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Περίληψη

Τα κοινωνικά δίκτυα, όσον αφορά τις ανθρώπινες αλληλεπιδράσεις, έχουν
αποκτήσει μεγάλη σημασία στις μέρες μας. Για αυτό τον λόγο, διάφορες
μορφές πληροφορίας μπορούν να διαδοθούν μέσα από αυτά, όπως για
παράδειγμα η διαφήμιση ενός προϊόντος, η εξάπλωση μιας άποψης κτλ.
Είναι σημαντικό λοιπόν να μπορούμε να εντοπίζουμε τους ‘σημαντικούσ’
κόμβους μέσα σε ένα τέτοιο δίκτυο, δηλαδή εκείνους τους κόμβους που
μπορούν να επηρεάσουν πολλούς άλλους. Για να το επιτύχουμε αυτό,
χρειαζόμαστε κάποιες μετρικές που να ξεχωρίζουν τέτοιους κόμβους μέσα
στο δίκυο. Κάποιες από αυτές μπορούν να είναι οι μετρικές Betweeness Cen-
trality, Closeness Centrality, ή Degree Centrality. Ωστόσο, υπάρχουν πολλές και
διαφορετικές τέτοιες μέθοδοι στη βιβλιογραφία, για να εξετάσει κάποιος.

Στην παρούσα εργασία μελετάται η επίδραση του ανταγωνισμού στη
μεγιστοποίηση της επιρροής μέσα στο δίκτυο. Θεωρούμε ότι υπάρχουν δυο
ανταγωνιστικές εταιρείες που προσπαθούν να διαφημίσουν το προϊόν τους
μέσα στο ίδιο δίκτυο. Για τον σκοπό αυτό, η κάθε μία διαλέγει ανεξάρτητα
από την άλλη, μια από τις μετρικές σημαντικότητας, και δημιουργεί μια
φθίνουσα σειρά των ατόμων (αντιπροσωπεύονται από κόμβους μέσα στο
κοινωνικό δίκτυο) με βάση το επίπεδο επιρροής τους σε άλλα άτομα. ´Επειτα,
οι δυο φίρμες διαλέγουν τους πρώτους k κόμβους από αυτές τις λίστες και
εφαρμόζεται μια μέθοδος που επιλύει τις συγκρούσεις, δηλαδή ορίζει ποια
εταιρεία θα κρατήσει έναν κόμβο στην περίπτωση που τον έχουν επιλέξει και
οι δυο για να τις αντιπροσωπεύσει. Τέλος, τα δυο τελικά σύνολα αρχικών
κόμβων επιρροής για τις δυο εταιρείες ανταγωνίζονται για την διάδοση των
προϊόντων που αντιπροσωπεύουν, με βάση δύο μοντέλα προσομοίωσης της
διάχυσης πληροφορίας (μοντέλα De Groot και Threshold) σε ένα κοινωνικό ή
τεχνολογικό δίκτυο. Στο τέλος της διαδικασίας, μπορούμε να αποφανθούμε
για το ποια από τις δυο εταιρείες πέτυχε τη μεγαλύτερη διείσδυση του
προϊόντος της στην αγορά, δηλαδή, τη μεγαλύτερη εξάπλωση του προϊόντος
της στο δίκτυο, και κατά πόσο και οι δυο εταιρείες επηρεάστηκαν τελικά
από το γεγονός της ύπαρξης του ανταγωνισμού μεταξύ τους. Στο πλαίσιο
της παρούσας εργασίας διεξήχθησαν εκτενή πειράματα σε πραγματικά power
law κοινωνικά και τεχνολογικά δίκτυα, τα οποία κατέγραψαν μια λεπτομερή
εικόνα για την επίδραση του ανταγωνισμού στη διάχυση πληροφορίας.
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Abstract

The possession of massive digital records of human interactions (e.g., email or file
exchanges, friendships or acquaintances, collaborations, phone calls, etc) in recent
years provides a new system-wide perspective on social networks. In addition
to observing and predicting patterns of collective human behavior, in many cases
the dynamics of the network can be engineered. One such example is when
attempting to initiate a large cascade by seeding it at certain ‘‘influential’’ nodes in
the network to promote a novel idea or, a new product through word-of-mouth.
The algorithmic challenge of selecting individuals who can serve as early adopters
in a manner that will trigger a large cascade in the social network, is known as
influence maximization. One might consider several metrics which estimate the
‘‘importance’’ of a node in a network. For example, it is well known that high-
degree nodes are indeed quite influential in the network. Other popular metrics,
such as Betweeness Centrality, Closeness Centrality, or Eigenvector Centrality, might
also be considered as good candidates. Moreover, one might consider choosing
seeds adaptively, e.g., by choosing the next seed given the subset of already chosen
seeds so far.

This thesis studies the effect of competition in influence maximization. We
consider a scenario in which two competing firms try to advertise their own product
within the same social network. The firms are assumed to assess the importance
of the nodes in the network, as ‘‘influencers’’ of other nodes towards buying the
same product. Each of them selfishly chooses an importance-assessment strategy,
i.e., a metric (from a predetermined set of available metrics) to order the nodes in
the network. Due to limitations of their advertising budget, each firm is assumed
to be able to seed at most k nodes. Therefore, given the importance-orders of
the two firms, a seed-selection policy determines the k most important seeds per
firm. We then consider two different information-propagation models (De Groot
and Threshold) to simulate the dispersion of the new products in the entire network.
The measure of success per firm is its own degree of penetration in the market,
i.e., the fraction of nodes which will eventually adopt the firm’s product. We
have implemented algorithms for computing (exactly or in approximation, statically
or adaptively) several quite popular importance-assessment metrics. We have also
conducted extensive experimental evaluation of this scenario, in order to assess
the validity of each importance assessment strategy, under the lens of competition
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between the two firms, in several benchmark data sets which are widely used in
the literature.
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Chapter 1

Introduction

One of the fundamental problems in social network analysis is to determine the
significance of the nodes in a network and, based on that importance, to be able to
disseminate some information through the network. A ‘‘piece of information’’ could
take the form of offering free samples of an advertising product, an adoption of an
innovation or a new drug in the market, or embrace an opinion about a subject.
The interesting question is whom we should target in order to achieve a diffusion
that reaches the largest part of the network. There are several measures that study
which are the most influential nodes in a graph. In fact, there is no unique way
to define the significance of a person. We can use the number of his friends, or
how close he is to other people of the society, or many other techniques. The
point is which of them targets those nodes that can influence all the others or most
of them. And more importantly, what happens when competition comes into play.
Which measure is dominant against the others when two antagonistic entities (e.g.
competing firms) both try to advertise a product, or spread a political opinion for
example.

Another key point is the fact that we need to achieve maximum diffusion
with limited resources. For example, when it comes to advertising a product, a
company can afford to distribute its product for free to a limited number of people
to publicize it, let’s say 5-20 items. This means that we need to choose 5-20
people in a network, whichcan achieve high levels of influence to the rest of the
society, given the existence of other competitors which try to do the same for their
own product. Thus, the budget that each firm is allowed to use, is an important
restriction to our research.

There are a lot of questions to be answered in such networks. In this project we
concentrate in answering the following one: how a new technology or opinion that
is adopted by a small group of agents, can be diffused to the rest of the society
and to what extent, given the existence of antagonistic entities in the network
which are assumed to choose their own seed sets according to a strategy from a
given collection of alternative seed-selection policies. To be more specific, we are
interested to examine the diffusion level that each firm can achieve, when more

7



than one of them are competing to spread their product in the network.

1.1 How to represent a Social Network
Our work is based and applied to Social Networks and Technological Networks.
The term ‘‘Social Network’’ refers to an online community of people with a
common interest who use a website or other technologies to communicate with
each other and share information, resources, etc. Social Network in our work, refers
to a community with N = {1,2, . . . , n} members which interact with each other.
The meaning of this interaction is that a new opinion of a member of a society
is able to influence the opinions of his neighbors and they in turn are able to
influence the opinion of their neighbors etc. The community as a whole, with the
interaction patterns that occurs between the members, may well be represented by
a graph G(V,E), where V refers to the set of vertices and E refers to the set of
edges. A vertex represents a member of the community in which for the rest of
the paper we will refer to as agent or node, and an edge represents a weight that
lies in the interval [0,1] and stands for the proportion of influence that takes place
between two agents. The interaction patterns that occur between the agents of
the community may well be represented by a matrix to which we will refer as the
interaction matrix. An interaction matrix has the form

A =


w1,1 w1,2 . . . w1,n
w2,1 w2,2 . . . w2,n... ... . . . ...
wn,1 wn,2 . . . wn,n


where wi,j ∈ [0,1] are referring to the interaction between agents i,j in the following
manner. If the network we examine is undirected, then wi,j = wj,i, else if the network
is directed, then wi,j 6= wj,i and more specifically, we assign equally weights to all
the in-edges of every node in the network.

In some cases, as we will describe later, we need the transpose matrix AT. In
undirected graphs, A = AT because matrix A is symmetric, however this is not the
case for directed ones.

1.2 Power Law Networks and Giant Component
In our analysis the networks we are using are power law graphs. This competitive
strategy we examine can be applied to any graph category. We specifically choose
to test it in power law graphs because they are sparse networks and can represent
very accurately a real society. These networks have the following structure: a few
nodes have many neighbors, so they can be considered as supernodes while the
majority of the nodes have very few neighbors. In such networks, given only their
structure, we can assume that most influential nodes will be those that have a lot
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of friends in the graph. So, the measure that can incorporate this information to
select the best nodes, would probably have good results in spreading its innovation
against any other.

Most of the networks consist of maximal connected subsets which are called
connected components. Some of the importance-assessment strategies that we use,
can not provide satisfying results in disconnected graphs, so a restriction we are
using is that we extract from the selected power law graphs their giant component.
The term giant component refers to the largest connected component, regarding
to the nodes, that exists in the network. After removing the disconnected parts, we
apply the importance-assessment strategies to this giant component and then, using
the nodes that the measures provided, we let the competition take place also in
the giant component. In the case of a graph with disconnected components, some
strategies, can be ‘‘trapped’’ in small societies that consists of very small number of
nodes, and as a result the diffusion that they can achieve in the end is insignificant.
In order for the competition to be fair, and allow to all measures equal opportunities
to win the game, we let it take place only on the giant component of each graph.

1.3 Outline of this thesis
The purpose of this work is to find the technique that selects the most influential
nodes in a network in order to spread an opinion or a product, given that another
firm is trying to spread its own product as well. We can examine the diffusion that
each of the measures we used can achieve by its own, however this is not realistic
because we can not assume that a single product is the only one that is advertised,
or that a specific opinion is the only one that a person hears from his friends. In
fact, someone will hear many different opinions from those around him and based
on what he hears, he tend to form his own opinion on the subject. Therefore, it is
very important information, if we can find a strategy that dominates on any other,
in order to choose the most influential people in a society. Even if we can not
adjudicate whether a certain tactic is better than the others generally, we may be
able to observe under what conditions each measure has the best results.

This research can be helpful to anyone who want to advertise a product, or
try to spread an opinion in a social network against other products or opinions
respectively. The results can provide the best tactics that one should use to
achieve the highest level of influence, initiated by a certain number of people.
In the worst case, we can exclude some techniques that do not achieve large
diffusion when they compete with others, to any graph. In the end of this thesis,
we recommend the best and worst strategies which arise from competitions on real
power law graphs.
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Chapter 2

Steps of the procedure

The purpose of this work is to understand how a new product can penetrate in a
society when, at the same time, its competitors try to influence the same society
with their own products. So, the two (or more) antagonistic entities want to start a
cascade process in the network, after each one has selected its advertising strategy.
The overall process of the competition is divided into three steps. First, we set all
nodes in order based on their importance which is achieved by some predetermined
Importance-Assessment Strategies. Then, a Seed Selection Policy is applied and
finally we apply an Information-Propagation Models to simulate the dispersion of
the new products in the entire network.

2.1 Importance-Assessment Strategies
The first thing that each firm has to do, is to decide a partial/total order of the
‘‘most significant’’ nodes in the network. In order to do that, firms are asked to
choose an order technique according to some importance determination policies.
In this work, we use as importance determination policies some of the known
centrality measures and some variations of them. There are many models that
selects important nodes in a network. Our selection criterion is that we chose the
most commonly used centrality measures in the literature. In Chapter 3, all these
methods, are examined in detail.

Since the predetermined measures have been decided, each firm is free to use
any of them, in order to choose its representative nodes. Firms can select even the
same strategy, however, as we will show in the results, if they both select the same
importance determination policy, neither of them will manage to diffuse its product.
In order to understand which of the strategies performs better, we examined the
competitions among all the importance determination policies with each other.

In the end of Step 1, we have a decreasing importance order of all nodes, one
for each firm.
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2.2 Seed Selection Policy
In Step 2, we need to choose the k ≥ 5 best nodes for every firm, which will
represent the sets of their seed nodes. Although the two firms select independently
the order of their seeders, there is a chance some of their choices to be common.
In this case, a seed selection policy is needed to solve these conflicts, which operates
as follows. Each time a common seeder is detected, each firm gets to keep him
with probability p = 0.5. The firm that loses, selects the next best choice of the
order. This tactic is applied until we extract two sets of k nodes (one set for each
firm) where we do not have common agents.

By applying this policy, we manage to solve every conflict between the two
competitors. However, dividing nodes in this manner, may give advantage to one
of the firms, allowing it to select the best agents and leaving the other with not so
good options. In order to be fair among the firms, we repeat the seed selection
policy ten times and implement the competitions in these ten different seed sets.

2.3 Information-Propagation Models
After the above steps have been completed, we need a model which will measure
the spread in the network. For that reason, two different Information-Propagation
Models are applied, in order to measure the level of influence of each firm, given
the selected seed sets. The diffusion techniques that we used, are analyzed in
Chapter 4 in detail. In the end of diffusion process we get the amount of the
influenced nodes for both firms and we are able to decide which one wins.

By applying the above steps among all the importance determination policies
and the two Information-Propagation Models, and test them in different networks
we can conclude to a dominant strategy (if it exists) or to determine an order
from the best to the worst seed selection technique.
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Chapter 3

Importance-Assessment Strategies

Centrality measures constitute a significant tool in the study of social networks.
With their help we can determine whether an agent is important in a society and,
in addition, to study the influence he has to the rest of the agents. These measures
can be used in many applications such as finding key agents in a society, so that
they can help us in the dissemination of an opinion, to stop the spread of a disease,
or to use this information in order to derive useful social and economic results. In
order to do that, we use several centrality measures which will be further analyzed
in the next sections.

There are many centrality measures that have been studied in this area. How-
ever, in our work we chose the most notable and widely used measures in the
literature. The measures we are studying can be divided into three categories. 1.
Exact Centrality Measures, 2. Approximate Centrality Measures and 3. Adaptive
(Approximate) Centrality Measures. On the exact centrality measures we will ex-
amine 1.a. Betweeness Centrality [1], 1.b. Closeness Centrality [7], 1.c. Diffusion
Centrality [8] and 1.d. Degree Centrality [8]. Exact centrality measures though,
take time to compute and are too expensive for large graphs. The second category
we study, which is the approximate centrality measures, includes 2.a. Approximate
Betweeness Centrality [4] and 2.b. Approximate Closeness Centrality. In the third
category we examine the following adaptive approximate measures: 3.a. Adaptive
(approximate) Betweeness Centrality [11], 3.b. Adaptive (approximate) Closeness
Centrality and 3.c. BBCL Centrality [5]. These measures are used as ‘‘importance
determination’’ policies, to be considered by the firms. We will provide more details
about each category in the following sections.

3.1 Exact Centrality Measures Algorithms and Analysis
The first group of measures in our analysis are the exact centrality measures. Each
of the following measures computes the most central agents using the exact calcula-
tion of the formula each measure has. This gives us the exact best agents of each
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measure which is the most valuable information we can get. The most frequently
used centrality measures are betweeness, closeness, degree and eigenvector. The
first three were proposed by Freeman [1] and the eigenvector by Bonachich [23],
[24].

3.1.1 Betweeness Centrality
One of the most notable and most commonly used centrality measures is Between-
ness Centrality (BC) [1]. It indicates the centrality of an agent by counting the
number of times this agent lies on a shortest path between other agents. Generally,
an agent with large betweeness centrality is expected to have a strong influence on
the transfer of knowledge through the social network. However, this doesn’t mean
that this agent can spread his opinion to all others agents due to the neighborhoods
that form the network itself. The general expression for computing BC is given by

BC(v) =
∑
s6=t 6=v

σst(v)
σst

where σst is the number of shortest paths from s to t, and σst(v) is the number
of shortest paths from s to t that pass through v. With this computation we need
O(n2) which is expensive for large networks.

In our work, calculation of exact Betweeness Centrality is due to the algorithm
of Ulrik Brandes [2] which is the most efficient algorithm so far with O(nm) for
unweighted graphs and O(nm + n2logn) for weighted graphs. Brandes’ algorithm
operates in two steps called Single Source Shortest Path (SSSP) step and Ac-
cummulation step. In the SSSP step, Brandes performs BFS or Dĳksta algorithm,
for unweighted and weighted graphs respectively, in order to compute the length
and number of shortest paths between all pairs of nodes in a graph. Then, in
the second step it defines the dependency score for each agent v ∈ V by the
expression δst(v) = σst(v)

σst which represents the ratio of shortest paths from s to t
passing through v divided by the total number of shortest paths from s to t. After
that, it accummulates BC by summing all pair-dependencies on vertex v

BC(v) =
∑
s 6=t 6=v

δst(v)

So far the procedure is the same as the original algorithm proposed by Freeman.
Brandes, however, made a crucial observation that helped him significantly reduce
time and space in BC computation algorithm. First he defined the dependency
score of a vertex as

δs•(v) =
∑
t∈V

δst(v)
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which are the one-siding dependencies. Then, he proved that the dependency on
any v ∈ V obeys to the following recurrent expression

δs•(v) =
∑

w∈Ps(v)

( σsv
σsw

(1 + δs•(w)

)

where Ps(v) is a set that contains all the predecessors of v. This means that every
w ∈ Ps(v) is an agent within the shortest path from s to v. Finally, BC is computed
by the expression

BC(v) =
∑
s 6=v
δs•(v)

The Brandes’ algorithm we used is given below.

3.1.2 Closeness Centrality
The second measure we examine is the Closeness Centrality (CC) which was orig-
inally proposed by Bavelas [12]. CC accesses the importance of an agent s by
measuring the relative distance of s to all the other nodes in the graph. Practically,
CC[s] is the inverse of the average distance between s and any other agent. In
order to estimate that importance, we consider the farness of agent s ∈ V to be
the summarized distances from s to all t ∈ V. Then the Closeness Centrality score
is computed by the expression

CC(s) =
1∑

t∈V d(s, t) (3.1)

A closeness computation algorithm proposed by K. Kaya et al [3] and proceeds in
two steps, like the betweeness algorithm. In the first step a Single Source Shortest
Path (SSSP) is solved using once more the BFS algorithm or Dĳkstra, depending
on whether we have unweighted or weighted graph, respectively. This keeps track
of all distances from every single node of the graph to any other. Then these
distances are summed and Closeness Centrality scores for every v ∈ V are resulting
using the formula (1).

3.1.3 Diffusion Centrality
Another interesting centrality measure is Diffusion Centrality (Diff. C) [8], which
is based on information flow through the network. The idea behind Diffusion
Centrality is that every agent is able to hear from the other nodes of the graph
some rumors. Furthermore, each agent has the ability to restrain the information
that he hears from others, in order to count the number of times he heard about
a specific agent. This way, at the end of the process each one has a counter for
every other agent in the graph.
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Algorithm 1 Brandes Algorithm in weighted graphs
Input: directed weighted Graph G = (V,E)
Data: queue Q, stack S, dist[v]: distance from source

Pred[v]: list of predecessors on shortest paths from source
σ[v]: number of shortest paths from source to v ∈ V
δ[v]: dependency of source on v ∈ V

Output: Betweeness CentralityBC[v] for all v ∈ V
1: for s ∈ V do

Single Source Shortest Pa th problem
2: for w ∈ V do Pred[w]← emptylist
3: end for
4: for t ∈ V do dist[t]←∞, σ[t]← 0
5: end for
6: dist[s]← 0, σ[s]← 1, enqueue s → Q
7: while Q not empty do
8: dequeue v← Q, push v→ S
9: for all nodes w such that (v, w) ∈ E do

Pa th Discovery
10: if dist[w] =∞ then
11: dist[w]← dist[v] + c[v, w]
12: enqueue w→ Q
13: end if

Pa th Counting
14: if dist[w] = dist[v] + c[v, w] then
15: σ[w] = σ[w] + σ[v]
16: append v→ Pred[w]
17: end if
18: if dist[w] >dist[v] + c[v, w] then
19: dist[w] = dist[v] + c[v, w]
20: end if
21: end for
22: end while

Accumula tion
23: for v ∈ V do δ[v] = 0
24: end for
25: while S not empty do
26: pop w← S
27: for v ∈ Pred[w] do δ[v]← δ[v] + σ[v]

σ[w] (1 + δ[w])

28: end for
29: if w 6= s then BC[w]← BC[w] + δ[w]
30: end if
31: end while
32: end for
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Algorithm 2 Closeness Algorithm in weighted graphs
Input: directed weighted Graph G = (V,E)
Data: queue Q, dist[v]: distance from source

far[v]: summarized distances of v to every u ∈ V
Output: Closeness Centrality CC[v] for all v ∈ V
1: for s ∈ V do

Single Source Shortest Pa th problem
2: for t ∈ V do dist[t]←∞
3: end for
4: dist[s]← 0, far[s]← 0, enqueue s → Q
5: while Q not empty do
6: dequeue v← Q
7: for all nodes w such that (v, w) ∈ E do
8: if dist[w] =∞ then
9: dist[w]← dist[v] + c[v, w]

10: far[s]← far[s] + dist[w]
11: enqueue w→ Q
12: end if
13: if dist[w] >dist[v] + c[v, w] then
14: far[s]← far[s]− dist[w]
15: dist[w] = dist[v] + c[v, w]
16: far[s]← far[s] + dist[w]
17: end if
18: end for
19: end while
20: CC[s] = 1

far[s]
21: end for
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The basic idea is that there is a piece of information initiated at an agent i
and passed on his neighbors with probability p ∈ (0,1]. This process is repeated
for T periods, where T ∈ Z+, meaning that every agent that receives the above
information passes it to his neighbors, his neighbors to their neighbors etc. with the
same probability p ∈ (0,1] independently across neighbors and history. Thus, Diff.
C measures the propagation extent of a piece of information as a function of the
initial agent.

As a result, a ‘‘hearing matrix" is defined as

H(g;p,T) :=
T∑
t=1

(pg)t

where g is the adjacency matrix of the graph. The above relation means that the
ĳ-th element of H represents the expected total number of times that agent j hears
a rumor coming from agent i, during T periods. Then, the Diffusion Centrality is
given by the expression

Diff.C(g;p,T) = H(g;p;T) ∗ 1 =
T∑
t=1

(pg)t

where 1 is the right eigenvector with all entries 1.
It is important to mention here that Diff. C allows agents to hear some pieces

of information from the same agent multiple times, therefore the total number
of some ĳ-th elements of matrix H may be greater than the number of agents
of the entire network. We are actually double-counting in some cases, however,
it does not bother us because in the real world hearing multiple times a specific
information operates as a better measure of what we learn. Diffusion Centrality

Algorithm 3 Diffusion Algorithm
Input: directed weighted Graph G = (V,E)
Data: probability p ∈ (0,1), number of iterations k
Output: Diffusion Centrality Diff.C[v] for all v ∈ V
1: Create table T = p · adjMatrix(G)
2: for i = 1, . . . , k iterations do
3: Calculate Ti
4: end for
5: Tfinal =

∑k
i=1Ti

6: Diff.C[v] =
∑
u∈VTv,u

7: return DC[v]

is directly related with three widely used centrality measures: Degree Centrality
(which we will discuss in detail in the next section), Eigenvector Centrality and
Katz-Bonachich Centrality [23]. The critical factor of this relation is the extreme
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points of period T. On the one hand when we define T = 1 we have the Degree
Centrality. Degree Centrality is given by the expression

dg(v) =
∑
s∈V

gvs (3.2)

where gvs indicates that s is an in-neighbor of v.

Diffusion centrality assuming T = 1 gives us the expression

Diff.C(g;p,1) = pd(g) (3.3)

so, as we can see, relation (3) which refers to Diff. C with T = 1 is proportional
to relation (2) of Degree Centrality.

On the other hand, if we let T → ∞ it depends on probability p whether
Diffusion Centrality will approach the Eigenvector Centrality, or the Katz-Bonachich
Centrality. The Eigenvector Centrality is defined as v(1)(g): the first eigenvector of
g. The Katz-Bonacich Centrality is defined as

KB(p,g) :=

( ∞∑
t=1

(pg)t
)
∗ 1

where g in both cases represents the adjacency matrix, and suppose that both of
Bonacich’s parameters are set to p. Jackson et al [8] proved that if p ≥ 1/λ1, then
as T→∞ Diffusion Centrality approximates Eigenvector Centrality and if p <1/λ1,
then Diffusion Centrality is Katz-Bonacich Centrality. For a better background and
further reading we refer the reader to [9].

In conclusion, the Diffusion Centrality measure is a method that examines a
middle case between the two extremes that are Degree Centrality on one side and
Katz-Bonachich (or Eigenvector) Centrality on the other side.

3.1.4 Degree Centrality
We already said a few words about Degree Centrality. It is actually the simplest
measure and is easily implemented because all we need to compute, is the degrees
of the nodes of the network. Every network is given by either an adjacency matrix
g, where the ĳ-th element is equal to 1 if there is a link from i to j, or with an
adjacency list of pairs (i,j) that is giving us exactly the links from node i to j. Both
representations of the graph, give us as many information as we need to keep
count of the degree of a node.

In graph theory, the degree of a node is simply the number of edges that are
incident to the node. In our analysis, in order to be fair among the centrality
measures, when we refer to the degree of a node, we mean only the number of
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the in-edges that the node has. According to this differentiation, degree centrality
is given by the expression

dg(v) =
∑
s∈Vin

gvs

So the agent with the most in-neighbors among all the nodes in the graph is
considered as the most important node of the graph.

Algorithm 4 Degree Algorithm
Input: directed weighted Graph G = (V,E)
Data: in degree adjacency matrix inDegree[v], ∀v ∈ V
Output: Degree Centrality Deg[v] for all v ∈ V
1: for i = 1, . . . , n do
2: Deg[i] = inDegree[i]
3: end for
4: Sort Deg[v], v ∈ V in decreasing order
5: return Deg[v]

Degree centrality does not use any other topological properties of the network.
According to this measure a node is important if and only if that node has a lot
of ‘‘friends". This isn’t very realistic in the real world because people don’t get
decisions about their lives depending on what a famous person says about that. On
the other hand, in examples like citation networks this measure might be a good
method to choose the important ones.

3.2 Approximate Centrality Measures Algorithms and Analysis
So far we examined some of the most known and used measures to find influential
nodes in a network. All the metrics above give us a list with the best nodes in a
decreasing order, each one of them selecting the nodes in its own way. Although
these metrics are the most popular and widely used methods for the selection of
central nodes of a network, in real life they are time consuming and expensive
algorithmically.

As a solution to these disadvantages, many approximate measures have been
proposed for most of the existing metrics, which provide solutions very close to
the actual ones in much less time. We will examine one approach for the exact
methods of Betweeness Centrality and Closeness Centrality.

3.2.1 Approximate Betweeness Centrality
The first approximate method we will examine is an approach of Betweeness
Centrality. BC has been extensively used in many applications during the last
years. Therefore there are plenty of approximations algorithms in the bibliography
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that give us different techniques to approximate BC e.g. [4], [20], [43]-[47].
In this thesis, we focus on the approximation proposed by M. Mihail et al. [4].

This approximation algorithm is based on an adaptive sampling technique that
manages to reduce significantly the shortest path computations for agents with
high centrality scores. It is actually an approximation of Brandes’ algorithm [2]
which we explained above, thus it also operates in two steps, the SSSP and the
Accummulation. Brandes’ algorithm needs to compute n shortest paths at the SSSP
step to calculate the betweeness score of a node. In [4] it is proved that it is
possible to estimate the BC score by computing much less shortest paths.

The adaptive sampling technique of source-nodes was first presented by Lipton
and Naughton [48] and the basic idea is that the number of samples depends
on the information obtained from each sample. Mihail et al. take advantage of
this sampling and they incorporate it to the SSSP step in order to reduce the
computations. At first, a random source s ∈ V is selected and an SSSP step is
performed using BFS or Dĳkstra’s algorithm. In addition, it maintains a running
sum S of the dependency scores δs•(v) for each node v ∈ V, where δs•(v) is
the dependency of a node s ∈ V on a single node v ∈ V that we mentioned in
Section 3.1.1. This process continues until sum S is greater than cn for some
constant c ≥ 2; n represents the total number of nodes in the network. At this
point, the computations stop and Betweeness Centrality Score is approximated by
the expression

ABC(v) =
nS
k

where k is the number of samples examined until sum S achieves the limit cn.
The above procedure is repeated for every node v ∈ V, however when a new

source is selected we set the number of samples k to zero because each time we
need a different number of samples to decide whether a given node is central.
This practically means that the super-nodes of a graph collect large centrality score
very quickly, so we don’t have to examine all shortest paths to get to conclusion.

As we will present later, this method actually reduces the time needed to
approximate BC and [4] proves that for 0 <ε <0.5 with probability p ≥ 1−2ε, the
above algorithm estimates the sum of dependencies of a node to within a factor
of 1

ε .

3.2.2 Approximate Closeness Centrality
As we already saw with BC, exact Closeness centrality is also extremely expensive
to compute in a large graph with thousands or millions of agents. Several methods
have been proposed so far to approximate closeness centrality scores such as [4],
[9]. In this section, we first propose a customization of the Rand algorithm [7],
which in fact is an approximation algorithm that we use to compute Approximate
Closeness scores and analyze its guarantees.
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Algorithm 5 Approximate Betweeness Algorithm in weighted graphs
Input: directed weighted Graph G = (V,E)
Data: queue Q, stack S, dist[v]: distance from source

Pred[v]: list of predecessors on shortest paths from source
σ[v]: number of shortest paths from source to v ∈ V
δ[v]: dependency of source on v ∈ V

Output: Approximate Betweeness CentralityApprBC[v] for all v ∈ V
1: for k samples do
2: Perform Single Source Shortest Pa th problem as Brandes’ algorithm

and maintain a counter ksample which increases by 1 each time a new source
is selected
//Accumula tion

3: for v ∈ V do δ[v] = 0
4: end for
5: while S not empty do
6: pop w← S
7: for v ∈ Pred[w] do
8: δ[v]← δ[v] + σ[v]

σ[w](1 + δ[w])

9: sum[v]← sum[v] + δ[v]
10: if sum[v] >c · n and v /∈ SeedSet then
11: v→ SeedSet
12: ApprBC[v]← n·sum[v]

ksample
13: end if
14: end for
15: end while
16: end for
17: Sort ApprBC[v], v ∈ V in decreasing order
18: return ApprBC[v]
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D. Eppstein and J. Wang proposed [7] a randomized algorithm which can ap-
proximate closeness centrality with high probability in time O(

logn
ε2 (nlog(n) + m))

within an error of ε∆ where ε is a constant in (0,1) and ∆ is the diameter of the
graph. In that algorithm the inverse closeness centrality scores are computed and
it is proved that the expected value of the inverse closeness centrality is equal to
the exact inverse closeness centrality.

The RAND algorithm as it is called, is given below:

Algorithm 6 RAND Algorithm
1: Assume that k is the number of iterations needed to acquire the desired error

bound
2: In every iteration i, select uniformly at random a source si from G and run the

SSSP problem
3: The inverse closeness centrality score is computed by the expression

ĉu =
1∑k

i=1
nd(si ,u)
k(n−1)

In our experiments we used a variation of the above algorithm, which we describe
instantly. As we have seen earlier, the algorithm that calculates Closeness Centrality
operates in two steps. At step one we sample uniformly at random M nodes from
G and create a set S = {s1, s2, . . . , sM} consisting of these nodes. Then, for every
node si ∈ S we solve the Single Source Shortest Path (SSSP) problem by running
BFS or Dĳkstra algorithm. During this process we keep a weight wsi(v) = d(si, v) for
every node v ∈ V we meet. At the end of the SSSP calculations we compute a
total sum W for each node v ∈ V where W(v) =

∑M
i=1 d(si, v). In the second step

of the algorithm we use W(v) to approximate Closeness Centrality scores of each
node in the graph. The approximate centrality scores are C̄(vi) = M

W(vi) .

The number of samples that we take must be M = log n
ε2 where ε ∈ (0,1) and

n is the total number of nodes, in order to guarantee the quality of the results. In
order to prove that C̄(v) is a good approximation of exact C(v) we use Hoeffding’s
inequality:

Proposition 3.2.1 If X1,. . . ,Xk are independent random variables, ai ≤ Xi ≤
bi,where i = 1,2, . . . , k and X̄ = 1

k
∑k
i=1Xi then

Pr
[
|X̄− E[X̄|

]
≥ ξ] ≤ 2e−2k2ξ2/

∑k
i=1(bi−ai)2

In our case we define Xi(v) = wsi(v) = d(si, v) to represent the contribution of
a sampled source si to the total weight W(v) of a vertex v i.e. the expected

22



value of Xi is given by E(Xi) = 1
nFar(v) where Far(v) =

∑
s∈V d(v, s) . So if

W̄(v) is the mean value of total weights regarding the M samples we took then
W̄(v) = 1

M
∑M
i=1 d(si, v) = 1

M
∑M
i=1Xi(v) and it is obvious that

E(W̄(v)) =
1
M
M
n Far(v) =

1
nFar(v) (3.4)

.

As n→∞ the above can be written as:

E(W̄(v)) =
1
nFar(v) =

n− 1
n− 1

1
nFar(v) =

1
n− 1Far(v) =

1
C(v) (3.5)

Algorithm 7 Approximate Closeness Algorithm
1: Input: Graph G = (V,E), error parameter ε ∈ (0,1), M = log n

ε2 , set S = {}
2: for i = 1, . . . ,M do
3: sample at random a set of vertices S = (s1, s2, . . . , sM)
4: set si as source and solve SSSP
5: for each neighbor v do wsi(v) = d(si, v)
6: end for
7: end for
8: for each v ∈ V do
9: Return the total weight W(v) =

∑M
i=1 d(si, v)

10: and calculate C̃(vi) = M
W(vi)

11: end for
12: Return C̄(vi) in decreasing order

Proposition 3.2.2 According to the sampled method described above, we can ap-
proximate the inverse Closeness of a vertex within a small error of ε∆ with high
probability. Specifically for any vertex v

Pr
[ 1
C̄(v) −

1
C(v) ≥ ε∆

]
≤ 2 1

n2

where ∆ is the diameter of the graph.

Proof From Hoeffding’s inequality we have:

Pr
[
|X̄− E[X̄|

]
≥ ξ] ≤ 2e−2k2ξ2/

∑k
i=1(bi−ai)2 (3.6)
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where ai = 0, bi = ∆, ξ = ε∆ and M =
log(n)
ε2 . According to these equation (6) is

written as:
Pr
[
|W̄(v)− E(W̄(v))| ≥ ε∆

]
≤ 2e−2M

(
ξ
bi

)2
(3.7)

= 2e

[
−2 log n

ε2

(
ε∆
∆

)2]
= 2e

[
−2 log n

]
= 2 1

n2
Then, from (5), (7) and setting as our estimator for Closeness Centrality of a
vertex the quantity

C̃(v) =
M
W(v) =

1
W̄(v)

we get the result of Proposition 3.2.2. �

3.3 Adaptive Approximate Centrality Measures Algorithms and
Analysis

Adaptive techniques are very different from approximate ones. So far, we reached
the conclusion that with approximate methods we can achieve, with fewer calcula-
tions, results equally good as exact measures. The adaptivity on the other hand,
accomplishes a different outcome. The basic idea is that we choose every time
the best agent, depending on the measure we are using, and then in order to
compute the next best node, we remove the first one and recompute the scores
in the new network. This helps us because influential nodes in a graph are often
close to one another and very central. Thus, it is not efficient to choose more than
one supernodes as we call them, which are close to each other and have similar
neighbors, because the budget of ‘‘advertisers" nodes is limited. In some cases, in
order to be able to diffuse information in the entire network we need as seeds
distant nodes.

There are plenty of adaptive techniques in the bibliography. We preferred to
test out two adaptive methods based on Betweeness and Closeness centralities.
In addition, we will examine a method that is not referred to any of the known
measures, proposed by Borgs et al. [5]. Eventually we will be able to decide,
depending on the problem which we have to solve, which method is more efficient
to use.

3.3.1 Adaptive Approximate Betweeness Centrality
So far we examined two algorithms about Betweeness Centrality. In this section,
we will discuss an adaptive variant of the approximate Brandes’ algorithm. It is
interesting to study such a method, because sometimes we want to get the k best
nodes which belong to different regions. For this purpose, we used Y. Yoshida’s
algorithm [11] to compute Adaptive Betweeness Scores.
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This adaptive algorithm performs in two steps. The first objective is to build
a hypergraph as in Borgs et al. [5]. A hypergraph H, as we mentioned before,
consists of a set of nodes V = {v1, v2, . . . , vn} and a set of hyperedges E =
{e1, e2, . . . , en}. Each hyperedge ei represents a set of nodes Si, created by
computing a directed acyclic graph, started from a source s to a target node t,
using BFS or Dĳkstra algorithm. Next, due to Brandes’ algorithm, weights are
assigned to every node of each hyperedge that depicts their importance. The
weights are determined by the formula

e =

{
(v, σst(v)σst

)|v ∈ Pst − {s, t}
}

where σst is the total number of shortest paths between s and t and σst(v) is the
number of shortest paths between s and t that pass through v.

One difference of this algorithm compared with the exact betweeness algorithm,
is that shortest paths are computed for pairs of nodes (s, t). This means that the
SSSP step of Brandes’ algorithm is executed normally until BFS or Dĳkstra algorithm
reaches the target node t. At that point the SSSP procedure is interrupted and a
hyperedge is created which contains all nodes that were discovered thus far. After
M hyperedges are created, the importance of each node is estimated by summing
the weights that he has in each of the hyperedges that participates. The node
which has the highest score is considered as the most influential.

The adaptive step occurs after all the computations above. Once we selected
the best node, we replace each hyperedge ei in which the best node participates,
with a new hyperedge e′i. This new hyperedge is computed from the beginning
using the algorithm we described earlier in this section. The selected best node and
his edges in the original graph G = (V,E) are removed before new computations.

Algorithm 8 Build Betweeness Hypergraph Algorithm
Input: Graph G = (V,E), an integer M ≥ 1

1: Initialize H = (V, ∅)
2: for i = 1, . . . ,M do
3: Pick a set of vertices (s, t) at random
4: Make a weighted hyperedge e = {(v, σst(v)σst )|v ∈ Pst − {s, t}}, add it to H
5: return H
6: end for

The runtime of the algorithm is almost linear. It needs O(hM) to build the
hypergraph. By using a priority queue, finding the maximum weights at most nM
times it gives us O(hM log(n)). So, finally the total run time is O((n+m)M+ hM+
hM log(n)).
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Algorithm 9 Top-k ABC Algorithm
Input: Graph G = (V,E), an integer k ≥ 1

1: M← O(log(n)/ε2)
2: H← BuildBetweenessHypergraph(G,M)
3: for i = 1, . . . , k do
4: vi ← argmaxv{wH(v)}
5: for each hyperedge e incident to vi do
6: Replace it with a new weighted hyperedge
7: {(v, σst(v|v1,...,vi)σst )|v ∈ Pst − {s, t}}
8: end for
9: end for

10: return the set {v1, . . . , vk}

3.3.2 Adaptive Approximate Closeness Centrality
In this section, we define an adaptive method for computing Closeness Centrality
scores in a network. The technique we are using is based to Yoshida’s top-k
algorithm we described in the previous section. Moreover, we used Borgs’ et al.
[5] technique to create a hypergraph on which we apply the measure.

The first part of the algorithm that we describe, is similar to algorithm 7 of
Section 3.2.2. From lines 1-7, where the SSSP problems are solved, the procedure
remains the same except from an addition of a line where the hyperedges will be
generated. Each hyperedge consists of a set of nodes Si that is created by running
BFS or Dĳkstra algorithm, starting with source node si. Applying this to algorithm
7 will give us one hyperedge for each SSSP we solve, so in the end of the process
M hyperedges will have been created. Now, we need to assign weights to the
hyperedges in order to be able to decide the importance of the nodes. Thus, for
each v ∈ Pesi , where Pesi is the set of nodes that constitute the shortest paths from
source si to all other nodes, we set a weight given by wsi = d(si, v). Therefore,
until this point we have constructed a hypergraph H = (V,EH) where V = {1, . . . , n}
is the set of nodes of the initial graph G, and EH = {es1 , . . . , esM} is the set of
hyperedges. Note that hyperedges are actually pairs of (v, wv) for each v ∈ Pesi .

The second part consists of the adaptive step. Once we have the hypergraph
H, we get as the most influential node the one that achieves the highest score by
the expression

W(v) =

M∑
i=1

wsi =

M∑
i=1

d(si, v)

Afterwards, we create a new set A which will provide the final seed set we need.
Every time a best node is selected we add it to that set A. To continue with the
next seed node, we remove the one we took from graph G, and we recompute all
the hyperedges of H that it participates. So in every repetition, if that node is a
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part of k hyperedges, we need to recalculate the distances for these k hyperedges
starting from source nodes si, i = 1, . . . , k, excluding the selected seed node and his
edges in real graph G.

So, for a set A ⊂ V the Adaptive Closeness Centrality (ACC) score of a node v
can be defined as

ACC(v) = ACC(v|A) =
|V−A|
F(v|A)

=
|V−A|∑

s∈V\A d(v, s|A)
, v ∈ V\A (3.8)

At this point we can define the total Adaptive Closeness Centrality of a set of
vertices A ⊂ V, combining relations (1),(8) to be

ACC(A) =
|V−A|
F(A)

=
|V−A|∑n

i=1,s∈V\A d(vi, s|A)
, v ∈ A, i = {1, . . . , k} (3.9)

An observation here is that relation (9) gives us a completely different outcome
from Group Closeness Centrality (GCC) [14], [15]. GCC calculates the score of
a set of vertices too, however it doesn’t take into consideration the already chosen
seeds. Below we present the algorithm we described.

Algorithm 10 Adaptive Closeness Centrality
1: Input Graph G = (V,E), error parameter ε ∈ (0,1),M = log n

ε2 , set S = {}, set
A = {}

2: for i = 1, . . . ,M do
3: sample at random a set of vertices S = (s1, s2, . . . , sM)
4: set si as source and solve SSSP
5: make a new weighted hyperedge esi = {v, wsi} where
6: for each neighbor v do wsi(v) = d(si, v)
7: end for
8: end for
9: Return the total weight W(v) =

∑M
i=1 d(si, v) from all hyperedges

10: and calculate C̃(v) = M
W(v)

11: for i = 1, . . . , k do pick vi with maxC̃(v) and put it in A = {}
12: for each esi incident to vi do run SSSP from si and
13: replace esi with a new esi = {v, wsi(v) = d(si, v|A)}
14: end for
15: for each v ∈ (V−A) do calculate W(v|A) =

∑M
i=1 d(si, v|A)

16: return C̃(v) = M
W(v|A) = M∑M

i=1 d(si ,v|A)
in decresing order

17: end for
18: end for
19: Return set A = {v1, v2, . . . , vk}

In a few words, in each iteration algorithm 10 extracts node vi with the highest
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ACC score. Then, vi is excluded from the graph, along with his edges. The ACC
scores are recomputed in the new graph G − {vi} and a new best node appears.
This process continues for k steps, so in the end we have the set A = {v1, . . . , vk},
which gives us the k best agents in an adaptive manner.

As we proved in Section 3.2.2, Proposition 3.2.2 applies to the adaptive
measure too.

Proposition 3.3.1 If Ã is the result of our algorithm, then algorithm 2 is with high
probability a good approximation of the inverse Closeness Centrality of the exact
greedy algorithm within a small error of ε∆ and in fact

Pr
[ 1
C̃(Ã)

− 1
C(Ã)

≥ ε∆
]
≤ 21

n

3.3.3 BBCL Centrality
The BBCL centrality measure is based on finding those nodes in a graph that
can begin a diffusion process, in order to achieve the maximum resulting cascade.
The most important outcome though, is that BBCL runs in nearly optimal time
which makes this measure highly competitive. To be fair with the other measures
we examine, we will compare the results of BBCL metric with the results of the
approximate and adaptive methods. Exact measures are, by their very nature, slow
and apparently will lose the speed issue. Even though exact metrics can provide
accurate results, networks these days can be volatile so we need metrics that can
compute quick solutions rather than slow and precise ones.

The algorithm proposed in [5] relies on the Independent Cascade model (IC)
formalized by Kempe et al [21]. In this model, a network is depicted as a
weighted directed graph G, in which diffusion occurs via a random process starting
with a set of nodes S. Then, every node at the moment he is influenced has a
chance to spread the influence himself to his own neighbors. The weighted edges
e = (u, v) represent the probability that the influence passes from u to v. IC model
shows that influence can spread stochastically through a network.

On the basis of the IC model, BBCL assumes the following ‘‘polling" process,
as it is called. Select a uniformly random node v from graph G. Then, estimate a
set of nodes A that could have influenced node v. Repeat that estimation k times,
and if a specific node u appears continuously as influencer then he is probably a
good node to be selected as seed node. If we define as I(S) the number of nodes
that are eventually affected by the seed set S, then [5] proves that the probability
of a node u to appear in a set of influencers is proportional to E[I(u)]. In order
to find the seed set S the polling process is implementing to the reverse graph G′,
which is the original graph G with reverse edge directions.
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Algorithm 11 BBCL Algorithm
Require: Precision parameter ε ∈ (0,1), directed edge weighted graph G
1: R = 144(m+ n)ε−3log(n)
2: H = BuildHypergraph(R)
3: return BuildSeedSet(H,k)

BuildHypergraph(R):
4: Initialize H = (V, ∅)
5: repeat
6: Choose node u from G uniformly at random
7: Simulate influence spread, starting from u, in GT.
8: Let Z be the set of nodes discovered
9: Add Z to the edge set of H

10: until R steps have been taken in total by the simulation process
11: return H

BuildSeedSet(H,k):
12: for i = 1, . . . , k do
13: vi = argmaxv{degH(v)}
14: Remove vi and all incident edges from H
15: end for
16: return {v1, . . . , vk}

The basic algorithm works in two steps. First, using the above procedure of
random sampling, a hypergraph H is created as follows. First it selects a random
node s ∈ V as source and then it uses Depth First Search algorithm (DFS) to
create a spanning tree started at s. Next, a coin is flipped on every edge of the
spanning tree and each edge is kept with probability 0.5. At this point, we have
a disconnected spanning forest. In order to build the hypergraph mentioned above,
the DFS algorithm runs again on the spanning tree this time and a new smaller
tree is returned which is connected. So, we get a set A = {v1, v2, . . . , vk} where
v1, v2, . . . , vk are the nodes of the spanning tree that resulted. This set A is defined
as a hyperedge e of the hypergraph H. If we repeat these steps for k times, the
result will be a hypergraph H = (V,E′) where V is the set of nodes of the original
graph G and E′ is the set that consists of the hyperedges above.

Afterwards, we need to decide which node is the most important one. To
do that, for every node v ∈ V, is computed the number of the hyperedges that
he participates. At this point, we have a list with n counters for n nodes that
represent the level of influence of each node in the graph. Thus, if we arrange
them in decreasing order based on that counter, the node with the largest counter
value will be the most important one. These counters are defined as degrees
on the hypergraph structure. In order to take the k most important nodes, an
adaptive technique is used. Every time that a node is selected as the best one,
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he is removed from every hyperedge that he participates. Then, the degrees of
hypergraph are re-computed for every v ∈ V and again the node with the highest
degree is selected.

The BBCL algorithm is limited by parameter R = 144(m + n)ε−3log(n) and
this bound is maintained so that the algorithm runs in almost linear time. The
main result is that for any ε > 0 the algorithm returns a set of nodes S which
approximates by a factor of (1 − 1

e − ε) the exact set S′ that a greedy method
would produce, with probability 3

5 and in O((m+ n)ε−3log(n)) time.
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Chapter 4

Information-Propagation Models

Up to this point, we studied different ways to decide which nodes of a graph can
be considered as important. Given the seed sets for the two firms, we need to
apply a method that will simulate the amount of other agents in the network that
the important ones can influence. To do that, we will use two different methods
of diffusion: 1) De Groot Model and 2) General Threshold Model.

In particular, we are interested not just about the diffusion each measure from
Section 3 can achieve in a network by its own, but for the extent to which the
diffusion is achieved for each firm, in a competitive scenario where agents have to
decide which of the two opinions to adopt. Each firm, is represented by a set
of nodes that spread an opinion, or advertise its product, or even the expansion
of a disease. In each case, an opinion or a product, if it is the only one that
spreads in the network, may have the chance to reach every other agent starting
from the selected seed nodes. In reality though, there will not be a single opinion
in a society or a unique product for advertising. So, here we enter the concept
of competition. We assume that we have two different opinions to spread in the
network. In the rest of the thesis, we will use those terms to examine the diffusion
level between two competitors.

In every competition between two firms, each one has to choose one centrality
measure in order to settle on its seed nodes. In order for the selection to be fair,
we let the firms choose a centrality measure from the same category. This means
that firms can compete using both 1) Exact Centrality measures, 2) Approximate
Centrality measures or 3) Adaptive Approximate Centrality measures. Furthermore,
we make the assumption that they are not allowed to choose the same measure.
According to these restrictions, we examine all combinations of exact, approximate
and adaptive approximate competitions.

At first, we let each firm to select 10 seed agents depending on the centrality
measure she chose. In many cases though, centrality measures we studied, can
export same nodes. So, at this point, we have to make a choice about whether
one of the firms will keep this common seed agent or neither of the firms will.
Initially we thought that it would be fair that if they happen to choose a same
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seed node, they both lose him, so as neither of them can take advantage of him.
Practically, the result was that both companies lost a significant amount of seed
nodes, and more important, they lost their best ones. So, in the end, the diffusion
was extremely limited which is understandable considering that selected seeds were
less influential nodes.

As a middle ground, we considered the following procedure. Each firm has
chosen 10 agents as seeds. For every node that both select, we flip a coin so that
if ‘‘heads’’ comes up firm 1 keeps the seed else if ‘‘tails’’ comes up firm 2 keeps
him. Therefore, in case that we have conflict, each firm keeps the seed agent
with probability 0.5. With this process, the influential nodes are not being wasted.
However, this creates a new problem to deal with. If we apply the above once,
then we give advantage to the firm that ultimately kept the common good seed
agent. To avoid this outcome, we apply the probability procedure ten times for
each competition and hence, there are ten different pairs of seed sets created. As
a result, the most influential nodes are split, some to firm 1 and others to firm 2.
Eventually, the total diffusion of each firm is computed by the average value of
these ten competitions.

In the next two sections, the two diffusion methods we used are described in
detail.

4.1 De Groot Model
The first diffusion model we study is a continuous metric. The basic idea of De
Groot model [9] is that the opinion of an agent in a subject depends on the
opinions of his neighbors on that subject.

Consider a network G = (V,E) where V = {1,2, . . . , n} is the set of nodes and
E = {e1, e2, . . . , em} is the set of edges. Each agent v ∈ V has an initial opinion
on a subject. These opinions can be represented as a n-dimensional vector of
probabilities p(0) = (p1(0), p2(0), . . . , pn(0)), where pi ∈ (0,1). Then, a possibly
weighted, non-negative n×n matrix T is introduced, which represents the interaction
patterns. More specifically, T is a row stochastic matrix, that is, if we add all the
values in each row, this sum is equal to 1. Every element Tij of that matrix
belongs to the interval (0,1) and shows the weight that agent i gives on the
opinion of agent j, in order to form his own opinion for the next time period.
So, if we start with an initial vector of opinions p(0), in the next time period the
corresponding vector will be p(1) = T · p(0). Applying this rule, p(2) is given by
p(2) = T · p(1) = T · T · p(0) and continuing in this matter for t times, in the end
we will have the expression

p(t) = T · p(t − 1) = Tt · p(0) (4.1)

This expression shows that knowing only the initial vector of opinions and the matrix
T, we can compute all the other vectors of probabilities until we reach convergence
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of the model. To understand how De Groot model operates, we describe it with
the following example.

Suppose we have a small society composed of three individuals whose interaction
patterns are represented by the following matrix

T =

 1/3 1/3 1/3
1/2 1/2 0
0 1/4 3/4


and the initial opinions are represented by vector

p(0) =

 1
0
0


According to what we mentioned above, the vector of beliefs at time 1 will be

p(1) = Tp(0) =

 1/3 1/3 1/3
1/2 1/2 0
0 1/4 3/4

 1
0
0

 =

 1/3
1/2
0


If we apply this t times, where t→∞ we have

p(t) = Tp(t − 1) = Ttp(0)→

 3/11
3/11
3/11


In order to arrive at the final vector of opinions, we expect Tt ·p(0) to converge in
a single vector after t times. This means that, from this point on, the final opinions
have been formed and they won’t change anymore by the neighbor’s opinions.
However, this isn’t always the case. There are some examples that Tt · p(0) never
achieves convergent. For instance if we have the following updating matrix

T =

 0 1/2 1/2
1 0 0
1 0 0


then there will be no convergence of beliefs to a single value since the matrix will
oscillate

T2 =

 1 0 0
0 1/2 1/2
0 1/2 1/2

 , T3 =

 1/2 1/2 0
1 0 0
1 0 0

 , T4 =

 1 0 0
0 1/2 1/2
0 1/2 1/2


Golub and Jackson [25], [9] proved that a stochastic matrix T is convergent if
and only if the underlying graph is strongly connected and aperiodic. In large
graphs where T is a n × n matrix not all agents converge to the same value but
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convergence still exists. In such graphs usually there is one or several closed and
strongly connected groups of agents and each of those groups will reach its own
consensus. In other words there is a point where each of those groups will have
the same specific value of opinions. DeMarzo et al. [26] shows that the remaining
agents who are somehow connected with directed paths to the strongly connected
groups will end up with some weighted average of the limit beliefs that have been
achieved by the strongly connected groups.

4.1.1 De Groot Model Implementation
In this section we describe how we used De Groot model in order to achieve
maximum diffusion in a network. First of all, the networks we study, are referring
in directed (or undirected) and weighted graphs. In any directed graph, a node
v has a number of out-edges and a number of in-edges. In simple words, node
v follows some of the other nodes of the graph and indicated by his out-edges,
and also nodes which follow v are indicated by v’s in-edges. So, we can separate
the original graph in the out-degree and the in-degree representations. These two,
represent the same original graph; the only difference is that each of them consider
different neighborhoods for every v ∈ V.

Suppose we are given a graph G. This means that we have an adjacency list

u1 → v1
u2 → v2
. . .

um → vm
which shows us the interactions between all nodes. Suppose we have the following
adjacency list of a graph

1→ 4
2→ 1
2→ 3
3→ 4
4→ 1
4→ 2

Then, there are two ways to demonstrate this graph which are

Iout =


0 0 0 w1,4
w2,1 0 w2,3 0
0 0 0 w3,4
w4,1 w4,2 0 0
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and Iin is practically the transpose ITout

Iin =


0 w2,1 0 w4,1
0 0 0 w4,2
0 w2,3 0 0
w1,4 0 w3,4 0


where wi,j are the weights of the edges in G.

After examining both cases in several graphs, we noticed that De Groot model
operates way better with Iin as an input. To understand that, consider that each
node wants to influence his neighbors so that his opinion can spread. As we
described before, the in-degree of each node v represents the followers of v. So, if
v tries to propagate his opinion to others, those that will hear him are his followees
and not the followers. In his turn, v as well, will hear the nodes which he follows
and that procedure continues for all the graph.

This perspective works for De Groot model, however, some centrality measures
from Section 3 cannot follow. For example, if Diffusion Centrality plays against
other measures, it fails to spread the initial opinions using the seed set which
provides. So, to be fair both to the centrality measures and the diffusion models,
we assume that all methods will apply to the in-degree graph. For some measures
though, like Betweeness or Closeness centralities, there is little difference to the
final seed sets in whatever graph (in or out degree) we use. This happens due to
their own technique on choosing influential agents.

As for the weights of the graphs, we assign to all in-edges of each node v ∈ V,
a weight equal to 1/inDegree(v). This occurs for two reasons. Firstly, in the De
Groot model we need a matrix which is row stochastic in order to operate properly.
And secondly, since our aim is to compare the two diffusion models, De Groot and
Threshold, in order to decide which one achieves a larger spread, we must use the
same matrix. As we will describe in the next section, the Threshold model does not
take into account the weights of the edges. This means, that every node considers
all of his neighbors equals, so each one can influence him with 1/inDegree. Thus,
if we assign these weights instead of random ones, we examine the spread in both
diffusion models in identical graphs.

Note that, these weights refer to the percentage of influence that neighbors of v
have on v. So, consider a small neighborhood with three agents and (1/2,1/4,1/4)
to be the first line of the adjacency matrix. This means that node 1 takes into
consideration 50% of his own opinion, 25% of node’s 2 and 25% of node’s 3, to
form his new opinion.

At this point, we need to make some additional customizations so as to create
a game between the firms. At first, we consider two additional nodes in our graph,
where node n+ 1 represents the first firm and node n+ 2 the second one. These
nodes are considered as ‘‘stubborn’’ agents in the way that they can influence some
of the other agents in the graph, but all the other agents cannot influence them.
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Thus, their initial opinion has value 1 and remains constant throughout the process.
Practically, we add two rows and two columns in our matrix, so the new adjacency
matrix T has dimensions (n+ 2)× (n+ 2).

T =


w1,1 w1,2 . . . w1,n 0 0
w2,1 w2,2 . . . w2,n 0 0
... ... . . . ... ... ...
0 0 . . . 0 1 0
0 0 . . . 0 0 1


As we can see above, at the beginning nodes n + 1 and n + 2 are isolated and
they only care about their own opinion. The purpose of these additional nodes
is simple. Suppose that the firms have selected their seed sets, {u1, u2, . . . , u10}
and {v1, v2, . . . , v10} for firm 1 and firm 2 respectively. Then, we connect nodes
{u1, u2, . . . , u10} to stubborn agent n + 1, and nodes {v1, v2, . . . , v10} to stubborn
agent n + 2. Since both sets have been selected as seed sets, we want their
opinion to stay unchangeable from future interactions. To achieve that, we define
a constant c = 1000 which depicts the level of influence that stubborn agents
have upon the seed sets. After this observation, the last two columns of matrix T
becomes

n+1 n+2



0 0 1
0 0 2
... ... ...

1000 ... u1
... ... ...

1000 0 u10

0 0 ...
... ... ...
0 1000 v1
... ... ...
... 1000 v10
... ... n
1 0 n+1
0 1 n+2

In the next step, we normalize the rows where we added constant c in order to
have a row stochastic matrix to apply De Groot model.

So far, we have created a new interaction matrix W, which incorporates two
firms as ‘‘stubborn’’ agents and the interaction patterns that occurs between all
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nodes of the society. Now, we need to define an initial vector of opinions
p(0) = [p1, p2, . . . , pn+2] where pi ∈ [0,1]. Opinion vector p(0) represents the initial
opinions of all agents. Before the process begins, we assume that all agents, except
for the firms and the seed sets nodes, are indifferent. Thus, if we set firm n+1 to
be depicted by value 0, and firm n + 2 by value 1, then all the indifferent nodes
at the beginning have the value 0.5.

Theoretically, a node v remains neutral until the end of the process, if the
v − th co-ordinate is equal to 0.5. In computer science, it is almost impossible to
remain immutable, regardless of what is happening to others around you. So, in
our experiments, we suggest that there is an interval [0.4,0.6] that indicates the
indifference of each agent. After all, as we move away from either of the original
interval limits, which are 0 and 1, we tend to become neutral.

The key point here, is the fact that both interaction matrix W and initial opinion
vector p(0), includes two different firms as stubborn agents, and each one choose
a centrality measure which represents the agents that will advertise their products.
It is known from the literature, that stubborn agents tend to make other agents
to compromise with their opinion or even adopt it [9], [10]. This doesn’t mean
that they can achieve to spread the opinion through all the network. In order to
transmit a piece of information to everyone, the two stubborn agents are insufficient
and one of the most important factors is the graph structure.

It is obvious that each firm uses the same seed set in both W and p(0).
Setting the set of centrality measures as the set of strategies, and adopting a
game theoretical approach, it is easy to see that there is a zero-sum game between
the firms. A zero-sum game means that one firm’s gain is equivalent to another’s
loss. In our analysis, if the first firm manages to influence most of the graph, then
the other one will take only the left over nodes. The purpose of this game is to
define which strategy (i.e. which centrality measure) is the dominant one in order
to prevail in the society’s market.

Combining everything that was mentioned so far, and by using formula (10),
we are able to decide which strategy is better than another. Due to the De
Groot model, matrix W should reach convergence to stop the procedure. In our
experiments we used a large enough number of iterations, to approach as much
as possible that convergence. The actual number we used is t = 210. Due to
the number of iterations that are needed, and considering the size of the networks
we examine, the time required for this algorithm is quite large. The basic time
consuming operations are the powers of the interaction matrix W. Generally, each
multiplication needs O(n3), so in order to compute Wt for a large t, we need
t · n3 time at worst case. We succeeded to restrain this limit by reducing the
multiplications using the following technique.

Starting with matrix W, we need to compute first matrices W2,W3, . . . ,Wt and
then take the result of the multiplication Wt · p(0). That means that we have
to compute t − 1 multiplications. Instead of doing it this way, we exploit the
fact that matrix Wt results by continuously multiply W to itself. Thus, at first
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iteration we compute W2, then continue with W2 ·W2 = W4, W4 ·W4 = W8, . . . ,
Wt/2 ·Wt/2 = Wt. Using that trick, we can calculate higher powers t, in less time.
Note that, the higher power we get, the closer we are to the convergence of the
matrix, according to De Groot model.

4.1.2 Rules and restrictions
Each measure has its own special features and may depend on a completely
different concept than the others. For example Diffusion and Closeness Centralities
in a power law graph will probably give high scores in vertices that are located
in small components rather in large ones. That is an unrealistic and misleading
result and when those strategies compete with betweenness or BBCL method it is
absolutely certain that they will lose. Thus our major restriction in order to have a
fair competition between firms and the strategies they use, is to limit our research
in the giant component of such graphs, so that all measures are implemented and
then compete in a (strongly) connected network where there exists a (directed)
path from every node to every other node.

The second rule we applied, was mentioned in Chapter 4 and involves the
management of seed nodes that both firms selected. Naturally, some important
agents will appear in two or maybe more seed sets from different strategies. In
that case, we let only one firm keep the common seed node and the second firm
replaces him with her next best choice. In order to decide which of them will keep
him, we conduct a random experiment and with probability p = 1/2 each, they
keep or extract the node from the seed set respectively. We iterate this process
until we get two different seed sets composed of ten nodes, one for each strategy.
This excluding rule is applied to avoid any kind of conflict between agents on
whose side to take.

Since the outcome from this rule is a probabilistic one, it could turn to be
unfair if we use it just once and the results from the De Groot process would be
unrealistic. For example, we may have the case where all the common agents of
the competitors seed sets happens to go to one strategy and the other strategy is
obliged to compete with far less important agents, and this will result in losing the
game. So, for each competing pair of strategies we apply the excluding rule ten
times, so as to get ten different competing pairs of seed sets. Finally, we run De
Groot model for each pair of seed sets separately. Thus, for each competing pair
of strategies we get ten different results of the De Groot process. Generally, the
strategy that provokes the larger diffusion throughout the society on the average
is the winner. We use this method for all competitions where we have observed
common agents between seed sets and in Chapter 4, we demonstrate those results
using box plots.
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4.2 Threshold Model
The second diffusion model we examine is a discrete diffusion model called General
Threshold model. There are various types of threshold models like linear threshold
model [18] and general threshold model [21]. In our experiments we used
general threshold model which is a generalization of Granovetter’s linear threshold
model [27]. The basic idea is that every agent can be influenced by his neighbors
equally, and he adopts an opinion if a fraction p of his neighbors have adopted it.
Each individual can be either active or inactive. Every agent’s tendency to become
active increases monotonically as more of his neighbors become active over time.
This is a very simple idea and easy to implement.

In the General Threshold model, each node v has a monotone activation function
fv and a threshold value θv which is chosen uniformly and independently at random
from the interval (0,1]. Threshold value θv represents the fraction of v’s neighbors
that must become active in order for v to become active as well. Every node at
the beginning of the process is considered as inactive (or as we named them in the
De Groot model, neutral) except for the nodes that are selected as seeds. A node
v which is inactive at time t, becomes active at time t+1, if fv(S) ≥ θv, where S is
the set of v’s neighbors that are active at time t. This means that at some point,
if a large subset of v’s neighbors have the same opinion about a subject, then v
will adopt their opinion too. Once a node becomes active at some time t + 1, he
stays active for the rest of the procedure and he tries to influence his neighbors at
the next time periods. So, from the moment he becomes active, he cannot switch
to inactive again.

The nodes that have become active are considered as contagious nodes due to
the fact that they can affect other agents in the graph. Each time a node tries to
affect one of his neighbors, he influences them to adopt the current opinion that
he has. The value of threshold θv can be different for every node v ∈ V, or it can
be the same number for all agents. The process terminates when all agents reach
a stable phase, which means that for two consecutive iterations the inactive ones
stay inactive.

There are various works on the subject of spreading an innovation or an opinion
and the effects of ‘‘word of mouth’’ strategies. The first investigations on the
subject were concerned about the adoption of medical and agricultural innovations
[28, 29, 30]. Later, there were studies interested in diffusion processes of ‘‘word
of mouth’’ and ‘‘viral marketing’’ effects in the success of new products [31] -
[37] and suddenly penetrate to game theoretic setting [38] - [42]. So, as we
can see, there are many applications for these models and we refer the reader to
the above studies for more information.

4.2.1 General Threshold Model Implementation
The whole concept of our research is to investigate a game theoretic approach
between two firms which compete to maximize their influence in a society. In order
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to do that we use the same logic as Section 4.1 for the De Groot model, but this
time we combine the Threshold Model with Game Theory concepts.

Once again, the networks we are testing are weighted and directed (or undi-
rected) graphs. The Threshold model is applied to the in-edges graph in order to
be fair among the diffusion models. One difference between the Threshold and the
De Groot model is that the first one is not using the edge’s weights to accomplish
the spread through the network. This means that for every node v ∈ V, each of
its in-edges neighbors is considered as equal, i.e. each one of them can influence
node v with 1/InDegree(v). In Section 4.1, we defined weights of every graph G
to be given exactly from that expression.

To start the process we need two inputs. The first one, as we mentioned
above, is a directed graph G and the in-edges weights for each agent v given
by 1/InDegree(v). The second input, are the seed sets selected from the firms
(derived from the centrality measures in Chapter 3). Each firm has chosen 10
agents to spread her product against the other one. So, we have two different
centrality measures competing for a bigger level of influence in a society. In
other words, we have a 2-player zero-sum game between two firms, who introduce
their innovation into two different seed sets of agents and try to achieve the best
possible propagation level in order to win the game.

At this point, we set as inactive all agents in the graph, except for the seed
nodes. The initial opinions are represented by a vector p(0) = [p1, p2, . . . , pn],
where pi ∈ [0,1]. The values 0, 1 represent the two firms respectively. All the
other agents are neutral, so their value is set to 0.5. Therefore, initial vector p(0)
will have the form

p(0) = [0.5, . . . ,0.5,0, . . . , 0,0.5, . . . ,0.5,1, . . . , 1,0.5, . . . ,0.5]

where the values 0 and 1 are not necessarily assigned to consecutive nodes. The
Threshold model is a discrete model in contrast with the De Groot model. This
means that, whenever a node decides to adopt an opinion, his value on the opinion
vector will be either 0 or 1. If he decides to stay neutral his value will remain
0.5. Vector p can take only these three values, one for each state.

In the De Groot model we saw that there are various levels of influence, and
more specifically we defined an entire interval of indifferent nodes. Moreover, it
was important how close to 0 and 1 were the values of vector p(0) because that
showed the level of adoption of the innovation. Here, the values of p are absolute,
nodes don’t tend to adopt an opinion but they actually adopt it.

The procedure continues as follows. In each iteration, every node keeps two
counters, one for firm 1 and one for firm 2. Let’s assume that a node v ∈ V
counts his neighbors at iteration i and the result is that he has k neighbors which
have adopted firm 1, and l which have adopted firm 2. Then, node v has to
decide if he will adopt one of the innovations with respect to the counters that he
kept in the previous step. In order to follow either of them, he examines if the
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neighbors which are not neutral, exceeds his threshold value θv. If

k+ l
neighbors(v) ≥ θv

then he must choose which one of them he will adopt. To do that, we produce a
random number r ∈ [0, k+ l] and if r ∈ [0, k] then v follows firm 1 else if r ∈ [k+1, l]
he follows firm 2. This experiment practically says that v follows:

• firm 1, with probability p1 = k
k+l

• firm 2, with probability p2 = l
k+l

Note that this is not the only way to use threshold value θv. For example we could
define that neighbors from one firm only should exceed θv in order to influence
node v. We use the total number of decided nodes in our experiments, because
the networks we examine are sparse and we would have limited diffusion otherwise.

With the propagation rule we entered, we created the following problem. Due
to probabilities p1 and p2 we can get very different results for a competition
between the two firms, using the same pair of seed sets. So, to eliminate the
extreme cases, we repeat the Threshold model 1000 times for each competition
separately and we consider as final outcome the average value of these 1000
independent experiments. Later, when we will present the experiments, we will
consider the amount of dispersion found in every case, to see how often we
encounter extreme situations.

The process of the Threshold model terminates if for some consecutive iterations
k, k + 1 all agents are stable. This means that the inactive nodes stay inactive,
and the active ones maintain the opinion which they adopted since iteration k, in
iteration k+ 1.

4.2.2 Rules and restrictions
As in the DeGroot model we have two major restrictions in the implementation.
Firstly, we have to limit our research in the giant component of the graph so
as we examine both diffusion models with the same inputs. As we explained in
Section 4.1.2, this limitation ensures that there will be a fair competition between
firms and helps to come up with realistic conclusions from the results. Secondly,
in directed graphs we let our centrality measures to be computed in the in-degree
graph. We applied Threshold model to both in-degree and out-degree graphs, and
the results weren’t so different. However, we have this restriction in order to be
able to compare results from both diffusion models with the same criteria.

Moreover, the excluding rule that we use in De Groot model remains here as
well, to ensure that we will have a fair procedure. For each competing pair of
strategies, we apply this rule ten times, so as to get ten different competing pairs
of seed sets. Combining that rule with the 1000 independent experiments for each
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pair of seed set that we described before, we get a total of 10.000 iterations of
Threshold model for each competition. The fact that the Threshold model runs
far more quickly than the De Groot, enables us to do experiments like that, and
furthermore, examine what happens in much larger graphs.
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Chapter 5

Experiments

All experiments were conducted at a personal computer that has an AMD 8350
processor with 8 cores running at 4.3 GHz. It also has 8 GB RAM. All algorithms
have been implemented in java version jdk1.8.25 and for compilation we have
been using eclipse luna 4.4.1.

5.1 General Relativity and Quantum Cosmology
General Relativity and Quantum Cosmology (GR-QC) graph stands for a collabora-
tion network that is taken from the e-print arXiv and covers scientific collaborations
between authors of papers submitted to General Relativity and Quantum Cosmology
category. The data covers papers in the period from January 1993 to April 2003
(124 months). It has 5242 nodes and 28980 edges in total, but because of our
restriction we investigate only the largest component which has 4158 nodes and
26850 edges. This network is undirected and its diameter is 17.

5.1.1 De Groot experiments
Below, we examine the competitions among the exact centrality measures, then
the approximate measures and adaptive ones, using as diffusion procedure the De
Groot model. The charts show us if we can draw a conclusion about which of the
measures achieves greater diffusion against the others.

In Figure 5.1 we can see the competitions between exact measures. It is obvious
that Betweeness Centrality is the dominant strategy here. BC wins all the other
competitors and achieves to influence most of the graph while its opponents manage
to spread their product only to a small number of agents. In this experiment BC
does not have common agents in its seed set with the other ones, so neither of
them loses good nodes. Closeness centrality comes second winning both Diffusion
and Degree measures. Note here that CC has common agents with Diffusion and
Degree measures, so we examined ten different sets of initial seed sets and as a
result we define the average diffusion of these ten experiments. Regarding the CC
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Figure 5.1: De Groot Model - Competitions of the Exact Methods

VS Diffusion results, we can see that CC can influence at minimum 255 and at
maximum 3758 agents. This difference on the amount of spread results from the
different seed sets that we are using. In the best case CC manages to influence
almost all the network but this happens only using a specific seed set where it
keeps its best nodes. CC wins also DC, however in that case the diffusion for
both measures is very low. CC can achieve to influence the 1/3 of the network
at best but on average it does not have so good results. Finally, when Diffusion
and Degree compete, DC stands out and wins on average. Nevertheless, in some
experiments, Diffusion keeps some of the good nodes and manages to block DC in
spreading. Diffusion centrality is the worst strategy here, since it loses from all the
others.

Next, Figure 5.2, presents the results from the approximate measures competi-
tions. In approximating methods BBCL seems to be the dominant one since it wins
the other two strategies. BBCL has many common seeds with BC Approximate
measure, so the results are derived from ten different seed sets. Despite that,
the diffusion has a small range from 802 to 1363 agents. This shows us that
whichever seed set we use the influence can only reach at best 1/3 of the network.
Regarding to BBCL VS CC Approximate competition, BBCL also wins and in fact
it wins easily and with great difference from his opponent. These two measures do
not have common agents, so the experiment takes place using the initial nodes that
they selected. The next best choice is the approximation of BC centrality since it
manages to influence most of the graph when it competes with approximate CC,
as in the exact case.

Finally, the competitions among adaptive measures follows in Figure 5.3. BBCL
is the best strategy again, winning both adaptive BC and CC by far. When it
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Figure 5.2: De Groot Model - Competitions of the Approximate Methods

competes with adaptive BC it achieves the higher level of diffusion, taking 4/5 of
the agents. BBCL has common agents with adaptive BC and with adaptive CC,
so there are more than one seed sets that are tested. Nevertheless, it manages
to win regardless the agents that it loses. The next best strategy is adaptive CC.
Adaptive CC and adaptive BC have no common agents, so the results are due to
the original seed set they created. Adaptive CC wins and influences many agents,
showcasing the crucial effect of adaptivity in the computation of the two measures.

Figure 5.3: De Groot Model - Competitions of the Adaptive Methods
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5.1.2 Threshold experiments
Using the same pairs of seed sets with the above competitions, we have the
following results from Threshold Model. In Figure 4 we represent the chart with
the competitions of the exact measures. Betweeness Centrality is the best strategy
also here, using Threshold model. BC wins all the other measures and the diffusion
level is high. The second one is CC which wins the other two measures in average.
We notice that the box plots of CC and Diffusion overlap in relation with the
number of nodes that they affect. The same observation applies also on the CC
VS Degree and Diffusion VS Degree competitions. On these competitions, as we
mentioned above, there are ten different pairs of seed sets that are examined, so
it is expected the fact that we will have a larger range of results. Nevertheless, on
average CC achieves to dominate against both Diffusion and Degree measures and
can be considered as the second best technique. Continuing, DC comes third and
Diffusion loses from all the others, so it is the worst strategy.

Figure 5.4: Threshold Model - Competitions of the Exact Methods

Observe that, whichever of the diffusion techniques we are using, the decreasing
order of the best measures is as follows. BC manages to win in both cases all
the other metrics, CC is next, followed by DC and last is the Diffusion centrality.
From that observation we can understand that the order of centrality measures
is not influenced by the diffusion methods, but only on the level of the diffusion
that is achieved. This is significant because, if we have to choose among the two
diffusion techniques, the Threshold model is way more faster and can be applied
to very large networks. This is not the case for the De Groot model though, which
has extensive calculations in every step and this makes it an inefficient diffusion
simulation model for large networks.
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Figure 5.5: Threshold Approximate Methods

For the approximate measures we have the following results. BBCL is the best
choice since it wins the other two approximate measures and approximate BC comes
second. BBCL and approximate BC are very close and at most of the experiments
they influence half of the network each, but on average we can see that BBCL
dominates with some small difference. On the other two competitions the results
are more clear about who is the winner. This is almost the same picture as we
have in the De Groot model with the only difference that in the Threshold Model
we get much larger diffusion levels from all strategies, whether they win or not.

Figure 5.6: Threshold Adaptive Methods

In adaptive measures we get exactly the same picture regarding the BBCL
technique against the other two adaptive measures. BBCL is the dominant one
again, even when we use adaptive algorithms for betweeness and closeness metrics.
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This is a very powerful result. BBCL can dominate among all other measures
and is not affected by the diffusion technique. On the other hand, we observe
that CC manages to win adaptive BC, despite the fact that on the exact and the
approximate competitions between them, BC always won so far. The adaptivity
helps CC to choose better seed nodes this time and he gets to win in the end.

5.1.3 Quantiles
In this section we provide a chart for every competition among the exact, approxi-
mate and adaptive techniques, applied in the Threshold Model, in order to examine
the distribution of the results of the 10.000 experiments (in each competition). We
need to consider if the average values of the firms are resulting from some extreme
cases in order to understand how the different seed sets affect the outcome.

Figure 5.7: Quantiles of the Exact Methods

For the exact methods we can see in Figure 5.7 that in the first three com-
petitions of the BC with the other measures, BC influences 2500-3000 nodes
among 95% of the 10.000 experiments. So, as we can see, there aren’t extreme
events, regardless the seed agents. The same result is observed also for the other
competitions among CC, Diffusion and DC Centralities.

Next we provide the quantile graphs for the approximate and adaptive measures.
In both cases, we can see that in every case, 95 − 99% of the experiments

influences a number of nodes that approach the average values of the two firms.
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Figure 5.8: Quantiles of the Approximate Methods

Figure 5.9: Quantiles of the Adaptive Methods

5.2 Wiki Vote
Wikipedia is a free encyclopedia written collaboratively by volunteers around the
world. A small part of Wikipedia contributors are administrators, who are users
with access to additional technical features that aid in maintenance. In order for a
user to become an administrator a Request for adminship (RfA) is issued and the
Wikipedia community via a public discussion or a vote decides who to promote
to adminship. So Wiki-Vote graph represents all the Wikipedia voting data from
the inception of Wikipedia till January 2008. Nodes in the network represent
Wikipedia users and a directed edge from node i to node j represents that user
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i voted on user j. There are in total 7115 nodes and 103689 edges, but the
largest component that we are interested in has 6243 nodes and 68430 edges.
The diameter of Wiki Vote graph is 7.

5.2.1 De Groot experiments

Figure 5.10: De Groot Model - Competitions of the Exact Methods

In the exact competitions category Degree centrality is the best strategy as it
dominates all other strategies. Betweenness centrality comes second and Diffusion
third. Closeness centrality is doing really badly in this graph as it provokes the worst
possible spread. In fact the initial seed set influences only few more agents from
the whole giant component. As a result strategies that compete with Closeness
are able to influence almost the rest of the graph. There is a high level of
indifferent nodes between the other three strategies, which means either that they
select almost equally important nodes and their influence basically is blocking each
other, or that the De Groot diffusion model can not spread the influence very far.
We will examine the results when the Threshold model is applied and we will get
to a conclusion about these odd cases. Another explanation for these high levels of
indifference could be the topology of the specific network. Wiki Vote is a denser
graph and since we have edge weights proportional to the degree of a node it is
difficult for an agent to influence a neighbor with high degree.

Closeness centrality is the worst strategy in approximate measures too. Exactly
as in the previous network, BBCL comes first and wins the other two approximate
metrics. However, the diffusion levels in all cases are very low as they were on
the exact competitions too.
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Figure 5.11: De Groot Model - Competitions of the Approximate Methods

Figure 5.12: De Groot Model - Competitions of the Adaptive Methods

For the adaptive measures we have the same dominant strategy which is BBCL.
Observe that adaptive betweeness can not achieve much diffusion, so the measures
that are its opponents manage to take almost all the other graph. This shows us
that the selected seed nodes from adaptive betweeness are most probably remote
agents and definitely not the supernodes who have a lot of neighbors and are
central. Although BBCL and adaptive CC win adaptive betweeness, when these
two play as opponents they block each other and neither of them achieves to
influence many other nodes.
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5.2.2 Threshold experiments

Figure 5.13: Threshold Model - Competitions of the Exact Methods

In the Threshold model the diffusion levels for both exact betweeness and
degree centrality are equally good. They both win when their opponent is either
closeness or diffusion. When they play as opponents the graph is separated almost
equal between them. Diffusion comes next, which defeats closeness but this is not
so important in this network because closeness centrality does not pick influential
nodes at all as we can see. CC loses from any other measure in both De Groot
and Threshold models. The highest score is reached by DC, so if we want to
distinguish one of the measures, that would be DC.

Regarding the competitions on the approximate measures, BBCL is the dominant
strategy followed by approximate BC with very minor difference. Furthermore,
diffusion levels are higher here than in the exact methods.

Finally, in adaptive metrics the results are not good. Whenever adaptive
betweeness is playing with the other measures as opponents, the level of diffusion
stays very low. As we mentioned in the De Groot experiments, this network is
quite dense. In the Threshold model we use as threshold value θv = 0.2 which
means that if 1/5 of v’s neighbors decide to buy a product for example, then v is
called to decide based on his neighbors’ selection, which of the products he will by
himself. That limit is high when a node has many neighbors and considering that
the procedure starts with 20 nodes (10 for each firm).

If we set θv = 0.1 then we have the results in Figure 5.16.
So, as we can see, threshold value θv has an important role on the level of

the diffusion we want to achieve. When we have larger and denser networks, we
must either get a smaller threshold value or get more nodes as seeders in order to
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Figure 5.14: Threshold Model - Competitions of the Approximate Methods

Figure 5.15: Threshold Model - Competitions of the Adaptive Methods

achieve wide spread.

5.2.3 Quantiles
In Wiki Vote graph, quantiles are more clear than before. Both strategies, regardless
which wins, achieve in >90% of the experiments to influence the same number of
agents. In very few cases we have results away from the average values.

The same observation applies also in the approximate measures, although here
we have a maximum of 90% of the experiments to have the same rank.

The competitions of the adaptive measures achieved very small diffusion level,
so the quantile graph shows that only in the experiments between BBCL and
approximate Closeness we have a range of values. In that case, most of the
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Figure 5.16: Threshold Model - Competitions of the Adaptive Methods with
p=0.1

Figure 5.17: Quantiles of the Exact Methods

experiments gives a result of 2000− 3000 nodes for each firm.
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Figure 5.18: Quantiles of the Approximate Methods

Figure 5.19: Quantiles of the Adaptive Methods

5.3 Peer-to-peer Gnutella
Gnutella is a large peer-to-peer network. It was the first decentralized peer-to-
peer network of its kind, leading to other, later networks adopting the model. This
graph is derived by a sequence of snapshots of the Gnutella peer-to-peer file sharing
network from August 2002. There are total of 9 snapshots of Gnutella network
collected in August 2002. It has 6301 nodes and 20777 edges in total, but
the giant component that we use in our experiments has 6299 nodes and 20776
edges. This network is directed and its diameter is 9.
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5.3.1 De Groot experiments
Regarding the exact methods, BC is the dominant strategy since it wins all his
opponents. We observe that CC blocks the diffusion level in every competition
that it has. Note that BC has a large diffusion when competes with Diffusion and
Degree centralities, which is achieved due to the different pairs of seed sets. CC
has not common seed nodes with any of its opponents so the diffusion levels are
low. The other strategies seem to be equal.

Figure 5.20: De Groot Model - Competitions of the Exact Methods

In approximate methods, BBCL is the dominant measure and its seeders achieve
to influence a respectable amount of agents. There are no common agents in any
of the approximate competitions so the results are the outcome of a single pair of
seed sets. In the competition between approximate betweeness and closeness the
number of influenced agents is insignificant.

In this category we have almost the same picture as above. BBCL is far better
than the others which keep very low levels of influence. The major difference here
compared with the previous case, is the fact that we have one competition where
BBCL, while competing with Adaptive Closeness centrality, manages to influence a
very large amount of agents. It seems that Adaptive Closeness centrality chooses
agents far less important than BBCL. On the other hand, Adaptive Betweeness is
doing better than Approximate Betweeness and even if it can not win, it limits
the spread of its competitors. BBCL manages to influence 2203 agents against
Adaptive Betweeness while in the previous chart he got 3169 agents having
Approximate BC as opponent. So, we can see that BBCL lost about 1000 agents
due to betweeness adaptivity. Furthermore, adaptive BC wins Adaptive CC and
influences more than 1/6 of the graph which is way better than the approximate
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Figure 5.21: De Groot Model - Competitions of the Approximate Methods

competition of these two measures.

Figure 5.22: De Groot Model - Competitions of the Adaptive Methods

5.3.2 Threshold experiments
In this graph there are extremely high levels of influence since almost all agents of
the graph are influenced from both strategies initial seed sets in every competition.
Betweenness centrality is the best choice for a firm in this graph and when it
competes there exist a big difference between its influenced agents and the ones
of other strategies. Closeness, Diffusion and Degree centrality are considered as
equals since they win one another.

BBLC dominates in approximate competitions and approximate Betweenness
centrality comes second. BBCL wins by far the other two competitors so this is
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Figure 5.23: Threshold Model - Competitions of the Exact Methods

the best choice. The high levels of influence remain but seem a little bit lower
than before.

Figure 5.24: Threshold Model - Competitions of the Approximate Methods

Once more in adaptive measures we get exactly the same picture with the
approximate ones. The high diffusion levels still remain but an interesting aspect
here is the fact that apart from the competition between BBLC and Adaptive
Betweenness centrality, we have bigger differences between the winner strategies
and the loser ones than before. Adaptive Closeness makes no difference to its
opponents. It seems like both BBCL and Adaptive BC play alone when they
compete with Adaptive CC, and actually influence most of the network.
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Figure 5.25: Threshold Model - Competitions of the Adaptive Methods

5.3.3 Quantiles

Figure 5.26: Quantiles of the Exact Methods

In the first three competitions, it is obvious that BC is the best strategy and the
results of almost the 100% of the experiments shows that manages to influence the
same number of nodes regardless the seed set. The same observation stands also
for the competitions among CC and the other strategies. On the other hand, in the
Diffusion VS Degree competition, values can not gather in an interval but spread
from 0-5000 in every case. This shows that different results can be observed,
depending on the final seed set that each firm have selected. Furthermore, between
these two measures, neither of them can dominate the other in this network.
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Figure 5.27: Quantiles of the Approximate Methods

The approximate measures are acting better, and they manage to keep the
resulting values at most cases, in an interval. We also observe a level of expansion
but it can not compare to the previous case.

Figure 5.28: Quantiles of the Adaptive Methods

In Section 5.3.2 we have shown that Adaptive Closeness is by far the worst
of the adaptive techniques in this network, since it achieves to influence at most 7
more agents except for the seeders. This outcome can be also proven from the
quantile graph which shows that the opponent of Adaptive CC gets all the network.
In the competition among BBCL and Adaptive BC they both stay in a limited
interval on the 100% of the experiments and extreme cases do not exist.
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5.4 Email Enron
Enron email communication network covers all the email communication within
a dataset of around half million emails. This data was originally made public,
and posted to the web, by the Federal Energy Regulatory Commission during its
investigation. Nodes of the network are email addresses and if an address i sent
at least one email to address j, the graph contains an undirected edge from i to
j. Note that non-Enron email addresses act as sinks and sources in the network as
we only observe their communication with the Enron email addresses. The total
number of nodes is 36692 and the total number of edges is 367622. Since we
use only the giant component we are restricting our experiments to 33696 nodes
and to 361622 edges in total.

5.4.1 Threshold experiments

Figure 5.29: Threshold Model - Competitions of the Exact Methods

In Figure 5.29 the exact competitions of Email Enron are represented. Degree
centrality is the dominant strategy here and Betweenness centrality comes second.
In every competition, measures have many common agents. We had to apply the
excluding rule and the experiments were performed in ten different pairs of seed
sets. Nevertheless, both competitors manage to influence almost the entire graph
in every competition.

In the games between the approximate methods Betweenness centrality is the
best strategy and Closeness comes second. Here there are a little bit bigger
differences between the winner and the loser strategy than before, but the high
levels of diffusion remain, which seems logical since, in contrast to the exact
methods, in approximate methods there was no application of the excluding rule.

It is obvious from Figure 5.31 that in the adaptive methods we get a different
picture. The differences between the winner and the loser strategy are even higher
than before but the influential levels remain high. BBLC is the dominant strategy
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Figure 5.30: Threshold Model - Competitions of the Approximate Methods

Figure 5.31: Threshold Model - Competitions of the Adaptive Methods

and Adaptive Closeness comes second. Adaptive Betweeness does not achieve
much diffusion, although the Approximate Betweeness gives better results. An
explanation for this outcome is that adaptive methods select agents in different
neighborhoods in order to achieve wider diffusion. This is not always efficient
though. In some cases, the agents which are selected belong to small neighborhoods
and their influence is limited.

5.4.2 Quantiles
In the first two cases, those of the exact and the approximate competitions, the
outcome of the 10.000 experiments is as we expected. The influenced agents
fluctuate around the average value which we can see in 5.29, 5.30 respectively.
Extreme cases do not exist here.

In adaptive measures we have a slightly different picture. Especially on the
first competition of BBCL with approximate Betweeness, we have a rather large
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Figure 5.32: Quantiles of the Exact Methods

Figure 5.33: Quantiles of the Approximate Methods

diffusion of the resulted values. This happens due to the different pairs of seed
sets that are selected and we can not avoid it. However, on average it is obvious
that BBCL wins, even when it chooses the worst seed set.
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Figure 5.34: Quantiles of the Adaptive Methods

5.5 Slashdot
Slashdot is a technology-related news website know for its specific user community.
The website features user-submitted and editor-evaluated current primarily technol-
ogy oriented news. In 2002 Slashdot introduced the Slashdot Zoo feature which
allows users to tag each other as friends or foes. The network contains friend/foe
links between the users of Slashdot. The network was obtained in November 2008
and has 77360 nodes and 905468 edges. Fortunately we use the whole graph
in this case since there isn’t separated components in the graph.

5.5.1 Threshold experiments
As it is shown in Figure 5.35, there is an interesting case here. Degree centrality
is doing better than the others if we count the times that it wins. However, BC
manages to influence the largest part of the network in its own competitions. The
diffusion levels are extremely high, since in every game both strategies influence
almost the whole graph.

In approximation methods, Betweeness can be considered as the best choice
by far. When approximate BC competes with the other methods, manages to
influence 2/3 of the network by average. BBCL comes second, however when it
competes with closeness neither of them achieves much diffusion. In this case the
reason of the small diffusion level is the threshold value θv. The seed nodes which
are selected by the two firms are far from each other in the graph and this means
that the value θv = 0.2 that we use to all experiments, is not reached.

To understand that, we tested the competition of these two competitors, on
the same seed sets and with the only difference to be that θv = 0.1 and the results
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Figure 5.35: Threshold Model - Competitions of the Exact Methods

Figure 5.36: Threshold Model - Competitions of the Approximate Methods

are represented in Figure 5.37.
Next we examine the adaptive measures. BBLC is the dominant strategy here

and Adaptive Betweenness centrality is the next best choice. Unfortunately in all
games we get much lower diffusion levels, with the lower one between Adaptive
Betweenness and Adaptive Closeness, where the initial seed sets from both strategies
manage to influence only 641 agents in total out of 77360 agents.

Again, the threshold value θv = 0.2 is not enough to achieve a significant level
of diffusion. In these experiments the firms do not have common seeders, so there
is only one pair of seed set that is examined. The only two opponents that have
one seeder in common are BBCL and approximate betweeness. Below we show
the outcome of the competitions with θv = 0.1.
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Figure 5.37: Threshold Model - BBCL VS Approximate CC

Figure 5.38: Threshold Model - Competitions of the Adaptive Methods

5.5.2 Quantiles
The first two competitions of Betweeness with the other two measures are balanced
and values fluctuate in reasonable range. In the competition between Closeness and
Degree Centralities, we notice a larger range on the results. In this case, there is
one pair of seed set that achieves minimum diffusion for both metrics. Apparently
when it happens to choose this specific seed set, they can not reach the threshold
value θv = 0.2 that is required to spread their influence.

In Figure 5.41, the only odd case is this of the competition of BBCL with
approximate Closeness. As we proved in Section 5.5.1 this is also due to the
threshold value θv = 0.2, and as it is indicated in 5.37, the diffusion level is
growing when θv is decreasing.
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Figure 5.39: Threshold Adaptive Methods (p = θv = 0.1)

Figure 5.40: Quantiles of the Exact Methods

The same observation stands also, in the adaptive competitions. The diffusion
levels are highly increased when threshold value is decreased. So, the quantile
graph here can not show the spread of the results.
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Figure 5.41: Quantiles of the Approximate Methods

Figure 5.42: Quantiles of the Adaptive Methods

5.6 Web Stanford
Nodes represent pages from Stanford University (stanford.edu) and directed edges
represent hyperlinks between them. The data was collected in 2002 and include
281903 nodes and 2312497 edges. We let the Threshold model operate in the
giant component of 255265 nodes and 2234572 edges. The diameter of Web
Stanford is 674.

5.6.1 Threshold experiments
From Figure 5.43 it is obvious that Degree Centrality is by far the best strategy
in this graph. Betweenness Centrality is slightly better than Closeness Centrality but
the strange thing here is the fact that all strategies are reaching very low influence
levels proportionally to the size of the graph. Web Stanford is a graph that exhibits
very large number of triangles and very high average clustering coefficient. At the
same time this graph has the bigger diameter (674) than any other graph we have
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Figure 5.43: Threshold Model - Competitions of the Exact Methods

examined. So combining these factors we can say that graph’s agents have the
tendency to form relatively small clusters with few edges to link one cluster to
another. Thus in such a large graph with many clusters it is difficult to have a
widespread diffusion throughout the network from 10 seeders and a threshold value
θv = 0.2.

Figure 5.44: Threshold Model - Competitions of the Exact Methods (p = θv = 0.1)

We have run the same experiments for this graph with smaller threshold (θv =
0.1) and in every game the seed sets from both strategies achieve much higher
influential levels than before. In fact, they achieve influence twice as large, compared
to the degree of influence achieved before.

In the games between the approximate methods, BBLC dominates the other two
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Figure 5.45: Threshold Model - Competitions of the Approximate Methods

strategies. There are higher levels of influence here compared to the exact methods,
but still the higher one barely exceeds the 30% of agents of the giant component.
Additionally, there was no application of the excluding rule in any of our strategy
pairs. In general, the larger a graph is the better is doing in approximate measures.
Nevertheless in any case Approximate Closeness and Betweenness cannot dominate
over BBLC.

Figure 5.46: Threshold Model - Competitions of the Approximate Methods (p =
θv = 0.1)

Finally, in adaptive methods we have exactly the same picture that we had
before. The only difference is the fact that adaptive Closeness centrality is doing
slightly better than Approximate Closeness centrality, but the very low diffusion
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levels remain here as well.

Figure 5.47: Threshold Model - Competitions of the Adaptive Methods

Below, are represented the results for the adaptive methods with threshold value
p = θv = 0.1. As we can see, the diffusion levels are much better as θv increases.

Figure 5.48: Threshold Model - Competitions of the Adaptive Methods (p = θv =
0.1)

5.6.2 Quantiles
In this section, we provide quantile graphs for the experiments with θv = 0.1
because in the case that θv = 0.2 the diffusion level is too low and a quantile
graph won’t show us the spread of the results.
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Figure 5.49: Quantiles of the Exact Methods (p = θv = 0.1)

Figure 5.50: Quantiles of the Approximate Methods (p = θv = 0.1)

In Figures 5.49, 5.50 and 5.51, we can see that most of the experiments
produce similar results, all within a range of values. There are not extreme situations
in any of the competitions and the winner, at most cases, stands out.

5.7 Results & Observations
The experiments were performed on six different networks, each with its own
characteristics and different size. We examined directed and undirected, sparse and
dense graphs, and each one represented a different community. The competitions
performed over two diffusion techniques, the De Groot model and the Threshold
model. So, at this point, we have to answer two questions. 1) Which of the
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Figure 5.51: Quantiles of the Adaptive Methods (p = θv = 0.1)

diffusion models achieves better results? and 2) Do we have a dominant strategy
which wins in any case all the others?

It is much easier to answer the first question. In every experiment, the De Groot
model needs significantly more time to run than the Threshold model. Furthermore,
in many cases they both achieve the same level of diffusion. However, the
Threshold model manages to spread the innovations to much larger parts of the
network, in most of the competitions. Thus, the Threshold model not only runs
way faster that the De Groot model, but achieves to maximize the influence, which
is exactly what we were looking for.

To answer the second question we should define what we mean when we say
that a strategy ‘‘wins’’. There are two options that we consider with the term
‘‘victory’’. On the one hand, one may define as victory the number of times
that a strategy manages to win another strategy within the same network. This
way of thinking is very simple and does not count the level of the diffusion that
each strategy can achieve among the competitions. This is the second option, to
consider as winner the strategy that manages the largest level of influence among
all the competitions in the same network. Below, we represent the decreasing
order of the strategies, considering a) the number of victories and b) the level of
influence.

In Exact Measures, at most of the competitions Degree Centrality is the dominant
measure, and Betweeness Centrality comes second. We observe that DC wins in
larger graphs which is more useful information. Power law graphs are large and
sparse networks so we need a metric that can influence a large part of the network
at most cases.

In approximate measures it seems that BBCL and Approximate Betweeness are
competing to win the first place. They both manage to influence many agents and
in large graphs they both doing very well. Thus, although BBCL wins every time
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Figure 5.52: Decreasing order of the exact strategies depending on the number
of victories

Figure 5.53: Decreasing order of the approximate strategies depending on the
number of victories

Figure 5.54: Decreasing order of the adaptive strategies depending on the number
of victories

in smaller graphs, we can consider that these measures are almost equal concerning
the influence that they achieve.

Finally, in the competitions among the adaptive measures, results are pretty
clear. BBCL wins the other two adaptive metrics in every network we examined.
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This is certainly the dominant strategy in this category since it manages to win
regardless the topology and the characteristics of the network. the other two
measures can be considered equal with BC being slighly better than CC.

Figure 5.55: Number of victories of the exact strategies in small networks

Figure 5.56: Number of victories of the exact strategies in large networks

This arrangement is due to the number that each strategy wins the others. In
the second case we have the dominant strategies according to the level of diffusion
that they achieve among all their competitions.
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Figure 5.57: Number of victories of the approximate strategies

Figure 5.58: Number of victories of the adaptive strategies

Figure 5.59: Percentage of diffusion level of the exact strategies

In Figures 5.59, 5.60 and 5.61 we see the results according to the diffusion
level in each network. In general, the dominant strategies are those which have
the most wins against the others. However, in some cases, a strategy that achieves
2/3 wins, manages to spread in a largest part of the network. Since we care
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Figure 5.60: Percentage of diffusion level of the approximate strategies

about the level of the spread that can be achieved in every competition, this is a
more suitable methodology to define the winners.

Figure 5.61: Percentage of diffusion level of the adaptive strategies

5.8 Dominant Strategies Competitions
An interesting experiment is to examine the competition between the dominant
strategies of two different categories of Centrality measures. In the exact strategies
we have either BC or DC to be the dominant one, depending on the network. On
the other hand, in adaptive techniques, BBCL is always the best choice regardless
the graph. So, we demonstrate the results of these competitions in Figure 5.62.

As we can see, exact measures wins the adaptive ones almost in every graph.
There are two exceptions, the peer-to-peer and the Web Stanford network, where
we have the the opposite result. An adaptive technique dominates the best exact
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Figure 5.62: Exact Dominant VS Adaptive Dominant Competition in small networks

in each case. This is very interesting, since the exact measures are supposed to be
the best strategies in extracting good nodes in a network. Thus, there should be
some other factors that influence the outcome of the competitions.

Figure 5.63: Exact Dominant VS Adaptive Dominant Competition in large networks
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Chapter 6

Conclusions

The purpose of this thesis was to examine if there is a way for a firm to choose
some important nodes in a network, and based on them, to start a cascade process
that can reach the entire network. Furthermore, the strategy that is chosen should
prevent other firms which have the same goal: to win any other competitor and
spread its own product.

Among the strategies that were used in this research, we managed to find a
decreasing order for them, according to the diffusion levels that they achieve in
different networks. The outcome of the experiments is that two of the importance-
assessment strategies can be considered equal and these are Betweeness and Degree
Centrality. Both of them can influence a large part of the network even when they
compete with each other.

Degree Centrality has good results, especially when we use the Threshold model
as an Information-Propagation Model. This is very reasonable since these two
tactics help each other. Degree Centrality picks nodes that have many neighbors
and the Threshold model operates counting the active neighbors of the nodes.
Furthermore, it is known that nodes with high degree in a network are quite
influential to others.

Regarding the approximate and adaptive methods that we examined, one mea-
sure manages to be the dominant one in almost every competition. BBCL centrality
wins even the most difficult opponents. It extracts very quickly the influential nodes
of a network, regardless of its topology, and wins, in some of them, even the
exact measures. This information is very important if we can prove why is this
happening. If we can find the factors that BBCL take advantage and achieves the
victories, we could use this information to choose the best strategy depending on
the network.

An interesting observation is that BBCL dominates over the exact measures
when they compete in a graph with low number of triangles. The number of
triangles affects the strategies which count shortest paths and as a result they select
less important agents. This observation could be expand by analyzing and proving
why the triangles have that influence in this category of measures.

79



Finally, we recommend as future work, to examine the competition of more
importance-assessment strategies, using the Threshold model. Furthermore, one can
experiment in much larger graphs and see the diffusion levels in these cases.
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