Graph metrics as predictors of schema evolution for
relational databases.

A Thesis

submitted to the designated
by the General Assembly of Special Composition
of the Department of Computer Science and Engineering

Examination Committee

by

Michail-Romanos Kolozoff

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
WITH SPECIALIZATION
IN SOFTWARE

University of loannina

January 2017

DEDICATION

To my mother, father, sister and all my brothers.
To my family....

ACKNOWLEDGMENTS

To anyone and everyone that has mentally, and otherwise helped me in succeeding
this huge task. First and foremost my family, for the years of raising and supporting
me. All my friends for always being there and letting me believe that I can achieve
anything. And finally to my supervisor, Prof. Panos Vassiliadis for inspiring me from
the very beginning with the art of software engineering, giving me courage in every
difficulty that I stumbled upon, and genuinely making me love the field of Computer
Science. Thank you all for making this thesis possible.

TABLE OF CONTENTS

Dedication ii
Acknowledgments
Table of Contents
List of Tables iv
List of Figures vi
Abstract viii
Extetapévn IegiAnyn ota EAAnvika
CHAPTER 1. Introduction
1.1 Aim and Scope
1.2 Roadmap

CHAPTER 2. Related work

2.1 Case studies concerning schema evolution

2.2 Node importance in graphs
CHAPTER 3. Background concepts
3.1 Fundamental Definitions
3.2 Node and Edge Properties
3.2.1 Degree

322 Centrality and Prestige

323 Reciprocity and Transitivity

i

iii

11

11

14

14

14

15

3.3 Graph Properties 16

3.3.1 Large weak component 16
3.4 Parmenidian Truth 18
CHAPTER 4. Graph metrics evolution 21
41 Experimental Setup 21
4.1.1 Atlas Trigger 21
41.2 BioSQL 22
41.3 EGEE-IIL: JRA1 Activity 23
4.1.4 Castor 23
4.1.5 SlashCode 24
4.1.6 Zabbix 24
42 Total number of node and edges 26

43 Diameter of Large Weak Component & number of
Weak Components 29

44 How do the nodes and edges of Diachronic graph
relate to the average graph snapshot 33
45 Summary of Findings 35
CHAPTER 5. Evolution of table and foreign key metrics 37

51 Simple degrees and their relationship to the table
evolution 37
5.1.1 Statistical profile for tables with respect to graph properties 38
512 How simple degrees relate to the evolution of tables 46

52 Clustering Coefficient and its relationship to table
evolution 50

521 Statistical profile for tables with respect to clustering
coefficient 50

522 How clustering coefficient relates to the evolution of tables 52

ii

53 Vertex Betweenness Centrality and its relationship to
table evolution

5.3.1 Statistical profile for tables with respect to vertex
betweenness

5.3.2 How does vertex betweenness relate to table evolution

5.3.3 Normalized Vertex Betweenness and its relationship to
evolution

54 Edge Betweenness and its relationship to schema
evolution

55 Summary of Findings
CHAPTER 6. Software architecture and design — parmenidian truth
6.1 Package Diagram
6.2 The core package
6.3 The export package
6.4 The model package
6.5 The gui package
6.6 The model.Loader package
6.7 The parmenidianEnumeration package
CHAPTER 7. Conclusions and future work
71 Summary
7.2 Future Work
References 85

Short CV 87

iii

54

54

56

59

61

67

69

69

71

73

75

77

79

80

83

83

84

LIST OF TABLES

Table 1 A description of the datasets we have used in this study
Table 2 Correlation of nodes and edges for the six datasets

Table 3 Pearson correlation for the studied metrics, with |V standing for
number of nodes, |E| for number of edges, |C| for number of
weak components and d for diameter

Table 4 Number of nodes contained in each dataset’s lifetime
Table 5 Number of edges contained in each dataset’s lifetime

Table 6 Number of nodes as percentage of the nodes of the Diachronic
Graph

Table 7 Number of edges as percentage of the edges of the Diachronic
Graph

Table 8 InDegree variants for specific nodes during evolution

Table 9 InDegree Breakdown for the 6 studied datasets. Each cell represents
how many tables of the database have the respective average
value (rounded) of the first column.

Table 10 OutDegree Breakdown for the 6 studied datasets. Each cell
represents how many tables of the database have the respective
average value (rounded) of the first column.

Table 11 Joint Distribution for the average in/out degree for the 6 studied
datasets.

Table 12 Breakdown of node percentages per combination of degrees for the
6 studied datasets.

Table 13 Probability of survival with respect to total degree
Table 14 Clustering Coefficient Breakdown for the 6 studied datasets

Table 15 Probability of survival with respect to clustering coefficient

iv

25

27

30

33

33

34

34

37

39

40

43

44

47

50

52

Table 16 Average Vertex Betweenness Breakdown for the 6 studied datasets
Table 17 Probability of survival with respect to avg. vertex betweenness

Table 18 Probability of survival with respect to normalized avg. vertex
betweenness

Table 19 Breakdown of tables per category of EBC score and relationship to
survival.

Table 20 Percentage of survivor tables per rank for all the studied data sets.

54

56

59

63

65

LIST OF FIGURES

Figure 1 Diachronic graph of Egee along with its starting versions
Figure 2 A version of Atlas in Parmenidian Truth
Figure 3 Number of nodes and edges over time for the 6 studied data sets

Figure 4 Size of Diameter and Number of Weak Components over time for
the 6 studied data sets

Figure 5 Percentage of Nodes and Edges within the LWC over time for the 6
studied datasets

Figure 6 Node Breakdown per Average InDegree for the 6 studied datasets

Figure 7 Node Breakdown per Average OutDegree for the 6 studied
datasets

Figure 8 Distribution of nodes with respect to both their In and Out Degree
scores for the 6 studied datasets

Figure 9 Contrasting InDegree scores with the last known appearance for
the tables of the 6 studied datasets

Figure 10 Contrasting OutDegree scores with the last known appearance for
the tables of the 6 studied datasets

Figure 11 Node Breakdown per Average Clust. Coeff. for the 6 studied
datasets

Figure 12 Contrasting Clustering Coefficient scores with the last known
appearance for the tables of the 6 studied datasets

Figure 13 Breakdown per Average Node Betweenness Centrality for the 6
studied datasets

Figure 14 Contrasting Average Vertex Betweenness scores with the last
known appearance for the tables of the 6 studied datasets

vi

13
17

26

29

31

41

42

45

48

49

51

53

55

57

Figure 15 Contrasting Norm. Avg. Vertex Betweenness scores with the last
known appearance for the tables of the 6 studied datasets

Figure 16 Evolution of the 2-Core Components for the 6 studied datasets
(figures are partially cropped to fit)

Figure 17 Edge Betweenness scores, ordered decreasingly, for all 6 data sets.
Figure 18 Package Diagram for Parmenidian Truth

Figure 19 Class Diagram for the core package

Figure 20 Class Diagram for the export package

Figure 21 Class Diagram for the model package

Figure 22 Class Diagram for the gui package

Figure 23 Class Diagram for the model.Loader package

Figure 24 Class Diagram for the ParmenidianEnumeration package

vii

60

62

63

70

71

74

75

77

79

80

ABSTRACT

Michail-Romanos Kolozoff. MSc in Computer Science, Department of Computer
Science and Engineering, University of Ioannina, Greece. January 2017.

Graph metrics as predictors of schema evolution for relational databases.

Advisor: Panos Vassiliadis, Associate Professor.

Databases evolve over time and their evolution does not only concern their contents,
but also their internal structure, or schema. Schema evolution impacts deeply, both
the database itself, and the surrounding applications that need to adapt too. The
study of the mechanisms and patterns via which database schemata evolve is
important as it can allow the in-advance planning of design, maintenance and
resource allocation with a view to the future.

In this thesis, we focus on the study of the evolution of foreign keys in the context of
schema evolution. Foreign keys are mechanisms that constraint data entry in
relational tables, imposing that the domain of the contents of a table’s attribute is a
subset of the contents of an attribute of another, lookup, table. Despite the
importance of foreign keys, as an integrity constraint that guarantees consistency
among the values of different tables, the study of their evolution is a topic that —to
the best of our knowledge- has never been studied in the literature before.

We have studied the schema histories of a six free, open-source databases that
contained foreign keys. To facilitate a quantitative study, we model each version of
the schema as a graph, with tables as nodes and foreign keys as directed edges
(stemming from the referencing table to the referenced one). Our findings concerning
the growth of nodes verify previous results that schemata slowly grow over time in
terms of tables. Moreover, we have come to several surprising, new findings in terms
of the schema edges (foreign keys). Foreign keys appear to be fairly scarce in the
projects that we have studied and they do not necessarily grow in synch with table
growth. In fact, we have observed different “cultures” for the handling of foreign
keys, ranging from full sync with the growth of nodes to the unexpected extreme of
full removal of foreign keys from the schema of the database. Node degrees and

viii

survival are related with an inverse gamma pattern: the few nodes with high degrees
stand higher chances of survival than average. Similarly, nodes with inciting edges
with high values for edge betweenness centrality frequently (but not always) stand
higher chances to survive compared to the nodes with a single or zero inciting edges,
which have significantly higher chances of removal.

ix

EKTETAMENH IIEPIAHWH LTA EAAHNIKA

MuixaAng — Popavog KoAolwe. MAE otnv ITAngogoouwkr), Turjpua Mnxavuccov H/Y
kat ITAnpogookr|g, Iavemiotiuo Iwavvivwv, Iavovaglog 2017.

IF'oagoOewpnTikéc HeTEkéS Yia TV MEOPAeYN NG e£EALENS oXNUATWY BAoEwV
dedoEVWV.

EnBAénwv: ITavayuwtng Baoileiadng, AvanAnowtrc Kabnynmg.

Ot Bdoeig dedopévwy eEeAlooovTal pe TNV TAQODO TOL XEOVOUL Kat 1) eEEALEN TOVG
deVv aoEA& HOVO TO TEQLEXOHEVO TOVG, AAAL KAl TNV €0WTEQIKN TOLG dOUT), 1} TO
Lxnpa. H e£€AEN tov Lxnuatog emudpa Padix, otnv O tn Paon dedopuévawv, kat
OTIS YOQW EQPAQUOYEC TIOL TQRETIEL VA TIQOOKQHUOOTOVV TOAD, TIQOKELUEVOL VX
amopevxOel (a) n amotvxla AetrtovEyiag (AOyw ava@opwv o0& avOTaQKTO
otolxela Tov oxfuatog), () N anwAewx MTANEOPOQLWV (AdYw TG UN-oLOXETION
TV VEWV dedOUEVWYV), 1] (Y) OL ONUACIOAOYIKES AVTIPAOELS (0€ TLEQITITWON TOVL 1)
onuaocwAoyla twv andpewv aAAd&el). H peAétn twv pnxaviopwv kat twv
TMEOTUTIWV HEOW TwV oTolwv eEeAlocoovtal ta oxnuata Pdong dedopévwv elvat
ONHUAVTIKY), kKOS HTOQEL VA ETUTOEPEL TOV €K TWV TOOTEQWV TXEDXTHO Yot TNV
AVATITLET EQPAQUOYW@Y, CLVTNENOTNG TG PAONG dEDOUEVWYV KAL TV KATAVOUN TV
nopwv, pe 0tOX0 TOo MéAAOV. TIpoC TO TMAQWV Ol YVWOES HAS Y TETOLOUG
HUNXAVIOHOUG 1] poTPa elval axopa ota mMEWTa ¢ Bripata, Kuolws Adyw g el
HaKQOV €AAendng otoQuwv oxnpatos. Méxol onueoa, n oxetkn) BiBAoyoapia
HeToAeL HOVO Alyeg peAéteg eml Tov Oéuatog, allomolvTag KLRIWS TIG LOTOQLES
OXNHATOG TV eAeV0EQWV, AVOIKTOV KWOLKAX £Q0YWV TIOL ONUOCLEVOLY 0OAOKATQ0
TOV KWOLKA TOUG (CUUTEQLAAUPBAVOLEVOL TOL OXIIUATOG TNG LTTOKEIHEVNS BAong
dedopévwv Tovg) oe amodnkeg dNUOCIOL AOYIOUKOD.

Le avtr) v eoyaoia, Oa emukeviowOovue ot peAétn g eEEALENG Twv Eévwv
KAeWwWvV oto mAaiow g eEEALENG TOL OoxNHaTtoc. Eéva KAewdlx elvatr ot
pUNXoavIopol ov TeQLoEICovy TNV eloaywyr) 0edOUEVWY O& OXEOLAKOVG TIVOKEG,
eTUPRAAAOVTAG OTL O TOHEAC TWV TEQLEXOUEVWY TOV XAQAKTNOLOTIKOV EVOG TIivaKa
elval éva VTTOOVVOAO TWV TEQLEXOUEVWY EVOG XAQAKTNOLOTIKOV TOL A&AAOV,
niivakag avalnmnorng, (magéxovtag 0, Tt etval emiong Yvwoto wg active domain

TOL AVAPEQOUEVOL XaakTnEwotkov). ‘Etol, ta Eéva kAediax amoteAovv Paoucod
UNXAVIOHO Yt TN DIACPAALOT) TIG AKEQALOTNTAS TWV OEDOUEVWVY KAL TI] OLVOXT)
HeTalV TV TV o dapopetikovg mivakes. Ilapa) onuacia twv Eévwv
KAEWWOV, WG TEQLOQLOUO aKeQAOTNTAS, 1 HeAéTn NG e£EALENG Tovg elval éva
Oéua mov — and 000 yvweillovpe — dev €xel moté peAetnOel otn PPAoyoapia
niowv. H ovoxetiCopevn dovAeix éxet emucevtowOel otnv peAétn yx tnv e£EALEN
TWV TUVAKWY KAl TV XXQAKTNOLOTIKWY, a@nvovtag T HeAétn twv Eévwv
KAEWWOV avéyyLx).

‘Exovpe ovAAéEel Tic oToRleg oxNUATwV amd €L Paoels dedOUEVWY aVOLKTOU
KWOKA TOL mepLlelxav E€va KAEWOLX, KAl TIC €MEEEQYATTNKAUE YIX V&
avakaAvPovpe Tic aAAayég mov ovvéPnoav ot cvvexopeva releases tovg. ‘Etot,
N Wotopla TV ekdO0EWV éXel CUUTIANEWOEL Ao €va LOTOQIKO peTAPAoewV HeTAlD
HeTayevEOTEQEG EKDOOELS. TN OLVEXEWX, UEAETNOAHUE TA XAQAKTNOLOTIKX TNG
eEEAENG Twv Eévowv kAewwv. T'w va dtevkoAvvOel pix moootikr) peAétn,
povteAomomoape k&Oe oXNUa WS YOAPNHUQA, HE TOUS TTivakeS wg KOUPOLS Kat Ta
Eéva KAeIA wg katevOuvopeves akpés (TIOL TMEOKVMTEL AMO TOV TvVaKa
QAVTIOTOLXNONG HE TOV ava@eQouevo). EmumAéov, pe v mea&n mg évwon g
LOTOQLAC AVTAV TWV YOAPNUATWY, dnuoveynoape tov Awxxoovikd I'odeo g
LOTOQLAG TOV OXNHATOG O OTIOlOG TEPLEXEL OAOUG TOLG Ttivakes Kat OAa ta E€éva
KAeWIX mov vMEEAV TOTE 0TV OToQlar Tov oxNuatos. Baon avtov tov
HovteAOTIOMUEVOL Yoa@ruaTog, afloAoynoape TOAAES YOAPO-OewonTikég
OLOTNTEG, TOOO OO0V APOQX TO OUVOAO TOV OXIUATOS AAAX kal amtd TV ATon
TWV HEHOVWHEVWV KOUPwV kKat akpwv. H mpoomdOeid pag €xet dtevicoAvvOel amd
éva egyadeio mov éxovpe avamtvéel, pe to ovoua Iappevideix AANOewx, To omoio
(a) kataokevdlel To Awxyxoovuko I'odgo g wotoolag, () Tov xonowomotel wg
HECO OLVOXNG YlX TNV OMTIKOTOWMOoN TNe kdOe OlaPOQETIKNG €kdOOoNg TOv
oxnuatog, (y) e€&dyel NV 0TOQlX TOL OXNHATOS WG HIX TQOLOLAOT O€
PowerPoint, Bivteo, éva ovvoAo ewdvwy, kat éva ovvoAo apyeiwv GraphML, kat
(0) MapdryeL avaoEg Yl dLxPOQETIKEG YOXPOOEWOENTIKES LETOUKES OE CSV apXEla,
dLELKOAVVOVTAG £TOL TNV HETETELTA AVAAVLOT| TOVG.

Ta evoruata pag ovvopilovtat wg eENG:

Ta Zxnuata avEdvovtat pe v maEodo Tov XEOVOUL ATO TNV OKOTIX TwV KOUPwV
(mtvaxec). H avantuln elvat opaAr] kat aQyr), He QOKETEC TEQLODOVG NEEULAC.
AVLTO elval éva oAV yvwotd amotéAeopua and tnv vtagxovoa PipAoyoapia ov
éxer emiong emaAnOevtel and) peAétn pac. Ou axpéc (Eéva kAewduk) dev
aAVATTOOOOVTAL ATIAQALTNTA O& CUYXQOVIOUO HE TNV AVATITUEN TWV TIUVAKWV.
LIV MOAYUATIKOTNTA, €XOVHE TIAQATIONOEL DAPOQETIKESG "KOVATOVQEC" VI TO
XEWLWOHO TV EEVWV KAEWLWV. e dVO MEQLMTWOELS IOV AXPOQOVV ETILOTIUOVIKES
Paoeig dedopévwv (Atlas, Biosql), Ta Eéva kAedx amtoteAovV avamtdoTaoTo HéEQOg
TOU OXNUATOG, €KTELVOVTAL O éva TEQAOTIO TIOOOOTO TWV TIVAKWV KAXL OULV-

eEeAlooovtal pall Tovg. e dV0 AAAEC MEQLMTWOELS, ETUOTG EMIOTNHOVIKTG QUONG
(Egee rau Castor), povo éva VTOOVVOAO TWV TUVAKWY OUUUETEXOVV O€ OVOXETIOELS
EEvV KAWLV Kat 1 eEEALET Toug elval duttr): H Egee (ne oAU pikpov peyéoug
LxNHo) €XEL L LOXVET) OLOXETION HETAED MIVAKWV KAt eEEALENG EévwV KAEWDWDV,
evay) o Castor (pe éva HIKQO TOOOOTO TWV TIVAKWV va eUmAékovTIal oe Eéva
KAEWLA) €XEL AVAULKTI] OVUTEQLPOQX T& OAN TNV otoglar NG e&éALEN tov. H
pneyaAvteon €kmAnén Mebe amd 1ta oxNuata Xvotuatoc Aaxelplomg
[Tegtexopuévov (CMS), SlashCode kat Zabbix, 6mov ta Eéva kKAeWd epumAékovtal
HOVO O€ i nkr] petoPnela twv mvakwv. IToog peydAn pag éxmAnén, ta Eéva
KAEWLIX 08 aLTA T €QYaR, HETA aTtd Hia TeRIodO0 aAVATITUENG, APALQOVVTAL ATIO TO
cvotua (o) e U amOTOUN ATIOUAKQUVOT OTNV TEWTH TeRlMTwo™, Kat () ue
Hie aQyn aAAG& otaOepr] Taxvt)Ta anopdkuvong oty devteon. H ovvoAwn pag
eVTUTon elvat ot pe Vv efalpeon KATOWWV TEQPAAAOVTIWV HE aLOTNON
TIETNOT TWV LITAYOREVOEWV TNG OXeolakNg Oewplag, ta E£va KAWL elval oTtavia
Kat eviote avemlOounta.

Ooov agopd ™ CLUTEQLPORA HEUOVWHEVWY KOUPwWV, patveTal ot o Padpog kot
n emuPlwon oxetiCovtal Oetucd petalV TOUG, Kal, OTNV TEAYHUATIKOTITA, VTTAQXEL
éva portifo avtiotpopov - I' oto ovoxetiopo Babuov kat emuPiwons. To potiPo
mpotelvel OtL ot XapunAol oe Baduovg kopPot pégovv un apeAntéa mbavotnta
ATIOUAKQLVOTG YIX TOUG AVTIOTOLXOVG TIVAKES- TALTOXQOVA, Ot LPNAOPBaduoL, av
KL QQKETA omavia, @épouv Tillavotnta daryoaens 5% -19% xaunAdteoa amd to
pnéoo 0go. Exovue peAemoet emiong kOUPovg Y tov ovvteAeot) opadomoinon
TOUG KAL TNV KEVTIQIKOTNTA TOUG He HAAAOV apu@ifola amoteAéopata 600V agpood
mv emPBlwon tov kOpBov. TéAog, @alvetat OtL oL KOUPBOL OV €QATTOVTIAL e
vynAa score oe betweenness - centrality, ovxva (aAA& oOxt mavia) éxouvv
vPnAdtepeg mbavotnteg emiPBlwong anmd kOUPouvg pe pla 1) kaplo mTEookeipevn
QK.

CHAPTER 1.

INTRODUCTION

1.1 Aim and Scope

1.2 Roadmap

1.1 Aim and Scope

Databases evolve over time and their evolution does not only concern their contents,
but also their internal structure, or schema. Schema evolution impacts deeply, both
the database itself, and the surrounding applications that need to adapt too, in order
to avoid (a) crashing (due to references to inexistent schema elements), (b)
information loss (due to the non-referencing of newly added data), or (c) semantic
inconsistencies (in case the semantics of views change). The study of the mechanisms
and patterns via which database schemata evolve is important as it can allow the in-
advance planning of application development, database maintenance and resource
allocation with a view to the future. Still, our knowledge of such mechanisms or
patterns is still in its early steps, mainly due to the longtime lack of schema histories.
To this day, the related literature counts only a handful of studies of the topic, mainly
exploiting the schema histories of free, open source projects that publish their entire
code (including the schema of their underlying database) to public software
repositories.

In this thesis, we focus on the study of the evolution of foreign keys in the context of
schema evolution. Foreign keys are mechanisms that constraint data entry in
relational tables, imposing that the domain of the contents of a table’s attribute is a
subset of the contents of an attribute of another, lookup, table (providing what is also
known as active domain of the referencing attribute). Thus, foreign keys are a key

mechanism to guarantee data integrity and consistency between the values of
different tables. Despite the importance of foreign keys, as an integrity constraint, the
study of their evolution is a topic that —to the best of our knowledge- has never been
studied in the literature before. Related work has worked on the evolution of tables
and attributes, leaving the study of foreign keys untouched.

We have collected the schema histories of a six free open-source databases that
contained foreign keys, and processed them to discover the changes that occurred
between subsequent releases. Thus, the history of versions has been complemented
by a history of transitions between sequential versions. Subsequently, we studied the
characteristics of foreign key evolution. We want to see if the topology of relations
within a relational schema has anything to do with their behavior concerning the
evolution of the schema. To this end, we structure each version of a schema as a
graph, with relations as nodes and foreign keys as edges. We also introduce the idea
of the Diachronic Graph, a graph that encompasses a node for every table that has
ever appeared in the history of the database and an edge for every foreign key that
has ever appeared in the history of the database. One can think of the Diachronic
Graph as the superimposition of all the graphs of the different versions -
equivalently, the graph of each version is the projection of the Diachronic Graph for
the tables and foreign keys that are present in that particular version. Based on this
graph modeling, we assess several graph-metric properties, both in terms of the
entire schema and in terms of individual nodes and edges. Our effort has been
facilitated by a tool we have developed, called Parmenidian Truth, that (a) constructs
the Diachronic Graph of the history, (b) uses it as the means of consistently
visualizing the different version of the schema, (c) exports the story of the schema as
a PowerPoint presentation, a video, a set of images, and a set of GraphML files, and
(d) reports different graph theoretic measures in csv files, thus facilitating their
subsequent analysis.

The main research question we address is: is there any inherent property of the graph
constructs that forecasts their liability to change? We want to understand if graph-
theoretic properties like the degree or the centrality of a relational table are related
somehow to its evolutionary history. We start with traditional correlation analysis
and depending on the results we direct research towards algorithms that reveal the
internal mechanisms of this evolution.

Schemata grow over time in terms of nodes (tables). Growth is smooth and slow,
with several periods of calmness. This is a well-known result from the existing
literature that is also verified by our study too. Edges (foreign keys) do not
necessarily grow in synch with table growth. In fact, we have observed different
“cultures” for the handling of foreign keys. In two cases concerning scientific
databases (Atlas, Biosql), foreign keys are an integral part of the schema, span a vast

percentage of tables and co-evolve with them. In two other cases, also of scientific
nature (Egee and Castor), only a subset of tables were involved in foreign key
relationships and their evolution is biased: Egee (with a very small schema size) has a
strong correlation of table and foreign key evolution, whereas Castor (with a small
percentage of tables being involved in foreign keys) has mixed behavior throughout
its history. The biggest surprise came from the data sets of Content Management
System (CMS) nature, SlashCode and Zabbix, where foreign keys involved only a
small minority of tables. To our big surprise, foreign keys in these projects, after a
period of growth, are removed from the system (a) with a steep removal in the first
case and (b) a slow but constant removal rate in the latter. Our overall impression is
that, with the exception of few environments with a strict adherence to the dictations
of relational theory, foreign keys are scarce and occasionally unwanted.

Concerning the behavior of individual nodes, it appears that degree and survival are
positively related, and, in fact, there is an inverse-gamma pattern in the correlation of
degree and survival. The pattern suggests that low degrees carry a non-negligible
probability of removal for the corresponding tables; at the same time, high degrees,
although scarce enough, carry a probability of removal 5%-19% lower than average.
We have also studied nodes for their clustering coefficient and vertex betweenness
centrality with rather inconclusive results in terms of node survival. Finally, it
appears that nodes touched by edges with high edge betweenness centrality,
frequently (but not always) have higher chances of survival than nodes with a single
or zero inciting edges.

1.2 Roadmap

In Chapter 2, we review the state of the art that is closely related to our problem. In
Chapter 3, we discuss background concepts around foreign keys, graph metrics as
well as the data extraction process and a summary of the tool we have developed for
our work. In Chapter 4, we discuss the evolution of foreign keys viewed from the
point of view of the entire schema. In Chapter 5, we focus on graph metrics for
individual tables and foreign keys and discuss how these graph metrics related to the
survival of tables. In Chapter 6, we discuss the internal architecture of the tool we
have developed, Parmenidian Truth. Finally, in Chapter 7, we conclude our
discussion and offer suggestions for follow up work.

CHAPTER 2.

RELATED WORK

21 Case studies concerning schema evolution

2.2 Node importance in graphs

21 Case studies concerning schema evolution

The first case study we will discuss [KaraO1l], concerns the impacts that database
schema evolution has to the application level at a macroscopic level. This research
was conducted for the purpose of providing a technology for maintaining
consistency between database schemata and their corresponding applications, in an
object-oriented context, and, at the same time, providing the evaluation of this
technology from the perspective of the schema and application developers. The
authors applied the transitive closure algorithm, which takes as input a directed acyclic
graph with components as nodes and relationships between them as edges and finds
all components reachable from a given component, in their tool where schema and
application components are represented as nodes and the relationship between them
as edges. The kinds of relationship between components are inheritance,
encapsulation, aggregation, and usage. Based on this idea, the authors created a tool
called SEMT (Schema Evolution Management Tool), where the components are
extracted from the source files and the relationships between them are identified. The
evaluation was focused on performance and usability. The general user satisfaction
was relatively high. In the end, the purpose of this paper was to highlight that the
ensuring of consistency between a database schema and applications during schema
evolution is a non-trivial task. So, by applying knowledge from the software change

impact analysis and software visualization in the area of database schema evolution
the SEMT tool was created.

The next case study that we discuss in this section was performed by Sjoberg
[Sjob93], where a method for measuring modifications to database schemata and
their consequences, was presented. For this purpose, a measuring tool, Thesaurus,
was built to monitor the evolution of a large, industrial database application, a health
management system (HMS) for a period of 18 months. The Thesaurus tool assists in
keeping track of the use of names in the HMS application. An important requirement
of this tool was that its contents should not be manually maintained. This was
achieved by periodically scheduled, source program and database schema scans, in
order to detect record changes. The resulting publication of this research effort
[Sjob93] reports on how the schema changed. During the period of the study, the
number of relations increased from 23 to 55 (139% increase) and the number of fields
increased from 178 to 666 (274%). The most interesting result, however, is the fact
that every relation had been changed. At the beginning of the development, almost
all changes were additions. After the system provided a prototype and later went
into production use, there was not a diminution in the number of changes, but the
additions and deletions were more nearly in balance. Having measured the
consequences of the schema changes on the application programs, the author
suggests that the results confirm that change management tools are needed.

Our next case study [CMTZ08] presents an in-depth analysis of the evolution history
of the Wikipedia database and its schema. For the purpose of this study a schema
evolution tool is produced for the analysis of a real-life web information system. The
authors studied the evolution of the MediaWiki software, which is a browser-based
web-application under the hood of many applications, and most importantly,
Wikipedia. First, the authors studied the size of MediaWiki DB schema in history in
terms of the number of tables and columns. The number of tables has increased from
17 to 34 (100% increase) and the number of columns from 100 to 242 (142%). The
schema growth is due to three main driving forces, specifically, (a) performance
improvement, (b) addition of new features, and, (c) the growing need for
preservation of the history of the contents of the database. The authors also classified
changes in schema size in two different ways, macroscopically, by focusing on
schema change, index/key adjustments, rollback to previous versions and
documentation changes, and microscopically, by making use of the Schema
Modification Operators, which are SQL queries like Create Table, Drop Table, Rename
table etc. So, in order to study the effect of schema evolution on the frontend

applications, the authors analyzed the impact of the schema changes on a variety of
different sets of queries and resulted to the conclusion that MediaWiki had
undergone through a very intensive schema evolution as a result of a cooperative,
multi-party development, something that is common in leading-edge Web
Information projects.

In another line of work, the main goal of [LiNe09] is the study of Collateral evolution of
applications and databases. This term is used in order to denote potential
inconsistencies that arise when a database and the application programs using that
database do not evolve simultaneously. In this work, object of study was the
relationship between the evolution of an application and the evolution of the
database system used to store the necessary data. Apparently, if these lines of
evolution are not performed in sync, this may lead to collateral effects such as data
loss, program failure, or decreased performance. To collect empirical evidence on the
collateral evolution of application programs and databases, the authors followed the
following steps:

- Firstly, an evolution study that identified changes to database schemas was
performed

- Secondly, the evolution of database file formats was studied

- Next, an investigation in how application programs and database
management systems cope with these changes was done

- Finally, some solutions for facilitating and ensuring the safety of applications
and database evolution were given.

The conclusion of this study is that the current co-evolution approaches are
inadequate and further research towards this goal is needed.

In the work of [SkVZ14], the authors performed a large-case study on the evolution
of open-source databases and made observations regarding Lehman’s laws of
software evolution. For the purpose of this case study eight datasets were collected
and cleansed. The resulting histories were then processed by a tool, Hecate, which
was built for this purpose and proceeds in the following sequence of steps:

- First, Hecate, detects changes at both the attribute and the relation level

- Second, the tool produces the differences between two subsequent committed
versions for all the subsequent versions in the schema history. This transcript

of changes is a sequence of deltas for each transition from a version to the
next.

- Finally, based on all this sequence of detected changes, Hecate, produces
statistical measures that characterize not only the overall evolution of the
entire schema, but also the evolution of individual tables.

This study made several contributions regarding the evolution of real-world open-
source databases, the most interesting of which are:

- The schema evolution happens in bursts and in grouped periods of
evolutionary activity and not as a continuous process

- All datasets had the tendency to grow over time
- Age results to a reduction in the density of changes
- Change is quite more frequent in the beginning

- The schema size of a certain version of the database can be accurately
estimated via a regressive formula that exploits the amount of changes in
previous versions

2.2 Node importance in graphs

Another study [WhSmO03] addresses the definition and computation of the
importance of nodes in a graph, relative to one or more root nodes. The authors
study a selection of different algorithms from social networks and graph theory, like
Markov models and Web analysis. Then, these algorithms are evaluated based on
simulated data on toy graphs as well as on real-work networks. Regarding node
importance, a number of different approaches have been developed, like the
centrality of a node in a social network, as well as the embedding of a social network
data in latent Euclidean spaces. In the area of Web graphs, computer scientists have
proposed a number of algorithms like HITS and PageRank. The purpose of
[WhSmO03] is to determine the relative importance of nodes in a graph with respect to
a set of root nodes. Using graph-theoretic notions of distance defined explicitly on
the graph as a general framework for estimating relative importance the authors
indicate the following algorithms:

- Shortest paths, an important metric for measuring pair-wise relations in a

graph

- K-shortest paths, for taking into consideration paths that are usually longer
than the shortest path but important nonetheless

- K-short Node-Disjoint Paths, which refers to sets of k-short paths that have
neither edges nor nodes in common

Thereinafter, the authors make a conceptually different approach, as to view the
graph as representing a stochastic process, more specifically, a first-order Markov
chain. So, they study focuses on the ensuing algorithms:

- Markov Centrality, where the inverse of the mean first-passage time in the
Markov chain is examined

- PageRank with Priors, where the PageRank algorithm is extended to generate
personalized ranks, and therefore is retrofitted into the current framework

- HITS with Priors, similar to the prior modification, the HITS algorithm is
extended to fit the same framework

- K-step Markov, similar to the PageRank with priors and Hits with priors, but
this time the procedure ends after K steps

Finally, those algorithms were tested in both simulated and real-world data with
promising results, for the identification of relative-importance nodes.

In this master thesis, we try to find out which graph-theoretic properties, if any, are
helpful for predicting a relational database’s schema evolution. At first, we study
each schema’s graph macroscopically, trying to find if there is any correlation
regarding the number of nodes, edges, weak components and diameter. Afterwards,
we consider metrics that microscopically describe the graph and contain information
about its topography, such as the in and out degree of a node, its clustering
coefficient, and the vertex and edge betweenness.

10

CHAPTER 3.

BACKGROUND CONCEPTS

3.1

3.2

3.3

3.4

Fundamental Definitions

Node and Edge Properties

Graph Properties

Parmenidian Truth

3.1

Fundamental Definitions

The schema or intention of a relation is defined as a triplet (name, set of attributes,

primary key). A foreign key constraint is a pair between a set of attributes in a certain
relation R (called the source of the foreign key) and a set of attributes in a relation R
(called the target of the foreign key). The foreign key constraint requires a 1:1

mapping between the attributes of the source and the target. As usual, at the

extensional level, the semantics of the foreign key denote a subset relation between

the instances of the source and the instances of the target. For the purpose of this
thesis, we treat a relational database schema as a set of relations along with their

foreign key constraints.

We model the database schema as a directed graph G(V, E), with relations as nodes
and foreign keys as directed edges, originating from their source and targeted to

their target. If two relations have more than one foreign key with the same direction,

11

the single edge that connects them is annotated with all the foreign key pairs
involved.

The evolution history of each database schema can be thought of as (a) a sequence of
versions, but also as (b) a sequence of revisions. Unless otherwise specified, we will
treat the term history under the semantics of the former of the two representations.

Schemata as graphs. Each version of the schema v' is a graph Gi(V},Ei). A transition
between two subsequent versions of the history involves a set of changes involving
relation additions, relation deletions, relation updates (attribute additions or
deletions, change of attribute data types, changes of primary keys), as well as foreign
key additions and deletions.

Diachronic Graph. Assuming an evolution history H={v!, ..., v"} for the database
schema, the Diachronic Graph of the database schema is a graph G (V*,E?) where
(a) V! is the union of all Vi, and (b) E® is the union of all E'.

As an example, the evolution history of the Egee dataset is presented in Figure 1. The
tirst graph represents Egees” Diachronic graph and the following graphs represent a
few versions with deletions and additions that shaped the Diachronic graph. The
idea is that nodes are only added to the diachronic graph; thus it is the outcome of
progressively adding all the table additions to the original version, without removing
any. Observe that in the second version, two tables are deleted; yet they are present
in the Diachronic Graph. In terms of coloring, a node that is deleted is colored red,
nodes that are added are colored green and nodes with internal updates (e.g.,
attribute additions, deletions, etc) are yellow.

12

t_channel_vo_share

O

t_job_log

@]

t_schema_vers

O t_channel
@

Ljob

{_logical

Start: v. 1.0.1

t_channel_vo_share 0

I_channel_vo_share

{_channel_act

t_schema_vers
tchannel

t_warsfer
I_trace "

Additions: v. 1.0.8

t_schema_vers

t_schema_vars

Additions: v. 1.0.15

t_job_log
t_vo_acl O t_agent
O @

t_channel_acl

O
O t_channel

1 _logical

t_transfer
t_trace

Diachronic Graph

t_job_log

t_schema_vers

O t_channel

Deletions: v. 1.0.2

tvo_ad t_channel_vo_share 03¢/ tagent

) O O

o

t_channel_ad

schema_vers
1_channel

) 1_channel

Additions: v. 1.0.17

(final v.)

Figure 1 Diachronic graph of Egee along with its starting versions

13

3.2 Node and Edge Properties

As we will work with a graph representation of our schemata, we will attempt a
graph-metric assessment of how the schema evolves. In other words, we will assess
how important measurable properties of the graph evolve over time. In our
deliberations, we employ several graph metrics that can be classified as (a) applicable
to individual nodes and (b) to the entire graph'.

3.2.1 Degree

Degree of a node. The degree of a node, degree(v), is the number of edges incident to the
node.

In-Degree of a node. The in-degree of a node, in-degree(v), is the number of incoming
edges to the node.

Out-Degree of a node: The out-degree of a node, out-degree(v), is the number of
outgoing edges to the node.

3.2.2 Centrality and Prestige

Given two arbitrary nodes of a graph, it is possible that more than one paths exist
that connect them. The distance between two nodesin a graphis the number of
edges in ashortest path connecting them. If there is no path connecting the two
nodes, i.e., if they belong to different connected components, then, conventionally
their distance is defined as infinite.

Eccentricity. The eccentricity ecc(v) of a node v in a graph, is the maximum distance of
v with respect to any other node in the graph. Conventionally, low values of
eccentricity indicate nodes with a central position in the graph, thus a low
eccentricity is a good indicator of a node’s centrality.

1 All the definitions are based on the online dictionary of graph metrics available at
http://reference.wolfram.com/language/Combinatorica/guide/GraphProperties.html

14

The Betweenness-Centrality is an indicator of a node's centrality in a network and it is
equal to the percentage of shortest paths from all nodes to all others that pass
through that node. A node with high betweenness centrality has a large influence on
the transfer of items through the network, under the assumption that item transfer
follows the shortest paths [Brand01]. The same metric was used for both nodes and
edges.

3.2.3 Reciprocity and Transitivity

Clustering coefficient. The clustering coefficient cc(v) of a node v is defined as follows:

— If degree(v) belongs {0,1}, cc(v) =0

— Let N(v) denote the set of neighbors of v, i.e. every node u, such that an edge
(u,v) or (v,u) belongs to the graph. Observe that in this definition, we treat the
graph as undirected. Assume that the cardinality of N(v) is n, i.e., v has n
neighbors. Then, the interconnectivity between the members of N(v), is
quantified as the number of edges between members of N(v), denoted as Ex(v).
Then, cc(v) is defined as the division of Ex(v) by the number of edges that
could possibly exist between the members of the neighborhood of v, which is
n-(n-1)-0.5.

Eyn(v)

cC(v) = T
n(n — 1)2

Less formally, the clustering coefficient cc(v) of a node v is the fraction of v's
neighbors that are also neighbors of each other [Newm03].

15

3.3 Graph Properties

Assuming a graph G(V, E), we can also measure the following properties of the
graph.

Number of Edges. The number of edges, |El, that are contained in the graph.
Number of Nodes. The number of nodes, | V1, that are contained in the graph.

Number of Weak Components. A weak component is defined as a maximal subgraph
with at least 2 nodes, in which all pairs of nodes in the subgraph are reachable from
one another in the underlying undirected subgraph.

Then, the nodes of the graph are partitioned into disjoint, non-adjacent partitions,
V={V1 U ... U Vi}, whose number we measure as the number of weak components of
the graph. Note that we only consider non-trivial weak components that include at
least two nodes.

Diameter. The diameter of a graph is the maximum eccentricity of any node in the
graph, or equivalently, the maximum shortest distance between any pair of nodes.

In case there exists a pair of nodes for whom there is no path, the diameter is infinite.
In order to compute the diameter of a database’s graph, we have treated it as
undirected.

3.3.1 Large weak component

Since all the datasets that we studied for the purpose of this thesis are disconnected
graphs? , thus the diameter would be infinite, we need to find a way to assess the
“size” of the graph via its diameter.

We addressed this issue by defining as Weak component a maximal subgraph which
would be connected if we ignored the direction of the edges.

2 It is interesting to consider that it takes just a single table without foreign keys to
make the graph of the schema of any relational database fall in this category.

16

We define the large weak component (LWC) of the graph as the weak component that
includes the largest number of nodes among all components of the graph.

Initially, we introduced the notion of a large weak component in order to compute its
diameter, as an approximation of the diameter of the entire graph. As our research
progressed, we discovered the potential value of the large weak component. Firstly, we
observed that it contains, in almost every dataset the highest percentage of edges
with respect to the whole graph and secondly, it contains a set of nodes and edges
which survive until the end of each dataset’s lifetime. So we computed the graph
metrics for it as well, trying to correlate them with the ones of the entire graph.

11_muctpi_info
I1_random
11_muon_threshald_set @
hit_trigger_stream M p fles
. 11 prescale set
hit_tc_jo_tr
O 1 [.‘tu sy tm _to_ps
hlt_trigger_type as)
hit_tNgger_chain .
hit_trigger_group . e ¢ \' ger_mefiu 11_tm_to_ti
. ngger threshold_value . HLT_HRE_TO_HRS
. hit_tc_to_ts
1 i ger_item

HLT_RULE_PARAMETER

hit_tm_tg hit setu
S nit farameter C_TO_HRP
tm_to_tt
gment
e . HLT_}
¥ 0_71 tm_{g_t¥ mon J_pits HLT_RULE ECOMPONENT
hit_trigggdr_men .
. 11_Bunch_group_set
nit_tm_ty/ ps “me "
Zgalo_info
@ 4 table
s H_bunch_GlolgsHo-0e O
t_ch_to_cp .
hit_prescale_set . H_ci_tg’ csc
. hit, felease 11_bg b .
pes e . i & 1_calg, sin_cos
H_jet_input
O trigger_alias
hit_prescale_set_alias
trigger_log
O ; i O 11_random_rates
rigger_schema O
O I1_prescale_set_alias
O tt_users

Figure 2 A version of Atlas in Parmenidian Truth

17

3.4 Parmenidian Truth

The tool Parmenidian Truth [https://github.com/DAINTINESS-Group/ParmenidianTruth]
is a tool with the goal of producing the evolution of the schema of a relational
database as a movie. Given the history of a database, expressed as a sequence of data
definition files, and consequently, a sequence of differences between subsequent
versions, Parmenidian truth visualizes each version of the database schema as a
graph, with tables as nodes and foreign keys as edges and produces a PowerPoint
presentation, with one slide per version (appropriately annotated with color to
highlight the tables affected by change). Along with the appropriate visualization
provisions, the result is practically a movie on how the schema of the database has
evolved.

A fundamental requirement for the smooth advancement of the movie is that tables
do not change place in the screen once a new version of the schema is displayed. So,
we need to produce a “global” positioning of tables, with each table retaining its
coordinates along the entire history of the database. To this end, we introduce the
idea of the Diachronic Graph, a graph that encompasses a node for every table that
has ever appeared in the history of the database and an edge for every foreign key
that has ever appeared in the history of the database. One can think of the Diachronic
Graph as the superimposition of all the graphs of the different versions -
equivalently, the graph of each version is the projection of the Diachronic Graph for
the tables and foreign keys that are present in that particular version.

The tool proceeds as follows:

— The input to Parmenidian Truth is the history of a database's schema,
expressed as a sequence of versions as well as the changes that appear during
each transition among subsequent versions.

— The tool locates every table and every foreign key that takes part in a
database's lifetime in all its versions.

— Then, the tool constructs the Diachronic Graph of the database, which is a
graph that contains the union of the database's tables and its foreign keys
throughout its entire history

— The tool automatically places the nodes of the diachronic graph in a two
dimensional surface; this layout is retained for all versions, and consequently,
each table gets fixed coordinates for all the versions of the history.

— For each version of the database schema, we project the graph that
corresponds to it as a subgraph of the Diachronic Graph, retaining the

18

coordinates of the nodes as previously computed and export the result as an
image file

The tool automatically constructs a PowerPoint Presentation, where each
version comes with a slide that contains the respective image file

The PowerPoint Presentation can be converted to wmv and mp4 files if the
user wishes

The history of the database schema as well as the Diachronic Graph are
subjects to the extraction of graph-based measures (per version, per table, or
overall) that characterize the evolution of both the schema in its entirety and
its constituent tables

19

20

CHAPTER 4.

GRAPH METRICS EVOLUTION

41 Experimental Setup

4.2 Total number of nodes and edges

4.3 Diameter of Large Weak Component and number of Weak Components

44 How do the nodes and edges of Diachronic graph relate to evolution

4.5 Summary of Findings

4.1 Experimental Setup

In this section, we provide a brief description and some key statistics for the datasets
that we have studied. In the case where preprocessing was needed for a dataset to be
imported in our tool, we provide a detailed analysis of all the actions that were taken,
for cleansing it.

4.1.1 Atlas Trigger

ATLAS (https://twiki.cer‘n.ch/twiki/bin/view/Atlas/Tr‘igger‘DAQ, http://atlasexperiment.org/
trigger.html, and http://atdag-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/offline/Trigger/
TrigConfiguration/TrigDb/share/sql/combined_schema.sql) is a particle physics experiment

21

at the Large Hadron Collider at CERN, the European Organization for Nuclear
Research based on Geneva, Switzerland. ATLAS is notably known for its attempt to
find the Higgs boson, although its scientific aims are much broader. Trigger is one of
the software modules used in the ATLAS project and it is responsible of filtering the
very large amounts of data collected by the Collider and storing them in its database.
This database uses the Oracle RDBMS. This dataset has a lifespan of 2 years and it
consists of 85 revisions. Atlas started its life with 56 tables and 61 foreign key
relationships and ended it with 73 tables (approximately 30% schema growth with
respect to its starting size) and 63 foreign key relationships (approximately 3%
foreign key growth).

The diachronic graph of Atlas consists of 88 tables and 88 edges — foreign key
relationships. Unfortunately, although the schema history was publicly available at
the time that we performed the data collection, currently, the data are unavailable
from their original source.

4.1.2 BioSQL

BiOSQL(http://biosql.or‘g/wiki/Main_Page and https://github.com/biosql/biosql/blob/
master/sql/biosqldb-mysql.sql) is a generic relational schema with the aim of providing
a unified access to data from various sources such as GenBank or Swissport that store
genomic data like sequences, features, etc. BioSQL facilitates data storage and
interoperability for the different projects of the Open Bioinformatics Foundation
(OBF) projects (those include BioPerl, BioPython, BioJava, and BioRuby) that are
open source toolkits for the manipulation of these data. The currently supported
Relation Database Management Systems (RDBMSs) are MySQL, PostgreSQL, Oracle
and SQLite. This dataset has a lifespan of 6.6 years and it consists of 47 revisions.
BioSQL started its life with 21 tables and 17 foreign key relationships and ended it
with 28 tables (approximately 33% schema growth) and 43 foreign key relationships
(approximately 53% foreign key growth).

The diachronic graph of BioSQL consists of 45 tables and 79 edges — foreign key
relationships. In some schemata of BioSQL whenever a double field was declared it
was annotated as Double Precision, while our parser expected to read a double value.
So, the preprocessing that took place, was simply the detection of the keyword
precision followed after the keyword double and whenever detected we erased it.

22

4.1.3 EGEE-II: JRA1 Activity

Egee (http://egee-jral.web.cern.ch/egee-jra1) is the EU-funded project Enabling Grids
for E-SciencE, more generally known as EGEE, whose goals was to provide
researchers with access to computational Grids.
EGEE’s goal was to provide researchers in academia and industry with round-the-
clock access to major computing resources, independent of geographic location. The
infrastructure will support distributed research communities, which share common
Grid computing needs and are prepared to integrate their own computing
infrastructures and agree on common access policies. This database uses the Oracle
and MySQL RDBMS. This dataset has a lifespan of 4 years and consists of 17
revisions. EGEE started its life with 6 tables and 3 foreign key relationships and
ended it with 10 tables (approximately 67% schema growth) and 4 foreign key
relationships (approximately 33% foreign key growth).

The diachronic graph of EGEE consists of 12 tables and 6 edges — foreign key
relationships. Like the aforementioned project Atlas, hosted by CERN, direct access
to Egee data is no longer available.

4.1.4 Castor

CASTOR (http://castor‘.web.cer‘n.ch/ previously at http://castor-obsolete-
201310.web.cern.ch/) stands for the CERN Advanced STORage manager, is a
hierarchical storage management (HSM) system developed at CERN used to store
physics production files and user files. Files can be stored, listed, retrieved and
remotely accessed using CASTOR command-line tools or user applications that were
developed using the CASTOR API. This database uses the Oracle RDBMS. This
dataset has a lifespan of 3 years and consists of 194 revisions. Castor started its life
with 62 tables and only 6 foreign key relationships and ended it with 74 tables
(approximately 20% schema growth) and 10 foreign key relationships
(approximately 67% foreign key growth).

The diachronic graph of Castor consists of 91 tables and 13 edges — foreign key
relationships. In most of Castor’s schemata additionally, to declaring and modifying
tables as well as, foreign keys, other actions also took place like, building and
organizing indexes, declaring and executing stored procedures, creating triggers.
However, we only needed to parse the declaration of tables and foreign keys. So, for
preprocessing Castor, we built a script containing regular expressions that captivated
only the information we needed, and stored it to a new set of schemata forming our
new Castor dataset.

23

4.1.5 SlashCode

SlashCode (http ://www.slashcode.com/ and http://slashcode.git.sourceforge.net/) is host
of Slash, an architecture for building web sites, most famously known for supporting
the Slashdot website. It is written in Perl and built on top of Apache. This database
uses the MySQL RDBMS. This dataset has a lifespan of 12.5 years and consists of 399
revisions. SlashCode started its life with 42 tables and 0 foreign key relationships and
ended it with 87 tables (approximately 108% schema growth) and 0 foreign key
relationships (0% foreign key growth), however during SlashCode’s schema
evolution foreign key relationships made their appearance, but faded in the end.

The diachronic graph of SlashCode consists of 126 tables and 47 edges- foreign key
relationships.

4.1.6 Zabbix

Zabbix (http://www.zabbix.com/) is an open source distributed monitoring solution that
can be used for the monitoring of networks, servers and virtual machines. This
database uses the MySQL RDBMS. This dataset has a lifespan of 10.8 years and
consists of 160 revisions. Zabbix started its life with 15 tables and 10 foreign key
relationships and ended it with 48 tables (220% schema growth) and 2 foreign key
relationships (80% foreign key loss).

The diachronic graph of Zabbix consists of 58 tables and 38 edges — foreign key
relationships. For this dataset we used the PostgreSQL version available online. Most
of Zabbix’s schemata contained some external procedure calls that we needed to
remove for parsing it correctly. Additionally, we also corrected minor syntactic
failures like missing parenthesis when declaring foreign keys. These actions, are the
preprocessing that took place for this dataset.

24

Tables Tables Tables Table FKs FKs FKs FK
Start End @ Diach. Growth Start End @ Diach. Growth

Dataset Versions Lifetime

Atlas

BioSQL 47 6Y,7M 21 28 45 33% 17 43 79 153%

Egee
Castor 194 3Y 62 74 91 20% 6 10 13 67%
SlashCode
Zabbix 160 10Y,10M 15 48 58 220% 10 2 38 -80%

Table 1 A description of the datasets we have used in this study

25

4.2

In this section we visualize the evolution of the aforementioned datasets, based

Total number of node and edges

on the total number of nodes and edges throughout their entire lifetime.

80 Atlas: Number of Nodes over time o
50 _ i__l_i____ﬂi_,—/—/_f-
a0
20
0 v.id
1 1 21 31 41 51 61 71 81

BioSQL: Number of Nodes over time

30 ~ o
MW T—— _/J
10

0 v.id

1 11 21 31 a1
Castor: Number of Nodes over time
100
- A\

50

0 v.id

Egge: Number of Nodes over time
15

10
. L/—/_/

o v.id

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
100 SlashCode: Number of Nodes over time
50 Nv////‘—r
0 v.id
74 124 174 224 274 324 374
60 Zabbix: Number of Nodes over time
40
20
0 v.id
1 31 61 91 121 151

80 Atlas: Number of Edges over time

80 ~—m——_ SN
a0

20

0 v.id
1 11 21 31 a1 51 61 71 81
60 BioSQL: Number of Edges over time
. J_/“__/_/_/‘/_/—/_
20
0 w.id
1 11 21 31 41
. Castor: Number of Edges over time

10 '—
,—l \J
5
0 v.id
121 151 181

Egge: Number of Edges over time

oNbB&®

v.id

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

SlashCode:
Number of Edges
60
a0
20

?

id
IhggRaNERFEI NI LBYLRIITILERIRNER
SHS85E533dR3RS8L23MRIgRS3
30 Zabbix: Number of Edges over time
20
10
0 v. id
1 31 61 91 121 151

Figure 3 Number of nodes and edges over time for the 6 studied data sets

26

In the following discussions, we comment on the trends of the number of edges and
nodes. Moreover, we computed the Pearson correlation between the evolution of the
size of nodes and the evolution of the size of edges for each respective dataset. In the
cases where there is a high correlation between them we can continue our research
by studying only one of the two. The results are gathered in Table 2.

Egee BioSQL Atlas Castor SlashCode Zabbix

Pearson
correlation
for Nodes
and Edges

94.79% 96% 71.60% 11% -67% 42%

Table 2 Correlation of nodes and edges for the six datasets

We observe that in the first two datasets, Egee and BioSQL, there is a high correlation
between the size of nodes and edges. Observing the trend-lines corresponding to
total number of tables and edges respectively, we can clearly see that they follow the
same pattern. Meaning that the addition of a table would probably mean the
addition of an edge two. So, as far as these two datasets are concerned, there is no
need of studying separately, tables and edges, choosing one will suffice.

In the Atlas case, we can only say that there is a medium correlation between the
nodes and edges. Their respective trend-lines seem to follow a pattern, this
correlation though is not as strong as before.

In the last three datasets the correlation is very small, and in the SlashCode case it is
even negative, meaning that the evolution of schema size and the size of foreign key
relationships are inversely proportional.

As we can see from the graphical representations of Figure 3, Castor is a relatively
quiet dataset. Both of the trend-lines corresponding to schema growth and foreign
key relationship growth are almost flat. But during the end of Castor’s evolution we
observe that there is a fall in the number of edges while the number of tables remains
unaffected. At the end Castor finishes its evolution with 74 tables and only 10 edges.
It is noteworthy, that the versions of Castor in Oracle and MySQL never had foreign
keys. Observing the whole of Castor’s lifetime, we can conclude that is a database

27

whose administrators, from the start till the end, do not favor the existence of foreign
keys. Thus the correlation between the total number of tables and edges is only 11%.

The Zabbix dataset also has a low correlation between total number of tables and
foreign keys. Observing its respective trend-lines we can see that edges were added
and removed throughout its lifetime while tables kept rising. Finally, near the end, at
version 151, the majority of the edges was removed, while at the same time the total
number of tables was hardly affected, ending its evolution with the total of 48 tables
and only two edges. Again in this dataset the existence of a high number of foreign
keys compared to the total number of tables was not favored. This is fairly obvious,
since all the foreign keys are massively deleted.

Observe that in the case of the SlashCode dataset, we started studying it after its 74
version. We followed this approach because before that revision no edges were
present rendering most of our metrics meaningless. In this thesis we study graph —
theoretic properties and a graph without edges can hardly qualify as a graph, thus
our approach of studying SlashCode after its edges appear at version 74. Much like
the Zabbix case, the trend-line corresponding to the total number of edges contains
its ups and downs, comparing to the trend-line corresponding to the total number of
tables, which mostly keeps rising. In the same way as in the case of Zabbix, all the
edges disappear near the end. Thus SlashCode ends its evolutions with 87 tables and
0 edges. SlashCode is a dataset with 399 revisions, from which, only after the 74%,
edges make their appearance, and in the end all of them are removed. Once again we
can say that foreign key relationships were not favored, justifying the negative
Pearson score.

28

4.3 Diameter of Large Weak Component & number of Weak
Components

Atlas: Diameter of LWC over time

Atlas: Number of Weak Components over time

20
6
15
10 4
5 2
0 v.id 0 v.id
11 21 31 41 51 61 71 81 1 11 21 31 41 51 61 71 81
BioSQL: Diameter of LWC over time BioSQL: Number of Weak Components over
time
6 3
4 2 _\
2 1
0 v.id 1} v.id
11 21 31 41 1 11 21 31 41
s Castor: Diameter of LWC over time Castor: Number of Weak Components
6 over time
6
4
a I—I ¥
5 2
0 V. id o wv. id
31 61 91 121 151 181 1 31 61 91 121 151 181
6 Egge: Diameter of LWC over time Egge: Number of Weak Components over time
15
a4
1
2 0.5
o v.id 0 v.id
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
SlashCode: SlashCode:
Diameter of LWC Number of Weak Components
10 6
4
5
2
o v.id o
oot aogogoaTaTaT T @ & a
SEEERELERERREEEEEEEEE REIIRSERIAIANESERIE5S
15 Zabbix: Diameter of LWC Zabbix: Number of Weak Components
over time
10 a
5 > _I_A—I_,_\—r_L
0 v.id o v. id
31 61 91 121 151 1 31 61 91 121 151

Figure 4 Size of Diameter and Number of Weak Components over time for the 6
studied data sets

29

In this section we study the evolution of the Diameter of the Large Weak
Component, as well as the number of weak components that exist in the database’s
schema.

The LWC is an important part of our study since we use it to measure some
important metrics such as the approximation of the diameter of the graph. As we can
see in Figure 4, the diameter of the LWC is fairly stable over time. Atlas BioSQL and
Castor2 have pretty much a stable diameter throughout their entire lifetime. Egee
reaches this stability soon enough. Lastly, the two CMSs have rather abrupt changes
in both their diameter and in their number of weak components. SlashCode loses
suddenly all of its edges for just a version making that negative spike, we could
argue that this was a wrong commit. But nonetheless SlashCode comes with a period
where it progressively loses all of its edges at the end of its lifetime. Zabbix follows
pretty much the same pattern of change as SlashCode but this time the changes and
the loss of all the edges is abrupt; in any case, Zabbix loses all its edges at the end as
well.

Overall, it is interesting to observe that, in the two data sets where the diameter
evolved with disruptions, peaks and valleys (as opposed to the smooth progress
observed in other data sets), in the end, the data set lost all of its edges. Although we
cannot generalize the phenomenon as a rule, it appears that, if foreign keys are not so
welcome by the developers who maintain the system, there are early signs of it in the
heartbeat of the schema.

Atlas Biosql Castor Egee Slash Zabbix

Code
IVI - IEI 71.6% 96% 11% 94.79% -67% 42%
VI -I1ClI 80.65% -18% -14% - -39% 67%
lEIl - IC] 41.60% -37% 32% - 21% 60%
IVI -LWCd -62.97% - 43% 82.75% -60% -1%
|[El —-LWCd -35.64% - 46% 75.61% 92% 73%
ICI-LWCd -76.42% - -65% - 39% 9%

Table 3 Pearson correlation for the studied metrics, with | VI standing for number of
nodes, |El for number of edges, |C| for number of weak components and o for
diameter

30

Egge: LWC as pct of the graph over time

BioSQL: LWC as pct of the graph over time

100%
100% Yy =
80% so% —/ -
60% g
T 60% ——nodes
40%, —Percentage of nodes 40% ~edges
20% —Percentage of edges v.id 20%
0% 0% v. id
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 11 21 31 41
Atlas: LWC as pct of the graph over time ——nodes Castor: LWC as pct of the graph over time
—edges 100% “zdes
—ecadges
100% — 80%
60% |
50% 40% \ A
v. id 20%
0% 0% i
1 11 21 31 41 51 61 71 81 1 31 61 01 121 1s1 1s1

slashCode: LWC as pct of the graph over —percentage of nodes

time —Percentage of edges
100%
50%
V.
0%
sogaTagoaTaTnTaTaST O TO T
M~ 8 8 M T WD o S oM D8 S o e W P 83
== I =TI A~ I i R R R R R

Zabbix: LWC as pct of

the graph over time
1005

——Percentage of nodes
——Percentage of edges

BO%: I| N A W \ﬂ
60% ——
H/_'_|| I"" _ _‘_‘—i‘__',.—-‘_"l
40% L 1 |
20%
0% w. id
1 31 61 91 121 151

Figure 5 Percentage of Nodes and Edges within the LWC over time for the 6 studied datasets

31

In Figure 5, the percentage of nodes and edges that is contained in the large weak
component is shown. It is interesting to observe that, in almost every dataset that we
studied for the purpose of this thesis, the LWC contains the majority of the edges of
the entire graph. Moreover, the percentage of the edges contained in the LWC is
always higher than the percentage of nodes. This means, that there is only one grand
neighborhood where nodes are connected, and not small, isolated neighborhoods of
nodes. Our conclusion from these observations is that the foreign keys are either
spanning the entire schema (like the cases of Atlas and BioSQL), or at least, a large
part of it (Zabbix, Egee and SlashCode), or completely neglected (like the case of
Castor.)

32

44 How do the nodes and edges of Diachronic graph relate to the
average graph snapshot

As we discussed above, the diachronic graph is the union of nodes and edges of each
revision of the database’s schema. The main purpose of its creation, is to pinpoint
and finalize the coordinates of each table, so that it has fixed coordinates as we
render through the schema evolution. In this section however, we try to see how the
number of nodes and edges that are contained in the diachronic graph, relates to each
version’s number of nodes and edges, throughout the database’s evolution.

Nodes Atlas BioSQL | Castor Egee SlashCode | Zabbix
D.G. 88 45 91 12 126 58

Average | 59.44 23.85 67.19 6.82 56.01 34.07
Max 73 28 76 10 87 48
Min 51 18 62 4 34 14

Table 4 Number of nodes contained in each dataset’s lifetime

In Tables 4 and 5, for each dataset, we report the average, maximum and minimum
number of nodes or edges. To compute this value, we take the actual number of
nodes and edges, for each version in the history of the data set and we apply the
respective aggregate function.

Edges Atlas BioSQL | Castor Egee SlashCode | Zabbix
D.G. 88 79 13 6 47 38

Average 56.93 32.23 8.26 3.35 17.51 18.89
Max 63 43 10 4 41 28
Min 52 17 6 2 0 2

Table 5 Number of edges contained in each dataset’s lifetime

33

Non-surprisingly, the measures of the diachronic graph are the highest of all four
categories. The diachronic graph is the union of all the tables and edges that
participate in a database’s schema evolution, as a result it is expected to gather the
highest values of total nodes and edges.

By dividing, the contents of all the 3 last lines of Tables 4 and 5 over the respective
first line (i.e. the size of the Diachronic Graph), we compute the respective numbers
as percentages over the Diachronic Graph. We list the measurements of number of
nodes in Table 6 and respective measurement for edges in Table 7.

As we can see in Tables 6 and 7, on average, a version has approximately 60% of the
nodes of the diachronic graph and 50% of its edges, although the variation per data
set differs a lot. The standard deviation between the individual percentages is
around 10% for both edges and nodes. The minimum value has a quite large range
for the different data sets and is clearly related with the update rate of a dataset:
datasets with low update activity start high and just evolve towards larger values.
Datasets with larger rates for table birth and death start from lower values and reach
lower maximum values too.

Nodes as pct | Atlas | BioSQL | Castor | Egee | Slash | Zabbix | 4vg stdev
over DG
Code
Average 68% 53% 74% | 57% | 44% 59% | 59% 10%
Max 83% 62% 84% | 83% | 69% 83% | 7% 9%
Min 58% | 40% 68% | 33% | 27% 24% | 2% 18%

Table 6 Number of nodes as percentage of the nodes of the Diachronic Graph

Avg

52%

72%

Edges as pct Atlas | BioSQL | Castor | Egee | Slash | Zabbix
over DG
Code
Average 65% 41% 64% 56% 37% 50%
Max 72% 54% 77% 67% 87% 74%
Min 59% 22% 46% 33% 0% 5%

28%

stdev

11%

11%

23%

Table 7 Number of edges as percentage of the edges of the Diachronic Graph

34

4.5

Summary of Findings

In this chapter, we have calculated metrics regarding the size and structure of the

graph. Our findings can be summarized as follows:

Total number of nodes and edges. In this section we calculated the total number
of nodes and edges for each respective dataset. Next, we tried to correlate
these two measures in order to see if there is any correlation, or not, between
them. It is interesting to see that two datasets share a strong correlation
between those measures while a third one shares a weaker correlation.
Nonetheless, it is important to note that the former 3 datasets contain a steady
number of edges and keep them alive until the end of our observation.
Opposing to the latter datasets that their total edge count over time is
unstable, and tend to lose all their edges at the end.

Diameter is typically constant with values ranging between 1 and 4.

Number of weak components is typically low between 1 of 3. The largest weak
Component contains most of the times, more than 60% of the nodes and more
than 80% of the edges of the graph.

Number of nodes increases slowly, with periods of calmness

Number of edges increases also, but not fully in sync with number of nodes. It
depends on the dataset.

35

36

CHAPTER 5.

EVOLUTION OF TABLE AND FOREIGN KEY METRICS

51 Simple degrees and their relationship to the table evolution

5.2 Clustering Coefficient and its relationship to table evolution

5.3 Vertex Betweenness Centrality and its relationship to table evolution
5.4 Edge Betweenness and its relationship to schema evolution

5.5 Summary of Findings

5.1 Simple degrees and their relationship to the table evolution

InDegree Breakdown| inDegree inDegree inDegree inDegree
@Diach @Birth @Death AVG
Biodatabase 1 1 1 1.00
Term_relationship 1 0 1 0.47
Cache_corba_support 0 0 0 0.00

Table 8 InDegree variants for specific nodes during evolution

37

We have used our tool Parmenidian Truth, to produce the in- and out-degree of each
relation, represented as a node, in every version of the database’s life. As a result, we
came up with the specific measurements of the in/out degrees for each version of the
history of the schema, plus one extra value derived from the Diachronic Graph.
Apart from these measurements, we have calculated for each table, the degrees at the
time of its birth, its last known version and the average value over their lifetime. In
Table 8, we indicatively list a few tables with the variants of their In-Degree metrics.

The first problem we had to address was the decision on which measurement we
could base our analysis on, as, it was possible for us to choose from a variant of
values for only a specific metric. Specifically, the involved variants of the in-degree
are defined as follows:

- The inDegree@Diach is the In-Degree value of the respective node as measured
in the Diachronic graph.

- The inDegree@Birth is the In-Degree value of the respective node as measured
in the first revision of the database’s schema.

- The inDegree@Death is the In-Degree value of the respective node as measured
in the final version of the database history for survivors and the time of death
for deleted tables.

- Lastly, the inDegree AVG is the average In-Degree value of the respective node
throughout the database’s lifetime. It is important to note that whenever a
node was absent in a revision, that revision was not taken into account when
computing the average.

Given the above possibilities, we resorted to the average value of each degree as the
most representative value since it takes into consideration the entire lifetime of the
node. In other words, every version in which the node under examination is alive,
contributes equivalently instead of assigning a distinct and arbitrary value of a single
version as in the cases of Birth, Death, or even in Diachronic.

5.1.1 Statistical profile for tables with respect to graph properties

Firstly, we list the number of tables per value of the in and outDegree AVG metric
Tables 9 and 10, and provide their bar-chart. Then, we study their joint distribution
for all the datasets and depict it in Table 11.

38

inDegree Egee BioSQL Atlas Castor SlashCode Zabbix
AVG

0 8 30 48 81 114 42

1 3 6 20 8 7 7

10 ; ; _] _ _
11 - - - - - -
12 ; ; _ _ _)
13 - - - - - -
14 - - - - - -
15 - 1 _ ;] _
16 - - - - - -
17 - - - - - -

18 - - - - - -
Table 9 InDegree Breakdown for the 6 studied datasets. Each cell represents how

many tables of the database have the respective average value (rounded) of the first
column.

39

outDegree Egee BioSQL Atlas Castor SlashCode Zabbix

AVG
0 7 7 43 83 95 32
1 4 14 14 4 25 19
2 1 22 28 - 6 7
3 - 2 1 - - -
4 - - 1 4 - -
5 - - - - - -
6 - - - - - -
7 - - - - - -
8 - - 1 - - .

Table 10 OutDegree Breakdown for the 6 studied datasets. Each cell represents how
many tables of the database have the respective average value (rounded) of the first
column.

40

Distribution of nodes per Average InDegree

o 100

=]

o]

c

[T

(=]

-

S 10

2

£

2 I i

Egge BioSQL Atlas Castor SlashCode Zabbix
oo 8 30 48 81 114 42
[l 3 6 20 8 7 7
| 1 2 11 1 2 6
3 0 2 5 1 0 2
H>=4 0 5 3 0 2 1
Datasets

00O N1 m2 3 E>=4

Figure 6 Node Breakdown per Average InDegree for the 6 studied datasets

41

Distribution of nodes per Average OutDegree

v
o 100
=]
=]
[=
[TE
(=]
L=
= 10
2
£
=}
= 0
1 , .
Egge BioSQL Atlas Castor SlashCode Zabhix
aoo 7 7 43 83 95 32
ml 4 14 14 a 25 19
m2 1 22 28 0 6 7
3 0 2 1 0
m>=4 0 2 4
Datasets

O N1l m2 3 m>=4

Figure 7 Node Breakdown per Average OutDegree for the 6 studied datasets

42

InDegree outDegree Egee BioSQL Atlas Castor SlashCode Zabbix

0 0 6 2 11 75 90 23
0 1 1 9 11 2 22 12
0 2 1 19 25 4 2 7
0 3 - 0 1 - - -
1 0 1 3 15 6 3 4
1 1 2 1 1 2 2 3
1 2 - 1 2 - 2 -
1 3 - 1 - - - -
1 4 - - 1 - - -
1 8 - - 1 - - -
2 0 - - 10 1 - 4
2 1 1 1 1 - - 2
2 2 - 1 - - 2 -
3 0 - 1 5 1 1 1
3 1 - 1 - - - 1
4 0 - 1 1 - - -
4 1 - - - - 1 -
4 3 - 1 - - - -
5 0 - - 1 - - -
5 1 - - 1 - - 1
6 2 - - 1 - - -
7 0 - - - - 1 -
8 2 - 1 - - - -
9 1 - 1 - - - -
15 1 - 1 - - - -

Table 11 Joint Distribution for the average in/out degree for the 6 studied datasets.

The rows are ordered by in- and out-degree value. Each cell represents how many
tables of the database have the respective combination of values of the first two

43

columns. Note that these numbers refer to the tables of the entire lifetime of each
dataset.

Apart from the descriptive statistical analysis of the two degrees in question, we also
assess the breakdown of tables with respect to both of them.In Table 12, we provide
an aggregated overview for the breakdown of tables and the absence of edges for all
the 6 datasets of our study. It is noteworthy, that from all the datasets that we have
studied, only BioSQL and Atlas have a low number of nodes that are not incident to
an edge. In two cases, Castor and SlashCode, the vast majority of tables are actually
without edges and in another two, Egee and Zabbix, tables without edges are the
largest group.

Slash
In- Out-
degree degree Egee BioSQL Atlas Castor Code Zabbix
O 0 500() 40() 12-5% 820() 710() 40%
#0 0 8% 11% 36% 9% 4% 16%
0 #0 17% 62% 42% 7% 19% 33%
#0 #0 25% 22% 9% 2% 6% 12%

Table 12 Breakdown of node percentages per combination of degrees for the 6
studied datasets.

More observations from the above numbers include:

- A small percentage of nodes serve as a bridge (i.e. tables with both incoming
and outgoing edges) between nodes.

- The number of nodes classified as sinks (nodes that have incoming edges of
foreign keys as lookups but no outgoing one) is smaller than the number of
nodes classified as fountains (nodes that reference other tables as foreign keys
but do not receive any edge themselves).

44

2.5 3.5
3 A A
g 2 <
p 2A : e
g 1.5 g 2 AN AN
F 1A A A p 15
g g 1LAAAA A A
3 05 3 05
oA A 0 AA AA
8] 0.5 1 1.5 2 25 0 5 10 15 20
inDegree score inDegree score
Atlas Castor
10 25
g 8 A g 2A
] 2
g 6 g 1.5
g a A RN A
3 z% % AN 3 0.5
a 2 oA A A A
° o 1 2 ? % 5 6 7 0 0.5 1 1.5 2 25 3 3.5
inDegree score inDegree score
SlashCode Zabbix
2.5 25
v 2
2 A A A 2 2A
w
g 1-5 5 1.5
S 1A A A g 1A A A A A
=
3 0.5 2 os
oA A VAN A oA A A A
[v] 2 4 6 8 4] 1 2 3 4 5 6
inDegree score inDegree score

Figure 8 Distribution of nodes with respect to both their In and Out Degree scores for the 6 studied datasets

45

In Fig. 8, we use scatterplots to help us comprehend how in- and out- degree scores
are distributed in each of the 6 studied datasets. The horizontal axis of each
scatterplot represents the in-degree of a table and the vertical axis of the scatterplot
represents the out-degree of a table. Each point in the scatterplot corresponds to a
table. We use transparency in the coloring of the triangles representing tables;
therefore, intense color in a particular triangle signifies high concentration of tables
in the same (x,y) point of the chart, placed one on top of the other. As Figure 8
demonstrates, the majority of nodes are concentrated to low in- and out- degree
scores representing the lookup and the fact tables respectively.

5.1.2 How simple degrees relate to the evolution of tables

In this section, we provide a deeper investigation of the relationship of the in- and
out- degree metrics with the survival of tables.

The following research question concerns whether the different degrees of a node can
predict its survival. To assess how survival is related to degree in the graph, we
correlated the two measures; the result is visualized it in Figures 9 and 10. In the
scatter plots of the both figures, the horizontal axis depicts the last known version of
a table (thus, survivors are placed at the rightmost part of the figure, and all the other
tables are dead tables). The vertical axis depicts the in and out degree of the nodes. A
vertical red line discriminates the survivors from the dead tables.

The scatterplots provide two observations:

- With few exceptions, the higher the degree of a node is the more possible is,
for the node to survive,

- In all 6 datasets, there is an inverse-gamma pattern in the correlation of degree
and survival. The pattern suggests that low degrees carry a non-negligible
probability of removal for the corresponding tables; at the same time, high
degrees carry a significantly lower probability of removal.

Again, due to the use of transparency in the coloring of triangles, intense coloring
means high concentration of triangles, overlaid one on top of the other, at the same
(x,y) point in the chart.

46

#nodes #nodes #nodes # nodes pctnodes pctnodes P(survivor | P(deg>2 |
survivor survivor)
with deg>2 survivor && with deg>2 survivor deg>2)
deg>2
Egee 12 1 10 1 8% 83% 100% 10%
BioSQL 45 11 28 8 24% 62% 73% 29%
Atlas 88 15 73 14 17% 82% 87% 18%
Castor 91 1 74 1 1% 81% 100% 1.3%
SlashCode 126 7 87 6 6% 69% 86% 6.7%
Zabbix 58 5 48 5 9% 82% 100% 11%

Table 13 Probability of survival with respect to total degree

In Table 13 we can see that nodes with a degree higher than 2 have significantly
higher chances of survival than the average probability of survival for the entire

dataset

Specifically, the column P(survivor|deg>2) improves the survival rate contrasted to
column pct nodes survivor with improvements in the area of 17%-19% with the
exception of Atlas (only 5%) and BioSQL (11%). In 3 cases, the survival rate reaches
100%. Unfortunately, the result involves a small amount of tables in the datasets
(11% - 24% in column pct nodes with deg>2) and thus the predictive ability of this
pattern is constrained to a small percentage of cases.

47

Egee BioSQL

2.5 16
A
14
E 2 A g 12
® 15 @ 10
g u A
o1 A B 6 A
2 o
£ 05 z 4 %
2
o
[} - 2 a4 6 B8 ﬁ 12 0 % é/;\ £ £ % Jiay
" o 10 20 30 40 50
w. id vid
Atlas Castor
8 3.5
8 PAN
§ L] FN E 2.5
ia A -
g, A A § L A A
s 0.5
o A % PN A £ o/ A A Ak
a 20 40 60 80 100 [50 100 150 200 250
w. id w. id
SlashCode Zabbix
8 6
. v S A
gs g4
g4 A gs A
g3 g2 A A A
£ N £ 1 /_\ A
Ll Y N i ﬁz& o £x £x 7RO A
o 100 200 300 400 500 [] 50 100 150 200
v, id w. id

Figure 9 Contrasting InDegree scores with the last known appearance for the tables of the 6 studied datasets

48

outDegree score
e
o u g

=]

Atlas

=
(=]

outDegree score

g

e N B o O

=]

SlashCode
2.5

outDegree score
B

N

wv. id

spppip P

BioSQL

N w
w

outDegree score
=
R NG

o

;
:

Castor

outDegree score
e i N
woRr BoNow

>

=]

Zabbix
2.5

outDegree score
o I
voR N

° A
o

10

50

50

20

100

] I

iy
30
w. id
A A
A
150 é%ﬂ
w. id
VANV
VANV
i A
100 150
w. id

Figure 10 Contrasting OutDegree scores with the last known appearance for the
tables of the 6 studied datasets

49

5.2 Clustering Coefficient and its relationship to table evolution

Apart from the effect of a local measure of graph topology, like the different kinds of
degrees, we wanted to assess the effect of neighborhood-based measures to the
behavior of nodes. To this end, we have assessed the profile of clustering coefficient,
presented in this subsection, and betweenness centrality, presented in the following
subsection. Clustering Coefficient denotes the “tight coupling” of neighbors in the
neighborhood of a node (see Chapter 3 for the formal definition).

5.2.1 Statistical profile for tables with respect to clustering coefficient

We have assessed the clustering coefficient for each node, in each version of the
schema where it was present. Then, we averaged this measurement to obtain the
average clustering coefficient of a node. During the computation of the average value
per node, we skipped the schema versions where the node was not present. Table 14
lists the aggregated results for each dataset. Below in Figure 11, we provide the bar-
chart of the clustering coefficient scores for the 6 studied datasets

Clustering
Coefficient Egee BioSQL Atlas Castor SlashCode Zabbix

0 9 29 79 91 115 55
(0,0.1) 1 1 3 - 4 2
[0.1,0.2) 1 3 2 - 2 -
[0.2,0.3) - 2 - - 3 -
[0.3,0.4) - 1 - - - -
[0.4,0.5) - - - - 1 -
[0.5,0.6) - 1 1 - - -
[0.6,0.7) - 1 - - - -
[0.7,0.8) - - - - 1 -
[0.8,0.9) - 2 - - - -
[0.9,1) - - - - - -
1 1 5 1 - - 1

Table 14 Clustering Coefficient Breakdown for the 6 studied datasets

50

As we can see in Table 14 and Figure 11 the clustering coefficient of the 6 studied
datasets is very low. However, this seems to be an expected result considering that
we study the field of databases, where two nodes pointing to a third does not
necessarily mean that they are connected. Again, due to the use of transparency in
the coloring of triangles, intense coloring means high concentration of triangles,
overlaid one on top of the other, at the same (x,y) point in the chart.

Count of nodes, grouped per range of
Average Clustering Coefficient

100 A

10

.

Egge BioSQL Atlas Castor SlashCode Zabbix

oo m(0,0.1) m[0.1,0.2) ~ [0.2,0.3) m[0.3,0.4) m[0.4,0.5)
m [0.5,0.6) m [0.6,0.7) m[0.7,0.8) m [0.8,0.9) W [0.9,1)

Figure 11 Node Breakdown per Average Clust. Coeff. for the 6 studied datasets

51

5.2.2 How clustering coefficient relates to the evolution of tables

Having computed the average clustering-coefficient score for each table during its
lifetime, the natural research question was to evaluate if this metric can predict
whether or not a node will survive. So we correlated survival and clustering
coefficient, and visualize the results in Figure 12. Again, the horizontal axis signifies
the last known version of a table. Tables that reach the last version are survivors and
are separated from the rest of the data set via a red vertical line.

Apparently, this method seems that cannot very well predict the survivability of a
node. However, it is important to highlight that in cases where the database’s schema
is a graph rich in edges, like the Atlas or BioSQL dataset this method performs much
better as opposed to the other datasets.

Again observe, that the datasets with a satisfactory number of edges tend to follow
the aforementioned inverse-gamma pattern.

#nodes #nodes #nodes # nodes pctnodes pct nodes P(survivor | P(cc>0 |
survivor survivor)
with cc>0 survivor && >0 withcc>0 survivor cc>0)
Egee 12 3 8 2 25% 66% 67% 25%
BioSQL 45 16 28 12 35% 62% 75% 43%
Atlas 88 9 73 8 10% 82% 89% 11%
Castor 91 0 74 0 0% 81% 0% 0%
SlashCode 126 11 87 8 8% 69% 73% 9.2%
Zabbix 58 3 48 2 5% 82% 67% 4.2%

Table 15 Probability of survival with respect to clustering coefficient

In Table 15, we complement this original visualization with concrete number. This
improvement in the survival rate for nodes with high clustering coefficient (cc>0)
compared to the average survival rate is insignificant; in one case, Zabbix the
survival rate is even lower than average (but we deal with a very small number of
involved tables)

52

Egge BioSAQL
A 1A A
" AN v
= S o0s a
§ 0.8 2
£ 06 5 0€ A
Q
0.4
804 ;
‘:’,: 02 5 0.2
S . % 0 A AA—A piay piy
= 0 10 20 30 50
0 2 4 6 8 10 12 .
v.id v.id
Atlas Castor
« e !
§ 0.8 g 08
= X X
% 06 A T oa
S oa S
. . 0.2
B B
2 02 A 32 oA A A A Ala
o A A AA A i o 50 100 150 200 250
[v] 20 40 60 a0 100 w. id
w. id
SlashCode Zabbix
g 1 . 1 A
8 A gos
. = 0.6
3 A %
[+ a N '-‘ 0‘.4
g R S £ 0.2
[=] £ A Al “ L . .
200 100 500 0 i P bt
0 50 100 150 200
w. id

Figure 12 Contrasting Clustering Coefficient scores with the last known appearance for the tables of the 6 studied datasets

53

5.3 Vertex Betweenness Centrality and its relationship to table
evolution

Apart from the clustering coefficient, Vertex Betweenness Centrality is another
measure of topology characterizing a node in the graph of a schema. Whereas
clustering coefficient refers to the local behavior of the neighborhood of a node, its
betweenness centrality measures its position in the entire graph, by assessing the
number of shortest paths that pass from it.

5.3.1 Statistical profile for tables with respect to vertex betweenness

We have assessed Betweenness Centrality for every node in every version of the
graph. Then, we calculated the Average Vertex Betweenness score. We provide the
score breakdown as well as the corresponding barchart in Table 16 and Figure 13
respectively

Average
Vertex
Betweenness Egee BioSQL Atlas Castor SlashCode Zabbix

0 9 37 81 89 120 51
(0,5) 3 3 2 2 2 7
[5,10) 0 2 3 0 3 0

[10,15) 0 1 1 0 1 0

[15,20) 0 1 1 0 0 0

[20,25) 0 1 0 0 0 0

Table 16 Average Vertex Betweenness Breakdown for the 6 studied datasets

54

Distribution of nodes per Average Betweenness

LTy]

S

o100 M

=

o

o

L

o 10

L

5, N

= Egee Biasl Atlas Castor SlashCode Fabbix
ao 9 37 81 89 120 51
| (0,5) 3 3 2 2 2 7
m[510) 0 2 3] 3]

[10,15) 1 1) 1)
m[15.20) 4] 1 1 0 Q)
m[20,25) 0 1] 0 (4] 0
Datasets

o0 m(05) m[510) =[10,15) ®m[15,20) m[20,25)

Figure 13 Breakdown per Average Node Betweenness Centrality for the 6 studied
datasets

55

5.3.2 How does vertex betweenness relate to table evolution

In this section we are trying to find if we can use the Average Vertex Betweenness in
order to predict if a vertex is a survivor.

In Figure 14 we provide the result for the 6 studied datasets.

Egee
BioSQL
Atlas
Castor
SlashCode

Zabbix

#nodes #nodes #nodes # nodes pctnodes pct nodes P(survivor | P(AVBC>1 |
survivor survivor)
with survivor && with AVBCsurvivor AVBC >=1)
AVBC-1 AVB>=1 >=1
12 3 10 3 25% 83% 100% 30%
45 6 28 4 13% 62% 66% 14.2%
88 6 73 6 6% 82% 100% 8%
91 0 74 0 0% 81% - 0%
126 4 87 3 3% 69% 75% 3%
58 2 48 2 12% 82% 100% 14.5%

Table 17 Probability of survival with respect to avg. vertex betweenness

56

Egee BioSQL
3.5 25
o o
s 3 H
%, 2 20
W o
S 2 8 15
315 2 10 I
§ ! g
-1 @ 3
0.5 AN
= =
o A A o A A
o 2 4 & -3 10 12] 40 50
w. id
Atlas Castor
o 25 ¢ 008
S o FARN
g 20 > 0.06
@ 15 g
g c 0.04
E 10 g —
g 5 ED.DZ
Eon A A 4 Al 2 oA A A A AA
= o 20 40 60 80 100 = o 50 100 150 200 250
w. id wv. id
SlashCode Zabbix
o 12 o €
2 8 1
=4 w
g 6 e & E 3
: - - n
@ 2 -E 1
. i . ylmy = N AN A
o 100 200 300 400 500 o 50 100 150 200
w. id w. id

Figure 14 Contrasting Average Vertex Betweenness scores with the last known appearance for the tables of the 6 studied datasets

57

How does Average Vertex Betweenness Centrality relate to survival? In a systematic
attempt, we assessed the correlation of betweenness centrality and survival and the
results are depicted in the Table 18. Specifically, we evaluated whether a vertex with
an Average Vertex Betweenness Centrality score (in short, AVBC) greater or equal to
1is a survivor (by computing the fraction of survivor nodes with AVBC >=1 over the
population of nodes with AVBC >= 1), as well as what percentage of survivors do
nodes with high Average Vertex Betweenness constitute (as the fraction of survivor
nodes with AVBC >=1 over the population of survivors).

Can we use Average Vertex Betweenness Centrality as a predictor of survival?
Observe that this method has extremely high predicting precision in all 6 datasets
except from the cases of BioSQL and SlashCode. Specifically, in 4 out of 6 data set, an
AVBC >=1 signified a 100% probability of survival. At the same time, survival can be
related to other parameters too. This is why, the percentage of high centrality nodes
among survivors is too small. So, overall, although Average Vertex Betweenness
Centrality cannot predict death or survival in the general case, it can predict survival for the
few cases where its value is relatively high.

Some specific findings follow.

- After careful examination in the BioSQL dataset we found a very interesting
result. The two vertices that (a) AVBC >=1 and (b) did not survive, turned out
to be simple renames and not actual deletions of the corresponding tables,
meaning that, in essence, our method also had a 100% precision as well, in the
BioSQL dataset.

- In the case of the SlashCode dataset, there was a single non-survivor table
with AVBC >=1. This table was indeed deleted, but its neighborhood was
deleted too. This means that it was not some random deletion, but in fact this
vertex was important as with its neighborhood, they had some functionality
that was deemed unnecessary by the database architect. So, this does not
justify why AVBC did not achieve a 100% precision but it does point out that
the specific dataset underwent to a radical change in its evolution.

58

5.3.3 Normalized Vertex Betweenness and its relationship to evolution

To facilitate a homogeneous comparison of the individual results of the different data
sets, we normalize the Vertex Betweenness Centrality by dividing the Vertex
Betweenness Centrality with the total number of possible paths between nodes.

Definition: Given a graph of N nodes, the Normalized Average Vertex Betweenness
Centrality of a node is its Average Vertex Betweenness Centrality divided by N-(N-
1).

#nodes #nodes #nodes # nodes pctnodes pct nodes P(survivor | P(NAVBC >0 |
survivor survivor)
with survivor & with survivor NAVBC >0)
NAVBC>0 NAVBC >0
NAVB>0
Egee 12 3 10 3 25% 83% 100% 30%
BioSQL 45 8 28 4 17% 62% 50% 14.2%
Atlas 88 7 73 3 7% 82% 42% 4%
Castor 91 2 74 2 2% 81% 100% 2%
SlashCode 126 6 87 5 4% 69% 83% 5.7%
Zabbix 58 7 48 7 12% 82% 100% 14.5%

Table 18 Probability of survival with respect to normalized avg. vertex betweenness

It is interesting to note that NAVBC performs much differently than AVBC. To be
specific for the Atlas and BioSQL datasets, datasets that are rich in edges, the
probability to survive provided that you have non zero NAVB drops drastically
while for the rest of the datasets it skyrockets. The reason for the discrepancy with
the results of the previous subsection is due to the higher numbers of tables fulfilling
the filtering criterion of NAVBC > 0.

59

Figure 15 Contrasting Norm. Avg. Vertex Betweenness scores with the last known appearance for the tables of the 6 studied

datasets

Egee

2.50E-02
2.00E-02
1.50E-02
1.00E-02

5.00E-D3

V. Betweenness score

0.00E+00

Atlas

3.00E-03
2.50E-03
2.00E-03
1.50E-03
1.00E-03
5.00E-04

V. Betweenness score

SlashCode

7.00E-04
6.00E-04
5.00E-04
4.00E-04
3.00E-04
2.00E-04
1.00E-04

V. Betweenness score

0.00E+00

0.00E+00

‘100

12

100

500

60

BiosalL
0.012

0.01
o.co8
0.006
0.004

etweenness score

B
o
o
Q
]

v
g

Castor

1.00E-05
8.00E-06
6.00E-06
4.00E-06
2.00E-06

etweenness score

V.

Zabbix
2.00E-03

1.50E-03

.
o
o
m
o
w

5.00E-04

Betweenness score

0.00E+00

V.

& 0.00E+00 /.

50
AA A Ak
50 100 150 200 250
v.id
50 100 150 200

w. id

5.4 [Edge Betweenness and its relationship to schema evolution

Having a massive graph that is the union of all the tables and edges of the schema
evolution of a database, we thought, what is the most important part of this graph?

To answer this question, we computed the Average Edge Betweenness Centrality
score for each edge and then we kept the edges with the top-2 scores, ties included.
We call the resulting subgraph that is produced by these edges, the 2 - Core
Component of the graph.

Definition: The 2 — Core Component is the subgraph that is induced by® the top 2
edges of the graph with respect to their Average Edge Betweenness. If two or more
edges are tied for the top scores, these edges are as well included in the 2-Core
Component.

As a result, it is reasonable for a top 2-Core Component to include more than 2 edges.
Also note, that in four out of six datasets the 2-Core Component was a connected
subgraph. This is not a prerequisite condition, rather a fact that seems to occur.

Following a more strict and rigorous study, we have generalized our search to fully
test the effect of Edge Betweenness Centrality to the survival of the involved nodes.
We proceeded as follows:

- First, we measured the Average Edge Betweenness Centrality for all edges
- We kept the top - 2, including edges that are tied

Interestingly enough we found out that most of the times, the 2 Core Component
survives till the end. In Fig., 16 we show the 2 - core component for all six datasets. In
each of these figures we depict (a) the 2-Core component over the Diachronic Graph
with different coloring, (b) the first version of the graph, and, (c) the last version of
the graph. Again, the attempt is to show the survival of the 2-CC in the history of the
schema. In 5 out of 6 datasets, the 2-core component is a connected (undirected)
subgraph of the Diachronic Graph.

3 Remember that an edge-induced subgraph is a subset of the edges of a graph
together with any vertices that are their endpoints (definition by
http://mathworld.wolfram.com/Edge-InducedSubgraph.html).

61

Last Version

First version

Atlas
Biosql
Castor
- .
Egee
Lo K}
_— -
: -
o -
SlashCode i ¥ e
5]] ot
o
°
-
.)
o
Zabbix . s °
.
[r—
O

Figure 16 Evolution of the 2-Core Components for the 6 studied datasets (figures are
partially cropped to fit)

62

Atlas
BioSQL
Castor

Egee

Slashcode
Zabbix

Lo
[-+]
[T}

25.00

20.00

15.00

10.00

5.00

0.00

EBCscores, ranked

—Atlas
—BioSaL
——Castor
——Egee
—5lash
—Fabbix

\\\—“ﬁ—-—_

1 6 11 16 21 Rank

Figure 17 Average Edge Betweenness scores, ordered decreasingly, for all 6 data sets.

#tables with EBC >1 #tables with EBC =1 #tables with EBC=0 Probability to survive
Survivors Dead Total Survivors Dead Total Survivors Dead Total Survivors Dead Total Total EBC>1 EBC=1 EBC=0
73 15 88 33 1 34 30 13 43 10 1 11 83% 97% 70% 91%
28 17 45 26 13 39 2 2 4 0 2 2 62% 67% 50% 0%
74 17 91 7 0 7 6 3 9 61 14 75 81% 100% 67% 81%
10 2 12 5 1 6 0 0 0 5 1 6 83% 83% - 83%
87 39 126 14 9 23 11 2 13 62 28 90 69% 61% 85% 69%
48 10 58 21 3 24 9 2 11 18 5 23 83% 88% 82% 78%

Table 19 Breakdown of tables per category of Average EBC score and relationship to survival.

63

The distribution of values for the Average Edge Betweenness is depicted in Figure
17. The vertical axis depicts the individual Average Edge Betweenness scores
appearing in a data set and the horizontal axis its rank, in increasing order. The
scores start in many cases from very high values (above 15) and quickly drop in
middle range values (around 5) with heavy tails between 2 and 1.

The situation looks quite different, however, if one takes the population size that
pertains to each EBC. As already mentioned in the commentary of vertex degrees, a
very large percentage of tables have zero inciting edges, and quite a few of them
have exactly one inciting edge. This separates these two particular values for the rest
of the (very broad) range of values. We performed a statistical analysis of the
respective values, which we depict in Table 19, and -much to our amazement- the
results that we found are as follows:

- Large Average EBC scores (greater than 1 that is) do not guarantee survival more
than the average value of the data set. Note that although in the scientific
databases (castor excluded) the percentage of this group is large, it is only in 2
out of 4 cases that survival is very high compared to average.

- The most surprising fact for us was that the group with Average EBC equal to 1
has higher chances to die than average! This appears counter intuitive in a sense,
as even a single relationship seems a good as to give second thoughts to the
DBA before a removal of a table.

- The behavior of the group with EBC equal to 0 is quite close to the overall
average, which we attribute to its vast size that gravitates the overall average
towards its behavior. Expectedly, survival rate is lower than the one of the
group with EBC >1 in all but one occasions.

64

Rank Atlas BioSQL Castor Egee Slashcode Zabbix count ;::‘:9‘;2 Pcst;f‘;g]g:é
1 100% 100% 100% 100% 50% 50% 6 4 67%
2 100% 100% 100% 100% 100% 100% 6 6 100%
3 100% 100% 100% 100% 100% 100% 6 6 100%
4 100% 100% 67% 100% 0% 0% 6 3 50%
5 100% 0% 81% 0% 100% 100% 6 3 50%
6 100% 0% 83% 0% 100% 5 2 40%
7 94% 100% 0% 100% 4 3 75%
8 100% 100% 100% 100% 4 4 100%
9 100% 0% 100% 100% 4 3 75%

10 100% 0% 0% 100% 4 2 50%
11 100% 100% 0% 100% 4 3 75%
12 100% 100% 100% 100% 4 4 100%
13 100% 75% 0% 100% 4 2 50%
14 70% 100% 0% 100% 4 2 50%
15 91% 100% 100% 100% 4 4 100%
16 42% 0% 100% 3 1 33%
17 0% 100% 100% 3 2 67%
18 100% 100% 0% 3 2 67%
19 50% 100% 82% 3 1 33%
20 0% 100% 78% 3 1 33%
21 85% 1 0 0%
22 69% 1 0 0%

Table 20 Percentage of survivor tables per rank for all the studied data sets.

We decided to elaborate more on the correlation of ranking in terms of Average Edge

Betweenness and survival and used the k-Core Component analysis to this end.

So, we generalized the definition for larger values of the rank, and thus we define the

general version of the Core Component, the k-Core Component.

65

Definition: The k — Core Component, is the subgraph that is induced by the top k
edges of the graph with respect to their Edge Betweenness in the Diachronic Graph.

In Table 20, the first column depicts the rank of an Average EBC score (not shown
here), the next 6 columns correspond to the 6 datasets, and the last 3 columns count
(a) how many of the datasets actually have even one table for the rank of the
respective row (“rank”) (b) the number of datasets where the survival rate exceeds
90% (“survival percentage >90%") and (c) the percentage of case (b) over case (a)

The ranks with the higher probability of death are the two last (which are the values
1 and 0 for EBC, demarcated with a mauve background). For the rest of the ranks, in
all data sets except for BioSQL and SlashCode, which are the two data sets with
higher deletion rates among the ones that we study (both with survival rate lower
than 70%), one can easily observe that the value 100% survival is overwhelmingly
present, with very few exceptions.

Apparently, to a large extent, the update profile of a schema is responsible for the
prediction accuracy of the EBC score and this is why, our two deletion-prone data
sets seem to have many “holes” in the otherwise perfect survival rate of higher scores
of Table 20 at ranks higher than the two last.

Moreover, we observe that for the first 3 rows of Table 20 (i.e. for the 3 - Core
Component), we can get very good results in terms of predictor power for the
survival of the tables. In fact, with the exception of Zabbix and SlashCode, the two
CMS’s, the top scores would achieve perfect survival.

66

5.5 Summary of Findings

In this chapter we have focused on metrics that describe the relationship between
nodes and how they are structured inside the graph, aiming to find any hidden
survival mechanisms that reside within. In other words, we focus on metrics
regarding the individual nodes rather than the whole graph. To this end, we
correlate the results of these metrics with evolution-specific events -or in our case, the
death of a node.

- In/out/total Degree. After calculating the in/out degree for each version of each
dataset we discover that from the 6 studied datasets, only BioSQL and Atlas
have a low number of nodes that are not incident to an edge. Egee and Zabbix
have the vast majority of tables without edges, and in the cases of Castor and
SlashCode tables without edges are the largest group. Next, we correlate the
in and out degree with each nodes’ survivability, and highlight two
observations:

e With few exceptions, the higher the degree of a node is, the more
probable is for the node to survive

e In all 6 datasets, there is an inverse-gamma pattern in the correlation of
degree and survival. The pattern suggests that low degrees carry a non-
negligible probability of removal for the corresponding tables; at the
same time, high degrees carry a significantly lower probability of
removal.

- Clustering Coefficient. After calculating the Average Clustering Coefficient for
each node in each dataset we discovered that the vast majority of the nodes
has clustering coefficient score equal to zero, and only a few in the BioSQL
dataset have score higher than 0.1. Noteworthy is the case of BioSQL which
contains 5 nodes with clustering coefficient equal to 1 and Egee, Atlas, and,
Zabbix that contain only one node with clustering coefficient score equal to 1.
These results point that the nodes of these datasets are very weakly coupled,
and therefore their respective structure is loose. Next, we tested if the
clustering coefficient is correlated to survivability, and our conclusions are.

e This method cannot predict very well the survivability of a node.
However, it is important to highlight that in cases where the database’s
schema is a graph rich in edges, like the Atlas or BioSQL dataset, this
method performs much better as opposed to the other datasets.

e The datasets with a satisfactory number of edges tend to follow the
aforementioned inverse-gamma pattern.

67

Vertex Betweenness. We performed the same procedure as before, for the
Average vertex betweenness score this time. In the datasets of Egee and
Zabbix every node that possessed average vertex betweenness above zero
managed to survive, while this probability for the SlashCode dataset drops to
83%. It is noteworthy, that the survival probability for the BioSQL and Atlas
datasets is 37% and 43% respectively. Lastly, the Probability of survival due to
Average Vertex Betweenness for Castor is zero. This is expected as the dataset
has a really low number of edges.

The k-Core Component. Lastly, we calculated the Edge betweenness for every
edge of each of the 6 studied datasets and kept the graph induced by the
edges with the top-k scores. We named the induced subgraph as k - Core
Component. Our observations:

e In cases of Atlas, BioSQL, Egee, Zabbix and SlashCode the induced
subgraph of the 2 — Core Component is connected, except for the cases
of Castor. This is very important since it points to the fact that
Important/Centralized nodes tend to be inter-connected in the
database’s structure, thus creating the Core of the graph.

e Nodes connected in the Core Component have a very high survival
probability. Another observation that strengthens the importance of the
core component —The core is important, thus survives till the end.

68

CHAPTER 6.

SOFTWARE ARCHITECTURE AND DESIGN —

PARMENIDIAN TRUTH

6.1 Package diagram

6.2 The core package

6.3 The export package

6.4 The model package

6.5 The gui package

6.6 The model.Loader package

6.1 Package Diagram

We start with the high-level architecture of the tool, expressed as a package diagram
that is depicted in Figure 18.

69

1

<=Java Package==

Houi

1

==lava Package== | __._..e-ee--

fHcore

)
<=Java Package>>
Hexport

—
<<Java Package=>
i model.Loader

<<Java Package> 5 <=Java Package==
HexternalTools | Hmodel

I T P
<=lava Package=> reeeres T
{4 parmenidianEnumerations

Figure 18 Package Diagram for Parmenidian Truth

The package core consists of the main manager classes that orchestrate every
use-case provided by Parmenidian truth

The export package consists of classes concerning the exported files of our tool

(.csv, .jpg -ppt)

The model package consists of classes that basically organize the data in
memory in a structured form

The gui package includes all classes that refer to graphical interface notions.

The model.Loader package includes classes that, with the help of the
externalTools package, are responsible for parsing data files and organizing
the created objects into memory

70

- The externalTools

responsible for parsing the SQL files as well as creating the XML transition

package are the Hecate main engine files that are

files. It is the deepest level as far as parsing goes.

- The parmenidianEnumerations package consists of just enumerations. Their
purpose is to make easier the communication between classes. Those
enumerations exist for the sake of easy maintenance and code readability.

6.2 The core package

==Java Class=>

(& ParmenidianTruthManager
core

& ParmenicianTruthManager()

@ clear()-vaid

@ gefTargetFoider()-String

@ stopConvergence()-void

@ saveVertexGoordinates{String)void

@ sefTransforminghMode()-v aid

@ setPickingMode():void

@ visualize(VisualizationView er<String String=, String, String. int):void
@ loadProject{String. String, String. double, double, double, double, double. doubie, String.int)-Component
@ createTransitions(File):void

@ createPow erPointPres entation{ArrayList=String=, String, String)-void
@ createVideo(File).vaid

@ refresh{double,int).Component

@ calculateMeirics(String ArrayList<Mefric_Enums>)-void

-rmde\r.‘hnager/_ﬂ -Exportl‘.hnaé\?.ﬂ

core

=wJava Class>> ==Java Class=>
(S ModelManager (5 ExportManager

core

o diachronicGraph: DiachronicGraph = null

oDEx portManager()

& ModeManager()

@ clear()-void

@ gefTargetFolder{):Siring

@ stopConw ergence()-void

@ saveVertexCoordinates(String)-void
@ sefTransforminghMode() vaid

@ setPickingMode()void

@ generateVertexDegreeReport(String):void

@ generateVertexinDegreeReport(String):void

@ generateVertexOutDegreeReport(String):void

@ generateVertexBetw eennessReport(String)-void
@ generateEdgeBetw eennessReport(String)-void
@ generateGraphDiameterReport(String):-void

@ generateVertexCountReport(String).void

@ generateEdgeCountReport(String):void

@ refresh{double int)-Companent

@ generateClusteringCoefficientReport{ String) v oid
@ generateVertexCountReportForGOC(String)-v oid
@ generateEdgeCountReportForGCC{Siring):void

@ visualize(VisualizationView er<String,String=,String, String.int)-v oid
@ loadProject{Siring, String. String, double, double, double, double, double, double, String. int): Component

@ generateConnectedComponents CountReport{ String)-void

@ createTransitions(File):void

@ createVideo(File):void

@ createPow erPointPresentation{ArrayList<Sring=, Siring, String).void

Figure 19 Class Diagram for the core package

The core package consists of the main manager classes that orchestrate every use-

case provided by Parmenidian Truth.

These are the use cases that are provided by our tool:

71

- The user can choose his own workspace, a personal folder where every project
produced by our tool will be archived

- The user can create a new Parmenidian project, for the creation of such a
project the user needs to provide the following input:

- A folder with all the SQL schema versions of the database under study

- An XML file that contains the transition changes between two consecutive
schemata

- An output folder where the result files will be exported from our tool
- The user can edit a Parmenidian project

- The user can load a Parmenidian project. When a project is loaded, our tool
makes a graphical representation of the database as a graph, with tables as
nodes and foreign key relations as edges between nodes. The graph is
automatically laid out, but it is in the user’s ability to improve it

- When the user is done making graph changes he can save the layout. A
graphml file is then produced by our tool for persisting changes

- The user can batch produce a png file for each separate version of the
database’s schemata, and then combine them in a PowerPoint presentation
and even in a video file. Those actions can be taken either individually, or
sequentially per user’s choice

- The user has the ability to create a transition file for a whole dataset of SQL
schema versions. This action can be taken either during the creation of a
Parmenidian project or at any other time per user’s choice.

- Finally, the user can batch compute a collection of graph metrics for the
purpose of studying the schema evolution of the database. The result will be
saved in csv files that will be exported in the user’s selected folder for output.
Those metrics can be separated in the following categories:

e Node-wise
e Edge-wise
e Graph-wise

Each of the above uses-cases can be selected from the user through our graphical
interface. Then the core manager ParmenidianTruthManager will be responsible for
calling the corresponding methods in either the ModelManager or the ExportManager.

72

The ModelManager interacts with components that reside in the model package.
Basically, it is responsible for visualizing the schema as a graph, editing and saving
the changes performed by the user, as well as, computing graph metrics.

The ExportManager interacts with the export package, and is basically, responsible for
all the output files of our tool.

6.3 The export package

As already mentioned, the export package consists of classes concerning the files that
are exported as output from our tool. Specifically:

The HecateScript class, given the path of a folder containing SQL files with the
versions of the schema of the database, produces an XML file with the changes
between two consecutive schema versions. The SQLFileFilter is an auxiliary class for
the HecateScript to ignore everything but SQL files.

The PowerPointGenerator is the class responsible for producing a PowerPoint
presentation of the database’s schema evolution. For the production it requires a
folder containing each schema’s graphical representation, which then binds into a
PowerPoint slide.

Respectively, the videoGenerator class is responsible for the production of the video of
the database’s schema evolution. It requires a PowerPoint presentation file, which
then decomposes, rendering each slide as a png and then combines every extracted
png into a video stream. The FilenameSorter, FilenameSorter2 and ImageFileFilter
are auxiliary subclasses for sorting the produced png files in the appropriate way.

73

==Java Class=>
(9 Hecate Script
export

<<Java Class=>
(2 PowerPointGenerator

export

<=java Class=>
(& VideoGenerator

export

a selectedDirectory: File
a sgifiles: Fie]]
a worker: HecateManager

o targefWorkspace: String
o presentation: String

o width: in

o height ink

o selectedPres entation: File

a filenameOfFresentafion: Siring
o FRAME_RATE double

a gutputFilename: Siring

a sourceFaolder: Siring

ecHacateScript(Hle}
@ createTransitions():void

==Java Class=>
(2 SQLFAleFlter

expart

& S0l FileFiter()
@ accepi(Fie):boolean

Gthw erPointGenerator{Siring, String)

@ createPresentation{ArrayList=Siring=)-void

& initializ ePres entation{XNLShdeShow ArrayList=Siring=)-*MLShdeShow
@ appendShdeShow (Siring XMLSkdeShow) XNMLShdeShow

@ setSkdeTile(Siring)-String

Gc\.-’idaoGanaratcr(HIe}

@ exportToVideo():void

B extractPngFromPpb:()-void
B createVideo():void

B deleteGeneratedPng()-void
B setOutputFilename()-void
B setSourceFolder():void

B convertToTy pe{Bufferedimage, int):Bufferedinage

/

\

<<Java Class=>

<<Java Class=>

<=Java Clasz=>

@ compare(File File):int

@ accept{Fie)-boolean

Figure 20 Class Diagram for the export package

74

(9 Flename Sorter2 (2 ImageFleFilter (9 FAlename Sorter
export export export
C o o C o
A FilenameSorter2() Gclrmgel-_llel-_llter(,u A FilenameSorter()

@ compare(Fie, Fie):int
@ getFname(File):in

6.4 The model package

s G
®DiachronicGraphVisualRepresentation

2 utFoer: Sing
= syout: SringLayau<Sirng Srng-

SFapniouse DefautiocsiGraphiouse<Siing Nuroers
o W VeuaRatoniew or<Srng St

o unversaransfarmerForScaing MiabeTransformer e Gassns

=
®DBversionVisualRepro

© show()Visusizateriiew s

© seTrarstorminghode() vaia PP ——
© semckngiiose) v g
 saveVanexConanstes(Sng) o © sdgeType: Transfarmer

© cesteEpsoceVisuszstonyion o<Sirng Singe) 8 © epsocerame Sing

P — o wian it

o stop(ivoia © v VisvaEatontien e<Sirng S

© geFramex() © satDatais(Simg) void

© gerscaex()couse © wrka PEGiage(Visuatzation\iow o Sting S Fie) vod

& getuwerssFrams() Omansion —vsusizstonsOroBVershn 0.1

e

o vansions ArayLstehap=Sing iegers> ~eva Gz

e r
© getversaBouncs Rectange

e
©ichronicoaph J—,

= versortame: Sveg
S OB ersan(array st Taties Aray Lt Foregracey> S

© generateCusteingCoeticertRepert(Sting) Vo4
© genersteComectecCompanentsCountRepar(Sing) vod

© seDetas(Svng i) vad
© geTables(ArryLsi<Tabe>
© cetVersionForigneys(ArayLit<Foreignkey
© getodes(ArryLsi<Taoe>

on G
_versions | © cenerteVertexDsgres(Sirna) Srng

CountForG0c) Strng
© genersteComsctecConponentsCourtReporStrng
© geCusterngOoetTicent) Map<Sirng Doute>

—grapniericsoroaversion o 1

e G
© visuaizeDachvoncapVisuaRzatonVew er<Sting S0 ©GraphMetrics
i py
© show(Visuazatonviewer © graon Grash<sung g
© setiivarsaFrame(Dimersion & Grapnietcs ArrayLsi<Taties Aray
© getnersacenter) PorizD © getGrapn) GrapheStng Sing>
© getscaiex) @ soaNodes(AmayLi<Tabien) e
© gerscaey () soute s ArayList<ForeirKers) vod
g © generseVerexDegresiSing) S
© geFranex(souve © generateVertexBet semess (St
© generateVertexrDegren(Srg) Stng
© generseVerexuDeg ee(Sing) Sty

o
e
mote. i rersionForeigniKeys\ 0,*
e s [ug s
e P2 o
o s Groreigney
Fravesrrs) o
S, ey PO e
© getkey(:String b it ™
@ sefTableStatus (int)-void * [FForeigney(sirng sting)
o getnestnso e o oo Sumg
© suComgonzD © cetugeaten g
o seConsOnectvoa o oererosum

Figure 21 Class Diagram for the model package

75

The model package consists of classes that basically organize the data in memory in a
structured form.

The DiachronicGraph class is the main class in the model package. It is responsible for
micromanaging the individual parts of the schema’s evolution. At this point we
would like to remind the reader that as a notion the diachronic graph is the union of
table and edges of the whole database’s lifetime. So, in design level it contains a
collection for tables and versions respectively. All operations regarding manipulating
the graph, or computing metrics are done through this class.

The DiachronicGraphVisualRepresentation is an auxiliary class introduced through the
Single Responsibility Principle. It is a class that is responsible for visualizing to the user
the diachronic graph of the database, as well as, rendering the diachronic graph into png
format. As so, it contains collections for all the nodes and edges of the schema’s
evolution and all the improvements that were done from the user layout-wise.

The pBversion class is a memory representation of a physical schema. It contains a
collection of tables and foreign keys.

The DBVersionVisualRepresentation class is the equivalent of the
DiachronicGraphVisualRepresentation but for DBversion objects. As such, it contains
information about each version’s visualization process, and is also responsible for
rendering each version in png format.

The GraphMetrics class is responsible for computing the selected graph metrics. Inside
this class resides the implementation of each metric. biachronicGraph and DBVersion
both contain an aggregation of this class as a field. The DiachronicGraph triggers the
computation of a, user selected, metric and then it is performed for each object
individually.

The Table class is a mapping for the input data that concern schema tables. Other
than the schema table’s name the Table class contains information about the table’s
coordinates as well as the table’s status, something that changes from version to
version.

Finally, the Foreignkey class is equivalently a mapping for the input data that refer to
schema foreign keys. Foreignkey objects are visually represented as graph edges.

76

6.5

The gui package

=<Java Ciass>>
(@ ProjectEditor
gui

<<lava Ciasss=>
@WorkspaceChooser
aui

<<Java Ciass=»
(@MetricsChooser
aui

4 fileChoos er: JFleChaaser

& ProjectEditor(Gui, String, boolean, String, String, String.String, String, String)

S s erialversionUD: long
o textField JTexiFiekd

& WaorkspaceChooser(Gui)

& WaorkspaceCnooser()

@ init{)-void

© getRefinedText(String)-String

numberOf ConnectedCompanents: JCheckBax
numberCiEdges: JCheckBox

graphDiameter: JCheckBax
numberQfVertices: JCheckBax

edgeBetw eenness: JCheckBox

vertexBetw eenness: JCheckBox

outDegres: JCheckBax
inDegree: JCheckSax
vertexDegree: JCheckSax

@ saveWorkspace(String)-void

@ saveFreferences{boolean):void

A

clusteringCoefficient: JCheckBax
numberCOf VerticesinGoc: JCheckBox
numberOfEdgesNGee: JCheckBox

& metricsGnoos er(Gui)

-payent [0 1

<<Java Class=>
@Gui

oui

Saf serialversionUD: long

o FileNames: ArrayList<String=
o workspace: String

el toolBar: JTooBar

= mvMNode: JToggleBution

& mvGraph: JToggleBution

@ buttor: JButton

o binNew Button_3: JBution

o buttonGroup: ButtonGroug
@ buttons: ButtonGroup

o targetFolder: String

oSprefs- Preferences.

o projectMame: String

o fileChooser: JFileChooser

o projectini: String

o radiot: JRadioButton

& radio2: JRadioButton

o toolBar_1: JToolBar

© pop: JPopuphenu

o manager: ParmenidianTruthManager
o visualizationView er- Component
& e

 createVidea()-vaid

< createvides(Fie)vaoid

@ createTransitions()-void

< loadimagesForPpbx():void

< loadimagesForPptx(String)-vaid

< changeWarks pace()-vaid

< s(Object):void

< createPow erPointFres entation()-File
@ loadl if etime(Siring)-void

B batchOutput{)-void

= openMetricsPanel{)-vaid

= visualize(boolean)-void

= createNew Project{):void

= editProject{)-vaid

B clear()-void

°main(Stringll):void

wPinitiate()void

@ refresn\Works pace()-void
wPreirieveSslectedVorkspace() Siring
 getRefinedText(Siring)-String

< getDnCFilename(String):File

© gethanager()-ParmenidianTruthManager
@ calculateMetrics{ArrayList<Metric_Enums=)-void

-edgeChooser] f

—<Java Class>> <lava Class>>

(@EdgeChooser @ OutputChooser
gui ui

o pptxVWanted: boolean

o videoWanted: boolean

o buttons: ButtonGroup

a inearButton: JRadioBution

o orthogonaButton: JRadioBution
F ibiNew Label_1: JLabel

o edgeType: int

& CutpuiChoos er(Component boolean(])
@ isPptx()-boolean
@ isVideo()-boolean

@ EdgeChoos er(Component)
@ getEcgeTyped)int

Figure 22 Class Diagram for the gui package

The gui package includes all classes that refer to graphical user interface of
Parmenidian truth.

77

The gui class is the main graphical interface. Every use-case that our tool provides, is
shown to user through this class. Ergo, when an action is selected, this class triggers
the corresponding call in the ParmenidianTruthManager which in turn triggers the
corresponding call in either the ModelManager or the ExportManager.

The workspaceChooser class, is the dialog that appears when Parmenidian Truth is
executed. This class enables the user to choose a physical folder for Parmenidian
Truth’s output to be stored.

The ProjectEditor class, is the dialog that appears when the user chooses project-
related actions, like creating or editing the metadata of an already existing project. It
enables the user deal with the input and output of his/her project and it also enables
him/her create the transition file of a database’s schema evolution.

The EdgeChooser class, is the dialog that appears just before a project is loaded. It
contains information about the type of edge that should be used when the schema is
visualized as well as when the png files are rendered. Edge type varies from linear to
orthogonal.

The MetricscChooser class, is the dialog that appears when the user chooses to produce
graph metrics for the database schema under study. It contains a list of checkboxes
each of which correspond to a specific metric. After the user is done selecting the
MetricsChooser informs the gui which of the metrics were chosen. This information
sharing, between those two classes is done with the help of enumeration for the sake
of easy maintenance and code readability.

The outputchooser class, is the dialog that appears when the user chooses to produce
either a PowerPoint presentation, or a video file. As a class collects the information
and triggers on the gui class the selected action/actions.

78

6.6

-graphmiLoader f0_1

The model.Loader package

<=Java Class=>
(& Parser

loader

o lifetime: ArrayList<DBVersion-
o transitions: ArrayList=Map<5Siring, Integer==
o graphmi boolean

GCF'ars er{ String, String, String)

@ getLifetime()-ArrayList=DBVersion-

@ gefTransitions()-ArrayList<Map<Siring. iInteger==
@ hasGraphmi{):boolean

@ getGraphmiloader():GraphmilLoader

(2 GraphmlLoader

zalava Classs=»

loader

o vertices: ArrayLisi<Table>
o edges: ArrayList=Foreigniey=

& GraphmiL oader(Siring)

@ getMNodes()-ArrayList-Table>

@ getEdges()-AmmayList-Foreigniey >
B s{Objeck):void

<<Java Class»=
(9 HecateManager

loader

o lifetime: ArrayList=DBVersion=-
o fransitions: ArrayList<Map<Siring, Integer==

GCHE-::ateh’sanager{)

@ parseSgl{String)-ArrayList=DBVersion=

@ parsexml{ String)-AmrayList-Map=Siring integer==
@ createTransitions({Fie[),Fie):void

B marshal Transtions, File):void

= parselifetime({File):void

E parseTransiions{Fie)-void

<=Java Class=»

(9 SQLFileFilter

lpader

@ SCOLFieFiter()
@ accepi{File)-boolean

Figure 23 Class Diagram for the model.Loader package

79

The loader package includes classes that, with the help of the externalTools package,
are responsible for parsing data files and organizing the created objects into memory

The parser class, is responsible for parsing the SQL files, the XML files, and the
graphml files, if present, and then map this information into memory through the
objects provided in the model package.

The GraphmlLoader class is responsible for parsing the graphml files of the project.
Graphml files contain information for a node’s coordinates. After the information is
retrieved from the physical files it is stored in the field of a Table object.

The HecateManager class is an abstraction that separates Parmenidian Truth from
Hecate. As said at the beginning of this chapter, externalTools is the deepest and final
level of parsing physical files. The main entry point and connection between those
two tools is this class.

6.7 The parmenidianEnumeration package

<=Java Enumeration== ==Java Enumeration=>
i3 Metric_Enums (3 Status
parmenidianEnurmerations parmenidianEnurmerations
%F VERTEX_IN_DEGREE: Metric_Enums SFunDEFMED: Status
%F‘.-‘ERTEK_GUI' —DEGREE Mefric_Bnums % cREATION: Status
%f VERTEY_DEGREE. Metric_Enums % oELENON: Status
W VERTEX_BETWEENESS: Metric_Enums % UPDATE: Status
E:)FCZL'-..ETERl\lG_C:G-EFF ICENT: Metric_EBEnums a value: ink
% EDGE_BETWERRESS: Mefric_Enums oF Status (int)
%l GRAPH_DIANETER: Metric_Enums @ getvale():int

%l NUVBER_OF_VERTICES: Metric_Erums

% NUWBER_OF_EDGES: Mefric_Enums

% NUVBER_OF_CONNECTED_COMPONENTS: Metric_Enums
%FM..I"!EIER_GF_‘.-’ERTEES_N_GO:: Meiric_Enums
Q}FNJJEIER_GF_EDSES_N_GD:: Metric_Enums

& Mefric_Enums()

Figure 24 Class Diagram for the ParmenidianEnumeration package

The status is just an enumeration for mapping integer values [-1.0.1.2] to meaningful
notions [UNDEFINED, CREATION, DELETION, UPDATE]. Those values are used
for rendering each node with the appropriate color, [Light Green, Green, Red, and
Yellow].

80

Finally, Metric_Enums as we mentioned before is an enumeration that makes the code
a little more intelligible. Every metric is corresponded to a field in this enumeration,
making the communication between classes a little more transparent.

81

82

CHAPTER 7.

CONCLUSIONS AND FUTURE WORK

71 Summary

7.2 Future work

71 Summary

In this Thesis, We have studied the schema histories of a six free, open-source
databases that contained foreign keys. To facilitate a quantitative study, we model
each version of the schema as a graph, with tables as nodes and foreign keys as
directed edges (stemming from the referencing table to the referenced one). Our
findings concerning the growth of nodes verify previous results that schemata slowly
grow over time in terms of tables. Moreover, we have come to several surprising,
new findings in terms of the schema edges (foreign keys). Foreign keys appear to be
fairly scarce in the projects that we have studied and they do not necessarily grow in
synch with table growth. In fact, we have observed different “cultures” for the
handling of foreign keys, ranging from full sync with the growth of nodes to the
unexpected extreme of full removal of foreign keys from the schema of the database.
Node degrees and survival are related with an inverse gamma pattern: the few nodes
with high degrees stand higher chances of survival than average. Similarly, nodes
with inciting edges with high values for edge betweenness centrality frequently (but
not always) stand higher chances to survive compared to the nodes with a single or
zero inciting edges, which have significantly higher chances of removal.

83

7.2 Future Work

Future work can continue in many ways. Here, we mention a few of them that seem
more important.

First, one could attempt to identify patterns of change over the different graphs. This
involves graph mining techniques that look for similar patterns of change over time,
either within the same schema’s history, or throughout the set of histories that we
have collected.

Second, one can attempt to construct a predictor module for change. Can we predict
when and how (and with what amount of change) a table will change, given its
graph-metric properties?

Third, we could try to extract “all-star transitions” — i.e., transitions with the largest
possible effect on the structure and properties of the graph. Then, we can make good
use of these transitions when we want to pick a set of characteristic transitions in
order to concisely visualize the evolution history of the database schema or study
transitions with potentially large effect.

84

REFERENCES

[Brand01]

[CMTZ08]

[KaraO1]

[LiNe09]

[NewmO3]

[PVSV12]

[QILS13]

[Sjob93]

Ulrik Brandes. A Faster Algorithm for Betweenness Centrality.
Journal of Mathematical Sociology 25(2):163-177, 2001.

C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo. Schema
Evolution in Wikipedia: Toward a Web Information System
Benchmark. In Proceedings of 10th International Conference on
Enterprise Information Systems (ICEIS), 2008.

A. Karahasanovic. Identifying impacts of database schema
changes on applications. Proceedings of the 8th Doctoral
Consortium at the CAiSE, pp.93-104, 2001.

Dien-Yen Lin and Iulian Neamtiu. Collateral Evolution of
Applications and Databases. In Proceedings of the Joint
International and Annual ERCIM Workshops on Principles of
Software Evolution and Software Evolution Workshops
(IWPSE), pages 31-40, 2009.

Mark E] Newman. The structure and function of complex
networks. SIAM review 45.2, pp: 167-256, 2003.

G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou.
Metrics for the Prediction of Evolution Impact in ETL
Ecosystems: A Case Study. Journal on Data Semantics, 1(2):75-
97,2012.

Dong Qiu, Bixin Li, and Zhendong Su. An Empirical Analysis
of the Co- evolution of Schema and Code in Database
Applications. In Proceedings of the 9th Joint Meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 125-135, 2013.

D. Sjeberg. Quantifying Schema Evolution. Information and
Software Technology, 35(1):35-44, 1993.

85

[SkVZ14]

[WhSmO03]

[WuNell]

I. Skoulis, P. Vassiliadis, A. Zarras Open-Source Databases:
Within, Outside, or Beyond Lehman's Laws of Software
Evolution. In Proceedings of 26" International Conference on
Advanced Information Systems Engineering (CAiSE), pp. 379-
393, 2014

S. White and P. Smyth. Algorithms for estimating relative
importance in networks. In Proceedings of the 9" ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 266-275, 2003.

Shengfeng Wu and Iulian Neamtiu. Schema evolution analysis
for embedded databases. In Proceedings of the 27th IEEE
International Conference on Data Engineering Workshops
(ICDEW), pages 151-156, 2011.

86

SHORT CV

Michail - Romanos Kolozoff was born in Kavala, Greece in 1988. In 2013, he received
his Diploma in Computer Science from University of Ioannina. In the following
months, he started a 6 month internship concerning Android development, in a small
startup in Kavala. By 2014, he had re-joined University of loannina, which was now
renamed to Department of Computer Science and Engineering, University of
Ioannina, for acquiring his Master's Degree, while working in parallel as a Senior
Android developer, in another startup in Ioannina for 2 years. After successfully
completing every course within his Master's curriculum, he joined the army for
fulfilling his military duty. In January 2017 he return for his thesis presentation and
the completion of his Master’s Degree.

87

