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Glossary

abstract syntax trees (AST)

A tree representation of the abstract syntactic structure of source code written
in a programming language.

application programming interface (API)

A set of routines, protocols, and tools for building software applications.In par-
ticular, it usually refers to the calls available by a software library to the appli-
cation programmer.

barrier

A point in the execution of a program encountered by a team of threads, beyond
which no thread in the team may execute until all threads in the team have
reached the barrier and all explicit tasks generated by the team have executed
to completion.

construct

An OpenMP executable directive and the associated statement, loop or structured
block, if any, not including the code in any called routines. That is, in the lexical
extent of an executable directive.

data environment

The variables associated with the execution of a given region.

declarative directive

An OpenMP directive that may only be placed in a declarative context. A declar-
ative directive results in one or more declarations only; it is not associated with
the immediate execution of any user code..

vi



device

An implementation-defined logical execution engine.
COMMENT: A device may have one or more processors.

device data environment

A data environment defined by a target data or target construct.

directive

In C/C++, a line starting with #pragma, that specifies OpenMP program behavior.

EELib

execution entity libraries, libraries that implement the abstract execution entities
of OMPi’s runtime, providing the runtime with execution threads.

enclosing context

In C/C++, the innermost scope enclosing an OpenMP directive.

executable directive

An OpenMP directive that is not declarative. That is, it may be placed in an
executable context.

host device

The device on which the OpenMP program begins execution.

implicit variable

or variable with implicitly determined data-sharing attributes is a variable ref-
erenced in a given construct, that does not have predetermined data-sharing
attributes, and is not listed in a data-sharing attribute clause of the construct.

kernel

An executable created by a target construct that is offloaded onto a target device.

master thread

The thread that encounters a parallel construct, creates a team, generates a set
of tasks, then executes one of those tasks with thread id 0.

nested construct

A construct (lexically) enclosed by another construct.

vii



ORT

OMPi RunTime, the runtime system used by OMPi.

region

All code encountered during a specific instance of the execution of a given
construct or of an OpenMP library routine. A region includes any code in called
routines as well as any implicit code introduced by the OpenMP implementation.
The generation of a task at the point where a task directive is encountered is
a part of the region of the encountering thread, but the explicit task region
associated with the task directive is not. The point where a target or teams
directive is encountered is a part of the region of the encountering thread, but
the region associated with the target or teams directive is not.

structured block

For C/C++, an executable statement, possibly compound, with a single entry at
the top and a single exit at the bottom, or an OpenMP construct.

target device

A device onto which code and data may be offloaded from the host device.

threadprivate variable

A variable that is replicated, one instance per thread, by the OpenMP imple-
mentation. Its name then provides access to a different block of storage for each
thread.

undeferred

A task for which execution is not deferred with respect to its generating task
region. That is, its generating task region is suspended until execution of the
undeferred task is completed.
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Abstract

Alexandros Papadogiannakis.
M.Sc. degree in Computer Science, February 2016.
Department of Computer Science and Engineering, University of Ioannina, Greece.
Restructuring the OMPi Compiler for the Accelerator Era.
Supervisor: Vassilios V. Dimakopoulos.

OpenMP is a widely used framework whose goal is to standardize and ease develop-
ment of portable parallel applications. It consists of a collection of compiler directives
and library routines. Version 4.0 of the specification adds device directives, among
other things. These allow the programmer to offload a block of code onto available
devices such as GPUs and co-processors.
In the context of this thesis, we will initially discuss about outlining, a method

for transforming source code. Outlining is used to transform a block of code into a
standalone function, and is used by many compilers for the transformation of OpenMP
directives, including OMPi an open source C OpenMP compiler. Outlining in OMPi
was part of the transformation of the parallel construct, so it was impossible to use
it for implementing new constructs. With that in mind we redesigned the outlining
procedure, making it independent and autonomous.
With the help of our new outlining procedure, we implemented the task construct,

which is used for executing code on any device available on our system, along with
the rest of the device directives which where introduced in version 4.0 of the OpenMP
specification. These are target data, declare target and target update.
Finally we used the new infrastructure to support OpenMP on the Parallella board,

which is a credit card sized computer, with a dual-core ARM CPU and a 16 or 64
cores Epiphany coprocessor. Epiphany is used as a targeted device with full OpenMP
support.
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Ε Π

Αλέξανδρος Παπαδογιαννάκης.
Μ.Δ.Ε. στην Πληροφορική, Φεβρουάριος 2016.
Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων.
Αναδιάρθρωση του Μεταφραστή OMPi για την Εποχή των Επιταχυντών.
Επιβλέπων: Βασίλειος Β. Δημακόπουλος.

Το OpenMP είναι ένα προγραμματιστικό πρότυπο που έχει στόχο τη διευκόλυνση
ανάπτυξης παράλληλων εφαρμογών. Αποτελείται από ένα σύνολο από οδηγίες (di-
rectives) προς τον μεταφραστή και ρουτίνες βιβλιοθήκης. Μία από τις σημαντικές
δυνατότητες που προστέθηκαν στην έκδοση 4.0 του πρότυπου είναι οι οδηγίες για
συσκευές. Αυτές μας δίνουν την δυνατότητα να εκτελέσουμε μέρος της εφαρμο-
γής μας σε διάφορες συσκευές που είναι διαθέσιμες στο σύστημά μας, πέραν του
επεξεργαστή, όπως κάρτες γραφικών (GPUs) και συνεπεξεργαστές (coprocessors).
Στα πλαίσια αυτής της εργασίας, αρχικά θα μιλήσουμε για την μέθοδο outlining

για τον μετασχηματισμό πηγαίου κώδικα γραμμένου στη γλώσσα C. Η μέθοδος
outlining αποτελεί μια διαδικασία μετατροπής ενός τμήματος κώδικα σε ανεξάρτητη
ρουτίνα και εφαρμόζεται σε πολλούς μεταφραστές για την υλοποίηση του πρότυπου
OpenMP, συμπεριλαμβανομένου του OMPi, ενός μεταφραστή ανοιχτού κώδικα που
αναπτύσσεται από την Oμάδα Παράλληλης Επεξεργασίας του Τμήματος Μηχανικών
Η/Υ και Πληροφορικής. Η υλοποίηση της όμως στον OMPi, ήταν στενά συνδεδεμένη
με τον μετασχηματισμό της οδηγίας parallel, πράγμα που καθιστούσε τη χρήση της
για άλλες οδηγίες OpenMP ιδιαίτερα δύσκολη και μη μεταφέρσιμη. Για αυτό τον
λόγο υλοποιήσαμε έναν νέο, γενικευμένο μηχανισμό outlining, έχοντας ως στόχο να
είναι όσο το δυνατό ανεξάρτητος και αυτόνομος.
Χρησιμοποιώντας τη νέα υποδομή outlining, προχωρήσαμε στην υλοποίηση της

οδηγίας target, η οποία δίνει εντολή να εκτελεστεί ένα κομμάτι κώδικα σε κά-
ποια διαθέσιμη συσκευή, αλλά και συνολικότερα στην υποστήριξη του προτύπου
OpenMP 4. Οι άλλες οδηγίες για συσκευές που παρέχει το πρότυπο και υλοποιή-
σαμε είναι οι target data, declare target και target update. Η οδηγία target data

x



χρησιμοποιείται για τη δέσμευση μνήμης, η οδηγία declare target για την δήλωση
καθολικών μεταβλητών και ρουτινών και η target update για τη μεταφορά δεδομέ-
νων.
Τέλος, η νέα υποδομή χρησιμοποιήθηκε για την υποστήριξη του OpenMP στο σύ-

στημα Parallella που είναι ένας ολοκληρωμένος υπολογιστής σε μέγεθος πιστωτικής
κάρτας, με ένα διπύρηνο ARM επεξεργαστή και έναν Epiphany συνεπεξεργαστή με
16 ή 64 πυρήνες. Ο τελευταίος χρησιμοποιήθηκε ως συκευή, με πλήρη υποστήριξη
OpenMP στον κώδικα που εκτελεί.
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Chapter 1

Introduction

1.1 Background

1.2 Objectives

1.3 Thesis Organization

1.1 Background

Ever since the appearance of the first microprocessor, the traditional method of in-
creasing computer performance was to decrease the size of transistors and logical
gates. Unfortunately at some point, the performance gains provided by this approach
started to diminish due to excessive energy leaks that resulted from silicon layers and
devices coming closer and closer. By that time, not only did performance improve-
ments of each new generation start to decrease, but also energy consumption started
to skyrocket. This forced industry to turn to a new CPU model, and around 2005
multi-core processors were introduced in the personal computer market. Parallel sys-
tems started to become mainstream and are nowadays ubiquitous.
Up to that point, parallel systems were used only in data centers and research fa-

cilities for providing supercomputing power. The inclusion of multi-core processors
in personal computers forced software developers to change their programming phi-
losophy, if they wanted to take full advantage of the systems their code was executed
on. The shift to parallel programming is not an easy task, since both industry and
academia were focused exclusively on a standard serial way of programming [1].
To take full advantage of the available processors, there have been many proposals

for new, inherently parallel programming languages (e.g. Cilk and Satin [2]). How-
ever, none of them has really proven popular and are mostly research prototypes.
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Keeping the same base programming language seems to be the only viable solution,
as far as productivity is concerned. In this spirit, OpenMP which is a framework
that allows easy parallelization of C/C++ and Fortran programs, was realised in 1997.
With OpenMP, running a loop in parallel is as simple as adding one code line before
the loop they want to parallelize.
Technology continues to evolve, and multi-core processors have found their way

into many electronic appliances, such as cellphones, tablets and smart-TVs. Just as our
everyday electronics advanced, so did supercomputers. If we take a look at TOP500
list (a list of the fastest supercomputers), we will notice that supercomputers have
started to shift from increasing the number of CPUs to adding an increasing amount of
co-processors. For example each node of Tianhe-2, the worlds fastest supercomputer
since 2013, with a peak speed of 33.86-petaflops, consists of two Intel Ivy Bridge
Xeon processors and three Xeon Phi co-processor chips, and Titan, the second fastest
supercomputer at the time of writing, at 17.59-petaflops, is pairing AMD Opteron
CPUs with Nvidia Tesla GPUs.
Along with the technological improvements in hardware and system architecture,

programming tools must also evolve. To that end, OpenMP v4.0 [3] was released
in July 2013, which among other things introduced device constructs. These can be
used to effortlessly execute code on accelerator devices such as co-processors, GPUs
and DSPs among others. By using only a few extra lines of code, the programmer
can execute parts of him program on the available devices, without the need to learn
a new way of programming for each one of them.

1.2 Objectives

The objective of this work is to design and implement the necessary facilities to drive
the OMPi compiler into the accelerator era. OMPi is an open source research compiler
developed by Parallel Processing Group (PPG) of University of Ioannina. OMPi uses
the outlining technique to transform the parallel construct. Because of how tightly
connected the current outlining procedure was with the transformation code of the
parallel construct, any attempt to use it elsewhere has resulted in duplicating the
code, as with the case of task transformation.
The first major concern in this thesis was to design and implement a totally new,

general, outlining infrastructure that could be applied to re-organize the transforma-
tion parts of the compiler in a straightforward way.
The above infrastructure paved the way for our second objective, that of supporting

2



attached devices (GPUs, coprocessors, accelerators, etc). In particular, we implement
the new target construct, which also needs outlining during its transformation, and
is used to execute code on arbitrary accelerator devices. Along with the target con-
structs, we also implement other device construct. The target data is used to create
data environments on the targeted devices, or in other words to allocate variables
on the device’s memory. The target update construct is used to move data to and
from the device’s memory. Finally the declare target construct can be used to create
global variables in the devices, and make functions available.
We will also describe the additions made to the OMPi compiler in order to accom-

modate the new constructs, and study the extensions to the existing runtime and the
addition of modules. Modules are new libraries, one for each type of device we want
to offload code to, and are in charge with communications between the host program
that runs on the cpu and the kernels, executables that run on the devices.
Finally we present a module which allows full exploitation of the popular Parallella

[4] board. In particular, we present the first implementation of OpenMP for this credit-
card-sized 18-core system that treats a dual-core ARM processor as the host and a
16-core Epiphany co-processor as an accelerator device, allowing full OpenMP code
on both sides.

1.3 Thesis Organization

A brief description of the following chapters:

• Chapter 2 introduces OpenMP. First we present the most common directives
available. Then we focus on the parallel and task constructs, and the clauses
available for each of them.

• In Chapter 3 we discuss about OMPi, an OpenMP compiler and runtime system
for the C language. We walk through the compilation process before inspecting
the compiler and introducing ORT, its runtime system.

• Chapter 4 explains the concept of outlining. Although outlining is not a new idea,
and was already present in OMPi, we design and implementa new outlining
infrastructure which is quite general in its applicability. Base on this, we give
new transformations of parallel and task constructs.

• In Chapter 5 we give a brief overview of the additions in version 4.0 of OpenMP,
and we explore the new device directives and the capabilities they offer.

3



• In Chapter 6 we discuss how the device directives were implemented in the
context of the OMPi compiler. The outlining infrastructure from Chapter 4 is
used here to transform the target construct.

• In Chapter 7 we talk about the additions to OMPi’s runtime system that were
necessary in order to support the device directives. We also demonstrate the
available modules, libraries that are used to target each different device type. We
place particular emphasis on the Parallella board, a miniature 18-core system,
for which we present the first available OpenMP implementation.

• Finally Chapter 8 represents a summary of what was discussed during the
thesis, and examines future directions of work and research possibilities.

4



Chapter 2

OpenMP

2.1 Overview of OpenMP Directives

2.2 Runtime Library Routines

2.3 Parallel Construct

2.4 Task Construct

OpenMP [5] is an application programming interface (API) whose purpose is to sim-
plify the parallelization of serial programs. It provides a model for parallel program-
ming that is portable across shared memory architectures from different vendors. In
contrast to other APIs such as POSIX threads, OpenMP is a higher lever API which
allows the programmer to parallelize a serial program in a simple, controlled and
incremental way.
OpenMP consists of a set of compiler directives, library routines, and environment

variables that influence run-time behavior. It provides directives for expressing par-
allelism, worksharing and synchronization. The directives are added to an existing
serial program written in C/C++ or Fortran in such a way that they can be safely
discarded by the compilers that do not support OpenMP (thus leaving the original
program unchanged). As a consequence, OpenMP extends rather than changes the
base language (C/C++ or Fortran). A “hello world” can be seen in Program 2.1.
In the following sections we present an overview of the core functionality of

OpenMP up to Version 3.1 of the standard, and then focus on parallel and task
constructs, and their clauses. The implementation of these two constructs in OMPi
(Chapter 3) uses outlining, a technique whose redesign is discussed in Chapter 4. The
new directives introduced in the recent Version 4.0 of OpenMP, and in particular the
device model, are presented separately in Chapter 5.

5



#include <stdio.h>

#include <omp.h>

int main(void) {

#pragma omp parallel num_threads(4)

printf("Hello World from thread %d.\n", omp_get_thread_num());

}

(a) Code

Hello World from thread 2.

Hello World from thread 1.

Hello World from thread 3.

Hello World from thread 0.

(b) Output

Program 2.1: OpenMP “Hello World”

2.1 Overview of OpenMP Directives

The OpenMP directives consist of three parts. Their format in C is as follows:

#pragma omp <directive-name> [clause[[,] clause]...]

All the OpenMP directives begin with #pragma omp followed by the name of the
directive. A number of zero or more clauses may be specified, seperated by commas
or spaces. These control various aspects of the directive, such as variable scopes. Most
of the directives apply to the succeeding statement, which must be a structured block.
In the following sections, we will present the most important programming con-

structs (directives, clauses, runtime routines etc) that OpenMP offers. However, we
will concentrate mainly on the parallel and task constructs which constitute the
two core parallelization constructs of OpenMP and are of direct interest in this the-
sis. Their implementation is based on a complex procedure called outlining which is
described in Chapter 4.

2.1.1 Constructs for Generating Threads and Tasks

In OpenMP v3.1 [5] there are two constructs that generate threads and tasks. These
are:

• #pragma omp parallel: The fundamental construct of OpenMP. When a thread
encounters a parallel construct, a team of threads is created to execute the
parallel region. The thread that encountered the parallel construct becomes the
master thread of the new team, with a thread number of zero for the duration of
the new parallel region. More information on parallel construct can be found
in Section 2.3.
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• #pragma omp task: The task construct generates an explicit task from the code
for the associated structured block, whose execution may be deferred until later.
More information on parallel construct can be found in Section 2.4.

2.1.2 Worksharing Constructs

A worksharing construct distributes the execution of the associated region among the
members of the team that encounters it.

• #pragma omp for: The for construct specifies that the iterations of one or more
associated loops will be executed in parallel. The iterations are distributed across
threads that already exist in the team executing the parallel region to which the
loop region binds.

• #pragma omp sections: The sections construct is a construct that contains a set of
structured blocks that are to be distributed among and executed by the threads
in a team. Each structured block is executed once by one of the threads in the
team.

• #pragma omp single: The single construct specifies that the associated structured
block is executed by only one of the threads in the team (not necessarily the
master thread).

2.1.3 Other Constructs

• #pragma omp master: The master construct specifies a structured block that is
executed by the master thread of the team.

• #pragma omp critical: The critical construct restricts execution of the associ-
ated structured block to a single thread at a time, i.e. it defines the following
region as a critical region; it implies mutual exclusion.

• #pragma omp barrier: The barrier construct specifies an explicit barrier at the
point where the construct appears.

• #pragma omp taskwait: The taskwait construct specifies a wait on the completion
of child tasks of the current task.

• #pragma omp atomic: The atomic construct ensures that a specific storage loca-
tion is accessed atomically, rather than exposing it to the possibility of multiple,
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simultaneous reading and writing threads that may result in indeterminate val-
ues.

• #pragma omp ordered: The ordered construct specifies a structured block in a loop
region that will be executed in the order of the loop iterations. This serializes
and orders the code within an ordered region while allowing code outside the
region to run in parallel.

2.2 Runtime Library Routines

In addition to compiler directives, OpenMP offers a number of routines that allows
the programmer to control dynamically the parallelization, and to obtain informa-
tion about the program and its execution environment. They are divided into three
categories:

• execution environment routines: These affect and monitor threads, processors,
and the parallel environment. They include, but are not limited to, functions that
query and change the number of threads (omp_set/get_num_threads()), change
the scheduling loop policy (omp_set_schedule()), find out the calling thread’s id
(omp_get_thread_num()), and tell us if the call to the current executing routine is
enclosed by an active parallel region (omp_in_parallel()).

• lock routines: General-purpose lock routines that can be used for synchroniza-
tion. There are two types of locks supported, simple locks and nestable locks.

• timing routines: They provide a portable wall clock timer.

2.3 Parallel Construct

When a thread encounters a parallel construct, a team of threads is created to execute
the parallel region. The thread that encountered the parallel construct becomes the
master thread of the new team, with a thread id of zero for the duration of the new
parallel region. All threads in the new team, including the master thread, execute the
region. Once the team is created, the number of threads in the team remains constant
for the duration of that parallel region.
Within a parallel region, thread numbers uniquely identify each thread. Thread

numbers are consecutive whole numbers ranging from zero for the master thread up
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to one less than the number of threads in the team. A thread may obtain its own
thread number by a call to the omp_get_thread_num() library routine.
The structured block of the parallel construct determines the code that will be

executed by each thread.
There is an implied barrier at the end of a parallel region. After the end of a parallel

region, only the master thread of the team resumes execution of the enclosing task
region.
If a thread in a team executing a parallel region encounters another parallel

directive, it creates a new team, and it becomes the master of that new team. This is
called nested parallelism, and there are runtime routines to disable support of nested
parallelism, in which case the thread that encounters the parallel directive ignores
it and runs the code sequentially.

2.3.1 Parallel Clauses

Just like most OpenMP directives, parallel directive supports a number of optional
clauses that modify its behavior. These are:

• if(scalar-expression)

If the clause exists, and it evaluates to false no threads are created and the
structured block is executed sequentially.

• num_threads(integer-expression)

Specifies the number of threads that will execute the parallel region.

• default(shared | none)

If default(none) is selected, each variable that is referenced in the construct
must have its data-sharing attribute explicitly determined by being listed in a
data-sharing attribute clause (private/firstprivate/shared/copyin/reduction).

• private(list)

The private clause declares one or more list items to be private to a thread.

• firstprivate(list)

The firstprivate clause declares one or more list items to be private to a thread,
and initializes each of them with the value that the corresponding original item
has when the construct is encountered.

9



#define NUM_STEPS 100000

int main () {

int i;

double x, pi, sum = 0.0, step = 1.0 / NUM_STEPS;

#pragma omp parallel for reduction(+:sum) private(x) num_threads(8)

for (i = 1; i <= NUM_STEPS; i++){

x = (i-0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

printf("Pi = %.10g", step * sum);

}

Program 2.2: Reduction example - Calculation of π

• shared(list)

The shared clause declares one or more list items to be shared among the
threads.

• copyin(list)

The copyin clause provides a mechanism to copy the value of the master thread’s
threadprivate variable to the threadprivate variable of each other member of the
team executing the parallel region.

• reduction(operator : list)

The reduction clause specifies an operator and one or more list items. For
each list item, a private copy is created in each implicit task, and is initialized
appropriately for the operator. After the end of the region, the original list item
is updated with the values of the private copies using the specified operator. An
example of reduction usage can be seen in Program 2.2.

2.4 Task Construct

An OpenMP task is a unit of work scheduled for asynchronous execution by an
OpenMP thread. Each task1 has its own data environment and can share data with
other tasks.

1Tasks are distinguished as explicit and implicit ones. The former are declared by the programmer
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int fib(int n) {

int i, j;

if (n<2)

return n;

else {

#pragma omp task shared(i)

i=fib(n-1);

#pragma omp task shared(j)

j=fib(n-2);

#pragma omp taskwait

return i+j;

}

}

Program 2.3: Calculating Fibonacci With The Use Of task

A task may generate new tasks and can suspend its execution waiting for the
completion of all its child tasks with the taskwait construct. Within a parallel region,
task execution is also synchronized at barriers: OpenMP threads resume only when
all of them have reached the barrier and there are no pending tasks. Tasks are also
classified as tied and untied, depending on whether resumption of suspended tasks
is allowed only by the OpenMP thread that suspended them or by any other thread.
For details of the implementation of the task construct in the OMPi compiler refer to
[6].
Program 2.3 presents a simple task example. Please note that the fib() function

should be called from within a parallel region for the different specified tasks to be
executed in parallel. Also only one thread of the parallel region should call fib()
unless multiple concurrent Fibonacci computations are desired.

2.4.1 Task Clauses

• if(scalar-expression)

If the clause exists, and it evaluates to false no new task is created, the affiliated
code is instead executed immediately by the encountering thread.

• final(scalar-expression)

A task for which execution is sequentially included in the generating task region.

with the task construct, while the latter are created by the runtime library, when a parallel construct
is encountered; each OpenMP thread corresponds to a single implicit task.
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That is, it is undeferred and executed immediately by the encountering thread.
Any task generated by a final task is also final.

• untied

By default, a task is tied and its suspended task region can only be resumed by
the thread that started its execution. If the untied clause is present on a task

construct, any thread in the team can resume the task region after a suspension.

• mergeable

A task that uses the data environment of its parent task.

• default(shared | none)

Same as in parallel (Section 2.3.1).

• private(list)

Same as in parallel (Section 2.3.1).

• firstprivate(list)

Same as in parallel (Section 2.3.1).

• shared(list)

Same as in parallel (Section 2.3.1).
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Chapter 3

OMPi

3.1 The Compilation Process

3.2 The Compiler

3.3 The Runtime System

OMPi is a lightweight, open source OpenMP compiler and runtime system for C,
developed by the Parallel Processing Group (PPG) [7] of University of Ioannina. It
is a research compiler that is developed mainly through diploma, master and PhD
thesis and publications of PPG’s members. It’s source code is freely available in
OMPi’s website [8]. OMPi strives to be portable, and has been tested and on a variety
of operating systems such as Linux, Solaris, Irix and Windows (with the help of the
Cygwin project).
OMPi started as a project in 2001, and was the first research compiler [9] to sup-

port Version 2.0 [10] of the specifications. A major update of the project yielded a
novel modular runtime architecture in 2007 [11] and a new translator in 2008, with
full support for OpenMP V.2.5 [12]. Support for OpenMP 3.0 [13] was available in
version 1.1.0 (2010), which included an efficient tasking infrastructure [6]. The cur-
rent target is to support version 4.0 [3] of the specification, with this thesis discussing
the implementation of the device directives of OpenMP v4.0.
OMPi consists of a source to source compiler and several threading libraries.

The compiler takes as input C code annotated with OpenMP directives, and outputs
C99 code which is parallelized by using calls to OMPi’s runtime system. There is a
common API between the different runtime libraries. All the libraries can be used to
parallelize the code, but each implements OpenMP threads in a different manner.
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Some of the benefits of using OMPi include a high performance threading sys-
tem under multicore platforms by leveraging the use of PSTHREADS library, which
provides access to both kernel-level and user-level threads [14], efficient nested par-
allelism support [15], and a highly optimized implementation of OpenMP tasking
suitable for the NUMA nature of modern multicore multiprocessors [16]. OMPi per-
forms on par, and sometimes even better than commercial compilers. It also sports a
modular runtime architecture that can be used to created custom runtimes / threading
libraries tailored to specific needs.

3.1 The Compilation Process

Figure 3.1: Compilation process
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Compilation with OMPi is handled using a front-end called ompicc. It is respon-
sible for calling the OMPi compiler and the various system tools1.
Given a .c file ompicc first calls the system preprocessor on the file. A .pc file is

produced which in turn is passed on to the OMPi compiler (_ompi). OMPi compiler
parses the .pc file, and transforms any OpenMP directives into calls to functions in
OMPi’s runtime libraries, producing ans _ompi.c file. Finally the _ompi.c file is given
to the system compiler and the system linker along with the selected OMPi runtime
library to produce the executable file (a.out).
After the final executable has been produced, ompicc deletes the intermediate files

(.pc, _ompi.c)2, and restarts the process for the next input file, if there are any.

3.2 The Compiler

As mentioned, OMPi’s compiler (_ompi) is a source to source compiler. It transforms C
code annotated with OpenMP directives into plain C99 code with calls to the runtime
system in order to achieve parallel execution of the produced program. The output
of the compiler is then given as input to the system compiler which produces a
platform-specific executable.
Other than the output being source code, _ompi’s organization is just like other

compilers. The input file is given to a lexical analyzer (scanner) that generates tokens
which are then fed into a parser. The parser consumes the tokens and produces
intermediate code. In _ompi the scanner is implemented using flex, the parser is
implemented using bison, and the intermediate code is an abstract syntax tree (AST)
(more on that in Section 4.2.1). During parsing, the symbol table is populated and
identifiers are checked for undefined references and multiple definitions. After the
parsing stage, the symbol table is cleared.
OMPi’s symbol table is dynamic and scopes cause the addition and deletions of

identifier symbols. This means that after parsing is complete, the symbol table has lost
all its information about identifiers, scopes and declarations (only the global scope
is still there and gets drained afterwards). In compiler terminology, OMPi’s symbol
table is “imperative”, or non-persistent (non-functional) [17].
To speed up lookups the symbol table does not use the identifier directly as a key,
1Using -v option on ompicc we can get verbose information about each of the tools that are called

during compilation.
2We can instruct ompicc to keep the intermediate files for debugging purposes by using -k or -K

arguments.
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instead a secondary hash table is used to pair each identifier with a number. That
number is used in place of the identifier as key in the symbol table and everywhere
in the AST. Along the hash table of the symbol table there is also a linked list where
each new symbol is added. When a new scope is opened, a special symbol is inserted
in the list to mark the beginning of the scope. When a scope ends we traverse the
list backwards and remove all the entries from both the list and the hash table until
we meet the special symbol, thus removing all the symbols that were declared in that
scope.
After the parsing has finished it’s time for the transformations to take place.

Transformations manipulate the state of the AST by adding, removing and editing
existing nodes of the tree. This occurs through a depth-first traversal of the AST.
During the traversal any identifiers met in the nodes are added to the symbol ta-
ble (and removed as soon as they get out of scope).OpenMP nodes are handled in
a post-order fashion. This means that before transforming any OpenMP construct,
the body of the construct has already been transformed and any nested directives
have already been transformed. Transformation complexity ranges from very simple,
for example a barrier construct (Section 2.1.3) is replaced by a call to the runtime
function ort_barrier(), to extremely complex like for example the parallel construct
which requires outlining (refer to Chapter 4).
Finally, after all the transformations end, the code generation phase starts, where

the AST is traversed again using depth-first and a mix of pre-order, in-order and post-
order visits, and export the nodes on a new file called [name of input file]_ompi.c.

Figure 3.2: Compiler stages

Figure 3.2 lists the three stages of the compiler and the files involved in them.
During the parsing, the scanner (scanner.l) and the parser (parser.y) work together
in order to build the AST. They also use the symbol table (symtab.c) to identify any
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errors.
In the transformation stage the code in ast_xform.c traverses the AST looking for

OpenMP directives, and transforms them using various helper files (named ast_*.c)
such as ast_copy.c. Complex transformations, such as those involved in the tranfor-
mation of parallel (x_parallel.c) or task (x_task.c) constructs, are contained in their
own modules (named x_[directive].c).
Finally the code in ast_show.c traverses the AST and converts its nodes back to C

code, exporting it into a new file.

3.3 The Runtime System

The compiler and the runtime share a common API. The compiler replaces OpenMP
directives with calls to the runtime, which is responsible for executing the user’s
program in parallel, by following the user’s directions.
OMPi RunTime (ORT) consists of several libraries. The difference between them

lies in the way OpenMP threads are utilized. a major design choice for the compiler
was to not get tied to a particular threading library. Instead, it produces code that
refers to abstract execution entities (EEs) which correspond to OpenMP threads. The
runtime (ORT) implements the EEs by a multitude of interchangeable thread or
process libraries, called EELibs (execution entity libraries).
Each of the EELibs is responsible for providing execution entities for ORT. The

main EELib (ee_pthreads) is using POSIX threads as execution entities, but there
are other EELibs such as ee_psthr which uses PSTHREADS [18] to utilize user-level
threads as execution entities, and ee_process which implements each execution entity
on a separate system process.
In addition to functions for execution entity creation, EELibs provide lock func-

tions, which are used for protecting critical areas and for synchronization.
The rest of the runtime is shared between EELibs. For each OpenMP directive,

one or more functions are provided by ORT, which leverage the abstract execution
entities when necessary. Those are resolved into the actual execution entities during
the linking of the library components.
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Chapter 4

A Flexible Infrastructure for
Outlining OpenMP Code

4.1 The Outline Procedure

4.2 Discovering Used Variables

4.3 Data-Sharing Attribute Handlers

4.4 Outline Interface

4.5 Outlining Parallel and Task Regions

In order to implement some of the complex constructs of OpenMP OMPi uses outlin-
ing [19] (other OpenMP compilers also use this technique [20, 21, 22, 23, 24, 25]).
Outlining is the process of extracting a block of code (in our case the constructs’s
structured block) into a new function and replacing the original block with necessary
code in order to be able to call the new function e.g. Program 4.1
Simply extracting a block of code would not suffice. Usually the code references

variables that where declared in a previous scope, so the new function would throw
syntax errors for undefined variables. To make the new function syntactically correct,
we have to declare a new variable for each corresponding variable that is being used
in the outlined block and was declared in a previous scope.
Furthermore for the program to be semantically correct, the new variables must

be initialized with the values the original variables had right before the outlined
block, and any changes to them must be reflected back to the original variables.
We accomplish this by creating a new struct, we will call it data-struct from now
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{

int i;

for (i = 0; i < 10; i++) {

...

}

}

(a) Original code

−→

{

newfunc1();

}

(b) Replacement code

void *newfunc1() {

int i;

for (i = 0; i < 10; i++) {

...

}

}

(c) New function

Program 4.1: Outlining example.

on, and adding struct members for any variables that need some kind of initializa-
tion/synchronization (an example is given in Program 4.4). The type of each struct
member (pointer or not) and the way it is initialized depends on the corresponding
variable and any data-sharing attribute clause it appears in. Section 4.3 explains how
each data-sharing attribute clause is treated.
When the OMPi project started only the parallel construct needed to outline its

associated structured block. Version 3.0 of OpenMP introduced the task construct,
whose implementation was also based on outlining. The initial implementation of the
task construct in OMPi started as a direct copy of the transformation code used by
parallel, therefore duplicating the outline code which was part of the transformation.
Because of how strongly connected the code that did the outlining was with the tran-
formation of the parallel construct (and later with the task construct), implementing
new constructs which required outlining of their structured block was not an easy
task. That’s why part of this thesis was to untangle and unify the code related to
outlining into a new independent function.

4.1 The Outline Procedure

Before the outlining procedure begins, we call a function named outline_OpenMP()

which handles OpenMP related code (construct/clauses). The function

• Parses the code, discovering all the used variables and categorizing them ac-
cording to any OpenMP clauses they may appear, more information in Section
4.2.2.
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• Marks any copyin variables,1 treating them as “by ref” in outline().

• Checks if a default clause is present in the directive and sets the appropriate
default attribute handler (Section 4.3).

• Moves all implicit variables (variables that didn’t appear in any data-sharing
clause) to the appropriate sets by using the default attribute handler.

• Removes the directive from the code.

• Finally, calls the outline() function, passing the used variables and the code
block without the directive as parameters.

The behavior of the outline() function and the attribute handlers is controlled
by several options. For example there are options that determine the name of the
function, the name of the data-struct that will used for passing variable values, and
any extra parameters that the new function may require. More information on the
interface can be found in Section 4.4
The outline() function starts by calling all the attribute handlers (Section 4.3).

Then it combines the struct members returned by the attribute handlers to create the
data-struct. The data-struct along with variable declarations and initializations, and
the body of the construct are combined together to form the new function. Finally
data-struct initializations and a function call are placed where the original code used
to be.
After the outline() function ends, control is restored to the outline_OpenMP() func-

tion. To ease debugging we insert a comment containing the OpenMP directive that
was removed previously both before the replaced code and in the new function. Then,
the new function is injected in the code, after the enclosing function, while a function
prototype is injected before the enclosing function. Finally, if the directive was nested
in a target directive, a copy of the function is stored in a list which is later used to
generate the kernel file (for information on target directive refer to Section 5.2, and
for information on its implementation in OMPi check Chapter 6).

4.2 Discovering Used Variables

As mentioned earlier in order for the outlined function to be syntactically correct, we
have to discover all the variables used in the outlined structured block, which where

1copyin specific code lies in the parallel transformation code
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defined outside the outlined code, and define them in the generated function. Before
we discuss how the code that finds those variables works, we should describe briefly
the internal representation of the code in the OMPi compiler.

4.2.1 OMPi Internal Representation

The internal representation of OMPi is based on an abstract syntax tree (AST) [17].
Since OMPi is a source-to-source compiler with both its input and output consisting
of C source code, it makes sense that an AST is not only used during the parsing of
the input code, but also for the intermediate representation of the code. The leaves
of the tree are C tokens as produced by the lexical analyser, and the nodes consist of
both C/OpenMP tokens and parser rules. A small example can be seen in Figure 4.2.

1 {

2 int i = 5;

3 if (i < 10)

4 return;

5 else

6 func();

7 }

(a) C source

COMPOUND

STMTLIST

DECLARATION IF

SPEC (int)

spec

DINIT

decl

DECLARATOR

decl

CONSTVAL (5 )

DIDENT (i)

decl

BOP (< ) RETURN EXPRESSION

IDENT (i) CONSTVAL (10 ) FUNCCALL

IDENT (func)

(b) AST

Program 4.2: Internal representation.

Transformations of code are applied directly on the nodes of the AST. For example
in order to enclose in “static void ofunc1(int i) { ... }” the code from lines 2-6 of
Program 4.2a we need to use the code in Program 4.3. Provided that we somehow
set body in line 2 to point to the declaration of variable i from 4.2a, variable function
will contain the code of a function named ofunc1, with one parameter (i), that calls
function func if i is greater than or equal to 10. The code in line 3 traverses the tree
upwards finding the parent of the node containing the declaration, and then selects
the second child (the sibling of the declaration node).
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1 aststmt function, body;

2 body = <find declaration node of i>;

3 body = body->parent->u.next;

4 function = FuncDef(

5 Speclist_right(StClassSpec(SPEC_static), Declspec(SPEC_void)),

6 Declarator(

7 NULL,

8 FuncDecl(

9 IdentifierDecl("ofunc1"),

10 ParamDecl(

11 Declspec(SPEC_int),

12 Declarator(

13 NULL,

14 IdentifierDecl(Symbol("i"))

15 )

16 )

17 )

18 ),

19 NULL, body

20 );

Program 4.3: Enclosing block into a new function.

Working with OMPi’s IR may be hard for an uninitiated programmer, but the
fact that it consists of one-to-one mapping between the nodes of the tree and C
code makes transforming the code fast. Furthermore printing the AST is a simple
depth-first traversal with each node printing its corresponding code accordingly.

4.2.2 Variable Analysis

Finding used variables in a block of code requires traversing the AST subtree that
contains the code. The code for that is located in ast_vars.c. While traversing the tree
if we encounter data-sharing clauses, we tag the involved variables in the symbol
table. When we encounter a variable outside the directive we first need to check the
scope it was declared in. If the variable was declared in a scope earlier than the
scope the directive is in, then we need to store it somewhere so that we can apply
the necessary transformations to the code later (Section 4.3), otherwise we can safely
ignore it.
Used variables are stored in sets depending on the clauses they appeared in. For

each attribute handler (Section 4.3) there is a corresponding set. There is also a set
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containing variables which didn’t appear in any clause, and therefore are handled
according to the rules of the directive.
When creating the outline procedure ast_vars.c was modified to be more generic.

The original code used for analyzing run a hardcoded function whenever a C identifier
was found. It was modified to run a user-supplied function (using a function pointer).
By changing the function that is executed on identifiers we can manipulate them in
any way we want, for example we can turn a set of variables into pointers.
Later on, it was further modified to use a new traversing code that applies user

defined functions on all the nodes of the tree. That moved the actual traversing
code from the file, and several other files that needed to traverse the AST, into a
common file. Before this change, when a new type of node was added in the AST, it
was necessary to change the code used for traversing the tree in several files which
included their own traversing code.

4.3 Data-Sharing Attribute Handlers

Construct clauses dictate how variables should be treated in order for the code to
produce the expected output. Simply creating a new variable for each used variable
of the original code is not enough. To make the outlined code functional we have to
be able to initialize variables at the beginning of the function and pass their values
back to original variables.
Each used variable is inserted in a set, depending on the clause it appears in (Sec.

4.2.2). Each of these sets is processed by a different handler. If a variable does not
appear in any clause, it has already been placed in the correct set, using the default
handler associated with the construct that is being transformed, in outline_OpenMP()

before outline() is even called. Therefore by the time the handlers are called all
variables are in the correct sets.
Attribute handlers consist mainly of three parts. The first part handles the creation

of the struct members that will be combined to form the data-struct, the second part
handles code associated with the variables that is placed were the original code was
(usually code that initializes data-struct members from the original variables), and
finally the third part handles the code that is injected in the outlined function (usually
declaring and initializing the new variables using the values passed with the help of
the data-struct).
The handlers were divided like this because some of them share functionality and

this allows us to use the same code on multiple handlers. For example, the part that
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int i, j;

(a) Original variables

−→

1 struct __shvt__ {

2 int i;

3 int (* j);

4 } _shvars;

(b) Generated data-struct

Program 4.4: Generating data-struct for passing values.

initializes a data-struct member using a variable’s address is used by both the by

reference handler (4.3.2) and the reduction handler (4.3.6). The part of data-struct
member creation is handled by a single function that is shared by all handlers, with
the only difference being that each handler chooses whether the member should be
a pointer (Program 4.4b line 3) or not (Program 4.4b line 2) through a boolean
parameter.
The following subsections describe how each handler works, and what each part

entails. An example of a handler is shown in Program 4.5, for more examples the
reader is referred to the Appendix.

4.3.1 Private Handler

Private variables are the simplest to handle. We only need to create a new local
variable in the outlined function with the same type and size (in the case of arrays)
as the original one. No member is inserted in the data-struct and no extra code is
inserted in the place the original code was.

4.3.2 By Refence Handler

By reference variables are the variables which are shared between different threads
and are implemented by adding a reference (a pointer) to the original variable in the
data-struct (Program 4.5b line 4 and 4.5c line 4). The struct member is initialized
with the address of the original variable (Program 4.5b line 6). A pointer is created
in the new function, instead of simply a variable, which points to the original variable
by copying the address which was placed in the data-struct (Program 4.5c line 9).
All uses of the variable in the outlined function need to be modified to take into
account that the variable is now a pointer (Program 4.5c line 12). We call this process
pointerization.
By accessing the variables using a pointer all the threads manipulate the same

memory, thus sharing changes between them. Also the original variables are auto-

24



1 int a = 0;

2 #pragma omp parallel shared(a)

3 {

4 ...

5 a++;

6 ...

7 }
(a) Original code

1 int a = 0;

2 {

3 struct __shvt__ { /* The struct */

4 int (* a);

5 } _shvars;

6 _shvars.a = &a; /* Initialize data-struct members */

7 /* Call the new function through the runtime */

8 ort_execute_parallel(_thrFunc0_, (void *) &_shvars, ...);

9 }

(b) Replacement code

1 static void * _thrFunc0_(void * __arg)

2 {

3 struct __shvt__ { /* The data-struct */

4 int (* a);

5 };

6 /* Cast the argument struct */

7 struct __shvt__ * _shvars = (struct __shvt__ *) __arg;

8 /* Create a new variable and initialize it using the data-struct */

9 int (* a) = _shvars->a;

10 { /* Below is the original code */

11 ...

12 (*a)++; /* The variable has been pointerized */

13 ...

14 }

15 }
(c) New function

Program 4.5: By reference transformation

matically updated whenever a thread changes them. This can cause race conditions,
but in OpenMP it’s the user’s responsibility to prevent situations like that.

4.3.3 By Value Handler

The by value handler works on variables that are private to each thread, but need
to be initialized with the value of the original variable. This includes firstprivate

variables from parallel and task directives (check Section 2.3.1) and to variables
from target directive (Section 5.2).
This handler behaves differently depending on the type of the construct. During

parallel transformation it is treated as “by name”. A pointer to the original variable
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is placed in the data-struct, which is then used to initialize a local variable in the new
function. In this case the replacement code is the same as the one in by reference
variables (Section 4.3.2). This approach has the benefit of accessing a local variable
in the new function, and not using a pointer as in the case of task constructs.
Because execution of a task construct may be deferred until later, since tasks are

not executed immediately like the parallel construct, the original variable could be
modified by the time the task starts execution. Therefore we can’t use a pointer in
the data-struct, it has to contain a copy of the original variable. Also in the case of the
target construct, using a pointer may not be possible. For these reasons both task

firstprivate and target to variables are treated “by copy”. A copy of the original
variable is placed in the data-struct, which is used to initialize a variable in the new
function. When the variable is non-scalar, in order to avoid wasting memory we use a
pointer to the data allocated inside the data-struct. This has the downside of accessing
the data through a pointer, as opposed to “by name” variables discussed earlier.

4.3.4 By Result Handler

Variables appearing in the map clause with map-type from, of a target construct need
to return their value from the new function back to the original variable (information
on the map clause are available in Section 5.3). The by-result handler creates a space
for the new variable in the data-struct. If the variable is non-scalar then a pointer is
used, pointing to the space allocated in the data-struct to avoid using twice as much
memory. If it is scalar we simply create a local variable and copy its value at the end
of the new function. Finally after the execution of the new function has ended, we
copy the value from the data-struct back to the original variable.

4.3.5 By Value-Result Handler

By value-result handler is a combination of the “by value” an the “by result” handlers.
It is used for the tofrom map-type of the map clause of target construct (Section 5.2),
where we need to both initialize the variable in the new function, and return it’s
value back to the original variable after it finishes execution.

4.3.6 Reduction Handler

The reduction handler is more complicated. The replacement and the struct code
is the same as in the “by reference” handler. But instead of using a pointer on the
new function, we create a local variable. In the end of the function we inject code
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that updates the original variable using the address that is stored in the data-struct.
The code has to be protected by locks to prevent race conditions, and depends on
the type of the reduction clause (explained in Section 2.3.1). For example if the type
of the reduction is “add” we simply add the value of the variable to the original
variable. Besides that, the local variable has to be initialized according to the type of
the reduction, e.g to 0 for addition, 1 for multiplication e.t.c.

4.4 Outline Interface

The outline() function has three parameters:

outcome_t outline(aststmt *b, outpars_t oo, set(vars) *usedvars);

The first one, b, is an AST statement node containing the code that will be outlined.
During OpenMP outlining, it is usually a compound type node (code contained inside
curly brackets {}), but could be anything from a single expression (e.g. i++;) to a
selection (if, switch) or an iteration (while, for) statement. The statement should
contain no OpenMP type nodes since the OpenMP nodes we are currently transform-
ing have already be removed by outline_OpenMP() function (Section 4.1), and any
OpenMP nodes contained inside the body of the construct have been transformed (as
mentioned in Section 3.2).
The second parameter, oo, is a struct containing all the options that control the

behavior of the outline() function, and the attribute handlers. Some of the options
include the name the new outlined function will have, a function that will be used to
call the outlined code e.g. in the case of parallel construct ort_execute_parallel() is
used, and if “by-value” handler will act as a “by name” or “by-copy” handler.
Finally the third one, usedvars, is an array of sets (lists). Each set contains a

different type of used variables, e.g. there is a set with all the “by reference” variables
and another one for the “by name” variables, and is handled by a different attribute
handler (Section 4.3).
The return type of the outline() function is also a struct. This struct contains

pointers to various statements produced during the transformation. For example
there are a pointers to the definition of the struct in both the new function and the
replaced code, a pointer to the return statement of the new function, a pointer to
the body of the new function, as well as pointers to the whole new function code
and replacement code. These pointers can be used later in the code of the individual
construct tranformation to add, modify or remove part of the generated code.
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4.5 Outlining Parallel and Task Regions

The new outlining infrastructure was used to re-implement the parallel and task

construct transformations. With the refined infrastructure implementing new OpenMP
constructs is simple (in Table 4.1 we can see that both parallel and target transfor-
mation code were around a thousand lines, while they are only around two hundred
line now), we just need to prepare the outpars struct of the outline with the proper
options and call outline_OpenMP() (Section 4.1). For example the parameters used by
parallel are:

static outpars_t oo =

{

"", //+functionName

"ort_execute_parallel", // functionCall

NULL, //+extraParameters

true, // byvalue_type (by name)

false, //+global_byref_in_struct

"__shvt__", // structName

"_shvars", // structVariable

NULL, // structInitializer

xp_implicitDefault, // implicitDefault function

NULL // deviceexpr

};

These stay the same for each subsequent outline call during parallel outlining with
the exception of three values which are filled in.

• functionName, is the name of the outlined function. In parallel it is always
_thrFuncX_, where X is a unique number that is increased with each transfor-
mation.

• extraParameters, is filled with the parameters used to call the runtime function
that will handle the execution of the outlined function (in this case the run-
time function is called ort_execute_parallel). These parameters depend on the
clauses of the directive.

• global_byref_in_struct, is a boolean which controls how how global by refer-
ence (shared) variables are accessed by the outlined code. When the construct
that is being outlined is nested inside a target construct (Chapter 5), pointers
for those global shared variables are inserted into the data-struct, otherwise the
global shared variables are ignored during outlining and the outlined function
access them directly. The target construct is executed on devices other than the
CPU, and in most cases those devices don’t have direct access to the main RAM.
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File Before Additions Deletions After
x_parallel.c 1015 +119 -925 209
x_target.c 926 +121 -847 200
outline.c 0 +794 -0 794
Total 1941 +1034 -1772 1203

Table 4.1: Line changes during outlining refactoring according to Git.

The parameters used for task are similar in nature, with different names for the
functions and the struct, and with byvalue_type being false. That is the option that
controls how by value (Section 4.3.3) variables are handled.
After analysing the clauses in order to complete the struct, the transformation

code calls:

op = outline_OpenMP(t, oo);

Here t is the statement that contains the construct we want to outline. After the
function returns, op will hold pointers to various places in the transformed code,
which can be used to add code specific to the current directive being transformed.
For example copyin clause (Section 2.3.1) which is unique to parallel directive is not
handled in parallel’s transformation after the completion of outlining with the help
of op. Also during task’s transformation, depending on the presence of if, untied
and mergeable clauses, the code may also get inlined by utilizing op.
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Chapter 5

OpenMP 4 and Device Constructs

5.1 New Features

5.2 Target

5.3 Target Data

5.4 Declare Target

5.5 Target Update

5.6 Example of Device Directives

The OpenMP specification is actively being developed. Version 4.0 [3] of the API came
out on July 2013, and version 5.0 is already in the works. Version 4.0 introduced
many new and exciting features to the API. In section 5.1 we will take a brief look on
what is new in Version 4.0, before presenting the device constructs in detail on the
following sections. An example of how the device constructs work is given in Section
5.6.

5.1 New Features

Before focusing on the new device constructs here is a list of the notable additions
in OpenMP v4.0:

• SIMD constructs were added to support SIMD (Single Instruction Multiple Data)
parallelism.

• The taskgroup construct was added to support more flexible deep task synchro-
nization.
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• The cancel construct, the cancellation point construct and the omp_get_cance-

llation() runtime routine were added to support the concept of cancellation.

• Device constructs and routines were added to support execution on devices. You
can find more information for those in the sections that follow.

• The proc_bind clause and the omp_get_proc_bind runtime routine were added to
the parallel construct to support thread affinity policies.

• Task dependencies were added through the new depend clause of the task con-
struct.

• The reduction clause was extended and the declare reduction construct was
added to support user defined reductions.

• The atomic construct was extended to support atomic swap with the capture

clause, to allow new atomic update and capture forms, and to support sequen-
tially consistent atomic operations with a new seq_cst clause.

5.2 Target

Among the new functionality that v4.0 of the OpenMP specification brought is the
ability to execute code on devices other than the CPU. This was made possible by
a set of new constructs such as the target construct. By using simple directives we
can instruct the compiler to run portions of our code on a co-processor such as the
Epiphany [26], an accelerator such as the Intel® Xeon PhiTM [27], a GPU (Graphics
Processing Unit) [28] or even a DSP (Digital Signal Processor) [29].
The primary device construct is target, which instructs the compiler to offload the

structured block associated with the directive on a device and execute it. When the
target device is not available, the offloaded code is executed by the host device (the
CPU). The syntax of the target directive is as follows:

#pragma omp target [clause[[,] clause]...] new-line

structured-block

The target construct creates a device data environment just like target data (Sec-
tion 5.3) and executes the construct on the target device. The encountering task waits
for the device to complete the target region.
The supported clauses are:
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• device(scalar-integer-expression)

An integer indicating the id of the device where the construct will execute. If
the is no device clause the construct is executed in the default device.

• map([map-type : ] list)

A list of variables from the current task’s data environment that will mapped
to the device data environment associated with the construct. For each item in
the list a corresponding new list item is created in the device data environment
associated with the construct.

The original and corresponding list items may share storage such that writes to
either item by one task followed by a read or write of the other item by another
task without intervening synchronization can result in data races.

If a corresponding list item of the original list item is in the enclosing context
device data environment, the new device data environment uses the correspond-
ing list item from the enclosing device data environment. No additional storage
is allocated in the new device data environment and neither initialization nor
assignment is performed, regardless of the map-type that is specified. In simple
words, if a variable has appeared in an enclosing target data directive that was
targeting the same device it must be ignored the second time. This poses a
challenge to the compiler, as the id of the targeted device is not known during
compilation. Our approach to this is presented in Section 7.2

Map-type can be any of the following:

– init

A new variable is created in the device data environment with undefined
initial value.

– to

The corresponding variable is initialized with the value of the original
variable upon entry to the region.

– from

On exit from the region the corresponding variable’s value is assigned to
each original variable. The initial value of the corresponding variable is
undefined.

– tofrom
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On entry to the region each new corresponding list item is initialized with
the original list item’s value and on exit from the region the corresponding
list item’s value is assigned to each original list item.

If a map-type is not specified, the map-type defaults to tofrom.

• if(scalar-logical-expression)

When an if clause is present and the if clause expression evaluates to false, the
target region is executed by the host device.

Any variables referenced in a target construct that is not declared in the construct
is implicitly treated as if it had appeared in a map clause with a map-type of tofrom.

5.3 Target Data

When a target data construct is encountered, a new device data environment is
created, on the targeted device, containing any variables that appear in a map clause.
The new device data environment is constructed from the enclosing context device

data environment, the data environment of the encountering task and any data-
mapping clauses on the construct. The encountering task continues with the execution
of the target data region.
The supported clauses are the same as target construct:

• device(scalar-integer-expression)

An integer indicating the id of the device where the new device data environ-
ment will be located. If the is no device clause the new device data environment
is created on the default device.

• map([map-type : ] list)

Refer to Section 5.2

• if(scalar-logical-expression)

When an if clause is present and the if clause expression evaluates to false, the
new device data environment is created on the host device.
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5.4 Declare Target

The declare target directive specifies that variables and functions are mapped to a
device. The declare target directive is a declarative directive; it doesn’t execute any
code, it only marks the code for future reference. It appears in the global scope and
its syntax is:

#pragma omp declare target new-line

declarations-definition-seq

#pragma omp end declare target new-line

For each variable that is declared between the declare target and end declare

target, a corresponding variable is created in the initial device data environment for
all devices. If the declaration has an initialization then the corresponding variables
get initialized to the same value, otherwise their value is undefined. The life span
of the corresponding variables is the duration of the program. Any changes in cor-
responding variables during a target directive’s execution persist among successive
kernel executions. There is no implicit synchronization between the original variables
and the corresponding ones. In order to update their values, the programmer needs
to use the target update directive (Section 5.5).
In order to be able to call a function in a target directive’s body, the function

must have been declared in a declare target directive. Any functions called or global
variables referenced in this function must have also been declared inside a declare

target directive.

5.5 Target Update

The target update directive makes the corresponding list items in the device data
environment consistent with their original list items, according to the specified motion
clauses (to/from). It is used to synchronize variables that appear in a target data or a
declare target directive. It may not appear inside a target directive. The supported
clauses are:

• device(scalar-integer-expression)

An integer denoting the id of the device where the corresponding variable re-
sides. If the is no device clause the default device is used.

• if(scalar-logical-expression)

34



When an if clause is present and the if clause expression evaluates to false then
no assignments occur.

• to(list)

For each list item in a to clause the value of the original list item is assigned to
the corresponding list item.

• from(list)

For each list item in a from clause the value of the corresponding list item is
assigned to the original list item.

5.6 Example of Device Directives

1 int input = getInput(), implicit = ..., result;

2

3 #pragma omp target data map(to:input) map(from:result)

4 {

5 int newvar = ...;

6

7 #pragma omp target map(tofrom:input) /* The map of input is going to be ignored */

8 {

9 implicit += ...;

10 result = ... input;

11 }

12

13 #pragma omp target update from(result)

14 printf("Intermediate result = %d", result);

15

16 #pragma omp target map(alloc: newvar)

17 {

18 newvar = ...;

19 result += newvar;

20 }

21 }

22 printf("Result = %d", result);

Program 5.1: Example of target directives.

Let’s take a look on an example, to help us comprehend device directives easier.
The example in question is shown in Program 5.1. Our example starts with a few
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variable declaration, two of which contain an initialization. In line 3 we reach our
first target data directive. Looking at the clauses of the directive two variables are
created on the default device (since there is no device clause). The first one, input,
has a map-type of to. What this means is that the space allocated on the device will
be initialized with the current value of the original variable. This is usually used for
input variables which wont change during our kernel execution. We can still modify
the value inside the offloaded kernel, but the value wont be returned to the original
variable (unless we update it explicitly). The other one, input, has a from map-type,
therefore the new variable on the device wont be initialized. At the end of the target

data (after line 21), the value of the original variable will be updated to equal the
value of the corresponding variable.
The body of the target data directive is executed by the host, whatever thread

was executing before line 3 will continue to execute line 4 and onwards. That means
that the new variable declared in line 5, is created on the host and not on a device.
Moving on to the first target directive, we notice that the input variable, which

was mapped earlier as a to, appears again in a map clause. According to the rules of
the map clause, this “remaping” will be ignored. Lines 8-11 will be executed on the
targeted device, during which time the host thread will pause execution. In line 9
variable implicit is modified. Because it did not appear in any map clause it is treated
as a tofrom variable, which means that the corresponding variable starts with the
same value as the original variable, and any changes to it will be reflected on the
original variable, after the termination of the kernel. Also note that the life time of
the corresponding variable lasts only for the duration of the target, as soon as it ends
there is no corresponding variable, and using it on a new target will result in a new
corresponding variable being allocated. Line 10 modifies result which was already
on the device from the target data in line 3.
After execution of the target region, the value of the original implicit variable is

updated, and the host thread resumes execution. At this point, if we print result
variable, we will (probably) see garbage data. Original and corresponding variables
are not kept in sync, they are only modified when we enter/exit the region that creates
the corresponding variable, therefore at line 12 original result variable still has not
been initialized. If we want to print the value it currently holds on the device, we
must first update the original variable with the value of the corresponding one. This
is done with the target update on line 13. After that we can safely print the variable.
But if we wanted to print the result variable here, what was the point of adding

it in target data of line 3, when we could just add it in target of line 7? The answer
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is simple, the variable is still on the device, and we don’t need to reallocate space for
it on the next target directive that also accesses and modifies it. The target in line
16 contains an alloc variable, newvar. The corresponding variable will have no initial
value, and the original variable wont be modified after the end of the kernel execution.
If the alloc was on a target data we would still be able to synchronize the original
and the corresponding variables, but in this case there is no way to synchronize them,
since target update may not appear inside a target and the corresponding variable
ceases to exist after the target ends.
Finally if we printed result immediately after the end of the target directive of

line 16 (after line 20 but before the end of the block of line 21), the result would be
the same as in line 14. As stated earlier the original result variable is not updated
until after line 21 where the structured block of the target data directive ends.
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Chapter 6

Implementation of Device Constructs in
OMPi

6.1 Target Data

6.2 Target

6.3 Declare Target

6.4 Target Update

This chapter will analyse the implementation of the device constructs, which were
discussed in Sections 5.2 through 5.5, in OMPi compiler. Only the transformations of
the compiler will be explored here, for the changes to the runtime system the reader
is referred to Chapter 7.
During the transformation of programs with device constructs, several files are

generated, one for each target directive encountered plus one with the main code.
Each of those files contains the outlined function of the corresponding target directive,
and the declared functions and variables from declare target directives. The main
contains, in addition to the host code, all the outlined functions from target directives,
since the host may be called to execute any of them. The organization of the generated
files is depicted in Fig. 6.1.

6.1 Target Data

We will use a simple example to demonstrate the transformation procedure. Consider
the code in Program 6.1a which contains a target nested inside a target data. The
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Figure 6.1: Files produced during compilation when code contains target directives

result of the transformation is given in Program 6.1b. When transforming the target

data directive, a new device data environment is created by injecting a start and
an end call, before and after the body of the directive (Program 6.1b, lines 3 and
36). If the directive is nested in another target data directive, the data environment
of the latter is passed in the start call to let the runtime have access to the parent
environment (Program 6.1b, line 10). For each variable, depending on the map type,
calls are inserted at the beginning and end of the body.

• alloc

An _alloc_tdvar call is inserted at the start of the body.

• to

An _init_tdvar call is inserted at the start of the body.

• from

An _alloc_tdvar call is inserted at the start of the body, and a _finalize_tdvar

call is inserted at the end of the body (Program 6.1b, lines 12 and 28).

• tofrom

An _alloc_tdvar call is inserted at the start of the body (Program 6.1b, lines
4–5), and a _finalize_tdvar call is inserted at the end of the body (Program
6.1b, lines 34–35).
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#pragma omp target data map(x,y)

#pragma omp target map(from: x) device(2)

x=y=z=1;

(a) Original code
1 { // Start target data

2 _devid = -1; // Default device

3 _ddenv = _start_ddenv(NULL, _devid, ..);

4 _init_tdvar(&x, sizeof(x), _ddenv, _devid);

5 _init_tdvar(&y, ..);

6

7 { // Start target

8 _devid = 2; // Requested device

9 _ddenv_prev = _ddenv;

10 _ddenv = _start_ddenv(_ddenv_prev, _devid, ..);

11

12 _alloc_tdvar(&x, ..); // Ignored if default device is 2

13 _init_tdvar(&y, ..); // Ditto

14

15 struct __dd__ {

16 int (* x);

17 int (* y);

18 int z;

19 } * _devdata = _devdata_alloc(_devid, sizeof(struct __dd__));

20 _devdata->x = get_vaddress(&x, ..); // Request address @device

21 _devdata->y = get_vaddress(&y, ..);

22 _devdata->z = z; // Optimized

23

24 ort_offload_kernel(_kernelFunc0_, _devdata, ..); // Kernel code

25

26 z = _devdata->z;

27

28 _finalize_tdvar(&x, _ddenv);

29 _finalize_tdvar(&y, _ddenv);

30

31 _end_ddenv(_ddenv);

32 } // End target

33

34 _finalize_tdvar(&x, _ddenv);

35 _finalize_tdvar(&y, _ddenv);

36 _end_ddenv(_ddenv);

37 } // End target data

(b) Transformed code

Program 6.1: Target/target data transformation.

According to the specifications, if a variable that appears in a map clause, already
exists in the device data environment, no new space should be allocated and no
assignments should occur. Since the device clause is an arbitrary expression and there
is no restriction on the device clause of nested target data directives, the compiler
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is unaware of the devices that a variable has already been mapped on. For example,
there could be a target data that adds variable a in device 1 and then another target
data with the same variable that does not contain a device clause, and therefore the
new device data environment will be allocated on the default device which, however,
can be changed during execution. So during compilation there is no way to know
if the two target data directives are targeting the same device or not, and whether
we should allocate new space or use the existing one during the second directive.
Some of the other compilers which added support for the device directives did not
take into account that the code may contain nested device data environments, thus
producing wrong results. We were the first ones to identify the issue and present a
general solution [30].
Our solution to this subtle problem is to delegate most of the required functionality

to the runtime. In particular, we inject calls to the runtime for creating, initializing
and finalizing environments with variables that appear in map clauses, regardless of
whether they have appeared or not in an enclosing target data directive, and let
the runtime handle it, as described in Section 7.2. In Program 6.1b, this occurs for
variables x and y in lines 12–13 and 28–29.
The code inside the construct is left untouched during the transformation of the

target data directive, and will be executed by the host thread when it reaches the
region. That is not visible in our example, because the target data contains only a
target which is also transformed (in fact the transformation of the target construct
precedes that of the target data).

6.2 Target

Each target directive is outlined similarly to parallel and task directives, albeit
with different handlers for the variables. We create a new data environment, as if the
construct was a target data one (lines 8–13 in Program 6.1b). As stated in Section 6.1,
the compiler can’t tell what device a target data or a target directive is addressing.
That means that any variable referenced in the body of the directive may already be
in the device, if it was part of a previous target data directive. For that reason all
variables that have already appeared in any enclosing data environment are “inserted”
in the new one (we make the call to the runtime let it decide if they should be inserted
or not, more information on the runtime’s mechanism are given in Section 7.2).
Pointers to these variables are then placed in the devdata-struct, which will be passed
to the outlined function. The pointers are initialized using runtime calls to get the

41



address of the variables on the device space (lines 20–21 of Program 6.1b).
As an optimization, if a variable does not appear in any enclosing target data

directive, space for the variable is created directly within the devdata-struct, instead
of using a pointer (Program 6.1b line 22 and 26). In this case the handler used for
dealing with the variable depends on the map-type:

• alloc is treated as a private variable.

• to uses “by copy” handler.

• from uses “by result” handler.

• tofrom uses “by value-result” handler (in the example, variable z is treated as
tofrom, since that is the default way to treat variables that didn’t appear in a
map clause).

When outlining a target region, we store a copy of the outlined function along
with any other outlined functions that may occur during the transformation of its
body (e.g. when having a parallel region inside the target), in a global list. After
the main transformation phase of the code, we use the information stored in that list
to produce kernel files, one for each target construct.
In the example in Program 6.1, the kernel body (x=y=z=1;) has been moved to an

outlined function _kernelFunc0_(); the actual execution of the kernel occurs in line
24, where the runtime call ort_offload_kernel(...) is given the function name and
the devdata-struct.

6.3 Declare Target

During the transformation of an OpenMP program, whenever the compiler encounters
a declare target directive, it stores any contained functions, function prototypes and
variables in appropriate lists, and also marks them as declared in the symbol table.
The body of the directive is left as is during the main transformation phase of the
code. While transforming target directives, any variables that were declared within
a declare target body are left intact.
The transformation for the declare target constructs occurs after the normal

transformation phase ends, by which point all the declared variables have already
been marked. The code surrounded by the declare target and end declare target

directives is left unaltered in the main file (the file containing the code that the host
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#pragma omp declare target

int x, y = 42;

#pragma omp end declare target

void somefunc() {

#pragma omp target ...

{

x = y;

}

}

(a) Original code
1 static void __register_global_decl(); // Register function prototype

2 void (* __register_global_decl_p)(void) = __register_global_decl; // Pointer to register func

3

4 void somefunc() {

5 { /* #pragma omp target */

6 int _devID = -1; // Default device

7 ...

8 struct __decl_struct { // The struct used for declared variables

9 int (* x);

10 int (* y);

11 } * _decl_data;

12 if (__register_global_decl_p) // This function pointer is nullified after the first run

13 ort_call_decl_reg_func(&__register_global_decl_p);

14 _decl_data = ort_devdata_alloc(sizeof(struct __decl_struct), _devID);

15 _decl_data->x = (int (*)) ort_get_declvar(&x, _devID); // Request address @device

16 _decl_data->y = (int (*)) ort_get_declvar(&y, _devID);

17 ort_offload_kernel(_kernelFunc0_, _dev_data, _decl_data, ...);

18 }

19 }

20

21 static void __register_global_decl() // The registration function

22 {

23 static const int init_y = 42; // Local static variable holding the initial value

24 ort_register_declvar(&x, sizeof(x), (void *) 0); //Register var without initialization

25 ort_register_declvar(&y, sizeof(y), &init_y); //Register var with initialization

26 }

(b) Host code

Program 6.2: Declare target: host code

executes). The changes done to the variables and functions are only exported into the
kernel files. The runtime though has to know about the declared variables in order
to allocate memory for them in the devices. This is done in the host code.

Host Code.

A program may consist of more than one source file. If there was only one source
file, registering the declared variables would be easy, we could simply add their
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registration in main(), which is the first function that is called. Each of the source
files can contain declare target and target directives, and the runtime needs to
know about the declared variables in each of them. Unfortunately C doesn’t have
constructors like C++, or anything else that runs at the startup of a program, that
could be used for registrations/initializations. The GCC compiler has a mechanism for
doing something like that but it is not standard C and using it in OMPi would limit
OMPi’s portability.
As a workaround a new static function is created in every source file for registering

the declared variables during runtime (Program 6.2b lines 21–26). To avoid initializ-
ing devices and allocating memory if they are not used, we delay the actual memory
allocations until the first time each device is used. This creates a problem with vari-
able declarations that include initializations, because the corresponding variables must
also be initialized with the same value, and by the time the memory allocations take
place the original variables may not contain the initial values anymore. To deal with
that, for each initialized variable, a separate static variable is created inside the new
function, using the same initializer, and passing its address to the runtime (Program
6.2b line 23).
The above function is called whenever a target or target update directive which

uses one of the declared variables is encountered (Program 6.2b line 13). This guar-
antees that the runtime has registered all these variables before they are actually used.
In addition, precautions are taken so that the operation is completed only once and
is not subject to concurrent invocations (Program 6.2b lines 2 and 12–13). Finally,
the declared variables used in a target region, are placed in a separate struct and are
given to the runtime at offload time (Program 6.2b lines 14–17).

Kernel Code.

As mentioned previously, for each target directive we produce a separate kernel
file. The kernel file starts with the declared function prototypes (Program 6.3b line 1),
followed by the variables declared inside declare target constructs, which are con-
verted into pointers (lines 2–3 of Program 6.3b). Before exporting declared functions
and the outlined function of the target directive, we transform them, replacing any
occurrences of the declared variables by pointers. During this transformation, we also
check to make sure that all the variables and function calls used, have been declared
inside a declare target constructs.
Moreover, a wrapper function is created, which is the first function called by

the runtime library of the device (Program 6.3b lines 18–29). The wrapper serves
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two purposes; first it initializes the pointers of the declared variables from the struct
passed in the offload function (lines 20–26), and second it acts as a single point of
entry for the runtime, calling the actual outlined kernel function (line 28), whose
name depends on the number of target directives present in the original source

#pragma omp declare target

int x, y = 65535;

void declared_function() {

x = y;

}

#pragma omp end declare target

void somefunc() {

#pragma omp target

declared_function();

}

(a) Original code
1 void declared_function(); // Declared function prototype

2

3 int (* x) ; // Declared variable

4 int (* y) ; // Declared variable

5

6 void declared_function() // Declared function

7 {

8 (*x) = (*y);

9 }

10

11 static void * _kernelFunc2_(void * __arg) // The outlined function

12 {

13 { /* #pragma omp target -- body moved below */

14 declared_function();

15 }

16 }

17

18 void _kernelFunc_(void *__dev_data, void *__decl_data) // Wrapper function

19 {

20 struct __decl_struct {

21 int (* x) ;

22 int (* y) ;

23 } * _decl_data;

24 _decl_data = (struct __decl_struct *) __decl_data;

25 x = devrt_get_dev_address(_decl_data->x, sizeof(*(_decl_data->x)));

26 y = devrt_get_dev_address(_decl_data->y, sizeof(*(_decl_data->y)));

27

28 _kernelFunc2_(__dev_data);

29 }

(b) Kernel code

Program 6.3: Declare target: kernel code
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code. This is the first function executed on a device, by the device’s runtime.

6.4 Target Update

Transformation of target update directives are pretty straightforward. Each directive
is replaced by one or more runtime calls. Depending on the type of the motion clause,
either an ort_read_tdvar() or an ort_write_tdvar() function call is inserted for each
variable that appears in the motion clauses. For example:

#pragma omp target update from(x, y) to(z)

Will result in:

ort_read_tdvar(x);

ort_read_tdvar(y);

ort_write_tdvar(z);
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Chapter 7

Runtime Support for Devices

7.1 Additions to ORT API

7.2 Data Environment Handling

7.3 Device Modules

7.4 Available Modules

In order to support the device constructs, new libraries were added in OMPi Run-
Time (ORT) called device modules, one for each device type. These are loaded dynam-
ically during program execution. A module can contain more than one device, and
is divided into two parts, one for execution on the host (host part) and the other for
execution on the actual device (dev part). The latter is usually packaged and offloaded
with the kernels.
Additionally the old runtime, now called host runtime, was enriched with three

new files. The first one, target.c implements the API used by the compiler for ma-
nipulating devices and is presented in Section 7.1. The second, dataenv.c, contains
a mechanism for handling device data environments. More information is given in
Section 7.2. Finally modules.c handles dynamic loading of modules and is analysed
in Section 7.3.

7.1 Additions to ORT API

Target.c consists of the of functions used for the implementation of device directives.
Calls for any of those functions may be injected by the compiler in the code of the
host. These functions do not actually interact with the devices, they merely check the
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targeted device id, and then call the appropriate function from the targeted module.
The API consists of the following functions:

• ort_devdata_alloc/free() used for allocating/deallocating the structs used for
passing variable values for both mapped and declared variables. They are injected
during the transformation of target.

• ort_start/end_target_data() used by target data and target to create and re-
move device data environments.

• ort_alloc/init/finalize_tdvar() add and “remove” variables on device data
environments. These interact with dataenv.c, to make sure the variables do not
already exist on the targeted device, and are used by both target data and
target transformations.

• ort_read/write_tdvar() used by target update to move data from or to device
data environments.

• ort_get_vaddress() which returns the address of a corresponding variable on
a device data environment, or a handler which can be used on the device to
retrieve the address.

• ort_offload_kernel() which starts execution of kernels.

Function ort_alloc_tdvar() first checks if the variable is on the data environment
of the targeted device. If it is, it does nothing, otherwise it creates a corresponding
variable on the data environment. Function ort_init_tdvar() is a combination of
ort_alloc_tdvar() and ort_write_tdvar().
Finally ort_finalize_tdvar() checks if the variable was added in the current de-

vice data environment, not in an enclosing (one created by a previous target data)
environment, and calls ort_read_tdvar(). This assures that “no assignments are pre-
rformed” according to the specification, in the case of a variable appearing in a map

clause while it already has a corresponding variable in the enclosing device data en-
vironment. The deallocation of the memory allocated by ort_alloc_tdvar() happens
during the call of ort_end_target_data().

7.2 Data Environment Handling

The host device needs an indexing mechanism in order to store and retrieve informa-
tion regarding the variables that constitute the data environments. This information
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1 int a, b;

2

3 #pragma omp target data map(a) // DE1

4 #pragma omp parallel num_threads(2)

5 {

6 int c;

7 #pragma omp target data map(b) // DE2(1), DE2(2)

8 #pragma omp target map(a, c) // DE3(1), DE3(2)

9 ....

10 }

Program 7.1: Nested device data environments created by a team of threads.

is used when the host accesses these variables for reading or writing, for example
during the mapping of a variable or before/after the execution of a kernel, when the
target update directive is used. This information is also used during the initialization
phase of a kernel. Because of the arbitrary nesting of data environments, and the
possibility of multiple devices, the indexing cannot be statically handled at compile
time.
To allow the host to have fast access to information regarding the variables in-

volved in a data environment, we employ a novel mechanism based on typical
separately-chained hash tables (HT). It works approximately as a functional-style
compiler symbol table [17], albeit operated by the runtime. A sequence of nested data
environments in the source program produces a dynamic sequence of HTs with en-
tries for the mapped variables. The information stored on each entry includes the id
of the device which the mapping refers to, and a pointer to the actual storage space
of the variable. The hash function is given as input the original variable address
combined with the targeted device number and returns the corresponding bucket.
Collisions are handled through separate chaining.
To make comprehension easier, we will present the mechanism through two il-

lustrative examples; detailed analysis follows right after. In Program 7.1 we show a
code snippet where in line 3 a data environment (de1) is created with the mapping of
variable a. Then a team of two threads is created on the host device and each thread
defines a separate data environment (de2(1) and de2(2)) which includes the variables
a and b. Finally, each thread offloads a code block, while at the same time creates a
new data environment (de3(1) and de3(2)) which includes the variables a and c. All
the mappings in the example refer to the default device.
The sequence of the HTs for the above example is given in Figure 7.1. The result
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Figure 7.1: Hash table sequence for code in Program 7.1. Solid yellow, dashed blue and
mixed black arrows denote allocations and definitions made at lines 3, 7 and 8, respectively.

of line 3 is the creation of de1 which stores only one entry, that for variable a. The
creation of the thread team does not affect the indexing mechanism, and both threads
can access the data of de1 without the need of locks. Line 7 defines de2(1) and de2(2)

(one for each thread); this causes the creation of new HTs, both of which are created
as copies of the previous HT. As a result, each thread retains access to the enclosing
data environment. The mapping of variable b adds a new entry for de2(1) and de2(2)

and the addition of a pointer from the HT to this entry. Similarly, in line 8 we have
the creation of new HTs that handle de3(1) and de3(2), respectively, as copies of the
previous two HTs. In the case of the second thread, variable c is hashed onto bucket
12, which is a free bucket. In contrast, variable c of the first thread caused a collision
(hashed onto bucket 5), resulting in a chain between the variables c and b.
An additional complication arises by the possible presence of multiple devices,

where a data environment may be nested within another environment that refers to
a different device, as can be seen in the code of Program 7.2. In this example, in
line 3, a data environment is defined for device 1 (de4), with variable d. Then, de5 is
created in line 4 for device 2 that includes variables d and e. Finally, de6 is created
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1 int d, e, f;

2

3 #pragma omp target data map(d) device(1) // DE4

4 #pragma omp target data map(d, e) device(2) // DE5

5 #pragma omp target map(f) device(1) // DE6

6 {

7 e = d++; // implicit mapping of variable e

8 ... // in device 1

9 }

Program 7.2: Nested device data environments created for two different devices.

Figure 7.2: Hash table sequence for code in Program 7.2. Solid yellow, dashed blue and
mixed black arrows denote allocations and definitions made at lines 3, 4 and 5, respectively.

in line 5 for device 1 and a block of code is offloaded for execution. Notice that d
is already mapped through de4 while there is an implicit mapping for variable e on
device 1. The corresponding sequence of HTs is shown in Figure 7.2. In de4 there is
only one entry for d on device 1. The HT for de5 starts with a copy of de4; entries for
variables d and e are then added in buckets 19 and 27, correspondingly. Notice that
because d now refers to device 2, the hash function returns a different bucket than
the one used for device 1. Finally, de6 starts as a copy of de5 and has two entries
added for variables f and e. Since d is already present in the data environment of
device 1, no further actions are required.
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7.2.1 Details of the Mechanism.

The data handling mechanism is operated by the host, resides in the host address
space, and is independent from any attached devices. The HTs allow for efficient
variable insertion and look-up operations. Each time a nested data environment
is created, a new HT is initialized as a copy of the HT used by the enclosing data
environment, as in functional-style symbol tables; destruction of the data environment
requires a single memory deallocation for the corresponding HT. If a team of threads
is created within a target data region, separate HTs are created, when needed, for
each thread; this completely eliminates mutual exclusion problems.
In addition, we employ a further optimization. When initializing a new data envi-

ronment for a particular device, the compiler informs the runtime about the maximum
possible number of variables added to the environment. This is calculated statically dur-
ing the analysis of the program; an exact number is not possible to derive because the
devices the environments refer to are given by full expressions and can only be calcu-
lated at runtime, in the general case. In practice, only variables not already mapped
on this device are actually inserted in the ht. Because of this information, the runtime
is able to acquire memory for the HT and the entries in a single allocation request (this
explains why in Figures 7.1 and 7.2 the HTs and the corresponding entries lie within
the same rectangle). This also has the desirable side-effect of increased data locality,
as the hash table and the entry information reside on the same memory block.
The space requirements of the presented mechanism have an upper bound of

O(L ·K + n), where L stands for the maximum number of alive data environments,
K is the size of a hash table (derived from the static compiler information discussed
above) and n is the total number of variables that are mapped in all data environment
definitions. In a program that defines a total of E data environments, exactly Θ(E) of
memory allocations and deallocations are made, which include the memory required
for the HT and the memory used for the entries. With a load factor at most equal to
1, the average time for an insertion or a lookup is Θ(1).

7.3 Device Modules

An abundance of computational units, such as GPUs, DSPs and general or special
purpose accelerators can be found in today’s computer systems, which can be used
to aid the computations done by the CPU. Each of them has a different way of being
invoked. Therefore each type of device requires a unique approach from the runtime.
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To be able to support more than one type of device, a different library, called device
module, is implemented for each one of them.
A module consists of two parts. The first one runs on the host device and is re-

sponsible for the communication of the host with the devices. It is loaded dynamically
during program execution. The other one runs on the device, and is a full implemen-
tation of an OpenMP runtime, designed to operate within the device. Furthermore
each module library may handle more than one device, provided that the devices are
of the same type.

7.3.1 Host

The availability of each device may change between compilation and execution time,
especially if the system where execution takes place is not the same as that of the
compilation. Hardcoding calls to each module in the host runtime is thus precluded,
as they will fail if the machine that executes the application has a different device
configuration. Instead, the host part of each module is implemented as a dynamic
library which is loaded during execution time. This is done though the use of POSIX
API’s dl calls (dlopen(), dlsym(), dlclose()).
During the initialization of ORT, which is done as soon as main() starts, the run-

time searches for known modules in the current folder of execution, in the folder
OMPi’s libraries reside, and in the system’s default dynamic library folder. If it finds
a module, it uses dlopen() to open it and calls function hm_get_num_devices() to query
the number of available devices supported by the module. This is done using “lazy”
binding in order to minimize the initialization time, and dlclose() is called shortly
afterwards.
ORT keeps track of the number of devices, and assigns a global id to each one

based on the order of detection. For example if there are two devices available from
the first module, then device ids 1 and 2 are assigned to that module. If the second
module has three devices, those devices are assigned global ids 3, 4 and 5 and so on.
The first time a device from a module is used, we make a regular dlopen() call

when opening the module, and use dlsym() to get get access to all the functions,
which are stored in a struct in ORT. Then function hm_initialize() is called from
the module, to initialize the device, along with the local id of the device in the module.
For example, if we want to initialize device 4 from the previous example, we request
for the second device in the module. The module is initialized only once, when the
first device in it is initialized. If for any reason a device fails to initialize, that device’s
id is mapped to the host device.
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The functions available in each module for communicating with the device are
more or less the same as the ones in target.c (Section 7.1). There are functions to
allocate and free memory, move data to and from the device, get the address of a
variable as seen by the device and finally offload a kernel. The complete interface is
as follows:

• hm_get_num_devices() which is used during initialization of the host runtime to
determine the number of devices available by each module.

• hm_print_information(), a function used by the compiler frontend to display
information on the available devices.

• hm_initialize() which is called by the host runtime to initialize a device, the
first time its id apears in any device directive.

• hm_finalize() that frees any allocated resources when the program execution
ends.

• hm_offload() which handles the offloading of a function to a device. This is
called from ort_offload_kernel() (Section 7.1), and is the function that starts
execution of a kernel file.

• hm_dev_alloc() which allocates space for use on the device. This space can be on
a local memory of the device, or on memory shared by the host and the device, or
even on the host memory if the device has direct access to it. The actual location
of the allocated space depends on the module, and it is either the fastest or the
largest memory available that both the host and the devices can access. This is
called by ort_devdata_alloc() and ort_alloc_tdvar() (Section 7.1).

• hm_dev_free() that frees memory allocated by hm_dev_alloc(), and is called from
ort_devdata_free() (Section 7.1). It is also called from the mechanism tha han-
dles device data environments which is explained in Section 7.2 during the call
of ort_end_target_data() (Section 7.1).

• hm_fromdev() and hm_todev() which are called by ort_read_tdvar() and ort_wri-

te_tdvar() respectively (Section 7.1). They are used to synchronize the values
of an original and a corresping variable.

• hm_get_dev_address() which is called by ort_get_vaddress() and returns the
address of a corresponding variable on the device, or a handler which can be
used during the kernel execution to retrieve the actual address.
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7.3.2 Device

The device part of a module, which is denoted as devrt, is a full implementation of an
OpenMP runtime. This makes supporting new device types a highly involved task.
The only missing OpenMP parts are the device constructs, which can only be used
when running on the host, since targeting a device from within another device is not
allowed.
The devrt is linked and offloaded with each kernel. As we mentioned earlier

it’s not possible to determine what device is being targeted during compilation.
Therefore when compiling the program, each kernel code is compiled with each se-
lected/available module’s devrt. For example if we have a program with three target

constructs and there are two available modules during compilation, 6 kernel executa-
bles will be created, one for each pair of construct-module, along with the executable
of the host. Let’s say that the first module uses .cl for its kernels suffix, and the second
module uses .srec as a suffix. If the source file is named foo.c, the produced kernels
will be: foo_d00.srec, foo_d00.cl, foo_d01.srec, foo_d01.cl, foo_d02.srec, foo_d02.cl.

7.4 Available Modules

At the time of writing there are two modules available in OMPi. The first one uses the
Epiphany accelerator as a target device. The Epiphany is available as a co-processor
on the Parallella board. The other module is based on OpenCL framework, and is
still in the early stages of implementation. The is also a pseudo-module, which was
created to aid us during testing. It does not use any real device, each “device” is a
new process and utilizes mmap for shared memory between the host and the “devices”.
Although it’s not useful as a module in its the current state, it could provide the basis
of a module for devices that use new processes to execute kernels.

7.4.1 Epiphany Accelerator

The Parallella-16 board [31] is a popular 18-core credit card-sized computer and
comes with standard peripheral ports such as USB, Ethernet, HDMI, GPIO, etc. The
computational power of the board comes from its two processing modules. The main
(host) processor is a dual-core ARM Cortex A9 with 512 KiB shared L2 cache, built
within a Zynq 7010 or 7020 SoC. The other is an Epiphany 16-core chip which is
used as a co-processor. The board has 1 GiB of DDR3 RAM, addressable by both the
ARM CPU and the Epiphany. The former runs Linux OS and uses virtual addresses,
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Figure 7.3: Parallela board

whereas the latter does not have an OS and uses a flat, unprotected memory map.
Two versions of the Epiphany co-processor are actually available: the Epiphany-

16 (with 16 cores and a 4×4 mesh NoC) and the Epiphany-64 (with 64 cores and an
8×8 mesh). Although our discussion here holds for both versions, we refer mostly to
the first one since it is the one widely available. Each Epiphany core (eCORE) is a 32-
bit superscalar RISC CPU, clocked at 600 MHz, capable of performing single-precision
floating point operations, and equipped with 32 KiB local scratchpad memory and
two DMA engines. The ARM and the Epiphany use a 32 MiB portion of the system
RAM as shared memory which is physically addressable by both of them. All common
programming tools are available for the ARM host processor. For the Epiphany, a
Software Development Kit (eSDK [32]) is available, which includes a C compiler and
runtime libraries for both the host (eHAL) and the Epiphany (eLIB). Furthermore,
OpenCL is provided by the COPRTHR SDK [33]. The latter also provides a threading
API similar to POSIX.
Details on the runtime implementation of the Epiphany accelerator as an OpenMP

4.0 module, which is build upon the eSDK, are available in [26].
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Host Module

The communication between the Zynq and the eCOREs occurs through the shared
memory portion of the system RAM. The shared memory is logically divided in
two sections: The first section is a fixed size of 4 KiB, and is used transparently by
OMPi for kernel coordination and manipulation of parallel teams created within the
Epiphany. The second part is used for storing the kernel data environments and part
of the tasking infrastructure of the Epiphany OpenMP library.
In order to be able to control the eCOREs independently through eHAL calls, the

initialization phase creates 16 workgroups, one for each of the available Epiphany
cores and puts them to the idle state for energy and thermal efficiency. For offloading
a kernel, the first idle core is chosen and the precompiled kernel object file is loaded
to it for immediate execution. Due to the high overheads of the eSDK when offloading
kernels to different workgroups, we developed an optimized low-level offload routine
to assist the creation of OpenMP teams. We support multiple, independent kernels,
executing concurrently within the Epiphany. Because the current version of eHAL
does not provide a way for an eCORE to notify directly the host for kernel completion,
a special region of the shared memory is designated for synchronization with the e
COREs.

Devrt

Supporting OpenMP within the device side presents many challenges due to the lack
of dynamic parallelism and the limited local memory of each eCORE. Regarding the
former, when a kernel is offloaded to a specific eCORE, the core executes its sequential
part until a parallel region is encountered. Because only the host can activate other
eCOREs, the master core contacts the host, requesting the activation of a number of
cores. A copy of the same kernel is then offloaded to the newly activated cores. During
the parallel code execution all synchronization between the cores occurs through their
fast local memories. When the region completes, the cores return to the idle, power
saving state, while the master core informs the host thread about the termination of
the parallel team.
The small scratchpad memory makes it impossible to fit sophisticated OpenMP

runtime structures alongside the application data. To support the worksharing con-
structs of the OpenMP, the infrastructure originally designed for the host was trimmed
down in order to minimize its memory footprint; this is linked and offloaded with
each kernel. The coordination among the participating eCOREs utilizes structures
stored in the local memory of the team master. The eSDK provides mechanisms for
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locks and barriers between the eCOREs but they assume that the synchronized cores
belong to same workgroup. Since in our runtime each eCORE constitutes a differ-
ent workgroup, we were forced to modify all these mechanisms. Finally, the tasking
infrastructure is based on a blocking shared queue stored in the local memory of
the master eCORE, while the corresponding task data environments are stored in the
shared memory.

Experiments

Figure 7.4: EPCC synchronization results

We have conducted a number of tests in order to measure the efficiency of our
offloading mechanisms alongside the space and timing performance of the OpenMP
runtime within the Epiphany accelerator. Our board is the Parallella-16 SKUA101020
and we use eSDK 5.13.9.10. To examine the memory overhead of our Epiphany-
resident runtime, we created a set of simple OpenMP programs to compare with
the size of the kernels produced when the native eLIB is used. In the case of an
empty kernel, containing only a single assignment OMPi incurs a 4.5 KiB overhead as
compared to the kernel created by the native eLIB. In other scenarios which involved
a team of 16 cores and complex OpenMP functionality, up to 10 KiB more than a
similar eLIB-based kernel were needed. We are currently optimizing the runtime
memory footprint even more.
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Figure 7.5: EPCC tasking results

Figure 7.6: Pi computation Figure 7.7: Nqueens(12)

In order to measure the OpenMP construct overheads within the Epiphany, we
created a modified version of the EPCC microbenchmark suite [34] where their basic
routines are offloaded through target directives. In Fig. 7.4 we plot a sample of
the synchronization benchmark results. While most results are quite satisfactory, our
initial prototype employs a non-optimized barrier, which also has a direct impact on
the overheads of the for construct. We are currently optimizing its behavior. Sample
results for the tasking benchmark are given in Fig. 7.5. The noticeable cases are
those of the Taskwait and Master task tests. The contention on our simple lock-based
shared task queue is quite high in these tests and shows up vividly in the case of
16 threads. Our implementation can be further improved, but at this point we strive
mostly for functional correctness.
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Finally, we include performance results for a few simple OpenMP applications. In
Fig. 7.5 we plot timing results for a typical iterative computation of π = 3.14159, based
on the trapezoid rule with 2,000,000 intervals, and using a kernel which spawns
a parallel team of 1 to 16 threads. While the scalability is almost ideal, the serial
execution is quite slow; the reason is that the Epiphany does not support double-
precision numbers natively and the eCORE floating point unit does not implement
division. In Fig. 7.7 we present the performance of a modified version of the Nqueens
task benchmark, taken from the Barcelona OpenMP Tasks Suite (BOTS) [35]. This
application computes all solutions of the n-queens placement problem on an n ×
n chessboard, so that none of the queens threatens any other. Due to the severe
memory limitations of the Epiphany, we considered the manual cut-off version of the
benchmark, where the nested production of tasks stops at a given depth. The figure
shows the timing results for 12 queens, and a cut-off value of 2 (144 tasks produced).
As it can be seen, with the addition of eCOREs we obtain an almost linear speedup.

7.4.2 OpenCl

Open Computing Language, more commonly known as OpenCL, is a framework
for writing programs that can execute across heterogeneous platforms consisting of
central processing units (CPUs), graphics processing units (GPUs), digital signal pro-
cessors (DSPs), field-programmable gate arrays (FPGAs) and other processors or
hardware accelerators and provides task-based and data-based parallelism.
When implementation of an OpenCL module begun, it targeted OpenCL 1.2 [36]

devices. Unfortunately due to several restrictions on version 1.2 of the framework,
supporting OpenMP on the device was close to impossible. The module got to the
point of executing kernels on OpenCL enabled devices, but implementing an OpenMP
runtime on them was not a viable option.
One of the problems encountered was the lack of global variables. This means

that, disregarding the fact that some runtime functions may need global variables to
function correctly, implementing target data would not be an easy or efficient task.
One possible solution would be to have a struct holding all the “global” variables,
and pass it around in every function call. Something like that though would require
changing all the functions of the kernel code by the compiler.
Another issue were OpenCL’s address space qualifiers. In OpenCL every variable

definition has to be prefixed by an address space qualifier, such as global or constant,
which determine where the variables are going to be allocated. The problem is that
one cannot for example have a pointer that is in local address space point to a variable
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allocated in global address space. Depending on where each variable is allocated, there
should be multiple versions of declared (through declare target) functions, each one
with different address space qualifiers, depending on where the function gets invoked
from.
Finally the lack of dynamic parallelism (i.e. creating teams of threads dynamically

within the kernel) would have been an issue in implementing the parallel construct.
This signifficant problem has been a subject of active research. The solutions proposed
include: a) stopping the current running kernel when you meet a parallel, and b)
starting a new kernel that would run on several computational units, or using a switch
case construct to differentiate where the master thread runs, and where all threads
should run [37]. However implementing any of those would require significant effort
and they probably wont work in all cases. Furthermore it is questionable how efficient
any of these proposed solutions would be.
For all the above reasons, we made a strategic decision to only address version 2.0

[38] of the OpenCL standard. OpenCL 2.0 adds support for program-scope (global)
variables, introduces a generic address space, which removes the need for address
space qualifiers on function parameters and adds nested parallelism. At the time
only AMD had support for version 2.0 of the specification, for their GPUs. Recently
Intel released a new SDK adding OpenCL 2.0 support Intel Core M processors and
more implementations are sure to emerge.
Additionally it includes shared virtual memory, which means that a variable al-

located in the system’s RAM can be directly access by a kernel. Unfortunately our
test system did not support fine-grained shared virtual memory at the time of writing,
meaning that in order to use shared virtual memory the allocations must be done
using a special function. When support for fine-grained shared virtual memory is im-
plemented, it will be possible to skip memory allocations and data movements, by
directly accessing the original variables from the device.
Currently, the module supports only plain kernels that don’t contain any OpenMP

constructs. The move to OpenCL 2.0 allowed full support of the declare target con-
struct. The devrt of the module is still being designed, so unfortunately we don’t have
any data to present.
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Chapter 8

Conclusions/Future Work

8.1 Current Status of the OMPi Compiler

8.2 Future Work

OpenMP is a widely used framework for shared memory programming. Its simple
and incremental approach allows developers to easily parallelize their code. This has
led to a wide adoption of OpenMP into a variety of commercial and research com-
pilers. The most significant directive is parallel which spawns multiple threads to
execute its body. OpenMP 3.0 expanded its applicability to not only loop-based par-
allelism but also task-based parallelism which encompasses irregular, recursive and
pointer-based applications, by the introduction of the task construct, which creates
work units that can be executed by any “free” thread.
OpenMP 4.0 brought a lot of exciting new constructs, and the device-related ones

are probably the most promising. They allow programmers to create programs that
can utilize the available hardware of a system, simply by surrounding the code they
want to offload with the target directive. Along with that comes target data directive
which allows allocating memory to the targeted hardware that persists between suc-
cessive kernel executions, declare target that marks functions that can be used on
the device and also can allocate variables with global scope and target update which
allows updating the variables created by target data and declare target.
Unfortunately there are some drawbacks in the way device constructs are defined.

Due to the fact that code executing on a device has access to nearly all OpenMP
constructs, a full OpenMP runtime must be available in each device. Not all devices
have the same power and capabilities, so making an efficient runtime for a device may
be hard or even impossible as a result of the limited resources available on it. Also
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the lack of a way to run device specific code hampers the ability to take advantage
of the true potential of the device. Finally there is no standard way to determine
information about the available devices during runtime, except from learning the
number of available devices.

8.1 Current Status of the OMPi Compiler

OMPi an open source OpenMP compiler which started back in 2001 and is be-
ing developed by Parallel Processing Group (PPG) of University of Ioannina, cur-
rently supports version 3.1 of the specification. It is available from PPG’s website at
paragroup.cs.uoi.gr. A special pre-compiled version is also available for the Parallella
board. A new version will be released soon incorporating our changes, and also bring
support for task dependencies and the cancel directive. In this thesis we:

• Redesigned outlining, to make it easy to use for new directive transformations.
Outlining is a technique used to move a block of code into a new function,
while the original code is replaced by a function call. Outlining is widely used
by compilers to implement OpenMP directives, including OMPi. The new imple-
mentation is independent of the parallel and task transformations. We unified
those two implementations and replaced them with an autonomous method,
that can be used to outline any block of code.

• We used our new outlining infrastructure to implement the target construct.
The body of the construct gets outlined into a new function which is placed
both in the main code that gets executed by the host, and in the kernel code
that is executed by the targeted device.

• We were the first to create a module for the Parallella Board and implement
full OpenMP on the Epiphany accelerator.

8.2 Future Work

Although the Epiphany module is feature complete, there is still room for improve-
ment. The runtime can be further optimized size-wise and performance-wise. The
compiler could possibly help in this direction by careful analysis of the code and
better code generation. It could also provide some insight to the runtime on what the
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kernel contains, allowing it to make better decisions, for example where to place the
data.
Another improvement would be having a resident kernel, instead of creating a new

one each for each target. A kernel would be offloaded onto the device, and stay
there for the duration of the program, doing nothing in-between target executions.
Because of the long overhead times we observed when offloading to the Epiphany
device, this technique could theoretically increase performance. On the negative side
more resources will be needed, since the code of all the kernel files would be loaded
for the duration of the program.
Another line of future work is clearly the support of more devices. In particular,

the completion of the OpenCL 2.0 module is of top priority. A possible candidate for
a feature module is the Intel® Xeon PhiTM coprocessor. Xeon Phi is currently the only
device supported by Intel’s compiler and gcc, and a module targeting Xeon Phi would
provide as with a common ground on which we can compare our implementation.
Unfortunately we lack access to a machine with such a coprocessor, and even if we
acquired a Xeon Phi, chances are that it would not work on the machines we have
available because it requires special hardware to operate on (there have been a lot of
reports with incompatibilities on non-Intel motherboards).
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Appendix

Examples of data-sharing attribute handlers:

Private Handler

int a = 0;

#pragma omp parallel private(a)

{

...

a++;

...

}

Original Code

int a = 0;

{

/* Call the new function through the runtime */

ort_execute_parallel(_thrFunc0_, (void *) 0, ...);

}

Replacement Code

static void * _thrFunc0_(void * __arg)

{

/* Create a new variable */

int a;

{ /* Below is the original code */

...

a++; /* Note that since the variable wasn't initialized the result is undefined */

...

}

}

New Function
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By Value Handler - By Name

int a = 0;

#pragma omp parallel firstprivate(a)

{

...

a++;

...

}

Original Code

int a = 0;

{

struct __shvt__ { /* The struct */

int (* a);

} _shvars;

_shvars.a = &a; /* Initialize struct members */

/* Call the new function through the runtime */

ort_execute_parallel(_thrFunc0_, (void *) &_shvars, ...);

}

Replacement Code

static void * _thrFunc0_(void * __arg)

{

struct __shvt__ { /* The struct */

int (* a);

};

/* Cast the argument struct */

struct __shvt__ * _shvars = (struct __shvt__ *) __arg;

/* Create a new variable and initialize it using the struct */

int a = *(_shvars->a);

{ /* Below is the original code */

...

a++;

...

}

}

New Function
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By Value Handler - By Copy

int a = 0;

#pragma omp task firstprivate(a)

{

...

a++;

...

}

Original Code

int a = 0;

{

struct __taskenv__ { /* The struct */

int a;

} * _tenv;

/* Allocate memory for the struct */

_tenv = (struct __taskenv__ *) ort_taskenv_alloc(sizeof(struct __taskenv__));

_tenv->a = a; /* Initialize struct members */

/* Call the new function through the runtime */

ort_new_task(_taskFunc0_, (void *) _tenv, ...);

}

Replacement Code

static void * _taskFunc0_(void * __arg)

{

struct __taskenv__ { /* The struct */

int a;

};

/* Cast the argument struct */

struct __taskenv__ * _tenv = (struct __taskenv__ *) __arg;

/* Create a new variable and initialize it using the struct */

int a = _tenv->a;

{ /* Below is the original code */

...

a++;

...

}

}

New Function
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By Result Handler

int a;

#pragma omp target map(from: a)

{

...

a = 1;

...

}

Original Code

int a;

{

struct __dev_struct {

int a;

} * _dev_data;

/* Allocate memory for the struct */

_dev_data = (struct __dev_struct *) ort_devdata_alloc(...);

/* Call the new function through the runtime */

ort_offload_kernel(_kernelFunc0_, (void *) _dev_data, ...);

/* copy back the results */

a = _dev_data->a;

ort_devdata_free(_dev_data, __ompi_devID);

}

Replacement Code

static void * _kernelFunc0_(void * __arg)

{

struct __dev_struct { /* The struct */

int a;

};

/* Cast the argument struct */

struct __dev_struct * _dev_data = (struct __dev_struct *) __arg;

int a; /* Create a new variable */

{ /* Below is the original code */

a = 1;

}

/* copy back the results */

_dev_data->a = a;

}

New Function
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Reduction Handler
int a = 0;

#pragma omp parallel reduction(+: a)

{

...

a = 1;

...

}

Original Code

int a = 0;

{

struct __shvt__ { /* The struct */

int (* a);

} _shvars;

_shvars.a = &a; /* Initialize struct members */

/* Call the new function through the runtime */

ort_execute_parallel(_thrFunc0_, (void *) &_shvars, ...);

}

Replacement Code

static void * _thrFunc0_(void * __arg)

{

struct __shvt__ { /* The struct */

int (* a);

};

/* Cast the argument struct */

struct __shvt__ * _shvars = (struct __shvt__ *) __arg;

/* Create a new private variable and initialize it according to the reduction type */

int a = 0;

{ /* Below is the original code */

...

a = 1;

...

}

/* Surround the reduction code with a lock */

ort_reduction_begin(&_paredlock0);

/* Update the reduction variable */

*(_shvars->a) += a;

ort_reduction_end(&_paredlock0);

}

New Function
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