
Low-High Orders of Directed Graphs: Incremental
Algorithms and Applications

Η Μεταπτυχιακή Εργασία Εξειδίκευσης

υποβάλλεται στην ορισθείσα

από τη Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Μηχανικών Η/Υ και Πληροφορικής

Εξεταστική Επιτροπή

από την

Αικατερίνη Καρανάσιου

ως μέρος των υποχρεώσεων για την απόκτηση του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ

ΣΤΗΝ ΘΕΩΡΙΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Πανεπιστήμιο Ιωαννίνων

Σεπτέμβριος 2016

Acknowledgements

I would like to express my gratitude to my supervisor, Assistant Prof. Loukas Georgiadis
for the patient guidance, encouragement and advice he has provided throughout my time
as his student. His positive outlook in my research inspired me and gave me confidence.

My sincere gratitude goes to my co-authors, Giuseppe F. Italiano, Giannis Konstanti-
nos, Luigi Laura, Charis Papadopoulos, and Nikos Parotsidis, for their valuable collabo-
ration.

I am thankful also to my family for their continued support and encouragement.

Contents

1 Introduction 1
1.1 Graphs and connectivity . 1
1.2 2-connectivity in directed graphs . 1
1.3 Terminology . 3
1.4 Our contribution . 5

1.4.1 Incremental low-high order algorithms 5
1.4.2 Sparse subgraphs for 2-connectivity in directed graphs 6

2 Incremental low-high order 8
2.1 Incremental algorithms . 8

2.1.1 Simple algorithm . 9
2.1.2 Efficient algorithm . 11

2.2 Applications . 21
2.2.1 Strongly divergent spanning trees and path queries 21
2.2.2 Fault tolerant reachability . 22

3 Sparse Subgraphs for 2-Connectivity in Directed Grpahs 24
3.1 Approximation algorithm of 2VCSS . 24
3.2 Approximation algorithms and heuristics for 2VC-B 26
3.3 Approximation algorithms and heuristics for 2C 30

4 Experimental Study 33
4.1 Experimental analysis of incremental low-high order algorithms 33
4.2 Experimental analysis of 2-vertex-connected spanning subgraphs 35
4.3 Experimental analysis of sparse subgraphs 38

2

List of Figures

1.1 A strongly connected digraph G with a strong bridge (c, f) and a strong
articulation point c shown in red (better viewed in color), the 2-vertex-
connected components and blocks of G, and the 2-edge-connected com-
ponents and blocks of G. Vertex f forms a trivial 2-edge-connected and
2-vertex-connected block. 2

1.2 A flow graph G, dominator tree D, and two strongly divergent spanning
trees B and R. The numbers correspond to a preorder numbering of D
that is a low-high order of G. 4

1.3 The flow graph of Figure 1.2 after the insertion of edge (g, d), and its up-
dated dominator tree D′ with a low-high order, and two strongly divergent
spanning trees B′ and R′. 5

2.1 The derived affected flow graph GA that corresponds to the flow graph of
Figure 1.2 after the insertion of edge (g, d). 17

4.1 Incremental low-high order: dynamized 2VC graphs (top) and edge inser-
tion in strongly connected graphs (bottom). Running times, in seconds,
and number of edges both shown in logarithmic scale. 35

4.2 Smallest 2-vertex-connected spanning subgraph. Top: running times, in
seconds, and number of edges both shown in logarithmic scale. Bottom:
relative size of the resulting 2VCSS. 37

4.3 Running times in seconds with respect to the number of edges (in log-log
scale). The upper plots get a close-up view of the fastest algorithms by not
considering 2VDP-B, 2VDP-B-C and 2VDP-2C. 41

D1 The plotted quality ratios taken by Tables D8 and D9, respectively. 43

3

List of Tables

4.1 Real-world graphs used in the experiments, sorted by the file size of their
largest SCC. We used both the largest SCC and the some of the 2VCCs
(inside the largest SCC) in our experiments. 34

4.2 Running times of the plot shown in Figure 4.1 (top) 36
4.3 Running times of the plot shown in Figure 4.1 (bottom) 36
4.4 Running times and number of edges in the resulting 2-vertex-connected

spanning subgraph; plots shown in Figure 4.2 38
4.5 The algorithms considered in our experimental study. The worst-case

bounds refer to a digraph with n vertices and m edges. Running times
indicated by † assume that the 2-vertex-connected components of the in-
put digraph are available; running times indicated by ‡ assume that also
the 2-edge-connected components are available. 39

4.6 Real-world graphs sorted by file size of their largest SCC; n is the number of
vertices, m the number of edges, and δavg is the average vertex indegree; s∗

is the number of strong articulation points; δBavg and δCavg are lower bounds
on the average vertex indegree of an optimal solution to 2VC-B and 2C,
respectively. 39

4.7 Quality ratio q(A,P) of the solutions computed for 2VC-B, 2VC-B-C and 2C. 40
D8 Quality ratio q(A,P) of the solutions computed for 2VC-B. 42
D9 Quality ratio q(A,P) of the solutions computed for 2VC-B-C and 2C. . . . 42
D10 Running times in seconds of the algorithms for the 2VC-B problem. 42
D11 Running times in seconds of the algorithms for the 2VC-B-C and 2C problems. 43

4

List of Algorithms

1 SimpleInsertEdge(G,D, δ, B,R, e) . 10
2 Initialize(G) . 15
3 InsertEdge(G,D, δ,mark , low , high, e) . 16
4 DerivedLowHigh(z, A,mark) . 18
5 AuxiliaryLowHigh(GA, BA, RA,Λ) . 19

6 LH-Z(G) . 25

5

Abstract

Karanasiou Aikaterini.

MSc, Computer Science and Engineering Department, University of Ioannina, Greece,
September 2016.

Tilte of Dissertation: Low-High Orders of Directed Graphs: Incremental Algorithms and
Applications.

Thesis Supervisor: Loukas Georgiadis.

A number of diverse natural or man-made systems are modeled as graphs, capturing
both the structure and the dynamics of the underlying system. Examples include but are
not limited to the world-wide web, transportation, communication and social networks,
databases, biological systems, circuits, and the control-flow of computer programs. For
this reason, graphs play an important role in many academic disciplines, including math-
ematics,computer science, and social sciences. Connectivity problems hold central role in
the area of graph theory and graph algorithms, with numerous practical applications such
as routing, navigation and reliable communication.

In this thesis we deal with problems related to connectivity in directed graphs. A
flow graph G = (V,E, s) is a directed graph with a distinguished start vertex s. The
dominator tree D of G is a tree rooted at s, such that a vertex v is an ancestor of a vertex
w if and only if all paths from s to w include v. The dominator tree is a central tool in
program optimization and code generation, and has many applications in other diverse
areas including constraint programming, circuit testing, biology, and in algorithms for
graph connectivity problems. A low-high order of G is a preorder delta of D that certifies
the correctness of D, and has further applications in connectivity and path-determination
problems.

In the first part of the thesis, we consider how to maintain efficiently a low-high order
of a flow graph incrementally under edge insertions. We present two algorithms that run
in O(mn) total time for a sequence of m edge insertions in an initially empty flow graph
with n vertices. Moreover, we provide applications of this result to other incremental
problems in directed graphs.

In the second part of the thesis, we apply low-high orders to a type of network design
problems. Given a directed graph G = (V,E), our goal is to compute the smallest
spanning subgraph of G that maintains the 2-vertex-connectivity relations in G. First, we

6

deal the case where G is 2-vertex-connected and we wish to compute the smallest 2-vertex-
connected spanning subgraph of G. We provide provide a linear-time algorithm that
computes a 2-approximation for this problem, improving significantly the best previous
approximation ratio achievable in linear time which was 3. Then we deal with the more
general case, where G is not 2-vertex-connected, and provide linear-time 6-approximation
algorithms.

We complement our theoretical study of the above problems with an extensive em-
pirical evaluation of our algorithms, using large real-world graphs taken from a variety
of application areas. The experimental results show that our algorithms are not only
theoretically-efficient but also perform very well in practice.

7

ΠΕΡΙΛΗΨΗ

Καρανάσιου Αικατερίνη.

MSc, Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Σεπτέμβριος
2016.

Τίτλος Διατριβής: Χαμηλές-Υψηλές Διατάξεις σε Κατευθυνόμενα Γραφήματα: Δυναμικοί

Αλγόριθμοι και Εφαρμογές.

Επιβλέπων: Λουκάς Γεωργιάδης.

Τα γραφήματα είναι μια απο τις πιο θεμελιώδης κατηγορίες δεδομένων στην επιστήμη των

υπολογιστών. Αυτό έχει σαν αποτέλεσμα οι αλγόριθμοι για τον χειρισμό τους, και για τον

υπολογισμό σχέσεων σε αυτά, να είναι ιδιαίτερα σημαντικοί στον κλάδο της πληροφορικής.

Μια κατηγορία γραφημάτων είναι τα συνεκτικά γραφήματα.

Η συνεκτικότητα των γραφημάτων βρίσκει εφαρμογές σε διάφορους τομείς όπως για

παράδειγμα σε δίκτυα επικοινωνιών, στην θεωρία ηλεκτρικών κυκλωμάτων και σε πλοήγηση

δικτύων. Η μελέτη και η ανάλυση ενός γραφήματος για την -ως προς τις ακμες- και -ως προς

τους κόμβους- συνεκτικότητα του αποτελεί ενα σημαντκό ερευνητικό πεδίο της θεωρίας

γραφημάτων.

Σε αυτή τη διπλώματική ερευνώνται προβλήματα συνεκτικότητας σε κατευθυνόμενα γρα-

φήματα. ΄Ενα γράφημα ροής G = (V,E, s) ειναι ενα κατευθυνομένο γραφημα με εναν διακε-

κριμένο κατευθυντήριο κόμβο s. ΄Ενα δέντρο κυριαρχίας D ενός γραφήματος ροής G είναι

ενα δέντρο με αφετηριακό κόμβο s, τέτοιο ώστε κάθε κόμβος v είναι πρόγονος ενός κόμβου

w αν και μόνο αν όλα τα μονοπάτια απο τον κόμβο s στον κόμβο w περιέχουνε τον κόμβο

v. Τα δέντρα κυριαρχίας έχουν διάφορες εφαρμογές τόσο στην επιστήμη της πληροφορικής

όσο και σε άλλες επιστήμες, όπως για παράδειγμα στην βιολογία. Υψηλή-χαμηλή διάταξη δ

ενός γραφήματος ροής G είναι μια προδιάταξη του δέντρου κυριαρχίας D του G, η οποία απο-

τελεί ένα πιστοποιητικό ορθότητας του D και έχει διάφορες εφαρμογές στην συνεκτικότητα

κατευθυνόμενων γραφημάτων.

Στο πρώτο μέρος της διπλωματικής αυτής, ερευνάται η δυναμική ενημέρωση μιας ψηλής-

χαμηλής διάταξης δ ενός γραφήματος ροής G μετα από μια εισαγωγή ακμής στο γράφημα. Το

αποτέλεσμα που παρουσιάζεται ειναι 2 αλγόριθμοι οι οποίοι επιτυγχάνουν χρόνο εκτέλεσης

της τάξεως mn μετά απο m εισαγωγές ακμών σε ένα αρχικά άδειο γράφημα n κόμβων.

Στο δεύτερο μέρος της εργασίας, θεωρείται το πρόβλημα έυρεσης ενός ελάχιστου υπο-

γραφήματος του γραφήματος G σε δυο περιπτώσεις. Στην πρώτη περίπτωση έχοντας ένα

8

γράφημα G το οποίο ειναι 2-συνεκτικό ως προς τους κόμβους, παρουσιάζεται ένας αλγόριθ-

μος με λόγο προσέγγισης 2 και γραμμικό χρόνο εκτέλεσης. Στην δεύτερη περίπτωση το

γράφημα G δεν ειναι 2-συνεκτικό ως προς τους κόμβους και απαιτείται το υπογράφημα να

διατηρεί κάποια συγκεκριμενα χαρακτηριστικά συνεκτικότητας. Για την τελευταία περίπτωση

παρέχονται αλγορίθμοι με λόγο προσέγγισης 6 και χρόνο εκτέλεσης γραμμικό.

Τέλος, οι αλγόριθμοι που προτείνονται αναλύονται πειραματικά σε γραφήματα που προ-

κύπτουν απο πραγματικές εφαρμογές, και παρουσιάζονται τα αποτέλεσμα της πειραματικής

αυτής μελέτης.

9

Chapter 1

Introduction

1.1 Graphs and connectivity

1.2 2-connectivity in directed graphs

1.3 Terminology

1.4 Our contribution

1.1 Graphs and connectivity

Graphs can be used to model many types of relations and processes in physical, biologi-
cal, social and information systems and many practical problems can be represented by
them. More specifically in computer science, graphs are used to represent networks of
communication, data organization, computational devices.

Connectivity is one of the basic concepts of graph theory. Edge and vertex connec-
tivity are fundamental concepts in graph theory with numerous practical applications.
As an example, we mention the computation of disjoint paths in routing and reliable
communication, both in undirected and directed graphs.

Throughout this master thesis, we assume that the reader is familiar with the standard
graph terminology and we are dealing only with directed graphs.

1.2 2-connectivity in directed graphs

Let G = (V,E) be a directed graph (digraph), with m edges and n vertices. G is strongly
connected if there is a directed path from each vertex to every other vertex. The strongly
connected components ofG are its maximal strongly connected subgraphs. A vertex (resp.,
an edge) of G is a strong articulation point (resp., a strong bridge) if its removal increases

1

𝑎

𝑏 𝑑𝑐

𝑒 𝑓 𝑔

𝑎

𝑏 𝑑𝑐

𝑒 𝑓 𝑔

𝑎

𝑏 𝑑𝑐

𝑒 𝑓 𝑔

𝑎

𝑏 𝑑𝑐

𝑒 𝑓 𝑔

𝑎

𝑏 𝑑𝑐

𝑒 𝑓 𝑔

𝐺 2𝑉𝐶𝐶(𝐺) 2𝑉𝐶𝐵(𝐺)

2𝐸𝐶𝐵(𝐺)2𝐸𝐶𝐶(𝐺)

Figure 1.1: A strongly connected digraph G with a strong bridge (c, f) and a strong artic-
ulation point c shown in red (better viewed in color), the 2-vertex-connected components
and blocks of G, and the 2-edge-connected components and blocks of G. Vertex f forms
a trivial 2-edge-connected and 2-vertex-connected block.

the number of strongly connected components. A digraph G is 2-vertex-connected if it has
at least three vertices and no strong articulation points; G is 2-edge-connected if it has no
strong bridges. The 2-vertex- (resp., 2-edge-) connected components of G are its maximal
2-vertex- (resp., 2-edge-) connected subgraphs. Let v and w be two distinct vertices: v and
w are 2-vertex-connected (resp., 2-edge-connected), denoted by v ↔2v w (resp., v ↔2e w),
if there are two internally vertex-disjoint (resp., two edge-disjoint) directed paths from v

to w and two internally vertex-disjoint (resp., two edge-disjoint) directed paths from w to
v (a path from v to w and a path from w to v need not be either vertex- or edge- disjoint).
A 2-vertex-connected block (resp., 2-edge-connected block) of a digraph G = (V,E) is a
maximal subset B ⊆ V such that u ↔2v v (resp., u ↔2e v) for all u, v ∈ B. Note that,
as a (degenerate) special case, a 2-vertex- (resp., 2-edge-) connected block might consist
of a singleton vertex only: we denote this as a trivial 2-vertex- (resp., 2-edge-) connected
block. In the following, we will consider only non-trivial 2-vertex- and 2-edge- connected
blocks. Since there is no danger of ambiguity, we will call them simply 2-vertex- and
2-edge-connected blocks.

The computation of 2-edge- and 2-vertex- connected blocks has been shown recently in
linear time [23, 24], and the best current bound for this computation is not even linearbut
it is O(n2) [35].

2

1.3 Terminology

Dominators A flow graph is a digraph such that every vertex is reachable from a
distinguished start vertex. Let G = (V,E) be a strongly connected digraph. For any
vertex s ∈ V , we denote by G(s) = (V,E, s) the corresponding flow graph with start
vertex s; all vertices in V are reachable from s since G is strongly connected. The
dominator relation in G(s) is defined as follows: A vertex u is a dominator of a vertex
w (u dominates w) if every path from s to w contains u; u is a proper dominator of
w if u dominates w and u 6= w. The dominator relation in G(s) can be represented
by a rooted tree, the dominator tree D(s), such that u dominates w if and only if u
is an ancestor of w in D(s). If w 6= s, we denote by d(w) the parent of w in D(s).
The dominator tree is a central tool in program optimization and code generation [11],
and it has applications in other diverse areas including constraint programming [46],
circuit testing [5], theoretical biology [2], memory profiling [42], the analysis of diffusion
networks [34], and in connectivity problems [20, 21, 23, 22, 30, 36, 37, 38, 39]. Lengauer
and Tarjan [41] presented an algorithm for computing dominators in O(mα(m,n)) time for
a flow graph with n vertices and m edges, where α is a functional inverse of Ackermann’s
function [50]. Subsequently, several linear-time algorithms were discovered [3, 8, 14, 16].

An edge (u,w) is a bridge in G(s) if all paths from s to w include (u,w).1 Italiano
et al. [37] gave linear-time algorithms for computing all the strong bridges and all the
strong articulation points of a digraph G. Their algorithms use the dominators and the
bridges of flow graphs G(s) and GR(s), where s is an arbitrary start vertex and GR is the
digraph that results from G after reversing edge directions.

Low-High Order A low-high order δ of G [28] is a preorder of the dominator tree D
of G such for all reachable vertices v 6= s, (d(v), v) ∈ E or there are two edges (u, v) ∈ E,
(w, v) ∈ E such that u and w are reachable, u is less than v (u <δ v), v is less than w

(v <δ w), and w is not a descendant of v in D. See Figure 1.2. Every flow graph G has
a low-high order, computable in linear-time [28]. Low-high orders provide a correctness
certificate for dominator trees that is straightforward to verify [54]. By augmenting an
algorithm that computes the dominator tree D of a flow graph G so that it also computes
a low-high order of G, one obtains a certifying algorithm to compute D. (A certifying
algorithm [43] outputs both the solution and a correctness certificate, with the property
that it is straightforward to use the certificate to verify that the computed solution is
correct.) Low-high orders also have applications in path-determination problems [53] and
in fault-tolerant network design [6, 7, 32].

Divergent Spanning trees A notion closely related to low-high orders is that of di-
vergent spanning trees [28]. Let Vr be the set of reachable vertices, and let G[Vr] be the
flow graph with start vertex s that is induced by Vr. Two spanning trees B and R of

1Throughout, we use consistently the term bridge to refer to a bridge of a flow graph G(s) and the
term strong bridge to refer to a strong bridge in the original graph G.

3

G[Vr], rooted at s, are divergent if for all v, the paths from s to v in B and R share only
the dominators of v; B and R are strongly divergent if for every pair of vertices v and w,
either the path in B from s to v and the path in R from s to w share only the common
dominators of v and w, or the path in R from s to v and the path in B from s to w share
only the common dominators of v and w. In order to simplify our notation, we will refer
to B and R, with some abuse of terminology, as strongly divergent spanning trees of G.
Every flow graph has a pair of strongly divergent spanning trees. Given a low-high order
of G, it is straightforward to compute two strongly divergent spanning trees of G in O(m)

time [28]. Divergent spanning trees can be used in data structures that compute pairs
of vertex-disjoint s-t paths in 2-vertex connected digraphs (for any two query vertices s
and t) [20], in fast algorithms for approximating the smallest 2-vertex-connected spanning
subgraph of a digraph [21], and in constructing sparse subgraphs of a given digraph that
maintain certain connectivity requirements [23, 38, 39].

4

𝑠

𝑎 𝑏𝑐 𝑖

𝑔 ℎ𝑒𝑑 𝑓

𝐷

1

5

3

2

6 7

8

9

10

4

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐺

1

9

10

5 7

3

8

2

6

4

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐵

1

9

10

5 7

3

8

2

6

4

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝑅

1

9

10

5 7

3

8

2

6

Figure 1.2: A flow graph G, dominator tree D, and two strongly divergent spanning trees
B and R. The numbers correspond to a preorder numbering of D that is a low-high order
of G.

4

𝑠

5

𝑐

𝐷′

1

𝑑

4

𝑎

𝑔3

2 𝑓

6

𝑒

7

𝑖

8

𝑏

ℎ

9

10

5

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐺′

1

9

10

4 7

3

8

2

6

5

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐵′

1

9

10

4 7

3

8

2

6

5

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝑅′

1

9

10

4 7

3

8

2

6

Figure 1.3: The flow graph of Figure 1.2 after the insertion of edge (g, d), and its updated
dominator tree D′ with a low-high order, and two strongly divergent spanning trees B′

and R′.

1.4 Our contribution

1.4.1 Incremental low-high order algorithms

In the second chapter we consider the maintenance of a low-high order of a flow graph
through a sequence of edge insertions. We present algorithms that run in O(mn) total
time for a sequence of m edge insertions in an initially empty flow graph with n vertices.
These immediately provide the first incremental certifying algorithms for maintaining the
dominator tree in O(mn) total time, and also imply incremental algorithms for other
problems. Hence, we provide a substantial improvement over the O(m2) simple-minded
algorithms, which recompute the solution from scratch after each edge insertion.

So, we present two algorithms that achieve this bound (O(mn)), a simple and a more
sophisticated. Both algorithms combine the incremental dominators algorithm of [25] with
the linear-time computation of two divergent spanning trees from [28]. Our more sophisti-
cated algorithm also applies a slightly modified version of a static low-high algorithm from
[28] on an auxiliary graph. Although both algorithms have the same worst-case running

5

time, our experimental results show that the sophisticated algorithm is by far superior in
practical scenarios.

We note that the incremental dominators problem arises in various applications, such
as incremental data flow analysis and compilation [10, 19, 47, 48], distributed autho-
rization [44], and in incremental algorithms for maintaining 2-connectivity relations in
directed graphs [30]. We provide also some applications of our algorithms to other incre-
mental problems in digraphs. More specifically, we show how our result on incremental
low-high order maintenance implies the following incremental algorithms that also run in
O(mn) total time for a sequence of m edge insertions.

• First, we give an algorithm that maintains, after each edge insertion, two strongly
divergent spanning trees of G, and answers the following queries in constant time:
(i) For any two query vertices v and w, find a path πsv from s to v and a path πsw
from s to w, such that πsv and πsw share only the common dominators of v and w.
We can output these paths in O(|πsv|+ |πsw|) time. (ii) For any two query vertices
v and w, find a path πsv from s to v that avoids w, if such a path exists. We can
output this path in O(|πsv|) time.

• Then we provide an algorithm for an incremental version of the fault-tolerant reacha-
bility problem [6, 7]. We maintain a flow graph G = (V,E, s) with n vertices through
a sequence of m edge insertions, so that we can answer the following query in O(n)

time. Given a spanning forest F = (V,EF) of G rooted at s, find a set of edges
E ′ ⊆ E \ EF of minimum cardinality, such that the subgraph G′ = (V,EF ∪ E ′, s)
of G has the same dominators as G.

• Finally, given a digraph G, we consider how to maintain incrementally a spanning
subgraph of G with O(n) edges that preserves the 2-edge-connectivity relations in
G.

1.4.2 Sparse subgraphs for 2-connectivity in directed graphs

In the third chapter we investigate problems where we wish to find a smallest spanning
subgraph of G (i.e., with minimum number of edges) that maintains certain 2-connectivity
requirements in addition to strong connectivity. Problems of this nature are fundamental
in network design, and have several practical applications [45]. Specifically, we con-
sider computing a smallest strongly connected spanning subgraph of a digraph G that
maintains the following properties: the pairwise 2-vertex-connectivity of G, i.e., the 2-
vertex-connected blocks of G (2VC-B); the 2-vertex-connected components of G (2VC-C);
both the 2-vertex-connected blocks and components of G (2VC-B-C). This complements
a previous study of the edge-connectivity versions of these problems [26], that the au-
thors refer to as 2EC-C (maintaining 2-edge-connected components), 2EC-B (maintaining
2-edge-connected blocks), and 2EC-B-C (maintaining 2-edge-connected blocks and com-
ponents). Finally, we also consider computing a smallest spanning subgraph of G that

6

maintains all the 2-connectivity relations of G (2C), that is, simultaneously the 2-vertex-
connected and the 2-edge-connected components and blocks. Note that all these problems
are NP-hard [18, 26], so one can only settle for efficient approximation algorithms. Com-
puting small spanning subgraphs is of particular importance when dealing with large-scale
graphs, say graphs having hundreds of million to billion edges. In this framework, one big
challenge is to design linear-time algorithms, since algorithms with higher running times
might be practically infeasible on today’s architectures.

7

Chapter 2

Incremental low-high order

2.1 Incremental algorithms

2.1.1 Simple algorithm

2.1.2 Efficient algorithm

2.2 Applications

2.2.1 Strongly divergent spanning trees and path queries

2.2.2 Fault tolerant reachability

In this chapter,we first consider how to maintain efficiently a low-high order of a
flow graph incrementally under edge insertions. We present two algorithms that run in
O(mn) total time for a sequence of m edge insertions in an initially empty flow graph
with n vertices. Then we show how to apply low-high orders to obtain a linear-time 2-
approximation algorithm for the smallest 2-vertex-connected spanning subgraph problem
(2VCSS). Finally, we present efficient implementations of our new algorithms for the
incremental low-high and 2VCSS problems.

2.1 Incremental algorithms

We first review some useful facts for updating a dominator tree after an edge insertion
[4, 25, 47]. Let (x, y) be the edge to be inserted. We consider the effect of this insertion
when both x and y are reachable. Let G′ be the flow graph that results from G after
inserting (x, y). Similarly, if D is the dominator tree of G before the insertion, we let D′

be the the dominator tree of G′. Also, for any function f on V , we let f ′ be the function
after the update. We say that vertex v is affected by the update if d(v) (its parent in D)
changes, i.e., d′(v) 6= d(v). We let A denote the set of affected vertices. Note that we
can have D′[s, v] 6= D[s, v] even if v is not affected. We let nca(x, y) denote the nearest

8

common ancestor of x and y in the dominator tree D. We also denote by depth(v) the
depth of a reachable vertex v in D. There are affected vertices after the insertion of (x, y)

if and only if nca(x, y) is not a descendant of d(y) [47]. A characterization of the affected
vertices is provided by the following lemma, which is a refinement of a result in [4].

Lemma 2.1. ([25]) Suppose x and y are reachable vertices in G. A vertex v is affected
after the insertion of edge (x, y) if and only if depth(nca(x, y)) < depth(d(v)) and there
is a path π in G from y to v such that depth(d(v)) < depth(w) for all w ∈ π. If v is
affected, then it becomes a child of nca(x, y) in D′, i.e., d′(v) = nca(x, y).

The algorithm (DBS) in [25] applies Lemma 2.1 to identify affected vertices by starting
a search from y (if y is not affected, then no other vertex is). To do this search for affected
vertices, it suffices to maintain the outgoing and incoming edges of each vertex. These sets
are organized as singly linked lists, so that a new edge can be inserted in O(1) time. The
dominator tree D is represented by the parent function d. We also maintain the depth in
D of each reachable vertex. We say that a vertex v is scanned, if the edges leaving v are
examined during the search for affected vertices, and that it is visited if there is a scanned
vertex u such that (u, v) is an edge in G. By Lemma 2.1, a visited vertex v is scanned if
depth(nca(x, y)) < depth(d(v)).

Lemma 2.2. ([25]) Let v be a scanned vertex. Then v is a descendant of an affected
vertex in D.

2.1.1 Simple algorithm

In this algorithm we maintain, after each insertion, a subgraph H = (V,EH) of G with
O(n) edges that has the same dominator tree as G. Then, we can compute a low-high
order δ of H in O(|EH |) = O(n) time. Note that δ is also a valid low-high order of G.
Subgraph H is formed by the edges of two divergent spanning trees B and R of G. After
the insertion of an edge (x, y), where both x and y are reachable, we form a graph H ′

by inserting into H a set of edges Last(A) found during the search for affected vertices.
Specifically, Last(A) contains edge (x, y) and, for each affected vertex v 6= y, the last edge
on a path πyv that satisfies Lemma 2.1. Then, we set H ′ = H ∪ Last(A). Finally, we
compute a low-high order and two divergent spanning trees of H ′, which are also valid
for G′. Algorithm SimpleInsertEdge describes this process.

Note that when only x is reachable before the insertion, we re-initialize our algorithm
by running the linear-time algorithm of [28, Section 6], which returns both a low-high
order and two divergent spanning trees.

Lemma 2.3. Algorithm SimpleInsertEdge is correct.

Proof. It suffices to show that subgraph H ′ of G′, computed in line 9, has the same
dominator tree with G′. Note that graph H, formed by two divergent spanning trees B
and R of G in line 7, has the same dominator tree D as G. Hence, since Last(A) contains

9

Algorithm 1: SimpleInsertEdge(G,D, δ, B,R, e)
Input: Flow graph G = (V,E, s), its dominator tree D, a low-high order δ of G,

two divergent spanning trees B and R of G, and a new edge e = (x, y).
Output: Flow graph G′ = (V,E ∪ (x, y), s), its dominator tree D′, a low-high

order δ′ of G′, and two divergent spanning trees B′ and R′ of G′.
1 Insert e into G to obtain G′.
2 if x is unreachable in G then return (G′, D, δ, B,R)

3 else if y is unreachable in G then
4 (D′, δ′, B′, R′)← ComputeLowHigh(G′)

5 return (G′, D′, δ′, B′, R′)

6 end
7 Let H = B ∪R.
8 Compute the updated dominator tree D′ of G′ and return a list A of the affected
vertices, and a list Last(A) of the last edge entering each v ∈ A in a path of
Lemma 3.2.

9 Compute the subgraph H ′ = H ∪ Last(A) of G′.
10 Compute (D′, δ′, B′, R′)← ComputeLowHigh(H ′)

11 return (G′, D′, δ′, B′, R′)

(x, y), the immediate dominator of y is the same in H ′ and in G′. Let A be the set of
affected vertices in G after the insertion of edge (x, y). Since H ′ is a subgraph of G′,
any vertex in V \ A has the same immediate dominator in H ′ and in G′. It remains to
argue that for each vertex v ∈ A \ y, there is a path π̂yv in H ′ that satisfies Lemma 2.1.
Let πyv be the path from y in v in G that was found by the search for affected vertices
performed by the algorithm of [25]. We give a corresponding path π̂yv in H ′. Recall that
every vertex on πyv is scanned and that every scanned vertex is a descendant in D of an
affected vertex. We argue that for every two successive affected vertices u and w on πyv
there is a path πuw from u to w in H ′ that consists of vertices of depth at least depth(w).
Note that, by properties of the depth-based search, depth(w) ≤ depth(u). Indeed, let
(p, w) be the edge entering w from πyv. Then (p, w) ∈ Last(A) and p is a descendant of
u in D. Also, since u dominates p in G, u is an ancestor of p in both spanning trees B
and R. We let π̂uw = B[u, p] · (p, w). All vertices on B[u, p] are dominated by u, since
otherwise there would be a path from s to p avoiding u. So, π̂uw is path from u to w in
H ′ that consists of vertices with depth at least depth(w).

Lemma 2.4. Algorithm SimpleInsertEdge maintains a low-high order of a flow graph G
with n vertices through a sequence of edge insertions in O(mn) total time, where m is the
total number of edges in G after all insertions.

Proof. Consider the insertion of an edge (x, y). If y was unreachable in G then we compute
D, two divergent spanning trees B and R, and a low-high order in O(m) time [28].
Throughout the whole sequence of m insertions, such an event can happen O(n) times,

10

so all insertions to unreachable vertices are handled in O(mn) total time.
Now we consider the cost of executing SimpleInsertEdge. when both x and y are

reachable in G. Let ν be the number of scanned vertices, and let µ be the number of their
adjacent edges. We can update the dominator tree and locate the affected vertices (line
8) in O(ν + µ + n) time [25]. At the same time we can compute the edge set Last(A).
Computing H ′ in line 9 takes O(n) time since B ∪R∪ Last(A) contains at most 3(n− 1)

edges. Also, computing the dominator tree, two divergent spanning trees„ and a low-high
order of H ′ in O(n) time [28]. So SimpleInsertEdge runs in O(ν+µ+n) time. . The O(n)

term gives a total cost of O(mn) for the whole sequence of m insertions. We distribute
the remaining O(ν + µ) cost to the scanned vertices and edges, that is O(1) per scanned
vertex or edge. Since the depth in D of every scanned vertex decreases by at least one,
a vertex and an edge can be scanned at most O(n) times. Hence, each vertex and edge
can contribute at most O(n) total cost through the whole sequence of m insertions. The
O(mn) bound follows.

2.1.2 Efficient algorithm

Here we develop a more practical algorithm that maintains a low-high order δ of a flow
graph G = (V,E, s) through a sequence of edge insertions. Our algorithm uses the
incremental dominators algorithm of [25] to update the dominator tree D of G after each
edge insertion. We describe a process to update δ based on new results on the relation
among vertices in D that are affected by the insertion. . These results enable us to
identify a subset of vertices for which we can compute a “local” low-high order, that can
be extended to a valid low-high order of G after the update. We show that such a “local”
low-high order can be computed by a slightly modified version of an algorithm from [28].
We apply this algorithm on a sufficiently small flow graph that is defined by the affected
vertices, and is constructed using the concept of edges [52].

Derived edges and derived flow graphs

Derived graphs, first defined in [52], reduce the problem of finding a low-high order to
the case of a flat dominator tree [28]. By the parent property of D, if (v, w) is an edge
of G, the parent d(w) of w is an ancestor of v in D. Let (v, w) be an edge of G, with
w not an ancestor of v in D. Then, the derived edge of (v, w) is the edge (v, w), where
v = v if v = d(w), v is the sibling of w that is an ancestor of v if v 6= d(w). If w is
an ancestor of v in D, then the derived edge of (v, w) is null. Note that a derived edge
(v, w) may not be an original edge of G. For any vertex w ∈ V such that C(w) 6= ∅,
we define the derived flow graph of w, denoted by Gw = (Vw, Ew, w), as the flow graph
with start vertex w, vertex set Vw = C(w) ∪ {w}, and edge set Ew = {(u, v) | v ∈
Vw and (u, v) is the non-null derived edge of some edge in E}. By definition, Gw has flat
dominator tree, that is, w is the only proper dominator of any vertex v ∈ Vw \w. We can
compute a low-high order δ of G by computing a low-high order δw in each derived flow

11

graph Gw. Given these low-high orders δw, we can compute a low-high order of G in O(n)

time by a depth-first traversal of D. During this traversal, we visit the children of each
vertex w in their order in δw, and number the vertices from 1 to n as they are visited. The
resulting preorder of D is low-high on G. Our incremental algorithm identifies, after each
edge insertion, a specific derived flow graph Gw for which a low-high order δw needs to be
updated. Then, it uses δw to update the low-high order of the whole flow graph G. Still,
computing a low-high order of Gw can be too expensive to give us the desired running
time. Fortunately, we can overcome this obstacle by exploiting a relation among the
vertices that are affected by the insertion, as specified below. This allows us to compute
δw in a contracted version of Gw.

Affected vertices

Let (x, y) be the inserted vertex, where both x and y are reachable. Consider the execution
of algorithm DBS [25] that updates the dominator tree by applying Lemma 2.1. Suppose
vertex v is scanned, and let q be the nearest affected ancestor of v in D. Then, by Lemma
2.1, vertex q is a child of nca(x, y) inD′, i.e., d′(q) = nca(x, y), and v remains a descendant
of q in D′.

Lemma 2.5. Let u and v be vertices such that u ∈ D(v). Then, any simple path from v

to u in G contains only vertices in D(v).

Proof. Since u ∈ D(v), v dominates u, so all paths from s to u contain v. Let πvu be a
simple path from v to u. Suppose, for contradiction, that πvu contains a vertex w 6∈ D(v).
Let πwu be the part of πvu from w to u. Since w 6∈ D(v), there is a path πsw from s to w
that avoids v. But then πsw · πwu is a path from s to u that avoids v, a contradiction.

Lemma 2.6. Let v be vertex that is affected by the insertion of (x, y), and let w be a
sibling of v in D. If there is an edge (u,w) with u a descendant of v in D then w is also
affected.

Proof. Since v is affected, there is a path πyv from y to v in G that satisfies Lemma 2.1.
By Lemma 2.5 and the fact that u is a descendant of v in D, there is a simple path πvu
from v to u in G that contains only vertices in D(v). Thus, πyv ·πvu · (u,w) is a path from
y to w that also satisfies Lemma 2.1. Hence, w is affected.

Lemma 2.7. Let v be an ancestor of w in D, and let u be a vertex that is not a descendant
of v in D. Then any path from u to w contains v.

Proof. Let πuw be a path from u to w. Since u is not a descendant of v, there is a path
πsu from s to u that avoids v. Hence, if πuw does not contain v, then πsu · πuw is path
from s to w that avoids v, a contradiction.

Our next lemma provides a key result about the relation of the affected vertices in D.

12

Lemma 2.8. All vertices that are affected by the insertion of (x, y) are descendants of a
common child c of nca(x, y).

Proof. Let z = nca(x, y), and let c be the child of z that is an ancestor of y in D. We
claim that all affected vertices are descendants of c in D. Suppose, for contradiction, that
there is an affected vertex v that is not a descendant of c in D. By Lemma 2.1, v must
be a descendant z in D. Also, since the children of z are not affected, v is not a child of
z. Hence, v is a proper descendant of another child q of z in D (q 6= c). Let πyv be a path
from y to v in G that satisfies Lemma 2.1. Since y is not a descendant of q, by Lemma
2.7 path πyv must contain q. But then πyv contains a vertex of depth depth(d(v)) or less,
which contradicts Lemma 2.1.

We shall apply Lemma 2.8 to construct a flow graph GA for the affected vertices.
Then, we shall use GA to compute a “local” low-high order that we extend to a valid
low-high order of G′.

Low-high order augmentation

Let δ be a low-high order of G, and let δ′ be a preorder of the dominator tree D′ of G′.
We say that δ′ agrees with δ if the following condition holds for any pair of siblings u, v
in D that are not affected by the insertion of (x, y): u <δ′ v if and only if u <δ v. Our
goal is to show that there is a low-high order δ′ of G′ that agrees with δ.

Lemma 2.9. Let δ be a low-high order of G before the insertion of (x, y). There is a
preorder δ′ of D′ that agrees with δ.

Proof. By Lemma 2.1, all affected vertices become children of z in D′. Hence, C ′(z) ⊇
C(z), and for any v 6= z, C ′(v) ⊆ C(v). Then, for each vertex v, we can order the children
of v in C ′(v) that are not affected according to δ. Finally, we insert the affected vertices
in any order in the list of children of z. Let δ′ be the preorder of D′ that is constructed by
a depth-first traversal of D′ that visits the children of each vertex w in the order specified
above. Then, δ′ agrees with δ.

Lemma 2.10. Let δ′ be a preorder of D′ that agrees with δ. Let v be a vertex that is not
a child of nca(x, y) and is not affected by the insertion of (x, y). Then δ′ is a low-high
order for v in G′.

Proof. Since v is not affected, d(v) is still the parent of v in D after the insertion. So, if
(d(v), v) ∈ E, then δ′ is a low-high order for v in G′. Now suppose that (d(v), v) 6∈ E.
Then there are two edges (u, v) and (w, v) in E such that u <δ v <δ w, where w is not
a descendant of v in D. Let (u, v) and (w, v) be the derived edges of (u, v) and (w, v),
respectively, in D. Then u and w are siblings of v in D. Siblings u and w exist and
are distinct by the fact that (d(v), v) 6∈ E and by the parent property of D. Hence,
u <δ v <δ w. We argue that after the insertion of (x, y), u (resp., w) remains a sibling of
v, and an ancestor of u (resp., w). If this is not the case, then there is an affected vertex

13

q on D[u, u]. But then, Lemma 2.6 implies that v is also be affected, a contradiction. So,
both u and w remain siblings of v in D′, and (u, v) and (w, v) remain the derived edges of
(u, v) and (w, v), respectively, in D′. Then, since δ′ agrees with δ, δ′ is a low-high order
for v in G′.

We shall use Lemmata 2.1 and 2.10 to show that in order to compute a low-high
order of G′, it suffices to compute a low-high order for the derived flow graph G′z, where
z = nca(x, y). Still, the computation of a low-high order of G′z is too expensive to give us
the desired running time. Fortunately, as we show next, we can limit these computations
for a contracted version of G′z, defined by the affected vertices.

Let δ be a low-high order of G before the insertion of (x, y). Also, let z = nca(x, y),
and let δz be a corresponding low-high order of the derived flow graph Gz. That is, δz is
the restriction of δ to z and its children in D. Consider the child c of z that, by Lemma
2.8, is an ancestor of all the affected vertices. Let α and β, respectively, be the predecessor
and successor of c in δz. Note that α or β may be null. An augmentation of δz is an order
δ′z of C ′(z)∪{z} that results from δz by inserting the affected vertices arbitrarily around c,
that is, each affected vertex is placed in an arbitrary position between α and c or between
c and β.

Lemma 2.11. Let z = nca(x, y), and let δz be a low-high order of the derived flow graph
Gz before the insertion of (x, y). Also, let δ′z be an augmentation of δz, and let δ′ be a
preorder of D′ that extends δ′z. Then, for each child v of z in D, δ′ is a low-high order
for v in G′.

Proof. Since v is a child of z in D it is not affected. Hence, d′(v) = d(v) = z. Let G′z be
the derived flow graph of z after the insertion of (x, y). It suffices to show that δ′z is a
low-high order for v in G′z.

If (z, v) ∈ E, then (z, v) is an edge in G′z. So, in this case, δ′z is a low-high order
for v in G′z. Now suppose that (z, v) 6∈ E. Let δ be a preorder of D that extends δz.
Then, there are two edges (u, v) and (w, v) in G such that u <δ v <δ w, where w is not a
descendant of v in D. The fact that (z, v) is not an edge implies that u 6= z and w 6= z.
Let u′ (resp., w′) be the nearest ancestor of u (resp., w) in D′ that is a child of z. We
argue that u′ exists and satisfies u′ <δ′z v. Let u be the nearest ancestor of u in D. If no
vertex on D(z, u] is affected, then u′ = u. Also, since u <δz v and by the fact that δ′z is
an augmentation of δz, we have u′ <δ′z v. Suppose now that there is an affected vertex q
on D(z, u]. By Lemma 2.1, q becomes a child of z in D′, hence u′ = q. Also, by Lemma
2.8, q is a proper descendant of c, so u = c. Then c <δz v, and by the construction of δ′z
we have u′ <δ′z v.

An analogous argument shows that w′ exists and satisfies v <δ′z w
′. Thus, δ′z is a

low-high order for v in G′z.

14

Algorithm

Now we are ready to describe our incremental algorithm for maintaining a low-high order
δ of G. For each vertex v that is not a leaf in D, we maintain a list of its children C(v) in
D, ordered by δ. Also, for each vertex v 6= s, we keep two variables low(v) and high(v).
Variable low(v) stores an edge (u, v) such that u 6= d(v) and u <δ v; low(v) = null if no
such edge exists. Similarly, high(v) stores an edge (w, v) such that and v <δ w and w is
not a descendant of v in D; high(v) = null if no such edge exists. These variables are
useful in the applications that we mention in Section 2.2. Finally, we mark each vertex
v such that (d(v), v) ∈ E. For simplicity, we assume that the vertices of G are numbered
from 1 to n, so we can store the above information in corresponding arrays low , high, and
mark . Note that for a reachable vertex v, we can have low(v) = null or high(v) = null (or
both) only if mark(v) = true. Before any edge insertion, all vertices are unmarked, and
all entries in arrays low and high are null. We initialize the algorithm and the associated
data structures by executing a linear-time algorithm to compute the dominator tree D
of G [3, 8] and a linear-time algorithm to compute a low-high order δ of G [28]. So, the
initialization takes O(m + n) time for a digraph with n vertices and m edges. Next, we
describe the main routine to handle an edge insertion. We let (x, y) be the inserted edge.
Also, if x and y are reachable before the insertion, we let z = nca(x, y).

Algorithm 2: Initialize(G)

1 Compute the dominator tree D and a low-high order δ of G.
2 foreach reachable vertex v ∈ V \ s do
3 if (d(v), v) ∈ E then set mark(v)← true

4 find edges (u, v) and (w, v) such that u <δ v <δ w and w 6∈ D(v)

5 set low(v)← u and high(v)← w

6 end
7 return (D, δ,mark , low , high)

Our main task now is to order the affected vertices according to a low-high order of D′.
To do this, we use an auxiliary flow graph GA = (VA, EA, z), with start vertex z, which
we refer to as the derived affected flow graph. Flow graph GA is essentially a contracted
version of the derived flow graph G′z (i.e., the derived graph of z after the insertion) as
we explain later. The vertices of the derived affected flow graph GA are z, the affected
vertices of G, their common ancestor c in D that is a child of z (from Lemma 2.8), and
two auxiliary vertices α∗ and β∗. Vertex α∗ (resp., β∗) represents vertices in C(z) with
lower (resp., higher) order in δ than c. We include in GA the edges (z, α∗) and (z, β∗). If c
is marked then we include the edge (z, c) into GA, otherwise we add the edges (α∗, c) and
(β∗, c) into GA. Also, for each edge (u, c) such that u is a descendant of an affected vertex
v, we add in GA the edge (v, c). Now we specify the edges that enter an affected vertex w
in GA. We consider each edge (u,w) ∈ E entering w in G. We have the following cases:

(a) If u is a descendant of an affected vertex v, we add in GA the edge (v, w).

15

Algorithm 3: InsertEdge(G,D, δ,mark , low , high, e)

Input: Flow graph G = (V,E, s), its dominator tree D, a low-high order δ of G,
arrays mark , low and high, and a new edge e = (x, y).

Output: Flow graph G′ = (V,E ∪ (x, y), s), its dominator tree D′, a low-high
order δ′ of G′, and arrays mark ′, low ′ and high ′.

1 Insert e into G to obtain G′.
2 if x is unreachable in G then return (G′, D, δ,mark , low , high)

3 else if y is unreachable in G then
4 (D′, δ′,mark ′, low ′, high ′)← Initialize(G′)

5 return (G′, D′, δ′,mark ′, low ′, high ′)

6 end
7 Compute the nearest common ancestor z of x and y in D.
8 Compute the updated dominator tree D′ of G′ and return a list A of the affected
vertices.

9 foreach vertex v ∈ A do mark ′(y)← false

10 if z = x then mark ′(y)← true

11 Execute DerivedLowHigh(z, A,mark ′).
12 Make a dfs traversal of the subtrees of D′ rooted at each vertex v ∈ A ∪ {c} to

compute δ′.
13 foreach vertex v ∈ A ∪ {c} do
14 find edges (u, v) and (w, v) such that u <δ′ v <δ′ w and w 6∈ D′(v)

15 set low ′(v)← u and high ′(v)← w

16 end
17 return (G′, D′, δ′,mark ′, low ′, high ′)

(b) If u is a descendant of c but not a descendant of an affected vertex, then we add in
GA the edge (c, w).

(c) If u 6= z is not a descendant of c, then we add the edge (α∗, w) if u <δ c, or the edge
(β∗, w) if c <δ u.

(d) Finally, if u = z, then we add the edge (z, w). (In cases (c) and (d), u = x and
w = y.)

See Figure 2.1. Recall that α (resp., β) is the siblings of c in D immediately before (resp.,
after) c in δ, if it exists. Then, we can obtain GA from G′z by contracting all vertices v
with v <δ c into α = α∗, and all vertices v with c <δ v into β = β∗.

Lemma 2.12. The derived affected flow graph GA = (VA, EA, z) has flat dominator tree.

Proof. We claim that for any two distinct vertices v, w ∈ VA \ z, v does not dominate w.
The lemma follows immediately from this claim. The claim is obvious for w ∈ {α∗, β∗},
since GA contains the edges (z, α∗) and (z, β∗). The same holds for w = c, since GA

16

𝑠 = 𝑧

𝑐

𝐺𝐴

𝑑
𝛼∗ 𝑓 𝑒 𝛽∗

Figure 2.1: The derived affected flow graph GA that corresponds to the flow graph of
Figure 1.2 after the insertion of edge (g, d).

contains the edge (z, c), or both the edges (α∗, c) and (β∗, c). Finally, suppose w ∈
VA \ {z, α∗, β∗}. Then, by the construction of GA, vertex w is affected. By Lemma 2.8,
w ∈ D(c), so Lemma 2.5 implies that there is a path in G from c to w that contains only
vertices in D(c). Hence, by construction, GA contains a path from c to w that avoids α∗

and β∗, so α∗ and β∗ do not dominate w. It remains to show that w is not dominated
in GA by c or another affected vertex v. Let (x, y) be the inserted edge. Without loss
of generality, assume that c <δ x. Since w is affected, there is a path π in G from y to
w that satisfies Lemma 2.1. Then π does not contain any vertex in D[c, d(w)]. Also, by
the construction of GA, π corresponds to a path πA in GA from β∗ to y that avoids any
vertex in A ∩D[c, d(w)]. Hence, w is not dominated by any vertex in A ∩D[c, d(w)]. It
remains to show that w is not dominated by any affected vertex v in A\D[c, d(w)]. Since
both v and w are in D(c) and v is not an ancestor of w in D, there is a path π′ in G from
c to w that avoids v. By Lemma 2.5, π′ contains only vertices in D(c). Then, by the
construction of GA, π′ corresponds to a path π′A in GA from c to w that avoids v. Thus,
v does not dominate w in GA.

Lemma 2.13. Let ν and µ, respectively, be the number of scanned vertices and their
adjacent edges. Then, the derived affected flow graph GA has ν+ 4 vertices, at most µ+ 5

edges, and can be constructed in O(ν + µ) time.

Proof. The bound on the number of vertices and edges in GA follows from the definition of
the derived affected flow graph. Next, we consider the construction time of GA. Consider
the edges entering the affected vertices. Let w be an affected vertex, and let (u,w) 6= (x, y)

be an edge of G′. Let q be nearest ancestor u in C ′(z). We distinguish two cases:

• u is not scanned. In this case, we argue that q = c. Indeed, it follows from the
parent property of D and Lemma 2.8 that both u and w are descendants of c in D.
Since u is not scanned, no ancestor of u in D is affected, so u remains a descendant
of c in D′. Thus, q = c.

• u is scanned. Then, by Lemma 2.2, q is the nearest affected ancestor of u in D.

17

So we can construct the edges entering the affected vertices in GA in two phases. In the
first phase we traverse the descendants of each affected vertex q in D′. At each descendant
u of q, we examine the edges leaving u. When we find an edge (u,w) with w affected, then
we insert into GA the edge (q, w). In the second phase we examine the edges entering each
affected vertex w. When we find an edge (u,w) with u not visited during the first phase
(i.e., u was not scanned during the update of D), we insert into GA the edge (c, w). Note
that during this construction we may insert the same edge multiple times, but this does
not affect the correctness or running time of our overall algorithm. Since the descendants
of an affected vertex are scanned, it follows that each phase runs in O(ν + µ) time.

Finally, we need to consider the inserted edge (x, y). Let f be the nearest ancestor of
x that is in C(z). Since y is affected, c 6= f . Hence, we insert into GA the edge (β∗, y) if
c <δ f , and the edge (α∗, y) if f <δ c. Note that f is found during the computation of
z = nca(x, y), so this test takes constant time.

We use algorithm DerivedLowHigh, shown below, to order the vertices in C ′(z) accord-
ing to a low-high order of ζ of GA. After computing GA, we construct two divergent
spanning trees BA and RA of GA. For each vertex v 6= z, if (z, v) is an edge of GA, we
replace the parent of v in BA and in RA, denoted by bA(v) and rA(v), respectively, by z.
Then we use algorithm AuxiliaryLowHigh to compute a low-high order ζ of GA. Algorithm
AuxiliaryLowHigh is a slightly modified version of a linear-time algorithm of [28, Section
6.1] to compute a low-high order. Our modified version computes a low-high order ζ of
GA that is an augmentation of δz. To obtain such a low-high order, we need to assign
to α∗ the lowest number in ζ and to β∗ the highest number in ζ. The algorithm works
as follows. While GA contains at least four vertices, we choose a vertex v 6∈ {α∗, β∗}
whose in-degree in GA exceeds its number of children in BA plus its number of children
in RA and remove it from GA. (From this choice of v we also have that v 6= z.) Then
we compute recursively a low-high order for the resulting flow graph, and insert v in an
appropriate location, defined by bA(v) and rA(v).

Algorithm 4: DerivedLowHigh(z, A,mark)

1 Compute the derived affected flow graph GA = (VA, EA, z).
2 Compute two divergent spanning trees BA and RA of GA.
3 foreach vertex v ∈ VA \ {z, α∗, β∗} do
4 if mark(v) = true then set bA(v)← z and rA(v)← z

5 end
6 Initialize a list of vertices Λ← ∅.
7 Compute Λ← AuxiliaryLowHigh(GA, BA, RA,Λ).
8 Order the set of children C ′(z) of z in D′ according to Λ.

Lemma 2.14. Algorithm AuxiliaryLowHigh is correct, that is, it computes a low-high order
ζ of GA, such that for all v ∈ VA \ {z, α∗, β∗}, α∗ <ζ v <ζ β

∗.

18

Algorithm 5: AuxiliaryLowHigh(GA, BA, RA,Λ)

1 if GA contains only three vertices then
2 set Λ← 〈α∗, β∗〉
3 return Λ

4 end
5 Let v 6∈ {α∗, β∗} be a vertex whose in-degree in GA exceeds its number of children
in BA plus its number of children in RA.

6 Delete v and its incoming edges from GA, BA, and RA.
7 if v was not a leaf in BA then
8 let w be the child of v in BA; replace bA(w) by bA(v)

9 end
10 else if v was not a leaf in RA then
11 let w be the child of v in RA; and replace rA(w) by rA(v)

12 end
13 Call AuxiliaryLowHigh(GA, BA, RA,Λ) recursively for the new graph GA.
14 if bA(v) = z then
15 insert v anywhere between α∗ and β∗ in Λ

16 end
17 else
18 insert v just before bA(v) in Λ if rA(v) is before bA(v) in Λ, just after bA(v)

otherwise
19 end
20 return Λ

Proof. We first show that algorithm AuxiliaryLowHigh runs to completion, i.e., it selects
every vertex v ∈ VA \ {z, α∗, β∗} at some execution of line 5. The recursive call in line 13
invokes algorithm AuxiliaryLowHigh on a sequence of smaller flow graphs GA. We claim
that the following invariants hold for each such flow graph GA:

(i) the dominator tree DA of GA is flat;

(ii) the subgraphs BA and RA corresponding to GA are divergent spanning trees of GA

rooted at z;

(iii) for every v 6= z, either bA(v) = rA(v) = z or bA(v), rA(v), and z are all distinct.

For the initial graph GA the invariants hold by construction. Assume that the invariants
hold on entry to line 5. Suppose, now, that line 5 chooses a vertex v 6∈ {α∗, β∗}. Since v
has in-degree at most 2 in GA, the choice of v implies that it has at most one outgoing
edge. Hence v is a leaf in either BA or RA. If it is a leaf in both, deleting v and its
incoming edges preserves all the invariants. Suppose v is a leaf in RA but not BA. Then
v has in-degree 2 in GA; that is, bA(v) 6= rA(v), which implies by (iii) that bA(v), rA(v),
and v are distinct siblings in DA. Let w be the child of v in BA. Since rA(w) 6= v, v,

19

rA(w), and z are distinct by (iii). Also rA(w) 6= bA(v), since rA(w) = bA(v) would imply
that rA(w) dominates w by (ii). Finally, bA(v) 6= z, since bA(v) is a sibling of v and hence
of w in DA. We conclude that replacing bA(w) by bA(v) in line 8 preserves (iii). This
replacement preserves (i) since v does not dominate w, it preserves (ii) since it removes v
from the path in BA from s to w. Replacing bA(w) makes v a leaf in BA, after which its
deletion preserves (i)-(iii).

Now we show that the invariants imply that line 5 can always choose a vertex v. All
vertices in VA \ z are leaves in DA. Let X be the subset of VA that consists of the vertices
x such that bA(x) 6= rA(x). Each vertex in X has in-degree 2 in GA, so there are 2|X|
edges that enter a vertex in X. By invariant (iii), each edge leaving a vertex in X enters
a vertex in X. Invariant (iii) also implies that at least two edges enter X from VA \ X.
Hence, there are at most 2(|X| − 1) edges that leave a vertex in X, so there must be a
vertex v in X with out-degree at most 1. We claim that v can be selected in line 5. First
note that the in-degree of v in GA exceeds its out-degree in GA. If v is a leaf in both BA

and RA then it can be selected. If not, then v must be a leaf in either BA or RA, since
otherwise its common child w in BA and RA would violate (ii). Hence v can be selected
in this case also.

Finally, we claim that the computed order is low-high for GA, such that α∗ is first
and β∗ is last in this order. The latter follows by the assignment in line 2. So the claim
is immediate if GA has three vertices. Suppose, by induction, that this is true if GA has
k ≥ 3 vertices. Let GA have k + 1 vertices and let v be the vertex chosen for deletion.
The insertion position of v guarantees that v has the low-high property. All vertices in
GA after the deletion of v have the low-high property in the new GA \ z by the induction
hypothesis, so they have the low-high property in the old GA with the possible exception
of w, one of whose incoming edges differs in the old and the new GA. Suppose bA(w)

differs; the argument is symmetric if rA(w) differs. Now we have that v, w, bA(v), and
rA(w) are distinct children of z in DA. Since w has the low-high property in the new GA,
it occurs in Λ between rA(w) and bA(v). Insertion of v next to bA(v) leaves w between
rA(w) and v, so it has the low-high property in the old GA as well.

The correctness of algorithm InsertEdge follows from Lemmata 2.10, 2.11 and 2.14.

Lemma 2.15. Algorithm InsertEdge is correct.

Proof. Let (G′, D′, δ′,mark ′, low ′, high ′) be the output of InsertEdge(G,D, δ,mark , low , high, e).
We only need to consider the case where both endpoints of the inserted edge e = (x, y)

are reachable in G. Let A be the set of affected vertices, and let z = nca(x, y). Also, let
c be the child of z in D that is a common ancestor of all vertices in A. We will show that
the computed order δ′ is a low-high order of G′ that agrees with δ. This fact implies that
the arrays mark ′, low ′, high ′ were updated correctly, since their entries did not change for
the vertices in V \

(
A ∪ {c}

)
.

By construction, δ′ agrees with δ. Let δz (resp., δ′z) be the restriction of δ (resp., δ′) to
C(z) (resp., C ′(z)). Then, by Lemma 2.14, δ′z is an augmentation of δz. So, by Lemmata

20

2.10 and 2.11, δ′ is a low-high order in G′ for any vertex v 6∈ A ∪ {c}. Finally, Lemma
2.14 implies that δ′ is also a low-high order in G′ for the vertices in A ∪ {c}.

Theorem 2.1. Algorithm InsertEdge maintains a low-high order of a flow graph G with
n vertices through a sequence of edge insertions in O(mn) total time, where m is the total
number of edges in G after all insertions.

Proof. Consider the insertion of an edge (x, y). If y was unreachable in G then we compute
D and a low-high order in O(m) time. Throughout the whole sequence of m insertions,
such an event can happen O(n) times, so all insertions to unreachable vertices are handled
in O(mn) total time.

Now we consider the cost of executing InsertEdge when both x and y are reachable in
G. Let ν be the number of scanned vertices, and let µ be the number of their adjacent
edges. We can update the dominator tree and locate the affected vertices (line 8) in
O(ν + µ+ n) time [25]. Computing z = nca(x, y) in line 7 takes O(n) time just by using
the parent function d of D. Lines 9–10 and 12 are also executed in O(n) time. The for
loop in lines 13–16 takes O(ν + µ) since we only need to examine the scanned edges.
(Variables low(c) and high(c) need to be updated only if there is a scanned edge entering
c.) It remains to account for time to compute GA and a low-high order of it. From Lemma
2.13, the derived affected flow graph can be constructed in O(ν + µ) time. In algorithm
AuxiliaryLowHigh, we represent the list Λ with the off-line dynamic list maintenance data
structure of [28], which supports insertions (in a given location) and order queries in
constant time. With this implementation, AuxiliaryLowHigh runs in linear-time, that is
O(ν + µ). So InsertEdge runs in O(ν + µ + n) time. The O(n) term gives a total cost
of O(mn) for the whole sequence of m insertions. We distribute the remaining O(ν + µ)

cost to the scanned vertices and edges, that is O(1) per scanned vertex or edge. Since the
depth in D of every scanned vertex decreases by at least one, a vertex and an edge can be
scanned at most O(n) times. Hence, each vertex and edge can contribute at most O(n)

total cost through the whole sequence of m insertions. The O(mn) bound follows.

2.2 Applications

2.2.1 Strongly divergent spanning trees and path queries

We can use the arrays mark , low , and high to maintain a pair of strongly divergent
spanning trees, B and R, of G after each update. Recall that B and R are strongly
divergent if for every pair of vertices v and w, we have B[s, v]∩R[s, w] = D[s, v]∩D[s, w]

or R[s, v]∩B[s, w] = D[s, v]∩D[s, w]. Moreover, we can construct B and R so that they
are also edge-disjoint except for the bridges of G. A bridge of G is an edge (u, v) that is
contained in every path from s to v. Let b(v) (resp., r(v)) denote the parent of a vertex v
in B (resp., R). To update B and R after the insertion of an edge (x, y), we only need to
update b(v) and r(v) for the affected vertices v, and possibly for their common ancestor

21

c that is a child of z = nca(x, y) from Lemma 2.8. We can update b(v) and r(v) of each
vertex v ∈ A ∪ {c} as follows: set b(v)← d(v) if low(v) = null , b(v)← low(v) otherwise;
set r(v)← d(v) if high(v) = null , r(v)← high(v) otherwise. If the insertion of (x, y) does
not affect y, then A = ∅ but we may still need to update b(y) and r(y) if x 6∈ D(y) in order
to make B and R maximally edge-disjoint. Note that in this case z = d(y), so we only
need to check if both low(y) and high(y) are null. If they are, then we set low(y)← x if
x <δ y, and set high(y)← x otherwise. Then, we can update b(y) and r(y) as above.

Now consider a query that, given two vertices v and w, asks for two maximally vertex-
disjoint paths, πsv and πsw, from s to v and from s to w, respectively. Such queries were
used in [53] to give a linear-time algorithm for the 2-disjoint paths problem on a directed
acyclic graph. If v <δ w, then we select πsv ← B[s, v] and πsw ← R[s, w]; otherwise, we
select πsv ← R[s, v] and πsw ← B[s, w]. Therefore, we can find such paths in constant
time, and output them in O(|πsv|+ |πsw|) time. Similarly, for any two query vertices v and
w, we can report a path πsv from s to v that avoids w. Such a path exists if and only if w
does not dominate v, which we can test in constant time using the ancestor-descendant
relation in D [49]. If w does not dominate v, then we select πsv ← B[s, v] if v <δ w, and
select πsv ← R[s, v] if w <δ v.

2.2.2 Fault tolerant reachability

Baswana et al. [] study the following reachability problem. We are given a flow graph
G = (V,E, s) and a spanning tree T = (V,ET) rooted at s. We call a set of edges E ′ valid
if the subgraph G′ = (V,ET ∪ E ′, s) of G has the same dominators as G. The goal is to
find a valid set of minimum cardinality. As shown in [31], we can compute a minimum-size
valid set in O(m) time, given the dominator tree D and a low-high order of δ of it. We
can combine the above construction with our incremental low-high algorithm to solve the
incremental version of the fault tolerant reachability problem, where G is modified by
edge insertions and we wish to compute efficiently a valid set for any query spanning tree
T . Let t(v) be the parent of v in T . Our algorithm maintains, after each edge insertion,
a low-high order δ of G, together with the mark , low , and high arrays. Given a query
spanning tree T = (V,ET), we can compute a valid set of minimum cardinality E ′ as
follows. For each vertex v 6= s, we apply the appropriate one of the following cases: (a)
If t(v) = d(v) then we do not insert into E ′ any edge entering v. (b) If t(v) 6= d(v) and
v is marked then we insert (d(v), v) into E ′. (c) If v is not marked then we consider the
following subcases: If t(v) >δ v, then we insert into E ′ the edge (x, v) with x = low(v).
Otherwise, if t(v) <δ v, then we insert into E ′ the edge (x, v) with x = high(v). Hence,
can update the minimum valid set in O(mn) total time.

We note that the above construction can be easily generalized for the case where T is
forest, i.e., when ET is a subset of the edges of some spanning tree of G. In this case, t(v)

can be null for some vertices v 6= s. To answer a query for such a T , we apply the previous
construction with the following modification when t(v) is null. If v is marked then we
insert (d(v), v) into E ′, as in case (b). Otherwise, we insert both edges entering v from

22

low(v) and high(v). In particular, when ET = ∅, we compute a subgraph G′ = (V,E ′, s) of
G with minimum number of edges that has the same dominators as G. This corresponds
to the case k = 1 in [7].

23

Chapter 3

Sparse Subgraphs for
2-Connectivity in Directed Grpahs

3.1 Approximation algorithm of 2VCSS

3.2 Approximation algorithms and heuristics for 2VC-B

3.3 Approximation algorithms and heuristics for 2C

In this chapter, we consider the problem of computing the smallest strongly connected
spanning subgraph of G that maintains the pairwise 2-vertex-connectivity of G. We con-
sider two cases. In the first case G is 2-vertex connected and we provide a 2 approxima-
tion ratio algorithm in order to find the smallest 2-vertex-connected spanning subgraph
(2VCSS) of G. In the second case G is not 2-vertex connected and we provide linear-
time approximation algorithms that achieve an approximation ratio of 6t and maintain
the pairwise 2-vertex connectivity of G. So, we show how to approximate, in linear time,
within a factor of 6 the smallest strongly connected spanning subgraph ofG that maintains
respectively: both the 2-vertex-connected blocks and the 2-vertex-connected components
of G (2VC-B-C); all the 2-connectivity relations of G (2C) and provide heuristics that
improve the size of the computed subgraphs in practice.

3.1 Approximation algorithm of 2VCSS

Let G = (V,E) be a strongly connected digraph. A vertex x of G is a strong articulation
point if G \ x is not strongly connected. A strongly connected digraph G is 2-vertex-
connected if it has at least three vertices and no strong articulation points [20, 37]. Here
we consider the problem of approximating a smallest 2-vertex-connected spanning sub-
graph (2VCSS) of G. This problem is NP-hard [18]. We show that algorithm LH-Z

24

Algorithm 6: LH-Z(G)

Input: 2-vertex-connected digraph G = (V,E)

Output: 2-approximation of a smallest 2-vertex-connected spanning subgraph
H = (V,EH) of G

1 Choose an arbitrary vertex s of G as start vertex.
2 Compute a strongly connected spanning subgraph H = (V \ s, EH) of G \ s.
3 Set H ← (V,EH).
4 Compute a low-high order δ of flow graph G with start vertex s.
5 foreach vertex v 6= s do
6 if there are two edges (u, v) and (w, v) in EH such that u <δ v and v <δ w then
7 do nothing
8 end
9 else if there is no edge (u, v) ∈ EH such that u <δ v then

10 find an edge e = (u, v) ∈ E with u <δ v

11 set EH ← EH ∪ {e}
12 end
13 else if there is no edge (w, v) ∈ EH such that v <δ w then
14 find an edge e = (w, v) ∈ E with v <δ w or w = s

15 set EH ← EH ∪ {e}
16 end
17 end
18 Execute the analogous steps of lines 4–17 for the reverse flow graph GR with start

vertex s.
19 return H = (V,EH)

(given below), which uses low-high orders, achieves a linear-time 2-approximation for this
problem. The best previous approximation ratio achievable in linear-time was 3 [21], so
we obtain a substantial improvement. The best approximation ratio for 2VCSS is 3/2,
and is achieved by the algorithm of Cheriyan and Thurimella [9] in O(m2) time, or in
O(m

√
n + n2) by a combination of [9] and [21]. Computing small spanning subgraphs

is of particular importance when dealing with large-scale graphs, e.g., with hundreds of
million to billion edges. In this framework, one big challenge is to design linear-time
algorithms, since algorithms with higher running times might be practically infeasible on
today’s architectures. Let G = (V,E) be a strongly connected digraph. In the following,
we denote by GR = (V,ER) the reverse digraph of G that results from G after reversing
all edge directions.

Lemma 3.1. Algorithm LH-Z computes a 2-vertex-connected spanning subgraph of G.

Proof. We need to show that the computed subgraph H is 2-vertex-connected. From [37],
we have that a digraph H is 2-vertex connected if and only if it satisfies the following
property: For an arbitrary start vertex s ∈ V , flow graphs H = (V,E, s) and HR =

25

(V,ER, s) have flat dominator trees, and H \ s is strongly connected. The digraph H

computed by algorithm LH-Z satisfies the latter condition because of line 2. It remains to
show that H has flat dominator tree. The same argument applies for HR, thus completing
the proof. Let δ be the low-high order δ of G, computed in line 3. We argue that after
the execution of the for loop in lines 5–17, δ is also a low-high order for all vertices in
H. Consider an arbitrary vertex v 6= s. Let (x, v) be an edge entering v in the strongly
connected spanning subgraph of G computed in line 2. If x >δ v, then, by the definition
of δ, there is at least one edge (y, v) ∈ E such that y <δ v. Hence, after the execution of
the for loop for v, the edge set EH will contain at least two edges (u, v) and (w, v) such
that u <δ v <δ w. On the other hand, if x <δ v, then the definition of δ implies that
there an edge (y, v) ∈ E such that y >δ v or y = s. Notice that in either case y 6= x. So,
again, after the execution of the for loop for v, the edge set EH will contain at least two
edges (u, v) and (w, v) such that either u <δ v <δ w, or u <δ v and w = s. It follows
that δ is a low-high order for all vertices v 6= s in H. By [28], this means that H contains
two strongly divergent spanning trees B and R of G. Since G has flat dominator tree, we
have that B[s, v] ∩ R[s, v] = {s, v} for all v ∈ V \ s. Hence, since H contains B and R,
the dominator tree of H is flat.

We remark that the construction of H in algorithm LH-Z guarantees that s will have
in-degree and out-degree at least 2 in H. (This fact is implicit in the proof of Lemma
3.1.) Indeed, H will contain the edges from s to the vertices in V \ s with minimum and
maximum order in δ, and the edges entering s from the vertices in V \ s with minimum
and maximum order in δR.

Theorem 3.1. Algorithm LH-Z computes a 2-approximation for 2VCSS in linear time.

Proof. We establish the approximation ratio of LH-Z by showing that |EH | ≤ 4n. The
approximation ratio of 2 follows from the fact that any vertex in a 2-vertex-connected
digraph must have in-degree at least two. In line 2 we can compute an approximate
smallest strongly connected spanning subgraph of G \ s [40]. For this, we can use the
linear-time algorithm of Zhao et al. [55], which selects at most 2(n − 1) edges. Now
consider the edges selected in the for loop of lines 5–17. Since after line 2, H \ s is
strongly connected, each vertex v ∈ V \ s has at least one entering edge (x, v). If x <δ v

then lines 10–11 will not be executed; otherwise, v <δ x and lines 14–15 will not be
executed. Thus, the for loop of lines 5–17 adds at most one edge entering each vertex
v 6= s. The same argument implies that the analogous steps executed for GR add at most
one edge leaving each vertex v 6= s. Hence, EH contains at most 4(n − 1) at the end of
the execution.

3.2 Approximation algorithms and heuristics for 2VC-B

Let G = (V,E) be the input strongly connected digraph. In problem 2VC-B, we wish to
compute a strongly connected spanning subgraph G′ of G that has the same 2-vertex-

26

connected blocks of G, with as few edges as possible. We consider the following approach.
Start with the empty graph G′ = (V, ∅), and add as few edges as possible until G′ is
guaranteed to have the same 2-vertex-connected blocks as G. We consider three linear-
time algorithms that apply this approach. The first two are based on the sparse certificates
for 2-vertex-connected blocks from [24, 27], which use divergent spanning trees. The third
is a new algorithm that selects the edges of G′ with the help of low-high orders.

Divergent Spanning Trees. We can compute a sparse certificate C(G) for the 2-vertex-
connected blocks of a strongly connected digraph G using the algorithm of [24], which
is based on a linear-time construction of two divergent spanning trees of a flow graph
[28]. We refer to this algorithm as DST-B. Let s be an arbitrarily chosen start vertex in
G. Recall that we denote by G(s) the flow graph with start vertex s, by GR(s) the flow
graph obtained from G(s) after reversing edge directions, and by D(s) and DR(s) the
dominator trees of G(s) and GR(s) respectively. Also, let C(v) and CR(v) be the set of
children of v in D(s) and DR(s) respectively. For each vertex r, let Ck(r) denote the level
k descendants of r, where C0(r) = {r}, C1(r) = C(r), and so on. For each vertex r 6= s

that is not a leaf in D(s) we build the auxiliary graph Gr = (Vr, Er) of r as follows. The
vertex set of Gr is Vr = ∪3k=0C

k(r) and it is partitioned into a set of ordinary vertices
V o
r = C1(r) ∪ C2(r) and a set of auxiliary vertices V a

r = C0(r) ∪ C3(r). The auxiliary
graph Gr results from G by contracting the vertices in V \ Vr as follows. All vertices
that are not descendants of r in D(s) are contracted into r. For each vertex w ∈ C3(r),
we contract all descendants of w in D(s) into w. We use the same definition for the
auxiliary graph Gs of s, with the only difference that we let s be an ordinary vertex. In
order to bound the size of all auxiliary graphs, we eliminate parallel edges during those
contractions. We call an edge e ∈ Er \ E a shortcut edge of Gr. That is, a shortcut
edge is formed by the contraction of a part of G into an auxiliary vertex of Gr. Thus, a
shortcut edge is not an original edge of G but corresponds to at least one original edge,
and is adjacent to at least one auxiliary vertex.

Algorithm DST-B selects the edges that are inserted into C(G) in three phases. During
the construction, the algorithm may choose a shortcut edge or a reverse edge to be inserted
into C(G). In this case we insert the associated original edge instead. Also, an edge
may be selected multiple times, so we remove multiple occurrences of such edges in a
postprocessing step. In the first phase, we insert into C(G) the edges of two maximally
edge-disjoint divergent spanning trees, T1(G(s)) and T2(G(s)) ofG(s). In the second phase
we process the auxiliary graphs of G(s) that we refer to as the first-level auxiliary graphs.
For each such auxiliary graph H = Gr, we compute two maximally edge-disjoint divergent
spanning trees T1(HR(r)) and T2(HR(r)) of the corresponding reverse flow graph HR(r)

with start vertex r. We insert into C(G) the edges of these two spanning trees. It can
be proved that, at the end of this phase, C(G) induces a strongly connected spanning
subgraph of G. Finally, in the last phase we process the second-level auxiliary graphs,
which are the auxiliary graphs of HR for all first-level auxiliary graphs H. Let HR

q be a
second-level auxiliary graph of HR. For every strongly connected component S of HR

q \ q,

27

we choose an arbitrary vertex v ∈ S and compute a spanning tree of S and a spanning
tree of SR, and insert their edges into C(G).

This construction inserts O(n) edges into C(G), and therefore achieves a constant
approximation ratio for 2VC-B. However, due to the use of auxiliary vertices and two
levels of auxiliary graphs, we do not have a good bound for this constant. (The first-level
auxiliary graphs have at most 4n vertices and 4m + n edges in total [24].) We propose
a modification of DST-B, that we call DST-B modified: For each auxiliary graph, we do
not select in C(G) the edges of its two divergent spanning trees that have only auxiliary
descendants. Also, for every second-level auxiliary graph, during the computation of its
strongly connected components we include the chosen edges that already form a strongly
connected component.

Divergent Spanning Trees and Loop Nesting Trees. An alternative linear-time
algorithm to compute a sparse certificate C(G) for the 2-vertex-connected blocks can be
obtained via loop nesting trees, as described in [27]. As in algorithm DST-B, we compute
two maximally edge-disjoint divergent spanning trees T1 and T2 of G(s), and insert their
edges into C(G). But instead of computing auxiliary graphs, we compute a loop nesting
tree L of G(s) and insert into C(G) the edges that define L. These are the edges of
a dfs tree of G(s), and at most n − 1 additional edges that are required to define the
loops of G(s). (See [28, 51] for the details.) Then, we repeat the same process in the
reverse direction, i.e., for GR(s). As shown in [27], a spanning subgraph having the same
dominator trees and loop nesting trees (in both directions) as the digraph G, has the same
2-edge- and 2-vertex-connected blocks as G. We refer to this algorithm as DLN-B.

Theorem 3.2. Algorithm DLN-B achieves an approximation ratio of 6, in linear time,
for problem 2VC-B.

Proof. Consider first the “forward” pass of the algorithm. It adds at most 2(n− 1) edges
for the two divergent spanning trees, and at most 2(n−1) edges that define a loop nesting
tree of G(s). By [28, 51], both these constructions use the edges of a dfs tree of G(s) and
some additional edges. Hence, we can use the same dfs tree to compute the divergent
spanning trees and the loop nesting tree. This gives a total of at most 3(n − 1) edges.
Similarly, the “reverse” pass computes at most 3(n− 1) edges, so algorithm DLN-B selects
at most 6(n−1) edges. Since the resulting subgraph must be strongly connected, any valid
solution to problem 2VC-B has at least n edges, so DLN-B achieves a 6-approximation. By
[28, 51], both the computation of a pair of divergent spanning trees and of a loop nesting
tree can be done in linear time, hence DLN-B also runs in linear time.

Low-High Orders and Loop Nesting Trees. Now we introduce a new linear-time
construction of a sparse certificate, via low-high orders, that we refer to as LHL-B. The al-
gorithm consists of two phases. In the first phase, we insert into C(G) the edges that define
the loop nesting trees L and LR of G(s) and GR(s), respectively, as in algorithm DLN-B.
In the second phase, we insert enough edges so that C(G) (resp., CR(G)) maintains a
low-high order of G(s) (resp., GR((s)). Let δ be a low-high order on G(s). Subgraph

28

C(G) satisfies the low-high order δ if, for each vertex v 6= s, one of the following holds:
(a) there are two edges (u, v) and (w, v) in C(G) such that u <δ v, v <δ w, and w is not
a descendant of v in D(s); (b) (d(v), v) is a strong bridge of G and is contained in C(G);
or (c) (d(v), v) is an edge of G that is contained in C(G), and there is another edge (u, v)

in C(G) such that u <δ v and u 6= d(v).

Theorem 3.3. Algorithm LHL-B is correct and achieves an approximation ratio of 6 for
problem 2VC-B, in linear time.

Proof. By construction, the sparse certificate C(G) computed by LHL-B satisfies a low-
high order δ of G(s). This implies that C(G) contains two divergent spanning trees T1
and T2 of G(s) [28]. Moreover, cases (b) and (c) of the construction ensure that T1 and
T2 are maximally edge-disjoint. This is because when case (a) does not apply for a vertex
v, then C(G) contains (d(v), v). Also, d(v) is the only vertex u that satisfies u <δ v if
and only if (d(v), v) is a strong bridge. Hence, C(G) indeed contains two maximally edge-
disjoint divergent spanning trees of G(s). Similarly, C(G) also contains two maximally
edge-disjoint divergent spanning trees of GR(s). So the correctness of LHL-B follows from
the fact that DLN-B is correct.

Next we bound the approximation ratio of LHL-B. The edges selected to maintain a
loop nesting tree L of G(s) contain at least one entering edge for each vertex v 6= s. This
means that it remains to include at most one edge for each vertex v 6= s in order to satisfy
a low-high order of G(s). The symmetric arguments holds for the reverse direction as
well, so C(G) contains at most 6(n − 1) edges, which gives an approximation ratio of 6.

We note that both DLN-B and LHN-B also maintain the 2-edge-connected blocks of
the input digraph. We use this fact in Section 3.3, where we compute a sparse subgraph
that maintains all 2-connectivity relations. We can improve the solution computed by the
above algorithms by using the following filter.

Two Vertex-Disjoint Paths Test. We test if G′ \ (x, y) contains two vertex-disjoint
paths from x to y. If this is the case, then we remove edge (x, y); otherwise, we keep the
edge (x, y) in G′ and proceed with the next edge. For doing so, we define the modified
graph G′′ of G′ after vertex-splitting (see, e.g., [1]): for each vertex v, replace v by two
vertices v+ and v−, and add the edge (v−, v+). Then, we replace each edge (u,w) in G′ by
(u+, v−) in G′′, so v− has the edges entering v and v+ has the edges leaving v. Now we can
test if G′ still has two vertex-disjoint paths from x to y after deleting (x, y) by running
two iterations of the Ford-Fulkerson augmenting paths algorithm [15] for finding two edge-
disjoint paths on G′′ by treating x+ as the source and y− as the sink. Note that we need to
compute G′′ once for all such tests. If an edge (x, y) is deleted from G′, then we also delete
(x+, y−) from G′′. Since G′ has O(n) edges, this test takes O(n) time per edge, so the
total running time is O(n2). We refer to this filter as 2VDP. In our implementations we
applied 2VDP on the outcome of DLN-B in order to assess our algorithms with a solution
close to minimum. For the 2VC-B problem the algorithm obtained after applying such

29

a filter is called 2VDP-B. In order to improve the running time of 2VDP in practice, we
apply a speed-up heuristic for trivial edges (x, y): if x belongs to a 2-vertex-connected
block and has outdegree two or y belongs to a 2-vertex-connected block and has indegree
two, then (x, y) must be included in the solution.

3.3 Approximation algorithms and heuristics for 2C

To get an approximate solution for problem 2C, we combine our algorithms for 2VC-B
with algorithms that approximate 2VCSS [9, 21]. We also take advantage of the fact
that every 2-vertex-connected component is contained in a 2-edge-connected component.
This property suggests the following approach for 2C. First, we compute the 2-vertex-
connected components of G and solve the 2VCSS problem independently for each such
component. Then, we apply one of the algorithms DLN-B or LHL-B for 2VC-B on G. Since
the sparse certificate from DLN-B or LHL-B also maintain the 2-edge-connected blocks, it
remains to include edges that maintain the 2-edge-connected components of G. We can
find these edges in a condensed graph Ğ defined as follows. Digraph Ğ is formed from G

by contracting each 2-vertex-connected component of G into a single supervertex. Note
that any two 2-vertex-connected components may have at most one vertex in common: if
two such components share a vertex, they are contracted into the same supervertex. The
resulting digraph Ğ is a multigraph since the contractions can create loops and parallel
edges. For any vertex v of G, we denote by v̆ the supervertex of Ğ that contains v. Every
edge (ŭ, v̆) of Ğ is associated with the corresponding original edge (u, v) of G. Now we
describe the main steps of our algorithm for 2C:

1. Compute the 2-vertex-connected components. Solve independently the 2VCSS prob-
lem for each such component, using the linear-time algorithm of [21].

2. Form the condensed multigraph Ğ, and compute its 2-edge-connected components.
Solve independently the 2ECSS problem for each such component, using edge-
disjoint spanning trees [26].

3. Execute the DNL-B or LHL-B algorithms on the original graph G and compute a
sparse certificate for the 2-edge- and the 2-vertex-connected blocks.

The solution to the 2C problem consists of the edges selected in each step of the algorithm.
Note that in Step 2, we should allow 2-edge-connected components of size two because
such a component may correspond to the union of 2-vertex-connected components of the
original graph. We consider two versions of our algorithm, DLN-2C and LHL-2C, depending
on the algorithm for the 2VC-B problem used in Step 3.

Theorem 3.4. Algorithms DLN-2C and LHL-2C compute a 6-approximation for problem
2C. Moreover, if the 2-edge- and the 2-vertex- connected components of G are available,
then the algorithms run in linear time.

30

Proof. Let nv be the number of vertices of G that belong to some 2-vertex-connected
component of G. Also, let n̆ be the number of vertices in Ğ, and let n̆e be the number
of vertices of Ğ that belong to some 2-edge-connected component of Ğ. By the analysis
in the proof of Theorem 3.5, the algorithm for 2VC-B-C selects less than 6(n+ nv) edges.
For the 2ECSS problems, we can compute a 2-approximate solution in linear-time as in
[26], using edge-disjoint spanning trees [13, 51]. Let C̆ be a 2-edge-connected component
of Ğ. We select an arbitrary vertex v̆ ∈ C̆ as a root and compute two edge-disjoint
spanning trees in the flow graph C̆(v̆) and two edge-disjoint spanning trees in the reverse
flow graph C̆R(v̆). Thus, we select less than 4n̆e edges. Hence, the subgraph computed
by the algorithm has less than 6(n+ nc + n̆e) edges.

Now consider any solution to 2C. It has to include 2nc+2n̆e edges in order to maintain
the 2-vertex and the 2-edge-connected components of G. Moreover, since the resulting
subgraph must be strongly connected, there must be at least one edge entering each of
the n̆− n̆e vertices of Ğ that do not belong in a 2-edge-connected component of Ğ. Thus,
the optimal solution has at least 2nc + n̆e + n̆ edges. Note that n̆c + n̆ ≥ n, so the the
optimal solution has at least n+ nc + n̆e edges and the approximation ratio of 6 follows.

Finally, we show that all three steps of the algorithms DLN-2C and LHL-2C run in linear
time given the 2-edge- and the 2-vertex- connected components of G. This is immediate
for Steps 1 and 3. In Step 2, we do not need to compute the 2-edge-connected components
of Ğ from scratch, but we can form them from the 2-edge-connected components of G
using contractions. Let C be a 2-edge-connected component of G. We contract each
2-vertex-connected component of G contained in C into a single supervertex. Then, the
resulting digraph C̆ is a 2-edge-connected component of Ğ.

If we wish to improve the quality of the computed solution G′, we can apply the 2VDP
filter, and the analogous 2-edge-disjoint paths filter 2EDP, as follows. In Step 1, we run
the 2VDP filter for the edges computed by the linear-time algorithm of [21]. This produces
a minimal solution for 2VCSS in each 2-vertex-connected component of G. Similarly, in
Step 2, we run the 2EDP filter for the edges of the edge-disjoint spanning trees computed
in each 2-edge-connected component of Ğ. This produces a minimal solution for 2ECSS in
each 2-edge-connected component of Ğ. Finally, we run the 2VDP filter on the whole G′,
but only consider the edges added in Step 3 of our algorithm, since the edges from Steps
1 and 2 are needed to maintain the 2-vertex- and the 2-edge-connected components. We
implemented this algorithm, using DLN-B for Step 3, and refer to it as 2VDP-2C.

Theorem 3.5. There is a polynomial-time algorithm for 2VC-B-C that achieves an ap-
proximation ratio of 6. Moreover, if the 2-vertex-connected components of G are available,
then the algorithm runs in linear time.

Proof. A result in [21] shows that, given a 2-vertex-connected digraph with ν vertices, we
can compute in linear time a 2-vertex-connected spanning subgraph that has less than
6ν edges. Hence, if nc is the number of vertices that belong in a 2-vertex-connected
component of G, then applying this algorithm to each 2-vertex-connected component

31

selects less than 6nc edges. Finally, we apply the construction of a sparse certificate for
the 2-vertex-connected blocks which selects at most 6(n−1) edges by Theorems 3.2 or 3.3.
Hence, the subgraph computed by the algorithm has less than 6(n + nc). One the other
hand, any solution to 2VC-B-C has to include at least 2nc edges for the 2-vertex-connected
components of G, and at least n − nc edges in order to obtain a strongly connected
subgraph. Thus, the optimal solution has at least n + nc edges, so the approximation
ratio of 6 follows.

Approximation algorithms and heuristics for 2VC-B-C. Executing Steps 1 and
3 of the above algorithm described for 2C, is enough to produce a certificate for the 2VC-B-
C problem. If we use DLN-B or LHL-B for Step 3, then we obtain a 6-approximate solution
for 2VC-B-C. We call the corresponding algorithms DLN-B-C and LHL-B-C, respectively.
As in the 2VC-B and 2C problems, we can improve the quality of the computed solu-
tion by applying the 2VDP filter for the edges that connect different 2-vertex-connected
components. We implemented this algorithm, using DLN-B for Step 3, and refer to it as
2VDP-B-C.

32

Chapter 4

Experimental Study

4.1 Experimental analysis of incremental low-high order algorithms

4.2 Experimental analysis of 2-vertex-connected spanning subgraphs

4.3 Experimental analysis of sparse subgraphs

In this chapter we conduct an experimental study, implementing efficiently our algo-
rithms that have been induced to this work, on real world graphs taken from a variety of
application areas. We present an experimental study on our incremental low-high order
algorithms and on 2-vertex-connected spanning subgraphs which succeed the best sparse
with low-high orders. We also present an experimental study on computing strongly
connected spanning subgraphs that maintain certain 2-connectivity requirements.

4.1 Experimental analysis of incremental low-high order algo-
rithms

For the experimental evaluation we use the graph datasets shown in Table 4.1. We
wrote our implementations in C++, using g++ v.4.6.4 with full optimization (flag -O3)
to compile the code. We report the running times on a GNU/Linux machine, with Ubuntu
(12.04LTS): a Dell PowerEdge R715 server 64-bit NUMAmachine with four AMDOpteron
6376 processors and 128GB of RAM memory. Each processor has 8 cores sharing a
16MB L3 cache, and each core has a 2MB private L2 cache and 2300MHz speed. In our
experiments we did not use any parallelization, and each algorithm ran on a single core.
We report CPU times measured with the getrusage function, averaged over ten different
runs. In Table 4.1 we can see some statistics about the real-world graphs we used in our
experimental evaluation.

33

Graph Largest SCC 2VCCs Type
n m avg. δ n m avg. δ

rome99 3352 8855 2.64 2249 6467 2.88 road network
twitter-higgs-retweet 13086 63537 4.86 1099 9290 8.45 twitter
enron 8271 147353 17.82 4441 123527 27.82 enron mails
web-NotreDame 48715 267647 5.49 1409 6856 4.87 web

1462 7279 4.98
1416 13226 9.34

soc-Epinions1 32220 442768 13.74 17117 395183 23.09 trust network
Amazon-302 241761 1131217 4.68 55414 241663 4.36 co-purchase
WikiTalk 111878 1477665 13.21 49430 1254898 25.39 Wiki communications
web-Stanford 150475 1576157 10.47 5179 129897 25.08 web

10893 162295 14.90
web-Google 434818 3419124 7.86 77480 840829 10.85 web
Amazon-601 395230 3301051 8.35 276049 2461072 8.92 co-purchase
web-BerkStan 334857 4523232 13.51 1106 8206 7.42 web

4927 28142 5.71
12795 347465 27.16
29145 439148 15.07

Table 4.1: Real-world graphs used in the experiments, sorted by the file size of their largest
SCC. We used both the largest SCC and the some of the 2VCCs (inside the largest SCC)
in our experiments.

We compare the performance of four algorithms. As a baseline, we use a static low-
high order algorithm from [28] based on an efficient implementation of the Lengauer-
Tarjan algorithm for computing dominators [41] from [29]. Our baseline algorithm, SLT,
constructs, as intermediary, two divergent spanning trees. After each insertion of an
edge (x, y), SLT recomputes a low-high order if x is reachable. An improved version of
this algorithm, that we refer to as SLT-NCA, tests if the insertion of (x, y) affects the
dominator tree by computing the nearest common ancestor of x and y. If this is the case,
then SLT-NCA recomputes a low-high order as SLT. The other two algorithms are the ones
we presented in Section 2. For our simple algorithm, DBS-DST, we extend the incremental
dominators algorithm DBS of [25] with the computation of two divergent spanning trees
and a low-high order, as in SLT. Algorithm DBS-DST applies these computations on a
sparse subgraph of the input digraph that maintains the same dominators. Finally, we
tested an implementation of our more efficient algorithm, DBS-AUX, that updates the
low-high order by computing a local low-high order of an auxiliary graph.

We compared the above incremental low-high order algorithms in two different field
tests. In the first one, we considered 2-vertex connected graphs, and we dynamized them
in the following manner: we removed a percentage of edges (i.e., 5%, 10%, and 20%
respectively), selected uniformly at random, that were incrementally added to the graph.
Note that during the execution of the algorithms some vertices may be unreachable at
first. Also, at the end of all insertions, the final graph has flat dominator tree. In
Figure 4.1 (top) we can see that the algorithms are well distinguished: our DBS-AUX
performs consistently better than the other ones (with the exception of two NotreDame
instances). The total running times are given in Table 4.2. On average, DBS-DST is
about 2.84 times faster than SLT-NCA, with their relative performance depending on the

34

0.001
0.01
0.1
1

10
100

1.000
10.000

100.000

1+e4 1+e5 1+e6

SLT
SLT-NCA
DBS-AUX
DBS-DST

0.001
0.01
0.1
1

10
100

1.000
10.000

100.000

1+e4 1+e5 1+e6

SLT
SLT-NCA
DBS-AUX
DBS-DST

Figure 4.1: Incremental low-high order: dynamized 2VC graphs (top) and edge insertion
in strongly connected graphs (bottom). Running times, in seconds, and number of edges
both shown in logarithmic scale.

density of the graph (the higher the average degree the better DBS-DST performs w.r.t.
SLT-NCA.) As we mentioned, the naive SLT is the worst performer. The above observed
behavior of the algorithms is similar also in the second test. Here, we consider the strongly
connected graphs, and we incrementally insert random edges up to a certain percentage
of the original number of edges (i.e., as before, 5%, 10%, and 20% respectively). We use
strongly connected graphs only in order to guarantee that all vertices are reachable from
the selected source. (Strong connectivity has no other effect in these tests.) The endpoints
of each new edge are selected uniformly at random, and the edge is inserted if it is not a
loop and is not already present in the current graph. The ranking of the algorithms does
not change, as we can see in Figure 4.1 (bottom), but the difference is bigger: we note a
bigger gap of more than two orders of magnitude, in particular, between DBS-AUX and
the couple SLT-NCA and DBS-DST. This is expected because, unlike the first test, here
all edges connect already reachable vertices. This means that DBS-DST and DBS-AUX
do not execute a full restart for any of these insertions. The total running times are given
in Table 4.3.

4.2 Experimental analysis of 2-vertex-connected spanning sub-
graphs

In this experimental evaluation we compared four algorithms for computing the (approx-
imated) smallest 2-vertex-connected spanning subgraph. The dataset and the machine
that we use to conduct the experiments are the same with these in the first section. Specif-
ically, we tested two algorithms from [21], FAST which computes a 3-approximation in

35

Graph nodes starting edges final edges SLT SLT-NCA DBS-AUX DBS-DST
rome05 2249 6144 6467 0.216091 0.120026 0.060632 0.16457
rome10 2249 5820 6467 0.734963 0.231678 0.242326 0.319025
rome20 2249 5174 6467 0.772791 0.646389 0.231463 0.639627
twitter05 1099 8826 9290 0.320313 0.051123 0.004682 0.012953
twitter10 1099 8361 9290 0.996879 0.085982 0.006498 0.027945
twitter20 1099 7432 9290 2.06744 0.198226 0.018012 0.070981
NotreDame05 1416 12565 13226 0.012942 0.003981 0.002727 0.003421
NotreDame10 1416 11903 13226 0.012958 0.003997 0.005094 0.003341
NotreDame20 1416 10581 13226 0.019733 0.01446 0.004571 0.003374
enron05 4441 117351 123527 51.5453 0.811483 0.033019 0.152272
enron10 4441 111174 123527 109.719 1.5252 0.204307 0.388753
enron20 4441 98822 123527 158.83 3.08813 0.999617 1.40979
webStanford05 5179 123402 129897 42.1674 0.936905 0.236135 0.370119
webStanford10 5179 116907 129897 51.2838 1.02925 0.316648 0.439147
webStanford20 5179 103918 129897 51.6162 1.04364 0.323679 0.329067
Amazon05 55414 229580 241663 185.868 37.4155 8.91418 26.5169
Amazon10 55414 217497 241663 214.185 41.4565 8.80395 18.4656
Amazon20 55414 193330 241663 230.7 44.8627 8.66914 26.7402
WikiTalk05 49430 1192153 1254898 15026.2 113.946 4.7007 20.2353
WikiTalk10 49430 1129408 1254898 24846.2 247.601 17.5997 45.7164
WikiTalk20 49430 1003918 1254898 51682 500.581 45.9101 99.6058

Table 4.2: Running times of the plot shown in Figure 4.1 (top) .

Graph nodes starting edges final edges SLT SLT-NCA DBS-AUX DBS-DST
rome05 3352 8855 9298 0.662001 0.185072 0.002457 0.07962
rome10 3352 8855 9741 1.06533 0.366822 0.005531 0.147052
rome20 3352 8855 10626 2.74201 0.410448 0.008154 0.259299
twitter05 13086 63537 66714 26.5965 9.94862 0.073755 4.2933
twitter10 13086 63537 69891 55.4924 25.189 0.120719 8.73372
twitter20 13086 63537 76244 96.3205 31.7239 0.186917 11.1431
enron05 8271 147353 154721 82.6084 11.9889 0.068994 1.72764
enron10 8271 147353 162088 180.222 25.0999 0.09557 3.97011
enron20 8271 147353 176824 353.174 20.1978 0.106017 4.94514
NotreDame05 48715 267647 281029 785.012 375.356 0.70628 234.757
NotreDame10 48715 267647 294412 1691.05 610.29 0.79135 359.028
NotreDame20 48715 267647 321176 3593.09 1168.5 1.31932 585.807
Amazon05 241761 1131217 1187778 >24h 6386.97 26.5493 3094.69
Amazon10 241761 1131217 1244339 >24h 11905.7 45.1881 5628.51
Amazon20 241761 1131217 1357460 >24h 15871 60.197 9157.5
WikiTalk05 111878 1477665 1551548 >24h 3414.28 10.3364 1157.84
WikiTalk10 111878 1477665 1625432 >24h 5301.51 14.5151 1666.28
WikiTalk20 111878 1477665 1773198 >24h 7296.72 19.5778 2124.6
webStanford05 150475 1576157 1654965 >24h 8403.03 7.028 2295.55
webStanford10 150475 1576157 1733773 >24h 11503.4 13.7287 3749.12
webStanford20 150475 1576157 1891388 >24h 15792.1 12.7093 5381.12

Table 4.3: Running times of the plot shown in Figure 4.1 (bottom) .

36

0.001
0.01
0.1
1

10
100

1.000
10.000

100.000
1.000.000

1+e4 1+e5 1+e6

FAST
LH-Z

LH-Z-CT
FAST-CT

1.0

1.2

1.4
1.6
1.8
2.0

1+e4 1+e5 1+e6

FAST
LH-Z

LH-Z-CT
FAST-CT

Figure 4.2: Smallest 2-vertex-connected spanning subgraph. Top: running times, in
seconds, and number of edges both shown in logarithmic scale. Bottom: relative size of
the resulting 2VCSS.

linear-time by using divergent spanning trees, and FAST-CT which combines FAST with
the 3/2-approximation algorithm of Cheriyan and Thurimella [9]. In the experiments
reported in [21], the former algorithm achieved the fastest running times, while the latter
the best solution quality. We compare these algorithms against our new algorithm LH-Z of
Section 3.1, and a new hybrid algorithm LH-Z-CT, that combines LH-Z with the algorithm
of Cheriyan and Thurimella [9].

Algorithm LH-Z-CT works as follows. First, it computes a 1-matching M in the input
graph G [17], using bipartite matching as in [9]. Let H be the subgraph of G \ s, for
arbitrary start vertex s, that contains only the edges in M . We compute the strongly
connected components C1, . . . , Ck in H, and form a contracted version G′ of G as follows.
For each strongly connected component Ci of H, we contract all vertices in Ci into a
representative vertex ui ∈ Ci. (Contractions are performed by union-find [50] and merging
lists of out-edges of G.) Then, we execute the linear-time algorithm of Zhao et al. [55] to
compute a strongly connected spanning subgraph of G′, and store the original edges of
G that correspond to the selected edges by the Zhao et al. algorithm. Let Z be this set
of edges. We compute a low-high order of G with root s, and use it in order to compute
a 2-vertex-connected spanning subgraph W of G using as many edges from Z and M as
possible, as in LH-Z. Then, we run the filtering phase of Cheriyan and Thurimella. For
each edge (x, y) of W that is not in M , we test if x has two vertex-disjoint paths to y in
W \(x, y). If it does, then we setW ← W \(x, y). We remark that, similarly to FAST-CT,
LH-Z preserves the 3/2 approximation guarantee of the Cheriyan-Thurimella algorithm
for k = 2 and improves its running time from O(m2) to O(m

√
n+n2), for a digraph with n

vertices and m arcs. In our implementation, the bipartite matching is computed via max-
flow, using an implementation of the Goldberg-Tarjan push-relabel algorithm [33] from
[12], which is very fast in practice. (This implementation was provided by the authors of

37

Graph Size FAST LH-Z LH-Z-CT FAST-CT
nodes edges time edges time edges time edges time edges

rome99 2249 6467 0.003581 5691 0.004513 5370 2.099891 4837 5.042213 5057
web-NotreDame1 1409 6856 0.0027216 3796 0.0030316 3356 0.927683 3029 2.119423 3153
web-NotreDame2 1462 7279 0.002784 3949 0.005436 3545 0.999031 3189 2.262008 3300
web-BerkStan1 1106 8206 0.001753 3423 0.00393 2795 0.525704 2433 0.949573 2440
twitter-higgs-retweet 1099 9290 0.000885 3553 0.005976 3143 1.087169 2745 1.153608 2879
web-NotreDame3 1416 13226 0.003182 4687 0.005515 3990 0.751014 3560 2.143551 3768
web-BerkStan2 4927 28142 0.009555 13391 0.018985 12296 11.223287 10646 23.887951 11750
web-Stanford 5179 129897 0.022056 17940 0.031001 14583 22.141856 11556 31.346059 12920
Amazon-302 55414 241663 0.11804 164979 0.164081 141467 2986.022813 123095 3935.135495 132847
web-BerkStan3 12795 347465 0.056428 45111 0.1021736 36328 149.561649 29307 203.913794 32989
web-Google 77480 840829 0.182113 256055 0.401427 221327 7668.066338 191616 20207.08225 211529
WikiTalk 49430 1254898 0.338172 176081 0.548573 161128 5883.002974 138030 4770.705853 143958
Amazon-601 276049 2461072 0.977274 932989 1.607812 744345 140894.0119 612760 298775.2092 688159

Table 4.4: Running times and number of edges in the resulting 2-vertex-connected span-
ning subgraph; plots shown in Figure 4.2 .

[12].)
In Figure 4.2 (top) we can see the running times of the four algorithms. (See also Table

4.4.) It is easy to observe that the algorithms belong to two distinct classes, with FAST
and LH-Z being faster than the other two by approximately five orders of magnitude. In
the bottom part of Figure 4.2 we can see the relative size of the smallest spanning subgraph
computed by the four algorithms. In all of our experiments, the smallest subgraph was
the one computed by our new hybrid algorithm LH-Z-CT. One the other hand, on average
LH-Z is only twice as slow as FAST but improves the solution quality by more than 13%.
Summing up, if one wants a fast and good solution LH-Z is the right choice.

4.3 Experimental analysis of sparse subgraphs

We implemented the algorithms previously described: 5 for 2VC-B, 3 for 2VC-B-C, and 3

for 2C, as summarized in Table 4.5. All implementations were written in C++ and com-
piled with g++ v.4.4.7 with flag -O3. We performed our experiments on a GNU/Linux
machine, with Red Hat Enterprise Server v6.6: a PowerEdge T420 server 64-bit NUMA
with two Intel Xeon E5-2430 v2 processors and 16GB of RAM RDIMM memory. Each
processor has 6 cores sharing a 15MB L3 cache, and each core has a 2MB private L2
cache and 2.50GHz speed. In our experiments we did not use any parallelization, and
each algorithm ran on a single core. We report CPU times measured with the getrusage
function. All our running times were averaged over ten different runs.

We measure the quality of the solution computed by algorithm A on problem P by a
quality ratio defined as q(A,P) = δAavg/δ

P
avg , where δAavg is the average vertex indegree of the

subgraph computed by A and δPavg is a lower bound on the average vertex indegree of the
optimal solution for P . Specifically, for 2VC-B and 2VC-B-C we define δBavg = (n + k)/n,
where n is the total number of vertices of the input digraph and k is the number of vertices

38

Algorithm Problem Technique Time

DST-B 2VC-B Original sparse certificate from [24] based on divergent
spanning trees

O(m+ n)

DST-B modi-
fied

2VC-B Modified sparse certificate from [24] O(m+ n)

DLN-B 2VC-B Sparse certificate from [27] based on divergent spanning
trees and loop nesting trees

O(m+ n)

LHL-B 2VC-B New sparse certificate based on low-high orders and loop
nesting trees

O(m+ n)

2VDP-B 2VC-B 2VDP filter applied on the digraph produced by DLN-B O(n2)

DLN-B-C 2VC-B-
C

DST-B combined with the linear-time 2VCSS algorithm
of [21]

O(m+n)†

LHL-B-C 2VC-B-
C

LHL-B combined with the linear-time 2VCSS algorithm of
[21]

O(m+n)†

2VDP-B-C 2VC-B-
C

2VDP filter applied on the digraph produced by DLN-B-C O(n2)

DLN-2C 2C DLN-B-C combined with the linear-time 2ECSS algorithm
using edge-disjoint spanning trees

O(m+n)‡

LHL-2C 2C LHL-B-C combined with the linear-time 2ECSS algorithm
using edge-disjoint spanning trees

O(m+n)‡

2VDP-2C 2C 2VDP and 2EDP filters applied on the digraph produced
by DLN-2C

O(n2)

Table 4.5: The algorithms considered in our experimental study. The worst-case bounds
refer to a digraph with n vertices and m edges. Running times indicated by † assume
that the 2-vertex-connected components of the input digraph are available; running times
indicated by ‡ assume that also the 2-edge-connected components are available.

Dataset n m file size δavg s∗ δBavg δCavg type
Rome99 3353 8859 100KB 2.64 789 1.76 1.76 road network
P2p-Gnutella25 5153 17695 203KB 3.43 1840 1.60 1.60 peer2peer
P2p-Gnutella31 14149 50916 621KB 3.59 5357 1.56 1.56 peer2peer
Web-NotreDame 53968 296228 3,9MB 5.48 9629 1.50 1.50 web graph
Soc-Epinions1 32223 443506 5,3MB 13.76 8194 1.56 1.56 social network
USA-road-NY 264346 733846 11MB 2.77 46476 1.80 1.80 road network
USA-road-BAY 321270 800172 12MB 2.49 84627 1.69 1.69 road network
USA-road-COL 435666 1057066 16MB 2.42 120142 1.68 1.68 road network
Amazon0302 241761 1131217 16MB 4.67 69616 1.74 1.74 prod. co-purchase
WikiTalk 111881 1477893 18MB 13.20 14801 1.45 1.45 social network
Web-Stanford 150532 1576314 22MB 10.47 14801 1.62 1.58 web graph
Amazon0601 395234 3301092 49MB 8.35 69387 1.82 1.82 prod. co-purchase
Web-Google 434818 3419124 50MB 7.86 89838 1.59 1.58 web graph
Web-Berkstan 334857 4523232 68MB 13.50 53666 1.56 1.51 web graph

Table 4.6: Real-world graphs sorted by file size of their largest SCC; n is the number of
vertices, m the number of edges, and δavg is the average vertex indegree; s∗ is the number
of strong articulation points; δBavg and δCavg are lower bounds on the average vertex indegree
of an optimal solution to 2VC-B and 2C, respectively.

that belong in (nontrivial) 2-vertex-connected blocks 1. We set a similar lower bound δCavg
1This follows from the fact that in the sparse subgraph the k vertices in blocks must have indegree at

least two, while the remaining n− k vertices must have indegree at least one, since we seek for a strongly

39

Dataset DST-B
DST-B

DLN-B LHL-B 2VDP-B DLN-B-C LHL-B-C 2VDP-B-C DLN-2C LHL-2C 2VDP-2C
modified

Rome99 1.384 1.363 1.432 1.388 1.170 1.462 1.459 1.199 1.462 1.459 1.198
P2p-Gnutella25 1.726 1.602 1.713 1.568 1.234 1.712 1.568 1.234 1.712 1.568 1.234
P2p-Gnutella31 1.717 1.647 1.732 1.602 1.273 1.732 1.573 1.273 1.732 1.573 1.273
Web-NotreDame 2.072 2.067 2.108 2.085 1.588 2.232 2.149 1.628 2.250 2.180 1.638
Soc-Epinions1 2.082 1.964 2.213 2.027 1.475 2.474 2.411 1.572 2.474 2.411 1.573
USA-road-NY 1.255 1.251 1.371 1.357 1.168 1.376 1.374 1.175 1.376 1.374 1.175
USA-road-BAY 1.315 1.311 1.374 1.365 1.242 1.375 1.379 1.246 1.375 1.379 1.246
USA-road-COL 1.308 1.307 1.354 1.348 1.249 1.357 1.357 1.252 1.357 1.357 1.252
Amazon0302 1.918 1.791 1.849 1.719 1.245 2.020 1.928 1.386 2.032 1.944 1.399
WikiTalk 2.145 2.126 2.281 2.190 1.796 2.454 2.441 1.863 2.454 2.441 1.863
Web-Stanford 2.115 2.019 2.130 2.078 1.572 2.287 2.257 1.622 2.238 2.209 1.584
Amazon0601 1.926 1.793 1.959 1.747 1.196 2.241 2.155 1.278 2.242 2.157 1.279
Web-Google 2.052 2.004 2.083 2.051 1.485 2.306 2.335 1.585 2.338 2.372 1.602
Web-Berkstan 2.302 2.233 2.290 2.275 1.692 2.472 2.492 1.767 2.410 2.431 1.717

Table 4.7: Quality ratio q(A,P) of the solutions computed for 2VC-B, 2VC-B-C and 2C.

for 2C, with the only difference that k is the number of vertices that belong in (nontrivial)
2-edge-connected blocks, since every 2-vertex-connected component or block is contained
in a 2-edge-connected block. Note that the quality ratio is an upper bound of the actual
approximation ratio. The smaller the values of q(A,P) (i.e., the closer to 1), the better
is the approximation obtained by algorithm A for problem P .

We now report the results of our experiments with all the algorithms considered for
problems 2VC-B and 2C. For the 2VC-B problem, the quality ratio of the spanning sub-
graphs computed by the different algorithms is shown in Table 4.7 (left), while their
running times are plotted in Figure 4.3 (left). Similarly, for the 2VC-B-C and 2C prob-
lems, the quality ratio of the spanning subgraphs computed by the different algorithms is
shown in Table 4.7 (right), while their running times are plotted in Figure 4.3 (right).

We observe that all our algorithms perform well in terms of the quality of the solution
they compute. Indeed, the quality ratio is less than 2.5 for all algorithms and inputs. Our
modified version of DST-B performs consistently better than the original version. Also in
all cases, LHL-B computed a higher quality solution than DLN-B. For most inputs, DST-
B modified computes a sparser graph than LHL-B, which is somewhat surprising given
the fact that we do not have a good bound for the (constant) approximation ratio of
DST-B modified. On the other hand, LHL-B is faster than DST-B modified by a factor
of 4.15 on average and has the additional benefit of maintaining both the 2-vertex and
the 2-edge-connected blocks. The 2VDP filter provides substantial improvements of the
solution, since all algorithms that apply this heuristic have consistently better quality
ratios (1.38 on average and always less than 1.87). However, this is paid with much
higher running times, as those algorithms can be even 5 orders of magnitude slower than
the other algorithms.

From the analysis of our experimental data, all algorithms achieve consistently better
approximations for road networks than for most of the other graphs in our data set.
This can be explained by taking into account the macroscopic structure of road networks,

connected spanning subgraph.

40

 0.01

 0.1

 1

 10

R
om

e9
9

P2
p-

G
nu

te
lla

25

P2
p-

G
nu

te
lla

31

W
eb

-N
ot

re
D

am
e

So
c-

Ep
in

io
ns

1
U

SA
-ro

ad
-N

Y

U
SA

-ro
ad

-B
AY

U
SA

-ro
ad

-C
O

L
Am

az
on

03
02

W
ik

iT
al

k
W

eb
-S

ta
nf

or
d

Am
az

on
06

01

W
eb

-G
oo

gl
e

W
eb

-B
er

ks
ta

n

2VC-B algorithmsDST-B
DST-B modified

DLN-B
LHL-B

R
om

e9
9

P2
p-

G
nu

te
lla

25

P2
p-

G
nu

te
lla

31

W
eb

-N
ot

re
D

am
e

So
c-

Ep
in

io
ns

1
U

SA
-ro

ad
-N

Y

U
SA

-ro
ad

-B
AY

U
SA

-ro
ad

-C
O

L
Am

az
on

03
02

W
ik

iT
al

k
W

eb
-S

ta
nf

or
d

Am
az

on
06

01

W
eb

-G
oo

gl
e

W
eb

-B
er

ks
ta

n

2VC-B-C and 2C algorithms
DLN-B-C
LHL-B-C
DLN-2C
LHL-2C

 0.01

 0.1

 1

 10

 100

 1000

 10000

1+e4 1+e5 1+e6

2VC-B algorithms
DST-B

DST-B modified
DLN-B
LHL-B

2VDP-B

1+e4 1+e5 1+e6

2VC-B-C and 2C algorithms
DLN-B-C
LHL-B-C

2VDP-B-C
DLN-2C
LHL-2C

2VDP-2C

Figure 4.3: Running times in seconds with respect to the number of edges (in log-log
scale). The upper plots get a close-up view of the fastest algorithms by not considering
2VDP-B, 2VDP-B-C and 2VDP-2C.

which is rather different from other networks. Indeed, road networks are very close to be
“undirected": i.e., whenever there is an edge (x, y), there is also the reverse edge (y, x)

(except for one-way roads). Roughly speaking, road networks mainly consist of the union
of 2-vertex-connected components, joined together by strong bridges, and their 2-vertex-
connected blocks coincide with their 2-vertex-connected components. In this setting, a
sparse strongly connected subgraph of the condensed graph will preserve both blocks and
components. On the other hand, such a gain on the solution for the road networks is
balanced at the cost of their additional running time.

In addition, our experiments highlight interesting tradeoffs between practical perfor-
mance and quality of the obtained solutions. In particular, the fastest algorithms for the
2VC-B problem are the ones based on loop-nesting trees (DLN-B and LHL-B), with LHL-B
achieving consistently better solutions than DLN-B.

Finally we show more details with the quality ratio achieved by our algorithms and the
corresponding running times. Table 4.7 is split in two tables depending on the problem. In
Figure D1 we show the corresponding plotted values of the quality ratio for the solutions
computed by our algorithms for all considered problems, whereas Tables D10 and D11
report the running times of our algorithms in seconds.

41

Dataset DST-B
DST-B

DLN-B LHL-B 2VDP-B
modified

Rome99 1.384 1.363 1.432 1.388 1.170
P2p-Gnutella25 1.726 1.602 1.713 1.568 1.234
P2p-Gnutella31 1.717 1.647 1.732 1.602 1.273
Web-NotreDame 2.072 2.067 2.108 2.085 1.588
Soc-Epinions1 2.082 1.964 2.213 2.027 1.475
USA-road-NY 1.255 1.251 1.371 1.357 1.168
USA-road-BAY 1.315 1.311 1.374 1.365 1.242
USA-road-COL 1.308 1.307 1.354 1.348 1.249
Amazon0302 1.918 1.791 1.849 1.719 1.245
WikiTalk 2.145 2.126 2.281 2.190 1.796
Web-Stanford 2.115 2.019 2.130 2.078 1.572
Amazon0601 1.926 1.793 1.959 1.747 1.196
Web-Google 2.052 2.004 2.083 2.051 1.485
Web-Berkstan 2.302 2.233 2.290 2.275 1.692

Table D8: Quality ratio q(A,P) of the solutions computed for 2VC-B.

Dataset DLN-B-C LHL-B-C 2VDP-B-C DLN-2C LHL-2C 2VDP-2C
Rome99 1.462 1.459 1.199 1.462 1.459 1.198
P2p-Gnutella25 1.712 1.568 1.234 1.712 1.568 1.234
P2p-Gnutella31 1.732 1.573 1.273 1.732 1.573 1.273
Web-NotreDame 2.232 2.149 1.628 2.250 2.180 1.638
Soc-Epinions1 2.474 2.411 1.572 2.474 2.411 1.573
USA-road-NY 1.376 1.374 1.175 1.376 1.374 1.175
USA-road-BAY 1.375 1.379 1.246 1.375 1.379 1.246
USA-road-COL 1.357 1.357 1.252 1.357 1.357 1.252
Amazon0302 2.020 1.928 1.386 2.032 1.944 1.399
WikiTalk 2.454 2.441 1.863 2.454 2.441 1.863
Web-Stanford 2.287 2.257 1.622 2.238 2.209 1.584
Amazon0601 2.241 2.155 1.278 2.242 2.157 1.279
Web-Google 2.306 2.335 1.585 2.338 2.372 1.602
Web-Berkstan 2.472 2.492 1.767 2.410 2.431 1.717

Table D9: Quality ratio q(A,P) of the solutions computed for 2VC-B-C and 2C.

Dataset DST-B
DST-B

DLN-B LHL-B 2VDP-B
modified

Rome99 0.014 0.018 0.004 0.005 0.264

P2p-Gnutella25 0.027 0.032 0.008 0.007 1.587

P2p-Gnutella31 0.070 0.094 0.024 0.027 13.325

Web-NotreDame 0.335 0.486 0.059 0.080 97.355

Soc-Epinions1 0.258 0.309 0.089 0.110 92.812

USA-road-NY 1.095 1.402 0.261 0.360 2546.484

USA-road-BAY 1.659 2.152 0.316 0.435 4089.389

USA-road-COL 2.439 3.050 0.438 0.603 7739.256

Amazon0302 2.101 2.410 0.517 0.675 3503.910

WikiTalk 1.777 2.125 0.355 0.473 1158.855

Web-Stanford 1.756 2.395 0.429 0.564 1174.984

Amazon0601 3.532 3.924 1.363 1.605 15349.126

Web-Google 4.837 5.467 1.533 1.968 26299.714

Web-Berkstan 3.239 5.261 0.690 0.869 6301.410

Table D10: Running times in seconds of the algorithms for the 2VC-B problem.

42

Dataset DLN-B-C LHL-B-C 2VDP-B-C DLN-2C LHL-2C 2VDP-2C
Rome99 0.032 0.034 0.122 0.034 0.036 0.122

P2p-Gnutella25 0.042 0.042 0.729 0.051 0.053 0.725

P2p-Gnutella31 0.119 0.119 5.613 0.143 0.149 5.422

Web-NotreDame 0.491 0.521 27.091 0.573 0.600 27.746

Soc-Epinions1 0.606 0.621 54.559 0.602 0.664 54.548

USA-road-NY 2.227 2.337 991.092 2.153 2.415 995.913

USA-road-BAY 2.153 2.298 1429.443 2.296 2.476 1447.318

USA-road-COL 3.770 3.969 3093.258 3.938 4.228 3064.297

Amazon0302 4.708 5.017 2244.856 5.135 5.509 2094.263

WikiTalk 2.179 2.133 943.690 2.203 2.513 924.810

Web-Stanford 2.037 2.313 279.236 2.561 2.487 317.115

Amazon0601 9.793 10.038 8065.680 11.669 11.397 8696.212

Web-Google 9.789 10.172 5095.600 11.535 12.979 5128.337

Web-Berkstan 4.670 4.872 1595.033 5.178 5.601 1546.041

Table D11: Running times in seconds of the algorithms for the 2VC-B-C and 2C problems.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

R
om

e9
9

P2
p-

G
nu

te
lla

25

P2
p-

G
nu

te
lla

31

W
eb

-N
ot

re
D

am
e

So
c-

Ep
in

io
ns

1
U

SA
-ro

ad
-N

Y

U
SA

-ro
ad

-B
AY

U
SA

-ro
ad

-C
O

L
Am

az
on

03
02

W
ik

iT
al

k
W

eb
-S

ta
nf

or
d

Am
az

on
06

01

W
eb

-G
oo

gl
e

W
eb

-B
er

ks
ta

n

2VC-B algorithmsDST-B
DST-B modified

DLN-B
LHL-B

2VDP-B

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1+e4 1+e5 1+e6

2VC-B-C and 2C algorithms
DLN-B-C
LHL-B-C

2VDP-B-C
DLN-2C
LHL-2C

2VDP-2C

Figure D1: The plotted quality ratios taken by Tables D8 and D9, respectively.

43

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[2] S. Allesina and A. Bodini. Who dominates whom in the ecosystem? Energy flow
bottlenecks and cascading extinctions. Journal of Theoretical Biology, 230(3):351–
358, 2004.

[3] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in linear time.
SIAM Journal on Computing, 28(6):2117–32, 1999.

[4] S. Alstrup and P. W. Lauridsen. A simple dynamic algorithm for maintaining a
dominator tree. Technical Report 96-3, Department of Computer Science, University
of Copenhagen, 1996.

[5] M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and V. Boppana. Fault equivalence
identification using redundancy information and static and dynamic extraction. In
Proceedings of the 19th IEEE VLSI Test Symposium, March 2001.

[6] S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability for directed
graphs. In Yoram Moses, editor, Distributed Computing, volume 9363 of Lecture
Notes in Computer Science, pages 528–543. Springer Berlin Heidelberg, 2015.

[7] Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant subgraph
for single source reachability: generic and optimal. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, pages 509–518. ACM, 2016.

[8] A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J. R. West-
brook. Linear-time algorithms for dominators and other path-evaluation problems.
SIAM Journal on Computing, 38(4):1533–1573, 2008.

[9] J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected spanning
subgraphs via matching. SIAM J. Comput., 30(2):528–560, 2000.

[10] S. Cicerone, D. Frigioni, U. Nanni, and F. Pugliese. A uniform approach to semi-
dynamic problems on digraphs. Theor. Comput. Sci., 203:69–90, August 1998.

44

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451–490, 1991.

[12] Daniel Delling, Andrew V Goldberg, Ilya Razenshteyn, and Renato F Werneck.
Graph partitioning with natural cuts. In Parallel & Distributed Processing Sym-
posium (IPDPS), 2011 IEEE International, pages 1135–1146. IEEE, 2011.

[13] J. Edmonds. Edge-disjoint branchings. Combinat. Algorithms, pages 91–96, 1972.

[14] W. Fraczak, L. Georgiadis, A. Miller, and R. E. Tarjan. Finding dominators via
disjoint set union. Journal of Discrete Algorithms, 23:2–20, 2013.

[15] L. R. Ford; D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

[16] Harold N Gabow. The minset-poset approach to representations of graph connectiv-
ity. ACM Transactions on Algorithms (TALG), 12(2):24, 2016.

[17] Harold N Gabow and Robert E Tarjan. Faster scaling algorithms for general graph
matching problems. Journal of the ACM (JACM), 38(4):815–853, 1991.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[19] Karthik Gargi. A sparse algorithm for predicated global value numbering. In ACM
SIGPLAN Notices, volume 37, pages 45–56. ACM, 2002.

[20] L. Georgiadis. Testing 2-vertex connectivity and computing pairs of vertex-disjoint
s-t paths in digraphs. In Proc. 37th Int’l. Coll. on Automata, Languages, and Pro-
gramming, pages 738–749, 2010.

[21] L. Georgiadis. Approximating the smallest 2-vertex connected spanning subgraph of
a directed graph. In Proc. 19th European Symposium on Algorithms, pages 13–24,
2011.

[22] L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex connectivity in
directed graphs. CoRR, abs/1409.6277, 2014.

[23] L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-edge connectivity in
directed graphs. In SODA 2015, pages 1988–2005, 2015.

[24] L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex connectivity in
directed graphs. In ICALP 2015, pages 605–616, 2015.

[25] L. Georgiadis, G. F. Italiano, L. Laura, and F. Santaroni. An experimental study
of dynamic dominators. In Proc. 20th European Symposium on Algorithms, pages
491–502, 2012.

45

[26] L. Georgiadis, G. F. Italiano, C. Papadopoulos, and N. Parotsidis. Approximating
the smallest spanning subgraph for 2-edge-connectivity in directed graphs. In ESA
2015, pages 582–594, 2015.

[27] L. Georgiadis, G. F. Italiano, and N. Parotsidis. A new framework for strong con-
nectivity and 2-connectivity in directed graphs. CoRR, arXiv:1511.02913, November
2015.

[28] L. Georgiadis and R. E. Tarjan. Dominator tree certification and divergent spanning
trees. ACM Transactions on Algorithms, 12(1):11:1–11:42, November 2015.

[29] L. Georgiadis, R. E. Tarjan, and R. F. Werneck. Finding dominators in practice.
Journal of Graph Algorithms and Applications (JGAA), 10(1):69–94, 2006.

[30] Loukas Georgiadis, Giuseppe F Italiano, and Nikos Parotsidis. Incremental 2-edge-
connectivity in directed graphs. arXiv preprint arXiv:1607.07073, 2016.

[31] Loukas Georgiadis and Robert E Tarjan. Addendum to “dominator tree certification
and divergent spanning trees”. ACM Transactions on Algorithms (TALG), 12(4):56,
2016.

[32] Loukas Georgiadis and Robert E Tarjan. Dominator tree certification and divergent
spanning trees. ACM Transactions on Algorithms (TALG), 12(1):11, 2016.

[33] Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-flow
problem. Journal of the ACM (JACM), 35(4):921–940, 1988.

[34] M. Gomez-Rodriguez and B. Schölkopf. Influence maximization in continuous time
diffusion networks. In 29th International Conference on Machine Learning (ICML),
2012.

[35] M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-vertex
strongly connected components in quadratic time. In ICALP 2015, pages 713–724,
2015.

[36] Monika Henzinger, Sebastian Krinninger, and Veronika Loitzenbauer. Finding 2-edge
and 2-vertex strongly connected components in quadratic time. In International
Colloquium on Automata, Languages, and Programming, pages 713–724. Springer,
2015.

[37] G. F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong artic-
ulation points in linear time. Theor. Comput. Sci., 447(0):74–84, 2012.

[38] R. Jaberi. Computing the 2-blocks of directed graphs. RAIRO-Theor. Inf. Appl.,
49(2):93–119, 2015.

46

[39] Raed Jaberi. On computing the 2-vertex-connected components of directed graphs.
Discrete Applied Mathematics, 204:164–172, 2016.

[40] S. Khuller, B. Raghavachari, and N. E. Young. Approximating the minimum equiv-
alent digraph. SIAM J. Comput., 24(4):859–872, 1995. Announced at SODA 1994,
177-186.

[41] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph.
ACM Transactions on Programming Languages and Systems, 1(1):121–41, 1979.

[42] E. K. Maxwell, G. Back, and N. Ramakrishnan. Diagnosing memory leaks using
graph mining on heap dumps. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’10, pages 115–124, 2010.

[43] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, 2011.

[44] Miranda Mowbray and Antonio Lain. Dominator-tree analysis for distributed au-
thorization. In Proceedings of the third ACM SIGPLAN workshop on Programming
languages and analysis for security, pages 101–112. ACM, 2008.

[45] H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity. Cambridge
University Press, 2008. 1st edition.

[46] L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using dominators for solving con-
strained path problems. In Proc. 8th International Conference on Practical Aspects
of Declarative Languages, pages 73–87, 2006.

[47] G. Ramalingam and T. Reps. An incremental algorithm for maintaining the domi-
nator tree of a reducible flowgraph. In Proc. 21st ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages, pages 287–296, 1994.

[48] V. C. Sreedhar, G. R. Gao, and Y. Lee. Incremental computation of dominator trees.
ACM Transactions on Programming Languages and Systems, 19:239–252, 1997.

[49] R. E. Tarjan. Finding dominators in directed graphs. SIAM Journal on Computing,
3(1):62–89, 1974.

[50] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM, 22(2):215–225, 1975.

[51] R. E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica,
6(2):171–85, 1976.

[52] R. E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM,
28(3):594–614, 1981.

47

[53] T. Tholey. Linear time algorithms for two disjoint paths problems on directed acyclic
graphs. Theoretical Computer Science, 2012. In press.

[54] J. Zhao and S. Zdancewic. Mechanized verification of computing dominators for
formalizing compilers. In Proc. 2nd International Conference on Certified Programs
and Proofs, pages 27–42. Springer, 2012.

[55] L. Zhao, H. Nagamochi, and T. Ibaraki. A linear time 5/3-approximation for the
minimum strongly-connected spanning subgraph problem. Information Processing
Letters, 86(2):63–70, 2003.

48

Short Vita

Aikaterini Karanasiou holds a Diploma degree in Electrical & Computer Engineering
from the Polytechnic School of Electrical & Computer Engineering, Aristotle University
of Thessaloniki, Greece. Her research interests are focused to the design and analysis of
algorithms, algorithms engineering, approximation algorithms, graph theory, power en-
ergy and power electronics. Aikaterini has been an assistant in the laboratories of the
undergraduate course on Computer Architecture and has also been an assistant in the
laboratories of the undergraduate course on Data Structures in the Department of Com-
puter Science & Engineering, University of Ioannina.

