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ABSTRACT 

Michail-Romanos Kolozoff. MSc in Computer Science, Department of Computer 

Science and Engineering, University of Ioannina, Greece. January 2017. 

Graph metrics as predictors of schema evolution for relational databases. 

Advisor: Panos Vassiliadis, Associate Professor. 

 

Databases evolve over time and their evolution does not only concern their contents, 

but also their internal structure, or schema. Schema evolution impacts deeply, both 

the database itself, and the surrounding applications that need to adapt too. The 

study of the mechanisms and patterns via which database schemata evolve is 

important as it can allow the in-advance planning of design, maintenance and 

resource allocation with a view to the future. 

In this thesis, we focus on the study of the evolution of foreign keys in the context of 

schema evolution. Foreign keys are mechanisms that constraint data entry in 

relational tables, imposing that the domain of the contents of a table’s attribute is a 

subset of the contents of an attribute of another, lookup, table. Despite the 

importance of foreign keys, as an integrity constraint that guarantees consistency 

among the values of different tables, the study of their evolution is a topic that –to 

the best of our knowledge- has never been studied in the literature before. 

We have studied the schema histories of a six free, open-source databases that 

contained foreign keys. To facilitate a quantitative study, we model each version of 

the schema as a graph, with tables as nodes and foreign keys as directed edges 

(stemming from the referencing table to the referenced one). Our findings concerning 

the growth of nodes verify previous results that schemata slowly grow over time in 

terms of tables. Moreover, we have come to several surprising, new findings in terms 

of the schema edges (foreign keys). Foreign keys appear to be fairly scarce in the 

projects that we have studied and they do not necessarily grow in synch with table 

growth. In fact, we have observed different “cultures” for the handling of foreign 

keys, ranging from full sync with the growth of nodes to the unexpected extreme of 

full removal of foreign keys from the schema of the database. Node degrees and 
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survival are related with an inverse gamma pattern: the few nodes with high degrees 

stand higher chances of survival than average. Similarly, nodes with inciting edges 

with high values for edge betweenness centrality frequently (but not always) stand 

higher chances to survive compared to the nodes with a single or zero inciting edges, 

which have significantly higher chances of removal. 

 

 



 

 

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ 

Μιχάλης – Ρωμανός Κολοζώφ. ΜΔΕ στην Πληροφορική, Τμήμα Μηχανικών Η/Υ 

και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Ιανουάριος 2017. 

Γραφοθεωρητικές μετρικές για την πρόβλεψη της εξέλιξης σχημάτων βάσεων 

δεδομένων.  

Επιβλέπων: Παναγιώτης Βασιλειάδης, Αναπληρωτής Καθηγητής. 

 

Οι βάσεις δεδομένων εξελίσσονται με την πάροδο του χρόνου και η εξέλιξη τους 

δεν αφορά μόνο το περιεχόμενό τους, αλλά και την εσωτερική τους δομή, ή το 

Σχήμα. Η εξέλιξη του Σχήματος επιδρά βαθιά, στην ίδια τη βάση δεδομένων, και 

στις γύρω εφαρμογές που πρέπει να προσαρμοστούν πολύ, προκειμένου να 

αποφευχθεί (α) η αποτυχία λειτουργίας (λόγω αναφορών σε ανύπαρκτα 

στοιχεία του σχήματος), (β) η απώλεια πληροφοριών (λόγω της μη-συσχέτιση 

των νέων δεδομένων), ή (γ) οι σημασιολογικές αντιφάσεις (σε περίπτωση που η 

σημασιολογία των απόψεων αλλάξει). Η μελέτη των μηχανισμών και των 

προτύπων μέσω των οποίων εξελίσσονται τα σχήματα βάσης δεδομένων είναι 

σημαντική, καθώς μπορεί να επιτρέψει τον εκ των προτέρων σχεδιασμό για την 

ανάπτυξη εφαρμογών, συντήρησης της βάσης δεδομένων και την κατανομή των 

πόρων, με στόχο το μέλλον. Προς το παρών οι γνώσεις μας για τέτοιους 

μηχανισμούς ή μοτίβα είναι ακόμα στα πρώτα της βήματα, κυρίως λόγω της επί 

μακρόν έλλειψης ιστοριών σχήματος. Μέχρι σήμερα, η σχετική βιβλιογραφία 

μετράει μόνο λίγες μελέτες επί του θέματος, αξιοποιώντας κυρίως τις ιστορίες 

σχήματος των ελεύθερων, ανοικτού κώδικα έργων που δημοσιεύουν ολόκληρο 

τον κώδικά τους (συμπεριλαμβανομένου του σχήματος της υποκείμενης βάσης 

δεδομένων τους) σε αποθήκες δημόσιου λογισμικού. 

Σε αυτή την εργασία, θα επικεντρωθούμε στη μελέτη της εξέλιξης των ξένων 

κλειδιών στο πλαίσιο της εξέλιξης του σχήματος. Ξένα κλειδιά είναι οι 

μηχανισμοί που περιορίζουν την εισαγωγή δεδομένων σε σχεσιακούς πίνακες, 

επιβάλλοντας ότι ο τομέας των περιεχομένων του χαρακτηριστικού ενός πίνακα 

είναι ένα υποσύνολο των περιεχομένων ενός χαρακτηριστικού του άλλου, 

πίνακας αναζήτησης, (παρέχοντας ό, τι είναι επίσης γνωστό ως active domain 



 

 

του αναφερόμενου χαρακτηριστικού). Έτσι, τα ξένα κλειδιά αποτελούν βασικό 

μηχανισμό για τη διασφάλιση της ακεραιότητας των δεδομένων και τη συνοχή 

μεταξύ των τιμών σε διαφορετικούς πίνακες. Παρά τη σημασία των ξένων 

κλειδιών, ως περιορισμό ακεραιότητας, η μελέτη της εξέλιξής τους είναι ένα 

θέμα που – από όσο γνωρίζουμε – δεν έχει ποτέ μελετηθεί στη βιβλιογραφία 

πριν. Η συσχετιζόμενη δουλειά έχει επικεντρωθεί στην μελέτη για την εξέλιξη 

των πινάκων και των χαρακτηριστικών, αφήνοντας τη μελέτη των ξένων 

κλειδιών ανέγγιχτη. 

Έχουμε συλλέξει τις ιστορίες σχημάτων από έξι βάσεις δεδομένων ανοικτού 

κώδικα που περιείχαν ξένα κλειδιά, και τις επεξεργαστήκαμε για να 

ανακαλύψουμε τις αλλαγές που συνέβησαν στια συνεχόμενα releases τους. Έτσι, 

η ιστορία των εκδόσεων έχει συμπληρωθεί από ένα ιστορικό μεταβάσεων μεταξύ 

μεταγενέστερες εκδόσεις. Στη συνέχεια, μελετήσαμε τα χαρακτηριστικά της 

εξέλιξης των ξένων κλειδιών. Για να διευκολυνθεί μια ποσοτική μελέτη, 

μοντελοποιήσαμε κάθε σχήμα ως γράφημα, με τους πίνακες ως κόμβους και τα 

ξένα κλειδιά ως κατευθυνόμενες ακμές (που προκύπτει από τον πίνακα 

αντιστοίχησης με τον αναφερόμενο). Επιπλέον, με την πράξη της ένωση της 

ιστορίας αυτών των γραφημάτων, δημιουργήσαμε τον Διαχρονικό Γράφο της 

ιστορίας του σχήματος ο οποίος περιέχει όλους τους πίνακες και όλα τα ξένα 

κλειδιά που υπήρξαν ποτέ στην ιστορία του σχήματος. Βάση αυτού του 

μοντελοποιημένου γραφήματος, αξιολογήσαμε πολλές γράφο-θεωρητικές 

ιδιότητες, τόσο όσον αφορά το σύνολο του σχήματος αλλά και από την άποψη 

των μεμονωμένων κόμβων και ακμών. Η προσπάθειά μας έχει διευκολυνθεί από 

ένα εργαλείο που έχουμε αναπτύξει, με το όνομα Παρμενίδεια Αλήθεια, το οποίο 

(α) κατασκευάζει το Διαχρονικό Γράφο της ιστορίας, (β) τον χρησιμοποιεί ως 

μέσο συνοχής για την οπτικοποίηση της κάθε διαφορετικής έκδοσης του 

σχήματος, (γ) εξάγει την ιστορία του σχήματος ως μια παρουσίαση σε 

PowerPoint, βίντεο, ένα σύνολο εικόνων, και ένα σύνολο αρχείων GraphML, και 

(δ) παράγει αναφορές για διαφορετικές γραφοθεωρητικες μέτρικες σε csv αρχεία, 

διευκολύνοντας έτσι την μετέπειτα ανάλυσή τους. 

Τα ευρήματά μας συνοψίζονται ως εξής: 

Τα Σχήματα αυξάνονται με την πάροδο του χρόνου από την σκοπιά των κόμβων 

(πίνακες). Η ανάπτυξη είναι ομαλή και αργή, με αρκετές περιόδους ηρεμίας. 

Αυτό είναι ένα πολύ γνωστό αποτέλεσμα από την υπάρχουσα βιβλιογραφία που 

έχει επίσης επαληθευτεί από τη μελέτη μας. Οι ακμές (ξένα κλειδιά) δεν 

αναπτύσσονται απαραίτητα σε συγχρονισμό με την ανάπτυξη των πινάκων. 

Στην πραγματικότητα, έχουμε παρατηρήσει διαφορετικές "κουλτούρες" για το 

χειρισμό των ξένων κλειδιών. Σε δύο περιπτώσεις που αφορούν επιστημονικές 

βάσεις δεδομένων (Atlas, Biosql), τα ξένα κλειδιά αποτελούν αναπόσπαστο μέρος 

του σχήματος, εκτείνονται σε ένα τεράστιο ποσοστό των πινάκων και συν-



 

 

εξελίσσονται μαζί τους. Σε δύο άλλες περιπτώσεις, επίσης επιστημονικής φύσης 

(Egee και Castor), μόνο ένα υποσύνολο των πινάκων συμμετέχουν σε συσχετίσεις 

ξένων κλειδιών και η εξέλιξή τους είναι διττή: Η Egee (με πολύ μικρού μεγέθους 

Σχήμα) έχει μια ισχυρή συσχέτιση μεταξύ πινάκων και εξέλιξης ξένων κλειδιών, 

ενώ ο Castor (με ένα μικρό ποσοστό των πινάκων να εμπλέκονται σε ξένα 

κλειδιά) έχει ανάμικτη συμπεριφορά σε όλη την ιστορία της εξέλιξή του. Η 

μεγαλύτερη έκπληξη ήρθε από τα σχήματα Συστήματος Διαχείρισης 

Περιεχομένου (CMS), SlashCode και Zabbix, όπου τα ξένα κλειδιά εμπλέκονται 

μόνο σε μια μικρή μειοψηφία των πινάκων. Προς μεγάλη μας έκπληξη, τα ξένα 

κλειδιά σε αυτά τα έργα, μετά από μια περίοδο ανάπτυξης, αφαιρούνται από το 

σύστημα (α) με μια απότομη απομάκρυνση στην πρώτη περίπτωση, και (β) με 

μια αργή αλλά σταθερή ταχύτητα απομάκρυνσης στην δεύτερη. Η συνολική μας 

εντύπωση είναι ότι, με την εξαίρεση κάποιων περιβαλλόντων με αυστηρή 

τήρηση των υπαγορεύσεων της σχεσιακής θεωρίας, τα ξένα κλειδιά είναι σπάνια 

και ενίοτε ανεπιθύμητα. 

Όσον αφορά τη συμπεριφορά μεμονωμένων κόμβων, φαίνεται ότι ο βαθμός και 

η επιβίωση σχετίζονται θετικά μεταξύ τους, και, στην πραγματικότητα, υπάρχει 

ένα μοτίβο αντίστροφου - Γ στο συσχετισμό βαθμού και επιβίωσης. Το μοτίβο 

προτείνει ότι οι χαμηλοί σε βαθμούς κόμβοι φέρουν μη αμελητέα πιθανότητα 

απομάκρυνσης για τους αντίστοιχους πίνακες- ταυτόχρονα, οι υψηλόβαθμοι, αν 

και αρκετά σπάνια, φέρουν πιθανότητα διαγραφής 5% -19% χαμηλότερα από το 

μέσο όρο. Έχουμε μελετήσει επίσης κόμβους για τον συντελεστή ομαδοποίησή 

τους και την κεντρικότητά τους με μάλλον αμφίβολα αποτελέσματα όσον αφορά 

την επιβίωση του κόμβου. Τέλος, φαίνεται ότι οι κόμβοι που εφάπτονται με 

υψηλά score σε betweenness - centrality, συχνά (αλλά όχι πάντα) έχουν 

υψηλότερες πιθανότητες επιβίωσης από κόμβους με μία ή καμία προσκείμενη 

ακμή. 
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CHAPTER 1.  

INTRODUCTION 

1.1 Aim and Scope 

1.2 Roadmap 

1.1 Aim and Scope 

Databases evolve over time and their evolution does not only concern their contents, 

but also their internal structure, or schema. Schema evolution impacts deeply, both 

the database itself, and the surrounding applications that need to adapt too, in order 

to avoid (a) crashing (due to references to inexistent schema elements), (b) 

information loss (due to the non-referencing of newly added data), or (c) semantic 

inconsistencies (in case the semantics of views change). The study of the mechanisms 

and patterns via which database schemata evolve is important as it can allow the in-

advance planning of application development, database maintenance and resource 

allocation with a view to the future. Still, our knowledge of such mechanisms or 

patterns is still in its early steps, mainly due to the longtime lack of schema histories. 

To this day, the related literature counts only a handful of studies of the topic, mainly 

exploiting the schema histories of free, open source projects that publish their entire 

code (including the schema of their underlying database) to public software 

repositories. 

In this thesis, we focus on the study of the evolution of foreign keys in the context of 

schema evolution. Foreign keys are mechanisms that constraint data entry in 

relational tables, imposing that the domain of the contents of a table’s attribute is a 

subset of the contents of an attribute of another, lookup, table (providing what is also 

known as active domain of the referencing attribute). Thus, foreign keys are a key 
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mechanism to guarantee data integrity and consistency between the values of 

different tables. Despite the importance of foreign keys, as an integrity constraint, the 

study of their evolution is a topic that –to the best of our knowledge- has never been 

studied in the literature before. Related work has worked on the evolution of tables 

and attributes, leaving the study of foreign keys untouched. 

We have collected the schema histories of a six free open-source databases that 

contained foreign keys, and processed them to discover the changes that occurred 

between subsequent releases. Thus, the history of versions has been complemented 

by a history of transitions between sequential versions. Subsequently, we studied the 

characteristics of foreign key evolution. We want to see if the topology of relations 

within a relational schema has anything to do with their behavior concerning the 

evolution of the schema. To this end, we structure each version of a schema as a 

graph, with relations as nodes and foreign keys as edges. We also introduce the idea 

of the Diachronic Graph, a graph that encompasses a node for every table that has 

ever appeared in the history of the database and an edge for every foreign key that 

has ever appeared in the history of the database. One can think of the Diachronic 

Graph as the superimposition of all the graphs of the different versions – 

equivalently, the graph of each version is the projection of the Diachronic Graph for 

the tables and foreign keys that are present in that particular version. Based on this 

graph modeling, we assess several graph-metric properties, both in terms of the 

entire schema and in terms of individual nodes and edges. Our effort has been 

facilitated by a tool we have developed, called Parmenidian Truth, that (a) constructs 

the Diachronic Graph of the history, (b) uses it as the means of consistently 

visualizing the different version of the schema, (c) exports the story of the schema as 

a PowerPoint presentation, a video, a set of images, and a set of GraphML files, and 

(d) reports different graph theoretic measures in csv files, thus facilitating their 

subsequent analysis. 

The main research question we address is: is there any inherent property of the graph 

constructs that forecasts their liability to change? We want to understand if graph-

theoretic properties like the degree or the centrality of a relational table are related 

somehow to its evolutionary history. We start with traditional correlation analysis 

and depending on the results we direct research towards algorithms that reveal the 

internal mechanisms of this evolution. 

Schemata grow over time in terms of nodes (tables). Growth is smooth and slow, 

with several periods of calmness. This is a well-known result from the existing 

literature that is also verified by our study too. Edges (foreign keys) do not 

necessarily grow in synch with table growth. In fact, we have observed different 

“cultures” for the handling of foreign keys. In two cases concerning scientific 

databases (Atlas, Biosql), foreign keys are an integral part of the schema, span a vast 
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percentage of tables and co-evolve with them. In two other cases, also of scientific 

nature (Egee and Castor), only a subset of tables were involved in foreign key 

relationships and their evolution is biased: Egee (with a very small schema size) has a 

strong correlation of table and foreign key evolution, whereas Castor (with a small 

percentage of tables being involved in foreign keys) has mixed behavior throughout 

its history. The biggest surprise came from the data sets of Content Management 

System (CMS) nature, SlashCode and Zabbix, where foreign keys involved only a 

small minority of tables. To our big surprise, foreign keys in these projects, after a 

period of growth, are removed from the system (a) with a steep removal in the first 

case and (b) a slow but constant removal rate in the latter. Our overall impression is 

that, with the exception of few environments with a strict adherence to the dictations 

of relational theory, foreign keys are scarce and occasionally unwanted. 

Concerning the behavior of individual nodes, it appears that degree and survival are 

positively related, and, in fact, there is an inverse-gamma pattern in the correlation of 

degree and survival. The pattern suggests that low degrees carry a non-negligible 

probability of removal for the corresponding tables; at the same time, high degrees, 

although scarce enough, carry a probability of removal 5%-19% lower than average. 

We have also studied nodes for their clustering coefficient and vertex betweenness 

centrality with rather inconclusive results in terms of node survival. Finally, it 

appears that nodes touched by edges with high edge betweenness centrality, 

frequently (but not always) have higher chances of survival than nodes with a single 

or zero inciting edges. 

 

1.2 Roadmap 

In Chapter 2, we review the state of the art that is closely related to our problem. In 

Chapter 3, we discuss background concepts around foreign keys, graph metrics as 

well as the data extraction process and a summary of the tool we have developed for 

our work. In Chapter 4, we discuss the evolution of foreign keys viewed from the 

point of view of the entire schema. In Chapter 5, we focus on graph metrics for 

individual tables and foreign keys and discuss how these graph metrics related to the 

survival of tables. In Chapter 6, we discuss the internal architecture of the tool we 

have developed, Parmenidian Truth. Finally, in Chapter 7, we conclude our 

discussion and offer suggestions for follow up work. 
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CHAPTER 2.  

RELATED WORK 

2.1 Case studies concerning schema evolution 

2.2 Node importance in graphs 

2.1 Case studies concerning schema evolution 

The first case study we will discuss [Kara01], concerns the impacts that database 

schema evolution has to the application level at a macroscopic level. This research 

was conducted for the purpose of providing a technology for maintaining 

consistency between database schemata and their corresponding applications, in an 

object-oriented context, and, at the same time, providing the evaluation of this 

technology from the perspective of the schema and application developers. The 

authors applied the transitive closure algorithm, which takes as input a directed acyclic 

graph with components as nodes and relationships between them as edges and finds 

all components reachable from a given component, in their tool where schema and 

application components are represented as nodes and the relationship between them 

as edges. The kinds of relationship between components are inheritance, 

encapsulation, aggregation, and usage. Based on this idea, the authors created a tool 

called SEMT (Schema Evolution Management Tool), where the components are 

extracted from the source files and the relationships between them are identified. The 

evaluation was focused on performance and usability. The general user satisfaction 

was relatively high. In the end, the purpose of this paper was to highlight that the 

ensuring of consistency between a database schema and applications during schema 

evolution is a non-trivial task. So, by applying knowledge from the software change 
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impact analysis and software visualization in the area of database schema evolution 

the SEMT tool was created. 

 

The next case study that we discuss in this section was performed by Sjøberg 

[Sjob93], where a method for measuring modifications to database schemata and 

their consequences, was presented. For this purpose, a measuring tool, Thesaurus, 

was built to monitor the evolution of a large, industrial database application, a health 

management system (HMS) for a period of 18 months. The Thesaurus tool assists in 

keeping track of the use of names in the HMS application. An important requirement 

of this tool was that its contents should not be manually maintained. This was 

achieved by periodically scheduled, source program and database schema scans, in 

order to detect record changes. The resulting publication of this research effort 

[Sjob93] reports on how the schema changed. During the period of the study, the 

number of relations increased from 23 to 55 (139% increase) and the number of fields 

increased from 178 to 666 (274%). Τhe most interesting result, however, is the fact 

that every relation had been changed. At the beginning of the development, almost 

all changes were additions. After the system provided a prototype and later went 

into production use, there was not a diminution in the number of changes, but the 

additions and deletions were more nearly in balance. Having measured the 

consequences of the schema changes on the application programs, the author 

suggests that the results confirm that change management tools are needed. 

 

Our next case study [CMTZ08] presents an in-depth analysis of the evolution history 

of the Wikipedia database and its schema. For the purpose of this study a schema 

evolution tool is produced for the analysis of a real-life web information system. The 

authors studied the evolution of the MediaWiki software, which is a browser-based 

web-application under the hood of many applications, and most importantly, 

Wikipedia. First, the authors studied the size of MediaWiki DB schema in history in 

terms of the number of tables and columns. The number of tables has increased from 

17 to 34 (100% increase) and the number of columns from 100 to 242 (142%). The 

schema growth is due to three main driving forces, specifically, (a) performance 

improvement, (b) addition of new features, and, (c) the growing need for 

preservation of the history of the contents of the database. The authors also classified 

changes in schema size in two different ways, macroscopically, by focusing on 

schema change, index/key adjustments, rollback to previous versions and 

documentation changes, and microscopically, by making use of the Schema 

Modification Operators, which are SQL queries like Create Table, Drop Table, Rename 

table etc. So, in order to study the effect of schema evolution on the frontend 
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applications, the authors analyzed the impact of the schema changes on a variety of 

different sets of queries and resulted to the conclusion that MediaWiki had 

undergone through a very intensive schema evolution as a result of a cooperative, 

multi-party development, something that is common in leading-edge Web 

Information projects. 

 

In another line of work, the main goal of [LiNe09] is the study of Collateral evolution of 

applications and databases. This term is used in order to denote potential 

inconsistencies that arise when a database and the application programs using that 

database do not evolve simultaneously. In this work, object of study was the 

relationship between the evolution of an application and the evolution of the 

database system used to store the necessary data. Apparently, if these lines of 

evolution are not performed in sync, this may lead to collateral effects such as data 

loss, program failure, or decreased performance. To collect empirical evidence on the 

collateral evolution of application programs and databases, the authors followed the 

following steps: 

- Firstly, an evolution study that identified changes to database schemas was 

performed 

- Secondly, the evolution of database file formats was studied 

- Next, an investigation in how application programs and database 

management systems cope with these changes was done 

- Finally, some solutions for facilitating and ensuring the safety of applications 

and database evolution were given. 

The conclusion of this study is that the current co-evolution approaches are 

inadequate and further research towards this goal is needed. 

  

In the work of [SkVZ14], the authors performed a large-case study on the evolution 

of open-source databases and made observations regarding Lehman’s laws of 

software evolution. For the purpose of this case study eight datasets were collected 

and cleansed. The resulting histories were then processed by a tool, Hecate, which 

was built for this purpose and proceeds in the following sequence of steps: 

- First, Hecate, detects changes at both the attribute and the relation level 

- Second, the tool produces the differences between two subsequent committed 

versions for all the subsequent versions in the schema history. This transcript 
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of changes is a sequence of deltas for each transition from a version to the 

next. 

- Finally, based on all this sequence of detected changes, Hecate, produces 

statistical measures that characterize not only the overall evolution of the 

entire schema, but also the evolution of individual tables.  

This study made several contributions regarding the evolution of real-world open-

source databases, the most interesting of which are: 

- The schema evolution happens in bursts and in grouped periods of 

evolutionary activity and not as a continuous process 

- All datasets had the tendency to grow over time 

- Age results to a reduction in the density of changes  

- Change is quite more frequent in the beginning 

- The schema size of a certain version of the database can be accurately 

estimated via a regressive formula that exploits the amount of changes in 

previous versions 

2.2 Node importance in graphs 

Another study [WhSm03] addresses the definition and computation of the 

importance of nodes in a graph, relative to one or more root nodes. The authors 

study a selection of different algorithms from social networks and graph theory, like 

Markov models and Web analysis. Then, these algorithms are evaluated based on 

simulated data on toy graphs as well as on real-work networks. Regarding node 

importance, a number of different approaches have been developed, like the 

centrality of a node in a social network, as well as the embedding of a social network 

data in latent Euclidean spaces. In the area of Web graphs, computer scientists have 

proposed a number of algorithms like HITS and PageRank. The purpose of 

[WhSm03] is to determine the relative importance of nodes in a graph with respect to 

a set of root nodes. Using graph-theoretic notions of distance defined explicitly on 

the graph as a general framework for estimating relative importance the authors 

indicate the following algorithms:  

- Shortest paths, an important metric for measuring pair-wise relations in a 

graph 
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- K-shortest paths, for taking into consideration paths that are usually longer 

than the shortest path but important nonetheless 

- K-short Node-Disjoint Paths, which refers to sets of k-short paths that have 

neither edges nor nodes in common 

Thereinafter, the authors make a conceptually different approach, as to view the 

graph as representing a stochastic process, more specifically, a first-order Markov 

chain. So, they study focuses on the ensuing algorithms: 

- Markov Centrality, where the inverse of the mean first-passage time in the 

Markov chain is examined 

- PageRank with Priors, where the PageRank algorithm is extended to generate 

personalized ranks, and therefore is retrofitted into the current framework 

- HITS with Priors, similar to the prior modification, the HITS algorithm is 

extended to fit the same framework 

- K-step Markov, similar to the PageRank with priors and Hits with priors, but 

this time the procedure ends after K steps 

Finally, those algorithms were tested in both simulated and real-world data with 

promising results, for the identification of relative-importance nodes. 

 

In this master thesis, we try to find out which graph-theoretic properties, if any, are 

helpful for predicting a relational database’s schema evolution. At first, we study 

each schema’s graph macroscopically, trying to find if there is any correlation 

regarding the number of nodes, edges, weak components and diameter. Afterwards, 

we consider metrics that microscopically describe the graph and contain information 

about its topography, such as the in and out degree of a node, its clustering 

coefficient, and the vertex and edge betweenness. 
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CHAPTER 3.  

BACKGROUND CONCEPTS 

3.1 Fundamental Definitions 

3.2 Node and Edge Properties 

3.3 Graph Properties  

3.4 Parmenidian Truth 

3.1 Fundamental Definitions 

The schema or intention of a relation is defined as a triplet (name, set of attributes, 

primary key). A foreign key constraint is a pair between a set of attributes in a certain 

relation R (called the source of the foreign key) and a set of attributes in a relation R 

(called the target of the foreign key). The foreign key constraint requires a 1:1 

mapping between the attributes of the source and the target. As usual, at the 

extensional level, the semantics of the foreign key denote a subset relation between 

the instances of the source and the instances of the target. For the purpose of this 

thesis, we treat a relational database schema as a set of relations along with their 

foreign key constraints. 

We model the database schema as a directed graph G(V, E), with relations as nodes 

and foreign keys as directed edges, originating from their source and targeted to 

their target. If two relations have more than one foreign key with the same direction, 
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the single edge that connects them is annotated with all the foreign key pairs 

involved. 

The evolution history of each database schema can be thought of as (a) a sequence of 

versions, but also as (b) a sequence of revisions. Unless otherwise specified, we will 

treat the term history under the semantics of the former of the two representations. 

 

Schemata as graphs. Each version of the schema vi is a graph Gi(Vi,Ei). A transition 

between two subsequent versions of the history involves a set of changes involving 

relation additions, relation deletions, relation updates (attribute additions or 

deletions, change of attribute data types, changes of primary keys), as well as foreign 

key additions and deletions. 

 

Diachronic Graph. Assuming an evolution history H={v1, …, vn} for the database 

schema, the Diachronic Graph of the database schema is a graph GΩ (VΩ,EΩ) where 

(a) VΩ is the union of all Vi, and (b) EΩ is the union of all Ei.  

 

As an example, the evolution history of the Egee dataset is presented in Figure 1. The 

first graph represents Egees’ Diachronic graph and the following graphs represent a 

few versions with deletions and additions that shaped the Diachronic graph. The 

idea is that nodes are only added to the diachronic graph; thus it is the outcome of 

progressively adding all the table additions to the original version, without removing 

any. Observe that in the second version, two tables are deleted; yet they are present 

in the Diachronic Graph. In terms of coloring, a node that is deleted is colored red, 

nodes that are added are colored green and nodes with internal updates (e.g., 

attribute additions, deletions, etc) are yellow. 
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Diachronic Graph 

 

Start: v. 1.0.1 

 

Deletions: v. 1.0.2 

 

Additions: v. 1.0.8 

 
Additions: v. 1.0.15 

 
Additions: v. 1.0.17 

(final v.) 

Figure 1 Diachronic graph of Egee along with its starting versions 
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3.2 Node and Edge Properties 

As we will work with a graph representation of our schemata, we will attempt a 

graph-metric assessment of how the schema evolves. In other words, we will assess 

how important measurable properties of the graph evolve over time. In our 

deliberations, we employ several graph metrics that can be classified as (a) applicable 

to individual nodes and (b) to the entire graph1. 

3.2.1 Degree 

Degree of a node. The degree of a node, degree(v), is the number of edges incident to the 

node. 

In-Degree of a node. The in-degree of a node, in-degree(v), is the number of incoming 

edges to the node. 

Out-Degree of a node: The out-degree of a node, out-degree(v), is the number of 

outgoing edges to the node. 

3.2.2 Centrality and Prestige 

Given two arbitrary nodes of a graph, it is possible that more than one paths exist 

that connect them. The distance between two nodes in a graph is the number of 

edges in a shortest path connecting them. If there is no path connecting the two 

nodes, i.e., if they belong to different connected components, then, conventionally 

their distance is defined as infinite. 

 

Eccentricity. The eccentricity ecc(v) of a node v in a graph, is the maximum distance of 

v with respect to any other node in the graph. Conventionally, low values of 

eccentricity indicate nodes with a central position in the graph, thus a low 

eccentricity is a good indicator of a node’s centrality. 

                                                 

 

 

1 All the definitions are based on the online dictionary of graph metrics available at 
http://reference.wolfram.com/language/Combinatorica/guide/GraphProperties.html  
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The Betweenness-Centrality is an indicator of a node's centrality in a network and it is 

equal to the percentage of shortest paths from all nodes to all others that pass 

through that node. A node with high betweenness centrality has a large influence on 

the transfer of items through the network, under the assumption that item transfer 

follows the shortest paths [Brand01]. The same metric was used for both nodes and 

edges. 

 

3.2.3 Reciprocity and Transitivity 

Clustering coefficient. The clustering coefficient cc(v) of a node v is defined as follows: 

− If degree(v) belongs {0,1}, cc(v) := 0 

− Let N(v) denote the set of neighbors of v, i.e. every node u, such that an edge 

(u,v) or (v,u) belongs to the graph. Observe that in this definition, we treat the 

graph as undirected. Assume that the cardinality of N(v) is n, i.e., v has n 

neighbors. Then, the interconnectivity between the members of N(v), is 

quantified as the number of edges between members of N(v), denoted as EN(v). 

Then, cc(v) is defined as the division of EN(v) by the number of edges that 

could possibly exist between the members of the neighborhood of v, which is 

n⋅(n-1)⋅0.5. 

 

����� =
�����

	�	 − 1�
1
2

 

 

Less formally, the clustering coefficient cc(v) of a node v is the fraction of v's 

neighbors that are also neighbors of each other [Newm03].  



 

 

16 

3.3 Graph Properties 

Assuming a graph G(V, E), we can also measure the following properties of the 

graph. 

Number of Edges. The number of edges, |E|, that are contained in the graph. 

Number of Nodes. The number of nodes, |V|, that are contained in the graph. 

Number of Weak Components. A weak component is defined as a maximal subgraph 

with at least 2 nodes, in which all pairs of nodes in the subgraph are reachable from 

one another in the underlying undirected subgraph. 

Then, the nodes of the graph are partitioned into disjoint, non-adjacent partitions, 

V={V1 ∪ … ∪ Vn}, whose number we measure as the number of weak components of 

the graph. Note that we only consider non-trivial weak components that include at 

least two nodes. 

Diameter. The diameter of a graph is the maximum eccentricity of any node in the 

graph, or equivalently, the maximum shortest distance between any pair of nodes.   

In case there exists a pair of nodes for whom there is no path, the diameter is infinite. 

In order to compute the diameter of a database’s graph, we have treated it as 

undirected. 

3.3.1 Large weak component 

Since all the datasets that we studied for the purpose of this thesis are disconnected 

graphs2 , thus the diameter would be infinite, we need to find a way to assess the 

“size” of the graph via its diameter.  

We addressed this issue by defining as Weak component a maximal subgraph which 

would be connected if we ignored the direction of the edges. 

                                                 

 

 

2 It is interesting to consider that it takes just a single table without foreign keys to 

make the graph of the schema of any relational database fall in this category. 



We define the large weak component

includes the largest number of nodes 

Initially, we introduced the notion of a 

diameter, as an approximation of the diameter of the entire graph. As our research 

progressed, we discovered the potential value of th

observed that it contains, in almost every dataset the highest percentage of edges 

with respect to the whole graph and secondly, it contains a set of nodes and edges 

which survive until the end of each dataset’s lifetime

metrics for it as well, trying to correlate them with the ones of the entire graph.

Figure 2 A version of Atlas in Parmenidian Truth
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large weak component (LWC) of the graph as the weak component

includes the largest number of nodes among all components of the graph.

Initially, we introduced the notion of a large weak component in order to compute its 

diameter, as an approximation of the diameter of the entire graph. As our research 

progressed, we discovered the potential value of the large weak component. 

observed that it contains, in almost every dataset the highest percentage of edges 

with respect to the whole graph and secondly, it contains a set of nodes and edges 

which survive until the end of each dataset’s lifetime. So we computed the graph 

metrics for it as well, trying to correlate them with the ones of the entire graph.

A version of Atlas in Parmenidian Truth 

 

 

weak component that 

among all components of the graph.  

in order to compute its 

diameter, as an approximation of the diameter of the entire graph. As our research 

large weak component. Firstly, we 

observed that it contains, in almost every dataset the highest percentage of edges 

with respect to the whole graph and secondly, it contains a set of nodes and edges 

So we computed the graph 

metrics for it as well, trying to correlate them with the ones of the entire graph. 
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3.4 Parmenidian Truth 

The tool Parmenidian Truth [https://github.com/DAINTINESS-Group/ParmenidianTruth] 

is a tool with the goal of producing the evolution of the schema of a relational 

database as a movie. Given the history of a database, expressed as a sequence of data 

definition files, and consequently, a sequence of differences between subsequent 

versions, Parmenidian truth visualizes each version of the database schema as a 

graph, with tables as nodes and foreign keys as edges and produces a PowerPoint 

presentation, with one slide per version (appropriately annotated with color to 

highlight the tables affected by change). Along with the appropriate visualization 

provisions, the result is practically a movie on how the schema of the database has 

evolved. 

A fundamental requirement for the smooth advancement of the movie is that tables 

do not change place in the screen once a new version of the schema is displayed. So, 

we need to produce a “global” positioning of tables, with each table retaining its 

coordinates along the entire history of the database. To this end, we introduce the 

idea of the Diachronic Graph, a graph that encompasses a node for every table that 

has ever appeared in the history of the database and an edge for every foreign key 

that has ever appeared in the history of the database. One can think of the Diachronic 

Graph as the superimposition of all the graphs of the different versions – 

equivalently, the graph of each version is the projection of the Diachronic Graph for 

the tables and foreign keys that are present in that particular version. 

The tool proceeds as follows: 

− The input to Parmenidian Truth is the history of a database's schema, 

expressed as a sequence of versions as well as the changes that appear during 

each transition among subsequent versions. 

− The tool locates every table and every foreign key that takes part in a 

database's lifetime in all its versions.  

− Then, the tool constructs the Diachronic Graph of the database, which is a 

graph that contains the union of the database's tables and its foreign keys 

throughout its entire history 

− The tool automatically places the nodes of the diachronic graph in a two 

dimensional surface; this layout is retained for all versions, and consequently, 

each table gets fixed coordinates for all the versions of the history. 

− For each version of the database schema, we project the graph that 

corresponds to it as a subgraph of the Diachronic Graph, retaining the 
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coordinates of the nodes as previously computed and export the result as an 

image file  

− The tool automatically constructs a PowerPoint Presentation, where each 

version comes with a slide that contains the respective image file 

− The PowerPoint Presentation can be converted to wmv and mp4 files if the 

user wishes 

− The history of the database schema as well as the Diachronic Graph are 

subjects to the extraction of graph-based measures (per version, per table, or 

overall) that characterize the evolution of both the schema in its entirety and 

its constituent tables 
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CHAPTER 4.  

GRAPH METRICS EVOLUTION 

4.1 Experimental Setup 

4.2 Total number of nodes and edges 

4.3 Diameter of Large Weak Component and number of Weak Components 

4.4 How do the nodes and edges of Diachronic graph relate to evolution  

4.5 Summary of Findings 

4.1 Experimental Setup 

In this section, we provide a brief description and some key statistics for the datasets 

that we have studied. In the case where preprocessing was needed for a dataset to be 

imported in our tool, we provide a detailed analysis of all the actions that were taken, 

for cleansing it. 

4.1.1 Atlas Trigger 

ATLAS (https://twiki.cern.ch/twiki/bin/view/Atlas/TriggerDAQ, http://atlasexperiment.org/ 

trigger.html, and http://atdaq-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/offline/Trigger/ 

TrigConfiguration/TrigDb/share/sql/combined_schema.sql) is a particle physics experiment 
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at the Large Hadron Collider at CERN, the European Organization for Nuclear 

Research based on Geneva, Switzerland. ATLAS is notably known for its attempt to 

find the Higgs boson, although its scientific aims are much broader. Trigger is one of 

the software modules used in the ATLAS project and it is responsible of filtering the 

very large amounts of data collected by the Collider and storing them in its database. 

This database uses the Oracle RDBMS. This dataset has a lifespan of 2 years and it 

consists of 85 revisions. Atlas started its life with 56 tables and 61 foreign key 

relationships and ended it with 73 tables (approximately 30% schema growth with 

respect to its starting size) and 63 foreign key relationships (approximately 3% 

foreign key growth).  

The diachronic graph of Atlas consists of 88 tables and 88 edges – foreign key 

relationships. Unfortunately, although the schema history was publicly available at 

the time that we performed the data collection, currently, the data are unavailable 

from their original source. 

4.1.2 BioSQL 

BioSQL(http://biosql.org/wiki/Main_Page and https://github.com/biosql/biosql/blob/ 

master/sql/biosqldb-mysql.sql) is a generic relational schema with the aim of providing 

a unified access to data from various sources such as GenBank or Swissport that store 

genomic data like sequences, features, etc. BioSQL facilitates data storage and 

interoperability for the different projects of the Open Bioinformatics Foundation 

(OBF) projects (those include BioPerl, BioPython, BioJava, and BioRuby) that are 

open source toolkits for the manipulation of these data. The currently supported 

Relation Database Management Systems (RDBMSs) are MySQL, PostgreSQL, Oracle 

and SQLite. This dataset has a lifespan of 6.6 years and it consists of 47 revisions. 

BioSQL started its life with 21 tables and 17 foreign key relationships and ended it 

with 28 tables (approximately 33% schema growth) and 43 foreign key relationships 

(approximately 53% foreign key growth).  

The diachronic graph of BioSQL consists of 45 tables and 79 edges – foreign key 

relationships. In some schemata of BioSQL whenever a double field was declared it 

was annotated as Double Precision, while our parser expected to read a double value. 

So, the preprocessing that took place, was simply the detection of the keyword 

precision followed after the keyword double and whenever detected we erased it. 
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4.1.3 EGEE-II: JRA1 Activity 

Egee (http://egee-jra1.web.cern.ch/egee-jra1) is the EU-funded project Enabling Grids 

for E-SciencE, more generally known as EGEE, whose goals was to provide 

researchers with access to computational Grids.  

EGEE’s goal was to provide researchers in academia and industry with round-the-

clock access to major computing resources, independent of geographic location. The 

infrastructure will support distributed research communities, which share common 

Grid computing needs and are prepared to integrate their own computing 

infrastructures and agree on common access policies. This database uses the Oracle 

and MySQL RDBMS. This dataset has a lifespan of 4 years and consists of 17 

revisions. EGEE started its life with 6 tables and 3 foreign key relationships and 

ended it with 10 tables (approximately 67% schema growth) and 4 foreign key 

relationships (approximately 33% foreign key growth).  

The diachronic graph of EGEE consists of 12 tables and 6 edges – foreign key 

relationships. Like the aforementioned project Atlas, hosted by CERN, direct access 

to Egee data is no longer available. 

4.1.4 Castor 

CASTOR (http://castor.web.cern.ch/ previously at http://castor-obsolete-

201310.web.cern.ch/) stands for the CERN Advanced STORage manager, is a 

hierarchical storage management (HSM) system developed at CERN used to store 

physics production files and user files. Files can be stored, listed, retrieved and 

remotely accessed using CASTOR command-line tools or user applications that were 

developed using the CASTOR API. This database uses the Oracle RDBMS. This 

dataset has a lifespan of 3 years and consists of 194 revisions. Castor started its life 

with 62 tables and only 6 foreign key relationships and ended it with 74 tables 

(approximately 20% schema growth) and 10 foreign key relationships 

(approximately 67% foreign key growth).  

The diachronic graph of Castor consists of 91 tables and 13 edges – foreign key 

relationships. In most of Castor’s schemata additionally, to declaring and modifying 

tables as well as, foreign keys, other actions also took place like, building and 

organizing indexes, declaring and executing stored procedures, creating triggers. 

However, we only needed to parse the declaration of tables and foreign keys. So, for 

preprocessing Castor, we built a script containing regular expressions that captivated 

only the information we needed, and stored it to a new set of schemata forming our 

new Castor dataset. 
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4.1.5 SlashCode 

SlashCode (http://www.slashcode.com/ and http://slashcode.git.sourceforge.net/ ) is host 

of Slash, an architecture for building web sites, most famously known for supporting 

the Slashdot website. It is written in Perl and built on top of Apache. This database 

uses the MySQL RDBMS. This dataset has a lifespan of 12.5 years and consists of 399 

revisions. SlashCode started its life with 42 tables and 0 foreign key relationships and 

ended it with 87 tables (approximately 108% schema growth) and 0 foreign key 

relationships (0% foreign key growth), however during SlashCode’s schema 

evolution foreign key relationships made their appearance, but faded in the end.  

The diachronic graph of SlashCode consists of 126 tables and 47 edges- foreign key 

relationships. 

4.1.6  Zabbix 

Zabbix (http://www.zabbix.com/) is an open source distributed monitoring solution that 

can be used for the monitoring of networks, servers and virtual machines. This 

database uses the MySQL RDBMS. This dataset has a lifespan of 10.8 years and 

consists of 160 revisions. Zabbix started its life with 15 tables and 10 foreign key 

relationships and ended it with 48 tables (220% schema growth) and 2 foreign key 

relationships (80% foreign key loss).  

The diachronic graph of Zabbix consists of 58 tables and 38 edges – foreign key 

relationships. For this dataset we used the PostgreSQL version available online. Most 

of Zabbix’s schemata contained some external procedure calls that we needed to 

remove for parsing it correctly. Additionally, we also corrected minor syntactic 

failures like missing parenthesis when declaring foreign keys. These actions, are the 

preprocessing that took place for this dataset. 
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Dataset Versions Lifetime 
Tables 

Start 

Tables 

End 

Tables 

@ Diach. 

Table 

Growth 

FKs 

Start 

FKs 

End 

FKs 

@ Diach. 

FK  

Growth 

Atlas 85 2 Y, 7 M 56 73 88 30% 61 63 88 3% 

BioSQL 47 6 Y, 7 M 21 28 45 33% 17 43 79 153% 

Egee 17 4Y 6 10 12 67% 3 4 6 33% 

Castor 194 3Y 62 74 91 20% 6 10 13 67% 

SlashCode 399 12 Y, 6 M 42 87 126 108% 0 0 47 - 

Zabbix 160 10 Y, 10 M 15 48 58 220% 10 2 38 -80% 

Table 1 A description of the datasets we have used in this study 

 



4.2 Total number of node and 

In this section we visualize the evolution of the 

on the total number of nodes and edges throughout their entire lifetime.

 

Figure 3 Number of nodes and edges over time for the 6 studied data sets
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Total number of node and edges 

In this section we visualize the evolution of the aforementioned datasets, based 

on the total number of nodes and edges throughout their entire lifetime.
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aforementioned datasets, based 

on the total number of nodes and edges throughout their entire lifetime. 
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In the following discussions, we comment on the trends of the number of edges and 

nodes. Moreover, we computed the Pearson correlation between the evolution of the 

size of nodes and the evolution of the size of edges for each respective dataset. In the 

cases where there is a high correlation between them we can continue our research 

by studying only one of the two. The results are gathered in Table 2. 

 

Table 2 Correlation of nodes and edges for the six datasets 

We observe that in the first two datasets, Egee and BioSQL, there is a high correlation 

between the size of nodes and edges. Observing the trend-lines corresponding to 

total number of tables and edges respectively, we can clearly see that they follow the 

same pattern. Meaning that the addition of a table would probably mean the 

addition of an edge two. So, as far as these two datasets are concerned, there is no 

need of studying separately, tables and edges, choosing one will suffice. 

 In the Atlas case, we can only say that there is a medium correlation between the 

nodes and edges. Their respective trend-lines seem to follow a pattern, this 

correlation though is not as strong as before. 

 In the last three datasets the correlation is very small, and in the SlashCode case it is 

even negative, meaning that the evolution of schema size and the size of foreign key 

relationships are inversely proportional.  

As we can see from the graphical representations of Figure 3, Castor is a relatively 

quiet dataset. Both of the trend-lines corresponding to schema growth and foreign 

key relationship growth are almost flat. But during the end of Castor’s evolution we 

observe that there is a fall in the number of edges while the number of tables remains 

unaffected. At the end Castor finishes its evolution with 74 tables and only 10 edges. 

It is noteworthy, that the versions of Castor in Oracle and MySQL never had foreign 

keys. Observing the whole of Castor’s lifetime, we can conclude that is a database 

 Egee BioSQL Atlas Castor SlashCode Zabbix 

Pearson 

correlation 

for Nodes 

and Edges 

 

94.79% 

 

96% 

 

 

71.60% 

 

 

11% 

 

 

-67% 

 

 

42% 
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whose administrators, from the start till the end, do not favor the existence of foreign 

keys. Thus the correlation between the total number of tables and edges is only 11%. 

The Zabbix dataset also has a low correlation between total number of tables and 

foreign keys. Observing its respective trend-lines we can see that edges were added 

and removed throughout its lifetime while tables kept rising. Finally, near the end, at 

version 151, the majority of the edges was removed, while at the same time the total 

number of tables was hardly affected, ending its evolution with the total of 48 tables 

and only two edges. Again in this dataset the existence of a high number of foreign 

keys compared to the total number of tables was not favored. This is fairly obvious, 

since all the foreign keys are massively deleted. 

Observe that in the case of the SlashCode dataset, we started studying it after its 74th 

version. We followed this approach because before that revision no edges were 

present rendering most of our metrics meaningless. In this thesis we study graph – 

theoretic properties and a graph without edges can hardly qualify as a graph, thus 

our approach of studying SlashCode after its edges appear at version 74. Much like 

the Zabbix case, the trend-line corresponding to the total number of edges contains 

its ups and downs, comparing to the trend-line corresponding to the total number of 

tables, which mostly keeps rising. In the same way as in the case of Zabbix, all the 

edges disappear near the end. Thus SlashCode ends its evolutions with 87 tables and 

0 edges. SlashCode is a dataset with 399 revisions, from which, only after the 74th, 

edges make their appearance, and in the end all of them are removed. Once again we 

can say that foreign key relationships were not favored, justifying the negative 

Pearson score. 



4.3 Diameter of Large Weak Component 

Components 

Figure 4 Size of Diameter and Number of Weak Components over time for the 6 
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Diameter of Large Weak Component & number of Weak 

Size of Diameter and Number of Weak Components over time for the 6 

studied data sets 
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In this section we study the evolution of the Diameter of the Large Weak 

Component, as well as the number of weak components that exist in the database’s 

schema. 

The LWC is an important part of our study since we use it to measure some 

important metrics such as the approximation of the diameter of the graph. As we can 

see in Figure 4, the diameter of the LWC is fairly stable over time. Atlas BioSQL and 

Castor2 have pretty much a stable diameter throughout their entire lifetime. Egee 

reaches this stability soon enough. Lastly, the two CMSs have rather abrupt changes 

in both their diameter and in their number of weak components. SlashCode loses 

suddenly all of its edges for just a version making that negative spike, we could 

argue that this was a wrong commit. But nonetheless SlashCode comes with a period 

where it progressively loses all of its edges at the end of its lifetime. Zabbix follows 

pretty much the same pattern of change as SlashCode but this time the changes and 

the loss of all the edges is abrupt; in any case, Zabbix loses all its edges at the end as 

well.  

Overall, it is interesting to observe that, in the two data sets where the diameter 

evolved with disruptions, peaks and valleys (as opposed to the smooth progress 

observed in other data sets), in the end, the data set lost all of its edges. Although we 

cannot generalize the phenomenon as a rule, it appears that, if foreign keys are not so 

welcome by the developers who maintain the system, there are early signs of it in the 

heartbeat of the schema. 

 

 Atlas Biosql Castor Egee Slash 

Code 

Zabbix 

|V| - |E| 71.6% 96% 11% 94.79% -67% 42% 

|V| - |C| 80.65% -18% -14% - -39% 67% 

|E| - |C| 41.60% -37% 32% - 21% 60% 

|V| – LWC δ -62.97% - 43% 82.75% -60% -1% 

|E| – LWC δ -35.64% - 46% 75.61% 92% 73% 

|C|- LWC δ -76.42% - -65% - 39% 9% 

Table 3 Pearson correlation for the studied metrics, with |V| standing for number of 

nodes, |E| for number of edges, |C| for number of weak components and δ for 

diameter 



Figure 5 Percentage of Nodes and Edges within the LWC over time for the 6 studied datasets
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Percentage of Nodes and Edges within the LWC over time for the 6 studied datasets
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In Figure 5, the percentage of nodes and edges that is contained in the large weak 

component is shown. It is interesting to observe that, in almost every dataset that we 

studied for the purpose of this thesis, the LWC contains the majority of the edges of 

the entire graph. Moreover, the percentage of the edges contained in the LWC is 

always higher than the percentage of nodes. This means, that there is only one grand 

neighborhood where nodes are connected, and not small, isolated neighborhoods of 

nodes. Our conclusion from these observations is that the foreign keys are either 

spanning the entire schema (like the cases of Atlas and BioSQL), or at least, a large 

part of it (Zabbix, Egee and SlashCode), or completely neglected (like the case of 

Castor.) 
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4.4 How do the nodes and edges of Diachronic graph relate to the 

average graph snapshot 

As we discussed above, the diachronic graph is the union of nodes and edges of each 

revision of the database’s schema. The main purpose of its creation, is to pinpoint 

and finalize the coordinates of each table, so that it has fixed coordinates as we 

render through the schema evolution. In this section however, we try to see how the 

number of nodes and edges that are contained in the diachronic graph, relates to each 

version’s number of nodes and edges, throughout the database’s evolution.  

Table 4 Number of nodes contained in each dataset’s lifetime 

In Tables 4 and 5, for each dataset, we report the average, maximum and minimum 

number of nodes or edges. To compute this value, we take the actual number of 

nodes and edges, for each version in the history of the data set and we apply the 

respective aggregate function.  

Table 5 Number of edges contained in each dataset’s lifetime 

# Nodes Atlas BioSQL Castor Egee SlashCode Zabbix 

D.G. 88 45 91 12 126 58 

Average 59.44 23.85 67.19 6.82 56.01 34.07 

Max 73 28 76 10 87 48 

Min 51 18 62 4 34 14 

# Edges Atlas BioSQL Castor Egee SlashCode Zabbix 

D.G. 88 79 13 6 47 38 

Average 56.93 32.23 8.26 3.35 17.51 18.89 

Max 63 43 10 4 41 28 

Min 52 17 6 2 0 2 
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Non-surprisingly, the measures of the diachronic graph are the highest of all four 

categories. The diachronic graph is the union of all the tables and edges that 

participate in a database’s schema evolution, as a result it is expected to gather the 

highest values of total nodes and edges. 

By dividing, the contents of all the 3 last lines of Tables 4 and 5 over the respective 

first line (i.e. the size of the Diachronic Graph), we compute the respective numbers 

as percentages over the Diachronic Graph. We list the measurements of number of 

nodes in Table 6 and respective measurement for edges in Table 7. 

As we can see in Tables 6 and 7, on average, a version has approximately 60% of the 

nodes of the diachronic graph and 50% of its edges, although the variation per data 

set differs a lot. The standard deviation between the individual percentages is 

around 10% for both edges and nodes. The minimum value has a quite large range 

for the different data sets and is clearly related with the update rate of a dataset: 

datasets with low update activity start high and just evolve towards larger values. 

Datasets with larger rates for table birth and death start from lower values and reach 

lower maximum values too. 

# Nodes as pct 

over DG 

Atlas BioSQL Castor Egee Slash 

Code 

Zabbix Avg stdev 

Average 68% 53% 74% 57% 44% 59% 59% 10% 

Max 83% 62% 84% 83% 69% 83% 77% 9% 

Min 58% 40% 68% 33% 27% 24% 42% 18% 

Table 6 Number of nodes as percentage of the nodes of the Diachronic Graph 

 

# Edges as pct 

over DG 

Atlas BioSQL Castor Egee Slash 

Code 

Zabbix Avg stdev 

Average 65% 41% 64% 56% 37% 50% 52% 11% 

Max 72% 54% 77% 67% 87% 74% 72% 11% 

Min 59% 22% 46% 33% 0% 5% 28% 23% 

Table 7 Number of edges as percentage of the edges of the Diachronic Graph 
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4.5 Summary of Findings 

In this chapter, we have calculated metrics regarding the size and structure of the 

graph. Our findings can be summarized as follows: 

- Total number of nodes and edges. In this section we calculated the total number 

of nodes and edges for each respective dataset. Next, we tried to correlate 

these two measures in order to see if there is any correlation, or not, between 

them. It is interesting to see that two datasets share a strong correlation 

between those measures while a third one shares a weaker correlation. 

Nonetheless, it is important to note that the former 3 datasets contain a steady 

number of edges and keep them alive until the end of our observation. 

Opposing to the latter datasets that their total edge count over time is 

unstable, and tend to lose all their edges at the end. 

- Diameter is typically constant with values ranging between 1 and 4. 

- Number of weak components is typically low between 1 of 3. The largest weak 

Component contains most of the times, more than 60% of the nodes and more 

than 80% of the edges of the graph.  

- Number of nodes increases slowly, with periods of calmness 

- Number of edges increases also, but not fully in sync with number of nodes. It 

depends on the dataset. 
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CHAPTER 5.  

EVOLUTION OF TABLE AND FOREIGN KEY METRICS 

5.1 Simple degrees and their relationship to the table evolution 

5.2 Clustering Coefficient and its relationship to table evolution 

5.3 Vertex Betweenness Centrality and its relationship to table evolution 

5.4 Edge Betweenness and its relationship to schema evolution 

5.5 Summary of Findings 

5.1 Simple degrees and their relationship to the table evolution 

 

InDegree Breakdown inDegree 

@Diach 

inDegree 

@Birth 

inDegree 

@Death 

inDegree 

AVG 

Biodatabase 1 1 1 1.00 

Term_relationship 1 0 1 0.47 

Cache_corba_support 0 0 0 0.00 

Table 8 InDegree variants for specific nodes during evolution 
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We have used our tool Parmenidian Truth, to produce the in- and out-degree of each 

relation, represented as a node, in every version of the database’s life. As a result, we 

came up with the specific measurements of the in/out degrees for each version of the 

history of the schema, plus one extra value derived from the Diachronic Graph. 

Apart from these measurements, we have calculated for each table, the degrees at the 

time of its birth, its last known version and the average value over their lifetime. In 

Table 8, we indicatively list a few tables with the variants of their In-Degree metrics. 

The first problem we had to address was the decision on which measurement we 

could base our analysis on, as, it was possible for us to choose from a variant of 

values for only a specific metric. Specifically, the involved variants of the in-degree 

are defined as follows: 

- The inDegree@Diach is the In-Degree value of the respective node as measured 

in the Diachronic graph. 

- The inDegree@Birth is the In-Degree value of the respective node as measured 

in the first revision of the database’s schema. 

- The inDegree@Death is the In-Degree value of the respective node as measured 

in the final version of the database history for survivors and the time of death 

for deleted tables.  

- Lastly, the inDegree AVG is the average In-Degree value of the respective node 

throughout the database’s lifetime. It is important to note that whenever a 

node was absent in a revision, that revision was nοt taken into account when 

computing the average. 

Given the above possibilities, we resorted to the average value of each degree as the 

most representative value since it takes into consideration the entire lifetime of the 

node. In other words, every version in which the node under examination is alive, 

contributes equivalently instead of assigning a distinct and arbitrary value of a single 

version as in the cases of Birth, Death, or even in Diachronic. 

 

5.1.1 Statistical profile for tables with respect to graph properties 

Firstly, we list the number of tables per value of the in and outDegree AVG metric 

Tables 9 and 10, and provide their bar-chart. Then, we study their joint distribution 

for all the datasets and depict it in Table 11. 
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inDegree 

AVG 

Egee BioSQL Atlas Castor SlashCode Zabbix 

0 8 30 48 81 114 42 

1 3 6 20 8 7 7 

2 1 2 11 1 2 6 

3 - 2 5 1 - 2 

4 - 2 - - 1 - 

5 - - 2 - - 1 

6 - - 1 - - - 

7 - - - - 1 - 

8 - 1 - - - - 

9 - 1 - - - - 

10 - - - - - - 

11 - - - - - - 

12 - - - - - - 

13 - - - - - - 

14 - - - - - - 

15 - 1 - - - - 

16 - - - - - - 

17 - - - - - - 

18 - - - - - - 

Table 9 InDegree Breakdown for the 6 studied datasets. Each cell represents how 

many tables of the database have the respective average value (rounded) of the first 

column. 
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outDegree 

AVG 

Egee BioSQL Atlas Castor SlashCode Zabbix 

0 7 7 43 83 95 32 

1 4 14 14 4 25 19 

2 1 22 28 - 6 7 

3 - 2 1 - - - 

4 - - 1 4 - - 

5 - - - - - - 

6 - - - - - - 

7 - - - - - - 

8 - - 1 - - - 

Table 10 OutDegree Breakdown for the 6 studied datasets. Each cell represents how 

many tables of the database have the respective average value (rounded) of the first 

column. 



Figure 6 Node Breakdown per Average InDegree for the 6 studied datasets
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Node Breakdown per Average InDegree for the 6 studied datasets

 

 

 

 

Node Breakdown per Average InDegree for the 6 studied datasets 



Figure 7 Node Breakdown per Average OutDegree for the 6 studied datasets
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Node Breakdown per Average OutDegree for the 6 studied datasets

 

 

 

Node Breakdown per Average OutDegree for the 6 studied datasets 
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Table 11 Joint Distribution for the average in/out degree for the 6 studied datasets. 

The rows are ordered by in- and out-degree value. Each cell represents how many 

tables of the database have the respective combination of values of the first two 

InDegree outDegree Egee BioSQL Atlas Castor SlashCode Zabbix 

0 0 6 2 11 75 90 23 

0 1 1 9 11 2 22 12 

0 2 1 19 25 4 2 7 

0 3 - 0 1 - - - 

1 0 1 3 15 6 3 4 

1 1 2 1 1 2 2 3 

1 2 - 1 2 - 2 - 

1 3 - 1 - - - - 

1 4 - - 1 - - - 

1 8 - - 1 - - - 

2 0 - - 10 1 - 4 

2 1 1 1 1 - - 2 

2 2 - 1 - - 2 - 

3 0 - 1 5 1 1 1 

3 1 - 1 - - - 1 

4 0 - 1 1 - - - 

4 1 - - - - 1 - 

4 3 - 1 - - - - 

5 0 - - 1 - - - 

5 1 - - 1 - - 1 

6 2 - - 1 - - - 

7 0 - - - - 1 - 

8 2 - 1 - - - - 

9 1 - 1 - - - - 

15 1 - 1 - - - - 
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columns. Note that these numbers refer to the tables of the entire lifetime of each 

dataset. 

Apart from the descriptive statistical analysis of the two degrees in question, we also 

assess the breakdown of tables with respect to both of them.In Table 12, we provide 

an aggregated overview for the breakdown of tables and the absence of edges for all 

the 6 datasets of our study. It is noteworthy, that from all the datasets that we have 

studied, only BioSQL and Atlas have a low number of nodes that are not incident to 

an edge. In two cases, Castor and SlashCode, the vast majority of tables are actually 

without edges and in another two, Egee and Zabbix, tables without edges are the 

largest group.  

 

In- 

degree 

Out-

degree  Egee BioSQL Atlas Castor 

Slash 

Code Zabbix 

0 0  50% 4% 12.5% 82% 71% 40% 

≠0 0  8% 11% 36% 9% 4% 16% 

0 ≠0  17% 62% 42% 7% 19% 33% 

≠0 ≠0  25% 22% 9% 2% 6% 12% 

Table 12 Breakdown of node percentages per combination of degrees for the 6 

studied datasets. 

More observations from the above numbers include: 

- A small percentage of nodes serve as a bridge (i.e. tables with both incoming 

and outgoing edges) between nodes. 

- The number of nodes classified as sinks (nodes that have incoming edges of 

foreign keys as lookups but no outgoing one) is smaller than the number of 

nodes classified as fountains (nodes that reference other tables as foreign keys 

but do not receive any edge themselves). 



 Figure 8 Distribution of nodes with respect to both their In and Out Degree scores for the 6 studied datasets

45 

Distribution of nodes with respect to both their In and Out Degree scores for the 6 studied datasets

 

 

Distribution of nodes with respect to both their In and Out Degree scores for the 6 studied datasets
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In Fig. 8, we use scatterplots to help us comprehend how in- and out- degree scores 

are distributed in each of the 6 studied datasets. The horizontal axis of each 

scatterplot represents the in-degree of a table and the vertical axis of the scatterplot 

represents the out-degree of a table. Each point in the scatterplot corresponds to a 

table. We use transparency in the coloring of the triangles representing tables; 

therefore, intense color in a particular triangle signifies high concentration of tables 

in the same (x,y) point of the chart, placed one on top of the other. As Figure 8 

demonstrates, the majority of nodes are concentrated to low in- and out- degree 

scores representing the lookup and the fact tables respectively.  

 

5.1.2 How simple degrees relate to the evolution of tables 

In this section, we provide a deeper investigation of the relationship of the in- and 

out- degree metrics with the survival of tables. 

The following research question concerns whether the different degrees of a node can 

predict its survival. To assess how survival is related to degree in the graph, we 

correlated the two measures; the result is visualized it in Figures 9 and 10. In the 

scatter plots of the both figures, the horizontal axis depicts the last known version of 

a table (thus, survivors are placed at the rightmost part of the figure, and all the other 

tables are dead tables). The vertical axis depicts the in and out degree of the nodes. A 

vertical red line discriminates the survivors from the dead tables.  

The scatterplots provide two observations: 

- With few exceptions, the higher the degree of a node is the more possible is, 

for the node to survive, 

- In all 6 datasets, there is an inverse-gamma pattern in the correlation of degree 

and survival. The pattern suggests that low degrees carry a non-negligible 

probability of removal for the corresponding tables; at the same time, high 

degrees carry a significantly lower probability of removal. 

Again, due to the use of transparency in the coloring of triangles, intense coloring 

means high concentration of triangles, overlaid one on top of the other, at the same 

(x,y) point in the chart. 
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 #nodes #nodes  

with deg>2 

#nodes  

survivor 

# nodes 

survivor 

&& 

deg>2 

 pct nodes  

with deg>2 

pct nodes  

survivor 

 P(survivor |  

deg>2) 

P(deg>2 | 

survivor) 

Egee 12 1 10 1  8% 83%  100% 10% 

BioSQL 45 11 28 8  24% 62%  73% 29% 

Atlas 88 15 73 14  17% 82%  87% 18% 

Castor 91 1 74 1  1% 81%  100% 1.3% 

SlashCode 126 7 87 6  6% 69%  86% 6.7% 

Zabbix 58 5 48 5  9% 82%  100% 11% 

Table 13 Probability of survival with respect to total degree 

In Table 13 we can see that nodes with a degree higher than 2 have significantly 

higher chances of survival than the average probability of survival for the entire 

dataset 

Specifically, the column P(survivor|deg>2) improves the survival rate contrasted to 

column pct nodes survivor with improvements in the area of 17%-19% with the 

exception of Atlas (only 5%) and BioSQL (11%). In 3 cases, the survival rate reaches 

100%. Unfortunately, the result involves a small amount of tables in the datasets 

(11% - 24% in column pct nodes with deg>2) and thus the predictive ability of this 

pattern is constrained to a small percentage of cases. 
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Figure 9 Contrasting InDegree scores with the last known appearance for the tables of the 6 studied datasets 
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Figure 10 Contrasting OutDegree scores with the last known appearance for the 

tables of the 6 studied datasets 

  



 

 

50 

5.2 Clustering Coefficient and its relationship to table evolution 

Apart from the effect of a local measure of graph topology, like the different kinds of 

degrees, we wanted to assess the effect of neighborhood-based measures to the 

behavior of nodes. To this end, we have assessed the profile of clustering coefficient, 

presented in this subsection, and betweenness centrality, presented in the following 

subsection. Clustering Coefficient denotes the “tight coupling” of neighbors in the 

neighborhood of a node (see Chapter 3 for the formal definition).  

5.2.1 Statistical profile for tables with respect to clustering coefficient 

We have assessed the clustering coefficient for each node, in each version of the 

schema where it was present. Then, we averaged this measurement to obtain the 

average clustering coefficient of a node. During the computation of the average value 

per node, we skipped the schema versions where the node was not present. Table 14 

lists the aggregated results for each dataset. Below in Figure 11, we provide the bar-

chart of the clustering coefficient scores for the 6 studied datasets 

Clustering 

Coefficient Egee BioSQL Atlas Castor SlashCode Zabbix 

0 9 29 79 91 115 55 

(0,0.1) 1 1 3 - 4 2 

[0.1,0.2) 1 3 2 - 2 - 

[0.2,0.3) - 2 - - 3 - 

[0.3,0.4) - 1 - - - - 

[0.4,0.5) - - - - 1 - 

[0.5,0.6) - 1 1 - - - 

[0.6,0.7) - 1 - - - - 

[0.7,0.8) - - - - 1 - 

[0.8,0.9) - 2 - - - - 

[0.9,1) - - - - - - 

1 1 5 1 - - 1 

Table 14 Clustering Coefficient Breakdown for the 6 studied datasets 



 

As we can see in Table 14 and Figure 11

datasets is very low. However, this seems to be an expected result considering that 

we study the field of databases, where two nodes pointing to a third does not 

necessarily mean that they are connected.

the coloring of triangles, intense coloring means high concentration of triangles, 

overlaid one on top of the other, at the same (x,y) point in the chart.

 

Figure 11 Node Breakdown per Average 
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in Table 14 and Figure 11 the clustering coefficient of the 6 studied 

However, this seems to be an expected result considering that 

we study the field of databases, where two nodes pointing to a third does not 

necessarily mean that they are connected. Again, due to the use of transparency in 

the coloring of triangles, intense coloring means high concentration of triangles, 

overlaid one on top of the other, at the same (x,y) point in the chart. 

Node Breakdown per Average Clust. Coeff. for the 6 studied datasets 

 

 

the clustering coefficient of the 6 studied 

However, this seems to be an expected result considering that 

we study the field of databases, where two nodes pointing to a third does not 

due to the use of transparency in 

the coloring of triangles, intense coloring means high concentration of triangles, 

 

 

Clust. Coeff. for the 6 studied datasets  
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5.2.2 How clustering coefficient relates to the evolution of tables 

Having computed the average clustering-coefficient score for each table during its 

lifetime, the natural research question was to evaluate if this metric can predict 

whether or not a node will survive. So we correlated survival and clustering 

coefficient, and visualize the results in Figure 12. Again, the horizontal axis signifies 

the last known version of a table. Tables that reach the last version are survivors and 

are separated from the rest of the data set via a red vertical line. 

Apparently, this method seems that cannot very well predict the survivability of a 

node. However, it is important to highlight that in cases where the database’s schema 

is a graph rich in edges, like the Atlas or BioSQL dataset this method performs much 

better as opposed to the other datasets.  

Again observe, that the datasets with a satisfactory number of edges tend to follow 

the aforementioned inverse-gamma pattern. 

 

 #nodes #nodes  

with cc>0 

#nodes  

survivor 

# nodes 

survivor 

&& cc>0 

 pct nodes  

with cc>0 

pct nodes  

survivor 

 P(survivor |  

cc>0) 

P(cc>0 | 

survivor) 

Egee 12 3 8 2  25% 66%  67% 25% 

BioSQL 45 16 28 12  35% 62%  75% 43% 

Atlas 88 9 73 8  10% 82%  89% 11% 

Castor 91 0 74 0  0% 81%  0% 0% 

SlashCode 126 11 87 8  8% 69%  73% 9.2% 

Zabbix 58 3 48 2  5% 82%  67% 4.2% 

Table 15 Probability of survival with respect to clustering coefficient 

In Table 15, we complement this original visualization with concrete number. This 

improvement in the survival rate for nodes with high clustering coefficient (cc>0) 

compared to the average survival rate is insignificant; in one case, Zabbix the 

survival rate is even lower than average (but we deal with a very small number of 

involved tables) 
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Figure 12 Contrasting Clustering Coefficient scores with the last known appearance for the tables of the 6 studied datasets
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5.3 Vertex Betweenness Centrality and its relationship to table 

evolution 

Apart from the clustering coefficient, Vertex Betweenness Centrality is another 

measure of topology characterizing a node in the graph of a schema. Whereas 

clustering coefficient refers to the local behavior of the neighborhood of a node, its 

betweenness centrality measures its position in the entire graph, by assessing the 

number of shortest paths that pass from it. 

5.3.1 Statistical profile for tables with respect to vertex betweenness 

We have assessed Betweenness Centrality for every node in every version of the 

graph. Then, we calculated the Average Vertex Betweenness score. We provide the 

score breakdown as well as the corresponding barchart in Table 16 and Figure 13 

respectively 

 

Average 

Vertex 

Betweenness Egee BioSQL Atlas Castor SlashCode Zabbix 

0 9 37 81 89 120 51 

(0,5) 3 3 2 2 2 7 

[5,10) 0 2 3 0 3 0 

[10,15) 0 1 1 0 1 0 

[15,20) 0 1 1 0 0 0 

[20,25) 0 1 0 0 0 0 

Table 16 Average Vertex Betweenness Breakdown for the 6 studied datasets 
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Figure 13 Breakdown per Average Node Betweenness Centrality for the 6 studied 

datasets  
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5.3.2 How does vertex betweenness relate to table evolution 

In this section we are trying to find if we can use the Average Vertex Betweenness in 

order to predict if a vertex is a survivor.  

In Figure 14 we provide the result for the 6 studied datasets. 

 

 

 #nodes #nodes  

with 

AVBC>=1 

#nodes  

survivor 

# nodes 

survivor 

&& 

AVB>=1 

 pct nodes  

with AVBC 

>=1 

pct nodes  

survivor 

 P(survivor |  

AVBC >=1) 

P(AVBC >1 | 

survivor) 

Egee 12 3 10 3  25% 83%  100% 30% 

BioSQL 45 6 28 4  13% 62%  66% 14.2% 

Atlas 88 6 73 6  6% 82%  100% 8% 

Castor 91 0 74 0  0% 81%  - 0% 

SlashCode 126 4 87 3  3% 69%  75% 3% 

Zabbix 58 2 48 2  12% 82%  100% 14.5% 

Table 17 Probability of survival with respect to avg. vertex betweenness 
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Figure 14 Contrasting Average Vertex Betweenness scores with the last known appearance for the tables of the 6 studied datasets
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How does Average Vertex Betweenness Centrality relate to survival? In a systematic 

attempt, we assessed the correlation of betweenness centrality and survival and the 

results are depicted in the Table 18. Specifically, we evaluated whether a vertex with 

an Average Vertex Betweenness Centrality score (in short, AVBC) greater or equal to 

1 is a survivor (by computing the fraction of survivor nodes with AVBC >= 1 over the 

population of nodes with AVBC >= 1), as well as what percentage of survivors do 

nodes with high Average Vertex Betweenness constitute (as the fraction of survivor 

nodes with AVBC >=1 over the population of survivors).  

Can we use Average Vertex Betweenness Centrality as a predictor of survival? 

Observe that this method has extremely high predicting precision in all 6 datasets 

except from the cases of BioSQL and SlashCode. Specifically, in 4 out of 6 data set, an 

AVBC >= 1 signified a 100% probability of survival. At the same time, survival can be 

related to other parameters too. This is why, the percentage of high centrality nodes 

among survivors is too small. So, overall, although Average Vertex Betweenness 

Centrality cannot predict death or survival in the general case, it can predict survival for the 

few cases where its value is relatively high. 

 

Some specific findings follow.  

- After careful examination in the BioSQL dataset we found a very interesting 

result. The two vertices that (a) AVBC >=1 and (b) did not survive, turned out 

to be simple renames and not actual deletions of the corresponding tables, 

meaning that, in essence, our method also had a 100% precision as well, in the 

BioSQL dataset. 

- In the case of the SlashCode dataset, there was a single non-survivor table 

with AVBC >=1. This table was indeed deleted, but its neighborhood was 

deleted too. This means that it was not some random deletion, but in fact this 

vertex was important as with its neighborhood, they had some functionality 

that was deemed unnecessary by the database architect. So, this does not 

justify why AVBC did not achieve a 100% precision but it does point out that 

the specific dataset underwent to a radical change in its evolution. 
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5.3.3 Normalized Vertex Betweenness and its relationship to evolution 

To facilitate a homogeneous comparison of the individual results of the different data 

sets, we normalize the Vertex Betweenness Centrality by dividing the Vertex 

Betweenness Centrality with the total number of possible paths between nodes. 

 

Definition: Given a graph of N nodes, the Normalized Average Vertex Betweenness 

Centrality of a node is its Average Vertex Betweenness Centrality divided by N∙(N-

1). 

 

 #nodes #nodes  

with 

NAVBC>0 

#nodes  

survivor 

# nodes 

survivor 

&&  

NAVB>0 

 pct nodes  

with 

NAVBC >0 

pct nodes  

survivor 

 P(survivor |  

NAVBC >0) 

P(NAVBC >0 | 

survivor) 

Egee 12 3 10 3  25% 83%  100% 30% 

BioSQL 45 8 28 4  17% 62%  50% 14.2% 

Atlas 88 7 73 3  7% 82%  42% 4% 

Castor 91 2 74 2  2% 81%  100% 2% 

SlashCode 126 6 87 5  4% 69%  83% 5.7% 

Zabbix 58 7 48 7  12% 82%  100% 14.5% 

Table 18 Probability of survival with respect to normalized avg. vertex betweenness 

It is interesting to note that NAVBC performs much differently than AVBC. To be 

specific for the Atlas and BioSQL datasets, datasets that are rich in edges, the 

probability to survive provided that you have non zero NAVB drops drastically 

while for the rest of the datasets it skyrockets. The reason for the discrepancy with 

the results of the previous subsection is due to the higher numbers of tables fulfilling 

the  filtering criterion of NAVBC > 0. 
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Figure 15 Contrasting Norm. Avg. Vertex Betweenness scores with the last known appearance for the tables of the 6 studied 

datasets
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5.4 Edge Betweenness and its relationship to schema evolution 

Having a massive graph that is the union of all the tables and edges of the schema 

evolution of a database, we thought, what is the most important part of this graph? 

To answer this question, we computed the Average Edge Betweenness Centrality 

score for each edge and then we kept the edges with the top-2 scores, ties included. 

We call the resulting subgraph that is produced by these edges, the 2 - Core 

Component of the graph.  

Definition: The 2 – Core Component is the subgraph that is induced by3 the top 2 

edges of the graph with respect to their Average Edge Betweenness. If two or more 

edges are tied for the top scores, these edges are as well included in the 2-Core 

Component.  

Αs a result, it is reasonable for a top 2-Core Component to include more than 2 edges. 

Also note, that in four out of six datasets the 2-Core Component was a connected 

subgraph. This is not a prerequisite condition, rather a fact that seems to occur. 

Following a more strict and rigorous study, we have generalized our search to fully 

test the effect of Edge Betweenness Centrality to the survival of the involved nodes. 

We proceeded as follows: 

- First, we measured the Average Edge Betweenness Centrality for all edges 

- We kept the top – 2, including edges that are tied 

Interestingly enough we found out that most of the times, the 2 Core Component 

survives till the end. In Fig., 16 we show the 2 - core component for all six datasets. In 

each of these figures we depict (a) the 2-Core component over the Diachronic Graph 

with different coloring, (b) the first version of the graph, and, (c) the last version of 

the graph. Again, the attempt is to show the survival of the 2-CC in the history of the 

schema. In 5 out of 6 datasets, the 2-core component is a connected (undirected) 

subgraph of the Diachronic Graph. 

                                                 

 

 

3 Remember that an edge-induced subgraph is a subset of the edges of a graph 

together with any vertices that are their endpoints (definition by 

http://mathworld.wolfram.com/Edge-InducedSubgraph.html). 
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  D.G First version Last Version 

Atlas 

  

Biosql 

   

Castor 

   

Egee 

   

SlashCode

   

Zabbix 

 
 

   

Figure 16 Evolution of the 2-Core Components for the 6 studied datasets (figures are 

partially cropped to fit) 
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Figure 17 Average Edge Betweenness scores, ordered decreasingly, for all 6 data sets. 

          #tables with EBC >1 #tables with EBC = 1 #tables with EBC= 0 Probability to survive 

  Survivors Dead Total   Survivors Dead Total Survivors Dead Total Survivors Dead Total Total EBC>1 EBC=1 EBC=0 

Atlas 73 15 88   33 1 34 30 13 43 10 1 11 83% 97% 70% 91% 

BioSQL 28 17 45   26 13 39 2 2 4 0 2 2 62% 67% 50% 0% 

Castor 74 17 91   7 0 7 6 3 9 61 14 75 81% 100% 67% 81% 

Egee 10 2 12   5 1 6 0 0 0 5 1 6 83% 83% - 83% 

                   

Slashcode 87 39 126   14 9 23 11 2 13 62 28 90 69% 61% 85% 69% 

Zabbix 48 10 58   21 3 24 9 2 11 18 5 23 83% 88% 82% 78% 

Table 19 Breakdown of tables per category of Average EBC score and relationship to survival. 
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The distribution of values for the Average Edge Betweenness is depicted in Figure 

17. The vertical axis depicts the individual Average Edge Betweenness scores 

appearing in a data set and the horizontal axis its rank, in increasing order. The 

scores start in many cases from very high values (above 15) and quickly drop in 

middle range values (around 5) with heavy tails between 2 and 1.  

The situation looks quite different, however, if one takes the population size that 

pertains to each EBC. As already mentioned in the commentary of vertex degrees, a 

very large percentage of tables have zero inciting edges, and quite a few of them 

have exactly one inciting edge. This separates these two particular values for the rest 

of the (very broad) range of values. We performed a statistical analysis of the 

respective values, which we depict in Table 19, and –much to our amazement- the 

results that we found are as follows: 

- Large Average EBC scores (greater than 1 that is) do not guarantee survival more 

than the average value of the data set. Note that although in the scientific 

databases (castor excluded) the percentage of this group is large, it is only in 2 

out of 4 cases that survival is very high compared to average.  

- The most surprising fact for us was that the group with Average EBC equal to 1 

has higher chances to die than average! This appears counter intuitive in a sense, 

as even a single relationship seems a good as to give second thoughts to the 

DBA before a removal of a table.  

- The behavior of the group with EBC equal to 0 is quite close to the overall 

average, which we attribute to its vast size that gravitates the overall average 

towards its behavior. Expectedly, survival rate is lower than the one of the 

group with EBC >1 in all but one occasions. 
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Rank Atlas BioSQL Castor Egee Slashcode Zabbix  count 
survival 

 pct >90% 

Pct of >90%  

survivors 

1 100% 100% 100% 100% 50% 50%  6 4 67% 

2 100% 100% 100% 100% 100% 100%  6 6 100% 

3 100% 100% 100% 100% 100% 100%  6 6 100% 

4 100% 100% 67% 100% 0% 0%  6 3 50% 

5 100% 0% 81% 0% 100% 100%  6 3 50% 

6 100% 0% 
 

83% 0% 100%  5 2 40% 

7 94% 100% 
  

0% 100%  4 3 75% 

8 100% 100% 
  

100% 100%  4 4 100% 

9 100% 0% 
  

100% 100%  4 3 75% 

10 100% 0% 
  

0% 100%  4 2 50% 

11 100% 100% 
  

0% 100%  4 3 75% 

12 100% 100% 
  

100% 100%  4 4 100% 

13 100% 75% 
  

0% 100%  4 2 50% 

14 70% 100% 
  

0% 100%  4 2 50% 

15 91% 100% 
  

100% 100%  4 4 100% 

16 
 

42% 
  

0% 100%  3 1 33% 

17 
 

0% 
  

100% 100%  3 2 67% 

18 
 

100% 
  

100% 0%  3 2 67% 

19 
 

50% 
  

100% 82%  3 1 33% 

20 
 

0% 
  

100% 78%  3 1 33% 

21 
    

85% 
 

 1 0 0% 

22 
    

69% 
 

 1 0 0% 

Table 20 Percentage of survivor tables per rank for all the studied data sets. 

We decided to elaborate more on the correlation of ranking in terms of Average Edge 

Betweenness and survival and used the k-Core Component analysis to this end.  

So, we generalized the definition for larger values of the rank, and thus we define the 

general version of the Core Component, the k-Core Component. 
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Definition: The k – Core Component, is the subgraph that is induced by the top k 

edges of the graph with respect to their Edge Betweenness in the Diachronic Graph. 

 

In Table 20, the first column depicts the rank of an Average EBC score (not shown 

here), the next 6 columns correspond to the 6 datasets, and the last 3 columns count 

(a) how many of the datasets actually have even one table for the rank of the 

respective row (“rank”) (b) the number of datasets where the survival rate exceeds 

90% (“survival percentage >90%”) and (c) the percentage of case (b) over case (a)  

The ranks with the higher probability of death are the two last (which are the values 

1 and 0 for EBC, demarcated with a mauve background). For the rest of the ranks, in 

all data sets except for BioSQL and SlashCode, which are the two data sets with 

higher deletion rates among the ones that we study (both with survival rate lower 

than 70%), one can easily observe that the value 100% survival is overwhelmingly 

present, with very few exceptions. 

Apparently, to a large extent, the update profile of a schema is responsible for the 

prediction accuracy of the EBC score and this is why, our two deletion-prone data 

sets seem to have many “holes” in the otherwise perfect survival rate of higher scores 

of Table 20 at ranks higher than the two last. 

Moreover, we observe that for the first 3 rows of Table 20 (i.e. for the 3 - Core 

Component), we can get very good results in terms of predictor power for the 

survival of the tables. In fact, with the exception of Zabbix and SlashCode, the two 

CMS’s, the top scores would achieve perfect survival. 
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5.5 Summary of Findings 

In this chapter we have focused on metrics that describe the relationship between 

nodes and how they are structured inside the graph, aiming to find any hidden 

survival mechanisms that reside within. In other words, we focus on metrics 

regarding the individual nodes rather than the whole graph. To this end, we 

correlate the results of these metrics with evolution-specific events -or in our case, the 

death of a node. 

- In/out/total Degree. After calculating the in/out degree for each version of each 

dataset we discover that from the 6 studied datasets, only BioSQL and Atlas 

have a low number of nodes that are not incident to an edge. Egee and Zabbix 

have the vast majority of tables without edges, and in the cases of Castor and 

SlashCode tables without edges are the largest group. Next, we correlate the 

in and out degree with each nodes’ survivability, and highlight two 

observations: 

• With few exceptions, the higher the degree of a node is, the more 

probable is for the node to survive 

• In all 6 datasets, there is an inverse-gamma pattern in the correlation of 

degree and survival. The pattern suggests that low degrees carry a non-

negligible probability of removal for the corresponding tables; at the 

same time, high degrees carry a significantly lower probability of 

removal. 

- Clustering Coefficient. After calculating the Average Clustering Coefficient for 

each node in each dataset we discovered that the vast majority of the nodes 

has clustering coefficient score equal to zero, and only a few in the BioSQL 

dataset have score higher than 0.1. Noteworthy is the case of BioSQL which 

contains 5 nodes with clustering coefficient equal to 1 and Egee, Atlas, and, 

Zabbix that contain only one node with clustering coefficient score equal to 1. 

These results point that the nodes of these datasets are very weakly coupled, 

and therefore their respective structure is loose. Next, we tested if the 

clustering coefficient is correlated to survivability, and our conclusions are. 

• This method cannot predict very well the survivability of a node. 

However, it is important to highlight that in cases where the database’s 

schema is a graph rich in edges, like the Atlas or BioSQL dataset, this 

method performs much better as opposed to the other datasets.  

• The datasets with a satisfactory number of edges tend to follow the 

aforementioned inverse-gamma pattern.  
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- Vertex Betweenness. We performed the same procedure as before, for the 

Average vertex betweenness score this time. In the datasets of Egee and 

Zabbix every node that possessed average vertex betweenness above zero 

managed to survive, while this probability for the SlashCode dataset drops to 

83%. It is noteworthy, that the survival probability for the BioSQL and Atlas 

datasets is 37% and 43% respectively. Lastly, the Probability of survival due to 

Average Vertex Betweenness for Castor is zero. This is expected as the dataset 

has a really low number of edges. 

- The k-Core Component. Lastly, we calculated the Edge betweenness for every 

edge of each of the 6 studied datasets and kept the graph induced by the 

edges with the top-k scores. We named the induced subgraph as k - Core 

Component. Our observations: 

• In cases of Atlas, BioSQL, Egee, Zabbix and SlashCode the induced 

subgraph of the 2 – Core Component is connected, except for the cases 

of Castor. This is very important since it points to the fact that 

Important/Centralized nodes tend to be inter-connected in the 

database’s structure, thus creating the Core of the graph. 

• Nodes connected in the Core Component have a very high survival 

probability. Another observation that strengthens the importance of the 

core component –The core is important, thus survives till the end. 
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CHAPTER 6.  

SOFTWARE ARCHITECTURE AND DESIGN – 

PARMENIDIAN TRUTH 

6.1 Package diagram 

6.2 The core package 

6.3 The export package 

6.4 The model package 

6.5 The gui package 

6.6 The model.Loader package 

6.1 Package Diagram 

We start with the high-level architecture of the tool, expressed as a package diagram 

that is depicted in Figure 18. 
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Figure 18 Package Diagram for Parmenidian Truth 

- The package core consists of the main manager classes that orchestrate every 

use-case provided by Parmenidian truth 

- The export package consists of classes concerning the exported files of our tool 

( .csv, .jpg, .ppt) 

- The model package consists of classes that basically organize the data in 

memory in a structured form 

- The gui package includes all classes that refer to graphical interface notions.  

- The model.Loader package includes classes that, with the help of the 

externalTools package, are responsible for parsing data files and organizing 

the created objects into memory 
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- The externalTools package are the Hecate main engine files that are 

responsible for parsing the SQL files as well as creating the XML transition 

files. It is the deepest level as far as parsing goes. 

- The parmenidianEnumerations package consists of just enumerations. Their 

purpose is to make easier the communication between classes. Those 

enumerations exist for the sake of easy maintenance and code readability. 

6.2 The core package 

 

 

Figure 19 Class Diagram for the core package 

The core package consists of the main manager classes that orchestrate every use-

case provided by Parmenidian Truth. 

These are the use cases that are provided by our tool: 
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- The user can choose his own workspace, a personal folder where every project 

produced by our tool will be archived 

- The user can create a new Parmenidian project, for the creation of such a 

project the user needs to provide the following input: 

- A folder with all the SQL schema versions of the database under study 

- An XML file that contains the transition changes between two consecutive 

schemata 

- An output folder where the result files will be exported from our tool 

- The user can edit a Parmenidian project 

- The user can load a Parmenidian project. When a project is loaded, our tool 

makes a graphical representation of the database as a graph, with tables as 

nodes and foreign key relations as edges between nodes. The graph is 

automatically laid out, but it is in the user’s ability to improve it  

- When the user is done making graph changes he can save the layout. A 

graphml file is then produced by our tool for persisting changes  

- The user can batch produce a png file for each separate version of the 

database’s schemata, and then combine them in a PowerPoint presentation 

and even in a video file. Those actions can be taken either individually, or 

sequentially per user’s choice 

- The user has the ability to create a transition file for a whole dataset of SQL 

schema versions. This action can be taken either during the creation of a 

Parmenidian project or at any other time per user’s choice. 

- Finally, the user can batch compute a collection of graph metrics for the 

purpose of studying the schema evolution of the database. The result will be 

saved in csv files that will be exported in the user’s selected folder for output. 

Those metrics can be separated in the following categories: 

• Node-wise 

• Edge-wise 

• Graph-wise 

Each of the above uses-cases can be selected from the user through our graphical 

interface. Then the core manager ParmenidianTruthManager will be responsible for 

calling the corresponding methods in either the ModelManager or the ExportManager. 
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The ModelManager interacts with components that reside in the model package. 

Basically, it is responsible for visualizing the schema as a graph, editing and saving 

the changes performed by the user, as well as, computing graph metrics. 

The ExportManager interacts with the export package, and is basically, responsible for 

all the output files of our tool. 

6.3 The export package 

 

As already mentioned, the export package consists of classes concerning the files that 

are exported as output from our tool. Specifically:  

The HecateScript class, given the path of a folder containing SQL files with the 

versions of the schema of the database, produces an XML file with the changes 

between two consecutive schema versions. The SQLFileFilter is an auxiliary class for 

the HecateScript to ignore everything but SQL files. 

The PowerPointGenerator is the class responsible for producing a PowerPoint 

presentation of the database’s schema evolution. For the production it requires a 

folder containing each schema’s graphical representation, which then binds into a 

PowerPoint slide. 

Respectively, the VideoGenerator class is responsible for the production of the video of 

the database’s schema evolution. It requires a PowerPoint presentation file, which 

then decomposes, rendering each slide as a png and then combines every extracted 

png into a video stream. The FilenameSorter, FilenameSorter2 and ImageFileFilter 

are auxiliary subclasses for sorting the produced png files in the appropriate way. 
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Figure 20 Class Diagram for the export package 
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6.4 The model package 

 

Figure 21 Class Diagram for the model package 
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The model package consists of classes that basically organize the data in memory in a 

structured form. 

The DiachronicGraph class is the main class in the model package. It is responsible for 

micromanaging the individual parts of the schema’s evolution. At this point we 

would like to remind the reader that as a notion the diachronic graph is the union of 

table and edges of the whole database’s lifetime. So, in design level it contains a 

collection for tables and versions respectively. All operations regarding manipulating 

the graph, or computing metrics are done through this class. 

The DiachronicGraphVisualRepresentation is an auxiliary class introduced through the 

Single Responsibility Principle. It is a class that is responsible for visualizing to the user 

the diachronic graph of the database, as well as, rendering the diachronic graph into png 

format. As so, it contains collections for all the nodes and edges of the schema’s 

evolution and all the improvements that were done from the user layout-wise. 

The DBVersion class is a memory representation of a physical schema. It contains a 

collection of tables and foreign keys. 

The DBVersionVisualRepresentation class is the equivalent of the 

DiachronicGraphVisualRepresentation but for DBVersion objects. As such, it contains 

information about each version’s visualization process, and is also responsible for 

rendering each version in png format. 

The GraphMetrics class is responsible for computing the selected graph metrics. Inside 

this class resides the implementation of each metric. DiachronicGraph and DBVersion 

both contain an aggregation of this class as a field. The DiachronicGraph triggers the 

computation of a, user selected, metric and then it is performed for each object 

individually.  

The Table class is a mapping for the input data that concern schema tables. Other 

than the schema table’s name the Table class contains information about the table’s 

coordinates as well as the table’s status, something that changes from version to 

version. 

Finally, the ForeignKey class is equivalently a mapping for the input data that refer to 

schema foreign keys. ForeignKey objects are visually represented as graph edges.
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6.5 The gui package 

 

 

Figure 22 Class Diagram for the gui package 

The gui package includes all classes that refer to graphical user interface of 

Parmenidian truth. 
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The gui class is the main graphical interface. Every use-case that our tool provides, is 

shown to user through this class. Ergo, when an action is selected, this class triggers 

the corresponding call in the ParmenidianTruthManager which in turn triggers the 

corresponding call in either the ModelManager or the ExportManager.  

The  WorkspaceChooser class, is the dialog that appears when Parmenidian Truth is 

executed. This class enables the user to choose a physical folder for Parmenidian 

Truth’s output to be stored. 

The ProjectEditor class, is the dialog that appears when the user chooses project-

related actions, like creating or editing the metadata of an already existing project. It 

enables the user deal with the input and output of his/her project and it also enables 

him/her create the transition file of a database’s schema evolution. 

The EdgeChooser class, is the dialog that appears just before a project is loaded. It 

contains information about the type of edge that should be used when the schema is 

visualized as well as when the png files are rendered. Edge type varies from linear to 

orthogonal. 

The MetricsChooser class, is the dialog that appears when the user chooses to produce 

graph metrics for the database schema under study. It contains a list of checkboxes 

each of which correspond to a specific metric. After the user is done selecting the 

MetricsChooser informs the gui which of the metrics were chosen. This information 

sharing, between those two classes is done with the help of enumeration for the sake 

of easy maintenance and code readability. 

The OutputChooser class, is the dialog that appears when the user chooses to produce 

either a PowerPoint presentation, or a video file. As a class collects the information 

and triggers on the gui class the selected action/actions. 
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6.6 The model.Loader package 

 

Figure 23 Class Diagram for the model.Loader package 
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The loader package includes classes that, with the help of the externalTools package, 

are responsible for parsing data files and organizing the created objects into memory 

The Parser class, is responsible for parsing the SQL files, the XML files, and the 

graphml files, if present, and then map this information into memory through the 

objects provided in the model package. 

The GraphmlLoader class is responsible for parsing the graphml files of the project. 

Graphml files contain information for a node’s coordinates. After the information is 

retrieved from the physical files it is stored in the field of a Table object. 

The HecateManager class is an abstraction that separates Parmenidian Truth from 

Hecate. As said at the beginning of this chapter, externalTools is the deepest and final 

level of parsing physical files. The main entry point and connection between those 

two tools is this class. 

6.7 The parmenidianEnumeration package 

 

 

Figure 24 Class Diagram for the ParmenidianEnumeration package 

The Status is just an enumeration for mapping integer values [-1.0.1.2] to meaningful 

notions [UNDEFINED, CREATION, DELETION, UPDATE]. Those values are used 

for rendering each node with the appropriate color, [Light Green, Green, Red, and 

Yellow].  
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Finally, Metric_Enums as we mentioned before is an enumeration that makes the code 

a little more intelligible. Every metric is corresponded to a field in this enumeration, 

making the communication between classes a little more transparent. 
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CHAPTER 7.  

CONCLUSIONS AND FUTURE WORK 

7.1 Summary 

7.2 Future work 

7.1 Summary  

In this Thesis, We have studied the schema histories of a six free, open-source 

databases that contained foreign keys. To facilitate a quantitative study, we model 

each version of the schema as a graph, with tables as nodes and foreign keys as 

directed edges (stemming from the referencing table to the referenced one). Our 

findings concerning the growth of nodes verify previous results that schemata slowly 

grow over time in terms of tables. Moreover, we have come to several surprising, 

new findings in terms of the schema edges (foreign keys). Foreign keys appear to be 

fairly scarce in the projects that we have studied and they do not necessarily grow in 

synch with table growth. In fact, we have observed different “cultures” for the 

handling of foreign keys, ranging from full sync with the growth of nodes to the 

unexpected extreme of full removal of foreign keys from the schema of the database. 

Node degrees and survival are related with an inverse gamma pattern: the few nodes 

with high degrees stand higher chances of survival than average. Similarly, nodes 

with inciting edges with high values for edge betweenness centrality frequently (but 

not always) stand higher chances to survive compared to the nodes with a single or 

zero inciting edges, which have significantly higher chances of removal. 
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7.2 Future Work 

Future work can continue in many ways. Here, we mention a few of them that seem 

more important. 

First, one could attempt to identify patterns of change over the different graphs. This 

involves graph mining techniques that look for similar patterns of change over time, 

either within the same schema’s history, or throughout the set of histories that we 

have collected. 

Second, one can attempt to construct a predictor module for change. Can we predict 

when and how (and with what amount of change) a table will change, given its 

graph-metric properties? 

Third, we could try to extract “all-star transitions” – i.e., transitions with the largest 

possible effect on the structure and properties of the graph. Then, we can make good 

use of these transitions when we want to pick a set of characteristic transitions in 

order to concisely visualize the evolution history of the database schema or study 

transitions with potentially large effect. 
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