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Abstract

Graphs are a fundamental mathematical tool used to model diverse entities such as the

world-wide web, transportation, communication and social networks, databases, biological

systems, VLSI circuits, and the control-�ow of computer programs. It is of great interest

to answer relational queries and solve problems on graphs, since very often such problems

appear in practice and require sophisticated approaches. Connectivity holds a central role

in the area of network and graph algorithms, with numerous practical applications. Such

topics have been studied for decades and many signi�cant results have been produced;

nevertheless, many important problems remain open.

In the 2-connectivity problems in graphs, which are part of the greater family of

connectivity problems, the objective is to compute the 2-connected subgraphs on the

input graph, the so-called 2-connected components. A graph is called 2-connected if the

removal of any edge (or vertex) leaves the graph connected (strongly connected when

dealing with directed graph). The problem is further subdivided, depending on whether

the elements to be removed refer to an edge or a vertex; the variations are denoted as 2-

edge-connectivity and 2-vertex-connectivity, respectively. These concepts extend in both

undirected and directed graphs.

In this master thesis we study a variety of 2-connectivity problems on directed graphs.

Speci�cally, we introduce the notion of 2-edge-connected blocks and 2-vertex-connected

blocks in directed graphs. We say that two vertices v and w are 2-edge-connected (resp., 2-

vertex-connected) if there are two edge-disjoint (resp., internally vertex-disjoint) directed

paths from v to w and two edge-disjoint (resp., internally vertex-disjoint) directed paths

from w to v. We de�ne a 2-edge-connected block (resp., a 2-vertex-connected block) of a

digraph as a maximal subset S of vertices such that every distinct pair of vertices v, w ∈ S
is 2-edge-connected (resp., 2-vertex-connected).

The main results of this study are the two linear time algorithms to compute the 2-

edge-connected and 2-vertex-connected blocks of a directed graph. These two algorithms

are not only theoretically optimal, in terms of asymptotic running time, but also improve

signi�cantly over previous bounds. Although, the two algorithms follow the same high

level approach, the description and the analysis of each of the algorithms is presented

separately since, as we show, there are di�erent technical di�culties and di�erent struc-

tural properties that need to be tackled in each case. Furthermore, in both cases, we can

augment the algorithms that compute the 2-edge-connected (resp., 2-vertex-connected)

blocks with the computation of a subgraph of the initial graph that preserves the 2-edge-
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connected (resp., 2-vertex-connected) blocks of the initial graph and has O(n) edges. We

call such a subgraph sparse certi�cate of the 2-edge-connected blocks (resp., 2-vertex-

connected blocks).

Despite the fact that in our study we present linear time (asymptotically optimal)

algorithms for computing the 2-edge-connected and 2-vertex-connected blocks, it is un-

known, and of great interest, whether the 2-edge-connected and the 2-vertex-connected

components can be computed in linear time as well. In this work we furthermore present

new algorithms for computing the 2-edge-connected and the 2-vertex-connected compo-

nents in O(mn) worst-case time, where m is the number of edges and n is the number

of vertices in the graph. The O(mn) theoretical bound was the best known until very

recently, where a new algorithm with worst-case time complexity O(n2) was proposed.

Finally, we engineered the implementations of our new algorithms for all the variations

of the 2-connectivity problems that we consider and performed a thorough experimental

study comparing our new algorithms against previously known solutions. Our experiments

suggest that, in most cases, our new algorithms perform substantially better than the

known algorithms.
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ΠΕΡΙΛΗΨΗ

Οι γράφοι αποτελούν ένα θεμελιώδες μαθηματικό εργαλείο που χρησιμοποιείται κατά κόρον

για την μοντελοποίηση διαφόρων οντοτήτων όπως τον Παγκόσμιο Ιστό, δίκτυα μεταφορών,

τηλεπικοινωνιακά και κοινωνικά δίκτυα, βάσεις δεδομένων, βιολογικά συστήματα, κυκλώματα

VLSI, καθώς και διαγράμματα ροής προγραμμάτων. Η απάντηση σχεσιακών ερωτημάτων

και η επίλυση προβλημάτων σε γράφους, υφίσταται μεγάλου ενδιαφέροντος, δεδομένου ότι

πολύ συχνά τέτοιου είδους προβλήματα εμφανίζονται στην πράξη και απαιτούν εξελιγμένες

προσεγγίσεις. Τα προβλήματα συνεκτικότητας παίζουν κεντρικό ρόλο στην περιοχή των

γράφων και των δικτύων, με πληθώρα πρακτικών εφαρμογών. Τέτοιου είδους θέματα έχουν

μελετηθεί σε βάθος δεκαετιών και έχουν εμφανιστεί πολλά σημαντικά αποτελέσματα, παρά

το γεγονός αυτό σημαντικό πολλά προβλήματα της περιοχής παραμένουν ανοιχτά.

΄Ενα υποσύνολο της ευρύτερης οικογένειας των προβλημάτων συνεκτικότητας αποτελούν

τα προβλήματα 2-συνεκτικότητας σε γράφους, στα οποία ο στόχος είναι ο υπολογισμός των 2-

συνεκτικών υπογράφων του γράφου εισόδου, τις λεγόμενες 2-συνεκτικές συνιστώσες. ΄Ενας

γράφος ονομάζεται 2-συνεκτικός εάν η αφαίρεση οποιασδήποτε ακμής (ή κορυφής) αφήνει τον

υπολειπόμενο γράφο συνεκτικό (ισχυρά συνεκτικό όταν αναφερόμαστε σε κατευθυνόμενους

γράφους). Τα προβλήματα 2-συνεκτικότητας υποδιαιρούνται περαιτέρω ανάλογα με το αν

τα στοιχεία προς διαγραφή αφορούν σε ακμές ή κορυφές και αναφέρονται στην εύρεση των

2-συνεκτικών συνιστωσών ως προς τις ακμές και των 2-συνεκτικών συνιστωσών ως προς

τους κόμβους. Οι παραπάνω έννοιες εκτείνονται τόσο σε μη-κατευθυνόμενους όσο και σε

κατευθυνόμενους γράφους.

Στην παρούσα διπλωματική εργασία μελετάμε μια σειρά από προβλήματα 2-συνεκτικότητας

σε κατευθυνόμενους γράφους. Πιο συγκεκριμένα, εισαγάγουμε την έννοια των 2-συνεκτικών

μπλοκ ως προς τις ακμές και των 2-συνεκτικών μπλοκ ως προς τις κορυφές σε κατευθυνόμε-

νους γράφους. Λέμε ότι δύο κορυφές v και w είναι 2-συνεκτικές ως προς τις ακμές (αντιστ.,

2-συνεκτικές ως προς τις κορυφές) αν υπάρχουν δύο κατευθυνόμενα μονοπάτια ξένα ως προς

τις ακμές (αντιστ., εσωτερικά ξένα ως προς τις κορυφές) από την κορυφή v προς την w και

δύο κατευθυνόμενα μονοπάτια ξένα ως προς τις ακμές (αντιστ., εσωτερικά ξένα ως προς τις

κορυφές) από την κορυφή w προς την v. Ορίζουμε ένα 2-συνεκτικό μπλοκ ως προς τις ακμές

(αντίστ., ένα 2-συνεκτικό μπλοκ προς τις κορυφές) ως το μεγιστοτικό σύνολο κόμβων S

τέτοιο ώστε οποιεσδήποτε δύο κορυφές v, w ∈ S να είναι 2-συνεκτικές ως προς τις ακμές

(αντιστ., 2-συνεκτικές ως προς τις κορυφές).

Τα σημαντικότερα αποτελέσματα αυτής της μελέτης είναι η εύρεση δύο γραμμικών αλγορί-

θμων για τον υπολογισμό των 2-συνεκτικών μπλοκ ως προς τις ακμές και των 2-συνεκτικών
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μπλοκ ως προς τις κορυφές ενός κατευθυνόμενου γράφου. Οι δύο αυτοί αλγόριθμοι δεν είναι

μόνο θεωρητικά βέλτιστοι, όσων αφορά την ασυμπτωτική τους πολυπλοκότητα, αλλά βελτι-

ώνουν επίσης σημαντικά τον προηγούμενο καλύτερο χρόνο για τον υπολογισμό αυτών των

σχέσεων. Παρά το γεγονός ότι οι δύο αλγόριθμοι ακολουθούν την ίδια προσέγγιση υψηλού

επιπέδου, η περιγραφή και η ανάλυση του κάθε αλγόριθμου παρουσιάζεται ξεχωριστά διότι,

όπως δείχνουμε, εμφανίζονται διαφορετικές τεχνικές δυσκολίες και δομικά χαρακτηριστικά

που χρήζουν ειδικής αντιμετώπισης σε κάθε περίπτωση. Επιπλέον, τόσο στον αλγόριθμο για

τον υπολογισμό των 2-συνεκτικών μπλοκ ως προς τις ακμές όσο και στον αλγόριθμο για

τον υπολογισμό των 2-συνεκτικών μπλοκ ως προς τις κορυφές, μπορούμε να ενσωματώσου-

με τον υπολογισμό ενός αραιού υπογράφου του γράφου εισόδου που διατηρεί αντίστοιχα τα

2-συνεκτικά μπλοκ ως προς τις ακμές και τα 2-συνεκτικά μπλοκ ως προς τις κορυφές του

αρχικού γράφου και έχει O(n) ακμές. Καλούμε ένα τέτοιο υπογράφο αραιό πιστοποιητικό

των 2-συνεκτικών μπλοκ ως προς τις ακμές (αντίστοιχα των 2-συνεκτικών μπλοκ ως προς

τις κορυφές).

Παρά το γεγονός ότι στη μελέτη μας παρουσιάζουμε γραμμικού χρόνου αλγόριθμους για

τον υπολογισμό των 2-συνεκτικών μπλοκ ως προς τις ακμές και 2-συνεκτικών μπλοκ ως

προς τις κορυφές, είναι άγνωστο, και παρουσιάζει μεγάλο ενδιαφέρον, αν οι 2-συνεκτικές

συνιστώσες ως προς τις ακμές και οι 2-συνεκτικές συνιστώσες ως προς τους κόμβους μπο-

ρούν να υπολογιστούν σε γραμμικό χρόνο. Στην παρούσα εργασία περιγράφουμε επιπλέον

νέους αλγόριθμους για τον υπολογισμό των 2-συνεκτικών συνιστωσών ως προς τις ακμές

και των 2-συνεκτικών συνιστωσών ως προς τις κορυφές με O(mn) χρόνο εκτέλεσης στην

χειρότερη περίπτωση, όπουm είναι το πλήθος των ακμών και n είναι το πλήθος των κορυφών

του γράφου. ΄Ηταν άγνωστο αν αυτές οι σχέσεις μπορούν να υπολογιστούν ταχύτερα μέχρι

πολύ πρόσφατα, όταν ένας νέος αλγόριθμος προτάθηκε και πετυχαίνει χρόνο χειρότερης

περίπτωσης O(n2).

Τέλος, υλοποιήσαμε τους αλγόριθμους που προτείναμε για όλα τα προβλήματα 2-συνεκτι-

κότητας που θεωρήσαμε και εκτελέσαμε μια εκτενή πειραματική μελέτη στην οποία συ-

γκρίναμε τις μεθόδους μας με τους γνωστούς αλγόριθμους για κάθε πρόβλημα. Τα πει-

ράματά μας δείχνουν ότι, στις περισσότερες περιπτώσεις, οι νέοι αλγόριθμοι πετυχαίνουν

σημαντικά καλύτερες επιδόσεις από τους γνωστούς αλγορίθμους.
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Chapter 1

Introduction and Theoretical

Background

1.1 Graphs and applications

1.2 Theoretical background

1.2.1 2-connectivity

1.2.2 Related work

1.2.3 Digraphs, dominators, articulation points, and bridges

1.3 Contribution

1.1 Graphs and applications

Graphs are a fundamental mathematical tool which is used for representing elements and

the pairwise relations between them. Formally, a graph G is de�ned by a pair of sets

V and E (i.e. G = (V,E)), where V is the set of vertices (elements of the graph), and

E is the set of pairwise connections between the vertices, which are called edges. The

set of edges E may contain either unordered of ordered pairs of vertices, distinguishing

undirected from directed graphs, respectively. In directed graphs, an edge (u, v) ∈ E,

represents a directed connection from vertex u to vertex v; (u, v) is an outgoing edge from

u and incoming to v. We call u and v the source and the destination, respectively, of

an edge (u, v). In undirected graphs, each edge (u, v) ∈ E has no direction and is both

outgoing and incoming to u and v. We refer the reader that is interested in an extensive

graph terminology to the literature, as for instance in [5].

There is a great variety of practical problems that can be formulated as graphs. The

representation of a problem with graphs, o�ers a unique plethora of algorithms and tech-

niques for studying and extracting information from the graph. In computer science,
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graphs are used to represent communication or transportation networks, data organiza-

tion, computational devices, the �ow of computation, etc. For instance, the link structure

of a website can be represented by a directed graph, in which the vertices represent web

pages and directed edges represent links from one page to another. A similar approach can

be taken to problems in transportation, biology, computer chip design, and many other

�elds. The development of algorithms to handle graphs is therefore of major interest

in computer science. The transformation of graphs is often formalized and represented

by graph rewrite systems. Complementary to graph transformation systems focusing

on rule-based in-memory manipulation of graphs are graph databases geared towards

transaction-safe, persistent storing and querying of graph-structured data.

1.2 Theoretical background

An undirected path (resp., directed path) in G is a sequence of vertices v1, v2, . . ., vk, such

that edge (vi, vi+1) ∈ E for i = 1, 2, . . . , k− 1. A path P is called simple if all the vertices

in P , except the �rst and the last, are distinct. In this thesis we will consider only simple

paths and we will refer to them simply as paths. An undirected graph G is connected

if there is an undirected path from each vertex to every other vertex. The connected

components of an undirected graph are its maximal connected subgraphs. A directed

graph G is strongly connected if there is a directed path from each vertex to every other

vertex. The strongly connected components of a directed graph are its maximal connected

subgraphs.

Let G = (V,E) be an undirected (resp., directed) graph, with m edges and n vertices.

Throughout the paper, we use interchangeably the term directed graph and digraph.

Edge and vertex connectivity are fundamental concepts in graph theory with numerous

practical applications [2, 30]. As an example, we mention the computation of disjoint

paths in routing and reliable communication, both in undirected and directed graphs

[18, 21].

1.2.1 2-connectivity

Given an undirected graph G = (V,E), an edge is a bridge if its removal increases the

number of connected components of G. Graph G is 2-edge-connected if it has no bridges.

The 2-edge-connected components of G are its maximal 2-edge-connected subgraphs. Two

vertices v and w are 2-edge-connected if there are two edge-disjoint paths between v and w:

we denote this relation by v ↔2e w. Equivalently, by Menger's Theorem [28], v and w are

2-edge-connected if the removal of any edge leaves them in the same connected component.

Analogous de�nitions can be given for 2-vertex connectivity. In particular, a vertex is an

articulation point if its removal increases the number of connected components of G. A

graph G is 2-vertex-connected if it has at least three vertices and no articulation points.

The 2-vertex-connected components of G are its maximal 2-vertex-connected subgraphs.
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Figure 1.1: (a) A strongly connected digraph G, with strong articulation points and strong

bridges shown in red (better viewed in color); (b) The 2-vertex-connected components of

G; (c) The 2-vertex-connected blocks of G; (d) The 2-edge-connected components of G;

(e) The 2-edge-connected blocks of G.

Note that the condition on the minimum number of vertices in a 2-vertex-connected graph

disallows degenerate 2-vertex-connected components consisting of one single edge. Two

vertices v and w are 2-vertex-connected if there are two internally vertex-disjoint paths

between v and w: we denote this relation by v ↔2v w. If v and w are 2-vertex-connected

then Menger's Theorem implies that the removal of any vertex di�erent from v and w

leaves them in the same connected component. The converse does not necessarily hold,

since v and w may be adjacent but not 2-vertex-connected. It is easy to show that v ↔2e w

(resp., v ↔2v w) if and only if v and w are in a same 2-edge-connected (resp., 2-vertex-

connected) component. All bridges, articulation points, 2-edge- and 2-vertex-connected

components of undirected graphs can be computed in linear time essentially by the same

algorithm [33].

The notions of 2-edge and 2-vertex connectivity were naturally extended to directed

graphs in [22]. Given a digraph G, an edge is a strong bridge if its removal increases

the number of strongly connected components of G. Respectively, a vertex is a strong

articulation point if its removal increases the number of strongly connected components of

G. A digraphG is 2-edge-connected if it has no strong bridges; G is 2-vertex-connected if it

has at least three vertices and no strong articulation points. The 2-edge-connected (resp.,

2-vertex-connected) components of G are its maximal 2-edge-connected (resp., 2-vertex-

connected) subgraphs. Again, the condition on the minimum number of vertices disallows

for degenerate 2-vertex-connected components consisting of two mutually adjacent vertices

(i.e., two vertices v and w and the two edges (v, w) and (w, v)).

Similarly to the undirected case, we say that two vertices v and w are 2-edge-connected,
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and we denote this relation by v ↔2e w, if there are two edge-disjoint directed paths from

v to w and two edge-disjoint directed paths from w to v. (Note that a path from v to

w and a path from w to v need not be edge-disjoint). It is easy to see that v ↔2e w

if and only if the removal of any edge leaves v and w in the same strongly connected

component. We de�ne a 2-edge-connected block of a digraph G = (V,E) as a maximal

subset B ⊆ V such that u↔2e v for all u, v ∈ B. Analogous de�nitions can be given for

2-vertex connectivity. We say that two vertices v and w are 2-vertex-connected, and we

denote this relation by v ↔2v w, if there are two internally vertex-disjoint directed paths

from v to w and two internally vertex-disjoint directed paths from w to v. (Note that a

path from v to w and a path from w to v need not be vertex-disjoint). As in the 2-edge

connectivity, v ↔2v w implies that the removal of any vertex di�erent from v and w leaves

v and w in the same strongly connected component. We de�ne a 2-vertex-connected block

of a digraph G = (V,E) as a maximal subset B ⊆ V such that u ↔2v v for all u, v ∈ B.
The 2-connectivity blocks relations were �rst considered by Reif and Spirakis in [32].

It can be easily seen that, di�erently from undirected graphs, in digraphs 2-edge-

and 2-vertex-connected blocks do not correspond to 2-edge- and 2-vertex-connected com-

ponents, as illustrated in Figure 1.1. Two vertices may be 2-edge-connected (resp., 2-

vertex-connected) but lie in di�erent 2-edge-connected (resp., 2-vertex-connected) com-

ponents. Furthermore, these notions seem to have a much richer (and more complicated)

structure in digraphs. Just to give an example, we observe that while in the case of

undirected connected graphs the 2-edge-connected components (which correspond to the

2-edge-connected blocks) are exactly the connected components left after the removal of

all bridges, for directed strongly connected graphs the 2-edge-connected components, the

2-edge-connected blocks, and the strongly connected components left after the removal

of all strong bridges are not necessarily the same. These observations are illustrated in

Figure 1.2. Put in other words, di�erently from the undirected case, in digraphs 2-vertex-

(resp., 2-edge-) connected components do not encompass the notion of pairwise 2-vertex

(resp., 2-edge) connectivity among its vertices. We note that pairwise 2-connectivity

may be relevant in several applications, where one is interested in local properties, e.g.,

checking whether two vertices are 2-connected, rather than in global properties.

1.2.2 Related work

Following the discussion from Section 1.2.1, it is not surprising that 2-connectivity prob-

lems on directed graphs appear to be more di�cult than on undirected graphs. For undi-

rected graphs it has been known for over 40 years how to compute all bridges, articulation

points, 2-edge- and 2-vertex-connected components in linear time, by simply using depth

�rst search [33]. In the case of digraphs, however, the very same problems have been much

more challenging. Indeed, it has been shown only few years ago that all strong bridges and

strong articulation points of a digraph can be computed in linear time [22]. Furthermore,

the best current bound for computing the 2-edge- and the 2-vertex-connected components

in digraphs is not even linear, but it is O(n2), and it was achieved only very recently by
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Figure 1.2: (a) A digraph G with strong bridges shown in red; (b) The 2-edge-connected

blocks of G; (c) The strongly connected components left after removing all the strong

bridges from G; (d) The 2-edge-connected components of G. (e) An undirected graph U

with bridges shown in red; (f) The 2-edge-connected components of U , corresponding to

the 2-edge-connected blocks and to the connected components left after the removal of

all bridges of U .

Henzinger et al. [20], improving previous O(mn) time bounds [24, 31]. A simple algorithm

for computing the 2-edge-connected components can be obtained by repeatedly removing

all the strong bridges in the graph (and repeating this process until no strong bridges are

left). Since at each round all the strong bridges can be computed in O(m+n) time [22] and

there can be at most O(n) rounds, the total time taken by this algorithm is O(mn). As

for 2-vertex connectivity, Erusalimskii and Svetlov [6] proposed an algorithm that reduces

the problem of computing the 2-vertex-connected components of a digraph to the compu-

tation of the 2-vertex-connected components in an undirected graph, but did not analyze

the running time of their algorithm. Their reduction is achieved by repeatedly computing

the strongly connected components of all subgraphs G\v, for every vertex v, and deleting

the edges that connect di�erent strongly connected components. This process is repeated

until no edge is removed in all current subgraphs G \ v; the 2-vertex-connected compo-

nents of the resulting digraph G are identical to the 2-vertex-connected components of

the undirected version of G. Jaberi [24] showed that the algorithm of Erusalimskii and

Svetlov has O(nm2) running time, and proposed two di�erent algorithms with running

time O(mn).The �rst algorithm decomposes the digraph by repeatedly removing a strong

articulation point at a time. The second algorithm divides the digraph using a domi-

nator tree [25]. The computation of the k-edge-connected components of a digraph was

considered by Matula and Vohra [27], where they gave an O(n3)-time algorithm.

A simple algorithm for computing the 2-edge- or 2-vertex-connected blocks of a digraph

takes O(mn) time: given a vertex v, one can �nd in linear time all the vertices that are

2-edge- or 2-vertex-connected with v with the help of dominator trees. Since in the

worst case this step must be repeated for all vertices v, the total time required by the

simple algorithm is O(mn). Very recently, and independently of our work, Jaberi [23]
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Figure 1.3: The relation among various notions of 2-connectivity in directed graphs.

presented algorithms for computing the 2-vertex-connected and 2-edge-connected blocks.

His algorithms require O(n·min{m, b∗n}) time for computing the 2-edge-connected blocks

and O(n ·min{m, (a∗ + b∗)n}) time for computing the 2-vertex-connected blocks, where

a∗ and b∗ are respectively the number of strong articulation points and strong bridges in

the digraph G. Since both a∗ and b∗ can be as large as O(n), both bounds are O(mn) in

the worst case.

From the above discussion it is clear that, di�erently from the case of undirected

graphs, for digraphs there is a huge gap between the O(m + n) time bound for comput-

ing all connectivity cuts (strong bridges and strong articulation points), and the O(mn)

time bound for computing the connectivity blocks or components (2-edge- and 2-vertex-

connected blocks and 2-edge- and 2-vertex-connected components). Thus, it seems quite

natural to ask whether the O(mn) bound is a natural barrier for those problems, or

whether they could be solved faster in linear time.

1.2.3 Digraphs, dominators, articulation points, and bridges

In this section we introduce some terminology that will be useful throughout the paper.

A �ow graph is a digraph such that every vertex is reachable from a distinguished start

vertex. Let G = (V,E) be the input digraph, which we assume to be strongly connected.

(If not, we simply treat each strongly connected component separately.) For any vertex

s ∈ V , we denote by G(s) = (V,E, s) the corresponding �ow graph with start vertex s; all

vertices in V are reachable from s since G is strongly connected. The dominator relation

in G(s) is de�ned as follows: A vertex u is a dominator of a vertex w (u dominates w)

if every path from s to w contains u; u is a proper dominator of w if u dominates w and

u 6= w. The dominator relation is re�exive and transitive. Its transitive reduction is a

rooted tree, the dominator tree D(s): u dominates w if and only if u is an ancestor of

w in D(s). If w 6= s, d(w), the parent of w in D(s), is the immediate dominator of w:

it is the unique proper dominator of w that is dominated by all proper dominators of w.

An edge (u,w) is a bridge in G(s) if all paths from s to w include (u,w). Throughout

the paper, to avoid danger of ambiguity we use consistently the term bridge to refer to a
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bridge of a �ow graph G(s) and the term strong bridge to refer to a strong bridge in the

original graph G.

Lengauer and Tarjan [25] presented an algorithm for computing dominators in

O(mα(n,m/n)) time for a �ow graph with n vertices and m edges, where α is a functional

inverse of Ackermann's function [36]. Subsequently, several linear-time algorithms were

discovered [1, 3, 4, 8, 9, 15]. Tarjan [34] showed that the bridges of �ow graph G(s) can be

computed in O(m) time given D(s). He also presented an O(mα(n,m/n))-time algorithm

to compute bridges that uses static tree set union to contract strongly connected subraphs

in G [37]. The Gabow-Tarjan static tree disjoint set union algorithm [10] reduces the run-

ning time of this algorithm to O(m) on a RAM. Buchsbaum et al. [3] gave an O(m)-time

pointer-machine algorithm.

Italiano et al. [22] showed that the strong articulation points of G can be computed

from the dominator trees of G(s) and GR(s), where s is an arbitrary start vertex and GR

is the digraph that results from G after reversing edge directions; similarly, the strong

bridges of G correspond to the bridges of G(s) and GR(s). This gives the following bound

on the number of strong bridges.

Lemma 1.1. Any digraph with n vertices has at most 2n− 2 strong bridges.

Experimental studies for algorithms that compute dominators, strong bridges, and

strong articulation points are presented in [7, 13, 14, 17]. The experimental results show

that the corresponding fast algorithms given in [8, 22, 25, 37] perform very well in practice

even on very large graphs.

1.3 Contribution

In this work, we present the �rst linear-time algorithms to compute the 2-edge-connected

and the 2-vertex-connected blocks of a digraph. Our algorithms are not only asymp-

totically optimal, but also improve signi�cantly over previous bounds. Furthermore, the

ability to compute the 2-edge-connected and the 2-vertex-connected blocks of a digraph

in linear time seems a signi�cant step, especially as it was the �rst real progress on this

extremely natural problem, starting from the foundational work done 40 years ago for

undirected graphs.

Our algorithms follow the high-level approach for computing the 2-edge-connected

blocks and the 2-vertex-connected blocks. However, the algorithm for computing the

2-vertex-connected blocks is much more involved and requires several novel ideas and

non-trivial techniques to achieve the claimed bounds. In particular, we discuss the main

technical di�culties that need to be tackled in Section 3.2.

1.3.1 2-edge-connectivity

We present the �rst linear-time algorithm to compute the 2-edge-connected blocks of a

digraph [11]. Our algorithm, as mentioned above, is asymptotically optimal and improves
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signi�cantly over the previous known bounds O(mn). Our approach hinges on two di�er-

ent algorithms. The �rst is a simple iterative algorithm that builds the 2-edge-connected

blocks by removing one strong bridge at a time. The second algorithm is more involved

and recursive: the main idea is to consider simultaneously how several distinct strong

bridges partition vertices with the help of dominator trees. Although both algorithms

run in O(mn) time in the worst case, we show that a sophisticated combination of the

iterative and the recursive method is able to achieve the claimed linear-time bound.

Using our algorithm for 2-edge-connected blocks, we can preprocess a digraph in linear

time, and then answer in constant time queries on whether any two vertices are 2-edge-

connected. We also show how to compute in linear time a sparse certi�cate for 2-edge-

connected blocks, i.e., a subgraph of the input graph that has O(n) edges and maintains

the same 2-edge-connected blocks as the input graph.

1.3.2 2-vertex-connectivity

We complete the picture on 2-connectivity for digraphs by presenting the �rst algorithm

for computing the 2-vertex-connected blocks in O(m+n) time [12]. Our bound is asymp-

totically optimal and it improves sharply over a previous O(mn) time bound by Jaberi

[23]. As a side result, our algorithm constructs an O(n)-space data structure that reports

in constant time if two vertices are 2-vertex-connected. Additionally, when two query

vertices v and w are not 2-vertex-connected, our data structure can produce, in constant

time, a �witness� by exhibiting a vertex (i.e., a strong articulation point) or an edge (i.e.,

a strong bridge) that separates them. We are also able to compute in linear time a sparse

certi�cate for 2-vertex connectivity, i.e., a subgraph of the input graph that has O(n)

edges and maintains the same 2-vertex connectivity properties.

We additionally contribute in the area of 2-vertex-connectivity, by providing a new

O(mn)-time algorithm for computing the 2-vertex-connected components of a digraph,

that re�nes the dominator tree division used by Jaberi [24]. Our new algorithms does not

decrease the best known asymptotic bound, but we show that it performs very well in

practice.

1.3.3 2-connectivity in practice

We also consider the computation of the 2-edge- and 2-vertex-connected blocks and com-

ponents of a digraph in practice [26], and present e�cient implementations of the algo-

rithms introduced in this work, and also compare them to known algorithms [6, 24].

We evaluate the e�ciency of our algorithms experimentally on large digraphs taken

from a variety of application areas. To the best of our knowledge, this is the �rst empirical

study for these problems. Our extensive experimental study sheds light on the relative

di�culty of computing various notions of 2-connectivity in directed graphs. Speci�cally,

we compare the performance of the linear-time algorithms for computing the 2-edge- and

2-vertex-connected blocks of a digraph with simpler algorithms that iterate over the strong
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articulation points and strong bridges of the digraph. We also consider the computation

of the 2-vertex-connected components of a digraph and compare the performance of our

new algorithm and the algorithms of Erusalimskii and Svetlov [6] and Jaberi [24]. Our

results show that algorithms that apply a dominator-tree-based division of the input

digraph perform well in practice and are more robust than their simpler competitors. The

experimental results also suggest that the 2-edge- and 2-vertex-connected components of

digraphs that arise in many practical applications can be found e�ciently, despite the

fact that currently the best bound for their computation is O(n2).
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Chapter 2

Computing 2-Edge-Connected

Blocks

2.1 Introduction and properties

2.2 A simple algorithm

2.3 A recursive algorithm

2.4 Linear-time algorithm

2.5 Sparse certi�cate for the 2-edge-connected blocks

2.1 Introduction and properties

First, recall the following de�nitions from Section 1.2.1. We say that two vertices v and

w are 2-edge-connected, and we denote this relation by v ↔2e w, if there are two edge-

disjoint directed paths from v to w and two edge-disjoint directed paths from w to v. (A

path from v to w and a path from w to v need not be edge-disjoint.) It is easy to see

that v ↔2e w if and only if the removal of any edge leaves v and w in the same strongly

connected component. We de�ne a 2-edge-connected block of a digraph G = (V,E) as a

maximal subset B ⊆ V such that u↔2e v for all u, v ∈ B.

Theorem 2.1. The 2-edge-connected blocks of a digraph G = (V,E) form a partition of

V .

Proof. We show that↔2e is an equivalence relation. The relation is by de�nition re�exive

and symmetric, so it remains to show that it is also transitive when G has at least three

vertices. Let u, v, and w be three distinct vertices such that u ↔2e v and v ↔2e w.

Consider any u-w cut (U,W ), where u ∈ U and w ∈ W . Let k′ be the number of edges
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directed from U to W . We will show that k′ ≥ 2. If v ∈ U , then v ↔2e w implies that

k′ ≥ 2. Otherwise, v ∈ W , and u ↔2e v implies that k′ ≥ 2. A completely analogous

argument applies to the edges directed from W to U . The fact that u↔2e w now follows

from Menger's Theorem [28].

Throughout, we use the notation [v]2e to denote the 2-edge-connected block containing

vertex v ∈ V . We can generalize the 2-edge-connected relation for k ≥ 2 edge-disjoint

paths: the proof of Theorem 2.1 can be extended to show that this relation also de�nes a

partition of V into k-edge-connected blocks. By Theorem 2.1, once the 2-edge-connected

blocks are available, it is easy to test in constant time if two vertices are 2-edge-connected.

Next we develop algorithms that compute the 2-edge-connected blocks of a digraph

G. Clearly, we can assume that G is strongly connected, so m ≥ n. If not, then we

process each strongly connected component separately; if u ↔2e v then u and v are in

the same strongly connected component S of G, and moreover, any vertex on a path

from u to v or from v to u also belongs in S. We begin with a simple algorithm that

removes a single strong bridge at a time. In order to get a more e�cient solution, we

need to consider simultaneously how di�erent strong bridges partition the vertex set. We

present a recursive algorithm that does this with the help of dominator trees. Although

both these algorithms run in O(mn) time in the worst case, we �nally show that a careful

combination of them is able to achieve linear time.

2.2 A simple algorithm

Let u and v be two distinct vertices in G. We say that a strong bridge e separates u from

v if all paths from u to v contain edge e. In this case, u and v must belong to di�erent

strongly connected components of G \ e. This simple observation gives a characterization

of the 2-edge-connected blocks in terms of the strong bridges. In particular, one can

obtain the 2-edge-connected blocks of G by simply computing the strongly connected

components of G \ e for every strong bridge e, as illustrated by Algorithm Simple2ECB in

Figure 2.1.

Lemma 2.1. Algorithm Simple2ECB runs in O(mb∗) time, where b∗ is the number of

strong bridges of G.

Proof. The strong bridges of G can be computed in linear time by [22]. In each iteration

of Step 3, we can compute the strongly connected components of G \ e in linear time [33].

As we discover the i-th strongly connected component, we assign label i (i ∈ {1, . . . , n})
to the vertices in Si. Then, the re�nement of the current blocks in Step 3.1 can be done

in O(n) time with bucket sorting. So each iteration takes O(m) time.

Note that the above bound is O(mn) in the worst case, since for any digraph b∗ ≤ 2n−2

by Lemma 1.1. We remark that deleting all strong bridges (at once) will not produce a

correct result, as it can be easily seen from Figures 1.2(b) and 1.2(c). Despite the fact
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Algorithm Simple2ECB: Computation of the 2-edge-connected blocks

of a strongly connected digraph G = (V,E)

Step 1: Initialize the 2-edge-connected blocks as [v]2e = V . (Start from the

trivial partition containing only one block.)

Step 2: Compute the strong bridges of G.

Step 3: For each strong bridge e do:

Step 3.1: Compute the strongly connected components S1, . . . , Sk of G\e.

Step 3.2: Let {[v1]2e, . . . , [vl]2e} be the current 2-edge-connected blocks.

Re�ne the partition into blocks by computing the intersections [vi]2e∩
Sj for all i = 1, . . . , l and j = 1, . . . , k.

Figure 2.1: Algorithm Simple2ECB

that removing a single strong bridge at a time does not yield an e�cient algorithm, we

will make use of this idea, in a more restricted way, in the linear-time algorithm described

in Section 2.4.

2.3 A recursive algorithm

In order to obtain a faster algorithm we need to determine how multiple strong bridges

a�ect the partition of the vertices into blocks. We achieve this by selecting an arbitrary

start vertex s and by using the dominator tree D(s) of the �ow graph G(s). We do this

as follows. First we consider the computation of the 2-edge-connected block that contains

a speci�c vertex v. Let w be a vertex other than v. We say that w is 2-edge-connected

from v if there are two edge disjoint paths from v to w. Analogously, we say that w is

2-edge-connected to v if there are two edge disjoint paths from w to v. We divide the

computation of [v]2e in two parts, where the �rst part �nds the set of vertices [v]−→
2e

that

are 2-edge-connected from v, and the second part �nds the set [v]←−
2e

of vertices that are

2-edge-connected to v. Then [v]2e is formed by the intersection of these two sets.

Consider the computation of [v]−→
2e
. An e�cient way to compute this set is based on the

dominators and bridges of the �ow graph G(v). In particular, we compute the dominator

tree D(v) and identify the bridges of G(v). Then for each bridge e = (u,w) we have

d(w) = u, i.e., each bridge is also an edge in the dominator tree; we mark w in D(v).

Lemma 2.2. w ∈ [v]−→
2e

if and only if w is not dominated in G(v) by a marked vertex.

Proof. We have that w 6∈ [v]−→
2e
if and only if there is an edge (strong bridge) that separates
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v from w in G. Then e = (x, y) is such an edge if and only if it is a bridge in G(v), so y

is a marked ancestor of w in D(v).

Lemma 2.2 implies a straightforward linear-time algorithm to compute [v]−→
2e
, given the

dominator tree D(v) of G(v). We use the same algorithm to compute [v]←−
2e
, but operate

on the reverse graph GR(v) and its dominator tree DR(v). That is, we identify the bridges

of the �ow graph GR(v), and for each bridge e = (u,w) we mark w in DR(v). Note that

a vertex w that is marked in D(v) may not be marked in DR(v) and vice versa.

Corollary 2.1. w ∈ [v]2e if and only if w is not dominated in G(v) and in GR(v) by any

marked vertex. Moreover, [v]2e can be computed in O(m) time.

Note that all the 2-edge-connected blocks [v]2e can be computed in O(mn) time by

applying Corollary 2.1 to all vertices v. We describe next a more complicated algorithm,

which avoids repeated applications of Corollary 2.1. This algorithm will still require

O(mn) time but it will be a useful ingredient for our linear-time algorithm.

Let s be an arbitrarily chosen start vertex. We �rst observe that the bridges in the

dominator trees D(s) and DR(s) of G(s) and GR(s), respectively, partition the vertices

into sets that contain the 2-edge-connected blocks. More precisely, identify the bridges

of G(s) (resp., GR(s)), and for each bridge e = (u,w) mark w in D(s) (resp. DR(s))

as above. Now delete all bridges from D(s) and DR(s): namely, remove from D(s) all

edges (d(v), v) such that v is marked in D(s), and remove from DR(s) all edges (dR(v), v)

such that v is marked in DR(s). This decomposes the dominator trees D(s) and DR(s)

into forests of rooted trees, where each tree is rooted either at a marked vertex or at the

start vertex s. In the following, we refer to this as the canonical decomposition of the

dominator tree D(s), and use the notation T (v) to denote the tree containing vertex v in

this decomposition. Note that T (v) is a subtree of D(s) and its root rv is either a marked

vertex or the start vertex s. Similarly, we denote by TR(v) the tree containing vertex v in

the canonical decomposition of the dominator tree DR(s). Figure 2.2 shows an example

of a �ow graph G(s), its dominator tree D(s) and the canonical decomposion of D(s) into

the subtrees T (v) induced by the removal of all bridges of the �ow graph G(s).

In the following lemmas, we assume that s is an arbitrarily chosen start vertex in G,

G(s) is the �ow graph with start vertex s, GR(s) is the �ow graph obtained from G(s)

after reversing edge directions, D(s) and DR(s) are the dominator trees of G(s) and GR(s)

respectively, and T (v) and TR(v) are the subtrees containing vertex v in the canonical

decompositions of D(s) and DR(s) respectively (i.e., induced by the removal of all bridges

in D(s) and DR(s)).

Lemma 2.3. Let v and w be two di�erent vertices in G. Then [v]2e = [w]2e only if

T (v) = T (w) and TR(v) = TR(w).

Proof. We show that [v]2e = [w]2e implies T (v) = T (w). Then the same argument applied

on GR(s) shows that TR(v) = TR(w). Suppose by contradiction that [v]2e = [w]2e but

T (v) 6= T (w), i.e., w 6∈ T (v). Assume without loss of generality that rv is not an ancestor
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Figure 2.2: A �ow graph G(s), its dominator tree D(s) and its canonical decomposition

into the subtrees T (v) induced by the bridges of G(s). Strong bridges of the original

graph G and bridges of the �ow graph G(s) are shown in red; marked vertices are shown

in yellow. (Better viewed in color.)
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Figure 2.3: A strongly connected digraph G and its dominator trees D(A) and DR(A)

rooted at vertex A. (The edges of the dominator tree DR(A) are shown directed from

child to parent.) Strong bridges are shown in red (better viewed in color). Vertices C and

E lie in the same subtree in both D(A) and DR(A) but they are not 2-edge-connected,

as they are separated by the strong bridge (C,D).

of rw in D(s) (if not, swap v and w). Note that the edge e = (d(rv), rv) must be a bridge

in G(s). Since [v]2e = [w]2e, then there must be a path P in G from w to v that avoids

edge e. Since rv is not an ancestor of rw in D(s), there is a path Q in G from s to w that

avoids e. If v ∈ Q then the part of Q from s to v avoids e, which contradicts the fact that

e is a bridge in G(s), i.e., it induces a cut that separates s from v in G. If v 6∈ Q, then
Q followed by P (Q · P ) gives a path from s to v in G that avoids the bridge e, again a

contradiction.

Note that Lemma 2.3 provides a necessary condition for two vertices to be 2-edge-

connected. This is not a su�cient condition, however, as two vertices may be separated

by a strong bridge and still lie in the same subtree in both the canonical decompositions

of D(s) and of DR(s) (see Figure 2.3). The main challenge in this approach is thus to

discover which vertices in the same subtree are separated by a strong bridge. To tackle

this challenge, we provide some key observations regarding edges and paths that connect

di�erent subtrees T (r). We will use the parent property of dominator trees [16], that we

state next.

Lemma 2.4. (Parent property of the dominator tree [16].) For all (v, w) ∈ E, d(w) is

an ancestor of v in D(s).

Now we prove some structural properties for paths that connect vertices in di�erent

subtrees.

Lemma 2.5. Let e = (u, v) be an edge of G such that T (u) 6= T (v) and let rv be the root

of T (v). Then either u = d(v) and e is a bridge in the �ow graph G(s), or u is a proper

descendant of rv in D(s).

15



Proof. If e is a bridge in G(s) then u = d(v) and the lemma holds. Suppose that e is not

a bridge, so u 6= d(v). If v is an ancestor of u in D(s) then the lemma holds. If not, then

by Lemma 2.4, d(v) is a proper ancestor of u in D(s). We show that d(v) ∈ T (v), which

implies the lemma. Assume by contradiction that d(v) 6∈ T (v). Then (d(v), v) is a bridge

and v = rv. Since v is not an ancestor of u in D(s), there is a path P from s to u that

does not contain v. Then P · e is a path from s to v that avoids the bridge (d(v), v), a

contradiction.

Lemma 2.6. Let r be a marked vertex in D(s). Let v be any vertex that is not a descendant

of r in D(s). Then there is path from v to r that does not contain any vertex in T (r) \ r.
Moreover, all simple paths from v to any vertex in T (r) contain the edge (d(r), r).

Proof. Since v is not a descendant of r in D(s), v 6∈ T (r). Graph G is strongly connected,

so it contains a path from v to r. Let P be any such path. Let e = (u,w) be the �rst

edge on P such that w ∈ T (r). Then by Lemma 2.5, either e = (d(r), r) or u is a proper

descendant of r. In the �rst case the lemma holds. Suppose u is a proper descendant of r.

Since v is not a descendant of r in D(s), there is a path Q from s to v in G that does not

contain r. Then Q followed by the part of P from v to w gives a path from s to w ∈ T (r)

that avoids d(r), a contradiction.

Auxiliary graphs. We now introduce the notion of auxiliary graphs that plays a crucial

role in our algorithm. Auxiliary graphs represent a decomposition of the input digraph

G into smaller digraphs (not necessarily subgraphs of G) that maintain the original 2-

edge-connected blocks of G. Let r be either a non-leaf marked vertex or the start vertex

s in the dominator tree D(s), and let T (r) be the subtree with root r in the canonical

decomposition of the dominator tree D(s). For each such subtree T (r), we de�ne the

auxiliary graph Gr = (Vr, Er) of r as follows. The vertex set Vr of Gr consists of all the

vertices in T (r), referred to as ordinary vertices, and a set of auxiliary vertices, which

are obtained by contracting vertices in V \ T (r), as follows. Let v be a vertex in T (r).

We say that v is a boundary vertex in T (r) if v has a marked child in D(s). Let w be

a marked child of a boundary vertex v: all the vertices that are descendants of w in

D(s) are contracted into w. All vertices in V \ T (r) that are not descendants of r are

contracted into d(r) (r 6= s if any such vertex exists). During those contractions, parallel

edges are eliminated. This is necessary in order to obtain the size bound given in Lemma

2.7. Figure 2.4 shows a �ow graph, its dominator tree and an auxiliary graph.

Lemma 2.7. If G(s) has b bridges then all the auxiliary graphs Gr have at most n + 2b

vertices and m+ 2b edges in total.

Proof. Every vertex appears as an ordinary vertex only in one auxiliary graph. A marked

vertex in D(s) corresponds to a bridge in G(s), so there are b ≤ n − 1 marked vertices.

Since we have one auxiliary graph for each marked vertex, the total number of the auxiliary

vertices d(r) is b. Each marked vertex v can also appear in at most one other auxiliary

graph as a child of a boundary vertex. So the total number of vertices is at most n+ 2b.
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Figure 2.4: The �ow graph G(S) and its dominator tree D(S) from Figure 2.2, together

with the auxiliary graph of vertex E. Strong bridges are red, marked vertices are yellow,

and auxiliary vertices are gray. (Better viewed in color.) Edge (L,D) is a shortcut edge

of type (c) that corresponds to a path in G from L to D, e.g., L,N,B,A,D. Edges (L, F )

and (I,G) are shortcut edges of type (b).
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Next we bound the total number of edges. The total number of edges between ordinary

vertices in all auxiliary graphs is at most m− b. Each bridge can appear in at most two

auxiliary graphs. Finally, the number of edges connecting auxiliary vertices is at most b,

since each such edge corresponds to a unique occurrence of a marked vertex as an auxiliary

vertex. So we have at most m+ 2b edges in total.

Lemma 2.8. Let v and w be two vertices in a subtree T (r). Any path P from v to w

in G has a corresponding path Pr from v to w in the auxiliary graph Gr, and vice versa.

Moreover, Pr contains a strong bridge if and only if P does.

Proof. The �rst part of the lemma follows immediately from the de�nition of auxiliary

graph Gr. For the second part, let P be a path from v to w in G and let Pr be its

corresponding path in Gr. Let e = (x, y) be a strong bridge on P . We consider the

following cases:

• x ∈ T (r) and y ∈ T (r). Then (x, y) is also an edge on Pr. Moreover, by the de�nition

of Gr, the edge (x, y) is a strong bridge in Gr.

• x ∈ T (r) and y 6∈ T (r). By Lemma 2.5, either x = d(y) or x is a proper descendant of

ry in the dominator tree D(s). In the former case, e = (d(y), y) is a strong bridge in Gr

that is contained in all paths from v to w. In the latter case, Lemma 2.6 implies that

all paths from v to w in G contain the strong bridge (d(r), r). By the construction of

the auxiliary graphs, this is also true for all paths from v to w in Gr.

• x 6∈ T (r) and x a descendant of r in D(s). Then v is not an ancestor of w in D(s),

since otherwise, by Lemma 2.4, there would be a path from v to w that avoids e. Let

t ∈ T (r) be the boundary vertex that is an ancestor of x, and let z be the child of t that

is an ancestor of x. By Lemma 2.6, all paths from v to x in G, and thus all paths from

v to w, contain the strong bridge (t, z). By the construction of the auxiliary graphs

this is also true for all paths from v to w in Gr.

• x 6∈ T (r) and x not a descendant of r in D(s). In this case, Lemma 2.6 implies that

all paths from x to w in G contain the strong bridge (d(r), r). Hence, all paths from v

to w in G contain the strong bridge (d(r), r), and so do all paths from v to w in Gr by

the construction of the auxiliary graphs.

Thus, in every case we have that Pr contains a strong bridge, and so the lemma follows.

Corollary 2.2. Each auxiliary graph Gr is strongly connected.

Proof. It follows immediately from Lemma 2.8 and the fact that G is strongly connected.

Now we are ready to show that we can compute the 2-edge-connected blocks in each

auxiliary graph independently of each other.
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Lemma 2.9. Let v and w be any two distinct vertices of G. Then v and w are 2-edge-

connected in G if and only if they are both ordinary vertices in an auxiliary graph Gr and

they are 2-edge-connected in Gr.

Proof. By Lemma 2.3, v and w are 2-edge-connected in G only if they belong to the same

subtree T (r), in which case they are both ordinary vertices of Gr. If v and w are 2-edge-

connected in G then Lemma 2.8 implies that they are also 2-edge-connected in Gr. Now

suppose that there is a strong bridge that separates v from w in G. The case analysis in

the proof of Lemma 2.8 shows that all paths from v to w in Gr also have a strong bridge

in common. The same argument applies if there is a strong bridge that separates w from

v in G, and the lemma follows.

We next show how to construct the auxiliary graphs Gr = (Vr, Er) e�ciently. The

vertex set Vr contains the set V
o
r of ordinary vertices (i.e., the vertices of T (r)), and the

set V a
r of auxiliary vertices. The edge set Er contains all edges in G = (V,E) induced by

the ordinary vertices (i.e., edges (u, v) ∈ E such that u ∈ T (r) and v ∈ T (r)), together

with some edges that have at most one endpoint in T (r) and are either bridges of G(s) or

shortcut edges that correspond to paths in G. We de�ne shortcut edges as follows. Let v

be a boundary vertex in T (r) (i.e., v has a marked child in D(s)). For each marked child

w of v in D(s) we add a copy of w in V a
r , and add the edge (v, w) in Er. Also, if r is

marked (r 6= s) then we add a copy of d(r) in V a
r , and add the edge (d(r), r) in Er. We

also add in Er the following shortcut edges for edges (u, v) of the following type: (a) If u

is ordinary and v is not a descendant of r, then we add the shortcut edge (u, d(r)). (b)

If v is ordinary and u is a proper descendant in D(s) of a boundary vertex w, then we

add the shortcut edge (z, v) where z is the child of w that is an ancestor of u in D(s).

(c) Finally, if u is a proper descendant in D(s) of a boundary vertex w and v is not a

descendant of r, then we add the shortcut edge (z, d(r)), where z is the child of w that is

an ancestor of u in D(s). We note that, according to the de�nition, in this construction

we do not keep multiple (parallel) shortcut edges (see Figure 2.4).

To complete our construction of the auxiliary graphs, we need to specify how to

compute the shortcut edges of each type (a), (b), and (c). Suppose (u, v) is an edge of

type (a). Then v is not a descendant of r in D(s), which can be tested using an O(1)-time

test of the ancestor-descendant relation. There are several simple O(1)-time tests of this

relation [35]. The most convenient one for us is to number the vertices of D(s) from 1 to n

in preorder, and to compute the number of descendants of each vertex v, which we denote

by size(v). Then v is a descendant of r if and only if pre(r) ≤ pre(v) < pre(r) + size(r).

Next suppose that (u, v) is of type (b). Then u is a proper descendant of a boundary

vertex w in D(s). To compute the shortcut edge of (u, v) we need to �nd the child z of w

that is an ancestor of u in D(s). To that end, we create a list Ar that contains the edges

(u, v) of type (b) such that v ∈ T (r), and sort Ar in increasing preorder of u. We create

a second list A′r that contains the children in D(s) of the boundary vertices in T (r), and

sort A′r in increasing preorder. Then, the shortcut edge of (u, v) is (z, v), where z is the

last vertex in the sorted list A′r such that pre(z) ≤ pre(u). Thus the shortcut edges of
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type (b) can be computed in linear time by bucket sorting and merging. In order to do

this fast for all auxiliary graphs, we sort all the lists at the same time as follows. First,

we create a uni�ed list A containing the triples (r, pre(u), v), for each type (b) edge (u, v)

in the auxiliary graph Gr. Next we sort A in increasing order of the two �rst elements.

We also create a second list A′ with pairs (r, pre(w)), where w is a proper descendant of

a boundary vertex in T (r), and sort the pairs in increasing order. Finally, we compute

the shortcut edges of each auxiliary graph Gr by merging the sorted sublists of A and A′

that correspond to the same root r. Then, the shortcut edge for the triple (r, pre(u), v)

is (z, v), where (r, pre(z)) is the last pair in the sorted sublist of A′ with root r such that

pre(z) ≤ pre(u).

Finally, consider the edges of type (c). For each such edge (u, v) we need to add the

edge (z, d(r)) in each Gr, where u is a proper descendant of a boundary vertex w ∈ T (r),

v is not a descendant of r in D(s), and z is the child of w that is an ancestor of u in

D(s). We compute these edges for all auxiliary graphs Gr as follows. First, we create a

compressed tree D̂(s) that contains only s and the marked vertices. A marked vertex v

becomes child of its nearest marked ancestor u, or of s if u does not exist. This can be

easily done in O(n) time during the preorder traversal of D(s). Next we process all edges

(u, v) such that v is not a descendant of ru in D(s). At each node w 6= s in D̂(s) we

store a label `(w) which is the minimum pre(rv) of an edge (u, v) of type (c) such that

u ∈ T (w); we let `(w) = pre(w) if no such edge exists. Using these labels we compute

for each w 6= s in D̂(s) the values low(w) = min{`(v) | v is a descendant of w in D̂(s)}.
These computations can be done in O(m) time by processing the tree D̂(s) in a bottom-

up order. Now consider the auxiliary graph Gr. We process the children in D(s) of the

boundary vertices in T (r). Note that these children are marked, so they have a low value.

For each such child z we test if Gr has a shortcut edge (z, d(r)): If low(z) < pre(r) then

we add the edge (z, d(r)). This leads to the following lemma.

Lemma 2.10. We can compute all auxiliary graphs Gr in O(m) time.

We also describe an alternative way to compute the type (b) shortcut edges of the

auxiliary graphs, by replacing sorting with vertex contractions. To that end, we use a

disjoint set union data structure [36], which maintains a collection of disjoint sets, each

with a representative element, under three operations:

make-set(x): Create a new set {x} with representative x. Element x must be in no

existing set.

�nd(x): Return the representative element of the set containing element x.

unite(x, y): Unite the sets containing elements x and y and give the new set the repre-

sentative of the old set containing x.

Using this data structure, we can compute the type (b) shortcut edges of all auxiliary

graphs in a single bottom-up pass of D(s). To initialize the sets, we perform make-set(v)
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Algorithm Rec2ECB: Recursive computation of the 2-edge-connected

blocks for the ordinary vertices of a strongly connected digraph

H = (V,E)

Step 1: Choose an arbitrary ordinary vertex s ∈ V o as a start vertex. Compute

the dominator trees D(s) and DR(s) and the bridges of the �ow graphs

H(s) and HR(s).

Step 2: Compute the number b of bridges (x, y) in H(s) such that y is an

ancestor of an ordinary vertex in D(s). Compute the number bR of bridges

(x, y) in HR(s) such that y is an ancestor of an ordinary vertex in DR(s).

Step 3: If b = bR = 0 then return [s]2e = V o.

Step 4: If bR > b then swap H and HR. Find the canonical decomposition

of D(s) into the subtrees T (r) and compute the corresponding auxiliary

graphs Hr. Compute recursively the 2-edge-connected blocks for each aux-

iliary graph Hr with at least two ordinary vertices.

Figure 2.5: Algorithm Rec2ECB

for every vertex v ∈ V . The unite operations are also executed in a bottom-up order,

and each such operation has the e�ect of contracting a vertex v to its ancestor u in D(s),

such that v ∈ T (u), or v is a child of a boundary vertex in T (u). The details of these

computations are as follows. We process all marked vertices r in a bottom-up order

of D(s), and compute the type (b) shortcut edges of the corresponding auxiliary graph

Gr = (Vr, Er). To do this, we process the edges entering each vertex v ∈ T (r). For

each such edge (u, v) we compute z = find(u). If z 6= v and z ∈ T (r) then (z, v) is a

type (b) shortcut edge of Gr. The former condition means that u is not a descendant of

v, while the second condition can only be violated for v = r. After we have processed

all edges entering T (r), we execute unite(r, find(v)) for each vertex v ∈ T (r) and each

vertex v ∈ V a
r that is a child in D(s) of a boundary vertex in T (r). This construction

runs O(m) time plus the time for n−1 unite operations and, by Lemma 3.13, at most 4m

�nd operations. If unite and �nd are implemented using compressed trees with balanced

linking [36], the total time for these disjoint set union operations is O(mα(m,n)). Since

the set of unite operations is known in advance we have an instance of the static tree

disjoint set union problem, which is solvable in O(m) time on a RAM [10].

Lemma 2.9 allows us to compute the 2-edge-connected blocks of each auxiliary graph

separately. Algorithm Rec2ECB, described in Figure 2.5, applies this idea recursively,

until all ordinary vertices in each graph H are 2-edge-connected. Since, by Lemma 2.3,
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Figure 2.6: An input digraph with n = Θ(k) vertices that causes k recursive calls of

Algorithm Rec2ECB (see Figures 2.7 and 2.8). Vertices X1, X2, . . . , Xk are not 2-edge-

connected but Algorithm Rec2ECB requires k recursive calls to separate them into di�erent

blocks. (In this �gure k = 4.) Each new partition is induced by the strong bridge (X1, S).

an auxiliary vertex and an ordinary vertex of H are not 2-edge-connected, we only need

to consider the strong bridges that separate ordinary vertices of H. In order to �nd

if H contains such strong bridges, we choose an arbitrary ordinary vertex s of H as a

start vertex and compute the bridges and the dominator trees D(s) and DR(s) of the �ow

graphs H(s) and HR(s), respectively. Then Corollary 2.1 implies that H contains a strong

bridge that separates two ordinary vertices if and only if H(s) or HR(s) contains a bridge

(x, y) such that y is an ancestor of an ordinary vertex. Otherwise, all ordinary vertices

are 2-vertex-connected to and from s, so [s]2e = V o. We remark that in the �rst call of

Algorithm Rec2ECB, the input graph is G and all the vertices are considered ordinary,

i.e., H = G and V o = V .

Lemma 2.11. Algorithm Rec2ECB runs in O(mn) time.

Proof. Each recursive call re�nes the current partition of V , thus we have at most n− 1

recursive calls. By [3, 34] and Lemma 2.10, the total work per recursive call is O(m).

We note that the bound stated in Lemma 2.11 is tight. The same strong bridge can

be used repeatedly to separate di�erent pairs of vertices in successive recursive calls (see

Figures 2.6, 2.7 and 2.8). Despite the fact that Algorithm Rec2ECB only achieves an

O(mn) time bound, it will be the basis of our linear-time algorithm that we develop in

the next section.
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Figure 2.7: The �rst two recursive calls of Algorithm Rec2ECB, with input the digraph

of Figure 2.6. In the left column we see the dominator tree used to compute the next

partition, whilst in the right column there is the auxiliary graph containing the majority

of ordinary vertices, that will be the input digraph in the next recursive call.
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Figure 2.8: The other two recursive calls of Algorithm Rec2ECB, with input the digraph

of Figure 2.6 (the �rst two calls are shown in Figure 2.7). In the left column we see the

dominator tree used to compute the next partition, whilst in the right column there is

the auxiliary graph containing the majority of ordinary vertices, that will be the input

digraph in the next recursive call.
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Algorithm Fast2ECB: Linear-time computation of the

2-edge-connected blocks of a strongly connected digraph G = (V,E)

Step 1: Choose an arbitrary vertex s ∈ V as a start vertex. Compute the

dominator tree D(s) and the bridges of the �ow graph G(s).

Step 2: Partition D(s) into subtrees T (r) and compute the corresponding aux-

iliary graphs Gr.

Step 3: For each auxiliary graph H = Gr do:

Step 3.1: Compute the dominator tree DR
H(r) and the bridges of HR(r).

Let dRH(q) be the parent of q 6= r in DR
H(r).

Step 3.2: Partition DR
H(r) into the subtrees TRH (q). Compute the corre-

sponding auxiliary graphs HR
q with q 6= r.

Step 3.3: Set [r]2e to consist of the ordinary vertices in TRH (r).

Step 3.4: For each auxiliary graph HR
q with q 6= r do:

Step 3.4.1: Compute the strongly connected components

S1, S2, . . . , Sk of H
R
q \ (dRH(q), q).

Step 3.4.2: Partition the ordinary vertices of Hq into blocks accord-

ing to each Sj, j = 1, . . . , k; For each ordinary vertex v, [v]2e
contains the ordinary vertices in the strongly connected compo-

nent of v.

Figure 2.9: Algorithm Fast2ECB

2.4 A linear-time algorithm

Although Algorithms Simple2ECB and Rec2ECB run in O(mn) time, we show that a

careful combination of them gives a linear-time algorithm. The critical observation, proved

in Lemma 2.12 below, is that if a strong bridge separates di�erent pairs of vertices in

successive recursive calls (which causes the worst-case behavior of Algorithm Rec2ECB,

as shown in Figures 2.6, 2.7 and 2.8), then it will appear as the strong bridge entering

the root of a subtree in the canonical decomposition of a dominator tree.

Algorithm Fast2ECB, described in Figure 2.9, applies the observation above together

with all the tools we developed in the previous sections, and achieves the computation

of the 2-edge-connected blocks in linear time. In essence, it runs Algorithm Rec2ECB

but stops the recursion at depth 2. Two vertices that are not 2-edge-connected but have

not been separated yet, i.e., they are ordinary vertices of an auxiliary graph computed

at recursion depth 2, can be separated by running Algorithm Simple2ECB for the speci�c
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auxiliary graph. However, as we show in the proof of Lemma 2.12, it su�ces to remove

only one strong bridge of that auxiliary graph, so we only need to execute Step 3 of

Algorithm Simple2ECB once.

Lemma 2.12. Algorithm Fast2ECB is correct.

Proof. Let u and v be any vertices. If u and v are 2-edge-connected in G, then by Lemma

2.9 they are 2-edge-connected in both auxiliary graphs of G and Gr that contain them

as ordinary vertices. This implies that the algorithm will correctly include them in the

same block. So suppose that u and v are not 2-edge-connected. Then, without loss of

generality, we can assume that all paths from u to v contain a common strong bridge. We

argue that the blocks of u and v will be separated in some step of the algorithm. If u and

v are located in di�erent subtrees of D(s) then the claim is true. If they are in the same

subtree then they appear in an auxiliary graph H = Gr as ordinary vertices. By Lemma

2.9, H contains a strong bridge that is contained in all paths from u to v. Let HR be the

reverse graph of H. Let DR
H(r) be the dominator tree of HR(r). If u and v are located in

di�erent subtrees of DR
H then the claim is true. Suppose then that they are located in a

subtree with root q. By Corollary 2.1, q 6= r. Let p = dRH(q) be the parent of q in DR
H(r).

Then (q, p) is a strong bridge of H. We claim that H \ (q, p) does not contain any path

from u to v. To prove the claim, we consider two cases. First suppose that all paths from

v to u in HR contain a bridge (dRH(x), x) of DR
H(r) such that x is ancestor of u. Then

(q, p) must appear in all paths from u to v in H. If not, then (p, q) 6= (dRH(x), x), and

there is a path π in HR from x to u that avoids (p, q). Since x is an ancestor of p, there

is a path π′ in HR from r to x that also avoids (p, q). So π′ · π gives a path from r to u

in HR that avoids (p, q), a contradiction. Now suppose that there is no bridge (dRH(x), x)

of DR
H(r) with x an ancestor of u that is contained in all paths from v to u in HR. Let e

be a strong bridge that separates u from v in H. Then e 6= (q, p), so there is a path π in

H from u to r that avoids e. But H contains a path π′ from r to v that avoids e. Then

π · π′ is a path from u to v in H that does not contain e, a contradiction.

Finally, we show that the algorithm indeed runs in linear time.

Lemma 2.13. Algorithm Fast2ECB runs in O(m) time.

Proof. We analyze the total time spent on each step that Algorithm Fast2ECB executes.

Step 1 takes O(m) time by [3], and Step 2 takes O(m) time by Lemma 2.10. From

Lemma 2.7 we have that the total number of vertices and the total number of edges in all

auxiliary graphs H of G are O(n) and O(m) respectively. Therefore, the total number of

strong bridges in these auxiliary graphs is O(n) by Lemma 1.1. Then, by Lemma 2.7, the

total size (number of vertices and edges) of all auxiliary graphs HR
q for all H, computed

in Step 3.2, is still O(m) and they are also computed in O(m) total time by Lemma 2.10.

So Steps 3.1 and 3.4 take O(m) time in total as well.
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2.5 Sparse certi�cate for the 2-edge-connected blocks

We now show how to compute in linear time a sparse certi�cate for the 2-edge-connected

blocks, i.e., a subgraph C(G) of the input graph G that has O(n) edges and maintains

the same 2-edge-connected blocks as the input graph. Such a sparse certi�cate allows

us to speed up computations, such as �nding the actual edge-disjoint paths that connect

a pair of vertices (see, e.g., [29]). As throughout the Chapter, we can assume without

loss of generality that G is strongly connected, in which case subgraph C(G) will also be

strongly connected (see the proof of Lemma 2.14 below). The certi�cate uses the concept

of independent spanning trees [16]. In this context, a spanning tree T of a �ow graph G(s)

is a tree with root s that contains a path from s to v for all vertices v. Two spanning trees

B and R rooted at s are independent if for all vertices v, the paths from s to v in B and

R share only the dominators of v. Every �ow graph G(s) has two such spanning trees,

computable in linear time [16]. Moreover, the computed spanning trees are maximally

edge-disjoint, meaning that the only edges they have in common are the bridges of G(s).

The sparse certi�cate can be constructed during the computation of the 2-edge-

connected blocks, by extending Algorithm Fast2ECB. We now sketch the main modi�ca-

tions needed. During the execution of Algorithm Fast2ECB, we maintain a list (multiset)

L of the edges to be added in C(G). The same edge may be inserted into L multiple

times, but the total number of insertions will be O(n). Then we can use radix sort to

remove duplicate edges in O(n) time. We initialize L to be empty. During Step 1 of

Algorithm Fast2ECB we compute two independent spanning trees, B(G(s)) and R(G(s))

of G(s) and insert their edges into L. Next, in Step 3.1 we compute two independent

spanning trees B(HR(r)) and R(HR(r)) for each auxiliary graph HR(r). For each edge

(u, v) of these spanning trees, we insert a corresponding edge into L as follows. If both u

and v are ordinary vertices in HR(r), we insert (u, v) into L since it is an original edge

of G. Otherwise, u or v is an auxiliary vertex and we insert into L a corresponding orig-

inal edge of G. Such an original edge can be easily found during the construction of the

auxiliary graphs. Finally, in Step 3.4, we compute two spanning trees for every connected

component Si of each auxiliary graph HR
q \ (p, q) as follows. Let HSi

be the subgraph

of Hq that is induced by the vertices in Si. We choose an arbitrary vertex v ∈ Si and

compute a spanning tree of HSi
(v) and a spanning tree of HR

Si
(v). We insert in L the

original edges that correspond to the edges of these spanning trees.

Lemma 2.14. The sparse certi�cate C(G) has the same 2-edge-connected blocks as the

input digraph G.

Proof. It su�ces to show that the execution of Algorithm Fast2ECB on C(G) and produces

the same 2-edge-connected blocks as the execution of Algorithm Fast2ECB on G. The

correctness of Algorithm Fast2ECB implies that it produces the same result regardless of

the choice of start vertex s. So we assume that both executions choose the same start

vertex s. We will refer to the execution of Algorithm Fast2ECB with input G (resp. C(G))

as Fast2ECB(G) (resp. Fast2ECB(C(G))).
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First we note that C(G) is strongly connected. This follows from the fact that C(G)

contains a spanning tree of G(s), and that it also contains edges that correspond to a

spanning tree for the reverse of each auxiliary graph Gr; if (u, v) is a shortcut edge in such

a spanning tree for the reverse auxiliary graph HR, then C(G) will contain original edges

that form a path from v to u. Moreover, the fact that C(G) contains two independent

spanning trees of G implies that G and C(G) have the same dominator tree and bridges

with respect to the start vertex s that are computed in Step 1. Hence, the subtrees T (r)

computed of Step 2 of Algorithm Fast2ECB are the same in both executions Fast2ECB(G)

and Fast2ECB(C(G)). The same argument as in Step 1 implies that in Steps 3.1 and 3.2,

both executions Fast2ECB(G) and Fast2ECB(C(G)) compute the same partitions TR(r) of

each auxiliary graph HR(r). Finally, by construction, the strongly connected components

of each auxiliary graph HR
q \ (p, q) are the same in both executions of Fast2ECB(G) and

Fast2ECB(C(G)).

We conclude that Fast2ECB(G) and Fast2ECB(C(G)) compute the same 2-edge-connected

blocks as claimed.

The fact that C(G) has O(n) edges follows from Lemmas 1.1 and 2.7. Therefore, we

have the following result.

Corollary 2.3. We can compute in linear time a sparse certi�cate for the 2-edge-connected

blocks of a digraph.
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Chapter 3

Computing 2-Vertex-Connected

Blocks

3.1 Introduction and properties

3.2 Additional challenges computing the 2-vertex-connected blocks

3.3 A simple algorithm

3.4 Linear-time algorithm

3.4.1 Auxiliary graphs

3.4.2 The algorithm

3.5 Queries

3.6 Computing the 2-vertex-connected blocks

3.7 Sparse certi�cate for the vertex-resilient blocks and the 2-vertex-connected blocks

3.1 Introduction and properties

First, we recall some de�nitions from Section 1.2.1. Let v and w be two distinct vertices

in a digraph. By Menger's Theorem [28], v ↔2e w if and only if the removal of any edge

leaves v and w in the same strongly connected component, i.e., two vertices are 2-edge-

connected if and only if they are resilient to the deletion of a single edge. The situation

for 2-vertex connectivity is more complicated. Indeed, Menger's Theorem implies that

v ↔2v w only if the removal of any vertex di�erent from v and w leaves them in the

same strongly connected component, while the converse holds only when v and w are

not adjacent. For instance, two mutually adjacent vertices are left in the same strongly
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Figure 3.1: The vertex-resilient blocks of the digraph of Figure 1.1.

connected component by the removal of any other vertex, although they are not necessarily

2-vertex-connected. To handle this situation, we use the following notation, which was

also considered in [23]. Vertices v and w are said to be vertex-resilient, denoted by v ↔vr w

if the removal of any vertex di�erent from v and w leaves v and w in the same strongly

connected component. We de�ne a vertex-resilient block of a digraph G = (V,E) as a

maximal subset B ⊆ V such that u ↔vr v for all u, v ∈ B. See Figure 3.1. Note that,

as a (degenerate) special case, a vertex-resilient block might consist of a singleton vertex

only: we denote this as a trivial vertex-resilient block. Clearly, for any vertex v, the

singleton set {v} is a trivial vertex-resilient block of G if and only if there is no vertex

u 6= v such that u↔vr v.In the following, we will consider only non-trivial vertex-resilient

blocks. Since there is no danger of ambiguity, we will call them simply vertex-resilient

blocks. We remark that two vertices v and w that are vertex-resilient are not necessarily

2-vertex-connected: this is indeed the case for vertices H and F in the digraph of Figure

1.1(a). If, however, v and w are not adjacent then v ↔2v w if and only if v ↔vr w.

We next provide some basic properties of the vertex-resilient blocks and the 2-vertex-

connected blocks. In particular, we show that any digraph has at most n−1 vertex-resilient

(resp., 2-vertex-connected) blocks and, moreover, that there is a forest representation of

these blocks that enables us to test vertex-resilience (resp., 2-vertex-connectivity) between

any two vertices in constant time. This structure is reminiscent of the representation used

by Westbrook and Tarjan [38] for the biconnected components of an undirected graph.

Lemma 3.1. Let u, v, x, and y be distinct vertices such that u↔vrx , v↔vrx, u↔vry and

v↔vry. Then also x↔vry and u↔vrv.

Proof. Assume, for contradiction, that x and y are not vertex-resilient. Then there is a
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strong articulation point w such that every path from y to x contains w, or every path

from x to y contains w (or both). Without loss of generality, suppose that w is contained

in every path from y to x. Since u and v are distinct, we can assume that w 6= u. (If

w = u then we swap the role of u and v.) Then, y↔vru implies that there is a path P

from y to u that avoids w, and similarly, u↔vrx implies that there is a path Q from u

to x that avoids w. So, P followed by Q gives a path from y to x that does not contain

w, a contradiction. Hence x↔vry. The fact that u↔vrv follows by repeating the same

argument for u and v.

Corollary 3.1. Let B and B′ be two distinct vertex-resilient blocks of a digraph G =

(V,E). Then |B ∩B′| ≤ 1.

Proof. Follows immediately from Lemma 3.1.

We denote by VRB(u) the vertex-resilient blocks that contain u. De�ne the block

graph F = (VF , EF ) of G as follows. The vertex set VF consists of the vertices in V and

also contains one block node for each vertex-resilient block of G. The edge set EF consists

of the edges {u,B} where B ∈ VRB(u). Thus, F is an undirected bipartite graph. Next

we show that it is also acyclic.

Lemma 3.2. Let u and v be any vertices that are connected by a path P in F . Then, for

any vertex w ∈ V not on P , u and v are strongly connected in digraph G \ w.

Proof. It su�ces to show that G contains a path Q from u to v that avoids w. The

same argument shows that G contains a path from v to u that avoids w. Let P = (u1 =

u,B1, u2, B2, . . . , uk+1 = v). Then ui ↔vr ui+1, for 1 ≤ i ≤ k, so there is a path Pi in G

from vi to vi+1 that avoids w. Then the catenation of paths P1, . . . , Pk gives a path in G

from u to v that avoids w.

Lemma 3.3. Graph F is acyclic.

Proof. Suppose, for contradiction, that F contains a cycle C. We show that all vertices

w ∈ C ∩ V belong to the same vertex-resilient block B. Let u, v ∈ V be two vertices on

a minimal cycle C of F that are adjacent to a block node B. (Such u, v, and B exist

since F is bipartite.) Then, u and v cannot be the only vertices in V that are on C,

since otherwise they would be adjacent to another block B′ on C, violating Corollary 3.1.

Therefore, C contains a vertex w ∈ V \{u, v}. Clearly, w /∈ B, otherwise the edge {w,B}
would exist contradicting the minimality of C. Hence, there is a vertex z ∈ B such that

all paths from z to w contain a common strong articulation point or all paths from w to

z contain a common strong articulation point. Suppose, without loss of generality, that

a vertex x is contained in every path from z to w. Let P be the path that results from

C by removing B. Let Pu and Pv be the subpaths of P from u to w and from v to w,

respectively. Then x 6∈ Pu or x 6∈ Pv (or both). Suppose x 6∈ Pu; if not then swap the role

of u and v. Then, by Lemma 3.2 there is a path Q in G from u to w that avoids x. Also,

since u↔vr z, there is a path Q′ in G from z to u that avoids x. Then the catenation of

Q′ and Q gives a path in G from z to w that avoids x, a contradiction.
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Figure 3.2: A digraph G and its vertex-resilient block forest F . The strong articulation

points and the strong bridges of G are shown in red. (Better viewed in color.)

Lemma 3.4. The number of vertex-resilient blocks in a digraph G is at most n− 1 .

Proof. We prove the lemma by showing that forest F contains at most n− 1 block nodes.

Since F is a forest we can root each tree T of F at some arbitrary vertex r ∈ V . Every
level of T contains either only vertices of V or only block nodes, because F is bipartite.

Moreover, every block node is adjacent to at least two vertices of V , due to the fact

that each (non-trivial) vertex-resilient block in G contains at least 2 vertices. Hence,

every leaf of T is a vertex in V . Now consider a partition of T into vertex disjoint paths

P1, P2, . . . , Pk, such that each Pi leads from some vertex or block node to a leaf descendant.

The number of block nodes in each Pi is at most equal to |Pi ∩ V |. Also, in the path Pi
starting at r the number of block nodes in Pi is less than |Pi∩V |. We conclude that there

at most n− 1 block nodes in F .

Lemma 3.5. The total number of vertices in all vertex-resilient blocks is at most 2n− 2.

Proof. By Lemmas 3.3 and 3.4, the block graph F is a forest with at most 2n−1 vertices.

Each occurrence of a vertex v in a block B corresponds to an edge {v,B} of F . Therefore,
the total number of vertices in all vertex-resilient blocks equals the number of edges in F ,

and the lemma follows.

Lemma 3.6. Let u and v be any vertices that are not vertex-resilient but are connected

by a path P in F . Then, for any vertex w ∈ V \ {u, v} on P , u and v are not strongly

connected in digraph G \ w.

Proof. We prove the lemma by contradiction. Let P be a path that connects u and v in

F . By Lemma 3.3, this path is unique for u and v. First suppose that P contains only

one other vertex w ∈ V \{u, v}, so P = (u,B,w,B′, v). Then u↔vr w and w ↔vr v. Now

suppose that u and v are strongly connected in G \ w. This fact, together with Lemma
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3.2, imply that u and v are strongly connected in G \ x for all x ∈ V \ {u, v}. But this
contradicts the assumption that u and v are not vertex-resilient.

Now suppose that path P contains more than one vertex in V \ {u, v}. Let P = (u =

w0, B1, w1, . . . , Bk, wk, Bk+1, v = wk+1), where k > 1. By the argument above, wi−1 and

wi+1 are not strongly connected in G \wi for all i ∈ {1, . . . , k}. Suppose that u and v are

strongly connected in G \ wi for a �xed i ∈ {1, . . . , k}. By Lemma 3.2, u and wi−1, and

wi+1 and v, are strongly connected in G \ wi. But then, wi−1 and wi+1 are also strongly

connected in G \ wi, a contradiction.

We consider F as a forest of rooted trees by choosing an arbitrary vertex as the root of

each tree. Then u↔vr w if and only if u and w are siblings or one is the grandparent of the

other. See Figure 3.2. We can perform both tests in constant time simply by storing the

parent of each vertex in F . Thus, we can test in constant time if two vertices are vertex-

resilient. Note that we cannot always apply Lemma 3.6 to �nd a strong articulation point

that separates two vertices u and w that are not vertex-resilient. Indeed, two vertices

that are strongly connected but not vertex-resilient may not even be connected by a path

in the forest F (see, e.g., vertices f and h in Figure 3.2). So if we wish to return a witness

that u and w are not vertex-resilient, we cannot rely on F . We deal with this problem in

Section 3.5.

Now we turn to 2-vertex-connected blocks and provide some properties that enable us

to compute them via the vertex-resilient blocks.

Lemma 3.7. Let v and w be two distinct vertices of G such that v ↔vr w. Then, v and

w are not 2-vertex connected if and only if at least one of the edges (v, w) and (w, v) is a

strong bridge in G.

Proof. Menger's Theorem [28] implies that if v and w are not adjacent then v ↔2v w if and

only if v ↔vr w. If, on the other hand, v ↔vr w but v and w are not 2-vertex-connected,

then at least one of the edges (v, w) and (w, v) exists in G and is a strong bridge.

The following corollary, which relates 2-vertex-connected, 2-edge-connected and vertex-

resilient blocks, is an immediate consequence of Lemma 3.7.

Corollary 3.2. For any two distinct vertices v and w, v ↔2v w if and only if v ↔vr w

and v ↔2e w.

By Corollary 3.2 we have that the 2-vertex-connected blocks are re�nements of the

vertex-resilient blocks, formed by the intersections of the vertex-resilient blocks and the 2-

edge-connected blocks of the digraph G. Since the 2-edge-connected blocks are a partition

of the vertices of G, these intersections partition each vertex-resilient block. From this

property we conclude that Lemmas 3.3 and 3.4 also hold for the 2-vertex-connected blocks,

i.e., they can also be represented by a bipartite forest of O(n) size.
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3.2 Additional challenges computing the 2-vertex-connected blocks

Our algorithm for computing vertex-resilient blocks of a digraph follows the high-level

approach of the algorithm we described in Chapter 2 for computing the 2-edge-connected

blocks. However, the algorithm for computing the 2-vertex-connected blocks is much

more involved and requires several novel ideas and non-trivial techniques to achieve the

claimed bounds. In particular, the main technical di�culties that need to be tackled when

following the approach of the algorithm in Chapter 2 are the following:

• First, the algorithm for computing the 2-edge-connected blocks maintains a partition

of the vertices into approximate blocks, and re�nes this partition as the algorithm

progresses. Unlike 2-edge-connected blocks, however, vertex-resilient and 2-vertex-

connected blocks do not partition the vertices of a digraph, and therefore it is

harder to maintain approximate blocks throughout the algorithm's execution. To

cope with this problem, we show that these blocks can be maintained using THE

more complicated forest representation from Section 3.1, and we de�ne a set of

suitable operations on this representation in order to re�ne and split blocks. We

believe that our forest representation of the 2-vertex-connected blocks of a digraph

can be of independent interest.

• Second, in Chapter 2 we used a properly de�ned canonical decomposition of the input

digraph G, in order to obtain smaller auxiliary digraphs (not necessarily subgraphs

of G) that maintain the original 2-edge-connected blocks of G. A key property of

this decomposition was the fact that any vertex in an auxiliary graph Gr is reachable

from a vertex outside Gr only through a single strong bridge. In the computation

of the 2-vertex-connected blocks, we have to decompose the graph according to

strong articulation points, and so the above crucial property is completely lost. To

overcome this problematic issue, we need to design and to implement e�ciently a

di�erent and more sophisticated decomposition.

• Third, di�erently from 2-edge connectivity, 2-vertex connectivity in digraphs is

plagued with several degenerate special cases, which are not only more tedious

but also more cumbersome to deal with. For instance, the algorithm in Section 2.4

exploits implicitly the property that two vertices v and w are 2-edge-connected if

and only if the removal of any edge leaves v and w in the same strongly connected

component. Unfortunately, this property no longer holds for 2-vertex connectivity,

as for instance two mutually adjacent vertices are always left in the same strongly

connected component by the removal of any other vertex, but they are not neces-

sarily 2-vertex-connected. To handle this more complicated situation, we introduce

the notion of vertex-resilient blocks and prove some useful properties about the

vertex-resilient and 2-vertex-connected blocks of a digraph.

Another di�erence with Chapter 2 is that now we are able to provide a witness for two

vertices not being 2-vertex-connected. This approach can be applied to provide a witness
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Algorithm SimpleVRB: Computation of the vertex-resilient blocks of a

strongly connected digraph G = (V,E)

Step 1: Compute the strong articulation points of G.

Step 2: Initialize the current set of blocks as B = {V }. (Start from the trivial set

containing only one block.)

Step 3: For each strong articulation point x do:

Step 3.1: Compute the strongly connected components S1, . . . , Sk of G \ x. Let
S be the partition of V \ x de�ned by the strongly connected components

Si.

Step 3.2: Execute refine(B,S, x).

Figure 3.3: Algorithm SimpleVRB

for two vertices not being 2-edge-connected, thus extending the result in 2.

3.3 A simple algorithm

Algorithm SimpleVRB, illustrated in Figure 3.3, is an immediate application of the char-

acterization of the vertex-resilient blocks in terms of strong articulation points. Let u and

v be two distinct vertices. We say that a strong articulation point x separates u from v if

all paths from u to v contain x. In this case u and v belong to di�erent strongly connected

components of G \ x. This observation implies that we can compute the vertex-resilient

blocks by computing the strongly connected components of G \ x for every strong artic-

ulation point x. To do this e�ciently we de�ne an operation that re�nes the currently

computed blocks. Let B be a set of blocks, let S be a partition of a set U ⊆ V , and let x

be a vertex not in U .

refine(B,S, x): For each block B ∈ B, substitute B by the sets B ∩ (S ∪ {x}) of size at
least two, for all S ∈ S.

In Section 3.6, where we will compute the 2-vertex-connected blocks from the vertex-

resilient blocks and the 2-edge-connected blocks, we will use the notation refine(B,S) as

a shorthand for refine(B,S, x) with x = null .

Lemma 3.8. Let N be the total number of elements in all sets of B (N =
∑

B∈B |B|),
and let K be the number of elements in U . Then, the operation refine(B,S, x) can be

executed in O(N +K) time.

Proof. A simple way to achieve the claimed bound is to number the sets of the partition

S, each with a distinct integer id in the interval [1, K]. Consider a block B. Each element
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v ∈ B is assigned a label that is equal to the id of the set S ∈ S that contains v if v ∈ U ,
and zero otherwise. Then, the computation of the sets B ∩ (S ∪{x}) for all S ∈ S can be

done in O(|B|) time with bucket sorting.

Lemma 3.9. The block graph F of the set of blocks B maintained by algorithm SimpleVRB

is a forest throughout the execution of the algorithm.

Proof. The lemma follows by induction on the number of refine operation executed. Ini-

tially, B contains a single block V , so F is a forest. For the induction step, consider an

execution of refine(B,S, x). Let B be a block of B that is split into blocks B1, B2, . . . , Bl

as a result of this operation. Let T be the tree of F that contains B before the re�ne

operation. We can view T as being rooted at some arbitrary vertex r ∈ V . Let u be the

parent of B in T , and let v1, v2, . . . , vδ be the children of B. Suppose �rst that x is not

a child of B. Then, since S is a partition, each child vi of B is contained in at most one

new block Bj. Moreover, if u = x then u will be the parent of all blocks B1, B2, . . . , Bl

after the operation. Otherwise, if u 6= x, then u is also contained in at most one new

block Bj that will remain in T with parent u, and the rest of the new blocks will be

detached from T . Finally, suppose that x is a child of B. Then x is contained in all new

blocks B1, B2, . . . , Bl, but at most one of these new blocks contains u. If such a block

Bj ⊇ {u, x} exists, then Bj is the new parent of x, and all other blocks Bi 6= Bj become

children of x. Thus, in all cases F remains a forest.

Lemma 3.10. Algorithm SimpleVRB runs in O(mp∗) time, where p∗ is the number of

strong articulation points of G. This is O(mn) in the worst case.

Proof. The strong articulation points of G can be computed in linear time by [22]. In

each iteration of Step 3, we can compute the strongly connected components of G \ x in

linear time [33]. As we discover the i-th strongly connected component, we assign label

i (i ∈ {1, . . . , n}) to the vertices in Si. By Lemma 3.9, the block graph corresponding to

the set of blocks B that the algorithm maintains is a forest. Hence, by Lemma 3.4, B has

at most n− 1 blocks, and by Lemma 3.5, the total number of elements in all blocks is at

most 2n− 2. So, by Lemma 3.8, each iteration of Step 3 takes O(n) time. This yields the

desired O(mp∗) running time, where p∗ is the number of strong articulation points of G.

Since a digraph may have up to n strong articulation points, this is O(mn) in the worst

case.

3.4 Linear-time algorithm

We will show how to obtain a faster algorithm by using dominator trees and auxiliary

graphs, as we did in the computation of the 2-edge-connected blocks in Chapter 2. As

already mentioned, auxiliary graphs need to be de�ned in a substantially di�erent way,

which complicates several technical details.
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As a warm up, �rst consider the computation of VRB(v), i.e., the vertex-resilient

blocks that contain a speci�c vertex v. Consider the �ow graph G(v) with start vertex v

and its reverse digraph GR(v), obtained after reversing edge directions. Let w be a vertex

other than v. Clearly, v and w are vertex-resilient if and only if v is the only proper

dominator of w in both G(v) and GR(v), i.e., d(w) = v and dR(w) = v. Now let u be a

sibling of w in both D(v) and DR(v). The fact that dR(w) = v and d(u) = v implies that

for any vertex x ∈ V \ {v, w, u} there is path from w to u through v that avoids x. So

w and u are in a common vertex-resilient block that contains v if and only if they lie in

the same strongly connected component of G \ v. This observation implies the following

linear-time algorithm to compute the vertex-resilient blocks that contain v. Compute the

dominator trees D(v) and DR(v) of G(v) and GR(v) respectively. Let C(v) (resp., CR(v))

be the set of children of v in D(v) (resp., DR(v)). Set U = C(v)∩CR(v) and initialize the

set of blocks B = {U}. Compute the strongly connected blocks S1, S2, . . . , Sk of G\v. Let
S be the set that contains the nonempty restrictions of the Si sets to U , i.e., S contains

the nonempty sets Si ∩ U . Finally, execute refine(B,S, v).

Note that all the vertex-resilient blocks can be computed in O(mn) time by applying

the above algorithm to all vertices v. To avoid the repeated applications of this algorithm

we develop a new concept of auxiliary graphs for 2-vertex connectivity. Before doing that,

we state two properties regarding information that a dominator tree can provide about

vertex-resilient blocks and paths.

Lemma 3.11. Let G = (V,E) be a strongly connected digraph, and let s ∈ V be an

arbitrary start vertex. Any two vertices x and y are vertex-resilient only if they are

siblings in D(s) or one is the immediate dominator of the other in G(s).

Proof. Immediate.

Lemma 3.12. Let r be a vertex, and let v be any vertex that is not a descendant of r in

D(s). Then there is a path from v to r that does not contain any proper descendants of r

in D(s). Moreover, all simple paths from v to any descendant of r in D(s) contain r.

Proof. Let P be any path from v to r. (Such a path exists since digraph G is strongly

connected.) Let u be the �rst vertex on P such that u is a descendant of r. Then either

u = r or u is a proper descendant of r. In the �rst case the lemma holds. Suppose u is a

proper descendant of r. Since v is not a descendant of r in D(s), there is a path Q from

s to v in G that does not contain r. Then Q followed by the part of P from v to u is a

path from s to u that avoids r, a contradiction.

3.4.1 Auxiliary graphs

As in Chapter 2, auxiliary graphs are a key concept in our algorithm that provides a

decomposition of the input digraph G into smaller digraphs (not necessarily subgraphs of

G) that maintain the original vertex-resilient blocks. In Chapter 2 we used a canonical

decomposition of the input digraph, in order to obtain auxiliary graphs that maintain
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the 2-edge-connected blocks. A key property of this decomposition was the fact that any

vertex in an auxiliary graph Gr is reachable from a vertex outside Gr only though a single

strong bridge. In the computation of the vertex-resilient blocks, however, we have to

decompose the input digraph according to strong articulation points, and thus the above

property is completely lost. To overcome this critical issue, we apply a di�erent and more

involved decomposition.

Let s be an arbitrarily chosen start vertex in G. Recall that we denote by G(s) the

�ow graph with start vertex s, by GR(s) the �ow graph obtained from G(s) after reversing

edge directions, by D(s) and DR(s) the dominator trees of G(s) and GR(s) respectively,

and by C(v) and CR(v) the set of children of v in D(s) and DR(s) respectively.

For each vertex r, let Ck(r) denote the level k descendants of r, i.e., C0(r) = {r},
C1(r) = C(r), etc. For each vertex r 6= s that is not a leaf in D(s) we build the auxiliary

graph Gr = (Vr, Er) of r as follows. The vertex set of Gr is Vr = ∪3k=0C
k(r) and it is

partitioned into a set of ordinary vertices V o
r = C1(r)∪C2(r) and a set of auxiliary vertices

V a
r = C0(r) ∪ C3(r). The auxiliary graph Gr results from G by contracting the vertices

in V \ Vr as follows. All vertices that are not descendants of r in D(s) are contracted

into r. For each vertex w ∈ C3(r), we contract all descendants of w in D(s) into w. See

Figure 3.4. We use the same de�nition for the auxiliary graph Gs of s, with the only

di�erence that we let s be an ordinary vertex. Also note that when we form Gs from

G, no vertex is contracted into s. In order to bound the size of all auxiliary graphs, we

eliminate parallel edges during those contractions.

Lemma 3.13. The auxiliary graphs Gr have at most 4n vertices and 4m + n edges in

total.

Proof. A vertex of G may appear in at most four auxiliary graphs. Therefore, the total

number of edges in all auxiliary graphs excluding type-(b) shortcut edges (u, v) with

u 6∈ Vr is at most 4m. A type-(b) shortcut edge (u, v) with u 6∈ Vr of Gr corresponds to a

unique vertex in C3(r), so there are at most n such edges.

Lemma 3.14. Let v and w be two vertices in Vr. Any path P from v to w in G has a

corresponding path Pr from v to w in Gr, and vice versa. Moreover, if v and w are both

ordinary vertices in Gr, then Pr contains a strong articulation point if and only if P does.

Proof. The correspondence between paths in G and paths in Gr follows from the de�nition

of the auxiliary graph. Next we prove the second part of the lemma. Let Pr be the path

in Gr that corresponds to a path P from v to w in G, where both v and w are ordinary

vertices in Gr. By the construction of the auxiliary graph, we have that if Pr contains a

strong articulation point then so does P . For the contraposition, suppose P contains a

strong articulation point x. Consider the following cases:

• x ∈ Vr. Then, by the construction of the auxiliary graph, we have x ∈ Pr.
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Figure 3.4: A strongly connected graph G, the dominator tree D(s) of �ow graph G(s),

the auxiliary graph H = Gr and the dominator tree DR
H(r) of the �ow graph HR(r).

(The edges of the dominator tree DR
H(r) are shown directed from child to parent.) The

auxiliary vertices of H are shown gray.

• x is a descendant of a vertex z ∈ C3(r). Vertex z is a strong articulation point since

it is either x or a proper descendant of x. Then, by Lemma 3.12, the part of P from

v to x contains z. So, Pr also contains z by the construction of the auxiliary graph.

• x is not a descendant of r. In this case, we have r 6= s. Since v and w are ordinary

vertices of Gr, C
1(r) is not empty and therefore r is a strong articulation point. By

Lemma 3.12, the part of P from x to w contains r. So, Pr also contains r by the

construction of the auxiliary graph.

Hence, in every case Pr contains a strong articulation point and the lemma follows.

Corollary 3.3. Each auxiliary graph Gr is strongly connected.
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Proof. Follows from the construction of Gr, Lemma 3.14, and the fact that G is strongly

connected.

The next lemma shows that auxiliary graphs maintain the vertex-resilient relation of

the original digraph.

Lemma 3.15. Let v and w be any two distinct vertices of G. Then v and w are vertex-

resilient in G if and only if they are both ordinary vertices in an auxiliary graph Gr and

they are vertex-resilient in Gr.

Proof. Suppose �rst that v or w is s. Without loss of generality assume v = s. Then

by Lemma 3.11 we have that w ∈ C1(r), so v and w are both ordinary vertices of Gs.

Now consider that v, w ∈ V \ s. From Lemma 3.11 we have that v and w belong in a set

C1(r) ∪ C2(r) so they are both ordinary vertices of Gr. Clearly if all paths from v to w

in Gr contain a common vertex (strong articulation point), then so do all paths from v

to w in G by Lemma 3.14. Now we prove the converse. Suppose all paths from v to w in

G contain a common vertex u. If u ∈ Vr then also all paths from v to w in Gr contain u

by the proof of Lemma 3.14. So suppose u 6∈ Vr. Then v is not an ancestor of w in D(s),

since otherwise there would be a path from v to w that avoids u.

First consider that u is a (proper) descendant of r in D(s). Since v is not an ancestor

of w in D(s), there is a vertex x ∈ C3(r) that is an ancestor of u. By Lemma 3.12, all

paths from v to u in G, and thus all paths from v to w, contain x. By Lemma 3.14 this

is also true for all paths from v to w in Gr.

Finally, if u is not a descendant of r, Lemma 3.12 implies that all paths from u to w

in G contain vertex r. Hence, all paths from v to w in G contain r, and so do all paths

from v to w in Gr by Lemma 3.14.

Now we specify how to compute all the auxiliary graphs Gr = (Vr, Er) in O(m + n)

time. Observe that the edge set Er contains all edges in G = (V,E) induced by the

vertices in Vr (i.e., edges (u, v) ∈ E such that u ∈ Vr and v ∈ Vr). We also add in Er the

following types of shortcut edges that correspond to paths in G. (a) If G contains an edge

(u, v) such that u 6∈ Vr is a descendant of r in D(s) and v ∈ Vr then we add the shortcut

edge (z, v) where z the is an ancestor of u in D(s) such that z ∈ C3(r). (b) If G contains

an edge (u, v) such that u but not v is a descendant of r in D(s) then we add the shortcut

edge (z, r) where z the nearest ancestor of u in D(s) such that z ∈ Vr (z = u if u ∈ Vr).
We note that we do not keep multiple (parallel) shortcut edges. See Figure 3.4. We use

the same de�nition for the auxiliary graph Gs of s, with the only di�erence that we let s

be an ordinary vertex. We also note that Gs does not contain type-(b) shortcut edges.

To construct the auxiliary graphs Gr = (Vr, Er) we need to specify how to compute

the shortcut edges of type (a) and (b). To do this e�ciently we need to test ancestor-

descendant relations in D(s). There are several simple O(1)-time tests of this relation [35].

The most convenient one for us is to number the vertices of D(s) from 1 to n in preorder,

and to compute the number of descendants of each vertex. Then, vertex v is a descendant
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of r if and only if pre(r) ≤ pre(v) < pre(r) + size(r), where, for any vertex x, pre(x)

and size(x) are, respectively, the preorder number and the number of descendants of x in

D(s).

Suppose (u, v) is an edge of type (a). We need to �nd the ancestor z of u in D(s)

such that z ∈ C3(r). We process all such arcs of Gr as follows. We create a list Ar that

contains the edges (u, v) of type (a), and sort Ar in increasing preorder of u. We create

a second list A′r that contains the vertices in C
3(r), and sort A′r in increasing preorder.

Then, the shortcut edge of (u, v) is (z, v), where z is the last vertex in the sorted list

A′r such that pre(z) ≤ pre(u). Thus the shortcut edges of type (a) can be computed

by bucket sorting and merging. In order to do this fast for all auxiliary graphs, we sort

all the lists at the same time as follows. First, we create a uni�ed list A containing the

triples (r, pre(u), v), for each type (a) edge (u, v) in the auxiliary graph Gr. Next we sort

A in increasing order of the two �rst elements. We also create a second list A′ with pairs

(r, pre(w)), where w ∈ C3(r), and sort the pairs in increasing order. Finally, we compute

the shortcut edges of each auxiliary graph Gr by merging the sorted sublists of A and A′

that correspond to the same root r. Then, the shortcut edge for the triple (r, pre(u), v)

is (z, v), where (r, pre(z)) is the last pair in the sorted sublist of A′ with root r such that

pre(z) ≤ pre(u).

Now we consider the edges of type (b). For each vertex w ∈ C3(r) we need to test

if there is an edge (u, v) in G such that u is a proper descendant of w and v is not a

descendant of r in D(s). In this case, we add in Gr the edge (w, r). To do this test

e�ciently, we assign to each edge (u, v) a tag t(u, v) which we set equal to the preorder

number of the nearest common ancestor of u and v in D(s). We can do this easily by using

the parent property and the O(1)-time test of the ancestor-descendant relation as follows:

t(u, v) = pre(u) if u is an ancestor of v in D(s), t(u, v) = pre(v) if v is an ancestor of u in

D(s), and t(u, v) = pre(d(v)) otherwise. At each vertex w 6= s in D(s) we store a label

`(w) which is the minimum tag of among the edges (w, v). Using these labels we compute

for each w 6= s in D(s) the values low(w) = min{`(v) | v is a descendant of w in D(s)}.
These computations can be done in O(m) time by processing the tree D(s) in a bottom-up

order. Now consider the auxiliary graph Gr. We process the vertices in C3(r). For each

such vertex w we add the shortcut edge (w, r) if low(w) < pre(r).

Lemma 3.16. We can compute all auxiliary graphs Gr in O(m) time.

We also describe an alternative way to compute the type (a) shortcut edges of the

auxiliary graphs, by replacing sorting with vertex contractions. To that end, we use a

disjoint set union data structure [36], which maintains a collection of disjoint sets, each

with a representative element, under three operations:

make-set(x): Create a new set {x} with representative x. Element x must be in no

existing set.

�nd(x): Return the representative element of the set containing element x.
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unite(x, y): Unite the sets containing elements x and y and give the new set the repre-

sentative of the old set containing x.

Using this data structure, we can compute the type (a) shortcut edges of all auxiliary

graphs in a single bottom-up pass of D(s). To initialize the sets, we perform make-set(v)

for every vertex v ∈ V . The unite operations are also executed in a bottom-up order,

and each such operation has the e�ect of contracting a vertex to its parent in D(s). The

details of these computations are as follows. We visit all vertices r in a bottom-up order

of D(s), and compute the type (a) shortcut edges of the corresponding auxiliary graph

Gr = (Vr, Er). To do this, we process the edges entering each vertex v ∈ Vr. For each

such edge (u, v) we compute z = find(u). If z 6= v and z ∈ Vr then (z, v) is a type (a)

shortcut edge of Gr. The former condition means that u is not a descendant of v, while

the second condition can only be violated for v = r. After we have processed all edges

entering Vr, we execute unite(d(v), v) for each vertex v ∈ C3(s). This construction runs

O(m) time plus the time for n − 1 unite operations and, by Lemma 3.13, at most 4m

�nd operations. If unite and �nd are implemented using compressed trees with balanced

linking [36], the total time for these disjoint set union operations is O(mα(m,n)). Since

the set of unite operations is known in advance we have an instance of the static tree

disjoint set union problem, which is solvable in O(m) time on a RAM [10].

3.4.2 The algorithm

Our linear-time algorithm FastVRB is illustrated in Figure 3.5. It uses two levels of

auxiliary graphs and applies one iteration of Algorithm SimpleVRB for each auxiliary graph

of the second level. The algorithm uses di�erent dominator trees, and applies Lemma 3.11

in order to identify the vertex-resilient blocks. Since di�erent dominator trees may de�ne

di�erent blocks (which by Lemma 3.11 are supersets of the vertex-resilient blocks), we

will use an operation that we call split to combine the di�erent blocks.

We begin by computing the dominator tree D(s) for an arbitrary start vertex s. For

any vertex v, we let Ĉ(v) denote the set containing v and the children of v in D(s), i.e.,

Ĉ(v) = C(v) ∪ {v}. Lemma 3.11 gives an initial division of the vertices into blocks that

are supersets of the vertex-resilient blocks. Speci�cally, the vertex-resilient blocks that

contain v are subsets of Ĉ(v) or Ĉ(d(v)) (for v 6= s).

During the course of the algorithm, each vertex v becomes associated with a set of

blocks B(v) that contain v, which are subsets of Ĉ(v) and Ĉ(d(v)) if v 6= s. The blocks are

re�ned by applying the refine operation of Section 3.3 and operation split that we de�ne

next, and at the end of the algorithm each set of blocks B(v) will be equal to VRB(v).

Let B be a block and T be a rooted tree with vertex set V (T ) ⊇ B. For any vertex

v ∈ V (T ), let ĈT (v) be the set containing v and the children of v in T .

split(B, T ): Return the set that consists of the blocks B ∩ ĈT (v) of size at least two, for

all v ∈ V (T ).
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Algorithm FastVRB: Linear-time computation of the vertex-resilient blocks

of a strongly connected digraph G = (V,E)

Step 1: Choose an arbitrary vertex s ∈ V as a start vertex. Compute the dominator

tree D(s). For any vertex v, let Ĉ(v) be the set containing v and the children

of v in D(s). Initialize the block forest F by associating block Ĉ(v) with every

vertex w ∈ Ĉ(v), for all vertices v that are not a leaves in D(s).

Step 2: Compute the auxiliary graphs Gr for all vertices r that are not leaves in D(s).

Step 3: Process the vertices of D(s) in bottom-up order. For each auxiliary graph

H = Gr with r not a leaf in D(s) do:

Step 3.1: Compute the dominator tree T = DR
H(r).

Step 3.2: Compute the set B of blocks that contain vertices in C(r).

Step 3.3: For each block B ∈ B execute split(B, T ).

Step 3.4: Compute the auxiliary graphs HR
q for all vertices q that are not leaves

in T .

Step 3.5: For each auxiliary graph HR
q with q not a leaf do:

Step 3.5.1: Compute the set Bq of blocks that contain at least two ordinary
vertices in HR

q .

Step 3.5.2: Compute the set S of the strongly connected components of

HR
q \ q.

Step 3.5.3: Re�ne the blocks in Bq by executing refine(Bq,S, q).

Figure 3.5: Algorithm FastVRB

Lemma 3.17. Let N be the number of vertices in V (T ). Then, the operation split(B, T )

can be executed in O(N) time.

Proof. We number the vertices of T in preorder. Let pre(v) be the preorder number of

v ∈ V (T ). Let t(v) be the parent of v 6= r in T , where r is the root of T . We associate

each vertex v 6= r in B with two labels `1(v) = pre(t(v)) and `2(v) = pre(v), and create

two corresponding pairs 〈`1(v), v〉 and 〈`2(v), v〉. Also, if r ∈ B, we associate r with one

label `2(r) = pre(r), and create a corresponding pair 〈`2(r), r〉. Each block created by the

split operation consists of a set of at least two vertices v ∈ B that are associated with a

speci�c label. We can �nd these blocks by sorting the pairs 〈`j(v), v〉 by label, which can

be done in O(N) time with bucket sort.

Lemma 3.18. The block graph F of the set of blocks B maintained by algorithm FastVRB

is a forest throughout the execution of the algorithm.
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Proof. We describe how a split operation can be simulated by a sequence of refine op-

erations. The result then follows from Lemma 3.9. Consider the split(B, T ) operation

for a block B and a rooted tree T with vertex set V (T ) = {v1, v2, . . . , vδ} ⊇ B. For any

vertex vi ∈ V (T ), we let Vi be the set of descendant of vi in T . We can achieve the e�ect

of split(B, T ) by executing a sequence of δ refine operations. The i-th operation in this

sequence is refine(Bi−1,Si, vi), where Bi−1 is the set of blocks computed by the �rst i− 1

operations, and Si is the partition of V (T ) \ vi formed by the sets Vi \ vi and V (T ) \ Vi.
Initially we set B0 = {B}. This sequence computes exactly the blocks B ∩ ĈT (vi) of size

at least two, for all vi ∈ V (T ).

At a high level, the algorithm begins with a �coarse� block tree, induced by the Ĉ(v)

sets of D(s), which is then re�ned by the blocks de�ned from the dominator trees of the

auxiliary graphs. An example of this process is shown in Figure 3.6. The �nal vertex-

resilient block forest is then computed by considering the strongly connected components

of the second level auxiliary graphs, after removing their designated start vertex. The

algorithms need to keep track of the blocks that contain a speci�c vertex, and, conversely,

of the vertices that are contained in a speci�c block. To facilitate this search we explicitly

store the adjacency lists of the current block forest F . Recall that F is bipartite, so the

adjacency list of a vertex v stores the blocks that contain v, and the adjacency list of a

block node B stores the vertices in B. Initially F contains one block for each set Ĉ(v), for

all vertices v that are not leaves in D(s). These blocks are later re�ned by executing the

split and refine operations, which by Lemmas 3.9 and 3.18 maintain the invariant that F

is a forest. This fact implies that Lemma 3.5 holds, so the total number of vertices and

edges in F is O(n). So when we execute a split or a refine operation we can update the

adjacency lists of F , while maintaining the bounds given in Lemmas 3.8 and 3.17.

Lemma 3.19. Algorithm FastVRB is correct.
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Proof. Let u and v be any vertices. If u and v are vertex-resilient in G, then by Lemma

3.15 they are vertex-resilient in both auxiliary graphs of G and Gr that contain them as

ordinary vertices. This implies that the algorithm will correctly include them in the same

block in Step 1 and will not separate them in Steps 3.3 and 3.5. So suppose that u and

v are not vertex-resilient. Then, without loss of generality, we can assume that all paths

from u to v contain a common strong articulation point. Thus, d(v) 6= u. We argue that

all the blocks that contain u and all the blocks that contain v will be separated in some

step of the algorithm.

First we observe that u and v can appear together in at most one of the blocks

constructed in Step 1. Also, u and v can remain in at most one block after each split

operation (u and v can have at most one identical label `i(u) = `j(v)). So suppose that u

and v are still contained in one common block just before the execution of Step 3.5. We

will show that u and v will be separated after the refine operation executed in Step 3.5.3.

Since u and v were not separated by a split operation, they are either siblings or one is

the parent of the other in DR
H(r). Also, since d(v) 6= u we have the following cases.

(a) d(u) = v. Then u and v are both ordinary vertices of the auxiliary graph H = Gr

with r = d(v). Lemma 3.15 implies that Gr contains a strong articulation point x that

separates u from v. We argue that x is a proper ancestor of u in DR
H(r). If not, then HR

contains a path PR from r to u that avoids x. Since d(v) = r, H contains a path Q from

r to v that avoids x. Thus P ·Q is a path in H from u to v that avoids x, a contradiction.

Now we claim that q = dRH(u) is also a strong articulation point that separates u from v.

Suppose the claim is false. Then x 6= q, so x is a proper ancestor of q in DR
H(r). Let P

be a path from u to v that avoids q. Then x is on P since x separates u from v. Let Px
be the part of P from u to x. Also, since x is a proper ancestor of q in DR

H(r), HR has a

path QR from r to x that avoids q. Then Px ·Q is a path in H from u to r that avoids q, a

contradiction. The claim implies that u and v are located in di�erent strongly connected

components of HR
q \ q, so they are contained in di�erent blocks computed in Step 3.5.3.

(b) d(v) = d(u) = r. Then u and v are both ordinary vertices of the auxiliary graph

H = Gr. Lemma 3.15 implies that Gr contains a strong articulation point x that separates

u from v. By the same arguments as in case (a), it follows that q = dRH(u) is a strong

articulation point that separates u from v. So again u and v will be located in di�erent

blocks after Step 3.5.3.

Lemma 3.20. Algorithm FastVRB runs in O(m) time.

Proof. We account for the total time spent on each step that Algorithm FastVRB executes.

Step 1 takes O(m) time by [3], and Step 2 takes O(m) time by Lemma 3.16. From Lemma

3.13 we have that the total number of vertices and the total number of edges in all auxiliary

graphs H of G are O(n) and O(m) respectively. Then, again by Lemma 3.13, the total

size (number of vertices and edges) of all auxiliary graphs HR
q for all H, computed in

Step 3.4, is still O(m) and they are also computed in O(m) total time by Lemma 3.16.

Now consider the split operations. All these operations that occur during Step 3.3 for a

speci�c auxiliary graph Gr operate on the same tree T , which can be preprocessed once,
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as in Lemma 3.17, for all split operations. Therefore, the total preprocessing time for all

split operations is O(n). Excluding the preprocessing time for T , a split(B, T ) operation

takes time proportional to the number of vertices in B. Therefore all split operations take

O(n) time in total by Lemmas 3.5 and 3.17. In Step 3.5.1 we examine the adjacency lists

of the ordinary vertices v ∈ HR
q and �nd the corresponding blocks that contain at least

such two ordinary vertices. Then we examine the adjacency lists of each such block. So,

the adjacency lists of each vertex v and each block that contains v can be examined at

most three times. Hence, Step 3.5.1 takes O(n) time in total. Finally, Steps 3.5.2 and

3.5.3 take O(m) time in total by [33] and Lemmas 3.5 and 3.8.

3.5 Queries

Algorithm FastVRB computes the vertex-resilient blocks of the input digraph G and stores

them in the block forest F of Section 3.1, which makes it straightforward to test in constant

time if two query vertices v and w are vertex-resilient. Here we show that if v and w are

not vertex-resilient, then we can report a witness of this fact, that is, a strong articulation

point x such that v and w are not in the same strongly connected component of G \ x.
Using this witness, it is straightforward to verify in O(m) time that v and w are not

vertex-resilient; it su�ces to check that v is not reachable from w in G \ x or vice versa.

To obtain this witness, we would like to apply Lemma 3.6, but this requires v and w

to be in the same tree of the block forest. Fortunately, we can �nd the witness fast by

applying Lemmas 3.11 and 3.12, which use information computed during the execution of

FastVRB. We do that as follows. First consider the simpler case where v = s. If Lemma

3.11 does not hold for s and w in D(s) then d(w) 6= s is a strong articulation point

that separates s from w. Otherwise, s = d(w), and s and w are both ordinary vertices

in the auxiliary graph H = Gs. Then s and w cannot satisfy Lemma 3.11 in DR
H(s), so

dRH(w) is a strong articulation point that separates w from s. Now consider the case where

v, w ∈ V \ s. Suppose �rst that v and w do not satisfy Lemma 3.11 in D(s). Then d(w)

is not an ancestor of v or d(v) is not an ancestor of w (or both). Assume, without loss

of generality, that d(w) is not an ancestor of v. By Lemma 3.12, all paths from v to w

pass through d(w), so d(w) is a strong articulation point that separates v from w. On the

other hand, if Lemma 3.11 holds for v and w in D(s), then v and w are both ordinary

vertices in an auxiliary graph H = Gr, where r = d(v) if v = d(w), r = d(w) if w = d(v),

and r = d(v) = d(w) otherwise. By Lemma 3.15, v and w are not vertex-resilient in H.

If they violate Lemma 3.11 for DR
H(r) then we can �nd a strong articulation point that

separates them as above. Finally, assume that Lemma 3.11 holds for v and w in DR
H(r).

Now v and w are both ordinary vertices in an auxiliary graph HR
q . From the proof of

Lemma 3.19 we have that q = dRH(v) or q = dRH(w) and that q is a strong articulation

point that separates v and w.

All the above tests can be performed in constant time. It su�ces to store the dominator

tree D(s) of G(s), and the dominator trees DR
H(r) of all auxiliary graphs HR = GR

r . The
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space required for these data structures is O(n) by Lemma 3.13.

Theorem 3.1. Let G be a digraph with n vertices and m edges. We can compute the

vertex-resilient blocks of G in O(m+ n) time and store them in a data structure of O(n)

space. Given this data structure, we can test in O(1) time if any two vertices are vertex-

resilient. Moreover, if the two vertices are not vertex-resilient, then we can report in O(1)

time a strong articulation point that separates them.

3.6 Computing the 2-vertex-connected blocks

We can compute the 2-vertex-connected blocks of the input digraph G = (V,E) by apply-

ing Corollary 3.2 as follows. Given the vertex-resilient blocks B and the 2-edge-connected

blocks S of G, we simply execute refine(B,S). This takes O(n) time by Lemma 3.8. Also,

since the 2-vertex-connected blocks have a block forest representation, we can test if two

given vertices are 2-vertex-connected in O(1) time as described in Section 3.1.

If we only wish to answer queries of whether two vertices v and w are 2-vertex-

connected, without computing explicitly the 2-vertex and the 2-edge-connected blocks,

then we can use a simpler alternative, as suggested by Lemma 3.7. First, we test if v

and w are vertex-resilient in O(1)-time as in Section 3.5, and if they are not, then we can

report a strong articulation point that separates them. If, on the other hand, v and w

are vertex-resilient then we need to check if G contains (v, w) or (w, v) as a strong bridge.

We can do this easily using the same information as in Section 3.5, namely the dominator

tree D(s) of G(s), and the dominator trees DR
H(r) of all auxiliary graphs HR = GR

r . For

instance, if (v, w) is a strong bridge in G, then it will appear as an edge in one of the

dominator trees. Therefore, it su�ces to mark the edges of dominator trees that are

strong bridges, and then check if v is the parent of w or w is the parent of v in D(s) or

in DR
H(r), where H = Gr is the auxiliary graph of G such that r = d(v) if v = d(w),

r = d(w) if w = d(v), and r = d(v) = d(w) otherwise.

Theorem 3.2. Let G be a digraph with n vertices and m edges. We can compute the

2-vertex-connected blocks of G in O(m + n) time and store them in a data structure of

O(n) space. Given this data structure, we can test in O(1) time if any two vertices are

2-vertex-connected. Moreover, if the two vertices are not 2-vertex-connected, then we can

report in O(1) time a strong articulation point or a strong bridge that separates them.

3.7 Sparse certi�cate for the vertex-resilient blocks and the 2-

vertex-connected blocks

Here we show how to extend Algorithm FastVRB so that it also computes in linear time

a sparse certi�cate for the vertex-resilient and the 2-vertex-connected relations. That

is, we compute a subgraph C(G) of the input graph G that has O(n) edges and main-
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tains the same vertex-resilient and 2-vertex-connected blocks as the input graph. We can

achieve this by applying the same approach we used in Section 2.5 for computing a sparse

certi�cate for the 2-edge-connected blocks.

As throughout the Chapter we can assume without loss of generality that G is strongly

connected, in which case subgraph C(G) will also be strongly connected. The certi�cate

uses the concept of independent spanning trees [16]. A spanning tree T of a �ow graph

G(s) is a tree with root s that contains a path from s to v for all vertices v. Two spanning

trees B and R rooted at s are independent if for all v, the paths from s to v in B and

R share only the dominators of v. Every �ow graph G(s) has two such spanning trees,

computable in linear time [16]. Moreover, the computed spanning trees are maximally

edge-disjoint, meaning that the only edges they have in common are the bridges of G(s).

During the execution of Algorithm FastVRB, we maintain a list (multiset) L of the

edges to be added in C(G). The same edge may be inserted into L multiple times, but the

total number of insertions will be O(n). Then we can use radix sort to remove duplicate

edges in O(n) time. We initialize L to be empty. During Step 1 of Algorithm FastVRB we

compute two independent spanning trees, B(G(s)) and R(G(s)) of G(s) and insert their

edges into L. Next, in Step 3.1 we compute two independent spanning trees B(HR(r))

and R(HR(r)) for each auxiliary graph HR(r). For each edge (u, v) of these spanning

trees, we insert a corresponding edge into L as follows. If both u and v are ordinary

vertices in HR(r), we insert (u, v) into L since it is an original edge of G. Otherwise,

u or v is an auxiliary vertex and we insert into L a corresponding original edge of G.

Such an original edge can be easily found during the construction of the auxiliary graphs.

Finally, in Step 3.5, we compute two spanning trees for every connected component Si of

each auxiliary graph HR
q \ q as follows. Let HSi

be the subgraph of Hq that is induced by

the vertices in Si. We choose an arbitrary vertex v ∈ Si and compute a spanning tree of

HSi
(v) and a spanning tree of HR

Si
(v). We insert in L the original edges that correspond

to the edges of these spanning trees.

Lemma 3.21. The sparse certi�cate C(G) has the same vertex-resilient blocks and 2-

vertex-connected blocks as the input digraph G.

Proof. We �rst argue that the execution of Algorithm FastVRB on C(G) and produces the

same vertex-resilient blocks as the execution of Algorithm FastVRB on G. The correctness

of Algorithm FastVRB implies that it produces the same result regardless of the choice of

start vertex s. So we assume that both executions choose the same start vertex s. We will

refer to the execution of Algorithm FastVRB with input G (resp. C(G)) as FastVRB(G)

(resp. FastVRB(C(G))).

First we note that C(G) is strongly connected since it contains a spanning tree of

G(s) and a spanning tree for the reverse of each auxiliary graph Gr. Moreover, the fact

that C(G) contains two independent spanning trees of G implies that G and C(G) have

the same dominator tree with respect to the start vertex s that are computed in Step 1.

Hence, the auxiliary graphs computed in Step 2 of Algorithm FastVRB have the same sets

of ordinary and auxiliary vertices in both executions FastVRB(G) and FastVRB(C(G)).
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Hence, Step 3.1 computes the same dominator trees DH(r) and DR
H(r) in both executions,

and therefore Steps 3.2 and 3.3 compute the same blocks. The same argument as in Steps

1 and 2 implies that both executions FastVRB(G) and FastVRB(C(G)) compute in Step

3.4 auxiliary graphs HR
q with the same sets of ordinary and auxiliary vertices. Finally, by

construction, the strongly connected components of each auxiliary graph HR
q \ q are the

same in both executions of FastVRB(G) and FastVRB(C(G)).

We conclude that FastVRB(G) and FastVRB(C(G)) compute the same vertex-resilient

blocks as claimed. Next, observe that since the independent spanning trees computed in

Steps 1 and 3.1 of the extended version of FastVRB are maximally edge-disjoint, C(G)

maintains the same strong bridges as G. Then, by Corollary 3.2, C(G) also has the same

2-vertex-connected blocks as G.
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Chapter 4

Experimental evaluation

4.1 Introduction

4.2 Overview of algorithms

4.2.1 Computing 2-edge-connected components

4.2.2 Computing 2-vertex-connected components

4.3 Empirical analysis

4.3.1 2-connectivity structure of the considered digraphs

4.3.2 Vertex-resilient blocks

4.3.3 2-vertex-connected components

4.3.4 2-edge-connected blocks

4.3.5 2-edge-connected components

4.1 Introduction

In this Chapter we consider the computation of the 2-edge- and 2-vertex-connected blocks

and components of a digraph in practice, and present e�cient implementations of the al-

gorithms introduced in this work, and also compare them to known algorithms [6, 24].

We also provide a new O(mn)-time algorithm for computing the 2-vertex-connected com-

ponents of a digraph, that re�nes the dominator tree division used by Jaberi [24], and

a simple O(mn)-time algorithm for computing the 2-edge-connected components of a di-

graph. We evaluate the e�ciency of our algorithms experimentally on large digraphs

taken from a variety of application areas. To the best of our knowledge, this is the �rst

empirical study for these problems. Our extensive experimental study sheds light on the

relative di�culty of computing various notions of 2-connectivity in directed graphs. More
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speci�cally, we compare the performance of the linear-time algorithms for computing the

2-edge- and 2-vertex-connected blocks of a digraph with simpler algorithms that iterate

over the strong articulation points and strong bridges of the digraph. We also consider

the computation of the 2-vertex-connected components of a digraph and compare the

performance of our new algorithm and the algorithms of Erusalimskii and Svetlov [6] and

Jaberi [24]. Our results show that algorithms that apply a dominator-tree-based division

of the input digraph perform well in practice and are more robust than their simpler com-

petitors. The experimental results also suggest that the 2-edge- and 2-vertex-connected

components of digraphs that arise in many practical applications can be found e�ciently,

despite the fact that the theoretically asymptotic bound of the algorithms we considered

is O(mn).

4.2 Overview of algorithms

In this section we overview the algorithms that were implemented for our experimental

study, which are briefed in Table 4.1. To compute the 2-edge-connected blocks, we im-

plemented the algorithms Simple2ECB and Fast2ECB that were presented in Chapter 2.

We also implemented a fast algorithm that computes a sparse certi�cate for the 2-edge-

connected blocks, i.e., a subgraph of the input graph that has O(n) edges and maintains

the same 2-edge-connected blocks as the input graph. This certi�cate is produced by ex-

tending Fast2ECB with the use of independent spanning trees [16], as detailed in Chapter

2. We refer to the resulting algorithm as SC2ECB.

We computed the vertex-resilient blocks by implementing algorithms Simple2VRB and

Fast2VRB that we developed in Chapter 3. As previously mentioned, the vertex-resilient

blocks are at the heart of the computation of the 2-vertex-connected blocks of a digraph:

indeed, the 2-vertex-connected blocks of a digraph can be obtained by combining the

computation of the vertex-resilient blocks and the computation of the 2-edge-connected

blocks. For this reason, in our experiments we did not consider explicitly algorithms

for computing 2-vertex-connected blocks. Similarly to the 2-edge-connectivity case, the

fast algorithm for vertex-resilient blocks (Fast2VRB) can be extended with the use of

independent spanning trees to obtain a sparse certi�cate for vertex-resilient and 2-vertex-

connected blocks. This was not considered in our experiments. Also, we did not include

the algorithms of Jaberi [23] for 2-edge- and 2-vertex-connected blocks because of their

large requirements in storage space.

To compute the 2-edge-connected components, we implemented a new simple algo-

rithm, called 2ECC, which repeatedly removes all strong bridges, and which will be de-

scribed in detail in Section 4.2.1. To compute the 2-vertex-connected components, we

implemented the algorithm by Erusalimskii and Svetlov [6], which we refer to as 2VCC-

ES, and the two algorithms by Jaberi [24] which we refer to as 2VCC-J1 and 2VCC-J2.

We also implemented a new algorithm, called 2VCC, which will be described in detail in

Section 4.2.2.

51



Algorithm Problem solved Technique Complexity Reference

Simple2ECB 2-edge-connected blocks Remove one strong bridge at a

time

O(mb) Section 2.2

Fast2ECB 2-edge-connected blocks Dominator-tree division and

auxiliary graphs

O(m+ n) Section 2.4

SC2ECB Sparse certi�cate for 2-

edge-connected blocks

Extend Fast2ECB using inde-

pendent spanning trees

O(m+ n) Section 2.5

SimpleVRB Vertex-resilient blocks Remove one strong articulation

point at a time

O(mp) 3

FastVRB Vertex-resilient blocks Dominator-tree division and

auxiliary graphs

O(m+ n) 3

2ECC 2-edge-connected compo-

nents

Repeatedly remove all strong

bridges

O(mn) Section 4.2.1

2VCC-ES 2-vertex-connected com-

ponents

Remove one vertex and the

edges that connect di�erent

strongly connected components

at a time

O(m2n) [6]

2VCC-J1 2-vertex-connected com-

ponents

Remove one strong articulation

point at a time

O(mn) [24]

2VCC-J2 2-vertex-connected com-

ponents

Dominator-tree division and in-

duced subgraphs

O(mn) [24]

2VCC 2-vertex-connected com-

ponents

Re�ned dominator-tree division

and induced subgraphs

O(mn) Section 4.2.2

Table 4.1: An overview of the algorithms considered in our experimental study. The worst-

case bounds refer to a digraph with n vertices, m edges, p strong articulation points, and

b strong bridges. Note that p ≤ n, b ≤ 2(n− 1).

It can be shown that the O(mn) bounds for all the 2-vertex- and 2-edge-connected

components algorithms are tight (see Figure 4.1). This implies that there is currently a

big gap between the O(m + n) time bound for computing the 2-connected blocks, and

the O(mn) time bound for computing the 2-connected components. For the latter prob-

lems, the main additional di�culty encountered is due to the fact that the deletion of

a strong articulation point (resp., a strong bridge) may cause other vertices to become

strong articulation points (resp., strong bridges) in the remaining graph, as in the exam-

ple considered in Figure 4.1. Very recently, and after this experimental study has been

conducted, Henzinger et al. [20] showed how to compute the 2-edge- and the 2-vertex-

connected components in O(n2) time using a hierarchical sparsi�cation technique [19].

We refer the interested reader to the references given in Table 4.1 for a complete de-

scription of the algorithms considered. Before describing in detail the new Algorithms

2VCC and 2ECC, we observe that all the algorithms shown in Table 4.1 are roughly based

on two di�erent approaches: repeatedly removing strong articulation points (or strong

bridges) and using dominator tree divisions. This will be brie�y discussed below.

52



s

    

 

 

    

s

    

    

s

   

   

s

  

  

s

 

 

Figure 4.1: An example that elicits the worst-case behavior of the algorithms that compute

the 2-vertex-connected components. The input digraph has only one strong articulation

point (shown in red), and its removal creates one new strong articulation point. This

process continues until only one vertex (s) remains. A similar example can be constructed

for the case of 2-edge-connected components.

As mentioned in the Section 1.2.3, there are several linear-time algorithms for comput-

ing the dominator tree of a digraph [1, 3, 4, 8, 9, 15]. Despite this fact, in our experiments

we used the simple version of the Lengauer-Tarjan algorithm [25] which runs in time

O(mα(n,m/n)) time, where α is a functional inverse of Ackermann's function [36]. We

use the simple version of the Lengauer-Tarjan algorithm since it was reported to run faster

in practice comparing to the other linear-time algorithms [7, 13, 14].

Vertex or edge removal. These algorithms remove one strong articulation point or

one (or more) strong bridge(s) at a time. After removing such vertices or edges, the algo-

rithms compute the strongly connected components of the remaining digraph, and update

the division of vertices into components or blocks. This category includes algorithms Sim-

ple2ECB, 2ECC, SimpleVRB, 2VCC-ES and 2VCC-J1. Note that a signi�cant di�erence

between the computation of 2-vertex-connected components and 2-edge-connected com-

ponents is that in the former we can only remove one strong articulation point (of the

current digraph) at a time, while in the latter we can remove all strong bridges (of the

current digraph) at once.

Dominator tree division. These are algorithms that use dominator trees to divide

the input digraph into smaller graphs that maintain the desired relation (2-vertex- or

2-edge-connected components or blocks). This category includes algorithms Fast2ECB,

SC2ECB, FastVRB, 2VCC-J2, and 2VCC. In the case of 2-vertex- or 2-edge-connected com-

ponents, we only need to consider paths that contain vertices in the same division, so we

use a dominator tree to divide the input digraph into induced subgraphs. For 2-vertex- or
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Algorithm 2ECC: Computation of the 2-edge-connected components of a

strongly connected digraph G = (V,E) by removing strong bridges

Step 1: Compute the set B of the strong bridges of G. If B is empty then return V .

(G is 2-edge-connected.)

Step 2: Compute the strongly connected components S1, . . . , Sk of G \B.

Step 3: For each strongly connected component Si do:

Step 3.1: Compute the digraph Gi induced by Si.

Step 3.2: Compute recursively the 2-edge-connected components of Gi.

Figure 4.2: Algorithm 2ECC

2-edge-connected blocks, we construct auxiliary graphs that take into account paths that

contain vertices in other divisions. These are formed by augmenting induced subgraphs

with auxiliary edges and vertices that correspond to such paths, as detailed in Chapters

2 and 3.

Finally, we note that algorithms 2ECC, 2VCC-J1, 2VCC-J2, and 2VCC are recursive.

4.2.1 Computing 2-edge-connected components

Here we describe a simple O(mn)-time algorithm that computes the 2-edge-connected

components of a strongly connected digraph G. Our algorithm 2ECC, described in Fig-

ure 4.2, applies the de�nition of the 2-edge-connected components in terms of strong

bridges, and uses the fact that the 2-edge-connected components are vertex-disjoint.

Lemma 4.1. Algorithm 2ECC is correct.

Proof. The algorithm clearly computes subgraphs of the input digraph G = (V,E) that

are 2-edge-connected. So we need to argue that each such subgraph is maximal. Let

C ⊆ V be the vertices in a 2-edge-connected component of G, which, by de�nition, is the

induced subgraph G(C) = (C,E(C)) of G, where E(C) = E ∩ (C × C). Since G(C) is

2-edge-connected it is strongly connected and contains no strong bridges. This implies

that Algorithm 2ECC does not remove any edge in E(C). Therefore, Algorithm 2ECC

does not partition G(C) into smaller subgraphs.

Lemma 4.2. Algorithm 2ECC runs in O(mn) time.

Proof. By [22, 33], each recursive call runs in time that is linear in the total size of the

input digraph. Since the 2-edge-connected components form a partition of the vertices,

the depth of the recursion is n, and the total size of all induced subgraphs in each recursion

level is O(m). The bound follows.
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Algorithm 2VCC: Computation of the 2-vertex-connected components of a

strongly connected digraph G = (V,E) via dominator trees

Step 1: Choose an arbitrary start vertex s ∈ V . Compute the dominator trees D(s)

and DR(s).

Step 2: If G \ s is strongly connected and d(v) = dR(v) = s, for all vertices v 6= s,

then return G. (G is 2-vertex-connected.)

Step 3: Compute the subgraphs G(u, v) of G with at least three vertices.

Step 4: For each subgraph G(u, v) with u 6= v do:

Step 4a: Compute the strongly connected components of G(u, v).

Step 4b: Compute recursively the 2-vertex-connected components of each

strongly connected component.

Step 5: For each subgraph G(v, v) do:

Step 5a: Compute the strongly connected components of G(v, v) \ v.

Step 5b: Process each strongly connected component S of G(v, v)\v as follows:
If there are two arcs from v to S and two arcs from S to v then compute

recursively the 2-vertex-connected components of the subgraph induced by

S∪{v}. Otherwise, compute recursively the 2-vertex-connected components

of the subgraph induced by S.

Figure 4.3: Algorithm 2VCC

4.2.2 Computing 2-vertex-connected components

In this section we describe a new algorithm that computes the 2-vertex-connected com-

ponents of a strongly connected digraph G. Algorithm 2VCC, which is a re�nement of

an algorithm by Jaberi [24], is illustrated in Figure 4.3. As Jaberi's algorithm, we use

the dominator tree of G(s), for an arbitrary start vertex s, to divide G into subgraphs

that contain all the 2-vertex-connected components of G. The division is based on the

following lemma, which is a restatement of a key lemma in [24]:

Lemma 4.3. Let G = (V,E) be a strongly connected digraph, and let s ∈ V be an

arbitrary start vertex. Any three vertices x, y and z (not necessarily distinct) belong to a

common 2-vertex-connected component Σ of G only if they are all siblings in D(s) or one

is the immediate dominator of the other two in G(s).

Let D(s) (resp., DR(s)) be the dominator tree of G(s) (resp., of the reverse digraph

GR(s)). We obtain a re�ned division of G into subgraphs using the dominator trees

D(s) and DR(s) concurrently. For any vertex v, let C(v) (resp. CR(v)) denote the set
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of children of v in D(s) (resp. DR(s)). Also, let d(v) (resp. dR(v)) be the parent of

v 6= s in D(s) (resp. DR(s)). For any pair of vertices u and v we identify the vertices in

C(u, v) = C(u) ∩CR(v). Also, if u = v or u ∈ CR(v) then we include u in C(u, v), and if

v ∈ C(u) then we include v in C(u, v). Let G(u, v) be the subgraph of G induced by the

vertices in C(u, v). We say that G(u, v) is an induced subgraph of G.

Lemma 4.4. Let x and y be any vertices in G such that they are in a 2-vertex-connected

component Σ of G. Then x and y are vertices of a subgraph G(u, v).

Proof. We apply Lemma 4.3 to G(s) and GR(s). Since x, y ∈ Σ, x and y are either siblings

in D(s), or d(x) = y or d(y) = x. Also x and y are either siblings in DR(s), or dR(x) = y

or dR(y) = x. Now consider the relation between x and y in the dominator trees D(s)

and DR(s). We have the following cases:

(i) x and y are siblings in both G(s) and GR(s). Then d(x) = d(y) and dR(x) = dR(y),

so {x, y} ⊆ C(d(x), dR(x)).

(ii) x and y are siblings in G(s) and dR(x) = y. Then x ∈ C(d(x), y). But since

y ∈ C(d(x)) we also have y ∈ C(d(x), y).

(iii) d(x) = y and dR(x) = y. Then x ∈ C(y, y), which, by de�nition, contains y.

(iv) d(x) = y and dR(y) = x. Since Σ has at least three vertices, consider a vertex

z ∈ Σ \ {x, y}. By Lemma 4.3, vertex z can be neither a sibling of y nor the parent

of y in D(s). So z must be a sibling of x in D(s). Similarly, we conclude that z is a

sibling of y in DR(s). Hence z ∈ C(y, x). But since y ∈ C(dR(x)) and x ∈ C(d(y)),

we also have x, y ∈ C(y, x).

The remaining cases are analogous (with the role of x and y interchanged), so the lemma

follows.

Algorithm 2VCC, as described in Figure 4.3, applies Lemma 4.4 and the above division

into subgraphs G(u, v).

Lemma 4.5. Algorithm 2VCC is correct.

Proof. Lemma 4.4 implies that every 2-vertex-connected component of G is a subgraph

of an induced subgraph G(u, v). Since each G(u, v) is a subgraph of G it cannot contain a

2-vertex-connected subgraph H that is not a subgraph of G. Therefore, the induced sub-

graphs G(u, v) maintain the same 2-vertex-connected components as the original digraph

G.

Next we bound the running time of our algorithm. First, we provide a bound on the

size of all induced subgraphs G(u, v).

Lemma 4.6. The induced subgraphs G(u, v) have at most 4n− 3 vertices and m edges in

total.
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Proof. Any vertex x 6= s appears in at most four sets C(u, v), namely C(x, x), C(d(x), dR(x)),

C(d(x), x), and C(x, dR(x)). Vertex s can only appear in C(s, s), so the total size of all

sets C(u, v) is at most 4n − 3. The bound on the total number of edges follows from

the claim that any two distinct vertices x and y can appear together in at most one

set C(u, v). To prove this claim, assume, without loss of generality, that y 6= d(x). (If

y = d(x), switch the role of x and y.) By the de�nition of C(u, v), one of the following

happens: (i) x and y are siblings in both D(s) and DR(s), (ii) d(y) = x = u and x and

y are siblings in DR(s), (iii) d(y) = x = u and dR(x) = y = v, or (iv) d(y) = dR(y) = x.

For any pair of vertices x and y at most one of the above cases applies, which proves the

claim.

Given the dominator trees D(s) and DR(s), we can compute all sets C(u, v) of size

at least three, as follows. We number the vertices in D(s) and DR(s) in preorder. Let

pre(v) (preR(v)) be the preorder number of a vertex v ∈ D(s) (DR(s)). We label each

vertex v with the pair
〈
pre(d(v)), preR(dR(v))

〉
. We can sort the labels lexicographically

in O(n) time by radix sort. Then we group the vertices with identical labels. If there is

at least one vertex with label
〈
pre(u), preR(v)

〉
we also test if d(v) = u, in which case we

include v in C(u, v), and test if dR(u) = v, in which case we include u in C(u, v). As we

discover the distinct labels
〈
pre(u), preR(v)

〉
we number the corresponding sets C(u, v)

in increasing order. We use these numbers in order to partition the adjacency list of each

vertex, which gives a representation of the G(u, v) subgraphs. The correctness of this

method follows by Lemma 4.4.

Lemma 4.7. We can compute all induced subgraphs G(u, v) with at least three vertices

in O(m+ n) time.

Lemma 4.8. Algorithm 2VCC runs in O(mn) time.

Proof. By [3, 33] and Lemma 4.7, each recursive call runs in time that is linear in the

size (number of vertices and edges) of the input digraph. The depth of the recursion is at

most n, and the total size of all subgraphs constructed in Step 3 in each recursion level is

O(m) by Lemma 4.6. The bound follows.

4.3 Empirical analysis

For the experimental evaluation we use the same graph datasets as in [14], shown in

Table 4.2, and process only the largest strongly connected component (SCC) of each

graph. We wrote our implementations in C++, using g++ v.4.6.4 with full optimization

(�ag -O3) to compile the code. We report the running times on a GNU/Linux machine,

with Ubuntu (12.04LTS): a Dell PowerEdge R715 server 64-bit NUMA machine with four

AMD Opteron 6376 processors and 128GB of RAM memory. Each processor has 8 cores

sharing a 16MB L3 cache, and each core has a 2MB private L2 cache and 2300MHz speed.

In our experiments we did not use any parallelization, and each algorithm ran on a single
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Dataset n m �le size δavg p b type

rome99 3.3k 8.8k 98k 2.64 0.8k 1.4k road network

p2p-gnutella25 5.1k 17.9k 199k 3.48 1.9k 2.1k peer2peer

Oracle-16k 10.4k 29,9k 320k 2.88 2.4k 12.4k memory pro�ling

s38584 16.3k 26.0k 321k 1.59 10.5k 16.4k circuit

web-NotreDame 48.7k 267k 3.4M 5.49 9.0k 31.1k web graph

soc-Epinions1 32.2k 442k 5.1M 13.74 8.1k 20.9k social network

USA-road-NY 264k 730k 11M 2.76 46.4k 105k road network

USA-road-BAY 321k 794k 12M 2.47 84.6k 197k road network

Amazon0302 241k 1.1M 17M 4.67 69.6k 73.3k prod. co-purchase

wiki-Talk 111k 1.4M 18M 12.93 14.8k 85.5k social network

web-Stanford 150k 1.5M 22M 10.47 20.2k 64.6k web graph

Amazon0601 395k 3.3M 48M 8.35 69.3k 83.9k prod. co-purchase

web-BerkStan 334k 4.5M 66M 13.50 53.6k 164k web graph

Oracle-4M 2.8M 8.4M 137M 2.95 1.0M 1.3M memory pro�ling

SAP-4M 4.0M 11.9M 181M 2.91 1.9M 4.4M memory pro�ling

Oracle-11M 6.4M 15.9M 261M 2.47 3.1M 6.9M memory pro�ling

SAP-11M 11.1M 36.3M 673M 3.26 4.9M 12.3M memory pro�ling

LiveJournal 3.8M 65.3M 1G 17.06 649k 1.3M social network

USA-road 23.9M 57.7M 1.1G 2.40 6.2M 14.5M road network

Table 4.2: Real-world graphs sorted by �le size; n is the number of vertices, m the number

of edges, and δavg is the average vertex degree; p and b denote, respectively, the number

of strong articulation points and strong bridges. All characteristics refer to the largest

SCC of each graph

core. We report CPU times measured with the getrusage function. All the running

times reported in our experiments were averaged over ten di�erent runs.

In addition to the running time for the algorithms of Table 4.1, we also report the

running time of the (simple) Lengauer-Tarjan algorithm for computing dominators, which

we refer to as LT. We use this as a baseline, since we can compute e�ciently both the strong

bridges and the strong articulation points of a digraph using dominators [22]. Moreover,

as another reference baseline, we provide the running time for executing a depth-�rst

search (DFS) traversal of the graphs. (We note that LT also uses DFS.)

4.3.1 2-connectivity structure of the considered digraphs

Tables 4.3 and 4.4 provide some statistics about the number and size of the 2-vertex-

and 2-edge-connected components and blocks of the digraphs in our collection, where the

size is measured as the number of vertices. We will use these data in order to interpret

the performance of the tested algorithms. Recall that a 2-edge- or a 2-vertex-connected

block has at least two vertices, while a 2-edge- or a 2-vertex-connected component has
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2-edge-connected blocks 2-edge-connected components

Graph Max Size Avg. Size # Max Size Avg. Size #

rome99 2543 2543 1 2255 566.5 4

p2p-gnutella25 3116 3116 1 − − 0

Oracle-16k 738 61.38 13 24 12 4

s38584 427 47.23 13 − − 0

web-NotreDame 14749 32.31 762 3780 35.32 481

soc-Epinions1 18046 260.89 70 17512 300.35 59

USA-road-NY 207128 299.08 710 207128 299.08 710

USA-road-BAY 212199 149.15 1501 212199 149.15 1501

Amazon0302 140200 24.57 7283 81423 12 12874

wiki-Talk 50335 8391.33 6 49503 16503 3

web-Stanford 58599 76.89 1224 21767 29.12 1708

Amazon0601 305850 87.75 3730 296281 75.14 4300

web-BerkStan 128156 64.4 2930 56166 27.84 4744

Oracle-4M 434386 1408.02 1192 64397 1560.86 535

SAP-4M 141521 39.59 5325 2501 15.1 1883

Oracle-11M 389352 18.98 44921 3591 10.22 44127

SAP-11M 751793 36.66 25774 6340 20.12 1479

LiveJournal 2931062 747.73 3950 2914807 779.16 3771

USA-road 16051070 158.7 105704 16051070 158.7 105704

Table 4.3: Size (maximum and average) and number of the 2-edge-connected blocks and

components. The size of a block or a component is measured as the number of its vertices.
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vertex-resilient blocks 2-vertex-connected blocks 2-vertex-connected components

Graph Max Size Av. Size # Max Size Av. Size # Max Size Av. Size #

rome99 2542 5.29 771 2542 1272.00 2 2249 453.39 5

p2p-gnutella25 3113 4.49 1246 3113 779.75 4 − − 0

Oracle-16k 581 2.24 2548 581 6.01 156 24 8.2 5

s38584 375 2.38 1378 375 12.07 53 − − 0

web-NotreDame 5381 3.07 19223 5381 8.78 3053 1462 19.53 847

soc-Epinions1 17560 3.41 12626 17560 53.12 349 17113 84.83 210

USA-road-NY 206871 5.94 53474 206871 273.73 776 206871 273.73 776

USA-road-BAY 211590 4.19 100513 211590 138.09 1622 211590 138.09 1622

Amazon0302 123592 4.11 74848 123592 13.83 13375 55414 7.81 19789

wiki-Talk 50187 2.93 53551 50187 438.75 115 49427 1768.39 28

web-Stanford 26194 3.91 40776 26194 12.19 7668 10893 16.41 2936

Amazon0601 287619 6.02 78139 287619 37.83 8784 276049 35.02 9340

web-BerkStan 64022 3.37 109112 64022 10.34 17984 29145 15.69 8104

Oracle-4M 129071 3.51 710717 129071 3.80 596741 64397 1560.86 535

SAP-4M 119712 2.64 271914 119712 8.71 26219 2501 15.1 1883

Oracle-11M 283036 2.45 1471583 283036 6.91 135601 3591 9.58 47430

SAP-11M 640932 3.04 752260 640932 8.31 124349 6340 20.12 1479

LiveJournal 2882722 5.39 862546 2882722 122.78 24219 2868808 153.7 19202

USA-road 16019892 4.24 7390323 16019892 148.80 112780 16019892 148.80 112780

Table 4.4: Size (maximum and average) and number of the vertex-resilient blocks and

the 2-vertex-connected blocks and components. The size of a block or a component is

measured as the number of its vertices.

at least three vertices. (A 2-edge-connected component may have only two vertices if

there are parallel edges.) As it can be seen from Tables 4.3 and 4.4, the size and number

of components and blocks varies, but for most digraphs the di�erence between the total

number and average size of the 2-edge-connected blocks and that of the 2-edge-connected

components is not too large. The same holds for the 2-vertex-connected blocks and

components. The vertex-resilient blocks, on the other hand, are much more numerous

than the 2-vertex-connected blocks and components, and consequently their average size

is smaller.

Note that, in particular, for the USA road networks (USA-road-NY, USA-road-BAY,

and USA-road), their 2-edge-connected blocks are identical to their 2-edge-connected

components, and, similarly, their 2-vertex-connected blocks are identical to their 2-vertex-

connected components. This is due to the fact the USA road networks in our data set are

essentially undirected graphs: for every edge (u, v), there is the opposite directed edge

(v, u) as well. As we will see later (see Tables 4.5 and 4.6), this has implications also

on the practical performance of our algorithms. Indeed, for the USA road networks the

simpler O(mn) algorithms (2VCC, 2ECC) for computing components run faster than the

more complicated O(m) algorithms (FastVRB, Fast2ECB) for computing blocks. This is

due to the fact that in the undirected road networks the simple algorithms (2VCC, 2ECC)

have a very small recursion depth, as it will be shown later (see Table 4.7).
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Figure 4.4: Vertex-resilient blocks. Running times, in seconds, and number of edges shown

in log scale.

Graph 2VCC-ES 2VCC-J1 2VCC-J2 2VCC SimpleVRB FastVRB DFS LT

rome99 10.71 2.88 0.07 0.04 0.64 0.02 0.01 0.01

p2p-gnutella25 10.78 12.86 0.06 0.03 2.78 0.04 0.01 0.01

Oracle-16k 30.85 0.23 0.02 0.02 5.38 0.08 0.01 0.01

s38584 24.25 2.70 0.03 0.02 29.62 0.22 0.01 0.01

web-NotreDame 1528.75 70.30 0.65 0.29 135.28 0.52 0.01 0.05

soc-Epinions1 1629.30 653.93 1.30 0.77 137.74 0.36 0.01 0.04

USA-road-NY 12052.07 13779.92 0.64 0.92 3225.83 2.65 0.03 0.16

USA-road-BAY 14134.73 16059.15 0.89 1.09 9401.70 2.73 0.05 0.18

Amazon0302 >12h 14514.38 8.17 7.51 >12h 2.81 0.07 0.27

wiki-Talk 18119.10 3567.23 3.52 2.84 >12h 0.60 0.05 0.19

web-Stanford >12h 910.86 4.22 2.14 >12h 2.76 0.06 0.22

Amazon0601 >12h 81021.47 17.33 13.91 >12h 4.40 0.15 0.51

web-BerkStan >12h 12025.61 5.50 6.22 >12h 4.13 0.12 0.40

Oracle-4M >12h 1055.93 49.78 8.53 >12h 33.61 0.34 1.60

SAP-4M >12h 244.37 16.29 9.86 >12h 60.02 0.46 2.17

Oracle-11M >12h 8494.18 154.65 16.48 >12h 80.98 0.61 3.06

SAP-11M >12h 21907.76 44.75 18.59 >12h 136.19 0.75 6.01

LiveJournal >12h >12h 757.21 491.47 >12h 72.35 3.22 16.20

USA-road >12h >12h 107.72 68.85 >12h 499.70 3.71 17.34

Table 4.5: Experimental comparison of algorithms for computing the 2-vertex-connected

components and the vertex-resilient blocks; running time are in seconds, codes running

longer than 12 hours were terminated.
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Figure 4.5: 2-vertex-connected components. Running times, in seconds, and number of

edges shown in log scale.

4.3.2 Vertex-resilient blocks

Here we compare the performance of two algorithms, SimpleVRB and FastVRB, for com-

puting the vertex-resilient blocks of a digraph. Figure 4.4 gives a plot (in log-log scale) of

the corresponding running times shown in Table 4.5. As it can be observed, SimpleVRB

is not competitive even for the smallest graphs in our data set. We also notice from

Figure 4.4 that FastVRB scales quite nicely with the graph size.

4.3.3 2-vertex-connected components

We evaluate the performance of four algorithms that compute the 2-vertex-connected

components of a digraph: the algorithm of Erusalimskii and Svetlov [6], 2VCC-ES, two

algorithms, 2VCC-J1 and 2VCC-J2, proposed by Jaberi [24], and our new algorithm, 2VCC,

described in Figure 4.3. The results are shown in the �rst four columns of Table 4.5.

As expected, 2VCC-ES is not a viable approach for large graphs. Algorithm 2VCC-J1

performs better than 2VCC-ES, but still it does not scale well with the graph size and it

is not competitive with the fastest algorithms. Algorithms 2VCC-J2 and 2VCC, on the

other hand, work well in practice, with the latter being the clear winner; 2VCC is faster

than 2VCC-J2 by a factor close to 2 on average. In fact for two graphs (Oracle-4M and

Oracle-11M) it performs signi�cantly better. This is due to the fact that 2VCC reduces

the recursion depth, sometimes substantially, by using the re�ned dominator-tree division,

and by treating the strongly connected components of the induced subgraphs in a more

e�cient way. We will investigate this behavior more closely later (see Table 4.7).

4.3.4 2-edge-connected blocks

Now we evaluate two algorithms, Simple2ECB and Fast2ECB, for computing the 2-edge-

connected blocks of a digraph. The results are shown in Table 4.6, and Figure 4.6 gives
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Graph Simple2ECB Fast2ECB SC2ECB 2ECC DFS LT

rome99 1.96 0.01 0.01 0.02 0.01 0.01

p2p-gnutella25 4.57 0.01 0.01 0.01 0.01 0.01

Oracle-16k 39.78 0.03 0.04 0.01 0.01 0.01

s38584 82.12 0.04 0.05 0.01 0.01 0.01

web-NotreDame 323.88 0.14 0.22 0.24 0.01 0.05

soc-Epinions1 409.58 0.17 0.32 0.34 0.01 0.04

USA-road-NY 16018.53 0.48 0.91 0.58 0.03 0.16

USA-road-BAY 24306.32 0.70 1.14 0.63 0.04 0.18

Amazon0302 >12h 0.59 1.66 3.44 0.07 0.27

wiki-Talk >12h 0.66 1.32 1.44 0.04 0.18

web-Stanford >12h 0.75 1.39 2.24 0.06 0.22

Amazon0601 >12h 1.78 3.82 4.98 0.15 0.51

web-BerkStan >12h 1.43 2.81 2.36 0.12 0.40

Oracle-4M >12h 7.30 11.05 2.78 0.34 1.60

SAP-4M >12h 19.02 24.50 5.26 0.46 2.17

Oracle-11M >12h 18.07 24.12 5.16 0.61 3.06

SAP-11M >12h 44.43 54.90 14.84 0.75 6.01

LiveJournal >12h 46.23 83.62 163.77 3.22 16.20

USA-road >12h 68.49 107.60 43.08 3.71 17.34

Table 4.6: Experimental comparison of algorithms for computing the 2-edge-connected

components and blocks; running time are in seconds, codes running longer than 12 hours

were terminated.
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Figure 4.6: 2-edge-connected blocks. Running times, in seconds, and number of edges

shown in log scale.
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Figure 4.7: Best algorithms for each problem. Running times, in seconds, and number of

edges shown in log scale.

the corresponding plot. We observe a behavior analogous to the case of the vertex-resilient

blocks. Speci�cally, algorithm Fast2ECB outperforms Simple2ECB by at least three orders

of magnitude. The running time of Simple2ECB depends on the number of strong bridges

in the input graph, and it does not scale well with the graph size. We also evaluate the

overhead of constructing a sparse certi�cate for the 2-edge-connected blocks. Algorithm

SC2ECB is an extended version of Fast2ECB that computes, in addition to the 2-edge-

connected blocks, such a sparse certi�cate. The running time of SC2ECB is within a

factor of 1.67 on average compared to Fast2ECB. The quality of the sparse certi�cate is

measured in the second column of Table 4.7, and, as expected, it depends on the average

degree δavg of the input digraph. (The percentage of the edges that are included in the

certi�cate decreases with δavg.)

4.3.5 2-edge-connected components

Now we compare the performance of algorithm 2ECC with the best algorithms for com-

puting the 2-edge-connected blocks and the 2-vertex-connected components and blocks,

in order to get a view of the relative di�culty of computing the various notions of 2-

vertex- and 2-edge connectivity in a digraph. As it can be seen from Figure 4.7, which

shows a plot of the corresponding running times, all algorithms have close performance.

This is somewhat surprising, since there is a big asymptotical gap: the 2-vertex- and

2-edge-connected components are computed in O(mn) time, while the 2-vertex- and 2-

edge-connected blocks are computed faster in O(m+ n) time.

In order to take a closer look at this phenomenon, we show in Table 4.7 the number

of recursive calls and the recursion depth for the above algorithms. It can be observed

that the recursion depth achieved by algorithms 2ECC and 2VCC is remarkably low. This

behavior can be explained in light of the digraph statistics discussed in Section 4.3.1.

Now we compare the recursive calls performed by 2VCC-J2 and 2VCC. Algorithm

2VCC-J2 requires more recursive calls, but performs less work per call, so it remains

competitive. There are two reasons that justify the large di�erence in the recursion depth
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Number of recursive calls Recursion depth

Graph % size SC (m) 2VCC 2VCC-J2 2ECC 2VCC 2VCC-J2 2ECC

rome99 89.46% 23 39 17 9 11 10

p2p-gnutella25 74.53% 7 9 7 5 8 5

Oracle-16k 68.88% 75 277 39 8 33 10

s38584 89.00% 1 1 1 1 1 1

web-NotreDame 50.89% 2834 12598 1042 13 153 22

soc-Epinions1 23.32% 848 4212 69 4 61 3

USA-road-NY 84.99% 777 7777 711 1 3 1

USA-road-BAY 88.23% 1623 17510 1502 1 4 1

Amazon0302 61.47% 32605 36013 16534 17 27 11

wiki-Talk 24.50% 3797 33290 8 4 444 4

web-Stanford 29.03% 6840 24952 2421 15 180 20

Amazon0601 40.14% 15774 19858 4626 6 9 6

web-BerkStan 22.60% 20982 59789 6814 18 248 22

Oracle-4M 81.72% 10714 311902 1801 3 793 3

SAP-4M 54.28% 16521 35370 7209 6 248 4

Oracle-11M 69.76% 90766 1100721 50446 21 808 22

SAP-11M 49.53% 74564 92026 31338 4 251 4

LiveJournal 20.24% 47534 221321 4144 6 265 7

USA-road 88.52% 112781 1273500 105705 1 6 1

Table 4.7: Some algorithm statistics: Total number of recursive calls and recursion depth.

The second column gives the percentage of the edges that are included in the sparse

certi�cate by SC2ECB.
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Figure 4.8: An input digraph that elicits O(n) recursion depth for Algorithm 2VCC-J2.

Algorithm 2VCC, on the other hand, requires only one recursive call.

between algorithms 2VCC and 2VCC-J2. The �rst one, as already mentioned, is that

2VCC uses a re�ned division that uses the dominator tree of both the forward and the

reverse digraph. The second reason has to do with the way these two algorithms compute

the subgraphs that are used as inputs in the recursive calls. More speci�cally, Algorithm

2VCC-J2 uses a dominator tree D(s) (of the forward or the reverse digraph) to partition

the graph G into subgraphs and perform the recursive calls. For each strong articulation

point u in D(s), 2VCC-J2 computes the strongly connected components of the subgraph

induced by C(u) ∪ u (i.e., u and its children in D(s)) and executes recursively on each

such strongly connected component. The problem with this approach is that it does not

take into account the connectivity between the vertices in C(u); all the paths between

vertices in C(u) may go through u. Such a bad instance is illustrated in Figure 4.8. In

this example, digraph G has no 2-vertex-connected components but 2VCC-J2 discovers

this after n − 2 recursive calls. Algorithm 2VCC, on the other hand, uses a di�erent

approach (in Steps 4 and 5) that yields a much smaller number of recursion calls and

recursion depth.

Next we compare the performance of the fastest algorithms for each task with our

baseline algorithm LT. Compared to the baseline, 2ECC and Fast2ECB are slower on

average by a factor of 5.35 and 4.61, respectively. Algorithms 2VCC and FastVRB are

slower on average than LT by a factor of 11.13 and 16.79, respectively. This con�rms

experimentally the intuition that the vertex connectivity problems are more complicated.

The fact that FastVRB is the slowest among these four algorithms can be attributed to

two facts. First, it constructs more complicated auxiliary graphs than Fast2ECB. Second,

the vertex-resilient (and the 2-vertex-connected) blocks have a more complex structure
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than the 2-edge-connected blocks. In order to allow fast operations on the vertex-resilient

blocks, FastVRB maintains them in a forest data structure. This incurs some signi�cant

overhead, since, as shown in Table 4.4, the input digraphs have a much higher number of

vertex-resilient blocks.
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Chapter 5

Conclusion

In this master thesis we have studied 2-connectivity problems in directed graphs. In par-

ticular, we have presented two linear-time algorithms for computing the 2-edge-connected

blocks and the 2-vertex-connected blocks relations among vertices. These two algorithms

are not only theoretically optimal, but also improve signi�cantly over previous bounds.

In the case of the 2-edge-connectivity. Once the 2-edge-connected blocks of a digraphG

are available, it is straightforward to check in constant time if any two vertices are 2-edge-

connected. Moreover, in the case of the 2-vertex connectivity, we showed how to represent

these relations with a data structure of O(n) size, so that it is also straightforward to check

in constant time if any two vertices are vertex-resilient or 2-vertex-connected. Moreover,

if the answer to such a query is negative, then we can provide a witness of this fact in

constant time, i.e., a vertex (strong articulation point) or an edge (strong bridge) of G

that separates the two query vertices. Furthermore, we showed how to compute a sparse

certi�cate for 2-edge-connected and the 2-vertex connected blocks, i.e., a subgraph of

the input graph that has O(n) edges and maintains the same 2-edge-connected 2-vertex

connected blocks, respectively, as the input graph.

For the 2-vertex-connected components we introduced an algorithm that divides the

input digraph into induced digraphs using two dominator trees (one for the original di-

graph and one for its reversal). For the 2-edge-connected components we presented a

simple algorithm that removes all strong bridges from the current digraph at a time.

We conducted an extensive experimental study of algorithms that compute the 2-

vertex- and 2-edge-connected components and blocks. The algorithms we tested fall into

two broad categories: algorithms that remove one strong articulation point or one (or

more) strong bridge(s) at a time, and algorithms that use a dominator-tree-based division

of the input digraph. The former includes O(mn)-time algorithms for all tasks, while

the latter includes two linear-time algorithms for computing the 2-vertex- and 2-edge-

connected blocks, and two O(mn)-time algorithms for computing the 2-vertex-connected

components. Our experimental results showed that the dominator-tree-based algorithms

perform well in practice and are more robust. The results also suggest that the 2-vertex-

and 2-edge-connected components of digraphs that arise in many practical applications
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can be found e�ciently, despite the fact that the theoretically asymptotic bound of the

algorithms that we considered is O(mn). The best practical performances for both these

problems were achieved by the two new algorithms.

We leave as an open question if the 2-edge-connected or the 2-vertex-connected com-

ponents of a digraph can be computed in linear time. The best current bound for both

problems is O(n2).
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