a filter-bubble of like-minded friends, all with extreme
opinions, the value of |zj| will be high. The polarization index becomes high if we
have echo chambers in the network, that is, we have communities in the graph, that
are homogeneous with respect to their internal opinions.
To illustrate this point, consider the three graphs shown in Figure 3.1. The graph

G1 in Figure 3.1(a) consists of 20 nodes, 10 with opinion -1, and 10 with opinion
+1, that are randomly interconnected. The graphs in Figure 3.1(b) and Figure 3.1(c)
are the same and they consist of two densely connected subgraphs of size 10 that
are sparsely interconnected. In Figure 3.1(b), the opinions are aligned with the com-
munities in the graph: the nodes in the left community have opinion -1 (blue round
nodes), while the nodes in the right community have opinion +1 (red round nodes).
In Figure 3.1(c), the opinions are randomly assigned.
We compute the polarization index for all three graphs. In the first graph G1, edges

are created at random, and thus the graph has no community structure, and opinions
mix randomly in the network. Therefore, each node has more or less equal probability
to adopt a positive or negative opinion, resulting in a low polarization index of 0.03.
In the second graph G2, there is a clear echo chamber effect: positive nodes speak
mostly with positive nodes, and negative nodes speak mostly with negative nodes.
As a result the polarization index is high, 0.30. In the third graph G3, although there
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Figure 3.2: Comparison of Network disagreement index and Polarization index values

is a clear community structure in the graph, the opinions are equally distributed in
the two communities. Therefore, although the nodes tend to communicate mostly
with the nodes within their community (the probability of adopting the opinion of
a node in a different community is small), both opinions are equally represented in
each community, resulting in a small polarization index of 0.03.
We also demonstrate the superiority of our metric in capturing polarization, com-

pared to its closest analogue, the network disagreement index defined in [11], in the
following example. We consider a graph that consists of 1000 nodes, with two single-
opinion clusters of 500 nodes, one with opinion -1, and the other with opinion +1. For
each pair of nodes in the same cluster, we assign an edge between them with prob-
ability 0.1, while we vary the inter-cluster edge probability q , and observe the effect
on the π and the network disagreement index. The result is illustrated in Figure 3.2
. The largest value of inter-cluster edge probability is 0.1(and rightmost value in the
plot), which represents the case where there are no clusters, and in each subsequent
computation the probability is halved. The network becomes more polarized as the
number of edges between the cluster decreases, since there is less communication be-
tween the two sides. The example shows that while the network disagreement index
increases in value as the number of edges between clusters decreases, its value starts
to decrease after some point. Our metric, on the other hand, increases in value mono-
tonically as the number of inter-cluster edges decreases, which accurately captures
the increasing polarization in the network.
Given this measure of polarization in the network, our next goal is to minimize it

by convincing a small set of users users to adopt more neutral positions. We consider
two possible ways to achieve this. The first is to convince users, via education and
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exposure to different viewpoints, to change their internal opinions. The second is by
giving incentives to users to express and propagate a neutral opinion. In both cases we
say that we moderate the opinions of the users. Depending on whether we moderate the
internal or the expressed opinions of users we define the ModerateInternal and the
ModerateExpressed problems respectively. We define and study these two problems
in the following chapters.
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Chapter 4

Moderating Internal Opinions

4.1 Problem Definition

4.2 Problem complexity

4.3 Algorithms

In this chapter we define the ModerateInternal problem, we analyze its complexity,
and we design efficient and effective algorithms for solving it.

4.1 Problem Definition

When moderating internal opinions, we seek a small set of nodes, Ts, whose internal
opinions would be set to zero, such that the polarization index is minimized. We use
π(z | Ts) to denote the polarization index after setting the internal opinions of the
nodes in Ts to zero. The formal problem definition is the following.

Problem 1 (ModerateInternal). Given a graph G = (V,E), a vector of internal opinions
s, and an integer k, identify a set Ts of k nodes such that changing the internal opinions of
the nodes in Ts to 0, minimizes the polarization index π(z | Ts).

13



4.2 Problem complexity

We prove the following Theorem for the hardness of the the ModerateInternal prob-
lem.

Theorem 4.1. The ModerateInternal problem is NP-hard.

Proof. We only give some intuition for the proof. The full proof appears in the Ap-
pendix A.
Our proof uses a reduction from the m-SubsetSum problem, where given a set of

N positive integer numbers v1, ..., vN , a value m, and a target value b, we ask if there
is a set of numbers B of size m, such that

∑
vi∈B vi = b.

Given an instance of the m-SubsetSum problem, we construct an instance of Mod-
erateInternal as follows. The graph is a star with N + 1 nodes: we have a central
node u0, and a spoke node ui for each integer vi. For the center of the star (node u0)
we have that w00 = t, for an appropriately selected value of t (we will discuss this
below), and s0 = −1. The weight of the edge (u0, ui) from the center to node ui is
w0i = vi, and the weight of node ui to its internal opinion is also wii = vi. The opinion
of all spoke nodes is si = 1. We set k = N − m, and we ask for a set of nodes Ts,
|Ts| = k, such that, when setting si = 0 for ui ∈ Ts, π(z | Tz) = ∥z∥2 is minimized.
Assume that we have selected the set Ts, |Ts| = k. We can prove that

π(z | Ts) =
N + 4

4
z20 +

N − k

2
z0 +

N − k

4
.

Therefore, π(z | Ts) is determined by the expressed opinion of the center node z0.
Let R = V \ Ts ∪ {u0} denote the set of spoke nodes whose opinion was not set to 0.
Using the equations for the expressed opinions of the opinion formation model we
can show the following for the value of z0 (details in the Appendix):

z0 =

∑
ui∈R vi − 2t

W + 2t
.

For the sake of the argument, assume for a moment that we achieve the minimum
π(z | Ts) for z0 = 0. Then clearly, we need to select a set of nodes in Ts, such that for
the nodes in R we have

∑
ui∈R vi = 2t. Setting t = b/2 we can prove that we minimize

π(z | Ts) if and only if there is a set of nodes R such that
∑

ui∈R vi = b, which proves
the reduction. However, the value z0 = 0 does not minimize π(z | Ts). In the full
proof, we determine the optimal value of z0, and the value of t that achieves this
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optimal when there is a set of nodes R such that
∑

ui∈R vi = b, and thus complete the
reduction.

Furthermore, we observe that π(z | Ts) is not monotone with respect to Ts. That
is, it is not necessarily true that the more nodes we make neutral, the lower the
polarization. This can be seen by considering a simple graph consisting of two nodes,
u and v, with internal opinions −1 and 1 and wuu = wvu = wvv = 1. In this case π(z) =
2/9. If we change the internal opinion of the negative node to neutral, then π(z) =
5/9. Thus, making a node neutral, causes the polarization index to increase. This
observation implies that designing an algorithm for ModerateInternal is challenging.

4.3 Algorithms

In this section, we present our algorithms for ModerateInternal. For the following,
we assume that the matrix Q has been pre-computed, and it is given as input to the
algorithm.

The BOMP algorithm: The Binary Orthogonal Matching Pursuit (BOMP) algorithm is in-
spired by the connection of the ModerateInternal problem to the problem of sparse
approximation [30]. First, we establish this connection and then we describe the BOMP
algorithm.
As we have already discussed in Chapter 3, expressed opinion vector z can be

computed as z = Qs, where Q = (L+ I)−1. Note that we have that Qs = QS1, where
S is the diagonal matrix with Sii = si, and 1 is the vector of all ones. For the rest of
the discussion we will use R = QS.
Now, let s′ denote the vector s after we set k of its entries to zero – these entries

will correspond to users whose internal opinions become neutral. Our goal is to find
the vector s′ that minimizes ∥Qs′∥2. Note that Qs′ = R1−Rx, where x is a vector with
1’s at the positions of the selected nodes, and zeros everywhere else. Since R1 = z,
the original expressed opinion vector, our problem can be stated as follows: Find the
best binary vector x with k non-zero entries (i.e., ∥x∥0 = k) such that ∥z − Rx∥2 is
minimized. This is the definition of the sparse approximation problem [30], where
we restrict the solution to binary vectors.
Inspired by [24] we will approximate the solution to this problem using a variation

of a known algorithm from signal processing [27, 12] called nonnegative orthogonal
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matching pursuit (NNOMP). The NNOMP algorithm is designed to find a sparse vector x
(with no more than k non-zero entries) with non-negative yet real coefficients that
when multiplied to a matrix R is minimizes ∥z− Rx∥2 for a target vector z.
In our problem, the vector x is a binary vector and thus x essentially selects a

subset of columns from R and uses their sum to approximate the target vector z.
Our algorithm, Binary Orthogonal Matching Pursuit (BOMP), is a variant of NNOMP and it
proceeds in iterations. At iteration t, BOMP starts with a vector xt−1 with (t− 1) entries
of value 1. These entries correspond to the columns of the matrix R that have been
selected up to this iteration. Let ẑt−1 = Rxt−1 denote the approximation of the target
vector z constructed so far. The algorithm selects the column from R (not selected so
far) that has the largest dot-product with the residual z− ẑt−1 of the target vector. The
set of selected indexes is augmented with this new index to produce vector xt. The
algorithm terminates when we have selected k columns. The set of columns define
the set Ts of nodes whose internal opinions will be set to zero.
The computational complexity of the BOMP algorithm is O(kn2). In each of the

k iterations, the algorithm computes the dot-product of every candidate index to
be added to set of selected indices with the residual vector. This step is the most
computationally expensive, requiring time O(n2). All the other steps require at most
O(n) time, resulting in O(kn2) complexity in total.

The GreedyInt algorithm: We also consider a greedy algorithm for the problem. The
algorithm builds the selected set of nodes Ts iteratively. It starts with an empty set T 0

s ,
and at each step t it adds to the existing solution T t−1

s the node v which, when added
to the solution, T t

s = T t−1
s ∪ {v}, it causes the largest decrease π(z | T t−1

s ) − π(z | T t
s)

in the objective function. We will denote this algorithm as GreedyInt.
The GreedyInt algorithm can be implemented efficiently by exploiting the observa-

tion that the effect of neutralizing a node in the graph in the expressed opinion z can
be computed by the subtraction of the corresponding column of the matrix R from z.
Therefore, for each candidate node v we need time O(n) to compute π(z | T t−1

s ∪{v}),
resulting in complexity O(n2) for each iteration, and O(kn2) for the algorithm in total.
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Chapter 5

Moderating Expressed Opinions

5.1 Problem definition

5.2 Problem complexity

5.3 Algorithms

In this Chapter, we define the ModerateExpressed problem, we analyze its complexity,
and we design an efficient algorithm for solving it.

5.1 Problem definition

When moderating expressed opinions, we seek a small set of nodes Tz to set their
expressed opinions to zero, such that the polarization index is minimized. We use
π(z | Tz) to denote the polarization index after setting the expressed opinions of the
nodes in Tz to zero. The formal problem definition is the following.

Problem 2 (ModerateExpressed). Given a graph G = (V,E) a vector of internal opinions
s, and an integer k, identify a set Tz of k nodes such that fixing the expressed opinions of
the nodes in T to 0, minimizes the polarization index π(z | Tz).
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5.2 Problem complexity

We prove the following Theorem for the hardness of the ModerateExpressed prob-
lem.

Theorem 5.1. The ModerateExpressed problem is NP-hard.

Proof. The proof of the theorem follows closely the proof of hardness in [19], so
we only provide the correspondence between the two proofs. The proof exploits
the equivalence between the opinion formation model and absorbing random walks,
shown in [19].
Similar to the proof in [19] our proof uses a reduction from the Vertex Cover on

Regular Graphs problem (VCRG) [14]. We show that there exists a set of nodes Y

for a regular graph GV C in the VCRG problem such that |Y | ≤ K and Y is a vertex
cover if and only if there exists a set Ts for a graph G in the ModerateExpressed
problem, such that |Tz| ≤ k and π(z | Tz) ≤ θ, for θ = n

2(d+1)2
. In our construction

we set G = GV C , and we initialize the vector s, such that si = 1 for all i ∈ V . The
proof then proceeds in the same way as in [19]. We can show that we can achieve a
value π(z | Tz) less than θ if and only if the nodes Tz that we select in G (to make
absorbing) define a vertex cover in GV C .

Using a similar example as the one we used in Section 4.2 we can show that
π(z | Tz) is also not monotone with respect to Tz , implying again that it is not
straightforward to design an algorithm for solving ModerateExpressed.

5.3 Algorithms

Our algorithm for ModerateExpressed is a greedy algorithm, which we call GreedyExt.
GreedyExt is an iterative algorithm which starts with an empty set T 0

z . At each step
t the algorithm adds to the existing solution T t−1

z the node vi, which, when setting
zi = 0, it causes the largest decrease π(z | T t−1

z )− π(z | T t
z) in the objective function.

A naive implementation of the GreedyExt algorithm is computationally expensive.
At each step of the algorithm we need to check n nodes, and for each node compute
the new opinion vector after setting the expressed opinion of the node to zero. The
most straightforward way to do this is by multiplying s directly with Q, in O(n2)

time; recall that Q = (L+ I)−1, and thus it is a dense matrix. Alternatively, one can
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iteratively apply Equation (3.1) and achieve the same computation in time O(mI),
where I the number of iterations it will take until convergence and m the number
of edges of G. In our experiments, this computation converges in about a hundred
iterations. Thus if we implement GreedyExt using the first method its running time
becomes O(kn3), while with the second method the running time is O(knmI). Our
experiments with large graphs show that both these computations are impractical
when dealing with medium-size datasets.
In order to improve the overall running time of GreedyExt, we exploit the Sherman-

Morrison formula [21], a special case of the Woodbury matrix identity, to speed up
the computation of the updated polarization index after adding a new node to the
solution set. The identity states that the inverse of a matrix after adding a rank-1
correction matrix to it can be computed by doing a rank-1 correction to the inverse
of the original matrix. Formally, given an invertible matrix A and vectors u and vT ,
the Sherman-Morrison formula states that:

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u (5.1)

Consider now the case where we want to add node vi to the solution set Tz.
Let π(z′) denote the new polarization index after setting zi = 0. We can express the
polarization index as π(z′) = ∥Q′s′∥2. In this equation, Q′ = (L′ + I)−1, where L′ is the
updated Laplacian with a row of zeros at the i-th index, and s′ is the updated internal
opinion vector, with si = 0 at the i-th entry. To understand the update process of
Q and s, note that in the random walk interpretation, setting zi = 0 is equivalent to
removing all outgoing edges from node vi and keeping only the edge to the node xi,
while setting si = 0.
We can express the Laplacian matrix L′ as a rank-1 correction of the Laplacian

L, that is, L′ = L + uvT , where u is the unit vector with 1 at the i-th entry, and vT

is the negative i-th row of the Laplacian. Following the Sherman-Morrison formula
(Equation 5.1) we have that Q′ = Q−B, where

B =
QuvTQ
1 + vTQu ,

We can also write s′ = s − s, where s is a vector with si = si, and zero in all other

19



entries. Thus, we have:

∥Q′s′∥2 = ∥(Q−B)(s− s)∥2

= ∥Qs−Bs− Qs+Bs∥2

=

∥∥∥∥z− QuvTz
1 + vTQu − Qs+ QuvTQs

1 + vTQu

∥∥∥∥2

. (5.2)

In order to efficiently compute the quantity in Equation (5.2), we perform the
operations in such an order, so that we never need to compute any n× n matrix. As
a result we can compute Equation (5.2) in time O(n), which is better than the O(mI)

complexity of the power-iteration, given that m = nd, where d is the average degree
of the graph.
First, we compute the vector w = Qu

1+vTQu . This can be computed in linear time.
Since u is the unit vector with 1 in one entry, and zero everywhere else, Qu can be
obtained in O(1) via column selection. Given the vector Qu we can compute vTQu in
O(n) time, and then obtain w by scaling Qu, bringing the total computational cost of
w to O(n).
Given the vector w we can now compute wvTz (the second term in Equation (5.2))

in linear time, by first computing the dot-product vTz, and then scaling the vector
w with the result. Also, we can compute the vector Qs in O(n) time, by first se-
lecting the column of Q and then scaling it by si. The term wvTQs (the last term
in Equation (5.2)) can be computed as before in linear time. All other computa-
tions are computations on vectors, resulting in O(n) total cost for the computation of
Equation (5.2).
We repeat the above procedure n times to find the best candidate node. For the

selected node, we compute the updated matrix Q′ = Q − B using the Sherman-
Morrison formula in O(n2). This brings the total computational cost of GreedyExt to
O(kn2).
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Chapter 6

Experiments

6.1 Datasets

6.2 Evaluation of the Polarization Index

6.3 Heuristic Algorithms for Opinion Moderation

6.4 Evaluation of algorithms for ModerateInternal

6.5 Evaluation of the algorithms for ModerateExpressed

6.6 Scalability

6.7 Case study

In this Chapter, we present an experimental evaluation of the polarization index, and
of our algorithms for both problems. The goals of our experiments are to validate
the polarization index, study the properties of the proposed algorithms, and evaluate
their performance and scalability.

6.1 Datasets

We consider five datasets representing different types of social networks. We use
networks that are partitioned into opposing communities, and there is ground-truth
data about the community membership of the nodes. Thus, we can naturally assign
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internal opinions -1 and 1 to the nodes depending on their community membership.
We consider the following datasets:

Karate1: This dataset represents a social network of friendships between 34 members
of a karate club at a US university in the 1970s. The social network is partitioned into
two distinct equal-sized communities that correspond to two fractions built around
two rival instructors.

Books2: This is a network of books about US politics published around the time
of the 2004 presidential election and sold by the online bookseller Amazon.com.
Edges between books represent frequent co-purchasing. Books are classified as Liberal,
Conservative, and Neutral. There are in total 43 liberal books, 49 conservative and 13
neutral . We handled the neutral nodes by assigning to them internal opinion zero.

Blogs3: A directed network of hyperlinks between weblogs on US politics, recorded in
2005 by Adamic and Glance [1]. Blogs are classified as either Liberal or Conservative.
We converted the social graph into an undirected one and only kept the largest
connected component. The resulting dataset contains two communities with 636 and
586 nodes each, and 19,089 edges.

Elections: This dataset is the network between the Twitter followers of Hillary Clinton
and Donald Trump collected in the period 15/12/2016-15/01/2017 – around the time
of the 2016 presidential elections. Members of this network are assigned an internal
opinion of 1 or -1 based on which one of the two candidates they follow. Followers
of both candidates are assigned a neutral opinion. Since the dataset is prohibitively
large (20M followers), we only considered the network formed by the first 50,000
users, according to their user id. We took the largest connected component and
iteratively pruned nodes to guarantee that every node has degree greater than 1. The
resulting network had a disproportionately large number of Clinton followers so we
subsampled her followers to ensure that the ratio of followers for each side reflected
the one in the full dataset. In the resulting network there are 7,715 Hillary Clinton
followers, 8,336 Donald Trump followers, and 2,216 Neutral followers, for a total of
18,267 users with 204,040 connections between them. As before, we treat the network
as undirected.

Hashtags: Using the followers of Clinton and Trump that we collected, we also created
1https://networkdata.ics.uci.edu/data.php?id=105
2https://networkdata.ics.uci.edu/data.php?id=8
3https://networkdata.ics.uci.edu/data.php?id=102
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Table 6.1: Dataset Statistics

Dataset Nodes Edges Avg Degree Diameter Positive Negative Neutral

Karate 34 78 4.58 5 17 17 0
Books 105 441 8.4 7 43 49 13
Blogs 1,222 16,717 27.36 8 636 586 0
Elections 18,267 204,040 22.33 8 7,715 8,336 2,216
Hashtags P 18,890 269,696 28.55 7 12,281 6,612 0
Hashtags NP 18,890 269,696 28.55 7 12,408 4,102 2,383

“topical” networks based on the hashags that they tweeted, where we assign the
opinions according to the specific hashtag that the users tweeted. We considered two
pairs of hashtags: The #maga and #imwithher hashtags, which we expect to be polarized,
and the #halloween and #walkingdead hashtags for which we do not expect to have
polarization. We selected these hashtags since they are among the most popular in
the dataset. We sampled users that have tweeted at least one hashtag from both
pairs, and we created the follow network between them. Again, we kept the largest
connected component and iteratively pruned nodes to guarantee that every node has
degree greater than 1. The resulting network has 18,890 nodes and 269,696 edges.
Using the graph we created, we consider two possible settings for the opinions: In
the first, we assign opinion -1 to the users that have tweeted the hashtag #maga, 1
if they have tweeted #imwithher, and 0 if they have tweeted both. We will refer to
this dataset as Hashtags P. In the second, we assign opinion -1 to the users that have
tweeted the hashtag #halloween, 1 if they have tweeted #walkingdead, and 0 if they
have tweeted both. We will refer to this dataset as Hashtags NP. These two different
settings allow us to study the behavior of our metric in a polarized (Hashtags P), and
non-polarized network (Hashtags NP).
Table 6.1 summarizes the statistics of our datasets. For all datasets we treat the

graphs as undirected. When applying the opinion formation model, we set all edge
weights, and all opinion weights to be 1. In order to handle the cases where there is
an imbalance of opinions, we normalize the opinion values by subtracting the mean
opinion and dividing by the difference of the maximum and the minimum. In this
way, the mean opinion value becomes zero, which we consider to be the moderate
stance.
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6.2 Evaluation of the Polarization Index

In this section we evaluate the metric in its ability to identify polarization. We compute
the value of the metric for the five different datasets. Table 6.2 shows the values we
obtain. In order to understand if the values are indicative of polarization, we perform
a randomization test, where we randomly assign the internal opinions on the graph.
A randomized assignment of opinions that is independent of the network structure
does not create any opinion clusters, and thus it corresponds to a non-polarized
state. We compare the value of the π with that of the random assignment, in order
to understand the significance of the polarization index value.
We create 100 random assignments of the opinion values, and we report the

average and standard deviation of the polarization index values we obtain for these
cases. We observe that the polarization index values are significantly higher than those
in the randomized datasets in all networks except for the Elections and Hashtags NP
datasets, where the π values are small, and close to that of the random assignment.
In the case of the Hashtags NP dataset we obtain essentially the same π value.
It is interesting to contrast the π values for the Hashtags P and Hashtags NP

datasets. In the first case, the polarization is much higher, which agrees with our
intuition that these hashtags are adopted by different communities that do not interact
with each other. In the second case the polarization index is much lower, and close
to that of the random assingment. This suggests that the distribution of the opinions
in the second case cuts across the natural communities that appear in the graph.
Although users are organized in weakly connected communities, positive and negative
opinions appear in both, and as a result there is no polarization and echo-chamber
effect. This experiment highlights the importance of taking the opinions into account
for measuring polarization; looking only at the network structure it is not possible to
differentiate between these two cases.
Finally, we perform a comparison between our metric, and the two closest state-

of-the-art metrics for polarization. The first one, the network disagreement index, was
defined by Dandekar et al. [11], and calculates the sum of pairwise distances of
opinions across all edges in the Graph. The metric was defined to characterize an
opinion formation process as polarizing but its value is also indicative of polarization
in the network. The second one, is the controversy score defined by Garimella et al. [16],
used to characterize whether a particular conversation graph based on a topic is
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Table 6.2: Dataset polarization index and randomization values

Dataset π Mean π for random assignments Std. deviation

Karate 0.089 0.022 0.00499
Books 0.107 0.007 0.00172
Blogs 0.029 0.012 0.00027
Elections 0.012 0.011 0.00007
Hashtags P 0.028 0.005 0.00004
Hashtags NP 0.0049 0.0044 0.00005

Table 6.3: Comparison of polarization metrics on all Datasets

Dataset π Network Disagreement Index Controversy Score

Karate 0.089 7.238 0.71
Books 0.107 16.371 0.51
Blogs 0.029 231.15 0.39
Elections 0.012 2067.67 0.12
Hashtags P 0.028 3430.02 -
Hashtags NP 0.0049 1337.07 -

polarized. Although not exactly analogous, we consider both of these metrics similar
to our own, and hence perform a comparison in the values of the metrics, for all
datasets. The values are reported in the Table 6.3
We observe that the network disagreement index and the controversy score values

are relative to the π values. There is a clear correlation in the values when looking
across datasets. In the Karate dataset, the controversy score gave a high value, since it
is based on the network structure, and the Karate dataset exhibits a highly clustered
structure. It is also worth mentioning that the controversy score was too computa-
tionally intense to carry out on the Hashtags dataset. However, the metric would be
unable to discern between the Hashtags P and Hashtags NP datasets since it does not
explicitly consider opinions.
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6.3 Heuristic Algorithms for Opinion Moderation

In addition to the algorithms we described in Chapters 4 and 5, we also consider a
few more scalable heuristics. Our reasoning in the design of the heuristics is that in
order to moderate the overall expressed opinion we need to convert to neutral the
opinions of individuals that express extreme opinions, individuals belonging to ex-
treme neighborhoods, or individuals that are influential in the network. The following
algorithms implement this reasoning.

ExtremeExpressed: This heuristic works iteratively and at each step it selects to neu-
tralize the node v with the highest expressed opinion |zv|. Since it requires O(n) time
to find the most extreme node, the complexity of the algorithm is determined by the
time required to compute the updated z vector after neutralizing a node. As we have
shown in Section 4.3, we can efficiently calculate the new z vector by subtracting
the column of Q corresponding to the neutralized node from the current z vector.
Therefore, the algorithm has complexity O(kn). In the case of the ModerateExpressed
problem, the fastest way to compute the new z is by iteratively updating the zi values
as defined in Equation (3.1), until convergence. The updates are implemented using
efficient matrix-vector multiplication. This takes time O(mI), where I is the number
of iterations required for convergence, and m is the number of edges in the graph,
leading to complexity O(kmI) for the algorithm. In practice, we have found that the
algorithm converges in less than 100 iterations.

ExtremeNeighbors: In this heuristic we select the next node to neutralize based on how
extreme the neighborhood of the node is. The intuition is that neutralizing this node
will have an effect on many extreme nodes. The algorithm at each step changes the
opinion of the node v whose neighbors have the highest absolute sum of expressed
opinions, that is, v = argmaxi∈V |

∑
j∈N(i) zj|. For every node we need to check its

neighbors, which takes O(m) time, and then update z, accordingly. Therefore, if we
use the efficient update of z as above, the complexity of the algorithm when solving
ModerateInternal is O(k(n + m)). Using the iterative method to compute z, the
complexity of the algorithm when solving ModerateExpressed is O(k(n+m)I).

Pagerank: The idea behind this heuristic is that in order to moderate the overall
opinion, it is a good idea to neutralize the nodes that are central in the network. This
will result in maximum spread of a balanced viewpoint. We use PageRank [25] to
measure the centrality of a node. The algorithm selects the nodes in decreasing order
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of their PageRank value. The algorithm’s complexity is O((m+ n)I + n logn), where
O((n +m)I) is the time the PageRank values, and O(n logn) is the time required to
sort the nodes.

6.4 Evaluation of algorithms for ModerateInternal

We first evaluate our algorithms with respect to the value they achieve for the objective
function π. We evaluate on all five networks. For the Hashtags network we evaluate
for both the hashtags #maga and #imwithher and the #halloween and #walkingdead

hashtags to set the opinions. Figures 6.1 6.2 6.3 6.4 6.5 6.6 show the value of
π(z | Ts) for different sizes of the solution set |Ts| = k, for all datasets. For the smaller
datasets Karate and Books we let k range over the full size of the dataset. This is
impractical for the larger Blogs, Elections and Hashtags datasets, hence we consider Ts

up to 10% of the dataset; we plot the value of π in increments of 1%.
As expected, the GreedyInt algorithm achieves the best performance in all datasets.

The performance of GreedyInt is consistently matched by BOMP and ExtremeExpressed.
However, in the Hashtags P and Hashtags NP BOMP loses its effectiveness after some
point, and surprisingly, in the case of Hashtags NP after k =4% even starts to in-
crease polarization. This also coincides with ExtremeExpressed also losing somewhat
its effectiveness, and indicates that the change in performance is due to a particular
feature of the dataset. Nevertheless, this is worth investigating further. The Pager-

ank and ExtremeNeighbors algorithms are significantly worse, and in the big datasets
achieve only a minimal reduction in π. While we expected the BOMP algorithm to
be competitive with GreedyInt the performance of ExtremeExpressed was a surprise.
We also compare the BOMP and GreedyInt algorithms against the optimal for k up to
50% of the graph, for the smallest dataset Karate, where this computation is possi-
ble. We observe that the GreedyInt algorithm behaves optimally, while BOMP achieves
performance very close to optimal for k ≤ 6, and coincides with it for k > 6.
Our results indicate in order to minimize polarization in the ModerateInternal

problem, the best strategy is to moderate the nodes with the most extreme opinions.
The Pagerank and ExtremeNeighbors algorithms that take into account how well a
given node is connected to the network do not perform well.
We further investigate this observation by visualizing the nodes selected by GreedyInt
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Figure 6.1: Performance of the algorithms for the ModerateInternal problem on
Karate

in Figures 6.8 and 6.9, for the two smaller datasets, Karate and Books. In the visual-
ization, we assign different color and shape to the nodes of the different communities.
The nodes are numbered according to their selection order by GreedyInt. The first
ten nodes are colored in orange-red and have larger size.
The visualization further confirms the behavior of GreedyInt: the nodes that are

selected first are nodes on the outskirts of the network. This means that the impact on
z is bigger when moderating fringe nodes with extreme opinions, instead of central
nodes. The broader implication of this is that in the case of the ModerateInternal
problem the best we can do for moderating polarization is to change the opinions
one user at-a-time, rather than “diffusing” moderation in the network. This in part
due to the fact that the internal opinion is only one of the contributing factors to the
expressed opinion of an individual, and thus its change has a limited effect.
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Figure 6.2: Performance of the algorithms for the ModerateInternal problem on
Books
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Figure 6.3: Performance of the algorithms for the ModerateInternal problem on
Blogs
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Figure 6.4: Performance of the algorithms for the ModerateInternal problem on
Elections
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Figure 6.5: Performance of the algorithms for the ModerateInternal problem on
Hashtags P
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Figure 6.6: Performance of the algorithms for the ModerateInternal problem on
Hashtags NP
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95
54

76

60

100
86

104

103

72
8357

55
79

47
8127

13

29

96 74

70

22

63

32

52

45

48

40

97

68

91

89

14
31

4

9

20
417

18

43

50

25
11

23 34

101

65

99
88

67 102
85

78

16

38

36

61

92

1
19

3

8

2

87

82

71

5866

98

53

84

80

5662
75

105
90

42

46

39

26

69
51

59

77

64

21

15
30

28

37

17

44

24
33

12

10

6

49

35

573

93
94

Figure 6.9: Selected nodes by GreedyInt on Books

32



6.5 Evaluation of the algorithms for ModerateExpressed

For the evaluation of the ModerateExpressed problem we follow the same method-
ology as for ModerateInternal. Figures 6.10 6.11 6.12 6.13 6.14 6.15 show the
π(z | Ts) as a function of the size of Ts for all datasets.
As expected, the GreedyExt is again the best-performing algorithm. However, the

performance of the other algorithms changes depending on the dataset. For the Karate,
Books, Blogs and Hashtags P datasets, ExtremeNeighbors and Pagerank achieve perfor-
mance close to that of GreedyExt, especially for smaller values of k, while ExtremeEx-

pressed is clearly the worst performer. As the size of the solution increases, Pagerank
and ExtremeNeighbors seem to lose their effectiveness, while ExtremeExpressed catches
up with them. These results indicate that when moderating expressed opinions, it is a
good strategy to select nodes that are relatively central and express an extreme opin-
ion. After selecting a sufficient number of influential nodes, the gains of moderating
central nodes is diminished, the there is more benefit in neutralizing extreme nodes
which were not affected by the influential ones, essentially, adopting the approach of
moderating one node at the time.
However, we observe a very different picture in the Elections and Hashtags NP

datasets, where ExtremeExpressed is almost as good as GreedyExt, and Pagerank and
ExtremeNeighbors perform poorly. Note that, according to the randomization test, the
Elections and Hashtags NP datasets are not very polarized. Therefore, there is sufficient
mixing of opinions and it is not possible to moderate a large number of nodes by
neutralizing an influential node. The one-node-at-the-time approach works better.
In order to further investigate this claim we “zoom in” in the performance of the
algorithms in the Elections dataset for k up to the top-1% of the nodes. Now, Pagerank
and ExtremeNeighbors appear competitive for small k, but their performance fades
in comparison to ExtremeExpressed as k increases. This is in stark contrast to the
Hashtags P dataset, which is of similar size with Elections and it is very polarized,
where the algorithms that change influential nodes achieve a good performance.
A final observation is that the reduction in π(z) is significantly higher for the

ModerateExpressed problem than for ModerateInternal for the same dataset, for
the same k. This is expected, as the moderation of the expressed opinion has a much
larger effect in the opinion of the individual, and the opinions in her social network,
than the moderation of the internal opinion.
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Figure 6.10: Performance of the algorithms for the ModerateExpressed problem on
Karate

In Figures 6.17 and 6.17, we visualize again the selected nodes by GreedyExt for
the Karate and Books datasets. The selection is different from the one we obtained for
the ModerateInternal problem (Figures 6.9and 6.8), and highlights the different
nature of the two problems. In the solution of ModerateExpressed the nodes selected
are more central in the graph. It is obvious that changing the expressed opinion of a
node has a bigger impact on the opinions of the neighbors of that node. As a result,
GreedyExt tries to pick nodes that are both central and extreme. The first selection of
GreedyExt is the node that it is ranked first for both Pagerank and ExtremeExpressed.
This combination is essential in achieving high reduction of π. As the selection process
continues, the selections of GreedyExt alternate between central and fringe nodes as
the algorithm is trying to “cover” different parts of the graph, and moderate opinions
of nodes that are not easily reached by the central nodes.
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Figure 6.11: Performance of the algorithms for the ModerateExpressed problem on
Books
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Figure 6.12: Performance of the algorithms for the ModerateExpressed problem on
Blogs
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Figure 6.13: Performance of the algorithms for the ModerateExpressed problem on
Elections
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Figure 6.14: Performance of the algorithms for the ModerateExpressed problem on
Hashtags P
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Figure 6.15: Performance of the algorithms for the ModerateExpressed problem on
Hashtags NP
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Figure 6.18: Selected nodes by GreedyExt on Books
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6.6 Scalability

We now evaluate the scalability of our algorithms. Table 6.4 shows the running time
for all algorithms on the Elections dataset for ModerateInternal and ModerateEx-
pressed and k = 0.1n. All experiments were conducted on a machine with an Intel
Core i7-4790 CPU and 16GB RAM. The algorithms are implemented in Python using
the networkx and numpy libraries.
As expected from the theoretical analysis, for the ModerateInternal problem Ex-

tremeExpressed, ExtremeNeighbors and Pagerank far outperform the GreedyInt and BOMP

in terms of running time. Given that ExtremeExpressed is matching the performance
of GreedyInt and BOMP, this indicates that this is an effective heuristic for very large
datasets.
Finally, we study the effect of Sherman-Morrison formula in the computation of

the update of the z vector when GreedyExt considers a candidate node. We consider
two implementations of GreedyExt: one that uses the Sherman-Morisson formula (Sec-
tion 5.3), and one that computes the z vector using Equation (3.1) iteratively. We
construct different samples from the Elections dataset, of size 2.8K, 6K, 9.9K, 13.8K

and 18.2K. Figure 6.19 shows the comparison of the two implementations for one
update of z. The x-axis is the size of the graph and the y-axis is the running time (in
secs). The plot is in log-log scale. Clearly, the Sherman-Morrison implementation is
one order magnitude faster, making the algorithm scalable for larger datasets.
Our algorithms use the fundamental matrix Q, and thus require quadratic amount

of memory and time. They are applicable to medium-to-large networks, such as an
ego-network, or the network induced by the users of specific hashtags, or a subset

Table 6.4: Running times (secs) of all algorithms for k = 0.1n in the Elections dataset.

ModerateInternal ModerateExpressed

Algorithm Running time (secs) Algorithm Running time (secs)

BOMP 2725
GreedyInt 2930 GreedyExt 16326
ExtremeExpressed 6 ExtremeExpressed 87
ExtremeNeighbors 106 ExtremeNeighbors 121
Pagerank 7 Pagerank 17
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Figure 6.19: Comparison of the running times (in secs) for the Sherman-Morrison
and iterative implementation of GreedyExt, for varying size of n.

of Twitter followers, but they cannot be used for massive networks of millions of
nodes. In such cases, we can use the iterative computation of the z vector. This
computation is very similar to the computation of PageRank, and lends itself to a
distributed implementation. Using existing distributed computation techniques, we
can compute the polarization index for very large networks. Our algorithms can
combine the efficient heuristics we described to reduce the number of candidate nodes
to be considered (e.g., consider only the top nodes in terms of zi, or PageRank value).

6.7 Case study

We conclude by taking a closer look at the characteristics of individuals that were
selected by GreedyExt in the Elections dataset. For this, we pick the first 10 nodes
selected by GreedyExt and we rank them according to three other measures: the
extremity of their expressed opinion, measured by the node’s |zi|, their centrality,
measured by their pagerank score and their degree. In the last three columns of
Table 6.5 we show the rank of these first 10 nodes in the three rankings. In the same
table we report the internal opinion of the node (−1 for Trump and +1 for Clinton)
and their original expressed opinions zi.
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Table 6.5: Characteristics of the first ten nodes selected by GreedyExt in Elections
dataset.

Opinion zi |zi| rank Degree rank Pagerank rank

1 positive 0.045 10683 16 11
2 neutral -0.049 10211 34 21
3 positive 0.03 11704 9 8
4 negative -0.35 32 12473 4861
5 negative -0.03 12582 52 37
6 positive 0.02 13634 2 1
7 negative -0.04 10844 114 59
8 negative -0.06 8366 257 157
9 negative -0.07 7486 601 170
10 positive 0.04 11269 23 19

We observe that GreedyExt mainly selects central nodes, but also selects a node
with very extreme expressed opinion high in the list (4-th pick). Nine out of the
top-10 nodes are clearly very central in the network as they are ranked high both by
their degree and their PageRank scores. This is in line with the previous observation
that GreedyExt initially tries to diffuse as much neutrality as possible and then tries to
cover individuals that were not reached. We also note in the top-10 selected nodes we
have five Trump followers, four Clinton followers, and a neutral user. Note that this
matches relatively closely the proportions of Trump, Clinton and Neutral followers
in the full dataset, which agrees with our previous observations on Karate and Books,
and indicates that it is a good strategy to take a balanced approach to moderating
opinions.
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Chapter 7

Conclusions

In this thesis we considered the problem of polarization in online social networks.
Using a popular opinion formation model, we proposed the polarization index, a novel
measure for quantifying the degree of polarization in the network that takes into
account both the network structure and the existing opinions of users. We then
considered the problem of identifying a small set of individuals, such that, if we
convince them to adopt a moderate opinion, this will minimize the polarization index.
We defined two variants of the problem, and showed that both variants are NP-hard.
We proposed efficient algorithms by exploiting the mathematical properties of the
opinion formation model. Experiments with real data demonstrate the validity of
our model, and the effectiveness of our algorithms in reducing polarization. Our
experiments also highlight the properties and the differences of the two problems we
considered.
In our work we assumed that the opinions are given as input for the compu-

tation of the polarization index. An interesting future direction for our work is to
use opinion mining techniques to derive the opinions of the users in the social net-
work. Such techniques can be used as the first step in our pipeline. Alternatively, we
could integrate ideas from opinion and sentiment mining into the computation of a
polarization metric, or in the moderation algorithms.
Furthermore, our approach to moderation is to set the opinions of the users to zero.

An alternative approach would be to set the user opinions to values other than zero, so
as to minimize polarization. In the case of the internal opinions, there are interesting
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connections of this problem with the algebraic properties of the fundamental matrix
Q that are worth exploring in future work.
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Appendix A

Proof of Theorem 1

Theorem 1. The ModerateInternal problem is NP-hard.

Proof. Our proof uses a reduction from the m-SubsetSum problem, where given a set
of N positive integer numbers v1, ..., vN , a value m, and a target value b, we ask if
there is a set of numbers B of size m, such that

∑
vi∈B vi = b.

Given an instance of the m-SubsetSum problem, we construct an instance of Mod-
erateInternal as follows. The graph is a star with N + 1 nodes: we have a central
node u0, and a spoke node ui for each integer vi. For the center of the star (node u0)
we have that w00 = t, for an appropriately selected value of t (we will discuss this
below), and s0 = −1. The weight of the edge (u0, ui) from the center to node ui is
w0i = vi, and the weight of node ui to its internal opinion is also wii = vi. The opinion
of all spoke nodes is si = 1. We set k = N − m, and we ask for a set of nodes Ts,
|Ts| = k, such that, when setting si = 0 for ui ∈ Ts π(z | Tz) = ∥z∥2 is minimized.
The intuition of the proof is that the expressed opinion of the center node z0

determines π(z). The value of z0 is determined by the weight t of the internal opinion
of u0, and the weights of the edges of nodes whose opinion is not set to zero. If we
select t appropriately, we can guarantee that ∥z∥2 is minimized when the nodes whose
opinion is not set to zero sums to the value b.
Formally, assume that we have selected the set Ts, |Ts| = k. Assume that u0 ̸∈ Ts.

Also let R = V \ Ts ∪ {u0} denote the set of spoke nodes whose opinion was not
set to 0. According to the opinion formation model, the equations for the expressed
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opinions of the spoke nodes are as follows. For every node ui ∈ R, zi = z0
2
+ 1

2
. while

for every node ui ∈ Ts, zi = z0
2
.

We can thus write:

π(z | Ts) = ∥z∥2 = z20 + k
1

4
z20 + (N − k)

1

4
(z20 + 2z0 + 1)

=
N + 4

4
z20 +

N − k

2
z0 +

N − k

4
.

Recall that we want to minimize π(z | Ts). To find the value of z0 that minimizes
π(z | Ts), we take the derivative of the expression above, we set it zero, and solve for
z0. We get that the value of z0 that minimizes π(z) is:

z∗0 =
k −N

N + 4
.

It follows that the minimum value of π(z | Ts) is

π∗ =
(N − k)(k + 4)

4(N + 4)
.

We now set the value of t such that if the set of numbers in R sums to the value
of b, then z0 achieves the z∗0 value. First we compute the value of z0 as a function of
t. In the following we set W =

∑N
i=1 vi. We have that:

z0 =
N∑
i=1

vizi
W + t

− t

W + t
=

∑
ui∈Ts

viz0
2(W + t)

+
∑
ui∈R

vi(z0 + 1)

2(W + t)
− t

W + t

=

∑N
i=1 vi

2(W + t)
z0 +

∑
ui∈R vi

2(W + t)
− t

W + t
=

W

2(W + t)
z0 +

∑
ui∈R vi − 2t

2(W + t)

Solving for z0 we get :

z0 =

∑
ui∈R vi − 2t

W + 2t
.

We want the minimum to be achieved when
∑

ui∈R vi = b. Setting z0 = z∗0 we get:

b− 2t

W + 2t
=

K −N

N + 4

Solving for t we get:

t =
(N + 4)b+ (N − k)W

2(k + 4)
.

Now, we want to prove the following. There is a set B of m numbers such that∑
vi∈B vi = b, if and only if there is a set of nodes Ts of size k = N − m such that

when setting their internal opinion to zero, π(z | Ts) < π∗ + ϵ for some appropriate
value of ϵ.
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The forward direction is easy. If there exists this set B, then there is a set Ts such
that when setting their opinions to zero, for the set R we have that

z0 =

∑
ui∈R vi − 2t

W + 2t
=

b− 2t

W + 2t
=

k −N

N + 4
,

and therefore π(z | Ts) = π∗.
For the backwards direction, if no such set of numbers exists, then it is not possible

to find a set of nodes Ts such the nodes in R give z0 = K−N
N+4

that minimizes π(z | Ts).
Therefore, there must be an ϵ such that π(z | Ts) ≥ π∗ + ϵ.
To set ϵ note that for any z0 ̸= z∗0

|z0 − z∗0 | =
∣∣∣∣
∑

ui∈R vi − b

W + 2t

∣∣∣∣ ≥ 1

W + 2t
=

k + 4

(N + 4)(W + b)
,

where the inequality follows from the fact that the values v1, ..., vN , b are integers and
their difference is at least one. Now, let z∗ be the vector with z∗0 that achieves the
minimum value π∗. For any other z we have

π(z)− π∗ =
N + 4

4

(
z20 − (z∗0)

2
)
+

N − k

2
(z0 − z∗0)

= (z0 − z∗0)

(
N + 4

4
z0 +

N + 4

4
z∗0 −

2(N + 4)

4

k −N

N + 4

)
= (z0 − z∗0)

(
N + 4

4
z0 −

N + 4

4
z∗0

)
=

N + 4

4
(z0 − z∗0)

2

≥ N + 4

4

(
1

W + 2t

)2

=
(k + 4)2

4(N + 4)(W + b)2
.

So it suffices to set ϵ < (k+4)2

4(N+4)(W+b)2
.

Finally, in our computations so far we have assumed that our set Ts does not
contain node u0. This is not a restrictive assumption. Consider a solution Ts, where
u0 ∈ Ts, and s0 = 0. Then, since s0 is the only negative opinion value in our instance,
it follows that z0 ≥ 0, and for any node ui ∈ R we have that zi = 1

2
z0 +

1
2
≥ 1

2
. There

are N + 1− k nodes in R. Therefore,

π(z | Ts) ≥
N + 1− k

2
.

Note that π∗ = (N − k)(k + 4)/4(N + 4) ≤ (N − k)/4, since k ≤ N . Therefore, π(z) ≥
2π∗ + 1/4. Selecting ϵ < π∗ + 1

4
guarantees that π(z|Ts) > π∗ + ϵ. Thus, if there is a set

Ts such that π(z|Ts) is minimized, it cannot contain u0.
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