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Papadimitriou Katerina.

MSc, Computer Science Department, University of Ioannina, Greece.
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Tomographic image reconstruction with spatially varying mixture models.

Thesis Supervisor: Christophoros Nikou.

Image reconstruction is a mathematical process through which an accurate image of an

object is reconstructed from multiple projections. Tomographic reconstruction strategies

have gained tremendous attention in the last decades, due to their crucial role in non-

invasive visualization of the interior of objects such as the human body. Applications of

these methods are, among others, radiology, geophysics and material science.

Although, several approaches have been proposed for solving the tomographic re-

construction problem, such as analytical reconstruction techniques, the main research

tendencies are centered on iterative image reconstruction. This approximation inevitably

requires repeated projection and back projection procedures, signifying that the estimated

image is progressively re�ned in a repetitive calculation.

The basic problem of tomographic reconstruction is the estimation of the attenuation

coe�cient, which leads to noisy data. This assumption is based on the knowledge that,

because of its blurring e�ect, the system (projection) matrix suppresses image detail.

Therefore any such detail present in the reconstructed image is more probably to have

been caused from noise. A regular method for addressing the problem of noise propagation

is the Bayesian maximum a posteriori (MAP) algorithm, which imposes a prior probability

on the image to be reconstructed and usually aims to encourage the image to be smooth,

so as to suppress the e�ect of noise.

The purpose of this study is the e�ective noise elimination and the preservation of

region boundaries in the reconstructed image. To this end, we present four models which

are based on maximum a posteriori estimation and use two di�erent priors: a Gaussian

mixture prior and a Gamma mixture prior. Simultaneously, in order to account for the

modeling of edges between image segments, appropriate MRF smoothness priors, which

are based on Student's t-distribution and Bernoulli distributions formalized as a line

process, on the contextual mixing proportions are employed, which model the existence

or not of boundaries. The overall algorithm consists of two alternating steps. At �rst,

the mixture model parameters are automatically estimated from the image and then the

vi



reconstructed image is estimated by optimizing the MAP criterion using the one-step-

late-EM (OSL-EM) or the preconditioned conjugate gradient (PCG) algorithms.
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ÅîïìÜëõíóç ìå ÷ùñéêÜ ìåôáâáëëüìåíåò ìéêôÝò êáôáíïìÝò óôçí ôïìïãñáöéêÞ áíáêáôáóêåõÞ

åéêüíùí

ÅðéâëÝðùí êáèçãçôÞò: ×ñéóôüöïñïò Íßêïõ.

¸íáò èåìåëéþäçò ôïìÝáò óôçí åðåîåñãáóßá åéêüíáò ó÷åôßæåôáé ìå ôï ðñüâëçìá ôçò

áíáêáôáóêåõÞò åéêüíáò áðü ðñïâïëÝò. Ï üñïò áíáêáôáóêåõÞ åéêüíáò åêöñÜæåé ôç ìáèçìáôé-

êÞ äéáäéêáóßá, ìÝóù ôçò ïðïßáò ðñïóðáèïýìå íá áíáêáôáóêåõÜóïõìå ìéá êáèáñÞ åéêüíá

åíüò áíôéêåéìÝíïõ áðü ðïëëáðëÝò ðñïâïëÝò, äçëáäÞ ôéò ôéìÝò ôçò Ýíôáóçò ôçò åîáóèåíçìÝíçò

áêôéíïâïëßáò ðïõ åîÝñ÷åôáé áðü ôï áíôéêåßìåíï. Ïé ìÝèïäïé áíáêáôáóêåõÞò åéêüíáò Ý÷ïõí

ãßíåé áñêåôÜ äçìïöéëåßò êáôÜ ôéò ôåëåõôáßåò äåêáåôßåò ëüãù ôïõ êñßóéìïõ ñüëïõ ôïõò óôç

ìç åðåìâáôéêÞ áðåéêüíéóç ôïõ åóùôåñéêïý ôùí áíôéêåéìÝíùí, üðùò ôï áíèñþðéíï óþìá.

ÅöáñìïãÝò ôùí ìåèüäùí áõôþí åßíáé, ìåôáîý Üëëùí, ç áêôéíïëïãßá, ç ãåùöõóéêÞ êáé ç

åðéóôÞìç ôùí õëéêþí.

Áí êáé Ý÷ïõí ðñïôáèåß äéÜöïñåò ðñïóåããßóåéò ãéá ôçí åðßëõóç ôïõ ðñïâëÞìáôïò ôçò

ôïìïãñáöéêÞò áíáêáôáóêåõÞò, üðùò åßíáé ïé óôñáôçãéêÝò áíáëõôéêÞò áíáêáôáóêåõÞò, ïé

êýñéåò åñåõíçôéêÝò ôÜóåéò åðéêåíôñþíïíôáé óôéò åðáíáëçðôéêÝò ìåèüäïõò áíáêáôáóêåõÞò.

ÁõôÞ ç ðñïóÝããéóç áðáéôåß åðáíáëáìâáíüìåíåò äéáäéêáóßåò ðñïâïëÞò êáé ïðéóèïðñïâïëÞò

ãéá ôçí åêôßìçóç ôçò åéêüíáò.

Ôï âáóéêü ðñüâëçìá ôçò ôïìïãñáöéêÞò áíáêáôáóêåõÞò åßíáé ï õðïëïãéóìüò ôïõ óõíôåëå-

óôÞ åîáóèÝíçóçò ðïõ ïäçãåß óå èïñõâþäç äåäïìÝíá. Ìéá äéáäåäïìÝíç åðáíáëçðôéêÞ ìÝèïäïò

ãéá ôçí áíôéìåôþðéóç ôïõ ðñïâëÞìáôïò ôçò äéÜäïóçò ôïõ èïñýâïõ åßíáé ç ìåãéóôïðïßçóç

ôçò åê ôùí õóôÝñùí ðéèáíïöÜíåéáò (MAP). Áýôç ç ôå÷íéêÞ óôï÷åýåé óôçí åîïìÜëõíóç ôçò

åéêüíáò êáôáóôÝëëïíôáò ôçí åðßäñáóç ôïõ èïñýâïõ.

Ï óêïðüò ôçò ðáñïýóáò ìåëÝôçò åßíáé ç áðïôåëåóìáôéêÞ åîÜëåéøç ôïõ èïñýâïõ êáé ç

äéáôÞñçóç ôùí áêìþí óôçí áíáêáôáóêåõáóìÝíç åéêüíá. Ãéá ôï óêïðü áõôü, ðñïôåßíïõìå

ôÝóóåñá íÝá ìïíôÝëá ôá ïðïßá âáóßæïíôáé óôç ìÝãéóôç åê ôùí õóôÝñùí åêôßìçóç (MAP)

êáé ÷ñçóéìïðïéïýí äýï äéáöïñåôéêÝò åê ôùí ðñïôÝñùí ðéèáíüôçôåò: ìéá ÃêáïõóéáíÞ ìéêôÞ

êáôáíïìÞ êáé ìéá ÃÜììá ìéêôÞ êáôáíïìÞ. ÐáñÜëëçëá, ðñïêåéìÝíïõ íá ìïíôåëïðïéçèïýí

ïé áêìÝò ìåôáîý ôùí ðåñéï÷þí ôçò åéêüíáò, êáôÜëëçëåò åê ôùí ðñïôÝñùí ðéèáíüôçôåò
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âáóéóìÝíåò óå ôõ÷áßá ðåäßá Markov (MRF), ìéá Student's t êáé ìéá Bernoulli êáôáíïìÞ,

åöáñìüæïíôáé óôá âÜñç ôùí óõíéóôùóþí ôçò ìéêôÞò êáôáíïìÞò, äçëáäÞ óôá äéáíýóìáôá

ðéèáíüôçôáò. Ç êýñéá óõíåéóöïñÜ áõôÞò ôçò åñãáóßáò åßíáé ç áðïôåëåóìáôéêüôçôá ôùí

ðñïôåéíüìåíùí åê ôùí ðñïôÝñùí ðéèáíïôÞôùí, ïé ïðïßåò ðáñÝ÷ïõí ìéá ïìáëÜ áíáêáôáóêåõáó-

ìÝíç åéêüíá äéáôçñþíôáò ôç äïìÞ ôùí áêìþí. Åðßóçò, üëåò ïé ðáñÜìåôñïé ôùí ìïíôÝëùí

õðïëïãßæïíôáé áõôüìáôá áðü ôá äåäïìÝíá.
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Chapter 1

Introduction

1.1 Tomography

1.2 Types of Tomography

1.3 Structure of the thesis

1.1 Tomography

Medical imaging comprises di�erent imaging modalities and processes to view human

body for diagnostic, monitoring and treatment purposes, and therefore has a crucial role

in the amelioration of healthcare. The progress in computer technology leads to the

evolution of improved medical imaging equipment, so that more accurate information can

be captured with non invasive methods.

A prominent technique for human internal structure imaging is tomography. Tomog-

raphy (Greek tomos= section, + graphein= record) ascribes the cross-sectional imaging

of a 3-D region of human body from either transmission or emission data, obtained by im-

pinging penetrating waves on the object from many di�erent directions. The in
uence of

this method in diagnostic medicine has been unprecedented, since it has enabled doctors

to view internal organs with exceptional precision and safety to the patient [1]. There-

fore, except from medicine, tomography has found extensive application in many scienti�c

�elds, including radiology, archaeology, biology, geophysics, astrophysics and others.

Tomographic imaging variations provide di�erent kind of information depending on

the di�erent types of data acquisition. Computed Tomography (CT) uses special X-ray

equipment to generate imaging of a cross section of the human body, while magnetic

resonance imaging (MRI) attains imaging of the internal body through magnetic �elds

and radio waves. On the other hand, Single Photon Emission Computed Tomography

(SPECT) is a nuclear medicine tomographic imaging technique utilizing Gamma rays and

1



Positron Emission Tomography (PET) is based on the detection of positrons, emitted by

a radionuclide in the region being examined. Optical tomography produces images from

light, which is transmitted and scattered through the body. Images of the conductivity

or permittivity of part of the body are gained through Electrical Impedance tomography

and are inferred from surface electrode measurements.

In general, tomography is based on the mathematical formula that was �rst expressed

by Radon in 1917 [3]. Computed tomography can be separated into two main categories:

a) the emission computed tomography and b) the transmission computed tomography.

The main di�erence between these two methods is the source of the photons. In emission

CT, the photon source is the object of interest, while in transmission CT the photon

source is outside the object. Tomographic imaging involves image reconstruction from

its projections, namely sinogram, computationally. Fundamentally, when radiation is

transmitted on the human body, a part of the energy penetrates the body. Then, using a

strip of absorption detectors on the other side, the amount of radiation is measured and

transferred to a computer system. A sophisticated computer system, in turn, calculates

and analyses data from each detector, and �nally estimates and reconstructs multiple or

two-dimensional cross-sectional images.

1.2 Types of Tomography

Although, the mathematical solution to the reconstruction problem was initially ex-

pressed by Radon in 1917, the revolution in tomographic imaging originated in 1972

with Houns�eld's invention of the �rst Computed Tomography (CT) scanner, using a

computer to produce cross-sectional images (slices) of the human brain through projec-

tion data. SPECT and PET methods are the most popular imaging technologies of this

category. In transmission CT the goal is to measure the linear attenuation coe�cients of

the internal organs using X-rays.

1.2.1 Transmission Computed Tomography

Computed tomography uses X-ray transmission measurements to generate a slice of the

human body. This is the most widely used type of CT and is currently one of the primary

applications in digital image processing in medicine. The X-rays are able to pierce the

body of the patient. However, the entire amount of radiation does not pass through

the body because a proportion of energy is dispersed within the body losing part of it.

During this scattering, a photon interacts with an electron into the body, transfer part of

the energy in it, and displaces the electron. X-ray then bounces in a new direction with

diminished energy. This is called Compton scattering and shown in Figure 1.1.

Another part of the energy vanishes in the body, altering the energy of the tissues

of the body. Radiation release into the human body may cause damage if the radiation

quantity is high. Assume that the intensity of the radiation before entering the object is

2



Figure 1.1: Compton Scattering.

I0, and the intensity after leaving the object is Id. Then, the two intensities are related

by:

Id
I0

= exp(−p) (1.1)

where p is the contour integral of linear attenuation coe�cient along X-rays and is given

by:

p = ln
I0

Id
(1.2)

The aim of tomography is to create an image with di�erent linear attenuation co-

e�cients within the body. The attenuation coe�cient, which is denoted by µ, is the

absorption's proportion of each material. Bones have higher values of µ, while soft tissues

have lower and air regions have even lower value. That's the reason why the tomographic

imaging is introduced in gray scale, which corresponds to escalations of attenuation coef-

�cients. The highest value corresponds to white, like bones and lowest in black.

First generation CT employs a pencil X-ray beam and a single detector as shown in

Figure 1.2 (a). This source-detector pair counts parallel projections, one sample at a

time, by stepping linearly across the object. After each projection, the source-detector

assembly rotates to a new position for the next projection [4].

The system was slow, however, with typical acquisition times of 4 min per section,

even for relatively low-resolution images [5].

Second Generation CT scanners act on the same principle as G1 scanners, however,

the beam used is in the form of a fan (Figure 1.2 (b)). This lets the use of multiple

detectors, thus demands fewer transportations of the source-detector pair.

Third Generation scanners are a signi�cant enhancement over the earlier two gener-

ations of CT geometries. As Figure 1.3 (a) shows, G3 scanners use a bank of detectors

in order to cover the entire �eld of view of a beam. Consequently, each increase of angle
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(a) (b)

Figure 1.2: (a) First Generation CT. (b) Second Generation CT.

generates a whole projection, erasing the requirement of translating the source-detector

combination, as in geometry of G1 and G2 scanners.

(a) (b)

Figure 1.3: (a) Third Generation CT. (b) Fourth Generation CT.

Fourth Generation scanners (Figure 1.3 (b)) move a step beyond. By utilizing a

circular ring of detectors only the source has to spin. The advantage of G4 is the high

speed but the need of greater X-ray scatters, which lead to more cost, is the main drawback

of these scanners.

1.2.2 Emission Computed Tomography

Emission CT utilizes decay of radioactive isotopes to illustrate the distribution of the

isotope as a function of time. These isotopes may be medicated to the patient in the form

of radiopharmaceuticals either by injection or by aspiration. Thus, by administering a
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radioactive isotope, the path of the isotope can be traced through the entire of the body.

Radioactive isotopes are characterized by the emission of Gamma-ray photons or

positrons, both products of nuclear decay. The concentration of such an isotope, in any

cross section, changed over time due to radioactive decay, 
ow, and biochemical kinetics

within the body. This entails that all the data for one cross-section must be gathered in

a time interval that is short, compared to the time constant associated with the changing

concentration. This aspect provides emission CT with great capabilities and utility in

diagnostic medicine, because now by analysing the images taken at di�erent times for the

same cross section the functional state of various organs in a patient's body can be deter-

mined [1]. Emission CT consists of two kinds: single photon emission CT and positron

emission CT.

Single photon emission Computed Tomography (SPECT)

Single photon emission CT employs Gamma camera, which obtains multiple 2D images

from various angles. Subsequently, it is pursued by the tomographic reconstruction pro-

cedure, accomplishing a 3D representation. These 3D data can be managed accordingly

in order to acquire thin sections along any desirable axis.

The principal di�erence between SPECT and PET scan is that in the case of SPECT

Gamma radiation is emitted and estimated straightforward, while in PET there are

positron emission decays into two photons.

More speci�cally, the Gamma camera rotates around the patient, and simultaneously,

gets views at intervals of 3 to 6 degrees. The time required to achieve each projection is

15 to 20 seconds so the total time amounts to 15 to 20 minutes. Nonetheless, multiple

Gamma cameras can decrease the execution time [1].

Positron emission Computed Tomography (PET)

To conduct the scan, an isotope enters the body of the patient. There is a waiting interval

until the gist to be expanded across the tissues of body, and afterwards, the patient is

placed in the imaging scanner. The scanning process takes at most 1 hour and during

this period the concentrations of the substance in di�erent tissues are recorded.

The isotopes that are used in PET are unlike these used in other positron emission

modalities such as SPECT. Most of them are short-lived and their selection is based on

the organ under investigation. The radiopharmaceuticals have radionuclides, which are

positron transmitters. Positron is an elementary particle, which has the same mass as an

electron and has a positive electrical charge. When the positron is emitted, it interacts

with surrounding tissue and �nally is devastated with an electron, resulting in energy loss.

The result of annihilation is the production of a pair of photons of Gamma radiation, which

run at about opposite directions. The photons are detected when they reach a scintillator

the scanning device, causing a burst of light detected by photomultiplier tubes or silicon

avalanche photodiodes [1].
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1.3 Structure of the thesis

Filtered back-projection is a direct algorithm that is mainstream in the reconstruction

problem, both because of its speed and its accuracy. The projection data collected are

associated with the Fourier transform of the object, which is illustrated through the

Fourier slice theorem. Moreover, based on this theorem, the 2D inverse Fourier transform

can be forged to generate the �ltered back-projection (FBP) algorithm [1]. Filtered Back

Projection is presented in Chapter 2, including the Radon transform which constitutes

the foundation of FBP technique.

In the early 1980's, new methods of image reconstruction in emission tomography

were proposed, which could overcome some drawbacks of the aforementioned conventional

methods. These methods could take into account physical traits of emission tomography,

such as the Poisson nature of photons, and many other factors leading to better outcomes,

by combining these with multiple iterations of reconstruction. For that reason they are

termed as statistical iterative reconstruction algorithms. Such iterative reconstruction

techniques may result in more execution time but, also, in substantially less noisy images

through complex modeling of detector response and of the statistical behavior of measure-

ments. Therefore, the most dominant iterative algorithms which are based on statistical

estimation criteria are presented in Chapter 3.

In Chapter 4 we focus on one of these iterative reconstruction techniques called Max-

imum A Posteriori Expectation Maximum (MAP-EM) reconstruction. MAP-EM with

a Gibbs prior has proven to produce more precise images than �ltered back projection

algorithms. We propose four di�erent models, which are called spatially varying mixture

models, and are carried out through a Gaussian mixture and a Gamma mixture prior.

Concurrently, in order to model the existence of boundaries, appropriate MRF smooth-

ness priors, which are based on Student's-t and Bernoulli distributions formalized as a

line process, on the contextual mixing proportions are employed. These formulas may

not only potentially reduce the noise in the system, due to photon scattering, neverthe-

less they preserve region boundaries. Finally, a discussion of these new models and the

experimental results are detailed.

Conclusions and an outline of possible future work is given in Chapter 5.
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Chapter 2

Basic Principles of Image Reconstruction

2.1 Introduction

2.2 The Radon Transform

2.3 The Fourier-Slice Theorem

2.4 Reconstruction by Filtered Backprojection

2.1 Introduction

Image reconstruction is a mathematical procedure that generates images from ray projec-

tion data, acquired at many di�erent angles around the region of interest. This process has

a decisive in
uence on image quality and, therefore, it is signi�cant to reconstruct images

with the lowest possible noise without sacri�cing image accuracy and spatial resolution.

The problem of reconstructing is important and can be explained in a straightforward

natural manner. To begin, consider Fig. 2.1(a) which is composed of two objects on

a uniform background. Consider it as a cross section of a region of the human body.

Suppose that a thin, 
at beam of rays traverses from left to right and that the energy of

the beam is absorbed more by the objects than by the background. Then, the detector

on the other side provides the signal shown, which is proportional to absorption. Any

point in the signal is the sum of the absorption values across the single ray in the beam

corresponding spatially to that point. The reconstruction begins by creating an image

based on just this information, thus, the 1-D signal is projected back across the direction

from which the beam came, as Fig. 2.1(b) shows. The process of back-projecting a 1-D

signal across a 2-D area means duplicating the same 1-D signal across the image to the

direction of the beam.

Next, suppose that the position of source-detector pair is rotated by 90◦, as in Fig.

2.2(a). Repeating the previous operation, a back-projected image in the vertical direction
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(a) (b)

Figure 2.1: (a) Two objects, an input parallel beam and a detector. (b) The result of back-

projecting the 1-D absorption pro�le.

is accomplished. Fig. 2.2(b) arises from adding the two back-projections. It is unambigu-

ous that the objects of interest are included in the squares shown. However, the shape of

(a) (b)

Figure 2.2: (a) The beam and detector rotated by 90◦. (b) The intensity of the two individual

back-projections.

the objects is not obvious, so, by taking more views in the way just presented the shape

is revealed. As the number of projections increases, brighter regions dominate the result

and back-projections with few or no intersections fade into the background [4]. Figure 2.3

illustrates this concept. The approach just described is called backprojection. Although

the reconstructed image is a reasonably good approximation to the shape of the original

object, the resulting image is blurred. Blurring issue in image reconstruction is crucial

and its solution is addressed in Section 2.4.

The goal of image reconstruction is to use the data gathered by the detectors in

order to frame the image of the object. There are two major categories of reconstruction

methods. The �rst is the analytic and is based on the Fourier transform of the object

and its projections. Analytical reconstruction is currently extensively used on clinical

CT scanners because of their computational e�ectiveness and numerical constancy. Many

methods based on this approach have been elaborated for di�erent generations of CT data

procuring geometries, from axial parallel-beam and fan-beam CT to current multi-slice

helical and cone-beam CT.

This Chapter will brie
y deliberate how this reconstruction is conducted. Firstly, the

Radon transform is introduced which delimits the relationship between the object and
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Figure 2.3: Reconstruction using an increasing number of backprojections. The original object

is shown at the bottom.

its projections. Then, the Fourier slice theorem will be presented. It is shown that this

theorem is essential to the Filtered Back Projection (FBP) method, which reconstructs

the object from its projections. The second approach is the iterative methods that model

the data collection process and attempt to �nd the image that is most compatible with

the measured data. The iterative algorithms will be analysed in Chapter 3.

2.2 The Radon Transform

The foundation of analytical reconstruction methods is the Radon transform [2], which

relates a 2D function f (x, y) to the set of line integrals of that function. For now on, only

projections of two-dimensional objects will be considered. Assume that parallel beams

are used and that a ray penetrates the object, which is represented by a function f (x, y),
like Figure 2.4 illustrates. The parameter R is the shortest distance from the origin of the

coordinate system to the ray, and θ is an angle corresponding to the angular orientation

of the ray. The signi�cance of the normal parameters that stipulate the position of the

ray are shown in Fig. 2.5.

The ray can be parametrized as x cos θ + y sin θ = R and, in general, the projection

gθ(R) of a function f (x, y) is the line integral of the values of f (x, y) along the line

inclined at an angle θ from the x-axis at a distance R from the origin:

gθ(R) =
∫

R∈line
f (x, y)dR (2.1)

More precisely, an arbitrary point in the projection signal is given by the ray-sum

along the line x cos θ + y sin θ = R. Because an integral is basically a sum of values,

the value gθ(R) is the sum of the values f (x, y) along the line in the xy-plane. For this
reason, gθ(R) is called a ray-sum and is given by:

gθ(R) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(x cos θ + y sin θ − R)dxdy. (2.2)
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Figure 2.4: Geometry of the line integrals associated with the Radon transform.

Figure 2.5: The normal parameters that stipulate the position of the line.

where δ(·) is the Dirac delta function.
This equation, which gives the projection (line integral) of f (x, y) along an impulsive

line in the xy-plane is called as the Radon transform of the function f (x, y), on account

of Johann Radon who proposed the formula in 1917 [3].

Consequently, by applying the Radon transform on an image f (x, y) for a given set

of angles, the projection of the image along the given angles could be computed. The

resulting projection is the sum of the intensities of the pixels in each direction and is a

new image gθ(R). On account of this, in the discrete case (2.2) becomes:

gθ(R) =
M−1

∑
x=0

N−1

∑
y=0

f (x, y)δ(x cos θ + y sin θ − R)dxdy (2.3)

with x, y, R and θ now being discrete variables. If θ is �xed and R varies, then (2.3)

aggregates the pixels of f (x, y) along the line determined by the particular values of these
two parameters. Reoccurring for all values of R engenders one projection. Changing θ

and repeating the foregoing transaction accrues another projection, and so forth. This is

precisely how the projections in Section 2.1 were generated. [4]
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When the Radon transform, gθ(R), is displayed as an image with R and θ being

rectilinear coordinates, the result is called sinogram. A sinogram contains the data nec-

essary to reconstruct f (x, y). To get a feeling of what the Radon transform is, the

transform is applied to an example image. Figure 2.6(b) shows the Radon transform of

the Shepp− Logan head phantom, this phantom is used throughout all experiments.

(a) (b)

Figure 2.6: (a) The Shepp-Logan phantom and (b) its sinogram.

2.3 The Fourier-Slice Theorem

The aim of image reconstruction is to �nd the 2-D object f (x, y) given the set of 1-

D projection signals, gθ(R), obtained at various projection angles. If the 1-D Fourier

transform of a projection with respect to R is:

Gθ(ω) =
∫ ∞

−∞
gθ(R)e−j2πωRdR (2.4)

with ω being the frequency variable, then substituting (2.2), the expression as emerges

is:

Gθ(ω) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2πω(x cos θ+y sin θ)dxdy. (2.5)

By letting u = ω cos θ and v = ω sin θ, the equation 2.5 changes into:

Gθ(ω) =

[∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2π(ux+vy)dxdy

]
u=ω cos θ;v=ω sin θ

. (2.6)

This expression is recognized to be equal to F(x cos θ; y sin θ) where F(u; v) is the 2-D
Fourier transform of the original 2-D function f (x; y):

F(u, v) =
∫ ∞

−∞
f (x, y)e−j2π(ux+vy)dxdy. (2.7)

Thence, (2.6) turns into:

Gθ(ω) = [F(u, v)]u=ω cos θ;v=ω sin θ . (2.8)
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Figure 2.7: The Fourier slice theorem.

Equation (2.8) is the Fourier slice theorem in image reconstruction from projections

which is the basis of image reconstruction. The Fourier slice theorem declares that the 1-

D Fourier transform is equal to a slice of the 2-D Fourier transform of the image estimated

along a radial pro�le at angle θ with respect to the x-axis. This is schematically shown

at Figure 2.7.

2.4 Reconstruction by Filtered Backprojection

As mentioned in Section 2.1, acquiring back-projections directly, returns blurred images.

This problem may be solved by �ltering the projections before computing the back-

projections. The �ltered back-projection method (FBP) relies on the result of the Fourier

slice theorem. In this manner, using this result one can construct the two-dimensional

Fourier transform of the object with the parallel projection data. Implementing a two-

dimensional inverse Fourier transform would then yield the original object.

FBP method can arise by writing the previous equations in a di�erent way. We can

write the 2-D inverse Fourier transform of the image f (x, y) in polar coordinates as:

f (x, y) =
∫ 2π

0

∫ ∞

−∞
F(ω cos θ, ω sin θ)ej2πω(x cos θ+y sin θ)ωdωdθ. (2.9)

Then, using the Fourier Slice Theorem and the property [1] G(ω, θ + π) = G(−ω, θ),

the 1-D Fourier transform of the projection at angle θ is transmuted into:

f (x, y) =
∫ π

0

∫ ∞

−∞
|ω|Gθ(ω)ej2πω(x cos θ+y sin θ)dωdθ = (2.10)∫ π

0

[∫ ∞

−∞
|ω|Gθ(ω)ej2πωRdω

]
R=x cos θ+y sin θ

(2.11)

The second equation is owed to the fact that the term x cos θ + y sin θ is the constant R.
Equation (2.11) represents the estimation of the object f (x, y) using the Fourier

transform of the projection data. The inner expression of the equation denotes a one-
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dimensional �lter function, with |ω| being a ramp �lter and, for that reason, the image

f (x; y) can be found by �rst �ltering the projections with a ramp �lter, and then integrat-
ing these �ltered projection values at the coordinate (xcosθ + ysinθ) over all projection

angles θ. [4]

Summarizing the implementation of �ltered backprojection is:

• Get the 1D Fourier transform of each projection.

• Multiply it by the �lter function |ω|.

• Obtain the inverse 1-D Fourier transform.

• Integrate all inverse transforms.

The �ltered back-projection method (FBP) is a deterministic method that is based

on the Fourier slice theorem and, thereby, on the inverse Radon transform. In order

to retrieve a reconstruction of the object, a trans�guration of the measurements in the

frequency domain back to the spatial domain is required. The FBP method occurs the

interpolation in the spatial domain and these transformations are then multiplied by a

weighting function. This approach is widely used in clinics due to the computational

simplicity and convergence speed. On the other hand, FBP supplies suboptimal image

quality, since the noise in the data is ignored. A resolution to this issue may be a reduction

at the cut-o� frequency of the ramp �lter |ω|, which diminishes the amount of noise in

the resulted images, though leads to loss of resolution. Figure 2.8 shows the bene�ts of

FPB without and with a Hamming window.

(a) (b)

Figure 2.8: Shepp-Logan phantom reconstructed by (a) non �ltered backprojection and (b)

�ltered backprojection using a Hamming window.
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Chapter 3

Iterative Image Reconstruction

3.1 Introduction

3.2 General Concept of Iterative Methods

3.3 Statistical Model of Event Counts

3.4 Image reconstruction criteria

3.5 Iterative Reconstruction Algorithms

3.1 Introduction

Despite the e�ciency and elegance of analytical approaches, the precision of the resulting

images is restricted by the approximations of the reconstruction formula. In contrast,

iterative methods, which are elaborated in this chapter, can assimilate explicitly the

mapping between the source and the sinograms. As mentioned, another de�ciency of the

analytic techniques is that they do not take into consideration the statistical variability,

that pertains to photon inadequate detection. Even though, the resulting noise can be

restrained by diversifying the cut-o� frequency of the ramp �lter, this type of �ltering

is less su�cient in e�ectuating an optimal trade-o�, since the noise is signal reliant. On

the other hand, momentous physical factors can be more accurately incorporated into

iterative reconstruction, rendering lower image noise and higher spatial resolution [7].

The iterative reconstruction (IR) methods include statistical reconstruction (SIR) al-

gorithms and algebraic reconstruction techniques (ART). ART reckon that the cross sec-

tion involves an array of unknowns and a system of linear equations have to be solved

iteratively, in terms of the measured projection data. Unfortunately, ART are less distin-

guished than the statistical ones in the tomographic �eld. In the late 1990's, SIR methods

were initially presented commercially for reconstructing purposes of SPECT and PET,
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after many years of academic research, replacing FBP algorithm clinically for PET and

SPECT. Complete SIR methods for X-ray CT was dispensable in about 2011, intending

to limit patient X-ray dose. Latest clinical surveys on early versions of iterative recon-

struction indicated a potential dose diminution of up to 65 % compared with FBP-based

reconstruction algorithms.

Iterative reconstruction techniques adopt a generalized linear model, that enables the

integration of essential corrections for image degrading e�ects, such as attenuation, scatter

and depth-dependent resolution. Speci�cally , IR methods associate the unknown object

with the ideal measurements in the absence of noise. This is obtained by incorporating

probabilistic models of the noise and, in the case of Bayesian methods, of the image itself.

The price of these enhancements is the high computational e�ort, since the analytic form

of the solution is impractical to compute. Hence, most reconstruction algorithms that

attempt to incorporate a precise imaging model are iterative, namely, the object is pro-

gressively estimated through a repetitive calculation, which leads to excessive processing

time. In the beginning, this shortcoming prevented the transition of iterative techniques

from the research lab to the clinic, however, now are widely accepted, owing to the ad-

vances in computer speed and the development of e�cient modeling techniques and fast

reconstruction algorithms.

Iterative algorithms require repeating executions of projection and back-projection

processes. More precisely, projection data are evaluated based on an initial attenuation

coe�cients of all pixels. Then, the projections corresponding to the current estimate are

compared with the measured projections, and the pixel attenuation values are revised

until a desired level of error between the predicted and measured data is obtained.

Firstly, a classic image reconstruction mechanism performed in tomography, is the

maximum likelihood expectation maximization (MLEM) algorithm. However, major

drawbacks of MLEM algorithm such as the slow convergence and high computational

cost enforced Hudson and Larkin to elaborate the ordered subsets expectation maximiza-

tion (OSEM) algorithm [10]. The OSEM algorithm is an e�cient variation of the MLEM

which intended to diminish reconstruction time and cost and to facilitate clinical use [10].

Later, Browne and De Pierro, in order to enhance the convergence, developed the row

action maximum likelihood algorithm (RAMLA) [11].

A regular method for manipulating the problem of slow convergence rate and noise

propagation is the Bayesian maximum a posteriori (MAP) algorithm which imposes a

priori information as a regularization constraint and ampli�es the spatial smoothness of

reconstructed image. A wide range of priors are reviewed and proposed in the literature.

Particularly, a popular Bayesian prior is the Gibbs distribution, whose computational

process relies on the local di�erences between neighboring pixels. Another prior is the

Total Variation, which suppresses unstable oscillations while preserving object edges. This

chapter presents the general principles of iterative image reconstruction and a classi�cation

of iterative methods into a few major types.
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3.2 General Concept of Iterative Methods

A tomographic reconstruction problem can be framed as follows: Find the object dis-

tribution f, given a set of projection measurements g and the system matrix H, which

describes the relationship between object f and the projection g (Fig. 3.1).

Figure 3.1: A general model of tomographic projection in which the measurements are given by

weighted integrals of the emitting object distribution. [12]

Without loss of generality, in this review the problem of two-dimensional image re-

construction is described. For computing purposes, the reconstructed image cannot be

represented by a continuous domain function; alternatively, a sampled version of the im-

age, in a discrete domain, is estimated (Fig.3.2).

Figure 3.2: A discrete model of the projection process.
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Thus, by using vector notation to express relationships in linear imaging system and

assuming the unknown function f and the response functions h belong to Hilbert vector

space, g is identi�ed as an inner product between the vector h and f. This may be

expressed in vector notation by the following system of linear equations:

gj = hT
j f, j = 1, ..., P (3.1)

where, P is the total number of detector tubes and the superscript T denotes the transpose

operation, which converts a column vector into a row vector. All equations implied by

(3.1) may be summarized by a single matrix equation as:

g = Hf. (3.2)

Here, hj is the j-th row of the projection matrix H, and each element of f, denoted by

fi, i = 1, ..., N, represents one pixel in the image space. The point-spread function hi(x)
depicts the e�ects of attenuation and all linear sources of blur.

Each pixel is correlated with a basis function bi(x), which converts the continuous-

domain function into pixel values. The most regular pixel basis functions are those that

are constant within small, non overlapping rectangular regions systematized in a rectan-

gular grid [12]. In this case, the pixels are intended to interpret the standard number of

emissions from within that pixel. However, there are other appropriate basis functions,

such as Gaussian basis functions or �nite-element models that adapt to the content of the

image.

The projection area is also discrete, with the projection data symbolized by the vector

g. Elements of g are remarked as projection bins, and every projection measurement is

matched with one bin. In addition, bins are generally sampled uniformly.

Since the data are innately discrete and the detection process linear, the mapping

between the source image and the expected value of the true coincidence data can be

represented by a forward projection matrix, H, which appears in (3.2) (Figure 3.3). The

system matrix H is a P× N matrix, with elements, hji, containing the probabilities of

detecting an emission from pixel site i at detector pair j. It is in the stipulation of H that

the projection process can become simple or composite because the measurement of a

projection bin is a weighted sum of intensities of the image pixels. In the Radon case, the

matrix elements are determined according to the concern that a projection bin accepts

contributions only from pixels that are intersected by a given ray and the contributions

of other pixels are set to zero. A more sensible case is presented by the linear model

wherein a projection bin receives contributions from many weighted pixels, in accordance

to the a�ectability of the projection bin to each pixel. These contributions are related to

attenuation, detector response, and scatter and can be estimated from knowledge of the

system design.
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Figure 3.3: Illustration of a single element of the system model H.

3.3 Statistical Model of Event Counts

The basic process of iterative reconstruction is to discretize the image into pixels and

treat each pixel value as an unknown. Then a system of linear equations can be set up

according to the imaging geometry and physics. Nevertheless, we have concerned just the

average behavior of the imaging system and have ignored the variability in the photon-

counting process. Taking into account the randomness in the projection data, (3.2) should

be written as:

E[g] = Hf (3.3)

where E[·] denotes the expectation operator.

3.3.1 The Poisson model

Proper statistical modeling constitutes the base of statistical iterative reconstruction. The

statistical models relates how the projection measurements vary around their expected

mean values and is derived from our basic understanding of the acquisition process. Sta-

tistical iterative reconstruction leads to good bias and variance attainment in nuclear

medicine. The Poisson noise model is critical to accurate analysis of photon-limited image

data. In this model the numbers of events detected in the projection bins are indepen-

dent of one another, thereby, the Poisson probability law states that the probability the

random vector of Poisson distributed photon counts equals the true photon counts, given

a vector of emission rates, f, is formulated as:

p(g; f) =
P

∏
j=1

gj
gj exp(−gj)

gj!
(3.4)

where gj is the j-th element of E[g] = Hf:
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gj =
N

∑
i=1

hjifi (3.5)

The Poisson model is a good description of tomographic data and is widely used in

tomography �eld. Applications of the linear Poisson image model, are obtained under

photon-limited imaging conditions, emission tomography, gamma-ray astronomy, and 
u-

orescence microscopy [13]. Also, there are other probability models that are often used,

such as approximations of the Poisson, shifted Poisson and Gaussian models, which have

been proposed to improve model accuracy and for practical computation reasons.

3.3.2 The Gaussian model

As noticed, another image formation model, the Gaussian noise model arises from the

transformation of Poisson data. Gaussian model is only e�ective in cases in which the

number of photon counts is su�ciently high. The Poisson model in (3.4) can be approxi-

mated by the following Gaussian probability density function:

p(g; f) = k exp[−1
2

P

∑
j=1

(gj − gj)
2

gj
] = k exp[−1

2
(g−Hf)TC−1(g−Hf) (3.6)

where k is a normalizing constant, and C = diag(g1, ..., gP) is the covariance matrix of g.
This conjecture is sensibly accurate when the mean numbers of events gj are 20 or greater.

Otherwise, at low counts, the Poisson distribution becomes asymmetric about its peak,

whereas the Gaussian distribution is always symmetric. Negative values of the elements

of g have a probability of zero in the Poisson law, though the Gaussian approximation

tolerates negative values. In this manner, Poisson based algorithms often have involved

constraints of non negativity, on the contrary, Gaussian based algorithms mandate further

constraints to achieve non negativity.

3.4 Image reconstruction criteria

Image reconstruction could be viewed as the problem of �nding an image that ful�ls the

constraints prescribed by the measured data and prior knowledge. This is the foundation

for a variety of algorithms, which posit that each projection measurement gj = hT
j f,

j = 1, ..., P de�nes a hyperplane in which the solution f must lie. The core of all these

methods is that they intend to satisfy the known constraints. However, the problem is

complicated when the data are corrupted by noise [12].

The feebleness of these techniques is that there is no formula for integrating an explicit

statistical model of the data. Although, these methods attracted considerable interest so

soon in the development of tomography, they have been substituted by the maximum-

likelihood and Bayesian methods described below.
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3.4.1 Maximum-Likelihood criterion

The Maximum-Likelihood (ML) criterion is a statistical estimation criterion. In the ML

criterion, it is presumed that the probability p(g; f) for the vector g is governed by a

set of unknown deterministic parameter, the vector f, which is the object distribution

we aim to reconstruct. In this framework, p(g; f) is called the likelihood function, which

is denoted by L(f). In the maximum likelihood problem, the goal is to �nd the image,

among all possible images, that is the �nest estimate of the true image and, consequently,

maximizes L. Explicitly, ML criterion forms a direction on choosing the reconstructed

image f̂ to be the object function f for which the greatest likelihood p(g; f) is achieved.
In this sense, the ML criterion courts a solution which is statistically consistent with

the observed data, and can be stated simply as follows:

f̂ = arg max
f

p(g; f) (3.7)

namely, �nd the value of f for which p(g; f) is greatest. Maximum likelihood estimation

is a totally analytic maximization procedure. Moreover, ML estimators and likelihood

functions generally have very desirable large sample properties. Initially, they become

unbiased minimum variance estimators as the sample size increases. Secondly, they have

approximate normal distributions and approximate sample variances that can be calcu-

lated and used to generate con�dence bounds, which makes them less susceptible to noise

than other unbiased estimators [12]. In other words, likelihood functions can be used to

test hypotheses about models and parameters.

Unfortunately, tomographic reconstructed images using the ML criterion have two im-

portant drawbacks. Despite of the fact that they obtain the least variance among unbiased

estimators, the variance is still high, and with small number of failures they can be heav-

ily biased and the large sample optimality properties do not apply. Therefore, a certain

amount of bias can be permitted in the reconstructed image by inserting spatial smoothing

in the images, which diminishes the noise at the expense of reduced �delity in the mean.

Smoothing can achieved explicitly through Bayesian methods, which are described nextly,

or implicitly via stopping rules. Moreover, calculating ML estimators requires specialized

software for solving complex non-linear equations. This is overcomed as time passes, as

more statistical packages have updated to contain ML estimation analysis capability.

3.4.2 Maximum a Posteriori criterion

The ML method suggest a classical estimation criteria, which rests in the assumption

that f is unknown but deterministic. Deterministic solutions to the measurement proceed
directly from them and not from any other information. They are typically implemented

without regard to the impact of noise, which always appears in actual measurements. In

contrast, Bayesian approach relies on the presumption that the unknown image f to be

reconstructed is a random selection from an identi�able ensemble of similar images and

can, thence, be labelled by a PDF, p(f), that is known in advance of data collection.
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This PDF, called the prior, allows the experimenter to adjust the reconstructed image in

order to coincide to his anticipation into the process. By using this prior information, it

is expected that a signi�cant estimate of the null space component of the reconstruction

will be supplied, thereby decreasing the artifacts. The Bayesian methods enable prior

information about the structure of the reconstructed object to be employed to estimate

the null space components of the solution [14].

Bayesian estimation, by incorporating prior information through the choice of a prior

distribution for a random �eld, has already been proved to be an e�ective solution to the

ill-posed reconstruction problem. Based on Bayesian theory, a common contextual con-

straint can be reshaped into prior knowledge to regularize the solution of the reconstruc-

tion problem. Wherefore, the regularization through prior information can be in
icted

on image reconstruction process to con�ne noise e�ciently. The ambition of Bayesian

analysis is ordinarily to assist the reconstructed image to be smooth, so as to limit the

noise e�ect. Speci�cally, a low probability is allocate to solutions that have subtle details,

which are probably emerged from noise. This surmise is based on the knowledge that,

due to blurring e�ect, the imaging system H moderates image features.

Bayes' theory expresses the outcomes of accepting one image solution over another,

in the form of a quantity called the loss function, which is denoted by λ(f, f̂). This loss
function appreciates the degree to which the reconstructed image f̂ and the true image f
deviate. The loss function utilized in tomography image reconstruction is:

λ(f, f̂) =

0,
∣∣∣f− f̂

∣∣∣ < δ

1, otherwise
(3.8)

where δ is a positive constant, and |·| indicates the L1 norm. This loss function declares

that the reconstructed image f̂ is adequate when it is su�ciently close to the true image

f and not admissible when results are less infallible.

Bayesian methods attempt to �nd the criterion that will minimize the average loss

when this criterion is exploited. Minimization of (3.8) leads to the maximum a posteriori

criterion, which outlines the pick of the value of f that maximizes the posterior PDF,

p(f, g). The MAP estimate is given by:

f̂ = arg max
f

p(f; g). (3.9)

According to Bayes' formula, given by:

p(f; g) =
p(g; f)p(f)

p(g)
, (3.10)

Thence, (3.9) can be rewritten as follows:

f̂ = arg max
f

p(g; f)p(f)
p(g)

. (3.11)
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By taking the logarithm of the quantity to be maximized, and ignoring p(g) because
it does not depend on f, the MAP criterion can be simpli�ed to the following form:

f̂ = arg max
f

[ln p(g; f) + ln p(f)] (3.12)

From (3.12), it seems that maximum likelihood estimation is equivalent to MAP es-

timation with a prior distribution, which is uniform over the feasible reconstruction set.

MAP image reconstruction o�ers an improvement over ML method, because, it uses the

logarithm of the prior to penalize solutions that do not agree with the projected prop-

erties. Speci�cally, the maximization in (3.12) attempts to generate an image that is

consistent with the data while not being too noisy.

Generally, the MAP criterion allows us to inject into the estimation our prior beliefs.

MAP estimation outweighs ML criterion for an extra reason, which is the sharpness of the

function that must be optimized, in opposition with the likelihood function and leads to

more e�cient iterative reconstruction algorithms. Figure 3.4 shows the e�ect of the prior

on a ML objective function. The sharpness of the prior around its peak determines that

the resulting MAP solution approaches the peak of the prior. Obviously, if the peaking

of the prior is extreme, then the resulting solution will depend primarily on the prior and

the measured data will be ignored which can be avoided by using a weak prior, so that

the solution captures the main properties of the ML solution while pushing the solution

slightly to a direction that emphasizes smoothness [12].

Figure 3.4: Comparison of objective functions in a simple 1D example [12].

3.5 Iterative Reconstruction Algorithms

Tomographic images have been reconstructed from raw data using �ltered back projec-

tion since the inception of the modality. The standard FBP algorithm operates on several

fundamental conjectures about scanner geometry but is basically a compromise between

reconstruction speed and image noise. Various assumptions about scanner geometry are
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compounded with multiple iterations of reconstruction which is termed iterative recon-

struction. Iterative methods improve the analytical approach, because they take into ac-

count noise in the observations and can apply a more realistic model. These improvements

occur at the expense of complexity, since they yield on mathematical problems without

a direct analytic solution or with an analytic solution that cannot be solved with cur-

rent processing capabilities. Therefore, these more realistic approaches are often replaced

by methods that successively improve an estimate of the unknown image. This itera-

tive process results in a potentially more accurate estimate than analytical reconstruction

methods, via considerable computational requirements. Progress in computation speed

and optimized algorithms have reduced the computational burden of these methods, per-

mitting their growing clinical acceptance. The advantage of the discrete approach for

iterative algorithms is that the entire acquisition process, including the interaction of the

photons with the object, the collimator and the detector, can be incorporated directly.

This is very complicated and therefore di�erent approximations have been proposed to

reduce the calculation time [15].

An additional bene�t of iterative reconstruction methods is the substantially less image

noise from the same raw data through more complex modeling of detector response and

of the statistical behavior of measurements. Iterative algorithms ground in an precise sys-

tem model which incorporates the collimator response function, the attenuation, and the

scatter. Iterative image reconstruction methods comprise a criterion for choosing the best

image, combined with an algorithm for estimating that image. Many di�erent iterative

approaches for solving the tomographic reconstruction problem have been investigated,

but they share some common properties. The principle of the iterative algorithms is to

compute a solution by iterative estimates. The projections corresponding to the current

estimate are compared with the measured projections. The result of the comparison is

used to modify the current estimate, thereby creating a new estimate. The algorithms

di�er in the way the measured and estimated projections are compared and the kind of

correction applied to the current estimate.

More precisely, the process initiates with an initial estimate f̂(0) of the pixel intensities
in the image. A projection step is imposed on the current image estimate f̂(t), which
outputs a set of projection values ĝ(t) that would be expected if f̂(t) were the true image.
The resulting projections ĝ(t) are, then, compared with the actual measured data g in

order to create a set of projection-space error values eg. These are mapped back to the

image space through a back projection process to generate image-space error values e f

that are used to update the image estimate, which becomes the new estimate f̂(t+1).

Iterative reconstruction algorithms follow the general model shown in Figure 3.5 [12].

This process is repeated until the estimated image does not change signi�cantly or

when a prede�ned number of iterations is reached. At the conclusion of the process, the

current image estimate is considered to be the �nal solution.

A crucial issue in image reconstruction is the practical computational options tangled

with the implementation of the forward and back projection steps involved in all iterative
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Figure 3.5: Flowchart of a generic iterative reconstruction algorithm [12].

algorithms. In many cases, this topic can preclude the use of certain algorithm types due

to their impossible calculation.

It is critical in the projection, comparison, back projection, and update steps that

individual reconstruction algorithms di�er. The power of iterative methods lies in the

use of this feedback loop to re�ne the reconstructed image. In the following sections,

we describe the most predominant iterative algorithms, which are based on statistical

estimation criteria.

3.5.1 The Maximum-Likelihood Expectation-Maximization Algorithm

Expectation Maximization (EM) algorithm is a general iterative method. In 1982, Shepp

and Vardi proposed an implementation of the EM algorithm adjusted to the problem of

image reconstruction in PET. However, the resulting iterative formula had been derived

by a di�erent approach in the 1970's which was already known as the Richardson-Lucy

algorithm [8], [9]. This is called maximum likelihood expectation maximization and was

initially employed as the solution to incomplete data problems in statistics �nding appli-

cation in a wide range of statistical applications. The MLEM algorithm and its variations

is proper for emission tomography owing to its accurate mathematical model which per-

ceives the physics of emission tomography from that of transmission tomography.

The name of the MLEM algorithm originates from the expectation step that uses cur-

rent parameter estimates in order to execute a reconstruction of the unobservable Poisson

process. The �rst step is followed by a maximum likelihood that uses this reconstruc-

tion to update the parameter estimates. The maximum likelihood approach in image
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reconstruction for emission tomography was �rst introduced by Rockmore and Macovski.

Explicitly, MLEM algorithm computes an unknown density distribution in the source

from the measured counts. Consequently, it is possible to calculate the probability that

any initial distribution density of the object could have yielded to the measured data. The

image having the highest probability is the maximum likelihood estimates of the original

object.

The MLEM requires multiple iterations depending on the scanner geometry and the

measured data. For this purpose, Hudson and Larkin proposed an accelerated version

of the original MLEM algorithm based on the grouping of the acquired data in subsets,

which is called ordered subsets expectation maximization.

Now let us describe the iterative formula of MLEM in tomographic image reconstruc-

tion. The complete data sji, which is the number of photons emitted from within pixel

i and detected in projection bin j, can be related to the observed projection data g and

the image f as follows:
gj = ∑

i
sji, (3.13)

E[sji] = hjifi. (3.14)

The E-step of the EM algorithm requires the complete data log-likelihood, ln p(s; f).
In ET, the counts sji are independent Poisson-distributed random variables, therefore,

p(s; f) = ∏
j

∏
i

E[sji]
sji e−E[sji]

sji!
(3.15)

and the log likelihood is given by:

ln p(s; f) = ∑
j

∑
i
[sji ln(hjifi)− hjifi − ln(sji!)]. (3.16)

Using (3.16), the E-step is calculated as follows:

Q(f, f̂(t)) = E[ln p(s; f)|g; f̂(t)] = ∑
j

∑
i
{E[sji|g; f̂(t)] ln(hjifi)− hjifi − E[ln(sji!)]}.

(3.17)

The conditional mean of sji in (3.17) is given by:

E[sji|g; f̂(t)] =
hji f̂

(t)
i

∑k hjk f̂(t)k

gj , xji, (3.18)

which is simply the fraction of the detected counts in projection bin j that are expected to
have emanated from pixel i, given that current image estimate f̂(t) is the source of these
counts. Substituting (3.18) into (3.17), the �nal form of E-step is obtained:

Q(f, f̂(t)) = ∑
j

∑
i
{xji ln(hjifi)− hjifi − E[ln(sji!)]}. (3.19)
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In the M-step, we estimate f̂(t+1) by maximizing Q(f, f̂(t)) with respect to f. Thence,
we set the derivative of Q(f, f̂(t)) to zero:

∂Q(f, f̂(t))
∂fi

= 0. (3.20)

Solving for f̂i
(t+1)

, with i = 1, ..., N, the following simple iterative equation is obtained,

which is the MLEM iteration for tomographic image reconstruction:

f̂(t+1)
i =

f̂(t)i
∑j′ hj′i

∑
j

hji
gj

∑k hjk f̂(t)k

. (3.21)

where f̂(t)i is the estimated activity in pixel i after the n-th iteration, hji is an element

of H that represents the probability that a photon emitted from pixel i is detected in

detector element j.
The MLEM algorithm in (3.21) corresponds to the general model of an iterative al-

gorithm (see Fig. 3.6). As it is illustrated, we start with an initial image guess, which

is visible in the denominator of equation (3.21). This initial choice is usually just the

entire image set to a constant value. The �rst step projects this image into the projection

domain and, next, these projections are compared with the measured projections. This

shapes a correction factor for each projection, which is then back projected into image

domain to obtain a correction factor for the initial image estimate. The previous quantity

is then multiplied by the current image estimate and divided by a weighting term based on

the system model. The new image estimate is now re-entered in the algorithm as the next

image. The algorithm is repeated while the estimate approaches the maximum likelihood

solution. All pixels are updated at the same time in the MLEM algorithm. Its con-

vergence property is consistent. Moreover, MLEM enforces a non negativity constraint.

The implementation of the algorithm is simple and eventually leads to a constrained ML

solution.

Non-negativity and self-normalization properties of MLEM, are considered the signif-

icant advantages of this methodology, as well as its capability to embed in the probability

matrix H several physical factors, such as attenuation, scatter and accidental coincidence

corrections. As an iterative technique, however, MLEM is based on ML criterion, thus,

ascribes to noisy reconstructed images. As the EM algorithm iteratively estimates an

image, the low frequency components of the image show up within the �rst few iterations.

As the ML estimate is approximated, high frequency de�nition is solved in the image, ef-

fectively adding more variance, which is manifested as noise, to the reconstruction. This

variance is often diminished, at the expense of increased bias, by disrupting the algorithm

early or by post-smoothing the reconstruction. MLEM algorithm yields satisfying results,

if the procedure is stopped prematurely, and the results may gain from applying a post

reconstruction low pass �lter. Several approaches for determining when to stop the iter-

ations were proposed. An alternative approach is the method of sieves, which includes

smoothing within each iteration to restrict the solution.
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Figure 3.6: The maximum-likelihood expectation-maximization algorithm in the form of the

general iterative model [12].

The image noise increases as the estimate approaches the ML solution. MLEM pro-

vokes, consistently, low spatial frequencies to appear �rst and then gradually higher spatial

frequencies as the iterations progress. Thus, early stoppage of MLEM iterations is equiv-

alent to an implicit smoothing of the reconstructed image. Although the log-likelihood

appears to stabilize early in the iterative process, the image estimates continue to change.

The log-likelihood function is generally not a suitable measure of image quality for the

same reason that the ML criterion is not an ideal reconstruction criterion, and it should

be mentioned that images having the same log likelihood value can appear very di�erent.

A second drawback of MLEM is the convergence of the algorithm, which is slow.

While the convergence rate of MLEM is image dependent, MLEM usually requires ap-

proximately 30-50 iterations to achieve a su�cient solution. MLEM requires one forward

projection and one bac kprojection at each iteration, that's why the overall processing

time is considerably more than the �ltered back projection approach, but leads to a po-

tentially more accurate reconstruction results. The required computation time initially

impeded the popularity of the MLEM method in clinical use.

3.5.2 Maximum A Posteriori Reconstruction Algorithms

The reconstructed images acquired by the MLEM algorithm tend to become noisy since

the number of iterations increases, wherefore, the ML criterion is not the best criterion to

obtain subjectively high quality images. On the other hand, the Bayesian methodology

attempts to enhance the quality of the reconstructed image by exploiting the knowledge of

the image. This information is called a priori and, using Bayes' rule, is often incorporated

into a maximum a posteriori objective function.
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The a priori knowledge inserts in the iterative procedure a prior term that enforces

conditions on the image estimate at each iteration leading to certain convergence. This

is equivalent to employing a penalty term at each iteration and, therefore, these methods

are also named penalized. The prior (penalty) term can forward desired properties in the

image such smoothness levels, edges, or even particular structures based on anatomical

side informations.

The introduction of a prior information as a constraint that may foster convergence is

called regularization. In addition, the prior is usually chosen to penalize the noisy images.

The maximization leads to an iterative scheme called the one-step-late (OSL) algorithm,

described by Green:

f̂(t+1)
i =

f̂(t)i

∑j′ hj′i + β
∂U(f)

∂f
∑

j
hji

gj

∑k hjk f̂(t)k

. (3.22)

This algorithm di�ers from the MLEM algorithm mainly in that there is a prior term

in the denominator. This term is the derivative of an energy function U, which enforces

smoothness and β is a constant that modulates the impact of the prior. It is obvious

that if the neighboring pixels of pixel i have the same value, then the derivative of energy

function tends to zero, so, the new equation which arises is alike to the MLEM formula.

Furthermore, if the value for pixel i is in average higher than its neighbours, then the

derivative is positive and if the value for pixel i is in average lower than its neighbors,

the intensities of the new image is forced to be higher than it would be if the MLEM was

applied.

Several proposed algorithms have been based on the MAP formula, such as the MAP

Conjugate Gradient (MAP-CG) algorithm. This algorithm also requires approximately

10-15 iterations, but adds some complexity in order to perform a local linear �t of the

prior term in the step size calculation and has no non negativity constraint. It is also

possible to use an EM algorithm with a Gaussian likelihood and a Gaussian prior or

a Gamma distributed prior. An alternative method is the Preconditioned CG (PCG)

algorithm which requires line searching to optimize the step size and does not have the

convergence problems of the OSL method.

MAP methods moderate the principal issues associated with ML algorithms. First,

MAP reconstructions are smoother and the resulted estimates tend to reach a point at

which they change very little with further iterations, indicating approximate convergence.

Besides, as the value of β is reduced, the degree of smoothing is limited because this places

less weight on the prior. As, β increases, smoothing increases and important image traits

degrade. Hence, adjusting the weighting parameter is crucial because large values of β

result in less contrast and detail and low values of β produce images that are too noisy.

Di�erent types of priors generate di�erent smoothing features.

Although MAP reconstruction successfully smooths noise and improves convergence, it

also has several disadvantages. A �rst drawback is that the denominator can take negative

values, and the calculated pixel value may become negative, which is not valid because this
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value corresponds to the number of photons. This problem may be overcomed by keeping

the weighting factor of the prior β low. Another matter is the selection of parameters'

values, which is critical. Finally, the prior forces the image to be smooth on the edges, and

this results in a loss of image features or, in some cases, the creation of blurry features.

This proves that the MAP algorithm adds some bias to the ML problem in exchange for

reduced noise variance. To overcome this problem, many other priors have been proposed.

The basic assumption is that if there is a large di�erence between pixel values, then it is

likely that the pixel is on an edge, and, thence, the smoothing term has to be as close to

zero as possible.

3.5.3 Gibbs prior

The idea of transforming an ill-posed reconstruction problem to a well-posed one grounds

in inserting extra inspection on which solutions are more suitable than others. This means

that the reconstructed image is required to be consistent with additional criteria, that are

setted independently from the data. These restrictions can be considered as Tikhonov

regularization, penalty functions, or as Bayesian priors. They are all designed to boost

the solution towards a prede�ned a�air about the nature of the true image.

Therefore, the choice of the prior is crucial. The resulting image re
ects the assump-

tions made when constructing the prior. Too severe penalties may cause loss of relevant

information, that's why the prior should be as generic as possible, as long as the ill-

posedness can be dealt with it.

A smooth image is an image with neighboring pixels having similar intensity values.

A prior that encourages this attribute tries to restrict sharp alternations between pixels,

because such characteristics appear probably due to noise. A simple mathematical model

having this property is the Markov random �eld, which can be described by the Gibbs

pdf:

p(f) =
1
Z

exp[−βU(f)] (3.23)

with Z being a normalizing constant, called the partition function. The parameter β is

a scalar weighting factor that stipulates the spiking of the distribution to its maximum,

and U(f) is the energy function. The non-negative energy function U has its minimum

and the prior has its maximum when the image meets the prior assumptions. A common

choice for U in (3.23) is an energy function with a potential function V involving the

di�erences between pixels in the neighborhood (clique) Sc(c = 1, ..., C):

U(f) =
C

∑
c=1

∑
s1,s2...∈Sc

wv1v2v3...Vc(fv1 , fv2 , fv3 , ...) (3.24)

In (3.24), pixels indexed by v1, v2, v3, ..., are elements of the same clique. This general
model includes various priors proposed for tomographic reconstruction model, including
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Gaussian and entropy priors. Cliques may have any number of pixels. In most tomo-

graphic reconstruction applications, there is a clique for each pixel i, and each clique

consists of pixels that are nearest to pixel i. Methods using two pixel cliques generally

use potential functions that are related to the di�erence in intensity between the two

pixels, and the potential functions do not vary across the image. In this manner, (3.24)

is simpli�ed to:

U(f) =
N

∑
i=1

∑
j∈Si,i<j

wijVij(fi − fj) (3.25)

where wij is the weight of pixel i in the neighborhood of pixel j.
Gibbs distribution provides a mathematically powerful tool to model a class of priors

that speci�es the local spatial correlations of the underlying source. Generally, di�erent

choices for the potential function may lead to di�erent priors. Although there are many

options for the clique structure and weights, usually cliques composed of local neighbor-

hoods and weights are de�ned by the inverse of the distance between the two pixels in the

clique. The principal di�erence between methods usually lies in the choice of potential

function, which determines the smoothness properties of the MAP solution.

Using the Gibbs prior, the log posterior pdf (3.12) becomes:

ln p(f, g) = ln L(f)− βU(f) (3.26)

where the likelihood function L(f) may have either the Poisson or Gaussian form described

earlier. Large values of the likelihood function may be produced by noisy images, but they

will be penalized by the prior term βU(f) and thus will not be chosen when maximizing

ln p(f, g). By these means, there is a balance between the requirements of the measured

data and the requirements of the prior through the weighting parameter β. If β is set to

zero, the MAP solution is converted to the ML and as β becomes large, the prior term

dominate the maximization. The hyperparameter of the optimization, β, is the most

signi�cant term for the degree of smoothness in the solution. Usually, β is determined by

the user, but there are several methods for its automatic determination.

3.5.4 Total Variation prior

Here, we introduce an other a priori constraint, which is called Total Variation (TV) prior.

Using the TV prior, the log posterior pdf (3.12) becomes:

ln p(f, g) = ln L(f)− β‖U‖TV (3.27)

where, the prior is computed by:

‖U‖TV =

√
m−1

∑
k=1

√
m

∑
l=1
|fk,l − fk+1,l|+

√
m

∑
k=1

√
m−1

∑
l=1
|fk,l − fk,l+1|, (3.28)
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with β > 0 being the regularization parameter, and f imposing on the constraint f ≥
0, which means that the components of f are non negative. It is assumed that f is a

vector corresponding to a square
√

m ×
√

m image for simplicity of presentation. The

regularization parameter β is speci�ed by the user. However in practice this parameter

can be chosen via a cross-validation procedure.

Regularization based on Total Variation (TV) has gained signi�cant attention. This

prior measures how much an image varies across pixels, so that a highly textured or noisy

image will have a large TV prior, while a smooth or piecewise constant image would

have a relatively small, but the method involves a matrix inverse operation which can be

extremely di�cult to compute for large problems outside of deconvolution settings [17].

3.5.5 Preconditioned Conjugate Gradient

The EM algorithm alternates between estimating the unobserved variables given the cur-

rent model and the model given the estimated data. In spite of EM method's tremendous

success, due to its simplicity and fast initial progress, its speed convergence tends to

be extremely slow. Since the data sizes in image reconstruction problem are extensive,

iterative image reconstruction algorithms must converge promptly in order to be appro-

priate. Many methods have been proposed to improve the convergence speed of EM,

mostly based on contractual optimization strategy. All of these approaches, although

prosperous in terms of convergence, are more complex than EM, that's why they have

not accept much popularity in practice. However, Conjugate-Gradient (CG) algorithms

are attractive due to their convergence rate, simplicity, and potential for parallelization.

Gradient-based iterative methods often converge slowly for tomographic image re-

construction problems, but can be accelerated by suitable preconditioners. The aim of

preconditioning is to produce a coordinate transformation that improves the condition

number of a problem, which leads to faster convergence. The preconditioned CG algo-

rithm has been demonstrated e�ective in tomography. Several generic preconditioners for

CG methods are depicted in textbooks. The most common and perhaps most prevalent

preconditioners are diagonal scaling matrices.

Gradient-based optimization methods use the gradient of the log-likelihood of the

posterior pdf ln p(f; g), to de�ne a series of direction vectors d along which ln p(f; g) is
minimized via 1D line search. Conjugate-gradient methods alter the search directions to

con�rm that they are mutually conjugate. The following is the preconditioned form of

the Polak-Ribiere CG method [16]:
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~χn = −∇ln p(fn; g) (-gradient)

ψn = Mχn (preconditioner)

κn =

0, n = 0
〈χn−χn−1,ψn〉
〈χn−1,ψn−1〉

, n > 0

dn = ψn + κndn−1 (search direction)

an = arg min
a
{ln p(fn + adn; g)} (step size)

fn+1 = fn + andn (update)

The matrix M above is the preconditioner; choosing this matrix is part of the algo-

rithm requirements. In order to converge, the preconditioner must be symmetric positive

de�nite. The classical diagonal preconditioner is simply the inverse of the diagonal ele-

ments of Hessian of the objective function, H:

MD(x) , D
[

1
Hjj(x)

]
(3.29)

These diagonal elements are positive since H is positive de�nite.

Thus, a PCG algorithm is applied for maximum likelihood estimation in proposed

models, and it can surpass EM convergence issues. The main idea of the PCG algorithm

is that knowing the posterior we can calculate the exact gradient of the objective function

and, hence, this gradient can be used with the preconditioner in any standard manner

[16].

Additionally, PCG computes the true gradient and shifts in a search direction deter-

mined by the conjugate gradient algorithm, which may be di�erent than the EM step

direction. The choice of initial conditions is very important for PCG so as the EM al-

gorithm. Since EM is based on optimizing a lower bound on the likelihood, once EM is

encircled in a poor basin of attraction, it can never �nd a better local optimum. It turns

up that direct optimization methods such as PCG may avoid this problem because of the

non local nature of the line search.
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Chapter 4

Tomographic image reconstruction with spatially

varying mixture models

4.1 Introduction

4.2 Spatially Varying Gaussian Mixture Models

4.3 Spatially Varying Gamma Mixture Models

4.4 Experimental Results

4.1 Introduction

A regular method for overcoming the problem of slow convergence rate and noise propaga-

tion is the Bayesian maximum a posteriori or penalized maximum likelihood tomographic

reconstruction methods which impose a priori information as a regularization constraint

and amplify the spatial smoothness of reconstructed image [18] - [20]. A common model

for the prior is the Markov random �eld (MRF) expressed by the Gibbs distribution and

many methods were proposed in that framework, di�ering on the choice of the poten-

tial function [20] - [22]. Particularly, the computational process of the popular Bayesian

Gibbs prior relies on the local di�erences between neighboring pixels. Despite the high

image quality and the enhanced convergence speed, reconstructed images are likely to

be globally smooth. On the other hand, Gaussian mixture models have been evolved to

ameliorate these shortcomings, but they are sensitive to outliers and may lead to excessive

sensitivity to few data points.

More recently, in [23], the notion of clustered intensity histogram is introduced in a

penalized likelihood method. A monotonically decreasing surrogate objective function

resulting in a closed form expression is proposed in [24] while the median root prior was
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also used to impose spatial smoothness and stabilize the solution [25]. Finally, a non local

prior was designed [26] where the de�nition of a pixel's neighborhood is broadened.

Herein, we propose four models, as called spatially varying mixture models, which are

based on maximum a posteriori estimate and use two di�erent priors: a Gaussian mixture

prior and a Gamma mixture prior. Moreover, in order to account for the modeling of

edges between image segments, appropriate MRF smoothness priors on the contextual

mixing proportions, namely the probabilities of the pixel labels, that take the form of a

line process are chosen, which model the existence of a boundary by a binary variable that
is accordingly switched on and o�. Speci�cally, the �rst two spatially varying mixture

models are based on a MAP tomographic reconstruction formula, which uses a Gaussian

mixture prior and considers edge preservation by imposing both a Student's t-distribution
(continuous model) and a Bernoulli prior (binary model) of the contextual mixing pro-

portions. We have applied the models proposed in [27] because these types of prior are

employed to ensure the preservation of region boundaries. In the related literature, many

spatially varying Gaussian mixtures have been proposed and could be applied as priors

in tomography [27] - [30].

Subsequently, we present two alternative spatially varying mixture models, which em-

ploy a Gamma mixture prior and, also, impose the binary and continuous priors on the

local di�erences of the contextual mixing proportions. In tomography the spatially vary-

ing Gamma mixture model with Gamma prior is applicable when the intensity histogram

of the object pixels comprises a few peaks. Additionally, this kind of prior pdf leads to

certain computational conveniences, including the easy imposition of object positivity.

The proposed methods succeed in capturing spatial coherence and in preserving image

boundaries. A signi�cant bene�t of the proposed algorithms is the automatic estimation

of parameters from the data as they do not require an empirical selection.

The overall algorithm consists of an alternating optimization scheme. One step con-

sists in estimating the parameters of the spatially varying mixture models using the EM

algorithm [27] with the image f being �xed. Having the parameters �xed from the �rst

step, the second step consists in estimating f by the MAP-EM algorithm update. Algo-

rithm 1 summarizes the di�erent steps. The algorithm stops when the estimated image

does not change signi�cantly or when a prede�ned number of iterations is reached, which

is common in this type of alternating optimization methods [23, 25, 26].

The image reconstruction process integrates these four models in a standard MAP-

EM iterative algorithm and in a preconditioned conjugate gradient optimizer, where the

models' parameters and the unknown image are estimated. Numerical experiments using

photon-limited images reveal the supremacy of the methods over standard and state-of-

the-art algorithms
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1: input: A sinogram g, a threshold ε, MAXiterations.

2: output: The unknown image f.
3: Initialize f by an image with constant intensity.

4: counter=0.

5: while ||f(t+1) − f(t)|| > ε and counter ≤ MAXiterations do

6: Estimate the parameters of the spatially varying mixture model using the EM

algorithm.

7: Estimate the image f using the MAP-EM update in (3.22).

8: counter++

Algorithm 1: MAP-EM tomographic reconstruction using a spatially varying mixture

model

4.2 Spatially Varying Gaussian Mixture Models

Let f be the vector of features (e.g., intensity, textural features, location, etc.) representing
an image spatial location (pixel). Viewing the required reconstruction as a clustering

problem on f, we can assume that the fn are independent, identically distributed and

that they are generated by a �nite mixture model [31]:

p(fn) =
K

∑
j=1

πjφ(fn; θj) (4.1)

where Π = {πj}K
j=1 are the prior probability of a pixel membership on class j, which are

called the contextual mixing proportions and are con�ned to be positive and summing to

unity. The {θj}K
j=1 is a set of deterministic parameters controlling the shape of the kernel

functions φ. Thus, there is a natural correspondence between pixel class-membership and

kernels, and we can classify the pixels according to posterior class memberships [27]. A

standard and well known choice of kernel function is the Gaussian distribution that is

presented in this section with other choices for example the Gamma distribution that is

also described later.

We assume that, the conditional distribution of f, given an explicit hidden variable Z,
which leads to signi�cant simpli�cations for the model, is:

p(F|Z) =
K

∏
j=1

N

∏
n=1

φ(fn; θj)
zn

j (4.2)

while the prior distribution for the latent variable is distributed multinomially [32]:

p(Z|Π) =
K

∏
j=1

N

∏
n=1

(πn
j )

zn
j (4.3)

with zn being a binary vector having a single component equal to 1, zn
j = 1 , and all others

equal to 0.
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The proposed models use a prior density distribution, based on the Gibbs distribution

for the random variables Π, to model the intuitive fact that neighboring pixels should be

characterized by similar components:

p(Π) ∝ ∏
c

e−ψ
(Π)
c (4.4)

with ψc denoting a function on clique c which is known as clique function of the pixel

vectors within the clique.

A proper clique distribution choice for local di�erences of contextual mixing propor-

tions is a Gaussian distribution:

πn
j − πk

j ∼ N (0, β2
jd), ∀n, j, d, ∀k ∈ γd(n) (4.5)

and the joint distribution on Π is given by:

p(Π; β) =
D

∏
d=1

K

∏
j=1

N

∏
n=1

∏
k∈γd(n)

N (πn
j − πk

j , β2
jd) (4.6)

with N (.) being a Gaussian distribution, β2
jd controls the amount of regularization of the

contextual mixing proportions, D de�nes the number of a pixel's neighborhood adjacency

types, K is the number of components and γd(n) is the neighborhood of pixel n with

respect to the d-th adjacency type. In proposed models, 4 neighbors for each pixel (�rst-

order neighborhood) is assumed, and partition the corresponding adjacency types into

horizontal and vertical, thus, setting D = 2 (see Fig.4.1 for a detailed illustration). This

variability of parameter sets aims to capture the fact that smoothness statistics may vary

along clusters and along di�erent spatial directions. In other words, parameters β2
jd can

be used to express not only the class variance for clusters but also the variance within

clusters at a certain spatial direction D.

(a) (b) (c)

Figure 4.1: First-order neighborhood cliques in the contextual mixing proportions mesh. (a)

Each MRF site is associated with a probability scalar value πn
j and is dependent on 4 neighbors.

(b) The set of horizontal neighbors, γ1(n), is highlighted. (c) The set of vertical neighbors,

γ2(n), is highlighted [32].
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In the current work two smoothing priors for the local contextual mixing proportion

di�erences are used and described in the following Sections. The local di�erences are

assumed to be associated with a set of hidden random variables u, called in the literature

line process.

4.2.1 Continuous, Gamma Distributed Line Process Model

The K-kernel Spatially Varying GMM, in contrast with the standard GMM is charac-

terized by the dependence of its mixing proportions, generally called contextual mixing

proportions. Speci�cally, each pixel fn, n = 1, ..., N has a distinct mixing proportions

vector πn
j , j = 1, ..., K which denotes the probability of the n-th pixel to belong to the

j-th component [32]. Assuming that the independently distributed random variables f
are a realization of a Gaussian mixture model (GMM), the probability of a single pixel is

expressed by:

p(fn; π, µ, Σ) =
J

∑
j=1

πn
j N (fn; µj, Σj) (4.7)

where Π is constrained to be positive, 0 ≤ πn
j ≤ 1, and summing to unity, ∑J

j=1 πn
j = 1

for j = 1, 2, ..., J and n = 1, 2, ..., N. Furthermore, N (·) is a Gaussian distribution with

µj the Gaussian kernel mean vector and Σj the Gaussian kernel covariance matrices [30].

Hence, the probability of the image is computed by assuming pixel independence, which

is common in modeling images by mixtures of distributions:

p(f) =
N

∏
n=1

J

∑
j=1

πn
j N (fn; µj, Σj) (4.8)

Apart from enforcing pixel clustering, this prior preserves the edges in the image be-

cause the local di�erences of the contextual mixing proportions are considered to follow a

univariate Student's t-distribution. Following the de�nition of the Student's t-distribution
[33], a two step generative model provides the clique potential functions:

πn
j − πk

j ∼ N (0, β2
jd/unk

j ), (4.9)

unk
j ∼ G(νjd/2, νjd/2), ∀n, j, d, k ∈ γd(n), (4.10)

where G(·) is the Gamma distribution, γd(n) is the set of neighbors of the pixel indexed
by n, with respect to the dth adjacency type (e.g. horizontal, vertical, diagonal). This

model �rst draws unk
j from a Gamma distribution parameterized by νjd and then considers

that the local di�erences of the mixing proportions follow a Gaussian distribution with

zero mean and standard deviation β2
jd/unk

j .

Hence, the student's t-distribution's probability density function can be written in the
form:

p(f; µ, Σ, ν) =
Γ
(

ν+d
2

)
|Σ|− 1

2

(πν)
d
2 Γ
(

ν
2

)
[1 + ν−1δ(f, µ; Σ)]

ν+d
2

(4.11)
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with δ(f, µ; Σ) being the Mahalanobis squared distance and Γ being the Gamma function.

The t-distribution is symmetric well-shaped, and as we observe in Figure 4.2, has heavy

tails which means that it is more likely to generate values that fall far from its mean.

Additionally, as the number of degrees of freedom rises, the t-distribution approaches the

normal distribution with covariance Σ. If ν > 1, µ is the mean of f and if ν > 2, ν(ν− 2)Σ
is the covariance matrix of f.

Figure 4.2: The Student's t-distribution for various degrees of freedom.

This generative model, whose graphical representation is shown in Fig. 4.3, allows

clustering of the image pixels around the Gaussian means and imposes edge preservation

through the Student's t-distribution of the mixing proportions. More speci�cally, as

unk
j → +∞ the distribution tightens around zero, and enforces neighboring contextual

mixing proportions to be smooth. On the other hand, when unk
j → 0 the distribution tends

to be uninformative, and enforces no smoothness. Consequently, the variables unk
j provide

a very detailed description of the boundary structure of the image. Estimation of model

parameters through a standard MAP-EM approach is intractable due the complexity of

the model and the suitable framework is provided by variational inference which yields

estimates for all of the parameters of the model [27].

To perform our formula inference we exploit MAP estimation through EM algorithm.

Thus, the E-step of the EM algorithm requires the calculation of the hidden variables Z
and u separately with respect to current iteration t parameters :

〈zn
j 〉

(t) =
π

n(t)
j N (fn; µ

(t)
j , Σ(t)

j )

∑K
l=1 π

n(t)
l N (fn; µ

(t)
l , Σ(t)

l )
, (4.12)

〈unk
j 〉

(t)
= ζnk(t)/ηnk(t), (4.13)

〈ln unk
j 〉

(t)
= ψ(ζnk(t))− ln ηnk(t), (4.14)
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Figure 4.3: Graphical model for the edge preserving model. Superscripts and subscripts n, k ∈
[1, N] denote pixel index, subscript j ∈ [1, K] denotes segment index, d ∈ [1, D] describes the

neighborhood direction type. Γ equals the maximum number of possible neighbors. The Figure

is reproduced by [27]

with ψ(·) corresponding to the digamma function while z, η are determined by:

ζnk(t) =
1
2
(ν

(t)
jd + 1), (4.15)

ηnk(t) = 2(ν(t)jd +
(π

n(t)
j − π

k(t)
j )2

β
2(t)
jd

). (4.16)

Afterwards, the unknown variables µ, Σ, β, ν are considered as parameters and com-

puted in the M-step of the algorithm individually:

µ
(t+1)
j =

∑N
n=1 〈zn

j 〉
(t)fn

∑N
n=1 〈zn

j 〉
(t)

, (4.17)

Σ(t+1)
j =

∑N
n=1 〈zn

j 〉
(t)(fn − µ

(t+1)
j )(fn − µ

(t+1)
j )

T

∑N
n=1 〈zn

j 〉
(t)

, (4.18)

β
2(t+1)
jd =

∑N
n=1 ∑k∈γd(n) 〈u

nk
j 〉

(t)
(π

n(t)
j − π

k(t)
j )2

∑N
n=1 |γd(n)|

, (4.19)

In addition, the degrees of freedom, ν
(t+1)
jd , are estimated as the solution of the bellow

equation:

ln (ν
(t+1)
jd /2)− ψ(ν

(t+1)
jd /2) +

∑N
n=1 ∑k∈γd(n) (〈ln unk

j 〉
(t) − 〈unk

j 〉
(t)
)

∑N
n=1 |γd(n)|

+ 1 = 0 (4.20)

Thereafter, in the same manner, the unknown random variables Π, are treated as

parameters and reckoned as the root of the following quadratic equation:

an
j (π

n(t+1)
j )2 + bn

j (π
n(t+1)
j ) + cn

j = 0 (4.21)
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with coe�cients:

an
j = −

D

∑
d=1
{β−2t

jd ∑
k∈γd(n)

〈unk
j 〉

(t)}, (4.22)

bn
j =

D

∑
d=1
{β−2t

jd ∑
k∈γd(n)

〈unk
j 〉

(t)
π

k(t)
j }, (4.23)

cn
j =

1
2
〈zn

j 〉
(t). (4.24)

The real non negative solutions will not satisfy the notion that they are bound to sum

to unity. In order to get proper mixing weight vectors we perform a projection step onto

the constraints subspace using the quadratic programming algorithm described in [27].

4.2.2 Binary, Bernoulli Distributed Line Process Model

The clique potential functions, set by (4.5) and (4.6) are determined to be distributed as:

πn
j − πk

j |unk
j = 1 ∼ N(0, β2

jd), ∀n, j, d, ∀k ∈ γd(n), (4.25)

where a line process set of binary random variables u = {unk
j }k=1..γd(n), n = 1..N, j =

1..K, d = 1..D is presumed. This form allocates higher probability on local di�erences

which are close to zero only when there is not an edge between them, otherwise, the

respective Gaussian is zeroed and, thus, can not rebound to the total MRF energy. In

this manner, di�erences are tightened only between pixels that are not separated by a

boundary. We depict the line process binary variables unk
j to be iid Bernoulli distributed

random variables, ruled by a parameter set ξ = ξ1, ξ2, ..., ξΓ:

p(u|ξ) =
D

∏
d=1

N

∏
n=1

∏
k∈γd(n)

p(unk
j |ξ l) =

D

∏
d=1

N

∏
n=1

∏
k∈γd(n)

ξ
lunk

j (1− ξ l)
(1−unk

j )
(4.26)

with the third product, with respect to k, being l = φ(n, k). Function φ(n, k) is de�ned
on site indices n and k, necessarily k ∈ γd(n) for some d ∈ [1, D] or φ is unde�ned,

and is equal to an index value in the range [1, Γ]. For �xed n, φ de�nes a one-to-

one correspondence between site index k and an index l ∈ [1, Γ] [27]. This means that

Bernoulli prior is spatially invariant and depends on the direction to the given neighbor.

In order to make the line process model Bayesian, a Beta distribution, which is the

conjugate to the Bernoulli distribution, is imposed on the ξ parameters:

p(ξ; αξ0, vξ0) =
Γ

∏
l=1

Γ(αξl0 + vξl0)

Γ(αξl0)Γ(vξl0)
(ξ l)(αξl0−1)(1− ξ l)

(vξl0−1)
, (4.27)

with αξ0 = {αξl0}Γ
l=1, vξ0 = {vξl0}Γ

l=1. To maintain clique symmetry, we force αξl0

having the same value for all l, which correspond to the same adjacency type. For instance,
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if Γ = 4 there are four components in vector ξ having two unique values for the horizontal

and the vertical direction.

The graphical model showing the dependencies between variables for this model is

presented in Fig.4.4.
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Figure 4.4: Graphical model for the binary line process edge preserving model. Superscripts

n, k ∈ [1, N] denotes pixel index, subscript j ∈ [1, J] denotes kernel (segment) index, d ∈ [1, D]

describes the neighborhood direction type and l ∈ [1, Γ] denotes neighbor index. The Figure is

reproduced from [27].

After some manipulation, we obtain the update equations for the model parameters,

which are as follows:

〈unk
j 〉

(t)
= sig(lnN (π

k(t)
j , π

n(t)
j , β

2(t)
jd + 〈ln ξ l〉(t) − ln〈(1− ξ l)〉t), (4.28)

〈ln ξ l〉(t+1)
= ψ(αt

ξl) + ψ(αt
ξl + vt

ξl), (4.29)

〈ln(1− ξ l)〉(t+1)
= ψ(vt

ξl) + ψ(αt
ξl + vt

ξl), (4.30)

αt
ξl = αt

ξl0 +
K

∑
j=1

N

∑
n=1
〈unk

j 〉
(t)

, (4.31)

vt
ξl = vt

ξl0 +
K

∑
j=1

N

∑
n=1
〈1− unk

j 〉
(t)

, (4.32)

∀n, j, d, ∀k ∈ γd(n), l = φ(n, k) (4.33)

where ψ(·) is the digamma function and sig(x) = (1 + e−x)−1. All other parameters are

equal with those in the previous model.

4.3 Spatially Varying Mixture Models with Gamma Mixture Prior

From now on we make the assumption that our image data are generated by a Gamma

mixture model, and subsequently extend this by selecting similar prior distributions on
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πj, as it was presented in the previous section. The model relies on the same principle

which was already used for mixtures of Gaussian. The Gamma mixture prior is cluster

and directionally adaptive and all its parameters are automatically estimated from the

image.

Also, the random variable (image intensity) of a Gamma distribution is by de�nition

non negative and therefore the positivity constraint is inherently satis�ed. The general

form of a mixture-of-gammas prior pdf is:

p(f|θ) =
N

∏
n=1

K

∑
j=1

πjG(fn|qj, rj). (4.34)

In (4.34), the set of parameters θ involves the vector q, with elements {qj}j=1,...,K and

the vector r, {rj}j=1,...,K, which parameterize the gamma density. The gamma density is

de�ned only for f > 0. Further, rj > 0 is the mean and r2
j /qj the variance of the j-th

component. Like other positivity preserving priors, the aforementioned prior motivates

a slight bias due to the di�erence between mean and mode. The mixing proportions

(weights) πj are positive and satisfy the constraint:

K

∑
j=1

πj = 1. (4.35)

4.3.1 Continuous, Gamma Distributed Line Process Model

This generative model, whose graphical representation is shown in Fig. 4.5, imposes edge

preservation through the Student's t-distribution on the di�erence of the mixing propor-

tions. The variables unk
j provide a very detailed description of the boundary structure

of the image. Estimation of model parameters is obtained through a standard MAP-EM

approach.
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Figure 4.5: Graphical representation of the proposed model.

The �nal updates di�er from the corresponding continuous model with a Gaussian

mixture in the computation of the joint expectation of the hidden variables Z and the
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parameters θ(t):

〈zn
j 〉

(t) =
π

n(t)
j G(fn; q(t)j , r(t)j )

∑K
l=1 π

n(t)
l G(fn; q(t)l , r(t)l )

, (4.36)

r(t)j =
∑ 〈zn

j 〉(t)fn

〈zn
j 〉

(t)
(4.37)

q(t)j =
K

∑
j=1

log fn〈zn
j 〉(t) − 〈zn

j 〉(t) log r(t)j − 〈z
n
j 〉(t)ψ(q

(t)
j ), (4.38)

with ψ(·) being the digamma function. The rest of the update equations are the same.

4.3.2 Binary, Bernoulli Distributed Line Process Model

The graphical illustration of the model in Figure 4.6 indicates the dependencies between

variables for the binary line process model.
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Figure 4.6: Graphical model for the binary line process edge preserving model.

The update equations for the joint expectation of the hidden variables Z and the

parameters θ are the same with those in the spatially varying Gamma mixture model

described in Section 4.3.1. The rest updates remain the same as in the spatially varying

Gaussian mixture model in Section 4.2.2

4.4 Experimental results

The performance of the proposed spatially varying mixture models for the tomographic

reconstruction problem were examined using the well known Shepp-Logan phantom and

a phantom consisting of three regions of relative intensities, represented by a hot disk, a

cold disk and a background ellipse (Fig. 4.7). We call this phantom Elliptical phantom.
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We have set K = 3 and K = 5 clusters for the mixture models taking into account

the segments of the two phantoms. The algorithm stopped when ε = 10−3 or when

60 iterations were reached. The presented algorithms, namely the continuous spatially

varying Gaussian mixture model (GMM-CLP), the binary spatially varying Gaussian

mixture model (GMM-DLP), the continuous spatially varying Gamma mixture model

(GAMMA-CLP) and the binary spatially varying Gamma mixture model (GAMMA-

DLP) were evaluated with respect to the standard MLEM, the established MAP-EM

algorithm with a Gibbs [20] and a TV prior. In addition, a standard Gaussian mixture

model and a standard Gamma mixture model are performed for comparison with the

proposed models. Apart from using the one-step-late EM for the estimation of the image,

the optimization was also carried out by an iterative preconditioned conjugate gradient

(PCG) algorithm with a diagonal preconditioner, which reaches a local maximum as the

mixture model is not convex with respect to f.
A number of performance indices were used. To this end, degraded images were

generated from the initial images by modifying the total photon counts. More speci�cally,

images having 75, 55, 35 and 15 photons/pixel on average were generated to degrade the

signal quality, and for the Elliptical phantom, 80, 56, 36 and 24 photons/pixel were

simulated.

(a) (b)

Figure 4.7: (a) Shepp - Logan phantom. (b) Elliptical phantom.

At �rst, the algorithms were put in test in terms of the improvement in signal to noise

ratio (ISNR) with respect to a reconstruction obtained by a simple �ltered back-projection

using the Ram-Lak �lter:

ISNR = 10 log10
||f− fFBP||2

||f− f̂||2
, (4.39)

where f is the ground truth image, fFBP is the reconstructed image by �ltered back-

projection and f̂ is the reconstructed image using the proposed image model. Practically,

ISNR measures the improvement (or deterioration) in the quality of the reconstruction

of the proposed method with respect to the reconstruction obtained by �ltered back-

projection.
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Moreover, the consistency of the method was measured by the bias (BIAS) and the

variance (VAR) of the reconstructed images:

BIAS = ||f− f̄||, (4.40)

VAR =
M

∑
k=1
||f̄− f̂k||2, (4.41)

with

f̄ =
1
M

M

∑
k=1

f̂k, (4.42)

where f is the ground truth image and f̂k, for k = 1, ..., M, is the kth reconstructed image,

obtained from M = 40 di�erent realizations for each noise level. Finally, we also included

in the evaluation the structural similarity index (SSIM) [34], which represents the visual

distortion between the ground truth and the reconstructed image:

SSIM(f, f̂) =
(2µfµf̂ + C1)(2σff̂ + C2)

(µ2
f + µ2

f̂
+ C1)(σ

2
f + σ2

f̂
+ C2)

, (4.43)

where µf and µf̂ denote the mean intensity of the ground truth and the estimated image,

σf and σf̂ are the standard deviations of the two images, σff̂ is the covariance of f and f̂
and C1 and C2 are constants added to avoid instability. The above statistics are calculated

locally on equally sized windows centered at each image pixel and the average values over

all pixels are reported here.

The statistical comparisons for the aforementioned algorithms are shown in Figures

4.8, 4.9, 4.10 and 4.11 for the Shepp-Logan phantom. For all the quantities, their mean

values over the M = 40 experiments are shown. All of the obtained ISNR and SSIM

values are very close to the mean values as their standard deviations over the whole set of

experiments are very small. For the ISNR, SSIM, bias and variance for the Shepp-Logan

phantom, for 75, 55, 35 and 15 photons per pixel on average are shown.
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Figure 4.8: Comparative statistics for various performance indices for the Shepp-Logan phan-

tom for 75 photons per pixel. (a) ISNR (mean values of the 40 experiments), (b) structural

similarity (mean value), (c) bias, (d) variance.
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Figure 4.9: Comparative statistics for various performance indices for the Shepp-Logan phan-

tom for 55 photons per pixel. (a) ISNR (mean values of the 40 experiments), (b) structural

similarity (mean value), (c) bias, (d) variance.
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Figure 4.10: Comparative statistics for various performance indices for the Shepp-Logan phan-

tom for 35 photons per pixel. (a) ISNR (mean values of the 40 experiments), (b) structural

similarity (mean value), (c) bias, (d) variance.
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Figure 4.11: Comparative statistics for various performance indices for the Shepp-Logan phan-

tom for 15 photons per pixel. (a) ISNR (mean values of the 40 experiments), (b) structural

similarity (mean value), (c) bias, (d) variance.
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The statistical comparisons for the Elliptical phantom for 80, 56, 36 and 24 photons

per pixel are illustrated in Figures 4.12, 4.13, 4.14 and 4.15.

It may be observed from all these indices for both phantoms that the proposed spatially

varying mixture models reveal a better performance with respect to the other priors.

As it can be observed in these �gures, as the noise decreases (the number of photon

counts per pixel increases) the ISNR becomes larger with the spatially varying Gamma

mixture method providing better results. Speci�cally, for the Shepp-Logan phantom with

75 photons per pixel and for the Elliptical phantom with 80 photons, ISNR reaches its

peak through the spatially varying Gamma mixture model with continuous prior carried

out by a preconditioned conjugate gradient optimizer (GAMMA-CLP (PCG)), as shown

in Figures 4.8(a) and 4.12(a). Moreover, as the noise increases in both phantoms, the

spatially varying Gamma mixture methods have similar ISNR values but always larger

than the other algorithms.

The same stands for the bias which yields its minimum through the GAMMA-CLP

(PCG) for both phantoms as it can be observed in Fig. 4.8(c) and Fig. 4.12(c). Fur-

thermore, the variance of the estimates is relatively consistent for the spatially varying

mixture models for both phantoms and for all amounts of photons per pixel, which is

due to the clustering e�ect of the priors. In all these indices, the results illustrate the

e�ectiveness of the proposed models.

Since, the gamma-mixture prior model's pixel values having a clustered histogram,

the ability of this model to adapt to the data is con�rmed, and at the same time spatial

smoothness is yielded. Furthermore, the performance of the TV prior is worth noticing.
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Figure 4.12: Comparative statistics for various performance indices for the Elliptical phantom

for 80 photons per pixel. (a) ISNR (mean values of the 40 experiments), (b) structural similarity

(mean value), (c) bias, (d) variance.
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Figure 4.13: Comparative statistics for various performance indices for the Elliptical phantom

for 56 photons per pixel. (a) ISNR (mean values of the 40 experiments), (b) structural similarity

(mean value), (c) bias, (d) variance.
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Figure 4.14: Comparative statistics for various performance indices for the Elliptical phantom

for 36 photons per pixel. (a) ISNR (mean values of the 40 experiments), (b) structural similarity

(mean value), (c) bias, (d) variance.
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Figure 4.15: Comparative statistics for various performance indices for the Elliptical phantom

for 24 photons per pixel. (a) ISNR (mean values of the 40 experiments), (b) structural similarity

(mean value), (c) bias, (d) variance.
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In general, the images provided by the spatially varying mixture models are sharper.

Since the GAMMA-CLP (PCG) has the best performance for both phantoms, estimated

images obtained by this model, for both phantoms, are illustrated along with the estimates

obtained by MLEM and MAP-EM with a Gibbs prior and a TV prior in Figures 4.16 -

4.23.

MLEM Gibbs TV GAMMA-CLP (PCG)

Figure 4.16: The estimated images for the Shepp-Logan phantom with 75 photons per pixel.

MLEM Gibbs TV GAMMA-CLP (PCG)

Figure 4.17: The estimated images for the Shepp-Logan phantom with 55 photons per pixel.

MLEM Gibbs TV GAMMA-CLP (PCG)

Figure 4.18: The estimated images for the Shepp-Logan phantom with 35 photons per pixel.
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MLEM Gibbs TV GAMMA-CLP (PCG)

Figure 4.19: The estimated images for the Shepp-Logan phantom with 15 photons per pixel.

MLEM Gibbs TV GAMMA-CLP (PCG)

Figure 4.20: The estimated images for the Elliptical phantom with 80 photons per pixel.

MLEM Gibbs TV GAMMA-CLP (PCG)

Figure 4.21: The estimated images for the Elliptical phantom with 56 photons per pixel.
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MLEM Gibbs TV GAMMA-CLP (PCG)

Figure 4.22: The estimated images for the Elliptical phantom with 36 photons per pixel.

MLEM Gibbs TV GAMMA-CLP (PCG)

Figure 4.23: The estimated images for the Elliptical phantom with 24 photons per pixel.
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Figure 4.24: Comparison of horizontal pro�les between the original Shepp-Logan phantom and

the reconstructed images provided by the proposed GAMMA-CLP (PCG) and the Gibbs prior

for 75 counts per pixel.

Figure 4.25: Comparison of horizontal pro�les between the original Elliptical phantom and

the reconstructed images provided by the proposed GAMMA-CLP (PCG) and the Gibbs prior

for 75 counts per pixel.

In addition, to highlight the accuracy of the proposed model, the estimated image in-

tensities along a scan line for both phantoms are shown in Figures 4.24 and 4.25 for the

GAMMA-CLP (PCG) model and a MAP-EM with Gibbs prior, where it can be seen that

spatially varying Gamma mixture model provides values which are closer to the ground

truth. Finally, the execution time of the presented algorithms on a standard PC us-

ing MATLAB without any optimization are illustrated in Figure 4.26. It is shown that

the proposed models require on average 4 minutes, which is explained by the number
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of required computations for the EM for the reconstruction and the EM for the estima-

tion of the model parameters. The experimental results are shown in more detail in the

Appendix.
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Figure 4.26: Execution times for the compared algorithms (60 iterations, ε = 10−3).
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Chapter 5

Conclusions and future work

The main goal of this work was to explore the possibility of the development of a robust

model for tomographic image reconstruction purposes. We have proposed four alterna-

tive hierarchical and spatially constrained mixture models in order to enforce them to

preserve image edges. Firstly, we have presented a spatially varying Gaussian mixture

model with two MRF priors on the contextual mixing proportions: a Student's t (con-
tinuous line process) and a Bernoulli (binary line process) prior. Then, we employed a

spatially varying mixture model, which is based on a Gamma mixture prior. Spatially

varying mixture models are characterized by the dependence of their mixing proportions

on location (contextual mixing proportions) and they have been successfully used in im-

age segmentation. The binary line process a�ects the model's sensitivity to preserve

region boundaries. Moreover, the continuous line process model is computationally and

conceptually more simple.

On the other hand, spatially varying Gamma mixture model is proven an apt model

due to the gamma mixture prior which assumes a clustered intensity histogram in the

object, and enforces positivity naturally.

A property of the proposed models is the automatic estimation of model parameters

from the data which is crucial, as many state-of-the-art reconstruction algorithms rely on

empirical parameter selection.

Numerical experiments on various photon limited image scenarios showed that the

proposed models are more accurate than the widely used Gibbs prior. The main con-

tribution of this work is the e�ectiveness of the MRF priors which may capture spatial

coherence and preserve image boundaries, without imposing smoothness across them.

In this work the ISNR has been used as an indicator of the image quality along the

iterative image reconstruction process. This indicator expresses the normalized di�erence

between the phantom and the reconstructed image. The spatially varying Gamma mixture

models have the highest ISNR. It has been shown here that this observation is valid

independently of the image topology and activity distribution.

This work intends to provide the reader with a starting point for further study, es-

pecially, in exploring e�ective ways of analysing the reconstruction model's convergence
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property. An important perspective of this study is to automatically estimate the number

of components of the mixture model in the image reconstruction framework
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Appendix

The experimental results of Chapter 4 are shown in more detail in this Appendix.

Algorithm Execution time

MLEM 6 sec.

Gibbs 9 sec.

TV 33 sec.

GMM 54 sec.

GMM-CLP (EM) 267 sec.

GMM-CLP (PCG) 255 sec.

GMM-DLP (EM) 280 sec.

GMM-DLP (PCG) 268 sec.

GAMMA-MM 53 sec.

GAMMA-CLP (EM) 261 sec.

GAMMA-CLP (PCG) 241 sec.

GAMMA-DLP (EM) 277 sec.

GAMMA-DLP (PCG) 268 sec.

Table 5.1: Execution times for the compared algorithms (60 iterations, ε = 10−3).
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ISNR

Algorithm 75 photons 55 photons 35 photons 15 photons

MLEM 9.81 7.55 6.52 6.12

Gibbs 12.01 9.79 8.62 7.97

TV 15.08 11.09 9.42 8.58

GMM 15.10 11.65 10.07 9.30

GMM-CLP (EM) 17.40 12.62 10.63 9.59

GMM-CLP (PCG) 17.04 12.75 10.86 9.25

GMM-DLP (EM) 17.09 12.14 10.00 9.78

GMM-DLP (PCG) 17.18 12.73 10.19 9.99

GAMMA-MM 17.04 12.28 10.87 9.77

GAMMA-CLP (EM) 18.33 13.78 11.75 10.69

GAMMA-CLP (PCG) 18.57 13.80 11.75 10.74

GAMMA-DLP (EM) 18.20 13.89 11.70 10.69

GAMMA-DLP (PCG) 18.25 13.92 11.74 10.77

SSIM

Algorithm 75 photons 55 photons 35 photons 15 photons

MLEM 0.9973 0.9960 0.9953 0.9940

Gibbs 0.9999 0.9997 0.9974 0.9941

TV 1.000 0.9997 0.9975 0.9957

GMM 1.000 0.9998 0.9976 0.9961

GMM-CLP (EM) 1.000 0.9998 0.9976 0.9961

GMM-CLP (PCG) 1.000 0.9998 0.9977 0.9957

GMM-DLP (EM) 1.000 0.9997 0.9978 0.9962

GMM-DLP (PCG) 1.000 0.9997 0.9978 0.9960

GAMMA-MM 1.000 0.9998 0.9978 0.9964

GAMMA-CLP (EM) 1.000 0.9999 0.9979 0.9962

GAMMA-CLP (PCG) 1.000 0.9999 0.9978 0.9972

GAMMA-DLP (EM) 1.000 0.9999 0.9977 0.9962

GAMMA-DLP (PCG) 1.000 0.9999 0.9976 0.9962
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BIAS

Algorithm 75 photons 55 photons 35 photons 15 photons

MLEM 9× 10−5 21× 10−5 35× 10−5 44× 10−5

Gibbs 8× 10−5 21× 10−5 34× 10−5 43× 10−5

TV 35× 10−6 21× 10−5 34× 10−5 44× 10−5

GMM 34× 10−6 21× 10−5 33× 10−5 43× 10−5

GMM-CLP (EM) 22× 10−6 20× 10−5 33× 10−5 44× 10−5

GMM-CLP (PCG) 18× 10−6 21× 10−5 32× 10−5 46× 10−5

GMM-DLP (EM) 18× 10−6 20× 10−5 30× 10−5 43× 10−5

GMM-DLP (PCG) 19× 10−6 23× 10−5 29× 10−5 45× 10−5

GAMMA-MM 20× 10−6 19× 10−5 29× 10−5 43× 10−5

GAMMA-CLP (EM) 20× 10−6 20× 10−5 27× 10−5 43× 10−5

GAMMA-CLP (PCG) 17× 10−6 20× 10−5 27× 10−5 44× 10−5

GAMMA-DLP (EM) 18× 10−6 20× 10−5 26× 10−5 43× 10−5

GAMMA-DLP (PCG) 20× 10−6 20× 10−5 28× 10−5 44× 10−5

VARIANCE

Algorithm 75 photons 55 photons 35 photons 15 photons

MLEM 18× 10−4 25× 10−4 59× 10−4 96× 10−4

Gibbs 16× 10−4 24× 10−4 34× 10−4 62× 10−4

TV 9× 10−5 13× 10−5 19× 10−5 29× 10−5

GMM 9× 10−5 12× 10−5 17× 10−5 28× 10−5

GMM-CLP (EM) 62× 10−6 11× 10−5 14× 10−5 27× 10−5

GMM-CLP (PCG) 60× 10−6 12× 10−5 13× 10−5 25× 10−5

GMM-DLP (EM) 64× 10−6 12× 10−5 16× 10−5 27× 10−5

GMM-DLP (PCG) 63× 10−6 11× 10−5 17× 10−5 23× 10−5

GAMMA-MM 53× 10−6 11× 10−5 15× 10−5 20× 10−5

GAMMA-CLP (EM) 52× 10−6 11× 10−5 16× 10−5 25× 10−5

GAMMA-CLP (PCG) 51× 10−6 12× 10−5 14× 10−5 22× 10−5

GAMMA-DLP (EM) 51× 10−6 11× 10−5 14× 10−5 24× 10−5

GAMMA-DLP (PCG) 52× 10−6 11× 10−5 15× 10−5 25× 10−5

Table 5.2: Comparative statistics for various performance indices for the Shepp-Logan phantom.

(a) ISNR (mean values of the 40 experiments), (b) structural similarity (mean value), (c) bias,

(d) variance.
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ISNR

Algorithm 75 photons 55 photons 35 photons 15 photons

MLEM 13.78 10.28 8.37 7.40

Gibbs 14.46 12.09 10.22 8.65

TV 18.44 12.41 10.35 9.34

GMM 18.45 12.51 10.39 9.50

GMM-CLP (EM) 18.99 12.66 10.39 9.53

GMM-CLP (PCG) 18.91 12.69 10.40 9.59

GMM-DLP (EM) 18.59 12.78 10.42 9.53

GMM-DLP (PCG) 18.79 12.65 10.46 9.51

GAMMA-MM 18.85 12.78 10.70 9.66

GAMMA-CLP (EM) 19.45 12.95 10.74 9.64

GAMMA-CLP (PCG) 19.75 12.92 10.79 9.62

GAMMA-DLP (EM) 19.61 12.96 10.74 9.62

GAMMA-DLP (PCG) 19.46 12.99 10.70 9.62

SSIM

Algorithm 75 photons 55 photons 35 photons 15 photons

MLEM 0.9998 0.9987 0.9968 0.9949

Gibbs 0.9999 0.9988 0.9970 0.9953

TV 1.000 0.9990 0.9971 0.9954

GMM 1.000 0.9991 0.9972 0.9955

GMM-CLP (EM) 1.000 0.9991 0.9972 0.9955

GMM-CLP (PCG) 1.000 0.9991 0.9972 0.9954

GMM-DLP (EM) 1.000 0.9991 0.9972 0.9955

GMM-DLP (PCG) 1.000 0.9991 0.9972 0.9954

GAMMA-MM 1.000 0.9991 0.9973 0.9956

GAMMA-CLP (EM) 1.000 0.9991 0.9973 0.9956

GAMMA-CLP (PCG) 1.000 0.9991 0.9973 0.9956

GAMMA-DLP (EM) 1.000 0.9991 0.9973 0.9957

GAMMA-DLP (PCG) 1.000 0.9991 0.9973 0.9956

68



BIAS

Algorithm 75 photons 55 photons 35 photons 15 photons

MLEM 6× 10−5 29× 10−5 48× 10−5 61× 10−5

Gibbs 3× 10−5 29× 10−5 48× 10−5 60× 10−5

TV 23× 10−6 29× 10−5 48× 10−5 61× 10−5

GMM 22× 10−6 28× 10−5 47× 10−5 60× 10−5

GMM-CLP (EM) 19× 10−6 28× 10−5 47× 10−5 60× 10−5

GMM-CLP (PCG) 12× 10−6 28× 10−5 47× 10−5 60× 10−5

GMM-DLP (EM) 12× 10−6 28× 10−5 47× 10−5 60× 10−5

GMM-DLP (PCG) 12× 10−6 28× 10−5 47× 10−5 60× 10−5

GAMMA-MM 17× 10−6 27× 10−5 46× 10−5 59× 10−5

GAMMA-CLP (EM) 12× 10−6 27× 10−5 46× 10−5 58× 10−5

GAMMA-CLP (PCG) 11× 10−6 27× 10−5 46× 10−5 59× 10−5

GAMMA-DLP (EM) 11× 10−6 28× 10−5 46× 10−5 59× 10−5

GAMMA-DLP (PCG) 12× 10−6 27× 10−5 46× 10−5 59× 10−5

VARIANCE

Algorithm 75 photons 55 photons 35 photons 15 photons

MLEM 15× 10−4 20× 10−4 28× 10−4 56× 10−4

Gibbs 13× 10−4 11× 10−4 28× 10−4 52× 10−4

TV 21× 10−6 45× 10−6 26× 10−5 27× 10−5

GMM 20× 10−6 44× 10−6 25× 10−5 26× 10−5

GMM-CLP (EM) 17× 10−6 36× 10−6 24× 10−5 26× 10−5

GMM-CLP (PCG) 18× 10−6 38× 10−6 24× 10−5 25× 10−5

GMM-DLP (EM) 21× 10−6 32× 10−6 25× 10−5 26× 10−5

GMM-DLP (PCG) 20× 10−6 32× 10−6 24× 10−5 25× 10−5

GAMMA-MM 16× 10−6 35× 10−6 22× 10−5 24× 10−5

GAMMA-CLP (EM) 15× 10−6 32× 10−6 22× 10−5 23× 10−5

GAMMA-CLP (PCG) 14× 10−6 32× 10−6 24× 10−5 22× 10−5

GAMMA-DLP (EM) 16× 10−6 31× 10−6 22× 10−5 21× 10−5

GAMMA-DLP (PCG) 17× 10−6 31× 10−6 21× 10−5 21× 10−5

Table 5.3: Comparative statistics for various performance indices for the Elliptical phantom.

(a) ISNR (mean values of the 40 experiments), (b) structural similarity (mean value), (c) bias,

(d) variance.
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