2-Connectivity in Directed Graphs

MASTER THESIS

submitted to the designated
by the General Assembly Composition of the Department
of Computer Science & Engineering inquiry committee

from

Nikos Parotsidis

in fulfilment of the requirements for the

MASTER’S DEGREE IN COMPUTER SCIENCE
WITH EXPERTISE IN
COMPUTER SCIENCE THEORY

May 2015

2-2uvextixotnta oe Kotevduvoueva I'poagriuoto
METAIITTXIAKH EPTAYIA EZEIAIKETYHY

UTIOBAAAETOL OTNY
optovelon amd TNy I'evin) Yuvéreuon Ewdwrc Xovieonc
tou TunAuatoc Mnyavixav H/T & ITinpogopinic

Ecetaotiny Entpont)

ATtO TOV

Nuorao Ioapotoion

W UEPOC TV UTOYPEMOEWY Yol TN Afbn Tou

METAIITTXIAKOT AHIAQMATOX. Y THN ITAHPOPOPIKH
ME E=ZEIAIKETYH
YTHN OEQPIA EINIXTHMHY TITIOAOT'TXTSON

Mcduoc 2015

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Assistant Prof. Loukas Georgiadis,
who gave me the opportunity to work on this exciting area and guided me in my very
first steps in research.

I'm thankful to my co-authors, William Di Luigi, Prof. Giuseppe F. Italiano, and
Dr. Luigi Laura, for accepting me in this great group within which we were able to
produce the results that are included in this master thesis.

Special thanks are also intended to all the people of the third floor of our Department
for the great atmosphere and the interesting discussions of all kind. My sincere thanks to
Dr. Maria Chroni for her help and her pleasant attitude.

To my family and friends...

CONTENTS

1 Introduction and Theoretical Background 1
1.1 Graphs and applications 1
1.2 Theoretical background oo 2

1.2.1 2-comnectivity 2
1.2.2 Related work 4
1.2.3 Digraphs, dominators, articulation points, and bridges 6
1.3 Contribution 7
1.3.1 2-edge-connectivity oL 7
1.3.2 2-vertex-connectivity Lo 8
1.3.3 2-connectivity in practiceo oL 8

2 Computing 2-Edge-Connected Blocks 10
2.1 Imtroduction and properties 10
2.2 A simple algorithm 11
2.3 A recursive algorithm 12
2.4 A linear-time algorithmo 25
2.5 Sparse certificate for the 2-edge-connected blocks 27

3 Computing 2-Vertex-Connected Blocks 29
3.1 Introduction and properties 29
3.2 Additional challenges computing the 2-vertex-connected blocks 34
3.3 A simple algorithm Lo 35
3.4 Linear-time algorithm o oo 36

3.4.1 Auxiliary graphso 37

3.4.2 Thealgorithm oo 42
3.5 Queries. e e 46
3.6 Computing the 2-vertex-connected blocks 47
3.7 Sparse certificate for the vertex-resilient blocks and the 2-vertex-connected

blocks 47

4 Experimental evaluation 50
4.1 Introduction Lo 50
4.2 Overview of algorithms oo 51

4.2.1 Computing 2-edge-connected components o4

4.2.2 Computing 2-vertex-connected components 55
4.3 Empirical analysis L L o7
4.3.1 2-connectivity structure of the considered digraphs 58
4.3.2 Vertex-resilient blockso oL 62
4.3.3 2-vertex-connected components 62
4.3.4 2-edge-connected blocks o000 62
4.3.5 2-edge-connected components 64

5 Conclusion 68

i

LIST OF FIGURES

1.1
1.2

1.3

2.1
2.2
2.3

2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6

4.1

4.2
4.3
4.4
4.5

4.6
4.7
4.8

Example of the various 2-connectivity notions in directed graphs.
Paradigm of the fact that the removal of all strong bridges does not result

to 2-edge connected blockso Lo
The relation among various notions of 2-connectivity in directed graphs. . .

Algorithm Simple2ECBo
Visualization of a canonical decomposition.
Pathological example where two vertices that are not 2-edge-connected

appear in the same canonical decompositions of both G and G®.
Example of an auxiliary graph.
Algorithm Rec2ECB L
Pathological case that forces algorithm Rec2ECB to run in time 6(mn) . . .
Example of the first two recursive calls of Algorithm Rec2ECB.
The other two recursive calls of Algorithm Rec2ECB
Algorithm Fast2ECB

Vertex-resilient block example.
A digraph G and its vertex-resilient block forest /.
Algorithm SimpleVRBo
Example of an auxiliary graph.
Algorithm FastVRB
An example that illustrates the execution of the split operation.

An example that elicits the worst-case behavior of the algorithms that
compute the 2-vertex-connected components.
Algorithm 2ECC o
Algorithm 2VCC
Running times of the algorithms computing the vertex-resilient blocks . . .
Running times of the algorithms computing the 2-vertex-connected com-
pPonents oL L e e e e e e
Running times of the algorithms computing the 2-edge-connected blocks
Running times of the best algorithm for each problem.
An input digraph that elicits O(n) recursion depth for Algorithm 2VCC-J2.

il

LIST OF TABLES

4.1
4.2

4.3

4.4

4.5

4.6

4.7

An overview of the algorithms considered in our experimental study.
Characteristics of the real-world graphs that we considered in our experi-
mental study.
Size (maximum and average) and number of the 2-edge-connected blocks
and components of the graphs that we consider.
Size (maximum and average) and number of the vertex-resilient blocks and

the 2-vertex-connected blocks and components of the graphs that we consider.

Running time of the algorithms for computing the 2-vertex-connected com-
ponents and the vertex-resilient blocks.
Running time of the algorithms for computing the 2-edge-connected com-
ponents and blocks.o
Some algorithm statistics. o L0

iv

52

o8

59

60

61

ABSTRACT

Graphs are a fundamental mathematical tool used to model diverse entities such as the
world-wide web, transportation, communication and social networks, databases, biological
systems, VLSI circuits, and the control-flow of computer programs. It is of great interest
to answer relational queries and solve problems on graphs, since very often such problems
appear in practice and require sophisticated approaches. Connectivity holds a central role
in the area of network and graph algorithms, with numerous practical applications. Such
topics have been studied for decades and many significant results have been produced;
nevertheless, many important problems remain open.

In the 2-connectivity problems in graphs, which are part of the greater family of
connectivity problems, the objective is to compute the 2-connected subgraphs on the
input graph, the so-called 2-connected components. A graph is called 2-connected if the
removal of any edge (or vertex) leaves the graph connected (strongly connected when
dealing with directed graph). The problem is further subdivided, depending on whether
the elements to be removed refer to an edge or a vertex; the variations are denoted as 2-
edge-connectivity and 2-vertex-connectivity, respectively. These concepts extend in both
undirected and directed graphs.

In this master thesis we study a variety of 2-connectivity problems on directed graphs.
Specifically, we introduce the notion of 2-edge-connected blocks and 2-vertex-connected
blocks in directed graphs. We say that two vertices v and w are 2-edge-connected (resp., 2-
vertex-connected) if there are two edge-disjoint (resp., internally vertex-disjoint) directed
paths from v to w and two edge-disjoint (resp., internally vertex-disjoint) directed paths
from w to v. We define a 2-edge-connected block (resp., a 2-vertex-connected block) of a
digraph as a maximal subset S of vertices such that every distinct pair of vertices v, w € S
is 2-edge-connected (resp., 2-vertex-connected).

The main results of this study are the two linear time algorithms to compute the 2-
edge-connected and 2-vertex-connected blocks of a directed graph. These two algorithms
are not only theoretically optimal, in terms of asymptotic running time, but also improve
significantly over previous bounds. Although, the two algorithms follow the same high
level approach, the description and the analysis of each of the algorithms is presented
separately since, as we show, there are different technical difficulties and different struc-
tural properties that need to be tackled in each case. Furthermore, in both cases, we can
augment the algorithms that compute the 2-edge-connected (resp., 2-vertex-connected)
blocks with the computation of a subgraph of the initial graph that preserves the 2-edge-

connected (resp., 2-vertex-connected) blocks of the initial graph and has O(n) edges. We
call such a subgraph sparse certificate of the 2-edge-connected blocks (resp., 2-vertex-
connected blocks).

Despite the fact that in our study we present linear time (asymptotically optimal)
algorithms for computing the 2-edge-connected and 2-vertex-connected blocks, it is un-
known, and of great interest, whether the 2-edge-connected and the 2-vertex-connected
components can be computed in linear time as well. In this work we furthermore present
new algorithms for computing the 2-edge-connected and the 2-vertex-connected compo-
nents in O(mn) worst-case time, where m is the number of edges and n is the number
of vertices in the graph. The O(mn) theoretical bound was the best known until very
recently, where a new algorithm with worst-case time complexity O(n?) was proposed.

Finally, we engineered the implementations of our new algorithms for all the variations
of the 2-connectivity problems that we consider and performed a thorough experimental
study comparing our new algorithms against previously known solutions. Our experiments
suggest that, in most cases, our new algorithms perform substantially better than the
known algorithms.

vi

[IEPIAHVH

Or ypdgot amoteholy €va Yepemdes podnuatind cpyokeio mou yenowonoteitar xatd xdpov
YLt TNV dovtehonolnon dlapopwy ovIoThTwy 6Twe Tov Hayxdouio Iotd, dixtua yetagpopmy,
TNAETUXOVOVLOXSL XAk XOWOVIXS BixTud, AoElS OEBOUEVLY, BLONOYIXE CUOTHUNTA, KUXAWUITA
VLSI, xodog xan Sorypdupato porg mpoypoupdtwy. H andvinon oyeotoxwy epntnudtnmy
xou 1) emiAuon TeoPAnudtwy oe Ypdpoug, ugloTaTol UEYSIAOU EVOLAPEPOVTOS, DEBOUEVOL OTL
TOA) GuyVa TéTolou eldoug TpofBhAuata eupaviCovtor oty TEELN xaL anuTolV eCEMYUEVES
npooeyyloelc. To mpoBifuata cuvexTixdtTnTag TAU{OUY XEVTEO PONO GTNV TEQLOYT TGV
Yedpwy xou TV BIxTOWY, Ue TANY®EN TEaX TGV e@upuoy®y. TEtowou eldoug Veuata eyouv
uehetniel oe Badoc BexaeTidY xou £YouV EUPUVIOTEL TOMG ONUAVTIXG ATOTEAEGUITA, ToRd
TO YEYOVOS AUTO ONUAVTIXG TTOAAY TROBAUTA TNG TEPLOY NS TUPUUEVOUY avVOLY TdL.

‘Eva unocivoho g eupUTEENS OOYEVELAS TV TPOBANUATWY CUVEXTIXOTNTAS UTOTEAODY
ToL TEOPAAUATA 2-CUVEXTIXOTNTAS GE YPAPOUS, GTA OTolo O GTOYOC EiVAL O UTOAOYIGUOS TWV 2-
GUVEXTIXWY UTOYEAPWY TOU YRAPOU ELGOD0U, TIG ASYOUEVES 2-CUVEXTIXEG CUVIOTWOOES. 'Evag
YedpOC OVOULETOL 2-CUVEXTIXOC EQY 1) APULPECT| OTOLUCONTOTE OXUNC (n xopucpr’]g) APTVEL TOV
UTIOAELTIOUEVO YPA(PO CUVEXTIXG (LOYURE GUVEXTIXG OTAV OVAUPEROUIOTE OE XUTEVHUVOUEVOUC
yedpouc). Ta mpofAfuata 2-6UVEXTIXGTNTOC UTOBINEOUVTAL TEQAUTERW OVEAOYO UE TO oV
ToL oTOLYEl) TEOC BlaryEuPT| APOPOUY OE OXUES 1} XOPUPES oL OVIPEQOVTOL OTNY EVPECT) TWV
2-CUVEXTIXWY CUVIOTWOWY WE TEOS TIC UXUESC XL TWV 2-CUVEXTIXMY CUVICTWOMY WS TEOG
Toug xouPouc. O mapamdve €vvoleg extelvovton 1660 GE UN-XATEVIUVOUEVOUC OGO Xal GE
©TeEVHUVOUEVOUS YRAPOUG.

2NV TopoUoo BITAWUATIX ERYUCTA UEAETAUE Uia OELRE aTtd TROBANUATO 2-CUVEXTIXOTNTAS
o€ xorevduvouevoug yedgouc. Tl cuyxexpuéva, eloaydyouue THY EVVoLa TWV 2-GUVEXTIXMY
UTAOX (G TIROG TIG OXHUES XL TGV 2-CUVEXTIXMY UTAOX (G TROG TIG XOPUPES OE XATEVDUVOUE-
Voug Ypdpoug. Aéue OTL 5U0 X0pUPES ¥ Xal W EIVOL 2-CUVEXTIXES WC TTPOG TIG OXPES (avtiot.,
2-0UVEXTIXEC WS TIPOC TIC XOPUPES) oV UTIEPY 0LV U0 XATEUTUVOUEVO LOVOTIETLO EEVAL WC TTPOC
T €S (AVTIOT., E0WTERXE EEVAL WE TPOC TIC XOPUPES) OO TNV XOPUYTH U TROC TNV W Xol
000 xateuduVOUEVO HOVOTIATIO EEVaL (G TPOC TIC UXUES (AVTIOT., EOWTERIXE EEVaL 1 TPOC TIC
*0pLYEC) amd TNV xopLEH w Tteog TNV v. Optloupe €va 2-GUVEXTING UTAOX WS TEOS TIG OXUES
(avtloT., éval 2-GUVEXTXG UTAOX TIPOC TIC XOPUPES) 1S TO PEYIOTOTIXG GUVORO XOUBwy S
TETOLO (OOTE OTOLEGONTOTE BUO XOPLPEC v, w € S var elval 2-GUVEXTIXES W TEOC TG OXHUES
(VTIo T., 2-CUVEXTIXES (G TIPOC TIC XOPUPES).

Tao onuovtixdtepa anoteAEoUUTA AUTAS TNE UEAETNG elvon 1) €0pECT) BUO YRAUUUIXOY ohy0pl-
YUY YLl TOV UTOAOYIGHUO TOV 2-CUVEXTIXMY UTAOX (G TTROG TIC UXUES XOL TOV 2-GUVEXTIXMY

vil

UTAOX G TIPOG TIC XOPUPES EVOS xaTeuduvOuEVOL Yedpou. Ot 800 autol ahydpriuol dev etvar
uovo Yewpntixd BEATIOTOL, OCWY aPOEd TNV ACUUTTOTIXTY TOUG TOAUTAOXOTNTA, AAAG BehTL-
OYOUV ETONG ONUAVTIXG TOV TEONYOUUEVO XUADTEPO YPOVO YIA TOV UTOAOYIOUO QUTMV TGV
oyéoewy. Iopd to yeyovoe 61t ot 8Uo ahydprduot axoroudoly Ty (Bla Tpocéyyion uhnho
EMTEDOU, 1) TEQLYPAPT| Xal 1) avdAuoT Tou e alydprduou mapoucidleton ey wploTd BLoTL,
omw¢ Oetyvouye, eupaviCovial BLUPOPETIES TEYVIXES DUOXOAEC X BOUIXE Y oEOXTNOLC TIXY
Tou YeNlouv EWAC AVTWETOTIONG o€ Xdle Tepintwor. Emmiéov, 1600 otov alyopriuo yia
TOV UTIOAOYLOUO TV 2-CUVEXTIXOY UTAOX ¢ TEOC TS 0XUEC 600 Xal GTOV ahyopLiuo yo
TOV UTIOAOYLOUO TV 2-CUVEXTIXGY UTAOX (G TPOS TI XOPUPES, UTOPOVUUE Vi EVOWUATOCO-
UE TOV UTOAOYLOUS EVOS 0patol LTOYEAPOL TOU YEAPOL ELGOBOU Tou dlutneel avticTolyo To
2-CUVEXTIXG. UTAOX OG TIPOG TIC OXUEC XU TAL 2-CUVEXTIXY UTAOX W TEOG TIC XOPUPES TOU
oy @0l yedpou xar €yer O(n) axuéc. Koaholue évo tétolo unoypdpo opod moTomomTxo
TWV 2-CUVEXTIXWY UTAOX G TPOG TIC uxpég(avr&sumxa TWV 2-CUVEXTIXWY UTAOX (G TR0
TIC XOPUGPES).

Iopd to yeyovog 6Tl oTn PEAETH YOG TpOUGIALOUNE YRUUUIXOU YeOVoU ahydptduous yia
TOV UTOAOYLOUO TV 2-CUVEXTIXMV UTAOX WG TEOG TIG OXUES XL 2-CUVEXTIXMV UTAOX G
TEOC T XOPUPES, Efval dyVemOoTOo, %ot TaPOLCIALEL HEYTAD EVOLPEQOY, OV Ol 2-CUVEXTIXEC
CUVLOTWOES WG TEOC TIG UXHES XL Ol 2-CUVEXTIXES CUVICTMOES WG TR0 TOUG XOUBoug umo-
EOUV VoL UTOAOYLOTOUY GE YRUUUIXG YpOVO. LNV Tapolca epyacio TEPLYRAPOUUE ETULTAEOY
VEOUC aAYOELIUOUC YIal TOV UTOAOYIOUO TV 2-CUVEXTIXWY CUVICTWOMY KOS TPOS TIC OXUES
XL TWV 2-CUVEXTIXWY CUVIOTWOMY WS TEOS TIC XOPUPES UE O(mn) YEOVO EXTEAECTC OTNV
YELROTERT TEQIMTLWOT), 6TIou M Elvan To TARUOG TWV oY xot 1 etvar To TANHOC TV X0PUPHY
ToU Ypdpou. 'Hrav dyvewoTo av auTES 0L OYECELS UTOPOUY VO UTOROYLOTOOY Ty UTEQEX UEYEL
TOA) TEOCQUTA, OTOY EVAC VEOS aAYOpLIUoC TeoTdUnxe xaL TETUYAVEL YPOVO YELOTEPNC
nepintwone O(n?).

Téhog, vhomooope TOUG ahyOELIPOUE TOL TEOTEIVAUE Yior OAO Tl TPOBAAUATA 2-CUVEXTI-
©OTNTAC TOU VEWPNOOUE o EXTEAECUUE WL EXTEVY| TEWUUATIXY UEAETN OTNV oTmola ou-
yxelvaue T ueBddoUC pag PE TOug YVwoTolg akyoptiuoug yio xdde mpofBinuo. To met-
eduoTd pog Belyvouv OTL, OTIC TEPLOCOTEPES MEQITTWOELS, Ol VEOL olybprduol TETUYalvoUY
ONUOVTINE XUADTERES EMUDOCELS AT TOUG YVGWO TOUE aAyopiloug.

viil

CHAPTER 1

INTRODUCTION AND THEORETICAL
BACKGROUND

1.1 Graphs and applications

1.2 Theoretical background
1.2.1 2-connectivity
1.2.2 Related work

1.2.3 Digraphs, dominators, articulation points, and bridges

1.3 Contribution

1.1 Graphs and applications

Graphs are a fundamental mathematical tool which is used for representing elements and
the pairwise relations between them. Formally, a graph G is defined by a pair of sets
Vand E (ie. G = (V,E)), where V is the set of vertices (elements of the graph), and
E is the set of pairwise connections between the vertices, which are called edges. The
set of edges F may contain either unordered of ordered pairs of vertices, distinguishing
undirected from directed graphs, respectively. In directed graphs, an edge (u,v) € E,
represents a directed connection from vertex u to vertex v; (u,v) is an outgoing edge from
u and incoming to v. We call u and v the source and the destination, respectively, of
an edge (u,v). In undirected graphs, each edge (u,v) € E has no direction and is both
outgoing and incoming to u and v. We refer the reader that is interested in an extensive
graph terminology to the literature, as for instance in [5].

There is a great variety of practical problems that can be formulated as graphs. The
representation of a problem with graphs, offers a unique plethora of algorithms and tech-
niques for studying and extracting information from the graph. In computer science,

1

graphs are used to represent communication or transportation networks, data organiza-
tion, computational devices, the flow of computation, etc. For instance, the link structure
of a website can be represented by a directed graph, in which the vertices represent web
pages and directed edges represent links from one page to another. A similar approach can
be taken to problems in transportation, biology, computer chip design, and many other
fields. The development of algorithms to handle graphs is therefore of major interest
in computer science. The transformation of graphs is often formalized and represented
by graph rewrite systems. Complementary to graph transformation systems focusing
on rule-based in-memory manipulation of graphs are graph databases geared towards
transaction-safe, persistent storing and querying of graph-structured data.

1.2 Theoretical background

An undirected path (resp., directed path) in G is a sequence of vertices vy, v, .. ., Vg, such
that edge (v;,v;41) € Efori=1,2,... k—1. A path P is called simple if all the vertices
in P, except the first and the last, are distinct. In this thesis we will consider only simple
paths and we will refer to them simply as paths. An undirected graph G is connected
if there is an undirected path from each vertex to every other vertex. The connected
components of an undirected graph are its maximal connected subgraphs. A directed
graph G is strongly connected if there is a directed path from each vertex to every other
vertex. The strongly connected components of a directed graph are its maximal connected
subgraphs.

Let G = (V, E) be an undirected (resp., directed) graph, with m edges and n vertices.
Throughout the paper, we use interchangeably the term directed graph and digraph.
Edge and vertex connectivity are fundamental concepts in graph theory with numerous
practical applications [2, 30]. As an example, we mention the computation of disjoint
paths in routing and reliable communication, both in undirected and directed graphs
[18, 21].

1.2.1 2-connectivity

Given an undirected graph G = (V| E), an edge is a bridge if its removal increases the
number of connected components of G. Graph G is 2-edge-connected if it has no bridges.
The 2-edge-connected components of G are its maximal 2-edge-connected subgraphs. Two
vertices v and w are 2-edge-connected if there are two edge-disjoint paths between v and w:
we denote this relation by v <>, w. Equivalently, by Menger’s Theorem [28], v and w are
2-edge-connected if the removal of any edge leaves them in the same connected component.
Analogous definitions can be given for 2-vertex connectivity. In particular, a vertex is an
articulation point if its removal increases the number of connected components of G. A
graph G is 2-vertex-connected if it has at least three vertices and no articulation points.
The 2-vertex-connected components of G are its maximal 2-vertex-connected subgraphs.

(a) G (b) 2VOC(G) (¢) 2VCB(GQ) (d) 2BCC(G) (e) 2ECB(G)

Figure 1.1: (a) A strongly connected digraph G, with strong articulation points and strong
bridges shown in red (better viewed in color); (b) The 2-vertex-connected components of
G (¢) The 2-vertex-connected blocks of G; (d) The 2-edge-connected components of G;
(e) The 2-edge-connected blocks of G.

Note that the condition on the minimum number of vertices in a 2-vertex-connected graph
disallows degenerate 2-vertex-connected components consisting of one single edge. Two
vertices v and w are 2-vertex-connected if there are two internally vertex-disjoint paths
between v and w: we denote this relation by v <»9, w. If v and w are 2-vertex-connected
then Menger’s Theorem implies that the removal of any vertex different from v and w
leaves them in the same connected component. The converse does not necessarily hold,
since v and w may be adjacent but not 2-vertex-connected. It is easy to show that v <>, w
(resp., v <>9y w) if and only if v and w are in a same 2-edge-connected (resp., 2-vertex-
connected) component. All bridges, articulation points, 2-edge- and 2-vertex-connected
components of undirected graphs can be computed in linear time essentially by the same
algorithm |33].

The notions of 2-edge and 2-vertex connectivity were naturally extended to directed
graphs in [22|. Given a digraph G, an edge is a strong bridge if its removal increases
the number of strongly connected components of G. Respectively, a vertex is a strong
articulation point if its removal increases the number of strongly connected components of
G. A digraph G is 2-edge-connected if it has no strong bridges; G is 2-vertex-connected if it
has at least three vertices and no strong articulation points. The 2-edge-connected (resp.,
2-vertex-connected) components of G are its maximal 2-edge-connected (resp., 2-vertex-
connected) subgraphs. Again, the condition on the minimum number of vertices disallows
for degenerate 2-vertex-connected components consisting of two mutually adjacent vertices
(i.e., two vertices v and w and the two edges (v, w) and (w,v)).

Similarly to the undirected case, we say that two vertices v and w are 2-edge-connected,

and we denote this relation by v <9, w, if there are two edge-disjoint directed paths from
v to w and two edge-disjoint directed paths from w to v. (Note that a path from v to
w and a path from w to v need not be edge-disjoint). It is easy to see that v <9 w
if and only if the removal of any edge leaves v and w in the same strongly connected
component. We define a 2-edge-connected block of a digraph G = (V, E) as a maximal
subset B C V such that u <9, v for all u,v € B. Analogous definitions can be given for
2-vertex connectivity. We say that two vertices v and w are 2-vertex-connected, and we
denote this relation by v <>, w, if there are two internally vertex-disjoint directed paths
from v to w and two internally vertex-disjoint directed paths from w to v. (Note that a
path from v to w and a path from w to v need not be vertex-disjoint). As in the 2-edge
connectivity, v <»o, w implies that the removal of any vertex different from v and w leaves
v and w in the same strongly connected component. We define a 2-vertez-connected block
of a digraph G = (V, E) as a maximal subset B C V such that u <»9, v for all u,v € B.
The 2-connectivity blocks relations were first considered by Reif and Spirakis in [32].

It can be easily seen that, differently from undirected graphs, in digraphs 2-edge-
and 2-vertex-connected blocks do not correspond to 2-edge- and 2-vertex-connected com-
ponents, as illustrated in Figure 1.1. Two vertices may be 2-edge-connected (resp., 2-
vertex-connected) but lie in different 2-edge-connected (resp., 2-vertex-connected) com-
ponents. Furthermore, these notions seem to have a much richer (and more complicated)
structure in digraphs. Just to give an example, we observe that while in the case of
undirected connected graphs the 2-edge-connected components (which correspond to the
2-edge-connected blocks) are exactly the connected components left after the removal of
all bridges, for directed strongly connected graphs the 2-edge-connected components, the
2-edge-connected blocks, and the strongly connected components left after the removal
of all strong bridges are not necessarily the same. These observations are illustrated in
Figure 1.2. Put in other words, differently from the undirected case, in digraphs 2-vertex-
(resp., 2-edge-) connected components do not encompass the notion of pairwise 2-vertex
(resp., 2-edge) connectivity among its vertices. We note that pairwise 2-connectivity
may be relevant in several applications, where one is interested in local properties, e.g.,
checking whether two vertices are 2-connected, rather than in global properties.

1.2.2 Related work

Following the discussion from Section 1.2.1, it is not surprising that 2-connectivity prob-
lems on directed graphs appear to be more difficult than on undirected graphs. For undi-
rected graphs it has been known for over 40 years how to compute all bridges, articulation
points, 2-edge- and 2-vertex-connected components in linear time, by simply using depth
first search [33]. In the case of digraphs, however, the very same problems have been much
more challenging. Indeed, it has been shown only few years ago that all strong bridges and
strong articulation points of a digraph can be computed in linear time [22]. Furthermore,
the best current bound for computing the 2-edge- and the 2-vertex-connected components
in digraphs is not even linear, but it is O(n?), and it was achieved only very recently by

© (1 (D

® © © 9‘0‘0 9‘9‘0

® (5) O,
ONONO. 0‘00 G‘ﬁ

(b) (c) (d) (f)
(8) G 2ECB(G) G/SB(G) 2ECC(G) () U 2ECC(U)

Figure 1.2: (a) A digraph G with strong bridges shown in red; (b) The 2-edge-connected
blocks of G; (¢) The strongly connected components left after removing all the strong
bridges from G; (d) The 2-edge-connected components of G. (e) An undirected graph U
with bridges shown in red; (f) The 2-edge-connected components of U, corresponding to
the 2-edge-connected blocks and to the connected components left after the removal of
all bridges of U.

Henzinger et al. [20], improving previous O(mn) time bounds [24, 31|. A simple algorithm
for computing the 2-edge-connected components can be obtained by repeatedly removing
all the strong bridges in the graph (and repeating this process until no strong bridges are
left). Since at each round all the strong bridges can be computed in O(m+n) time 22| and
there can be at most O(n) rounds, the total time taken by this algorithm is O(mn). As
for 2-vertex connectivity, Erusalimskii and Svetlov [6] proposed an algorithm that reduces
the problem of computing the 2-vertex-connected components of a digraph to the compu-
tation of the 2-vertex-connected components in an undirected graph, but did not analyze
the running time of their algorithm. Their reduction is achieved by repeatedly computing
the strongly connected components of all subgraphs G\ v, for every vertex v, and deleting
the edges that connect different strongly connected components. This process is repeated
until no edge is removed in all current subgraphs G \ v; the 2-vertex-connected compo-
nents of the resulting digraph G are identical to the 2-vertex-connected components of
the undirected version of G. Jaberi [24] showed that the algorithm of Erusalimskii and
Svetlov has O(nm?) running time, and proposed two different algorithms with running
time O(mn).The first algorithm decomposes the digraph by repeatedly removing a strong
articulation point at a time. The second algorithm divides the digraph using a domi-
nator tree [25]. The computation of the k-edge-connected components of a digraph was
considered by Matula and Vohra [27], where they gave an O(n?)-time algorithm.

A simple algorithm for computing the 2-edge- or 2-vertex-connected blocks of a digraph
takes O(mn) time: given a vertex v, one can find in linear time all the vertices that are
2-edge- or 2-vertex-connected with v with the help of dominator trees. Since in the
worst, case this step must be repeated for all vertices v, the total time required by the
simple algorithm is O(mn). Very recently, and independently of our work, Jaberi [23]

3

Figure 1.3: The relation among various notions of 2-connectivity in directed graphs.

presented algorithms for computing the 2-vertex-connected and 2-edge-connected blocks.
His algorithms require O(n-min{m, b*n}) time for computing the 2-edge-connected blocks
and O(n - min{m, (a* + b*)n}) time for computing the 2-vertex-connected blocks, where
a* and b* are respectively the number of strong articulation points and strong bridges in
the digraph G. Since both a* and b* can be as large as O(n), both bounds are O(mn) in
the worst case.

From the above discussion it is clear that, differently from the case of undirected
graphs, for digraphs there is a huge gap between the O(m + n) time bound for comput-
ing all connectivity cuts (strong bridges and strong articulation points), and the O(mn)
time bound for computing the connectivity blocks or components (2-edge- and 2-vertex-
connected blocks and 2-edge- and 2-vertex-connected components). Thus, it seems quite
natural to ask whether the O(mn) bound is a natural barrier for those problems, or
whether they could be solved faster in linear time.

1.2.3 Digraphs, dominators, articulation points, and bridges

In this section we introduce some terminology that will be useful throughout the paper.
A flow graph is a digraph such that every vertex is reachable from a distinguished start
vertex. Let G = (V, E) be the input digraph, which we assume to be strongly connected.
(If not, we simply treat each strongly connected component separately.) For any vertex
s € V, we denote by G(s) = (V, E, s) the corresponding flow graph with start vertex s; all
vertices in V' are reachable from s since G is strongly connected. The dominator relation
in G(s) is defined as follows: A vertex w is a dominator of a vertex w (u dominates w)
if every path from s to w contains u; u is a proper dominator of w if u dominates w and
u # w. The dominator relation is reflexive and transitive. Its transitive reduction is a
rooted tree, the dominator tree D(s): u dominates w if and only if u is an ancestor of
win D(s). If w # s, d(w), the parent of w in D(s), is the immediate dominator of w:
it is the unique proper dominator of w that is dominated by all proper dominators of w.
An edge (u,w) is a bridge in G(s) if all paths from s to w include (u,w). Throughout
the paper, to avoid danger of ambiguity we use consistently the term bridge to refer to a

bridge of a flow graph G(s) and the term strong bridge to refer to a strong bridge in the
original graph G.

Lengauer and Tarjan [25] presented an algorithm for computing dominators in
O(ma(n,m/n)) time for a flow graph with n vertices and m edges, where « is a functional
inverse of Ackermann’s function [36]. Subsequently, several linear-time algorithms were
discovered [1, 3, 4, 8, 9, 15]. Tarjan [34] showed that the bridges of flow graph G(s) can be
computed in O(m) time given D(s). He also presented an O(ma(n, m/n))-time algorithm
to compute bridges that uses static tree set union to contract strongly connected subraphs
in G [37|. The Gabow-Tarjan static tree disjoint set union algorithm |10] reduces the run-
ning time of this algorithm to O(m) on a RAM. Buchsbaum et al. [3] gave an O(m)-time
pointer-machine algorithm.

Italiano et al. [22] showed that the strong articulation points of G can be computed
from the dominator trees of G(s) and G*(s), where s is an arbitrary start vertex and G
is the digraph that results from G after reversing edge directions; similarly, the strong
bridges of G correspond to the bridges of G(s) and G(s). This gives the following bound
on the number of strong bridges.

Lemma 1.1. Any digraph with n vertices has at most 2n — 2 strong bridges.

Experimental studies for algorithms that compute dominators, strong bridges, and
strong articulation points are presented in [7, 13, 14, 17]. The experimental results show
that the corresponding fast algorithms given in [8, 22, 25, 37| perform very well in practice
even on very large graphs.

1.3 Contribution

In this work, we present the first linear-time algorithms to compute the 2-edge-connected
and the 2-vertex-connected blocks of a digraph. Our algorithms are not only asymp-
totically optimal, but also improve significantly over previous bounds. Furthermore, the
ability to compute the 2-edge-connected and the 2-vertex-connected blocks of a digraph
in linear time seems a significant step, especially as it was the first real progress on this
extremely natural problem, starting from the foundational work done 40 years ago for
undirected graphs.

Our algorithms follow the high-level approach for computing the 2-edge-connected
blocks and the 2-vertex-connected blocks. However, the algorithm for computing the
2-vertex-connected blocks is much more involved and requires several novel ideas and
non-trivial techniques to achieve the claimed bounds. In particular, we discuss the main
technical difficulties that need to be tackled in Section 3.2.

1.3.1 2-edge-connectivity

We present the first linear-time algorithm to compute the 2-edge-connected blocks of a
digraph [11]. Our algorithm, as mentioned above, is asymptotically optimal and improves

7

significantly over the previous known bounds O(mn). Our approach hinges on two differ-
ent algorithms. The first is a simple iterative algorithm that builds the 2-edge-connected
blocks by removing one strong bridge at a time. The second algorithm is more involved
and recursive: the main idea is to consider simultaneously how several distinct strong
bridges partition vertices with the help of dominator trees. Although both algorithms
run in O(mn) time in the worst case, we show that a sophisticated combination of the
iterative and the recursive method is able to achieve the claimed linear-time bound.

Using our algorithm for 2-edge-connected blocks, we can preprocess a digraph in linear
time, and then answer in constant time queries on whether any two vertices are 2-edge-
connected. We also show how to compute in linear time a sparse certificate for 2-edge-
connected blocks, i.e., a subgraph of the input graph that has O(n) edges and maintains
the same 2-edge-connected blocks as the input graph.

1.3.2 2-vertex-connectivity

We complete the picture on 2-connectivity for digraphs by presenting the first algorithm
for computing the 2-vertex-connected blocks in O(m +n) time [12]. Our bound is asymp-
totically optimal and it improves sharply over a previous O(mn) time bound by Jaberi
[23]. As a side result, our algorithm constructs an O(n)-space data structure that reports
in constant time if two vertices are 2-vertex-connected. Additionally, when two query
vertices v and w are not 2-vertex-connected, our data structure can produce, in constant
time, a “witness” by exhibiting a vertex (i.e., a strong articulation point) or an edge (i.e.,
a strong bridge) that separates them. We are also able to compute in linear time a sparse
certificate for 2-vertex connectivity, i.e., a subgraph of the input graph that has O(n)
edges and maintains the same 2-vertex connectivity properties.

We additionally contribute in the area of 2-vertex-connectivity, by providing a new
O(mn)-time algorithm for computing the 2-vertex-connected components of a digraph,
that refines the dominator tree division used by Jaberi [24]. Our new algorithms does not
decrease the best known asymptotic bound, but we show that it performs very well in
practice.

1.3.3 2-connectivity in practice

We also consider the computation of the 2-edge- and 2-vertex-connected blocks and com-
ponents of a digraph in practice [26], and present efficient implementations of the algo-
rithms introduced in this work, and also compare them to known algorithms |6, 24].

We evaluate the efficiency of our algorithms experimentally on large digraphs taken
from a variety of application areas. To the best of our knowledge, this is the first empirical
study for these problems. Our extensive experimental study sheds light on the relative
difficulty of computing various notions of 2-connectivity in directed graphs. Specifically,
we compare the performance of the linear-time algorithms for computing the 2-edge- and
2-vertex-connected blocks of a digraph with simpler algorithms that iterate over the strong

articulation points and strong bridges of the digraph. We also consider the computation
of the 2-vertex-connected components of a digraph and compare the performance of our
new algorithm and the algorithms of Erusalimskii and Svetlov [6] and Jaberi [24]. Our
results show that algorithms that apply a dominator-tree-based division of the input
digraph perform well in practice and are more robust than their simpler competitors. The
experimental results also suggest that the 2-edge- and 2-vertex-connected components of
digraphs that arise in many practical applications can be found efficiently, despite the
fact that currently the best bound for their computation is O(n?).

CHAPTER 2

COMPUTING 2-EDGE-CONNECTED
BLOCKS

2.1 Introduction and properties
2.2 A simple algorithm

2.3 A recursive algorithm

2.4 Linear-time algorithm

2.5 Sparse certificate for the 2-edge-connected blocks

2.1 Introduction and properties

First, recall the following definitions from Section 1.2.1. We say that two vertices v and
w are 2-edge-connected, and we denote this relation by v <9, w, if there are two edge-
disjoint directed paths from v to w and two edge-disjoint directed paths from w to v. (A
path from v to w and a path from w to v need not be edge-disjoint.) It is easy to see
that v <>9. w if and only if the removal of any edge leaves v and w in the same strongly
connected component. We define a 2-edge-connected block of a digraph G = (V| E) as a
maximal subset B C V such that u >4, v for all u,v € B.

Theorem 2.1. The 2-edge-connected blocks of a digraph G = (V, E) form a partition of
V.

Proof. We show that <»9. is an equivalence relation. The relation is by definition reflexive
and symmetric, so it remains to show that it is also transitive when G has at least three
vertices. Let u, v, and w be three distinct vertices such that u <»9. v and v <39 w.
Counsider any u-w cut (U, W), where u € U and w € W. Let k£’ be the number of edges

10

directed from U to W. We will show that &' > 2. If v € U, then v <9, w implies that
k' > 2. Otherwise, v € W, and u <9, v implies that &' > 2. A completely analogous
argument applies to the edges directed from W to U. The fact that u <9, w now follows
from Menger’s Theorem [28].

Throughout, we use the notation [v]s. to denote the 2-edge-connected block containing
vertex v € V. We can generalize the 2-edge-connected relation for £ > 2 edge-disjoint
paths: the proof of Theorem 2.1 can be extended to show that this relation also defines a
partition of V' into k-edge-connected blocks. By Theorem 2.1, once the 2-edge-connected
blocks are available, it is easy to test in constant time if two vertices are 2-edge-connected.

Next we develop algorithms that compute the 2-edge-connected blocks of a digraph
G. Clearly, we can assume that G is strongly connected, so m > n. If not, then we
process each strongly connected component separately; if u <>9. v then u and v are in
the same strongly connected component S of GG, and moreover, any vertex on a path
from u to v or from v to w also belongs in S. We begin with a simple algorithm that
removes a single strong bridge at a time. In order to get a more efficient solution, we
need to consider simultaneously how different strong bridges partition the vertex set. We
present a recursive algorithm that does this with the help of dominator trees. Although
both these algorithms run in O(mn) time in the worst case, we finally show that a careful
combination of them is able to achieve linear time.

2.2 A simple algorithm

Let u and v be two distinct vertices in G. We say that a strong bridge e separates u from
v if all paths from w to v contain edge e. In this case, v and v must belong to different
strongly connected components of G \ e. This simple observation gives a characterization
of the 2-edge-connected blocks in terms of the strong bridges. In particular, one can
obtain the 2-edge-connected blocks of G by simply computing the strongly connected
components of G \ e for every strong bridge e, as illustrated by Algorithm Simple2ECB in
Figure 2.1.

Lemma 2.1. Algorithm Simple2ECB runs in O(mb*) time, where b* is the number of
strong bridges of G.

Proof. The strong bridges of G can be computed in linear time by [22]. In each iteration
of Step 3, we can compute the strongly connected components of G'\ e in linear time [33].
As we discover the i-th strongly connected component, we assign label i (i € {1,...,n})
to the vertices in S;. Then, the refinement of the current blocks in Step 3.1 can be done
in O(n) time with bucket sorting. So each iteration takes O(m) time. 1

Note that the above bound is O(mn) in the worst case, since for any digraph b* < 2n—2
by Lemma 1.1. We remark that deleting all strong bridges (at once) will not produce a
correct, result, as it can be easily seen from Figures 1.2(b) and 1.2(c). Despite the fact

11

Algorithm Simple2ECB: Computation of the 2-edge-connected blocks
of a strongly connected digraph G = (V, E)

Step 1: Initialize the 2-edge-connected blocks as [v]se = V. (Start from the
trivial partition containing only one block.)

Step 2: Compute the strong bridges of G.
Step 3: For each strong bridge e do:

Step 3.1: Compute the strongly connected components Sy, . .., Sk of G\e.

Step 3.2: Let {[vi]se, ..., [vi]2¢} be the current 2-edge-connected blocks.
Refine the partition into blocks by computing the intersections [v;]2e N
Sjforalli=1,...;land j=1,... k.

Figure 2.1: Algorithm Simple2ECB

that removing a single strong bridge at a time does not yield an efficient algorithm, we
will make use of this idea, in a more restricted way, in the linear-time algorithm described
in Section 2.4.

2.3 A recursive algorithm

In order to obtain a faster algorithm we need to determine how multiple strong bridges
affect the partition of the vertices into blocks. We achieve this by selecting an arbitrary
start vertex s and by using the dominator tree D(s) of the flow graph G(s). We do this
as follows. First we consider the computation of the 2-edge-connected block that contains
a specific vertex v. Let w be a vertex other than v. We say that w is 2-edge-connected
from v if there are two edge disjoint paths from v to w. Analogously, we say that w is
2-edge-connected to v if there are two edge disjoint paths from w to v. We divide the
computation of [v]s. in two parts, where the first part finds the set of vertices [v]5; that
are 2-edge-connected from v, and the second part finds the set [v]g- of vertices that are
2-edge-connected to v. Then [v]y is formed by the intersection of these two sets.
Consider the computation of [v]5;. An efficient way to compute this set is based on the
dominators and bridges of the flow graph G(v). In particular, we compute the dominator
tree D(v) and identify the bridges of G(v). Then for each bridge e = (u,w) we have
d(w) = u, i.e., each bridge is also an edge in the dominator tree; we mark w in D(v).

Lemma 2.2. w € [v]g; if and only if w is not dominated in G(v) by a marked vertex.

Proof. We have that w ¢ [v]; if and only if there is an edge (strong bridge) that separates

12

v from w in G. Then e = (x,y) is such an edge if and only if it is a bridge in G(v), so y
is a marked ancestor of w in D(v).

Lemma 2.2 implies a straightforward linear-time algorithm to compute [v]5;, given the
dominator tree D(v) of G(v). We use the same algorithm to compute [v]s;, but operate
on the reverse graph G(v) and its dominator tree Df(v). That is, we identify the bridges
of the flow graph G (v), and for each bridge ¢ = (u,w) we mark w in D¥(v). Note that
a vertex w that is marked in D(v) may not be marked in D®(v) and vice versa.

Corollary 2.1. w € [v]a if and only if w is not dominated in G(v) and in G(v) by any
marked vertex. Moreover, [v]se can be computed in O(m) time.

Note that all the 2-edge-connected blocks [v]s. can be computed in O(mn) time by
applying Corollary 2.1 to all vertices v. We describe next a more complicated algorithm,
which avoids repeated applications of Corollary 2.1. This algorithm will still require
O(mn) time but it will be a useful ingredient for our linear-time algorithm.

Let s be an arbitrarily chosen start vertex. We first observe that the bridges in the
dominator trees D(s) and D (s) of G(s) and GT(s), respectively, partition the vertices
into sets that contain the 2-edge-connected blocks. More precisely, identify the bridges
of G(s) (resp., G¥(s)), and for each bridge e = (u,w) mark w in D(s) (resp. DT(s))
as above. Now delete all bridges from D(s) and D%(s): namely, remove from D(s) all
edges (d(v),v) such that v is marked in D(s), and remove from DF(s) all edges (d%(v),v)
such that v is marked in D%(s). This decomposes the dominator trees D(s) and D%(s)
into forests of rooted trees, where each tree is rooted either at a marked vertex or at the
start vertex s. In the following, we refer to this as the canonical decomposition of the
dominator tree D(s), and use the notation T'(v) to denote the tree containing vertex v in
this decomposition. Note that T'(v) is a subtree of D(s) and its root r, is either a marked
vertex or the start vertex s. Similarly, we denote by T%(v) the tree containing vertex v in
the canonical decomposition of the dominator tree Df(s). Figure 2.2 shows an example
of a flow graph G(s), its dominator tree D(s) and the canonical decomposion of D(s) into
the subtrees 7'(v) induced by the removal of all bridges of the flow graph G(s).

In the following lemmas, we assume that s is an arbitrarily chosen start vertex in G,
G(s) is the flow graph with start vertex s, G®(s) is the flow graph obtained from G(s)
after reversing edge directions, D(s) and D (s) are the dominator trees of G(s) and G(s)
respectively, and T'(v) and T%(v) are the subtrees containing vertex v in the canonical
decompositions of D(s) and D(s) respectively (i.e., induced by the removal of all bridges
in D(s) and D*(s)).

Lemma 2.3. Let v and w be two different vertices in G. Then [v]ee = [w]e only if
T(v) = T(w) and TR(v) = TH(w).

Proof. We show that [v]ge = [w]se implies T'(v) = T'(w). Then the same argument applied
on G®(s) shows that TH(v) = TH(w). Suppose by contradiction that [v]s. = [w]se but
T(v) # T(w), i.e., w & T'(v). Assume without loss of generality that r, is not an ancestor

13

(®
®
O O ®
(L)
©

& © ® ®®/®\
® (@ ® ®
© © ©®

Figure 2.2: A flow graph G(s), its dominator tree D(s) and its canonical decomposition
into the subtrees T'(v) induced by the bridges of G(s). Strong bridges of the original
graph G and bridges of the flow graph G(s) are shown in red; marked vertices are shown
in yellow. (Better viewed in color.)

14

®

e @ AN

Figure 2.3: A strongly connected digraph G and its dominator trees D(A) and DT(A)
rooted at vertex A. (The edges of the dominator tree D®(A) are shown directed from

child to parent.) Strong bridges are shown in red (better viewed in color). Vertices C' and
E lie in the same subtree in both D(A) and DT(A) but they are not 2-edge-connected,
as they are separated by the strong bridge (C, D).

of r,, in D(s) (if not, swap v and w). Note that the edge e = (d(r,),r,) must be a bridge
in G(s). Since [v]ze = [w]se, then there must be a path P in G from w to v that avoids
edge e. Since r, is not an ancestor of 7, in D(s), there is a path @) in G from s to w that
avoids e. If v €) then the part of () from s to v avoids e, which contradicts the fact that
e is a bridge in G(s), i.e., it induces a cut that separates s from v in G. If v € @, then
Q) followed by P (Q - P) gives a path from s to v in G that avoids the bridge e, again a
contradiction.

Note that Lemma 2.3 provides a necessary condition for two vertices to be 2-edge-
connected. This is not a sufficient condition, however, as two vertices may be separated
by a strong bridge and still lie in the same subtree in both the canonical decompositions
of D(s) and of D®(s) (see Figure 2.3). The main challenge in this approach is thus to
discover which vertices in the same subtree are separated by a strong bridge. To tackle
this challenge, we provide some key observations regarding edges and paths that connect
different subtrees T'(r). We will use the parent property of dominator trees [16|, that we
state next.

Lemma 2.4. (Parent property of the dominator tree [16].) For all (v,w) € E, d(w) is
an ancestor of v in D(s).

Now we prove some structural properties for paths that connect vertices in different
subtrees.

Lemma 2.5. Let e = (u,v) be an edge of G such that T'(u) # T'(v) and let r, be the root
of T'(v). Then either w = d(v) and e is a bridge in the flow graph G(s), or u is a proper
descendant of r, in D(s).

15

Proof. If e is a bridge in G(s) then u = d(v) and the lemma holds. Suppose that e is not
a bridge, so u # d(v). If v is an ancestor of u in D(s) then the lemma holds. If not, then
by Lemma 2.4, d(v) is a proper ancestor of u in D(s). We show that d(v) € T'(v), which
implies the lemma. Assume by contradiction that d(v) & T'(v). Then (d(v),v) is a bridge
and v = r,. Since v is not an ancestor of u in D(s), there is a path P from s to u that
does not contain v. Then P - e is a path from s to v that avoids the bridge (d(v),v), a

contradiction.

Lemma 2.6. Let r be a marked vertex in D(s). Let v be any vertex that is not a descendant
of r in D(s). Then there is path from v to r that does not contain any vertex in T(r)\ r.

Moreover, all simple paths from v to any vertez in T(r) contain the edge (d(r),r).

Proof. Since v is not a descendant of 7 in D(s), v € T'(r). Graph G is strongly connected,
so it contains a path from v to r. Let P be any such path. Let e = (u,w) be the first
edge on P such that w € T(r). Then by Lemma 2.5, either e = (d(r),r) or u is a proper
descendant of r. In the first case the lemma holds. Suppose u is a proper descendant of r.
Since v is not a descendant of r in D(s), there is a path @ from s to v in G that does not
contain r. Then @ followed by the part of P from v to w gives a path from s to w € T'(r)
that avoids d(r), a contradiction.

Auxiliary graphs. We now introduce the notion of auziliary graphs that plays a crucial
role in our algorithm. Auxiliary graphs represent a decomposition of the input digraph
G into smaller digraphs (not necessarily subgraphs of GG) that maintain the original 2-
edge-connected blocks of G. Let r be either a non-leaf marked vertex or the start vertex
s in the dominator tree D(s), and let T'(r) be the subtree with root r in the canonical
decomposition of the dominator tree D(s). For each such subtree T'(r), we define the
auziliary graph G, = (V,, E,) of r as follows. The vertex set V, of G, consists of all the
vertices in T'(r), referred to as ordinary vertices, and a set of auriliary vertices, which
are obtained by contracting vertices in V' \ T'(r), as follows. Let v be a vertex in T'(r).
We say that v is a boundary vertex in T'(r) if v has a marked child in D(s). Let w be
a marked child of a boundary vertex v: all the vertices that are descendants of w in
D(s) are contracted into w. All vertices in V' \ T'(r) that are not descendants of r are
contracted into d(r) (r # s if any such vertex exists). During those contractions, parallel
edges are eliminated. This is necessary in order to obtain the size bound given in Lemma
2.7. Figure 2.4 shows a flow graph, its dominator tree and an auxiliary graph.

Lemma 2.7. If G(s) has b bridges then all the auziliary graphs G, have at most n + 2b
vertices and m + 2b edges in total.

Proof. Every vertex appears as an ordinary vertex only in one auxiliary graph. A marked
vertex in D(s) corresponds to a bridge in G(s), so there are b < n — 1 marked vertices.
Since we have one auxiliary graph for each marked vertex, the total number of the auxiliary
vertices d(r) is b. Each marked vertex v can also appear in at most one other auxiliary
graph as a child of a boundary vertex. So the total number of vertices is at most n + 20.

16

@)

©
@M<+
@

Figure 2.4: The flow graph G(S5) and its dominator tree D(S) from Figure 2.2, together
with the auxiliary graph of vertex F. Strong bridges are red, marked vertices are yellow,
and auxiliary vertices are gray. (Better viewed in color.) Edge (L, D) is a shortcut edge
of type (c) that corresponds to a path in G from L to D, e.g., L, N, B, A, D. Edges (L, F)
and (I, G) are shortcut edges of type (b).

17

Next we bound the total number of edges. The total number of edges between ordinary
vertices in all auxiliary graphs is at most m — b. Each bridge can appear in at most two
auxiliary graphs. Finally, the number of edges connecting auxiliary vertices is at most b,
since each such edge corresponds to a unique occurrence of a marked vertex as an auxiliary
vertex. So we have at most m + 2b edges in total.

Lemma 2.8. Let v and w be two vertices in a subtree T(r). Any path P from v to w
i G has a corresponding path P, from v to w in the auziliary graph G,, and vice versa.
Moreover, P, contains a strong bridge if and only if P does.

Proof. The first part of the lemma follows immediately from the definition of auxiliary
graph G,. For the second part, let P be a path from v to w in G and let P, be its
corresponding path in G,. Let e = (z,y) be a strong bridge on P. We consider the
following cases:

e r €T (r)and y € T(r). Then (z,y) is also an edge on P,. Moreover, by the definition
of G, the edge (x,y) is a strong bridge in G,.

e x €T (r)and y ¢ T(r). By Lemma 2.5, either = d(y) or z is a proper descendant of
1y in the dominator tree D(s). In the former case, e = (d(y), y) is a strong bridge in G,
that is contained in all paths from v to w. In the latter case, Lemma 2.6 implies that
all paths from v to w in G contain the strong bridge (d(r),r). By the construction of
the auxiliary graphs, this is also true for all paths from v to w in G,.

e v ¢ T(r) and = a descendant of r in D(s). Then v is not an ancestor of w in D(s),
since otherwise, by Lemma 2.4, there would be a path from v to w that avoids e. Let
t € T(r) be the boundary vertex that is an ancestor of z, and let z be the child of ¢ that
is an ancestor of x. By Lemma 2.6, all paths from v to x in G, and thus all paths from
v to w, contain the strong bridge (¢,z). By the construction of the auxiliary graphs
this is also true for all paths from v to w in G,.

e © ¢ T(r) and x not a descendant of r in D(s). In this case, Lemma 2.6 implies that
all paths from x to w in G contain the strong bridge (d(r),r). Hence, all paths from v
to w in G contain the strong bridge (d(r),r), and so do all paths from v to w in G, by
the construction of the auxiliary graphs.

Thus, in every case we have that P, contains a strong bridge, and so the lemma follows.
1

Corollary 2.2. Fach auxiliary graph G, is strongly connected.

Proof. 1t follows immediately from Lemma 2.8 and the fact that G is strongly connected.
1

Now we are ready to show that we can compute the 2-edge-connected blocks in each
auxiliary graph independently of each other.

18

Lemma 2.9. Let v and w be any two distinct vertices of G. Then v and w are 2-edge-
connected in G if and only if they are both ordinary vertices in an auxiliary graph G, and
they are 2-edge-connected in G,.

Proof. By Lemma 2.3, v and w are 2-edge-connected in G only if they belong to the same
subtree T'(r), in which case they are both ordinary vertices of G,.. If v and w are 2-edge-
connected in G then Lemma 2.8 implies that they are also 2-edge-connected in G,. Now
suppose that there is a strong bridge that separates v from w in G. The case analysis in
the proof of Lemma 2.8 shows that all paths from v to w in G, also have a strong bridge
in common. The same argument applies if there is a strong bridge that separates w from
v in G, and the lemma follows. 1

We next show how to construct the auxiliary graphs G, = (V,, E,) efficiently. The
vertex set V. contains the set V° of ordinary vertices (i.e., the vertices of T'(r)), and the
set V@ of auziliary vertices. The edge set F, contains all edges in G = (V, F) induced by
the ordinary vertices (i.e., edges (u,v) € E such that u € T(r) and v € T(r)), together
with some edges that have at most one endpoint in 7'(r) and are either bridges of G(s) or
shortcut edges that correspond to paths in G. We define shortcut edges as follows. Let v
be a boundary vertex in T(r) (i.e., v has a marked child in D(s)). For each marked child
w of v in D(s) we add a copy of w in V% and add the edge (v,w) in E,. Also, if r is
marked (r # s) then we add a copy of d(r) in V%, and add the edge (d(r),r) in E,. We
also add in E, the following shortcut edges for edges (u,v) of the following type: (a) If u
is ordinary and v is not a descendant of 7, then we add the shortcut edge (u,d(r)). (b)
If v is ordinary and wu is a proper descendant in D(s) of a boundary vertex w, then we
add the shortcut edge (z,v) where z is the child of w that is an ancestor of w in D(s).
(¢) Finally, if u is a proper descendant in D(s) of a boundary vertex w and v is not a
descendant of r, then we add the shortcut edge (z,d(r)), where z is the child of w that is
an ancestor of u in D(s). We note that, according to the definition, in this construction
we do not keep multiple (parallel) shortcut edges (see Figure 2.4).

To complete our construction of the auxiliary graphs, we need to specify how to
compute the shortcut edges of each type (a), (b), and (¢). Suppose (u,v) is an edge of
type (a). Then v is not a descendant of r in D(s), which can be tested using an O(1)-time
test of the ancestor-descendant relation. There are several simple O(1)-time tests of this
relation [35]. The most convenient one for us is to number the vertices of D(s) from 1 to n
in preorder, and to compute the number of descendants of each vertex v, which we denote
by size(v). Then v is a descendant of r if and only if pre(r) < pre(v) < pre(r) + size(r).
Next suppose that (u,v) is of type (b). Then u is a proper descendant of a boundary
vertex w in D(s). To compute the shortcut edge of (u,v) we need to find the child z of w
that is an ancestor of w in D(s). To that end, we create a list A, that contains the edges
(u,v) of type (b) such that v € T(r), and sort A, in increasing preorder of u. We create
a second list A’ that contains the children in D(s) of the boundary vertices in 7'(r), and
sort A’ in increasing preorder. Then, the shortcut edge of (u,v) is (z,v), where z is the
last vertex in the sorted list A/ such that pre(z) < pre(w). Thus the shortcut edges of

19

type (b) can be computed in linear time by bucket sorting and merging. In order to do
this fast for all auxiliary graphs, we sort all the lists at the same time as follows. First,
we create a unified list A containing the triples (r, pre(u), v), for each type (b) edge (u,v)
in the auxiliary graph G,. Next we sort A in increasing order of the two first elements.
We also create a second list A" with pairs (r, pre(w)), where w is a proper descendant of
a boundary vertex in 7'(r), and sort the pairs in increasing order. Finally, we compute
the shortcut edges of each auxiliary graph G, by merging the sorted sublists of A and A’
that correspond to the same root r. Then, the shortcut edge for the triple (r, pre(u),v)
is (z,v), where (r, pre(z)) is the last pair in the sorted sublist of A" with root r such that
pre(z) < pre(u).

Finally, consider the edges of type (¢). For each such edge (u,v) we need to add the
edge (z,d(r)) in each G,, where u is a proper descendant of a boundary vertex w € T'(r),
v is not a descendant of r in D(s), and z is the child of w that is an ancestor of u in
D(s). We compute these edges for all auxiliary graphs G, as follows. First, we create a
compressed tree 13(3) that contains only s and the marked vertices. A marked vertex v
becomes child of its nearest marked ancestor u, or of s if u does not exist. This can be
easily done in O(n) time during the preorder traversal of D(s). Next we process all edges
(u,v) such that v is not a descendant of r, in D(s). At each node w # s in D(s) we
store a label ¢(w) which is the minimum pre(r,) of an edge (u,v) of type (c) such that
u € T(w); we let {(w) = pre(w) if no such edge exists. Using these labels we compute
for each w # s in D(s) the values low(w) = min{¢(v) | v is a descendant of w in D(s)}.
These computations can be done in O(m) time by processing the tree D(s) in a bottom-
up order. Now consider the auxiliary graph G,. We process the children in D(s) of the
boundary vertices in T'(r). Note that these children are marked, so they have a low value.
For each such child z we test if G, has a shortcut edge (z,d(r)): If low(z) < pre(r) then
we add the edge (z,d(r)). This leads to the following lemma.

Lemma 2.10. We can compute all auziliary graphs G, in O(m) time.

We also describe an alternative way to compute the type (b) shortcut edges of the
auxiliary graphs, by replacing sorting with vertex contractions. To that end, we use a
disjoint set union data structure [36], which maintains a collection of disjoint sets, each
with a representative element, under three operations:

make-set(zr): Create a new set {z} with representative z. Element z must be in no
existing set.

find(z): Return the representative element of the set containing element x.

unite(x,y): Unite the sets containing elements = and y and give the new set the repre-
sentative of the old set containing x.

Using this data structure, we can compute the type (b) shortcut edges of all auxiliary
graphs in a single bottom-up pass of D(s). To initialize the sets, we perform make-set(v)

20

Algorithm Rec2ECB: Recursive computation of the 2-edge-connected
blocks for the ordinary vertices of a strongly connected digraph
H=(V,E)

Step 1: Choose an arbitrary ordinary vertex s € V° as a start vertex. Compute
the dominator trees D(s) and D (s) and the bridges of the flow graphs
H(s) and HE(s).

Step 2: Compute the number b of bridges (z,y) in H(s) such that y is an
ancestor of an ordinary vertex in D(s). Compute the number b¥ of bridges
(z,y) in HT(s) such that y is an ancestor of an ordinary vertex in D(s).

Step 3: If b = b = 0 then return [s]y, = V°.

Step 4: If b® > b then swap H and H¥. Find the canonical decomposition
of D(s) into the subtrees T'(r) and compute the corresponding auxiliary
graphs H,.. Compute recursively the 2-edge-connected blocks for each aux-
iliary graph H, with at least two ordinary vertices.

Figure 2.5: Algorithm Rec2ECB

for every vertex v € V. The unite operations are also executed in a bottom-up order,
and each such operation has the effect of contracting a vertex v to its ancestor u in D(s),
such that v € T'(u), or v is a child of a boundary vertex in 7'(u). The details of these
computations are as follows. We process all marked vertices r in a bottom-up order
of D(s), and compute the type (b) shortcut edges of the corresponding auxiliary graph
G, = (V., E.). To do this, we process the edges entering each vertex v € T(r). For
each such edge (u,v) we compute z = find(u). If z # v and z € T(r) then (z,v) is a
type (b) shortcut edge of G,. The former condition means that u is not a descendant of
v, while the second condition can only be violated for v = r. After we have processed
all edges entering T'(r), we execute unite(r, find(v)) for each vertex v € T'(r) and each
vertex v € V,* that is a child in D(s) of a boundary vertex in 7'(r). This construction
runs O(m) time plus the time for n — 1 unite operations and, by Lemma 3.13, at most 4m
find operations. If unite and find are implemented using compressed trees with balanced
linking [36], the total time for these disjoint set union operations is O(ma(m,n)). Since
the set of unite operations is known in advance we have an instance of the static tree
disjoint set union problem, which is solvable in O(m) time on a RAM [10].

Lemma 2.9 allows us to compute the 2-edge-connected blocks of each auxiliary graph
separately. Algorithm Rec2ECB, described in Figure 2.5, applies this idea recursively,
until all ordinary vertices in each graph H are 2-edge-connected. Since, by Lemma 2.3,

21

Figure 2.6: An input digraph with n = O(k) vertices that causes k recursive calls of
Algorithm Rec2ECB (see Figures 2.7 and 2.8). Vertices X7, Xo, ..., X are not 2-edge-
connected but Algorithm Rec2ECB requires k recursive calls to separate them into different
blocks. (In this figure k = 4.) Each new partition is induced by the strong bridge (X1, S).

an auxiliary vertex and an ordinary vertex of H are not 2-edge-connected, we only need
to consider the strong bridges that separate ordinary vertices of H. In order to find
if H contains such strong bridges, we choose an arbitrary ordinary vertex s of H as a
start vertex and compute the bridges and the dominator trees D(s) and D®(s) of the flow
graphs H (s) and H%(s), respectively. Then Corollary 2.1 implies that H contains a strong
bridge that separates two ordinary vertices if and only if H(s) or H(s) contains a bridge
(x,y) such that y is an ancestor of an ordinary vertex. Otherwise, all ordinary vertices
are 2-vertex-connected to and from s, so [s]se = V°. We remark that in the first call of
Algorithm Rec2ECB, the input graph is G and all the vertices are considered ordinary,
ie, H=G and V°=V.

Lemma 2.11. Algorithm Rec2ECB runs in O(mn) time.

Proof. Each recursive call refines the current partition of V', thus we have at most n — 1
recursive calls. By [3, 34] and Lemma 2.10, the total work per recursive call is O(m).

We note that the bound stated in Lemma 2.11 is tight. The same strong bridge can
be used repeatedly to separate different pairs of vertices in successive recursive calls (see
Figures 2.6, 2.7 and 2.8). Despite the fact that Algorithm Rec2ECB only achieves an
O(mn) time bound, it will be the basis of our linear-time algorithm that we develop in
the next section.

22

Figure 2.7: The first two recursive calls of Algorithm Rec2ECB, with input the digraph
of Figure 2.6. In the left column we see the dominator tree used to compute the next
partition, whilst in the right column there is the auxiliary graph containing the majority
of ordinary vertices, that will be the input digraph in the next recursive call.

23

Figure 2.8: The other two recursive calls of Algorithm Rec2ECB, with input the digraph
of Figure 2.6 (the first two calls are shown in Figure 2.7). In the left column we see the
dominator tree used to compute the next partition, whilst in the right column there is

the auxiliary graph containing the majority of ordinary vertices, that will be the input
digraph in the next recursive call.

24

Algorithm Fast2ECB: Linear-time computation of the
2-edge-connected blocks of a strongly connected digraph G = (V, F)

Step 1: Choose an arbitrary vertex s € V as a start vertex. Compute the
dominator tree D(s) and the bridges of the flow graph G(s).

Step 2: Partition D(s) into subtrees 7'(r) and compute the corresponding aux-
iliary graphs G,..

Step 3: For each auxiliary graph H = G, do:
Step 3.1: Compute the dominator tree DE(r) and the bridges of HZ(r).
Let d&(q) be the parent of ¢ # r in DE(r).

Step 3.2: Partition D% (r) into the subtrees T#(g). Compute the corre-
sponding auxiliary graphs Hf with g # r.
Step 3.3: Set [r]a to consist of the ordinary vertices in T (r).
Step 3.4: For each auxiliary graph H}® with ¢ # r do:
Step 3.4.1: Compute the strongly connected components
Sl, SQ, oo ,Sk of Hf \ (dﬁ(q), q)
Step 3.4.2: Partition the ordinary vertices of H, into blocks accord-
ing to each S;, j = 1,...,k; For each ordinary vertex v, [v]s

contains the ordinary vertices in the strongly connected compo-
nent of v.

Figure 2.9: Algorithm Fast2ECB

2.4 A linear-time algorithm

Although Algorithms Simple2ECB and Rec2ECB run in O(mn) time, we show that a
careful combination of them gives a linear-time algorithm. The critical observation, proved
in Lemma 2.12 below, is that if a strong bridge separates different pairs of vertices in
successive recursive calls (which causes the worst-case behavior of Algorithm Rec2ECB,
as shown in Figures 2.6, 2.7 and 2.8), then it will appear as the strong bridge entering
the root of a subtree in the canonical decomposition of a dominator tree.

Algorithm Fast2ECB, described in Figure 2.9, applies the observation above together
with all the tools we developed in the previous sections, and achieves the computation
of the 2-edge-connected blocks in linear time. In essence, it runs Algorithm Rec2ECB
but stops the recursion at depth 2. Two vertices that are not 2-edge-connected but have
not been separated yet, i.e., they are ordinary vertices of an auxiliary graph computed
at recursion depth 2, can be separated by running Algorithm Simple2ECB for the specific

25

auxiliary graph. However, as we show in the proof of Lemma 2.12, it suffices to remove
only one strong bridge of that auxiliary graph, so we only need to execute Step 3 of
Algorithm Simple2ECB once.

Lemma 2.12. Algorithm Fast2ECB is correct.

Proof. Let u and v be any vertices. If u and v are 2-edge-connected in (G, then by Lemma
2.9 they are 2-edge-connected in both auxiliary graphs of G and G, that contain them
as ordinary vertices. This implies that the algorithm will correctly include them in the
same block. So suppose that u and v are not 2-edge-connected. Then, without loss of
generality, we can assume that all paths from u to v contain a common strong bridge. We
argue that the blocks of v and v will be separated in some step of the algorithm. If u and
v are located in different subtrees of D(s) then the claim is true. If they are in the same
subtree then they appear in an auxiliary graph H = G, as ordinary vertices. By Lemma
2.9, H contains a strong bridge that is contained in all paths from u to v. Let H be the
reverse graph of H. Let DE(r) be the dominator tree of H%(r). If u and v are located in
different subtrees of D% then the claim is true. Suppose then that they are located in a
subtree with root ¢. By Corollary 2.1, ¢ # r. Let p = d%(q) be the parent of ¢ in DE(r).
Then (q,p) is a strong bridge of H. We claim that H \ (¢q,p) does not contain any path
from u to v. To prove the claim, we consider two cases. First suppose that all paths from
v to u in H® contain a bridge (df(z),z) of DE(r) such that x is ancestor of u. Then
(¢, p) must appear in all paths from u to v in H. If not, then (p,q) # (d&(x),z), and
there is a path 7 in H® from z to u that avoids (p,q). Since z is an ancestor of p, there
is a path 7/ in H® from 7 to = that also avoids (p,q). So 7 - 7 gives a path from r to u
in H? that avoids (p, q), a contradiction. Now suppose that there is no bridge (d%(z), z)
of DE(r) with z an ancestor of u that is contained in all paths from v to u in H. Let e
be a strong bridge that separates u from v in H. Then e # (g, p), so there is a path 7 in
H from wu to r that avoids e. But H contains a path «’ from r to v that avoids e. Then
7 -7 is a path from u to v in H that does not contain e, a contradiction.

Finally, we show that the algorithm indeed runs in linear time.

Lemma 2.13. Algorithm Fast2ECB runs in O(m) time.

Proof. We analyze the total time spent on each step that Algorithm Fast2ECB executes.
Step 1 takes O(m) time by 3|, and Step 2 takes O(m) time by Lemma 2.10. From
Lemma 2.7 we have that the total number of vertices and the total number of edges in all
auxiliary graphs H of G are O(n) and O(m) respectively. Therefore, the total number of
strong bridges in these auxiliary graphs is O(n) by Lemma 1.1. Then, by Lemma 2.7, the
total size (number of vertices and edges) of all auxiliary graphs H, f for all H, computed
in Step 3.2, is still O(m) and they are also computed in O(m) total time by Lemma 2.10.
So Steps 3.1 and 3.4 take O(m) time in total as well.

26

2.5 Sparse certificate for the 2-edge-connected blocks

We now show how to compute in linear time a sparse certificate for the 2-edge-connected
blocks, i.e., a subgraph C(G) of the input graph G that has O(n) edges and maintains
the same 2-edge-connected blocks as the input graph. Such a sparse certificate allows
us to speed up computations, such as finding the actual edge-disjoint paths that connect
a pair of vertices (see, e.g., [29]). As throughout the Chapter, we can assume without
loss of generality that G is strongly connected, in which case subgraph C(G) will also be
strongly connected (see the proof of Lemma 2.14 below). The certificate uses the concept
of independent spanning trees [16]. In this context, a spanning tree T" of a flow graph G(s)
is a tree with root s that contains a path from s to v for all vertices v. Two spanning trees
B and R rooted at s are independent if for all vertices v, the paths from s to v in B and
R share only the dominators of v. Every flow graph G(s) has two such spanning trees,
computable in linear time [16]. Moreover, the computed spanning trees are mazimally
edge-disjoint, meaning that the only edges they have in common are the bridges of G(s).

The sparse certificate can be constructed during the computation of the 2-edge-
connected blocks, by extending Algorithm Fast2ECB. We now sketch the main modifica-
tions needed. During the execution of Algorithm Fast2ECB, we maintain a list (multiset)
L of the edges to be added in C'(G). The same edge may be inserted into L multiple
times, but the total number of insertions will be O(n). Then we can use radix sort to
remove duplicate edges in O(n) time. We initialize L to be empty. During Step 1 of
Algorithm Fast2ECB we compute two independent spanning trees, B(G(s)) and R(G(s))
of G(s) and insert their edges into L. Next, in Step 3.1 we compute two independent
spanning trees B(H®(r)) and R(H®(r)) for each auxiliary graph H%(r). For each edge
(u,v) of these spanning trees, we insert a corresponding edge into L as follows. If both u
and v are ordinary vertices in H®(r), we insert (u,v) into L since it is an original edge
of G. Otherwise, v or v is an auxiliary vertex and we insert into L a corresponding orig-
inal edge of G. Such an original edge can be easily found during the construction of the
auxiliary graphs. Finally, in Step 3.4, we compute two spanning trees for every connected
component S; of each auxiliary graph Hf \ (p,q) as follows. Let Hg, be the subgraph
of H, that is induced by the vertices in S;. We choose an arbitrary vertex v € .S; and
compute a spanning tree of Hg,(v) and a spanning tree of H§ (v). We insert in L the
original edges that correspond to the edges of these spanning trees.

Lemma 2.14. The sparse certificate C(G) has the same 2-edge-connected blocks as the
mput digraph G.

Proof. Tt suffices to show that the execution of Algorithm Fast2ECB on C'(G) and produces
the same 2-edge-connected blocks as the execution of Algorithm Fast2ECB on G. The
correctness of Algorithm Fast2ECB implies that it produces the same result regardless of
the choice of start vertex s. So we assume that both executions choose the same start
vertex s. We will refer to the execution of Algorithm Fast2ECB with input G (resp. C(G))
as Fast2ECB(G) (resp. Fast2ECB(C(G))).

27

First we note that C'(G) is strongly connected. This follows from the fact that C(G)
contains a spanning tree of G(s), and that it also contains edges that correspond to a
spanning tree for the reverse of each auxiliary graph G,; if (u, v) is a shortcut edge in such
a spanning tree for the reverse auxiliary graph H%, then C(G) will contain original edges
that form a path from v to u. Moreover, the fact that C'(G) contains two independent
spanning trees of G implies that G and C(G) have the same dominator tree and bridges
with respect to the start vertex s that are computed in Step 1. Hence, the subtrees T'(r)
computed of Step 2 of Algorithm Fast2ECB are the same in both executions Fast2ECB(G)
and Fast2ECB(C(G)). The same argument as in Step 1 implies that in Steps 3.1 and 3.2,
both executions Fast2ECB(G) and Fast2ECB(C(G)) compute the same partitions 7% (r) of
each auxiliary graph H(r). Finally, by construction, the strongly connected components
of each auxiliary graph H}*\ (p,q) are the same in both executions of Fast2ECB(G) and
Fast2ECB(C(G)).

We conclude that Fast2ECB(G) and Fast2ECB(C/(G)) compute the same 2-edge-connected
blocks as claimed.

The fact that C'(G) has O(n) edges follows from Lemmas 1.1 and 2.7. Therefore, we
have the following result.

Corollary 2.3. We can compute in linear time a sparse certificate for the 2-edge-connected
blocks of a digraph.

28

CHAPTER 3

COMPUTING 2-VERTEX-CONNECTED
BLOCKS

3.1 Introduction and properties
3.2 Additional challenges computing the 2-vertex-connected blocks
3.3 A simple algorithm

3.4 Linear-time algorithm
3.4.1 Auxiliary graphs
3.4.2 The algorithm

3.5 Queries
3.6 Computing the 2-vertex-connected blocks

3.7 Sparse certificate for the vertex-resilient blocks and the 2-vertex-connected blocks

3.1 Introduction and properties

First, we recall some definitions from Section 1.2.1. Let v and w be two distinct vertices
in a digraph. By Menger’s Theorem [28], v <9, w if and only if the removal of any edge
leaves v and w in the same strongly connected component, i.e., two vertices are 2-edge-
connected if and only if they are resilient to the deletion of a single edge. The situation
for 2-vertex connectivity is more complicated. Indeed, Menger’s Theorem implies that
v 49, w only if the removal of any vertex different from v and w leaves them in the
same strongly connected component, while the converse holds only when v and w are
not adjacent. For instance, two mutually adjacent vertices are left in the same strongly

29

Figure 3.1: The vertex-resilient blocks of the digraph of Figure 1.1.

connected component by the removal of any other vertex, although they are not necessarily
2-vertex-connected. To handle this situation, we use the following notation, which was
also considered in [23|. Vertices v and w are said to be vertez-resilient, denoted by v <>y, w
if the removal of any vertex different from v and w leaves v and w in the same strongly
connected component. We define a vertez-resilient block of a digraph G = (V) E) as a
maximal subset B C V such that u <»,, v for all u,v € B. See Figure 3.1. Note that,
as a (degenerate) special case, a vertex-resilient block might consist of a singleton vertex
only: we denote this as a trivial vertez-resilient block. Clearly, for any vertex v, the
singleton set {v} is a trivial vertex-resilient block of G if and only if there is no vertex
u # v such that u <>, v.In the following, we will consider only non-trivial vertex-resilient
blocks. Since there is no danger of ambiguity, we will call them simply vertex-resilient
blocks. We remark that two vertices v and w that are vertex-resilient are not necessarily
2-vertex-connected: this is indeed the case for vertices H and F' in the digraph of Figure
1.1(a). If, however, v and w are not adjacent then v <»5, w if and only if v <>, w.

We next provide some basic properties of the vertex-resilient blocks and the 2-vertex-
connected blocks. In particular, we show that any digraph has at most n—1 vertex-resilient
(resp., 2-vertex-connected) blocks and, moreover, that there is a forest representation of
these blocks that enables us to test vertex-resilience (resp., 2-vertex-connectivity) between
any two vertices in constant time. This structure is reminiscent of the representation used
by Westbrook and Tarjan [38| for the biconnected components of an undirected graph.

Lemma 3.1. Let u, v, x, and y be distinct vertices such that us>,,x , V<>, T, Uy and
vy, Then also x>,y and us,v.

Proof. Assume, for contradiction, that = and y are not vertex-resilient. Then there is a

30

strong articulation point w such that every path from y to x contains w, or every path
from z to y contains w (or both). Without loss of generality, suppose that w is contained
in every path from y to z. Since u and v are distinct, we can assume that w # u. (If
w = u then we swap the role of u and v.) Then, y<>,,u implies that there is a path P
from y to u that avoids w, and similarly, u<>,,x implies that there is a path @ from u
to x that avoids w. So, P followed by @) gives a path from y to x that does not contain
w, a contradiction. Hence z<>,,y. The fact that u<>,v follows by repeating the same
argument for v and v. 1

Corollary 3.1. Let B and B’ be two distinct vertex-resilient blocks of a digraph G =
(V,E). Then |BN B'| < 1.

Proof. Follows immediately from Lemma 3.1. 1

We denote by VRB(u) the vertex-resilient blocks that contain u. Define the block
graph F' = (Vp, Er) of G as follows. The vertex set Vg consists of the vertices in V' and
also contains one block node for each vertex-resilient block of G. The edge set Er consists
of the edges {u, B} where B € VRB(u). Thus, F' is an undirected bipartite graph. Next
we show that it is also acyclic.

Lemma 3.2. Let u and v be any vertices that are connected by a path P in F. Then, for

any vertex w € V not on P, u and v are strongly connected in digraph G \ w.

Proof. Tt suffices to show that G contains a path) from u to v that avoids w. The
same argument shows that G contains a path from v to u that avoids w. Let P = (u; =
u, By, us, Bo, ... upyr = v). Then w; <3y, uiqq, for 1 < i < k, so there is a path P, in G
from v; to v;11 that avoids w. Then the catenation of paths P, ..., P, gives a path in G
from w to v that avoids w. 1

Lemma 3.3. Graph F s acyclic.

Proof. Suppose, for contradiction, that F' contains a cycle C. We show that all vertices
w € C'NV belong to the same vertex-resilient block B. Let u,v € V be two vertices on
a minimal cycle C of F that are adjacent to a block node B. (Such u, v, and B exist
since F' is bipartite.) Then, u and v cannot be the only vertices in V that are on C,
since otherwise they would be adjacent to another block B’ on C', violating Corollary 3.1.
Therefore, C' contains a vertex w € V'\ {u,v}. Clearly, w ¢ B, otherwise the edge {w, B}
would exist contradicting the minimality of C'. Hence, there is a vertex z € B such that
all paths from z to w contain a common strong articulation point or all paths from w to
z contain a common strong articulation point. Suppose, without loss of generality, that
a vertex x is contained in every path from z to w. Let P be the path that results from
C by removing B. Let P, and P, be the subpaths of P from u to w and from v to w,
respectively. Then x & P, or = ¢ P, (or both). Suppose x ¢ P,; if not then swap the role
of u and v. Then, by Lemma 3.2 there is a path () in G from u to w that avoids z. Also,
since u <>y, 2, there is a path @’ in G from z to u that avoids x. Then the catenation of
Q' and @ gives a path in G from z to w that avoids x, a contradiction.

31

gm0 ©® © e O

(e
é> B

Figure 3.2: A digraph G and its vertex-resilient block forest F. The strong articulation

'@@@

points and the strong bridges of G are shown in red. (Better viewed in color.)

Lemma 3.4. The number of vertex-resilient blocks in a digraph G is at most n — 1 .

Proof. We prove the lemma by showing that forest F' contains at most n — 1 block nodes.
Since F' is a forest we can root each tree T" of F' at some arbitrary vertex » € V. Every
level of T contains either only vertices of V' or only block nodes, because F' is bipartite.
Moreover, every block node is adjacent to at least two vertices of V', due to the fact
that each (non-trivial) vertex-resilient block in G contains at least 2 vertices. Hence,
every leaf of T' is a vertex in V. Now consider a partition of 7" into vertex disjoint paths
P, P, ..., P, such that each P, leads from some vertex or block node to a leaf descendant.
The number of block nodes in each P, is at most equal to |P; N V|. Also, in the path P,
starting at r the number of block nodes in P is less than |P;NV|. We conclude that there
at most n — 1 block nodes in F'. 1

Lemma 3.5. The total number of vertices in all vertez-resilient blocks is at most 2n — 2.

Proof. By Lemmas 3.3 and 3.4, the block graph F'is a forest with at most 2n — 1 vertices.
Each occurrence of a vertex v in a block B corresponds to an edge {v, B} of F'. Therefore,
the total number of vertices in all vertex-resilient blocks equals the number of edges in F,
and the lemma follows.

Lemma 3.6. Let u and v be any vertices thal are not vertex-resilient but are connected
by a path P in F. Then, for any vertex w € V \ {u,v} on P, u and v are not strongly
connected in digraph G\ w.

Proof. We prove the lemma by contradiction. Let P be a path that connects u and v in
F. By Lemma 3.3, this path is unique for v and v. First suppose that P contains only
one other vertex w € V' \ {u, v}, so P = (u, B,w, B',v). Then u <>, w and w <>, v. Now
suppose that u and v are strongly connected in G\ w. This fact, together with Lemma,

32

3.2, imply that u and v are strongly connected in G \ = for all x € V' \ {u,v}. But this
contradicts the assumption that v and v are not vertex-resilient.

Now suppose that path P contains more than one vertex in V' \ {u,v}. Let P = (u =
wo, B1, w1, ..., By, Wk, Bgr1,v = wyy1), where & > 1. By the argument above, w;_; and
w;y1 are not strongly connected in G \ w; for all i € {1,...,k}. Suppose that v and v are
strongly connected in G'\ w; for a fixed ¢ € {1,...,k}. By Lemma 3.2, u and w;_1, and
w41 and v, are strongly connected in G \ w;. But then, w;_; and w;,; are also strongly
connected in G \ w;, a contradiction. u

We consider I as a forest of rooted trees by choosing an arbitrary vertex as the root of
each tree. Then u <+, w if and only if v and w are siblings or one is the grandparent of the
other. See Figure 3.2. We can perform both tests in constant time simply by storing the
parent of each vertex in F'. Thus, we can test in constant time if two vertices are vertex-
resilient. Note that we cannot always apply Lemma 3.6 to find a strong articulation point
that separates two vertices v and w that are not vertex-resilient. Indeed, two vertices
that are strongly connected but not vertex-resilient may not even be connected by a path
in the forest F' (see, e.g., vertices f and h in Figure 3.2). So if we wish to return a witness
that v and w are not vertex-resilient, we cannot rely on F'. We deal with this problem in
Section 3.5.

Now we turn to 2-vertex-connected blocks and provide some properties that enable us
to compute them via the vertex-resilient blocks.

Lemma 3.7. Let v and w be two distinct vertices of G such that v <>, w. Then, v and
w are not 2-vertex connected if and only if at least one of the edges (v,w) and (w,v) is a

strong bridge in G.

Proof. Menger’s Theorem [28] implies that if v and w are not adjacent then v <9, w if and
only if v <+, w. If, on the other hand, v <+, w but v and w are not 2-vertex-connected,
then at least one of the edges (v, w) and (w,v) exists in G and is a strong bridge. 1

The following corollary, which relates 2-vertex-connected, 2-edge-connected and vertex-
resilient blocks, is an immediate consequence of Lemma 3.7.

Corollary 3.2. For any two distinct vertices v and w, v <>o, w if and only if v <>, w
and v 9. W.

By Corollary 3.2 we have that the 2-vertex-connected blocks are refinements of the
vertex-resilient blocks, formed by the intersections of the vertex-resilient blocks and the 2-
edge-connected blocks of the digraph G. Since the 2-edge-connected blocks are a partition
of the vertices of GG, these intersections partition each vertex-resilient block. From this
property we conclude that Lemmas 3.3 and 3.4 also hold for the 2-vertex-connected blocks,
i.e., they can also be represented by a bipartite forest of O(n) size.

33

3.2 Additional challenges computing the 2-vertex-connected blocks

Our algorithm for computing vertex-resilient blocks of a digraph follows the high-level
approach of the algorithm we described in Chapter 2 for computing the 2-edge-connected
blocks. However, the algorithm for computing the 2-vertex-connected blocks is much
more involved and requires several novel ideas and non-trivial techniques to achieve the
claimed bounds. In particular, the main technical difficulties that need to be tackled when
following the approach of the algorithm in Chapter 2 are the following:

e First, the algorithm for computing the 2-edge-connected blocks maintains a partition
of the vertices into approximate blocks, and refines this partition as the algorithm
progresses. Unlike 2-edge-connected blocks, however, vertex-resilient and 2-vertex-
connected blocks do not partition the vertices of a digraph, and therefore it is
harder to maintain approximate blocks throughout the algorithm’s execution. To
cope with this problem, we show that these blocks can be maintained using THE
more complicated forest representation from Section 3.1, and we define a set of
suitable operations on this representation in order to refine and split blocks. We
believe that our forest representation of the 2-vertex-connected blocks of a digraph
can be of independent interest.

e Second, in Chapter 2 we used a properly defined canonical decomposition of the input
digraph G, in order to obtain smaller auziliary digraphs (not necessarily subgraphs
of G) that maintain the original 2-edge-connected blocks of G. A key property of
this decomposition was the fact that any vertex in an auxiliary graph G, is reachable
from a vertex outside G, only through a single strong bridge. In the computation
of the 2-vertex-connected blocks, we have to decompose the graph according to
strong articulation points, and so the above crucial property is completely lost. To
overcome this problematic issue, we need to design and to implement efficiently a
different and more sophisticated decomposition.

e Third, differently from 2-edge connectivity, 2-vertex connectivity in digraphs is
plagued with several degenerate special cases, which are not only more tedious
but also more cumbersome to deal with. For instance, the algorithm in Section 2.4
exploits implicitly the property that two vertices v and w are 2-edge-connected if
and only if the removal of any edge leaves v and w in the same strongly connected
component. Unfortunately, this property no longer holds for 2-vertex connectivity,
as for instance two mutually adjacent vertices are always left in the same strongly
connected component by the removal of any other vertex, but they are not neces-
sarily 2-vertex-connected. To handle this more complicated situation, we introduce
the notion of wertez-resilient blocks and prove some useful properties about the
vertex-resilient and 2-vertex-connected blocks of a digraph.

Another difference with Chapter 2 is that now we are able to provide a witness for two
vertices not being 2-vertex-connected. This approach can be applied to provide a witness

34

Algorithm SimpleVRB: Computation of the vertex-resilient blocks of a
strongly connected digraph G = (V| E)

Step 1: Compute the strong articulation points of G.

Step 2: Initialize the current set of blocks as B = {V}. (Start from the trivial set
containing only one block.)

Step 3: For each strong articulation point x do:

Step 3.1: Compute the strongly connected components Sy, ..., Sk of G\ z. Let
S be the partition of V' \ = defined by the strongly connected components
S;.

Step 3.2: Execute refine(B,S, x).

Figure 3.3: Algorithm SimpleVRB

for two vertices not being 2-edge-connected, thus extending the result in 2.

3.3 A simple algorithm

Algorithm SimpleVRB, illustrated in Figure 3.3, is an immediate application of the char-
acterization of the vertex-resilient blocks in terms of strong articulation points. Let u and
v be two distinct vertices. We say that a strong articulation point x separates u from v if
all paths from u to v contain x. In this case u and v belong to different strongly connected
components of G \ x. This observation implies that we can compute the vertex-resilient
blocks by computing the strongly connected components of G\ z for every strong artic-
ulation point . To do this efficiently we define an operation that refines the currently
computed blocks. Let B be a set of blocks, let S be a partition of a set U C V, and let x
be a vertex not in U.

refine(B, S, z): For each block B € B, substitute B by the sets BN (S U{z}) of size at
least two, for all S € S.

In Section 3.6, where we will compute the 2-vertex-connected blocks from the vertex-
resilient blocks and the 2-edge-connected blocks, we will use the notation refine(B,S) as
a shorthand for refine(B, S, z) with = = null.

Lemma 3.8. Let N be the total number of elements in all sets of B (N =, 5|B]|),
and let K be the number of elements in U. Then, the operation refine(B,S,x) can be
executed in O(N + K) time.

Proof. A simple way to achieve the claimed bound is to number the sets of the partition
S, each with a distinct integer id in the interval [1, K. Consider a block B. Each element

35

v € B is assigned a label that is equal to the id of the set S € S that contains v if v € U,
and zero otherwise. Then, the computation of the sets BN (SU{x}) for all S € S can be
done in O(|B|) time with bucket sorting. 1

Lemma 3.9. The block graph F' of the set of blocks B maintained by algorithm SimpleVRB
18 a forest throughout the execution of the algorithm.

Proof. The lemma follows by induction on the number of refine operation executed. Ini-
tially, B contains a single block V', so F'is a forest. For the induction step, consider an
execution of refine(B,S,). Let B be a block of B that is split into blocks By, Bs, ..., B,
as a result of this operation. Let T be the tree of F' that contains B before the refine
operation. We can view T as being rooted at some arbitrary vertex » € V. Let u be the
parent of B in T, and let vy, vy, ..., vs be the children of B. Suppose first that x is not
a child of B. Then, since S is a partition, each child v; of B is contained in at most one
new block B;. Moreover, if v = x then u will be the parent of all blocks By, By, ..., B,
after the operation. Otherwise, if u # x, then u is also contained in at most one new
block B; that will remain in 7" with parent u, and the rest of the new blocks will be
detached from T'. Finally, suppose that x is a child of B. Then z is contained in all new
blocks B, Bs, ..., B;, but at most one of these new blocks contains u. If such a block
B; D {u,x} exists, then B; is the new parent of x, and all other blocks B; # B; become
children of x. Thus, in all cases F' remains a forest. 1

Lemma 3.10. Algorithm SimpleVRB runs in O(mp*) time, where p* is the number of

strong articulation points of G. This is O(mn) in the worst case.

Proof. The strong articulation points of G can be computed in linear time by [22]. In
each iteration of Step 3, we can compute the strongly connected components of G\ z in
linear time [33]. As we discover the i-th strongly connected component, we assign label
i (i € {1,...,n}) to the vertices in S;. By Lemma 3.9, the block graph corresponding to
the set of blocks B that the algorithm maintains is a forest. Hence, by Lemma 3.4, B has
at most n — 1 blocks, and by Lemma 3.5, the total number of elements in all blocks is at
most 2n — 2. So, by Lemma 3.8, each iteration of Step 3 takes O(n) time. This yields the
desired O(mp*) running time, where p* is the number of strong articulation points of G.
Since a digraph may have up to n strong articulation points, this is O(mn) in the worst
case. 1

3.4 Linear-time algorithm

We will show how to obtain a faster algorithm by using dominator trees and auxiliary
graphs, as we did in the computation of the 2-edge-connected blocks in Chapter 2. As
already mentioned, auxiliary graphs need to be defined in a substantially different way,
which complicates several technical details.

36

As a warm up, first consider the computation of VRB(v), i.e., the vertex-resilient
blocks that contain a specific vertex v. Consider the flow graph G(v) with start vertex v
and its reverse digraph G®(v), obtained after reversing edge directions. Let w be a vertex
other than v. Clearly, v and w are vertex-resilient if and only if v is the only proper
dominator of w in both G(v) and G%(v), i.e., d(w) = v and d®(w) = v. Now let u be a
sibling of w in both D(v) and Df(v). The fact that d®(w) = v and d(u) = v implies that
for any vertex x € V' \ {v,w, u} there is path from w to u through v that avoids z. So
w and u are in a common vertex-resilient block that contains v if and only if they lie in
the same strongly connected component of G \ v. This observation implies the following
linear-time algorithm to compute the vertex-resilient blocks that contain v. Compute the
dominator trees D(v) and D®(v) of G(v) and GE(v) respectively. Let C(v) (resp., CE(v))
be the set of children of v in D(v) (resp., D®(v)). Set U = C'(v) NC*¥(v) and initialize the
set of blocks B = {U}. Compute the strongly connected blocks Sy, S, ..., Sy of G\v. Let
S be the set that contains the nonempty restrictions of the S; sets to U, i.e., & contains
the nonempty sets S; N U. Finally, execute refine(B,S,v).

Note that all the vertex-resilient blocks can be computed in O(mn) time by applying
the above algorithm to all vertices v. To avoid the repeated applications of this algorithm
we develop a new concept of auziliary graphs for 2-vertex connectivity. Before doing that,
we state two properties regarding information that a dominator tree can provide about
vertex-resilient blocks and paths.

Lemma 3.11. Let G = (V, E) be a strongly connected digraph, and let s € V be an
arbitrary start verter. Any two vertices x and y are verter-resilient only if they are
siblings in D(s) or one is the immediate dominator of the other in G(s).

Proof. Immediate. 1

Lemma 3.12. Let r be a vertex, and let v be any vertex that is not a descendant of r in
D(s). Then there is a path from v to r that does not contain any proper descendants of r
in D(s). Moreover, all simple paths from v to any descendant of r in D(s) contain r.

Proof. Let P be any path from v to r. (Such a path exists since digraph G is strongly
connected.) Let u be the first vertex on P such that u is a descendant of r. Then either
u =1 or u is a proper descendant of r. In the first case the lemma holds. Suppose u is a
proper descendant of r. Since v is not a descendant of r in D(s), there is a path @ from
s to v in G that does not contain . Then @ followed by the part of P from v to u is a
path from s to u that avoids r, a contradiction. =

3.4.1 Auxiliary graphs

As in Chapter 2, auziliary graphs are a key concept in our algorithm that provides a
decomposition of the input digraph G into smaller digraphs (not necessarily subgraphs of
(i) that maintain the original vertex-resilient blocks. In Chapter 2 we used a canonical
decomposition of the input digraph, in order to obtain auxiliary graphs that maintain

37

the 2-edge-connected blocks. A key property of this decomposition was the fact that any
vertex in an auxiliary graph G, is reachable from a vertex outside G, only though a single
strong bridge. In the computation of the vertex-resilient blocks, however, we have to
decompose the input digraph according to strong articulation points, and thus the above
property is completely lost. To overcome this critical issue, we apply a different and more
involved decomposition.

Let s be an arbitrarily chosen start vertex in G. Recall that we denote by G(s) the
flow graph with start vertex s, by G%(s) the flow graph obtained from G(s) after reversing
edge directions, by D(s) and D(s) the dominator trees of G(s) and G®(s) respectively,
and by C'(v) and C®(v) the set of children of v in D(s) and D%(s) respectively.

For each vertex 7, let C*(r) denote the level k descendants of r, i.e., CO(r) = {r},
Cl(r) = C(r), etc. For each vertex r # s that is not a leaf in D(s) we build the auziliary
graph G, = (V,, E,) of r as follows. The vertex set of G, is V,, = U_,C*(r) and it is
partitioned into a set of ordinary vertices V.° = C'(r)UC?(r) and a set of auziliary vertices
Ve = C%r) U C?(r). The auxiliary graph G, results from G by contracting the vertices
in V'\ V, as follows. All vertices that are not descendants of r in D(s) are contracted
into 7. For each vertex w € C3(r), we contract all descendants of w in D(s) into w. See
Figure 3.4. We use the same definition for the auxiliary graph Gy of s, with the only
difference that we let s be an ordinary vertex. Also note that when we form G, from
GG, no vertex is contracted into s. In order to bound the size of all auxiliary graphs, we
eliminate parallel edges during those contractions.

Lemma 3.13. The auwxiliary graphs G, have at most 4n vertices and 4m + n edges in
total.

Proof. A vertex of G may appear in at most four auxiliary graphs. Therefore, the total
number of edges in all auxiliary graphs excluding type-(b) shortcut edges (u,v) with
u ¢ V. is at most 4m. A type-(b) shortcut edge (u,v) with u & V,. of G, corresponds to a
unique vertex in C3(r), so there are at most n such edges.

Lemma 3.14. Let v and w be two vertices in V.. Any path P from v to w in G has a
corresponding path P, from v to w in G,, and vice versa. Moreover, if v and w are both
ordinary vertices in G, then P, contains a strong articulation point if and only if P does.

Proof. The correspondence between paths in G and paths in G, follows from the definition
of the auxiliary graph. Next we prove the second part of the lemma. Let P, be the path
in GG, that corresponds to a path P from v to w in G, where both v and w are ordinary
vertices in GG,.. By the construction of the auxiliary graph, we have that if P, contains a
strong articulation point then so does P. For the contraposition, suppose P contains a
strong articulation point x. Consider the following cases:

e z € V.. Then, by the construction of the auxiliary graph, we have x € P,.

38

H =G, DE(r)

Figure 3.4: A strongly connected graph G, the dominator tree D(s) of flow graph G(s),
the auxiliary graph H = G, and the dominator tree DE(r) of the flow graph HZ(r).
(The edges of the dominator tree DE(r) are shown directed from child to parent.) The
auxiliary vertices of H are shown gray.

e 1 is a descendant of a vertex z € C3(r). Vertex z is a strong articulation point since
it is either x or a proper descendant of z. Then, by Lemma 3.12, the part of P from
v to x contains z. So, P, also contains z by the construction of the auxiliary graph.

e 1 is not a descendant of r. In this case, we have r # s. Since v and w are ordinary
vertices of G, C''(r) is not empty and therefore r is a strong articulation point. By
Lemma 3.12, the part of P from z to w contains r. So, P, also contains r by the
construction of the auxiliary graph.

Hence, in every case P, contains a strong articulation point and the lemma follows. 1

Corollary 3.3. Fach auxiliary graph G, is strongly connected.

39

Proof. Follows from the construction of G,, Lemma 3.14, and the fact that G is strongly
connected. 1

The next lemma shows that auxiliary graphs maintain the vertex-resilient relation of
the original digraph.

Lemma 3.15. Let v and w be any two distinct vertices of G. Then v and w are vertex-
resilient in G if and only if they are both ordinary vertices in an auziliary graph G, and
they are vertez-resilient in G,.

Proof. Suppose first that v or w is s. Without loss of generality assume v = s. Then
by Lemma 3.11 we have that w € C'(r), so v and w are both ordinary vertices of G.
Now consider that v,w € V' \ s. From Lemma 3.11 we have that v and w belong in a set
C*(r) U C?(r) so they are both ordinary vertices of G,. Clearly if all paths from v to w
in G, contain a common vertex (strong articulation point), then so do all paths from v
to w in G by Lemma 3.14. Now we prove the converse. Suppose all paths from v to w in
G contain a common vertex u. If u € V, then also all paths from v to w in G, contain u
by the proof of Lemma 3.14. So suppose u € V,.. Then v is not an ancestor of w in D(s),
since otherwise there would be a path from v to w that avoids wu.

First consider that u is a (proper) descendant of r in D(s). Since v is not an ancestor
of w in D(s), there is a vertex x € C?(r) that is an ancestor of u. By Lemma 3.12, all
paths from v to u in G, and thus all paths from v to w, contain x. By Lemma 3.14 this
is also true for all paths from v to w in G,.

Finally, if u is not a descendant of r, Lemma 3.12 implies that all paths from u to w
in G contain vertex r. Hence, all paths from v to w in G contain r, and so do all paths
from v to w in G, by Lemma 3.14. 1

Now we specify how to compute all the auxiliary graphs G, = (V,., E,.) in O(m + n)
time. Observe that the edge set E,. contains all edges in G = (V| F) induced by the
vertices in V, (i.e., edges (u,v) € E such that u € V. and v € V}.). We also add in E, the
following types of shortcut edges that correspond to paths in G. (a) If G contains an edge
(u,v) such that u ¢ V. is a descendant of r in D(s) and v € V. then we add the shortcut
edge (z,v) where z the is an ancestor of v in D(s) such that z € C3(r). (b) If G contains
an edge (u,v) such that w but not v is a descendant of r in D(s) then we add the shortcut
edge (z,7) where z the nearest ancestor of w in D(s) such that z € V, (z = w if u € V}).
We note that we do not keep multiple (parallel) shortcut edges. See Figure 3.4. We use
the same definition for the auxiliary graph G, of s, with the only difference that we let s
be an ordinary vertex. We also note that G does not contain type-(b) shortcut edges.

To construct the auxiliary graphs G, = (V,, E,) we need to specify how to compute
the shortcut edges of type (a) and (b). To do this efficiently we need to test ancestor-
descendant relations in D(s). There are several simple O(1)-time tests of this relation |35].
The most convenient one for us is to number the vertices of D(s) from 1 to n in preorder,
and to compute the number of descendants of each vertex. Then, vertex v is a descendant

40

of r if and only if pre(r) < pre(v) < pre(r) + size(r), where, for any vertex x, pre(x)
and size(x) are, respectively, the preorder number and the number of descendants of = in
D(s).

Suppose (u,v) is an edge of type (a). We need to find the ancestor z of u in D(s)
such that z € C3(r). We process all such arcs of G, as follows. We create a list A, that
contains the edges (u,v) of type (a), and sort A, in increasing preorder of u. We create
a second list A/ that contains the vertices in C3(r), and sort A’ in increasing preorder.
Then, the shortcut edge of (u,v) is (z,v), where z is the last vertex in the sorted list
Al such that pre(z) < pre(u). Thus the shortcut edges of type (a) can be computed
by bucket sorting and merging. In order to do this fast for all auxiliary graphs, we sort
all the lists at the same time as follows. First, we create a unified list A containing the
triples (r, pre(u),v), for each type (a) edge (u,v) in the auxiliary graph G,. Next we sort
A in increasing order of the two first elements. We also create a second list A’ with pairs
(r, pre(w)), where w € C3(r), and sort the pairs in increasing order. Finally, we compute
the shortcut edges of each auxiliary graph G, by merging the sorted sublists of A and A’
that correspond to the same root r. Then, the shortcut edge for the triple (r, pre(u),v)
is (z,v), where (7, pre(z)) is the last pair in the sorted sublist of A" with root r such that
pre(z) < pre(u).

Now we consider the edges of type (b). For each vertex w € C3(r) we need to test
if there is an edge (u,v) in G such that u is a proper descendant of w and v is not a
descendant of r in D(s). In this case, we add in G, the edge (w,r). To do this test
efficiently, we assign to each edge (u,v) a tag t(u,v) which we set equal to the preorder
number of the nearest common ancestor of u and v in D(s). We can do this easily by using
the parent property and the O(1)-time test of the ancestor-descendant relation as follows:
t(u,v) = pre(u) if u is an ancestor of v in D(s), t(u,v) = pre(v) if v is an ancestor of u in
D(s), and t(u,v) = pre(d(v)) otherwise. At each vertex w # s in D(s) we store a label
¢(w) which is the minimum tag of among the edges (w, v). Using these labels we compute
for each w # s in D(s) the values low(w) = min{/(v) | v is a descendant of w in D(s)}.
These computations can be done in O(m) time by processing the tree D(s) in a bottom-up
order. Now consider the auxiliary graph G,. We process the vertices in C?(r). For each
such vertex w we add the shortcut edge (w,r) if low(w) < pre(r).

Lemma 3.16. We can compute all auziliary graphs G, in O(m) time.

We also describe an alternative way to compute the type (a) shortcut edges of the
auxiliary graphs, by replacing sorting with vertex contractions. To that end, we use a
disjoint set union data structure 36|, which maintains a collection of disjoint sets, each

with a representative element, under three operations:

make-set(r): Create a new set {z} with representative . Element z must be in no
existing set.

find(x): Return the representative element of the set containing element x.

41

unite(x,y): Unite the sets containing elements z and y and give the new set the repre-
sentative of the old set containing x.

Using this data structure, we can compute the type (a) shortcut edges of all auxiliary
graphs in a single bottom-up pass of D(s). To initialize the sets, we perform make-set(v)
for every vertex v € V. The unite operations are also executed in a bottom-up order,
and each such operation has the effect of contracting a vertex to its parent in D(s). The
details of these computations are as follows. We visit all vertices r in a bottom-up order
of D(s), and compute the type (a) shortcut edges of the corresponding auxiliary graph
G, = (V,, E.). To do this, we process the edges entering each vertex v € V. For each
such edge (u,v) we compute z = find(u). If 2 # v and z € V, then (z,v) is a type (a)
shortcut edge of G,. The former condition means that u is not a descendant of v, while
the second condition can only be violated for v = r. After we have processed all edges
entering V., we execute unite(d(v),v) for each vertex v € C3(s). This construction runs
O(m) time plus the time for n — 1 unite operations and, by Lemma 3.13, at most 4m
find operations. If unite and find are implemented using compressed trees with balanced
linking [36], the total time for these disjoint set union operations is O(ma(m,n)). Since
the set of unite operations is known in advance we have an instance of the static tree
disjoint set union problem, which is solvable in O(m) time on a RAM [10].

3.4.2 The algorithm

Our linear-time algorithm FastVRB is illustrated in Figure 3.5. It uses two levels of
auxiliary graphs and applies one iteration of Algorithm SimpleVRB for each auxiliary graph
of the second level. The algorithm uses different dominator trees, and applies Lemma 3.11
in order to identify the vertex-resilient blocks. Since different dominator trees may define
different blocks (which by Lemma 3.11 are supersets of the vertex-resilient blocks), we
will use an operation that we call split to combine the different blocks.

We begin by computing the dominator tree D(s) for an arbitrary start vertex s. For
any vertex v, we let C(v) denote the set containing v and the children of v in D(s), i.e.,
C(v) = C(v) U {v}. Lemma 3.11 gives an initial division of the vertices into blocks that
are supersets of the vertex-resilient blocks. Specifically, the vertex-resilient blocks that
contain v are subsets of C(v) or C(d(v)) (for v # s).

During the course of the algorithm, each vertex v becomes associated with a set of
blocks B(v) that contain v, which are subsets of C(v) and C(d(v)) if v # s. The blocks are
refined by applying the refine operation of Section 3.3 and operation split that we define
next, and at the end of the algorithm each set of blocks B(v) will be equal to VRB(v).

Let B be a block and T be a rooted tree with vertex set V(T') O B. For any vertex
v € V(T), let Cp(v) be the set containing v and the children of v in 7.

split(B,T): Return the set that consists of the blocks B N aT(v) of size at least two, for
all v e V(T).

42

Algorithm FastVRB: Linear-time computation of the vertex-resilient blocks
of a strongly connected digraph G = (V, E)

Step 1: Choose an arbitrary vertex s € V' as a start vertex. Compute the dominator
tree D(s). For any vertex v, let a(v) be the set containing v and the children
of v in D(s). Initialize the block forest F' by associating block C'(v) with every
vertex w € C(v), for all vertices v that are not a leaves in D(s).

Step 2: Compute the auxiliary graphs G, for all vertices r that are not leaves in D(s).

Step 3: Process the vertices of D(s) in bottom-up order. For each auxiliary graph

H = G, with r not a leaf in D(s) do:

Step 3.1: Compute the dominator tree T' = DE(r).

Step 3.2: Compute the set B of blocks that contain vertices in C(r).

Step 3.3: For each block B € B execute split(B,T).

Step 3.4: Compute the auxiliary graphs H, f for all vertices ¢ that are not leaves
in T

Step 3.5: For each auxiliary graph Hf with ¢ not a leaf do:
Step 3.5.1: Compute the set B, of blocks that contain at least two ordinary

vertices in HJ.
Step 3.5.2: Compute the set S of the strongly connected components of
R
H\ q.
Step 3.5.3: Refine the blocks in B, by executing refine(B,, S, q).

Figure 3.5: Algorithm FastVRB

Lemma 3.17. Let N be the number of vertices in V(T'). Then, the operation split(B,T)
can be executed in O(N) time.

Proof. We number the vertices of T' in preorder. Let pre(v) be the preorder number of
v € V(T). Let t(v) be the parent of v # r in T, where r is the root of T. We associate
each vertex v # r in B with two labels ¢;(v) = pre(t(v)) and ¢3(v) = pre(v), and create
two corresponding pairs (¢1(v),v) and (¢2(v),v). Also, if r € B, we associate r with one
label ¢5(r) = pre(r), and create a corresponding pair (¢5(r),r). Each block created by the
split operation consists of a set of at least two vertices v € B that are associated with a
specific label. We can find these blocks by sorting the pairs (¢;(v),v) by label, which can
be done in O(N) time with bucket sort.

Lemma 3.18. The block graph F' of the set of blocks B maintained by algorithm FastVRB
18 a forest throughout the execution of the algorithm.

43

= GFE T = DR

Figure 3.6: The reverse auxiliary graph Hf = GZ of the flow graph G(s) of Figure 3.4
and its dominator tree T'= DZEZ(i); F and F” are, respectively, the block forest before and
after the execution of split(B,T'). Only the affected portion of the block forest is shown.

Proof. We describe how a split operation can be simulated by a sequence of refine op-
erations. The result then follows from Lemma 3.9. Consider the split(B,T) operation
for a block B and a rooted tree T" with vertex set V(1) = {vq,vq,...,v5} 2 B. For any
vertex v; € V(T'), we let V; be the set of descendant of v; in 7. We can achieve the effect
of split(B,T) by executing a sequence of § refine operations. The i-th operation in this
sequence is refine(B;_1,S;,v;), where B;_; is the set of blocks computed by the first i — 1
operations, and S; is the partition of V(T) \ v; formed by the sets V; \ v; and V(T) \ V..
Initially we set By = {B}. This sequence computes exactly the blocks BN aT(vi) of size
at least two, for all v; € V/(T').

At a high level, the algorithm begins with a “coarse” block tree, induced by the 6(7))
sets of D(s), which is then refined by the blocks defined from the dominator trees of the
auxiliary graphs. An example of this process is shown in Figure 3.6. The final vertex-
resilient block forest is then computed by considering the strongly connected components
of the second level auxiliary graphs, after removing their designated start vertex. The
algorithms need to keep track of the blocks that contain a specific vertex, and, conversely,
of the vertices that are contained in a specific block. To facilitate this search we explicitly
store the adjacency lists of the current block forest F. Recall that F' is bipartite, so the
adjacency list of a vertex v stores the blocks that contain v, and the adjacency list of a
block node B stores the vertices in B. Initially F' contains one block for each set 6@), for
all vertices v that are not leaves in D(s). These blocks are later refined by executing the
split and refine operations, which by Lemmas 3.9 and 3.18 maintain the invariant that F’
is a forest. This fact implies that Lemma 3.5 holds, so the total number of vertices and
edges in F'is O(n). So when we execute a split or a refine operation we can update the
adjacency lists of F', while maintaining the bounds given in Lemmas 3.8 and 3.17.

Lemma 3.19. Algorithm FastVRB is correct.

44

Proof. Let u and v be any vertices. If u and v are vertex-resilient in G, then by Lemma
3.15 they are vertex-resilient in both auxiliary graphs of G and G, that contain them as
ordinary vertices. This implies that the algorithm will correctly include them in the same
block in Step 1 and will not separate them in Steps 3.3 and 3.5. So suppose that u and
v are not vertex-resilient. Then, without loss of generality, we can assume that all paths
from w to v contain a common strong articulation point. Thus, d(v) # u. We argue that
all the blocks that contain u and all the blocks that contain v will be separated in some
step of the algorithm.

First we observe that u and v can appear together in at most one of the blocks
constructed in Step 1. Also, v and v can remain in at most one block after each split
operation (v and v can have at most one identical label ¢;(u) = ¢;(v)). So suppose that u
and v are still contained in one common block just before the execution of Step 3.5. We
will show that v and v will be separated after the refine operation executed in Step 3.5.3.
Since u and v were not separated by a split operation, they are either siblings or one is
the parent of the other in DE(r). Also, since d(v) # u we have the following cases.

(a) d(u) = v. Then u and v are both ordinary vertices of the auxiliary graph H = G,
with r = d(v). Lemma 3.15 implies that G, contains a strong articulation point x that
separates u from v. We argue that z is a proper ancestor of v in DE(r). If not, then H%
contains a path P from r to u that avoids x. Since d(v) = r, H contains a path Q from
r to v that avoids x. Thus P-() is a path in H from u to v that avoids z, a contradiction.
Now we claim that ¢ = d%(u) is also a strong articulation point that separates u from v.
Suppose the claim is false. Then z # ¢, so z is a proper ancestor of ¢ in DE(r). Let P
be a path from u to v that avoids q. Then z is on P since x separates u from v. Let P,
be the part of P from u to x. Also, since x is a proper ancestor of ¢ in DE(r), H® has a
path QF from r to x that avoids ¢. Then P,-Q is a path in H from u to r that avoids ¢, a
contradiction. The claim implies that v and v are located in different strongly connected
components of H f \ ¢, so they are contained in different blocks computed in Step 3.5.3.

(b) d(v) = d(u) = r. Then u and v are both ordinary vertices of the auxiliary graph
H = G,. Lemma 3.15 implies that (G, contains a strong articulation point x that separates
u from v. By the same arguments as in case (a), it follows that ¢ = d&(u) is a strong
articulation point that separates u from v. So again v and v will be located in different
blocks after Step 3.5.3. 1

Lemma 3.20. Algorithm FastVRB runs in O(m) time.

Proof. We account for the total time spent on each step that Algorithm FastVRB executes.
Step 1 takes O(m) time by [3], and Step 2 takes O(m) time by Lemma 3.16. From Lemma
3.13 we have that the total number of vertices and the total number of edges in all auxiliary
graphs H of G are O(n) and O(m) respectively. Then, again by Lemma 3.13, the total
size (number of vertices and edges) of all auxiliary graphs H}® for all H, computed in
Step 3.4, is still O(m) and they are also computed in O(m) total time by Lemma 3.16.
Now consider the split operations. All these operations that occur during Step 3.3 for a
specific auxiliary graph G, operate on the same tree T, which can be preprocessed once,

45

as in Lemma 3.17, for all split operations. Therefore, the total preprocessing time for all
split operations is O(n). Excluding the preprocessing time for T', a split(B,T) operation
takes time proportional to the number of vertices in B. Therefore all split operations take
O(n) time in total by Lemmas 3.5 and 3.17. In Step 3.5.1 we examine the adjacency lists
of the ordinary vertices v € H, f and find the corresponding blocks that contain at least
such two ordinary vertices. Then we examine the adjacency lists of each such block. So,
the adjacency lists of each vertex v and each block that contains v can be examined at
most three times. Hence, Step 3.5.1 takes O(n) time in total. Finally, Steps 3.5.2 and
3.5.3 take O(m) time in total by [33] and Lemmas 3.5 and 3.8.

3.5 Queries

Algorithm FastVRB computes the vertex-resilient blocks of the input digraph G and stores
them in the block forest F' of Section 3.1, which makes it straightforward to test in constant
time if two query vertices v and w are vertex-resilient. Here we show that if v and w are
not vertex-resilient, then we can report a witness of this fact, that is, a strong articulation
point x such that v and w are not in the same strongly connected component of G \ x.
Using this witness, it is straightforward to verify in O(m) time that v and w are not
vertex-resilient; it suffices to check that v is not reachable from w in G \ x or vice versa.

To obtain this witness, we would like to apply Lemma 3.6, but this requires v and w
to be in the same tree of the block forest. Fortunately, we can find the witness fast by
applying Lemmas 3.11 and 3.12, which use information computed during the execution of
FastVRB. We do that as follows. First consider the simpler case where v = s. If Lemma
3.11 does not hold for s and w in D(s) then d(w) # s is a strong articulation point
that separates s from w. Otherwise, s = d(w), and s and w are both ordinary vertices
in the auxiliary graph H = G,. Then s and w cannot satisfy Lemma 3.11 in D(s), so
d®(w) is a strong articulation point that separates w from s. Now consider the case where
v,w € V' \ s. Suppose first that v and w do not satisfy Lemma 3.11 in D(s). Then d(w)
is not an ancestor of v or d(v) is not an ancestor of w (or both). Assume, without loss
of generality, that d(w) is not an ancestor of v. By Lemma 3.12; all paths from v to w
pass through d(w), so d(w) is a strong articulation point that separates v from w. On the
other hand, if Lemma 3.11 holds for v and w in D(s), then v and w are both ordinary
vertices in an auxiliary graph H = G, where r = d(v) if v = d(w), r = d(w) if w = d(v),
and r = d(v) = d(w) otherwise. By Lemma 3.15, v and w are not vertex-resilient in H.
If they violate Lemma 3.11 for DE(r) then we can find a strong articulation point that
separates them as above. Finally, assume that Lemma 3.11 holds for v and w in DE(r).
Now v and w are both ordinary vertices in an auxiliary graph Hf. From the proof of
Lemma 3.19 we have that ¢ = d&(v) or ¢ = d%(w) and that ¢ is a strong articulation
point that separates v and w.

All the above tests can be performed in constant time. It suffices to store the dominator
tree D(s) of G(s), and the dominator trees DE(r) of all auxiliary graphs H® = GE. The

46

space required for these data structures is O(n) by Lemma 3.13.

Theorem 3.1. Let G be a digraph with n vertices and m edges. We can compute the
vertez-resilient blocks of G in O(m + n) time and store them in a data structure of O(n)
space. Given this data structure, we can test in O(1) time if any two vertices are vertez-
resilient. Moreover, if the two vertices are not vertez-resilient, then we can report in O(1)

time a strong articulation point that separates them.

3.6 Computing the 2-vertex-connected blocks

We can compute the 2-vertex-connected blocks of the input digraph G = (V, E) by apply-
ing Corollary 3.2 as follows. Given the vertex-resilient blocks B and the 2-edge-connected
blocks S of G, we simply execute refine(B,S). This takes O(n) time by Lemma 3.8. Also,
since the 2-vertex-connected blocks have a block forest representation, we can test if two
given vertices are 2-vertex-connected in O(1) time as described in Section 3.1.

If we only wish to answer queries of whether two vertices v and w are 2-vertex-
connected, without computing explicitly the 2-vertex and the 2-edge-connected blocks,
then we can use a simpler alternative, as suggested by Lemma 3.7. First, we test if v
and w are vertex-resilient in O(1)-time as in Section 3.5, and if they are not, then we can
report a strong articulation point that separates them. If, on the other hand, v and w
are vertex-resilient then we need to check if G contains (v, w) or (w,v) as a strong bridge.
We can do this easily using the same information as in Section 3.5, namely the dominator
tree D(s) of G(s), and the dominator trees DE(r) of all auxiliary graphs H?® = GE. For
instance, if (v,w) is a strong bridge in G, then it will appear as an edge in one of the
dominator trees. Therefore, it suffices to mark the edges of dominator trees that are
strong bridges, and then check if v is the parent of w or w is the parent of v in D(s) or
in DE(r), where H = G, is the auxiliary graph of G such that r = d(v) if v = d(w),
r=d(w) if w=d(v), and r = d(v) = d(w) otherwise.

Theorem 3.2. Let G be a digraph with n vertices and m edges. We can compute the
2-vertex-connected blocks of G in O(m + n) time and store them in a data structure of
O(n) space. Given this data structure, we can test in O(1) time if any two vertices are
2-vertex-connected. Moreover, if the two vertices are not 2-vertex-connected, then we can

report in O(1) time a strong articulation point or a strong bridge that separates them.

3.7 Sparse certificate for the vertex-resilient blocks and the 2-
vertex-connected blocks

Here we show how to extend Algorithm FastVRB so that it also computes in linear time
a sparse certificate for the vertex-resilient and the 2-vertex-connected relations. That
is, we compute a subgraph C(G) of the input graph G that has O(n) edges and main-

47

tains the same vertex-resilient and 2-vertex-connected blocks as the input graph. We can
achieve this by applying the same approach we used in Section 2.5 for computing a sparse
certificate for the 2-edge-connected blocks.

As throughout the Chapter we can assume without loss of generality that G is strongly
connected, in which case subgraph C'(G) will also be strongly connected. The certificate
uses the concept of independent spanning trees [16]. A spanning tree T of a flow graph
((s) is a tree with root s that contains a path from s to v for all vertices v. Two spanning
trees B and R rooted at s are independent if for all v, the paths from s to v in B and
R share only the dominators of v. Every flow graph G(s) has two such spanning trees,
computable in linear time [16]. Moreover, the computed spanning trees are mazimally
edge-disjoint, meaning that the only edges they have in common are the bridges of G(s).

During the execution of Algorithm FastVRB, we maintain a list (multiset) L of the
edges to be added in C(G). The same edge may be inserted into L multiple times, but the
total number of insertions will be O(n). Then we can use radix sort to remove duplicate
edges in O(n) time. We initialize L to be empty. During Step 1 of Algorithm FastVRB we
compute two independent spanning trees, B(G(s)) and R(G(s)) of G(s) and insert their
edges into L. Next, in Step 3.1 we compute two independent spanning trees B(H%(r))
and R(H"(r)) for each auxiliary graph H(r). For each edge (u,v) of these spanning
trees, we insert a corresponding edge into L as follows. If both u and v are ordinary
vertices in H(r), we insert (u,v) into L since it is an original edge of G. Otherwise,
uw or v is an auxiliary vertex and we insert into L a corresponding original edge of G.
Such an original edge can be easily found during the construction of the auxiliary graphs.
Finally, in Step 3.5, we compute two spanning trees for every connected component S; of
each auxiliary graph H f \ ¢ as follows. Let Hg, be the subgraph of H, that is induced by
the vertices in S;. We choose an arbitrary vertex v € S; and compute a spanning tree of
Hg,(v) and a spanning tree of H (v). We insert in L the original edges that correspond
to the edges of these spanning trees.

Lemma 3.21. The sparse certificate C(G) has the same vertex-resilient blocks and 2-
vertex-connected blocks as the input digraph G.

Proof. We first argue that the execution of Algorithm FastVRB on C(G) and produces the
same vertex-resilient blocks as the execution of Algorithm FastVRB on . The correctness
of Algorithm FastVRB implies that it produces the same result regardless of the choice of
start vertex s. So we assume that both executions choose the same start vertex s. We will
refer to the execution of Algorithm FastVRB with input G (resp. C(G)) as FastVRB(G)
(resp. FastVRB(C(Q))).

First we note that C(G) is strongly connected since it contains a spanning tree of
G(s) and a spanning tree for the reverse of each auxiliary graph G,. Moreover, the fact
that C'(G) contains two independent spanning trees of G implies that G and C(G) have
the same dominator tree with respect to the start vertex s that are computed in Step 1.
Hence, the auxiliary graphs computed in Step 2 of Algorithm FastVRB have the same sets
of ordinary and auxiliary vertices in both executions FastVRB(G) and FastVRB(C(G)).

48

Hence, Step 3.1 computes the same dominator trees Dy (1) and DE(r) in both executions,
and therefore Steps 3.2 and 3.3 compute the same blocks. The same argument as in Steps
1 and 2 implies that both executions FastVRB(G) and FastVRB(C(G)) compute in Step
3.4 auxiliary graphs H f with the same sets of ordinary and auxiliary vertices. Finally, by
construction, the strongly connected components of each auxiliary graph H, f \ ¢ are the
same in both executions of FastVRB(G) and FastVRB(C(G)).

We conclude that FastVRB(G) and FastVRB(C(G)) compute the same vertex-resilient
blocks as claimed. Next, observe that since the independent spanning trees computed in
Steps 1 and 3.1 of the extended version of FastVRB are maximally edge-disjoint, C(G)
maintains the same strong bridges as G. Then, by Corollary 3.2, C'(G) also has the same
2-vertex-connected blocks as G. 1

49

CHAPTER 4

EXPERIMENTAL EVALUATION

4.1 Introduction

4.2 Overview of algorithms
4.2.1 Computing 2-edge-connected components

4.2.2 Computing 2-vertex-connected components

4.3 Empirical analysis
4.3.1 2-connectivity structure of the considered digraphs
4.3.2 Vertex-resilient blocks
4.3.3 2-vertex-connected components
4.3.4 2-edge-connected blocks

4.3.5 2-edge-connected components

4.1 Introduction

In this Chapter we consider the computation of the 2-edge- and 2-vertex-connected blocks
and components of a digraph in practice, and present efficient implementations of the al-
gorithms introduced in this work, and also compare them to known algorithms [6, 24].
We also provide a new O(mn)-time algorithm for computing the 2-vertex-connected com-
ponents of a digraph, that refines the dominator tree division used by Jaberi [24], and
a simple O(mn)-time algorithm for computing the 2-edge-connected components of a di-
graph. We evaluate the efficiency of our algorithms experimentally on large digraphs
taken from a variety of application areas. To the best of our knowledge, this is the first
empirical study for these problems. Our extensive experimental study sheds light on the
relative difficulty of computing various notions of 2-connectivity in directed graphs. More

20

specifically, we compare the performance of the linear-time algorithms for computing the
2-edge- and 2-vertex-connected blocks of a digraph with simpler algorithms that iterate
over the strong articulation points and strong bridges of the digraph. We also consider
the computation of the 2-vertex-connected components of a digraph and compare the
performance of our new algorithm and the algorithms of Erusalimskii and Svetlov [6] and
Jaberi [24]. Our results show that algorithms that apply a dominator-tree-based division
of the input digraph perform well in practice and are more robust than their simpler com-
petitors. The experimental results also suggest that the 2-edge- and 2-vertex-connected
components of digraphs that arise in many practical applications can be found efficiently,
despite the fact that the theoretically asymptotic bound of the algorithms we considered
is O(mn).

4.2 Overview of algorithms

In this section we overview the algorithms that were implemented for our experimental
study, which are briefed in Table 4.1. To compute the 2-edge-connected blocks, we im-
plemented the algorithms Simple2ECB and Fast2ECB that were presented in Chapter 2.
We also implemented a fast algorithm that computes a sparse certificate for the 2-edge-
connected blocks, i.e., a subgraph of the input graph that has O(n) edges and maintains
the same 2-edge-connected blocks as the input graph. This certificate is produced by ex-
tending Fast2ECB with the use of independent spanning trees [16|, as detailed in Chapter
2. We refer to the resulting algorithm as SC2ECB.

We computed the vertex-resilient blocks by implementing algorithms Simple2VRB and
Fast2VRB that we developed in Chapter 3. As previously mentioned, the vertex-resilient
blocks are at the heart of the computation of the 2-vertex-connected blocks of a digraph:
indeed, the 2-vertex-connected blocks of a digraph can be obtained by combining the
computation of the vertex-resilient blocks and the computation of the 2-edge-connected
blocks. For this reason, in our experiments we did not consider explicitly algorithms
for computing 2-vertex-connected blocks. Similarly to the 2-edge-connectivity case, the
fast algorithm for vertex-resilient blocks (Fast2VRB) can be extended with the use of
independent spanning trees to obtain a sparse certificate for vertex-resilient and 2-vertex-
connected blocks. This was not considered in our experiments. Also, we did not include
the algorithms of Jaberi [23] for 2-edge- and 2-vertex-connected blocks because of their
large requirements in storage space.

To compute the 2-edge-connected components, we implemented a new simple algo-
rithm, called 2ECC, which repeatedly removes all strong bridges, and which will be de-
scribed in detail in Section 4.2.1. To compute the 2-vertex-connected components, we
implemented the algorithm by Erusalimskii and Svetlov [6], which we refer to as 2VCC-
ES, and the two algorithms by Jaberi [24] which we refer to as 2VCC-J1 and 2VCC-J2.
We also implemented a new algorithm, called 2VCC, which will be described in detail in
Section 4.2.2.

51

Algorithm Problem solved Technique Complexity Reference

Simple2ECB 2-edge-connected blocks Remove one strong bridge at a O(mb) Section 2.2
time

Fast2ECB 2-edge-connected blocks ~ Dominator-tree division and O(m+n) Section 2.4
auxiliary graphs

SC2ECB Sparse certificate for 2- Extend Fast2ECB using inde- O(m +n) Section 2.5
edge-connected blocks pendent spanning trees
SimpleVRB Vertex-resilient blocks Remove one strong articulation O(mp) 3

point at a time

FastVRB Vertex-resilient blocks Dominator-tree division and O(m+n) 3
auxiliary graphs

2ECC 2-edge-connected compo- Repeatedly remove all strong O(mn) Section 4.2.1
nents bridges
2VCC-ES 2-vertex-connected com- Remove one vertex and the O(m?n) [6]
ponents edges that connect different
strongly connected components
at a time
2vCC-11 2-vertex-connected com- Remove one strong articulation O(mn) [24]
ponents point at a time
2VCC-J2 2-vertex-connected com- Dominator-tree division and in- O(mn) [24]
ponents duced subgraphs
2VCC 2-vertex-connected com- Refined dominator-tree division O(mn) Section 4.2.2
ponents and induced subgraphs

Table 4.1: An overview of the algorithms considered in our experimental study. The worst-
case bounds refer to a digraph with n vertices, m edges, p strong articulation points, and
b strong bridges. Note that p <mn, b <2(n —1).

It can be shown that the O(mn) bounds for all the 2-vertex- and 2-edge-connected
components algorithms are tight (see Figure 4.1). This implies that there is currently a
big gap between the O(m + n) time bound for computing the 2-connected blocks, and
the O(mn) time bound for computing the 2-connected components. For the latter prob-
lems, the main additional difficulty encountered is due to the fact that the deletion of
a strong articulation point (resp., a strong bridge) may cause other vertices to become
strong articulation points (resp., strong bridges) in the remaining graph, as in the exam-
ple considered in Figure 4.1. Very recently, and after this experimental study has been
conducted, Henzinger et al. [20] showed how to compute the 2-edge- and the 2-vertex-
connected components in O(n?) time using a hierarchical sparsification technique [19)].

We refer the interested reader to the references given in Table 4.1 for a complete de-
scription of the algorithms considered. Before describing in detail the new Algorithms
2VCC and 2ECC, we observe that all the algorithms shown in Table 4.1 are roughly based
on two different approaches: repeatedly removing strong articulation points (or strong
bridges) and using dominator tree divisions. This will be briefly discussed below.

52

e
BSLESS

Figure 4.1: An example that elicits the worst-case behavior of the algorithms that compute
the 2-vertex-connected components. The input digraph has only one strong articulation
point (shown in red), and its removal creates one new strong articulation point. This
process continues until only one vertex (s) remains. A similar example can be constructed
for the case of 2-edge-connected components.

As mentioned in the Section 1.2.3, there are several linear-time algorithms for comput-
ing the dominator tree of a digraph [1, 3, 4, 8,9, 15|. Despite this fact, in our experiments
we used the simple version of the Lengauer-Tarjan algorithm [25] which runs in time
O(ma(n,m/n)) time, where « is a functional inverse of Ackermann’s function |36]. We
use the simple version of the Lengauer-Tarjan algorithm since it was reported to run faster
in practice comparing to the other linear-time algorithms |7, 13, 14].

Vertex or edge removal. These algorithms remove one strong articulation point or
one (or more) strong bridge(s) at a time. After removing such vertices or edges, the algo-
rithms compute the strongly connected components of the remaining digraph, and update
the division of vertices into components or blocks. This category includes algorithms Sim-
ple2ECB, 2ECC, SimpleVRB, 2VCC-ES and 2VCC-J1. Note that a significant difference
between the computation of 2-vertex-connected components and 2-edge-connected com-
ponents is that in the former we can only remove one strong articulation point (of the
current digraph) at a time, while in the latter we can remove all strong bridges (of the
current digraph) at once.

Dominator tree division. These are algorithms that use dominator trees to divide
the input digraph into smaller graphs that maintain the desired relation (2-vertex- or
2-edge-connected components or blocks). This category includes algorithms Fast2ECB,
SC2ECB, FastVRB, 2VCC-J2, and 2VCC. In the case of 2-vertex- or 2-edge-connected com-
ponents, we only need to consider paths that contain vertices in the same division, so we
use a dominator tree to divide the input digraph into induced subgraphs. For 2-vertex- or

93

Algorithm 2ECC: Computation of the 2-edge-connected components of a
strongly connected digraph G = (V| F) by removing strong bridges

Step 1: Compute the set B of the strong bridges of G. If B is empty then return V.
(G is 2-edge-connected.)

Step 2: Compute the strongly connected components Sy, ..., Sy of G\ B.
Step 3: For each strongly connected component .S; do:

Step 3.1: Compute the digraph G; induced by S;.

Step 3.2: Compute recursively the 2-edge-connected components of G;.

Figure 4.2: Algorithm 2ECC

2-edge-connected blocks, we construct auxiliary graphs that take into account paths that
contain vertices in other divisions. These are formed by augmenting induced subgraphs
with auxiliary edges and vertices that correspond to such paths, as detailed in Chapters
2 and 3.

Finally, we note that algorithms 2ECC, 2VCC-J1, 2VCC-J2, and 2VCC are recursive.

4.2.1 Computing 2-edge-connected components

Here we describe a simple O(mn)-time algorithm that computes the 2-edge-connected
components of a strongly connected digraph G. Our algorithm 2ECC, described in Fig-
ure 4.2, applies the definition of the 2-edge-connected components in terms of strong
bridges, and uses the fact that the 2-edge-connected components are vertex-disjoint.

Lemma 4.1. Algorithm 2ECC s correct.

Proof. The algorithm clearly computes subgraphs of the input digraph G' = (V| E) that
are 2-edge-connected. So we need to argue that each such subgraph is maximal. Let
C C V be the vertices in a 2-edge-connected component of G, which, by definition, is the
induced subgraph G(C) = (C, E(C)) of G, where E(C) = EN(C x C). Since G(C) is
2-edge-connected it is strongly connected and contains no strong bridges. This implies
that Algorithm 2ECC does not remove any edge in F(C'). Therefore, Algorithm 2ECC
does not partition G(C') into smaller subgraphs. 1

Lemma 4.2. Algorithm 2ECC runs in O(mn) time.

Proof. By [22, 33|, each recursive call runs in time that is linear in the total size of the
input digraph. Since the 2-edge-connected components form a partition of the vertices,
the depth of the recursion is n, and the total size of all induced subgraphs in each recursion
level is O(m). The bound follows. &

54

Algorithm 2VCC: Computation of the 2-vertex-connected components of a
strongly connected digraph G = (V, F) via dominator trees

Step 1: Choose an arbitrary start vertex s € V. Compute the dominator trees D(s)

and D (s).

Step 2: If G \ s is strongly connected and d(v) = d¥(v) = s, for all vertices v # s,
then return G. (G is 2-vertex-connected.)

Step 3: Compute the subgraphs G(u,v) of G with at least three vertices.
Step 4: For each subgraph G(u,v) with u # v do:

Step 4a: Compute the strongly connected components of G(u,v).
Step 4b: Compute recursively the 2-vertex-connected components of each
strongly connected component.

Step 5: For each subgraph G(v,v) do:

Step 5a: Compute the strongly connected components of G(v,v) \ v.

Step 5b: Process each strongly connected component S of G(v,v)\ v as follows:
If there are two arcs from v to S and two arcs from S to v then compute
recursively the 2-vertex-connected components of the subgraph induced by
SU{v}. Otherwise, compute recursively the 2-vertex-connected components

of the subgraph induced by S.

Figure 4.3: Algorithm 2VCC

4.2.2 Computing 2-vertex-connected components

In this section we describe a new algorithm that computes the 2-vertex-connected com-
ponents of a strongly connected digraph G. Algorithm 2VCC, which is a refinement of
an algorithm by Jaberi [24], is illustrated in Figure 4.3. As Jaberi’s algorithm, we use
the dominator tree of G(s), for an arbitrary start vertex s, to divide G into subgraphs
that contain all the 2-vertex-connected components of G. The division is based on the
following lemma, which is a restatement of a key lemma in [24]:

Lemma 4.3. Let G = (V,E) be a strongly connected digraph, and let s € V be an
arbitrary start verter. Any three vertices x, y and z (not necessarily distinct) belong to a
common 2-vertex-connected component ¥ of G only if they are all siblings in D(s) or one
is the immediate dominator of the other two in G(s).

Let D(s) (resp., D®(s)) be the dominator tree of G(s) (resp., of the reverse digraph
G%(s)). We obtain a refined division of G into subgraphs using the dominator trees
D(s) and D*(s) concurrently. For any vertex v, let C(v) (resp. C%(v)) denote the set

95

of children of v in D(s) (resp. DT(s)). Also, let d(v) (resp. d®(v)) be the parent of
v # sin D(s) (resp. DE(s)). For any pair of vertices v and v we identify the vertices in
C(u,v) = C(u) N CE(v). Also, if u = v or u € C%(v) then we include u in C(u,v), and if
v € C(u) then we include v in C'(u,v). Let G(u,v) be the subgraph of G induced by the
vertices in C(u,v). We say that G(u,v) is an induced subgraph of G.

Lemma 4.4. Let x and y be any vertices in G such that they are in a 2-vertex-connected
component X of G. Then x and y are vertices of a subgraph G(u,v).

Proof. We apply Lemma 4.3 to G(s) and G®(s). Since z,y € ¥, x and y are either siblings
in D(s), or d(z) =y or d(y) = z. Also z and y are either siblings in D®(s), or d®(z) =y
or d®(y) = x. Now consider the relation between z and y in the dominator trees D(s)
and D¥(s). We have the following cases:

(i) x and y are siblings in both G(s) and G%(s). Then d(z) = d(y) and d®(x) = d%(y),
so {x,y} C C(d(x),d%(z)).

(ii) =z and y are siblings in G(s) and d®(x) = y. Then z € C(d(x),y). But since
y € C(d(x)) we also have y € C(d(x),y).

(iii) d(z) =y and d®(x) =y. Then = € C(y,y), which, by definition, contains .

(iv) d(z) = y and d®(y) = x. Since X has at least three vertices, consider a vertex
z € ¥\ {z,y}. By Lemma 4.3, vertex z can be neither a sibling of y nor the parent
of y in D(s). So z must be a sibling of z in D(s). Similarly, we conclude that z is a
sibling of y in D(s). Hence z € C(y,z). But since y € C(d®(x)) and = € C(d(y)),
we also have z,y € C(y, x).

The remaining cases are analogous (with the role of and y interchanged), so the lemma,
follows. 1

Algorithm 2VCC, as described in Figure 4.3, applies Lemma 4.4 and the above division
into subgraphs G(u,v).

Lemma 4.5. Algorithm 2VCC is correct.

Proof. Lemma 4.4 implies that every 2-vertex-connected component of G is a subgraph
of an induced subgraph G(u,v). Since each G(u,v) is a subgraph of G it cannot contain a
2-vertex-connected subgraph H that is not a subgraph of GG. Therefore, the induced sub-
graphs G(u, v) maintain the same 2-vertex-connected components as the original digraph
G. 1

Next we bound the running time of our algorithm. First, we provide a bound on the
size of all induced subgraphs G(u,v).

Lemma 4.6. The induced subgraphs G(u,v) have at most 4n — 3 vertices and m edges in
total.

26

Proof. Any vertex x # s appears in at most four sets C'(u, v), namely C'(z,), C(d(z), d%(z)),
C(d(z),z), and C(z,d®(x)). Vertex s can only appear in C(s,s), so the total size of all
sets C'(u,v) is at most 4n — 3. The bound on the total number of edges follows from
the claim that any two distinct vertices x and y can appear together in at most one
set C'(u,v). To prove this claim, assume, without loss of generality, that y # d(x). (If

y = d(x), switch the role of = and y.) By the definition of C(u,v), one of the following
happens: (i) z and y are siblings in both D(s) and D(s), (ii) d(y) = # = u and x and

y are siblings in D(s), (iii) d(y) = * = v and d(x) = y = v, or (iv) d(y) = d®(y) = z.
For any pair of vertices z and y at most one of the above cases applies, which proves the
claim.

Given the dominator trees D(s) and D%(s), we can compute all sets C(u,v) of size
at least three, as follows. We number the vertices in D(s) and D%®(s) in preorder. Let
pre(v) (pref(v)) be the preorder number of a vertex v € D(s) (D%(s)). We label each
vertex v with the pair (pre(d(v)), pre®(d®(v))). We can sort the labels lexicographically
in O(n) time by radix sort. Then we group the vertices with identical labels. If there is
at least one vertex with label (pre(u), pre®(v)) we also test if d(v) = u, in which case we
include v in C(u,v), and test if d(u) = v, in which case we include u in C(u,v). As we
discover the distinct labels (pre(u), pre®(v)) we number the corresponding sets C(u, v)
in increasing order. We use these numbers in order to partition the adjacency list of each
vertex, which gives a representation of the G(u,v) subgraphs. The correctness of this
method follows by Lemma 4.4.

Lemma 4.7. We can compute all induced subgraphs G(u,v) with at least three vertices
in O(m +n) time.

Lemma 4.8. Algorithm 2VCC runs in O(mn) time.

Proof. By |3, 33] and Lemma 4.7, each recursive call runs in time that is linear in the
size (number of vertices and edges) of the input digraph. The depth of the recursion is at
most n, and the total size of all subgraphs constructed in Step 3 in each recursion level is
O(m) by Lemma 4.6. The bound follows. 1

4.3 Empirical analysis

For the experimental evaluation we use the same graph datasets as in [14], shown in
Table 4.2, and process only the largest strongly connected component (SCC) of each
graph. We wrote our implementations in C++, using g++ v.4.6.4 with full optimization
(flag -03) to compile the code. We report the running times on a GNU/Linux machine,
with Ubuntu (12.04LTS): a Dell PowerEdge R715 server 64-bit NUMA machine with four
AMD Opteron 6376 processors and 128GB of RAM memory. Each processor has 8 cores
sharing a 16MB L3 cache, and each core has a 2MB private L2 cache and 2300MHz speed.

In our experiments we did not use any parallelization, and each algorithm ran on a single

a7

Dataset n m file size dgug D b | type

rome99 3.3k 8.8k 98k 2.64 0.8k 1.4k | road network
p2p-gnutella2b 5.1k 17.9k 199k 348 1.9k 2.1k | peer2peer
Oracle-16k 10.4k 29,9k 320k 2.88 2.4k 12.4k | memory profiling
s38584 16.3k 26.0k 321k 1.59 10.5k 16.4k | circuit

web-NotreDame | 487k 267k 34M 549 9.0k 31.1k | web graph
soc-Epinionsl 32.2k 442k 5.1M 1374 8.1k 20.9k | social network
USA-road-NY 264k 730k 11IM 276 46.4k 105k | road network
USA-road-BAY 321k 794k 12M 247 84.6k 197k | road network

Amazon0302 241k 1.1M 17TM 467 69.6k 73.3k | prod. co-purchase
wiki-Talk 111k 1.4M 18M 1293 14.8k 85.5k | social network
web-Stanford 150k 1.5M 22M 10.47 20.2k 64.6k | web graph
Amazon0601 395k 3.3M 48M 8.35 69.3k 83.9k | prod. co-purchase
web-BerkStan 334k 4.5M 66M 13.50 53.6k 164k | web graph
Oracle-4M 2.8M 8.4M 137M 295 1.0M 1.3M | memory profiling
SAP-4M 4.0M 11.9M 181IM 291 19M 4.4M | memory profiling
Oracle-11M 6.4M 15.9M 261M 247 3.1M 6.9M | memory profiling
SAP-11M 11.1IM 36.3M 673M 3.26 4.9M 12.3M | memory profiling
LiveJournal 3.8M 65.3M 1G 17.06 649k 1.3M | social network
USA-road 23.9M 57.7TM 1.1G 240 6.2M 14.5M | road network

Table 4.2: Real-world graphs sorted by file size; n is the number of vertices, m the number
of edges, and 4., is the average vertex degree; p and b denote, respectively, the number
of strong articulation points and strong bridges. All characteristics refer to the largest
SCC of each graph

core. We report CPU times measured with the getrusage function. All the running
times reported in our experiments were averaged over ten different runs.

In addition to the running time for the algorithms of Table 4.1, we also report the
running time of the (simple) Lengauer-Tarjan algorithm for computing dominators, which
we refer to as LT. We use this as a baseline, since we can compute efficiently both the strong
bridges and the strong articulation points of a digraph using dominators [22]. Moreover,
as another reference baseline, we provide the running time for executing a depth-first
search (DFS) traversal of the graphs. (We note that LT also uses DFS.)

4.3.1 2-connectivity structure of the considered digraphs

Tables 4.3 and 4.4 provide some statistics about the number and size of the 2-vertex-
and 2-edge-connected components and blocks of the digraphs in our collection, where the
size is measured as the number of vertices. We will use these data in order to interpret
the performance of the tested algorithms. Recall that a 2-edge- or a 2-vertex-connected
block has at least two vertices, while a 2-edge- or a 2-vertex-connected component has

o8

2-edge-connected blocks 2-edge-connected components
Graph Max Size Avg. Size # | Max Size Avg. Size #
rome99 2543 2543 1 2255 566.5 4
p2p-gnutella2b 3116 3116 1 — — 0
Oracle-16k 738 61.38 13 24 12 4
538584 427 47.23 13 - — 0
web-NotreDame 14749 32.31 762 3780 35.32 481
soc-Epinionsl 18046 260.89 70 17512 300.35 59
USA-road-NY 207128 299.08 710 207128 299.08 710
USA-road-BAY 212199 149.15 1501 212199 149.15 1501
Amazon0302 140200 24.57 7283 81423 12 12874
wiki-Talk 50335 8391.33 6 49503 16503 3
web-Stanford 58599 76.89 1224 21767 29.12 1708
Amazon0601 305850 87.75 3730 296281 75.14 4300
web-BerkStan 128156 64.4 2930 56166 27.84 4744
Oracle-4M 434386 1408.02 1192 64397 1560.86 535
SAP-4M 141521 39.59 5325 2501 15.1 1883
Oracle-11M 389352 18.98 44921 3591 10.22 44127
SAP-11M 751793 36.66 25774 6340 20.12 1479
LiveJournal 2931062 747.73 3950 | 2914807 779.16 3771
USA-road 16051070 158.7 105704 | 16051070 158.7 105704

Table 4.3: Size (maximum and average) and number of the 2-edge-connected blocks and
components. The size of a block or a component is measured as the number of its vertices.

29

vertex-resilient blocks 2-vertex-connected blocks 2-vertex-connected components
Graph Max Size Av. Size # | Max Size Av. Size # | Max Size Av. Size #
rome99 2542 5.29 771 2542 1272.00 2 2249 453.39 5
p2p-gnutella2b 3113 4.49 1246 3113 779.75 4 — — 0
Oracle-16k 581 2.24 2548 581 6.01 156 24 8.2 5
538584 375 2.38 1378 375 12.07 53 - - 0
web-NotreDame 5381 3.07 19223 5381 8.78 3053 1462 19.53 847
soc-Epinionsl 17560 3.41 12626 17560 53.12 349 17113 84.83 210
USA-road-NY 206871 5.94 53474 206871 273.73 776 206871 273.73 776
USA-road-BAY 211590 4.19 100513 211590 138.09 1622 211590 138.09 1622
Amazon0302 123592 4.11 74848 123592 13.83 13375 55414 7.81 19789
wiki-Talk 50187 2.93 53551 50187 438.75 115 49427 1768.39 28
web-Stanford 26194 3.91 40776 26194 12.19 7668 10893 16.41 2936
Amazon0601 287619 6.02 78139 287619 37.83 8784 276049 35.02 9340
web-BerkStan 64022 3.37 109112 64022 10.34 17984 29145 15.69 8104
Oracle-4M 129071 3.51 710717 129071 3.80 596741 64397 1560.86 535
SAP-4M 119712 2.64 271914 119712 8.71 26219 2501 15.1 1883
Oracle-11M 283036 2.45 1471583 283036 6.91 135601 3591 9.58 47430
SAP-11M 640932 3.04 752260 640932 8.31 124349 6340 20.12 1479
LiveJournal 2882722 5.39 862546 2882722 122.78 24219 2868808 153.7 19202
USA-road 16019892 4.24 7390323 | 16019892 148.80 112780 | 16019892 148.80 112780

Table 4.4: Size (maximum and average) and number of the vertex-resilient blocks and
the 2-vertex-connected blocks and components. The size of a block or a component is
measured as the number of its vertices.

at least three vertices. (A 2-edge-connected component may have only two vertices if
there are parallel edges.) As it can be seen from Tables 4.3 and 4.4, the size and number
of components and blocks varies, but for most digraphs the difference between the total
number and average size of the 2-edge-connected blocks and that of the 2-edge-connected
components is not too large. The same holds for the 2-vertex-connected blocks and
components. The vertex-resilient blocks, on the other hand, are much more numerous
than the 2-vertex-connected blocks and components, and consequently their average size
is smaller.

Note that, in particular, for the USA road networks (USA-road-NY, USA-road-BAY,
and USA-road), their 2-edge-connected blocks are identical to their 2-edge-connected
components, and, similarly, their 2-vertex-connected blocks are identical to their 2-vertex-
connected components. This is due to the fact the USA road networks in our data set are
essentially undirected graphs: for every edge (u,v), there is the opposite directed edge
(v,u) as well. As we will see later (see Tables 4.5 and 4.6), this has implications also
on the practical performance of our algorithms. Indeed, for the USA road networks the
simpler O(mn) algorithms (2VCC, 2ECC) for computing components run faster than the
more complicated O(m) algorithms (FastVRB, Fast2ECB) for computing blocks. This is
due to the fact that in the undirected road networks the simple algorithms (2VCC, 2ECC)
have a very small recursion depth, as it will be shown later (see Table 4.7).

60

- rome99
- p2p-gnutella25
- s38584
- Oracle-16k
- web-NotreDame
-1 soc-Epinionsl
0
0
- Amazon0302
- wiki-Talk
- web-Stanford
- Amazon0601
-| web-BerkStan
- Oracle-4M
- Oracle-11M

- SAP-11M
- USA-road

- SAP-4M
. 4 LiveJournal

10000
1000
100
10 4
1k E
0.1F 1

0.01 F SimpleVRB —}—
[FastVRB
0.001 ! 1 !

1+e4 1+e5 1+e6 1+e7

Figure 4.4: Vertex-resilient blocks. Running times, in seconds, and number of edges shown
in log scale.

Graph 2VCC-ES 2VCC-J1 2VCC-J2 2VCC | SimpleVRB FastVRB | DFS LT
rome99 10.71 2.88 0.07 0.04 0.64 0.02 | 0.01 0.01
p2p-gnutella2d 10.78 12.86 0.06 0.03 2.78 0.04 | 0.01 0.01
Oracle-16k 30.85 0.23 0.02 0.02 5.38 0.08 | 0.01 0.01
538584 24.25 2.70 0.03 0.02 29.62 0.22 | 0.01 0.01
web-NotreDame 1528.75 70.30 0.65 0.29 135.28 0.52 | 0.01 0.05
soc-Epinions] 1629.30 653.93 1.30 0.77 137.74 0.36 | 0.01 0.04
USA-road-NY 12052.07 13779.92 0.64 0.92 3225.83 2.65 | 0.03 0.16
USA-road-BAY | 14134.73 16059.15 0.89 1.09 9401.70 2731 0.05 0.18
Amazon0302 >12h 14514.38 8.17 7.51 >12h 2.81 | 0.07 0.27
wiki-Talk 18119.10 3567.23 3.52 2.84 >12h 0.60 | 0.05 0.19
web-Stanford >12h 910.86 4.22 2.14 >12h 2.76 | 0.06 0.22
Amazon0601 >12h 81021.47 1733 1391 >12h 440 | 0.15 0.51
web-BerkStan >12h 12025.61 5.50 6.22 >12h 413 | 012 0.40
Oracle-4M >12h 1055.93 49.78 8.53 >12h 33.61 | 0.34 1.60
SAP-4M >12h 244.37 16.29 9.86 >12h 60.02 | 0.46 2.17
Oracle-11M >12h 8494.18 154.65 16.48 >12h 80.98 | 0.61 3.06
SAP-11M >12h 21907.76 4475 18.59 >12h 136.19 | 0.75 6.01
LiveJournal >12h >12h 757.21 491.47 >12h 72.35 | 3.22 16.20
USA-road >12h >12h 107.72 68.85 >12h 499.70 | 3.71 17.34

Table 4.5: Experimental comparison of algorithms for computing the 2-vertex-connected
components and the vertex-resilient blocks; running time are in seconds, codes running
longer than 12 hours were terminated.

61

wiki-Talk
web-Stanford

< p2p-gnutella25
- web-NotreDame
- soc-Epinionsl
0a
0a
- Amazon0302
- Amazon0601
< web-BerkStan

- rome99

- Oracle-16k

- $38584

4 SAP-11M
+ USA-road
. . LiveJournal

+

10000 F AT
1000 F
100 [

10 F

01kl

001k

0.001 L

1+e4 1+e5 1+e6 1+e7

Figure 4.5: 2-vertex-connected components. Running times, in seconds, and number of
edges shown in log scale.

4.3.2 Vertex-resilient blocks

Here we compare the performance of two algorithms, SimpleVRB and FastVRB, for com-
puting the vertex-resilient blocks of a digraph. Figure 4.4 gives a plot (in log-log scale) of
the corresponding running times shown in Table 4.5. As it can be observed, SimpleVRB
is not competitive even for the smallest graphs in our data set. We also notice from
Figure 4.4 that FastVRB scales quite nicely with the graph size.

4.3.3 2-vertex-connected components

We evaluate the performance of four algorithms that compute the 2-vertex-connected
components of a digraph: the algorithm of Erusalimskii and Svetlov [6], 2VCC-ES, two
algorithms, 2VCC-J1 and 2VCC-J2, proposed by Jaberi [24], and our new algorithm, 2VCC,
described in Figure 4.3. The results are shown in the first four columns of Table 4.5.
As expected, 2VCC-ES is not a viable approach for large graphs. Algorithm 2VCC-J1
performs better than 2VCC-ES, but still it does not scale well with the graph size and it
is not competitive with the fastest algorithms. Algorithms 2VCC-J2 and 2VCC, on the
other hand, work well in practice, with the latter being the clear winner; 2VCC is faster
than 2VCC-J2 by a factor close to 2 on average. In fact for two graphs (Oracle-4M and
Oracle-11M) it performs significantly better. This is due to the fact that 2VCC reduces
the recursion depth, sometimes substantially, by using the refined dominator-tree division,
and by treating the strongly connected components of the induced subgraphs in a more
efficient way. We will investigate this behavior more closely later (see Table 4.7).

4.3.4 2-edge-connected blocks

Now we evaluate two algorithms, Simple2ECB and Fast2ECB, for computing the 2-edge-
connected blocks of a digraph. The results are shown in Table 4.6, and Figure 4.6 gives

62

Graph Simple2ECB Fast2ECB | SC2ECB | 2ECC | DFS LT
rome99 1.96 0.01 0.01 0.02 | 0.01 0.01
p2p-gnutella2s 4.57 0.01 0.01 0.01 | 0.01 0.01
Oracle-16k 39.78 0.03 0.04 0.01 | 0.01 o0.01
$38584 82.12 0.04 0.05 0.01 | 0.01 0.01
web-NotreDame 323.88 0.14 0.22 0.24 | 0.01 0.05
soc-Epinions1 409.58 0.17 0.32 0.34 | 0.01 0.04
USA-road-NY 16018.53 0.48 0.91 0.58 | 0.03 0.16
USA-road-BAY 24306.32 0.70 1.14 0.63 | 0.04 0.18
Amazon0302 >12h 0.59 1.66 3.44 | 0.07 0.27
wiki-Talk >12h 0.66 1.32 1.44 | 0.04 0.18
web-Stanford >12h 0.75 1.39 2.24 | 0.06 0.22
Amazon0601 >12h 1.78 3.82 498 | 0.15 0.51
web-BerkStan >12h 1.43 2.81 2.36 | 0.12 0.40
Oracle-4M >12h 7.30 11.05 2.78 | 0.34 1.60
SAP-4M >12h 19.02 24.50 5.26 | 0.46 2.17
Oracle-11M >12h 18.07 24.12 5.16 | 0.61 3.06
SAP-11M >12h 44.43 54.90 14.84 | 0.75 6.01
LiveJournal >12h 46.23 83.62 | 163.77 | 3.22 16.20
USA-road >12h 68.49 107.60 | 43.08 | 3.71 17.34

Table 4.6:

components and blocks; running time are in seconds, codes running longer than 12 hours

Experimental comparison of algorithms for computing the 2-edge-connected

were terminated.

10000
1000
100
10

0.1
0.01

0.001 C

Figure 4.6: 2-edge-connected blocks. Running times,

- rome99

-| p2p-gnutella25
- s38584

- Oracle-16k

- web-NotreDame

- soc-Epinionsl

- wiki-Talk
- web-Stanford

a
a
4 Amazon0302

- Amazon0601
-| web-BerkStan

- Oracle-4M

4 SAP-aMm

- Oracle-11M

- SAP-11M

e
©
o
<

<

)

.

T

|

Simple2ECB ——]

Fast2ECB

SC2ECB —K— |

©
c
=
=1
o
[
>
]
T

1+e4

shown in log scale.

1+e5

63

1+e6

1+e7

in seconds, and number of edges

- rome99
| p2p-gnutella25
- s38584
- Oracle-16k
- web-NotreDame
- soc-Epinionsl
0a
0a
- Amazon0302
- wiki-Talk
- web-Stanford
- Amazon0601
-| web-BerkStan
- Oracle-4M
- SAP-4M
- Oracle-11M
- SAP-11M
USA-road
LiveJournal

1000

U
1

100 |

10 F
01k

0.01 3K Fast2ECB
L ‘ ‘ FastVRB

0.001

1+e4 1+e5 1+e6 1+e7

Figure 4.7: Best algorithms for each problem. Running times, in seconds, and number of
edges shown in log scale.

the corresponding plot. We observe a behavior analogous to the case of the vertex-resilient
blocks. Specifically, algorithm Fast2ECB outperforms Simple2ECB by at least three orders
of magnitude. The running time of Simple2ECB depends on the number of strong bridges
in the input graph, and it does not scale well with the graph size. We also evaluate the
overhead of constructing a sparse certificate for the 2-edge-connected blocks. Algorithm
SC2ECB is an extended version of Fast2ECB that computes, in addition to the 2-edge-
connected blocks, such a sparse certificate. The running time of SC2ECB is within a
factor of 1.67 on average compared to Fast2ECB. The quality of the sparse certificate is
measured in the second column of Table 4.7, and, as expected, it depends on the average
degree d4,4 of the input digraph. (The percentage of the edges that are included in the
certificate decreases with d,.)

4.3.5 2-edge-connected components

Now we compare the performance of algorithm 2ECC with the best algorithms for com-
puting the 2-edge-connected blocks and the 2-vertex-connected components and blocks,
in order to get a view of the relative difficulty of computing the various notions of 2-
vertex- and 2-edge connectivity in a digraph. As it can be seen from Figure 4.7, which
shows a plot of the corresponding running times, all algorithms have close performance.
This is somewhat surprising, since there is a big asymptotical gap: the 2-vertex- and
2-edge-connected components are computed in O(mn) time, while the 2-vertex- and 2-
edge-connected blocks are computed faster in O(m + n) time.

In order to take a closer look at this phenomenon, we show in Table 4.7 the number
of recursive calls and the recursion depth for the above algorithms. It can be observed
that the recursion depth achieved by algorithms 2ECC and 2VCC is remarkably low. This
behavior can be explained in light of the digraph statistics discussed in Section 4.3.1.

Now we compare the recursive calls performed by 2VCC-J2 and 2VCC. Algorithm
2VCC-J2 requires more recursive calls, but performs less work per call, so it remains
competitive. There are two reasons that justify the large difference in the recursion depth

64

Number of recursive calls Recursion depth

Graph % size SC (m) | 2VCC 2VCC-J2 2ECC | 2VCC 2VCC-J2 2ECC
rome99 89.46% 23 39 17 9 11 10
p2p-gnutella2s 74.53% 7 9 7 5 8 5
Oracle-16k 68.88% 75 277 39 8 33 10
$38584 89.00% 1 1 1 1 1 1
web-NotreDame 50.89% 2834 12598 1042 13 153 22
soc-Epinionsl 23.32% 848 4212 69 4 61 3
USA-road-NY 84.99% el 7T 711 1 3

USA-road-BAY 88.23% 1623 17510 1502 1 4

Amazon(0302 61.47% | 32605 36013 16534 17 27 11
wiki-Talk 24.50% 3797 33290 8 4 444 4
web-Stanford 29.03% 6840 24952 2421 15 180 20
Amazon0601 40.14% | 15774 19858 4626 6 9 6
web-BerkStan 22.60% | 20982 59789 6814 18 248 22
Oracle-4M 81.72% | 10714 311902 1801 3 793 3
SAP-4M 54.28% | 16521 35370 7209 6 248 4
Oracle-11M 69.76% | 90766 1100721 50446 21 808 22
SAP-11M 49.53% | 74564 92026 31338 4 251 4
LiveJournal 20.24% | 47534 221321 4144 6 265 7
USA-road 88.52% | 112781 1273500 105705 1 6 1

Table 4.7: Some algorithm statistics: Total number of recursive calls and recursion depth.
The second column gives the percentage of the edges that are included in the sparse
certificate by SC2ECB.

65

© @ © OQ

O,

Figure 4.8: An input digraph that elicits O(n) recursion depth for Algorithm 2VCC-J2.
Algorithm 2VCC, on the other hand, requires only one recursive call.

between algorithms 2VCC and 2VCC-J2. The first one, as already mentioned, is that
2VCC uses a refined division that uses the dominator tree of both the forward and the
reverse digraph. The second reason has to do with the way these two algorithms compute
the subgraphs that are used as inputs in the recursive calls. More specifically, Algorithm
2VCC-J2 uses a dominator tree D(s) (of the forward or the reverse digraph) to partition
the graph G into subgraphs and perform the recursive calls. For each strong articulation
point w in D(s), 2VCC-J2 computes the strongly connected components of the subgraph
induced by C(u) Uwu (i.e., v and its children in D(s)) and executes recursively on each
such strongly connected component. The problem with this approach is that it does not
take into account the connectivity between the vertices in C(u); all the paths between
vertices in C'(u) may go through u. Such a bad instance is illustrated in Figure 4.8. In
this example, digraph G has no 2-vertex-connected components but 2VCC-J2 discovers
this after n — 2 recursive calls. Algorithm 2VCC, on the other hand, uses a different
approach (in Steps 4 and 5) that yields a much smaller number of recursion calls and
recursion depth.

Next we compare the performance of the fastest algorithms for each task with our
baseline algorithm LT. Compared to the baseline, 2ECC and Fast2ECB are slower on
average by a factor of 5.35 and 4.61, respectively. Algorithms 2VCC and FastVRB are
slower on average than LT by a factor of 11.13 and 16.79, respectively. This confirms
experimentally the intuition that the vertex connectivity problems are more complicated.
The fact that FastVRB is the slowest among these four algorithms can be attributed to
two facts. First, it constructs more complicated auxiliary graphs than Fast2ECB. Second,
the vertex-resilient (and the 2-vertex-connected) blocks have a more complex structure

66

than the 2-edge-connected blocks. In order to allow fast operations on the vertex-resilient
blocks, FastVRB maintains them in a forest data structure. This incurs some significant

overhead, since, as shown in Table 4.4, the input digraphs have a much higher number of
vertex-resilient blocks.

67

CHAPTER 5

CONCLUSION

In this master thesis we have studied 2-connectivity problems in directed graphs. In par-
ticular, we have presented two linear-time algorithms for computing the 2-edge-connected
blocks and the 2-vertez-connected blocks relations among vertices. These two algorithms
are not only theoretically optimal, but also improve significantly over previous bounds.

In the case of the 2-edge-connectivity. Once the 2-edge-connected blocks of a digraph G
are available, it is straightforward to check in constant time if any two vertices are 2-edge-
connected. Moreover, in the case of the 2-vertex connectivity, we showed how to represent
these relations with a data structure of O(n) size, so that it is also straightforward to check
in constant time if any two vertices are vertex-resilient or 2-vertex-connected. Moreover,
if the answer to such a query is negative, then we can provide a witness of this fact in
constant time, i.e., a vertex (strong articulation point) or an edge (strong bridge) of G
that separates the two query vertices. Furthermore, we showed how to compute a sparse
certificate for 2-edge-connected and the 2-vertex connected blocks, i.e., a subgraph of
the input graph that has O(n) edges and maintains the same 2-edge-connected 2-vertex
connected blocks, respectively, as the input graph.

For the 2-vertex-connected components we introduced an algorithm that divides the
input digraph into induced digraphs using two dominator trees (one for the original di-
graph and one for its reversal). For the 2-edge-connected components we presented a
simple algorithm that removes all strong bridges from the current digraph at a time.

We conducted an extensive experimental study of algorithms that compute the 2-
vertex- and 2-edge-connected components and blocks. The algorithms we tested fall into
two broad categories: algorithms that remove one strong articulation point or one (or
more) strong bridge(s) at a time, and algorithms that use a dominator-tree-based division
of the input digraph. The former includes O(mn)-time algorithms for all tasks, while
the latter includes two linear-time algorithms for computing the 2-vertex- and 2-edge-
connected blocks, and two O(mn)-time algorithms for computing the 2-vertex-connected
components. Our experimental results showed that the dominator-tree-based algorithms
perform well in practice and are more robust. The results also suggest that the 2-vertex-
and 2-edge-connected components of digraphs that arise in many practical applications

68

can be found efficiently, despite the fact that the theoretically asymptotic bound of the
algorithms that we considered is O(mn). The best practical performances for both these
problems were achieved by the two new algorithms.

We leave as an open question if the 2-edge-connected or the 2-vertex-connected com-
ponents of a digraph can be computed in linear time. The best current bound for both
problems is O(n?).

69

BIBLIOGRAPHY

1]

2l

13l

4]

[5]

[6]

7]

18]

19]

[10]

[11]

S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in linear time.
SIAM Journal on Computing, 28(6):2117-32, 1999.

J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications
(Springer Monographs in Mathematics). Springer, 1st ed. 2001. 3rd printing edition,
2002.

A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J. R. West-
brook. Linear-time algorithms for dominators and other path-evaluation problems.
SIAM Journal on Computing, 38(4):1533-1573, 2008.

A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. A new, simpler
linear-time dominators algorithm. ACM Transactions on Programming Languages
and Systems, 20(6):1265-96, 1998. Corrigendum in 27(3):383-7, 2005.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Electrical Engineering and Computer Science Series. MIT Press, Cambridge,
MA, 1991.

Ya. M. Erusalimskii and G. G. Svetlov. Bijoin points, bibridges, and biblocks of
directed graphs. Cybernetics, 16(1):41-44, 1980.

D. Firmani, G. F. Italiano, L. Laura, A. Orlandi, and F. Santaroni. Computing
strong articulation points and strong bridges in large scale graphs. In Proc. 10th
Int’l. Symp. on Ezxperimental Algorithms, pages 195-207, 2012.

W. Fraczak, L. Georgiadis, A. Miller, and R. E. Tarjan. Finding dominators via
disjoint set union. Journal of Discrete Algorithms, 23:2-20, 2013.

H. N. Gabow. A poset approach to dominator computation. Unpublished manuscript
2010, revised unpublished manuscript, 2013.

H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences, 30(2):209-21, 1985.

L. Georgiadis, G. F. Ttaliano, L. Laura, and N. Parotsidis. 2-edge connectivity in
directed graphs. In Proc. 26th ACM-SIAM Symp. on Discrete Algorithms, pages
1988-2005, 2015.

70

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex connectivity in di-
rected graphs. In Proc. 42th Int’l. Coll. on Automata, Languages, and Programming,
2015.

L. Georgiadis, L. Laura, N. Parotsidis, and R. E. Tarjan. Dominator certification
and independent spanning trees: An experimental study. In Proc. 12th Int’l. Symp.
on Experimental Algorithms, pages 284-295, 2013.

L. Georgiadis, L. Laura, N. Parotsidis, and R. E. Tarjan. Loop nesting forests,
dominators, and applications. In Proc. 13th Int’l. Symp. on Experimental Algorithms,
pages 174-186, 2014.

L. Georgiadis and R. E. Tarjan. Finding dominators revisited. In Proc. 15th ACM-
SIAM Symp. on Discrete Algorithms, pages 862-871, 2004.

L. Georgiadis and R. E. Tarjan. Dominator tree certification and independent span-
ning trees. CoRR, abs/1210.8303, 2012.

L. Georgiadis, R. E. Tarjan, and R. F. Werneck. Finding dominators in practice.
Journal of Graph Algorithms and Applications (JGAA), 10(1):69-94, 2006.

Y. Guo, F. Kuipers, and P. Van Mieghem. Link-disjoint paths for reliable qos routing.
International Journal of Communication Systems, 16(9):779-798, 2003.

M. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomorphic

subtrees, with applications to computational evolutionary biology. Algorithmica,
24(1):1-13, 1999.

M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-vertex
strongly connected components in quadratic time. In Proc. 42nd International Col-
loguium on Automata, Languages, and Programming (ICALP 2015), 2015.

A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks.
Information and Computation, 79(1):43-59, 1988.

G. F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong artic-
ulation points in linear time. Theoretical Computer Science, 447(0):74-84, 2012.

R. Jaberi. Computing the 2-blocks of directed graphs. CoRR, abs/1407.6178, 2014.

R. Jaberi. On computing the 2-vertex-connected components of directed graphs.
CoRR, abs/1401.6000, 2014.

T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph.
ACM Transactions on Programming Languages and Systems, 1(1):121-41, 1979.

71

26]

27]

28]

[29]

[30]

[31]

32]

33]

[34]

35]

[36]

37]

38

W. Di Luigi, L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-connectivity
in directed graphs: An experimental study. In Proc. 17th Wks. on Algorithm Engi-
neering and Erperiments, pages 173-187, 2015.

D. W. Matula and R. V. Vohra. Calculating the connectivity of a directed graph.
Technical Report 386, Institute for Mathematics and Application, University of Min-
nesota, 1988.

K. Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96-115, 1927.

H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7:583-596, 1992.

H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity. Cambridge
University Press, 2008. 1st edition.

H. Nagamochi and T. Watanabe. Computing k-edge-connected components of a
multigraph. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, E76-A(4):513—-517, 1993.

J. H. Reif and P. G. Spirakis. Strong k-connectivity in digraphs and random digraphs.
Technical Report TR-25-81, Harvard University, 1981.

R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146-160, 1972.

R. E. Tarjan. Edge-disjoint spanning trees, dominators, and depth-first search. Tech-
nical report, Stanford University, Stanford, CA, USA, 1974.

R. E. Tarjan. Finding dominators in directed graphs. SIAM Journal on Computing,
3(1):62-89, 1974.

R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM, 22(2):215-225, 1975.

R. E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica,
6(2):171-85, 1976.

J. Westbrook and R. E. Tarjan. Maintaining bridge-connected and biconnected com-
ponents on-line. Algorithmica, 7(5&6):433-464, 1992.

72

AUTHOR'S PUBLICATIONS

1. W. Di Luigi, L. Georgiadis, G. F. Italiano, L.. Laura, and N. Parotsidis. 2-Connectivity
in Directed Graphs: An Experimental Study. In Proceedings of the 17th SIAM Meet-
ing on Algorithm Engineering and Erperimentation, pages 173-187, 2015.

2. L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-edge Connectivity in
Directed Graphs. In Proceedings of the 26th ACM-SIAM Symposium on Discrete
Algorithms, pages 1988-2005, 2015.

3. L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex connectivity in
directed graphs. In Proceedings of the 42th International Colloguium on automata,
Languages, and Programming, 2015.

4. L. Georgiadis, L. Laura, N. Parotsidis, and R. E. Tarjan. Dominator certification
and independent spanning trees: An experimental study. In Proceedings of the 12th
International Symposium on Erperimental Algorithms, pages 284-295, 2013.

5. L. Georgiadis, L. Laura, N. Parotsidis, and R. E. Tarjan. Loop nesting forests,
dominators, and applications. In Proceedings of the 13th International Symposium
on Experimental Algorithms, pages 174-186, 2014.

6. N. Parotsidis, and L. Georgiadis. Dominators in Directed Graphs: A Survey of
Recent Results, Applications, and Open Problems. In Proceedings of the 2nd Inter-
national Symposium on Computing in Informatics and Mathematics, pages 15-20,
2013.

7. N. Parotsidis, E. Pitoura, and P. Tsaparas. Selecting Shortcuts for a Smaller World.
In Proceedings of the 15th SIAM International Conference on Data Mining, 2015.

SHORT VITA

Nikos Parotsidis holds a BSc degree (2013) in Computer Science from the Department of
Computer Science & Engineering, University of loannina, Greece. His research interests
are focused, but not limited, to the design and analysis of algorithms, algorithms engi-
neering, graph theory, complexity theory, approximation algorithms, and algorithmic data
mining. Nikos has been an assistant in the laboratories of the undergraduate course on
Data Structures (Fall 2014 and Fall 2015) at the Department of Computer Science & Engi-
neering, University of loannina. He has also participated in the Marie Curie Reintegration
project JMUGCS (Jointly Mining User Generated Content Sources).

