
ΣΥΝΟΨΕΙΣ ΤΗΣ ΒΙΟΓΡΑΦΙΑΣ ΕΞΕΛΙΣΣΟΜΕΝΩΝ ΣΧΗΜΑΤΩΝ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ

Η
 ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

Υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Μηχανικών Η/Υ και Πληροφορικής
Εξεταστική Επιτροπή

από τον

Γιάχο Θεοφάνη

ως μέρος των Υποχρεώσεων

για τη λήψη

του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ

Οκτώβριος 2015

i

ACKNOWLEDMENTS

I would like to express my gratitude to my supervisor, Associate Professor Panos

Vassiliadis for his immense guidance and assistance in every difficulty that

I met in this Thesis.

I am also grateful to my family that it is alongside me in every step of my life. Also I

could not forget my friends and fellow students Maria Spai, Michael Kolozoff and

Kostas Noulis for all the great moments that we had. Special thanks to my friends

Vasilis Spais and Dimitris Moustos too.

To those people that I have met in my life,

and helped me to be a better man…

ii

TABLE OF CONTENTS

 Page
ACKNOWLEDMENTS i
TABLE OF CONTENTS ii
LIST OF TABLES iv
LIST OF FIGURES v
ABSTRACT vii
ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ ix
CHAPTER 1. Introduction 1

1.1 Thesis Scope 1
1.2 Thesis Structure 4

CHAPTER 2. Fundamentals 7
2.1 Definitions of main concepts 7
2.2 Identified Changes per Transition of each Relation 8
2.3 Matrix Representation of Database Evolution 11
2.4 Visual representation of a history of a database 12

CHAPTER 3. Problem Specification 17
3.1 Segmentation of the history into phases 17
3.2 Clustering of tables into groups 18
3.3 Zoom into a specific point of the overview 18
3.4 Filter the overview 19
3.5 Details on demand 19

CHAPTER 4. Creating an overview of the history of a schema 21
4.1 Computing a segmentation of the history into phases 21

4.1.1 Parameters 23
4.1.2 Distance Function 23
4.1.3 Assessment of the method 25

4.2 Grouping tables into clusters 35
4.2.1 Parameters 37
4.2.2 Distance Function 37
4.2.3 Assessment of the method 39

4.3 Zoom into a specific point of overview 61
4.4 Filter the overview of the history of a relational database schema 63
4.5 Details on demand 66

CHAPTER 5. Software aspects of our solution – the PPL tool 71
5.1 Design and Analysis 71

5.1.1 The data Package 72
5.1.2 The phaseAnalyzer Package 77
5.1.3 The tableClustering package 82

iii

5.1.4 The gui package 85
5.2 Implementation 87

5.2.1 Programming Tools and IDEs 87
5.2.2 Selected Classes 88
5.2.3 PPL Tool Screenshots 92

CHAPTER 6. Related work 101
6.1 Empirical Studies of software and schema evolution 101
6.2 Timeseries Segmentation 104
6.3 Data Visualization 106

CHAPTER 7. conclusions and open issues 109
REFERENCES 111
APPENDIX 113

Metrics of change for the database level 113
Assessment of phase extraction 114
Assessment of table clustering 149

iv

LIST OF TABLES

Table Page
Table 2-1: Types of changes that occur to a relation R, during a transition t 12
Table 4-1: Explanation of the distance function 24
Table 4-2: Number of wins for different sets of parameters 28
Table 4-3: Explanation of the distance function 38
Table 4-4: Results for wb: 0.333 , wd: 0.333 , wc: 0.333 44
Table 4-5: Results for wb:0.0 wd:1.0 wc:0.0 45
Table 4-6: Results for wb:0.0 wd:0.5 wc:0.5 46
Table 4-7: Results for wb:0.0 wd:0.0 wc:1.0 47
Table 4-8: Results for wb:0.5 wd:0.5 wc:0.0 48
Table 4-9: Results for wb:0.5 wd:0.0 wc:0.5 49
Table 4-10: Results for wb:1.0 wd:0.0 wc:0.0 50
Table 4-11: Average F-Measure 51
Table 4-12: Atlas results 52
Table 4-13: bioSQL results 52
Table 4-14: Coppermine results 53
Table 4-15: phpBB results 53
Table 4-16: Atlas Dataset Results 56
Table 4-17: Coppermine Dataset 57
Table 4-18: bioSQL Dataset 57
Table 4-19: Ensembl Dataset 58
Table 4-20: mwiki Dataset 58
Table 4-21: Opencart Dataset 59
Table 4-22: phpBB Dataset 59
Table 4-23: typo3 Dataset 60
Table 4-24: Number of wins for different sets of parameters 61
Table A- 1: Assessment of phase extraction for Atlas 114
Table A- 2: Assessment of phase extraction for bioSQL 119
Table A- 3: Assessment of phase extraction for Ensembl 124
Table A- 4: Assessment of phase extraction for mediaWiki 129
Table A- 5: Assessment of phase extraction for Opencart 134
Table A- 6: Assessment of phase extraction for phpBB 139
Table A- 7: Assessment of phase extraction for Typo3 144
Table A- 8: Assessment of table clustering for Atlas 149
Table A- 9: Assessment of table clustering for phpBB 156
Table A- 10: Assessment of table clustering for Coppermine 163

v

LIST OF FIGURES

Figure Page
Figure 2.1: A part of Ensembl’s PPL diagram 14
Figure 4.1: Atlas Dataset 26
Figure 4.2: bioSQL Dataset 26
Figure 4.3: Coppermine Dataset 26
Figure 4.4: Ensembl Dataset 26
Figure 4.5: mediaWiki Dataset 27
Figure 4.6: Opencart Dataset 27
Figure 4.7: phpBB Dataset 27
Figure 4.8: typo3 Dataset 27
Figure 4.9: (δtime, δc) for (WC:0.0, WT:1.0, PPC:OFF, PPT:OFF) 29
Figure 4.10: (δtime, δc) for (WC:0.0, WT:1.0, PPC:ON, PPT:OFF) 30
Figure 4.11: (δtime, δc) for (WC:0.0, WT:1.0, PPC:OFF, PPT:ON) 30
Figure 4.12: (δtime, δc) for (WC:0.0, WT:1.0, PPC:ON, PPT:ON) 31
Figure 4.13: (δtime, δc) for (WC:0.5, WT:0.5, PPC:OFF, PPT:OFF) 31
Figure 4.14: (δtime, δc) for (WC:0.5, WT:0.5, PPC:ON, PPT:OFF) 32
Figure 4.15: (δtime, δc) for (WC:0.5, WT:0.5, PPC:OFF, PPT:ON) 32
Figure 4.16: (δtime, δc) for (WC:0.5, WT:0.5, PPC:ON, PPT:ON) 33
Figure 4.17: (δtime, δc) for (WC:1.0, WT:0.0, PPC:OFF, PPT:OFF) 33
Figure 4.18: (δtime, δc) for (WC:1.0, WT:0.0, PPC:ON, PPT:OFF) 34
Figure 4.19: (δtime, δc) for (WC:1.0, WT:0.0, PPC:OFF, PPT:ON) 34
Figure 4.20: (δtime, δc) for (WC:1.0, WT:0.0, PPC:ON, PPT:ON) 35
Figure 4.21: bioSQL dataset with classes 43
Figure 4.22: Zoom into a specific point of overview (1) 62
Figure 4.23: Zoom into a specific point of overview (2) 63
Figure 4.24: Filter by a specific phase 64
Figure 4.25: Filter by a specific table 65
Figure 4.26: Filter by specific clusters 66
Figure 4.27: Details on demand (1) 67
Figure 4.28: Details on demand (2) 68
Figure 4.29: Details on demand (3) 69
Figure 4.30: Details on demand (4) 70
Figure 5.1: data UML Diagram 72
Figure 5.2: dataProccessing UML diagram 73
Figure 5.3: dataPPL UML diagram 75
Figure 5.4: phaseAnalyzer UML diagram 77
Figure 5.5: parser UML diagram 78
Figure 5.6: commons UML diagram 79

vi

Figure 5.7: analysis UML diagram 81
Figure 5.8: tableClustering UML diagram 82
Figure 5.9: commons UML diagram 83
Figure 5.10: analysis UML diagram 84
Figure 5.11: gui UML diagram 85
Figure 5.12: Synopsis of Atlas 93
Figure 5.13: PLD of Atlas 93
Figure 5.14: Synopsis of bioSQL 94
Figure 5.15: PLD of bioSQL 94
Figure 5.16: Synopsis of Coppermine 95
Figure 5.17: PLD of Coppermine 95
Figure 5.18: Synopsis of Ensembl 96
Figure 5.19: A part of PLD of Ensembl 96
Figure 5.20: Synopsis of mediaWiki 97
Figure 5.21: A part of PLD of mediaWiki 97
Figure 5.22: Synopsis of Opencart 98
Figure 5.23: PLD of Opencart 98
Figure 5.24: Synopsis of phpBB 99
Figure 5.25: PLD of phpBB 99
Figure 5.26: Synopsis of Typo3 100
Figure 5.27: PLD of Typo3 100

vii

ABSTRACT

Theofanis Giachos
MSc, Department of Computer Science and Engineering
University of Ioannina, Greece
October 2015
Biography synopses for evolving relational database schemata.
Supervisor: Panos Vassiliadis

Studying the evolution of database schemata is of great importance as a change

in the schema of the database (e.g., the deletion of a table or attribute) can

impact semantically and syntactically the entire ecosystem of applications that

are built on top of the database. The study of schema evolution entails extracting

schema versions and their delta changes from software repositories,

subsequently leading to the extraction of patterns and regularities. The history of

a typical database can consists of hundreds of transitions from version to version

and includes a potentially large number of tables that change during the life of

the database.

In order to study the evolution of databases, we have devised the Parallel Lives

Diagram, a detailed 2D visual representation that graphically visualizes the life of

tables in parallel lines. However, this representation has to fit into a computer

screen -at best- or into a much smaller window at worst. Therefore, in this

Thesis, we construct a synopsis of the entire life of a database in which the set of

transitions is segmented into phases and the set of tables is organized in clusters.

For this purpose, we have designed two algorithms for the construction of this

synopsis. The first of our algorithms segments the entire set of transitions into

phases according to their similarity in terms of activity. The second of our

algorithms, extracts clusters from the entire set of the tables of a database by

taking into account their similarity in terms of their creation and destruction

viii

time points as well as their change activity. Both of these algorithms are assessed

with different methods to evaluate the effectiveness of the grouping methods.

Our algorithms are part of a tool that we have developed, called Plutarch’s

Parallel Lives, that visualizes the entire life of a database in a multi-view,

interactive fashion. A central feature of the tool is the visualization of the

aforementioned (a) Parallel Lives Diagram, and (b) the synopsis of the lifetime of

the database. Apart from these central constructs, the tool is also supplied with

features such as drilling into specific points, filtering according to various criteria

or providing the user with details on demand.

ix

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Γιάχος Θεοφάνης του Κωνσταντίνου και της Γεωργίας
ΜΔΕ, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων
Οκτώβριος 2015
Συνόψεις της βιογραφίας εξελισσόμενων σχημάτων βάσεων δεδομένων.
Επιβλέποντας: Παναγιώτης Βασιλειάδης

Η μελέτη της εξέλιξης σχημάτων βάσεων δεδομένων είναι μεγάλης σημασίας,

καθώς μία αλλαγή στο σχήμα της βάσης (π.χ., η διαγραφή ενός πίνακα ή

γνωρίσματος) μπορεί να έχει επιπτώσεις τόσο σημασιολογικά όσο και

συντακτικά στο υπόλοιπο οικοσύστημα εφαρμογών το οποίο είναι χτισμένο επί

της βάσης. Η μελέτη της εξέλιξης ενός σχήματος συνεπάγεται την εξαγωγή

επιμέρους εκδόσεων της βάσης και των μεταξύ τους διαφορών από αποθετήρια

λογισμικού, αλλά και την εξαγωγή προτύπων από αυτά. Η ιστορία μιας τυπικής

βάσης δεδομένων μπορεί να αποτελείται από εκατοντάδες μεταβάσεις από

έκδοση σε έκδοση και περιλαμβάνει ένα διόλου ευκαταφρόνητο αριθμό από

πίνακες οι οποίοι αλλάζουν κατά την διάρκεια της ζωής της.

Για να μελετήσουμε την εξέλιξη των βάσεων, επινοήσαμε το «Διάγραμμα

Παράλληλων Ζωών», μία λεπτομερή διδιάστατη οπτική αναπαράσταση η οποία

οπτικοποποιεί γραφικά την ζωή των πινάκων σε παράλληλες γραμμές. Ωστόσο,

η αναπαράσταση αυτή είναι αναγκαίο να χωρέσει σε μία οθόνη υπολογιστή

στην καλύτερη περίπτωση ή σε ένα πολύ μικρότερο παράθυρο στη χειρότερη.

Επομένως, στη συγκεκριμένη διατριβή, κατασκευάζουμε μία σύνοψη της ζωής

μιας βάσης δεδομένων, στην οποία το σύνολο των μεταβάσεων της από έκδοση

σε έκδοση τμηματοποιείται σε φάσεις και το σύνολο των πινάκων της

οργανώνεται σε συστάδες. Για τον σκοπό αυτό, σχεδιάσαμε δύο αλγορίθμους

για την κατασκευή της σύνοψης. Ο πρώτος από τους δύο αλγόριθμους

τμηματοποιεί το σύνολο των μεταβάσεων της βάσης σε φάσεις, σύμφωνα με την

x

ομοιότητά τους σε σχέση με την δραστηριότητά τους. Ο δεύτερος από τους

αλγορίθμους μας, σχετίζεται με την εξαγωγή συστάδων από το σύνολο των

πινάκων της βάσης, λαμβάνοντας υπόψη την ομοιότητα τους όσον αφορά τόσο

τα σημεία της δημιουργίας και καταστροφής τους όσο και τις αλλαγές τους. Και

οι δύο αυτοί αλγόριθμοι αξιολογούνται με διαφορετικές μεθόδους για να κριθεί

η αποτελεσματικότητα των μεθόδων ομαδοποίησης.

Οι αλγόριθμοί μας αποτελούν κομμάτι ενός εργαλείου που έχουμε αναπτύξει και

ονομάζεται “Παράλληλοι Βίοι του Πλούταρχου” και έχει ως αντικείμενο την

οπτικοποίηση ολόκληρης της ζωής μιας βάσης δεδομένων με την βοήθεια

τεχνολογιών πολλαπλής όψης και διαδραστικότητας. Ένα βασικό

χαρακτηριστικό του εργαλείου είναι η οπτικοποίηση (α) του «Διαγράμματος

Παράλληλων Ζωών», και (β) της σύνοψης της ζωής της βάσης. Εκτός από την

υποστήριξη αυτών των δύο βασικών χαρακτηριστικών, το εργαλείο είναι επίσης

εφοδιασμένο με λειτουργίες όπως η εμβάθυνση σε συγκεκριμένα σημεία της

σύνοψης, το φιλτράρισμά της σύμφωνα με διάφορα κριτήρια αλλά και η παροχή

στον χρήστη λεπτομερειών ύστερα από αίτησή του.

xi

1

CHAPTER 1. INTRODUCTION

1.1 Thesis Scope

1.2 Thesis Structure

1.1 Thesis Scope

Studying the evolution of database schemata is of great importance as a change

in the schema of the database (e.g., the deletion of a table or attribute) can

impact semantically and syntactically the entire ecosystem of applications that

are built on top of the database. The study of schema evolution entails extracting

schema versions and their delta changes from software repositories,

subsequently leading to the extraction of patterns and regularities. The history of

a typical database can consist of hundreds of transitions from version to version

and includes a potentially large number of tables that change during the life of

the database.

One of the main tools to study schema evolution is the visual inspection of the

history of the schema. This can allow the scientists to construct research

hypotheses as well as to drill into the details of inspected phenomena and try to

understand what has happened at particular points in time. However, such an

effort is constrained by our means of visual representation. Mainly, such a

representation is targeted for a two-dimensional representation target in a

computer screen or a printed paper. The space available in these representation

media is simply too small for encompassing the hundreds of transitions from one

version to another and the hundreds of tables involved in such a history, at the

2

same time. In other words, if we want to represent the space of transitions x

tables in a two dimensional canvas, it is practically impossible, even for the

typical case to put in every detail in the diagram, in a way that is humanly

exploitable.

A solution to the problem is to follow the traditional method for handling this

kind of problems [Shne96] and start with an overview of the detailed

representation. This becomes even more useful if this overview is enriched with

features such as zooming into specific point of the history, or filtering by

different elements, etc. Our solution to the problem starts with the main idea of

creating a synopsis of the history of the schema evolution, where the number of

transitions is abstracted by a limited set of phases and the number of tables is

represented by a limited number of table clusters. Then, we can represent this

synopsis as a 2D diagram, with phases at the x-axis and clusters at the y-axis, with

the details of change in the contents of this 2D space.

The first challenge that we have addressed involves fitting the timeline of

transitions into a fixed space on screen. This requires extracting phases of the

timeline. The related work includes a small number of works on this issue. So,

our take to the problem was to introduce a hierarchical agglomerative clustering

algorithm that merges the most similar transitions according to the time that

have been committed and their heartbeat of changes into one phase. As a result,

in the end we can have a desired number of phases, each of which encompasses

subsequent and similar transitions.

The main advantage of a hierarchical agglomerative clustering algorithm is that

it can always give us the best quality of clustering for a given distance function

on the data that will be called to cluster. The main disadvantage of this type of

algorithms is that for large datasets, it comes with reduced performance and

speed, as all the algorithms of this family have to compute a distance for each

pair of data points, and progressively merge smaller clusters into bigger one.

However, within the scope of our problem, the datasets involved contain only

some hundreds of data points, which is not prohibitive in terms of performance.

3

To make the algorithm work we introduce a distance function that computes the

distance between two contiguous transitions. This function depends on two

parts. The first part has to do with the time distance between the involved

transitions, whereas the second part has to do with the difference between the

numbers of changes that have been committed to these transitions. The more

closely two transitions are with regards to time and changes, the most similar

they are considered.

Second, we address a respective challenge to reduce the large number of tables

of a database that have to be fitted into a fixed height of window. As already

mentioned, we extract clusters out of the entire set of the tables. Our solution

adopts the same approach as with transitions and we introduce another

hierarchical agglomerative clustering algorithm that creates a desired number of

clusters. Within each cluster, the desideratum is to maximize the similarity of the

contained tables. In this case, the distance function considers three parameters

that can characterize a table: The first parameter involves the birth dates of the

involved tables; the second parameter is concerns the death dates of these

tables; the last parameter has to do with the number of changes of a table.

Combining them, we can find similar tables that were born and removed in close

dates and also have a similar number of changes.

We have combined our abovementioned contribution in a tool that is called

Plutarch’s Parallel Lives that allows the interactive exploration of the history of

schema. The tool gets the history of the database, i.e., a temporally sorted list of

schemata. Firstly, the tool produces a detailed visualization of the life of the

database, called Parallel Lives Diagram that contains the transitions of the

database in its x-axis and the tables in its y-axis. Each row of this visualization

contains the entire life of a table. Secondly, the tool extracts an overview for this

visualization, which has the phases that are produced by the phase extraction

algorithm in its x-axis and the clusters that have been extracted by the clustering

extraction algorithm in its y-axis. This overview has been designed to be

interactive and can provide the user with features like zooming into specific

points, filters according to specific criteria and details on demand. Plutarch’s

4

Parallel Lives has been designed to be easily extended due to its architecture that

includes all the basic principles of object-oriented programming such as abstract

coupling via interfaces, factories, and similar mechanisms.

In summary, we can list our contributions as follows:

• We have designed a phase extraction algorithm for the transitions of the

entire life of a database that segments this life into phases according to

the similarity of the transitions.

• We have designed an algorithm for cluster extraction over the entire set

of the tables that are contained by a database, which divides the tables

into clusters according to the similarity of their lives and in particular the

similarity of their birth, death and change activity.

• We have assessed our algorithms with a principled method. We have used

two different methods to assess our phase extraction algorithm. At the

same time, we have also used both internal and external validity

evaluation techniques to assess our clustering algorithm.

• We have designed and implemented a tool called Plutarch’s Parallel Lives,

in short, PPL [PPL15], that visualizes the entire life of a database. When a

dataset is given as input to Plutarch’s Parallel Lives, PPL produces an

overview of the life of the respective database. Continuing, the tool allows

the user to zoom into specific points of the overview, to filter it according

to various features and to get information about details of the transitions

and tables.

1.2 Thesis Structure

The structure of this thesis is as follows. In Chapter 2, we give the definitions of

the main concepts of the thesis. In Chapter 3, we present the problem

formulations and intuition on how we could solve them. In Chapter 4, we present

the solutions that we designed for these problems and how we assessed these

solutions. In Chapter 5, the interested reader can find details about the software

that we have developed, such as the design and analysis of the Plutarch’s Parallel

Lives, some coding of the most significant classes and some screenshots of how it

5

performs. In Chapter 6, there is an overview of the related work that we have

studied. Finally, in Chapter 7, we conclude our results and offer roads for future

work.

6

7

CHAPTER 2. FUNDAMENTALS

2.1 Definitions of main concepts

2.2 Identified Changes per Transition of each Relation

2.3 Matrix Representation of Database Evolution

2.4 Visual representation of a history of a database

2.1 Definitions of main concepts

In this subsection, we start by giving the definitions and terminology for the

concepts of dataset, version, transition, and revision.

Schema Version, or simply, Version: A snapshot of the database schema,

committed to the public repository that hosts the different versions of the

system. To facilitate our deliberations, we assign an artificial version id to each

version, in the form of an auto-incrementing integer with step one. Thus, version

ID’s are isomorphic to a contiguous subset of the set of positive integers.

Whenever possible, we also assign a timestamp to the version, which is the

commit time to the public repository.

Synonymous term: Commit.

Dataset: A sequence of versions, respecting the order by which they appear in

the repository that hosts the project to which the database belongs. In our case,

8

we have monitored only the versions committed to the trunk (master

development branch) of the project to which the database belongs.

Transition: The fact that the database schema has been migrated from version vi

to version vj, i < j. We refer to vi as the source version of the transition and to vj as

the target version of the transition. We denote such a transition by an arrow

from the source towards the target of the transition, e.g., vi→vj. Throughout all

our deliberations, we employ the term old to refer to properties of the source

version and the term new to refer to properties of the target version of a

transition. Each transition includes a set of changes to the DB schema. We

discuss these kinds of changes in the following subsection.

Revision: A transition between two sequential versions, i.e., from version vi to

version vi+1. Each transition incurs a set of differences to the database schema.

We measure the alteration of tables and attributes in a manner that will be

clearly defined right away. To simplify expressions, we frequently use the term

“version” instead of “transition that leads to this version”. So, for example, if we

say the “new number of relations for version vi+1“, we refer to the number of

tables of vi+1, after a transition from vi has taken place.

In the rest of our deliberations, unless otherwise specified, the term transition

refers to a revision. Apart from an old and a new version, each revision has a

timestamp, which signifies the date that the target, new version was made public

on the public repository from which it was retrieved. For convenience, we also

assign revisions with id’s which are consecutive integers.

2.2 Identified Changes per Transition of each Relation

The evolution history of each database schema can be thought of as (a) a

sequence of versions, but also as (b) a sequence of revisions. For each relation of

the database schema, and for each revision, we identify the set of changes that

have occurred.

9

Specifically, for each transition, for each relation, we can identify the following

data:

Old Attributes: The set of attributes of the relation at the source, old version of

the transition.

New Attributes: The set of attributes of the relation at the target, new version of

the transition.

Attributes Inserted: The set of attribute names inserted in the relation in the new

version of the transition. Attribute insertions can be of two types: attributes

inserted at table formation, which are the attributes with which the table is born

(i.e., the relation did not exist in the source version of the transition) and

attributes inserted to an existing relation, of the relation existed in the old version

of the transition.

Note that the two above subcategories of “Attributes inserted” are mutually

exclusive for the case of a specific relation in a specific transition: either the

relation is in its “birth” transition, in which case we have attributes inserted at

table formation, or the transition takes place after the relation’s birth, in which

case we have tables injected in an existing relation.

Note also that although this is a mutually exclusive situation for a specific

relation in a specific transition, the two metrics are can have non-zero values

simultaneously when we study the evolution at the database level (meaning that,

in the context of a specific transition, a new table can be created and another

table can be updated at the same time).

Attributes Deleted: The set of attribute names deleted from the relation during

the transition from the old to the new version. Attribute deletions can be of two

types: (a) attributes deleted at table removal, which are the attributes that existed

in relation in the source version of the transition, while, at the same time, the

10

relation does not exist in the target version of the transition, and, (b) attributes

deleted from a surviving relation, for a relation that continues to exist in the new

version of the transition.

The comments of the previous category concerning the disjointness of the two

subcategories apply here too, in a direct manner.

Attributes with Type Alternations: The set of attributes whose data type changed

during a transition.

Attributes involved in Key Alternations: The set of attributes that reversed their

status concerning their participation to the primary key of the relation between

the old and the new version of the transition. Specifically, these are the attributes

that either became primary keys in the new version (while they were not in the

old version) or stopped being part of the primary key in the new version while

being part of the primary key in the old version.

The above sets can be treated (a) directly as sets, but, most commonly, (b) via the

cardinality of this set. In other words, to measure the amount of change, we

measure the size of each of these sets. In Table 2-1, we summarize the notation

for the different sets and measures of change.

Having the respective measures, we can also measure the growth and alteration

of a relation, as well as its total change. Specifically, we employ the following

measures for the change of a relation during a transition:

Attribute Alternations: The sum of Attribute Type Alterations and Attribute Key

Alterations.

Schema Growth: The difference between the cardinalities of the new and old

attributes of a transition, i.e., Number of New Attributes – Number of OldAttributes

(attn: not the absolute, but the actual value of the subtraction).

11

Total Change: the sum of absolute values of Attribute Alterations and Schema

Growth.

2.3 Matrix Representation of Database Evolution

We define the history of a database schema between revisions s(tart) and e(nd) as

a sequence of contiguous revisions: H = { ts, ts+1, …, te-1, te}. Assuming that our

knowledge for the life of a schema spans from revision 1 to revision m, we will

use the simplified term history or entire history of a database schema to refer to

the history between revisions 1 and m. The diachronic schema of the database is

the union of all relation names appearing in the schema of the database

throughout its entire history; we denote it as SH = {R1, …, Rn}.

To measure evolution, we adopt a convenient representation of the history of a

database schema as a two-dimensional matrix, with one row per relation and

one column per transition. The content of each cell of the matrix is a tuple with

all the measures that correspond to the specific transition of the specific table

that act as coordinates of the cell. We refer to this matrix as the CART Matrix

(Change Analysis per Relation and Transition).

CART[R, t] = [Atold(R), Atnew(R), It (R), Dt (R), Tt (R), Kt (R), Ut (R), gt (R), Mt (R), Cht (R)]

Then, we can define the projection of the CART Matrix per (a) measure, if we are

interested in only one measure, (b) aggregate measures per transition, where we

aggregate all the measures for all relations for each transition, or (c) aggregate

measures per relation, where we can aggregate the change measures for each

relation over all the transitions. We can employ several aggregate functions for

the two marginal aggregate measures (e.g., sum to measure total change, count to

measure occurrences of change, avg to measure average change, max to see

peaks in change, etc).

12

Table 2-1: Types of changes that occur to a relation R, during a transition t

Set of attributes involved in the

change
 Measures of change for a relation R during a transition t

Old Attributes Atold(R) Number of Old Attributes Atold(R)

New Attributes Atnew(R) Number of New Attributes Atnew(R)

Attributes Inserted It(R) Attribute Insertions It (R)

Attributes Deleted Dt (R) Attribute Deletions Dt (R)

Attributes with Type

Alterations
Tt (R) Attribute Type Alterations Tt (R)

Attributes in Key

Alterations
Kt (R) Attribute Key Alterations Kt (R)

 Schema Growth gt(R) = Atnew(R) - Atold(R)

 Attribute Alterations Ut (R) = Tt (R)+ Kt (R)

 Schema Modifications Mt(R) = It(R) + Dt(R)

 Total Change Cht(R) = |Ut(R)| + | Mt(R) |

2.4 Visual representation of a history of a database

We have developed a visualization tool that equips us with visual aids to study

the history of a database.

We depict the matrix in its well-known, two dimensional rectilinear grid1 format,

having relations for rows and transitions for columns.

1 See http://en.wikipedia.org/wiki/Regular_grid for the definition of the term

13

We define the Parallel (Table) Lives Diagram of a database schema as a two

dimensional rectilinear grid having all the revisions of the schema’s history as

columns and all the relations of the diachronic schema as its rows. Each cell

PLD[i,j] represents the changes undergone and the status of the relation at row i

during the revision j.

Specifically, we employ the following visual notation:

• The blue cells (mildly grey in black and white) correspond to transitions

where some form of change occurred to the respective table.

• Dark cells denote that the table was not part of the database at that time.

• Green solid cells (lightly colored in black and white) denote zero change.

• In Figure 2.1 there is a PPL diagram that has been extracted by Plutarch’s

Parallel Lives and contains a small part of Ensembl’s database life. In its x-

axis there is a part of the transitions that have been committed to the

database. In y-axis we can see a part of the entire set of the tables of the

database. Combining these with the above bullets we can realize that each

row of the below figure contains the life of a table of a database including

when it was born, when it died or when it was changed.

Whereas the ordering of the transitions is fixed and isomorphic to their

timestamps, the ordering of relations can vary. We will discuss issues of relation

ordering and grouping in Chapter 3.

14

Figure 2.1: A part of Ensembl’s PPL diagram

15

In the context of the Parallel Lives Diagram, we will refer to the line that

corresponds to a specific relation R as the Biography Line of R. This is also why

we will refer to the Parallel Lives Diagram as the Parallel Biographies Diagram,

as an alternative terminology.

Intuition on the problem:

Although intuitive enough, the diagram of Fig. 2.1 suffers from the limitations of

the two-dimensional display media that we use for showing it (on screen and on

paper that is). Clearly, the available space that screens and paper-sheets can

offer, requires an excessive shrinking of the Parallel Lives Diagram in order to fit

within the available area. This makes the visual inspection process ineffective as

crucial details are unobservable.

So the idea came from the mantra that Shneiderman underlines in his article at

1996 [Shne96], which is

Overview first, zoom and filter, details on demand.

We thought that the substitution of the extra-detailed diagram of Figure 2.1 with

an overview that could be filtered and zoomed in and to provide us with helpful

details on demand could be the ideal approach of our problem.

So in Chapter 3, we formalize these concepts as well as our solution to the

interactive exploration process.

16

17

CHAPTER 3. PROBLEM SPECIFICATION

3.1 Segmentation of the history into phases

3.2 Clustering of tables into groups

3.3 Filter the overview

3.4 Details on demand

To address the problem of effectively representing the PLD in the limited space

of 2D representation media, we need to solve two problems. The first problem

deals with zooming out on transitions, and replacing them by phases, and the

second one deals with zooming out on relations and replacing them by relation

groups. More specifically we desire a number of phases that fits into a part of the

width of the screen and also we desire a number of clusters that fits into a part of

the height of the screen.

3.1 Segmentation of the history into phases

The idea is that we want to zoom-out on the time/version axis. So, we need to

group transitions to phases, i.e., partition the set of transitions to disjoint groups

of consecutive transitions, such that each phases is “homogeneous” internally

(and disjoint from its neighbors).

The formulation of the problem is as follows:

Given the evolution history of a database schema,

18

group transitions into phases

such that the transitions of each phase share similar

3.2 Clustering of tables into groups

The idea is that we want to zoom-out on the vertical axis with the tables (in case

the relations are too many). The idea here is that we partition the set of relations

into disjoint subsets or else clusters. Each cluster has relations with similar lives

i.e., lives with similar start, death and heartbeat of changes. This way we can

zoom-out over the vertical dimension of the Parallel Lives Diagram (i.e., if the

relations are too many, we can group them in a number of clusters that fits our

visual space).

The formulation of the problem is as follows:

Given the evolution history of a database schema,

group relations into groups of relations with similar lives

such that the relations of each group share similar

3.3 Zoom into a specific point of the overview

If we have zoomed out the history of a relational database schema, there are

many times that we would like to drill down more on what was happened to a

specific point of this overview. For example, if we have a matrix in which the x-

axis contains the phases that have been extracted and the y-axis contains the

19

tables of the database or the clusters that have been created how we could zoom

into a specific cell of this table?

3.4 Filter the overview

Sometimes there is the desire to isolate a component of an overview including its

elements to compare for example how similar are the elements from which it

consists of. More precisely, maybe we would like to show up only the facts of a

specific phase, or the behavior of the tables of one specific cluster, or even the life

of a unique table. Then we would have to filter the overview according to these

features.

3.5 Details on demand

According to the format of the PLD and the selection on it, we would like to have

the ability to get some details on demand. For example, if the PLD contains in its

x-axis the phases that have been extracted and in its y-axis the clusters that have

been created by database’s tables what details we could get about a cell of PLD?

To conclude, the tool that we will develop has to implement all of the above.

Moreover, Plutarch’s Parallel Lives must have the ability to create an overview

for the importing dataset. This overview will be a combination of segmenting the

entire set of transitions into phases according to their distance and sharing the

entire set of tables into clusters according to their similarity. Furthermore, this

overview has to be interactive to provide the user with the ability to zoom into a

specific point, or with the ability to filter the overview according to the feature

that he desires. Finally, it has to supply user with details on his demand about

specific elements of the overview.

20

21

CHAPTER 4. CREATING AN OVERVIEW OF THE

HISTORY OF A SCHEMA

4.1 Computing a segmentation of the history into phases

4.2 Grouping tables into clusters

4.3 Zoom into a specific point of overview

4.4 Filter the overview of the history of a relational database schema

4.5 Details on demand

In this subsection, we address the problems that were referenced in chapter 3.

For the goal of extracting phases from the entire history of a database, we

designed and implemented a Phasic Extractor. For the purpose of clustering of

the tables, a Clustering Extractor was designed and implemented. Subsequently,

we are going to analyze their main algorithms, the parameters that are needed

and were explored and the distance metrics that were implemented for both of

them. Finally, the assessment of these two methods completes the section.

4.1 Computing a segmentation of the history into phases

The Phasic Extractor gets as input the entire history of a database (and some

extraction parameters that will be explained more in the sequel), and it produces

a segmentation of the history into phases. More specifically, the Phasic Extractor

parses the input (.csv file each line of which contains details about a transition

from an older version of the database to a newer) and constructs one phase for

22

each transition. When the parsing will have been finished the Phasic Extractor

will have as many phases as the number of the transitions that have been

committed to the database. Next to this, is the execution of an agglomerative

clustering algorithm that attempts to merge the most similar phases according to

a distance metric. The new merged phases are given as input to the

agglomerative clustering algorithm recursively, until the desired number of

phases will have been extracted. At the end, database will be segmented

according to the result of the recursive-clustering algorithm.

Algorithm: The Phasic Extractor algorithm

Input: A list of schema transitions H = { ts, ts+1, …, te-1, te}, the desired number

of phases k, the weight to assign to time wt, the desired weight to assign to

changes wc , the choice if we want the data to be preprocessed according to

the time preProcessingTime, the choice if we want the data to be preprocessed

according to the changes preProcessingChanges.

Output: A partition of H, P = {p1...pk}

variable numPhases=e, counter of the number of phases.

Begin

1. P={p1,…pe} s.t. pi={ti} ∀ i ∈ s…e

2. while(numPhases>k){

a. for each pair of phases phi, phi+1, 1 ≤ 𝑖 ≤ 𝑛

i. compute δ(phi, phi+1)

b. Merge the most similar phases, pa and pa+1 into a new phase p’

c. P = {p1,…, pa-1, p, pa+1, …, pm}

d. numPhases --

 }

3. Return P;

End

23

4.1.1 Parameters

One of the extraction parameters that are used by Phasic Extractor is associated

with the desired number of phases that we wish to segment the history. The

weight that we want to assign to the time and changes between transitions is

another parameter. Finally the last part of the extracted parameters is the

execution or not of some preprocessing methods which are associated with the

time or changes between transitions. Transitions that have time distance less

than three days or transitions that have zero number of changes are merged into

a phase each, before Phasic Extractor begin processing the data.

o Desired number of segments (k): refers to the number of phases that

we would like to be extracted.

o Pre-Processing Changes (PPC): refers to the preprocessing of the data

from the aspect of changes (ON if the data has been preprocessed, OFF

otherwise).

o Pre-Processing Time (PPT): refers to the preprocessing of the data from

the aspect of time (ON if the data has been preprocessed, OFF otherwise).

o Weight Change (WC): refers to the weight of changes (0.5 normal weight,

0 if changes is not taken into account).

o Weight Time (WT): refers to the weight of time (0.5 normal weight, 0 if

time is not taken into account).

4.1.2 Distance Function

Next we present the distance function that gives as outcome how similar are two

phases. This distance on its normal form that both time and changes have a non-

zero weight depends on both to the time that the compared phases differ with

regard to the date that have been committed and to the difference of the changes

that have been occurred to each other too. Here is the definition of this distance

function:

24

For two phases pi, pi+1:

𝛿(𝑝𝑖,𝑝𝑖+1) = 𝑤𝑇 × 𝛿𝑇(𝑝𝑖,𝑝𝑖+1) + 𝑤𝐶 × 𝛿𝐶(𝑝𝑖,𝑝𝑖+1)

Table 4-1: Explanation of the distance function

Symbolism Description

𝛿(𝑝𝑖,𝑝𝑖+1)
Denotes the term of the Distance Function between

phases

𝑤𝑇
Denotes the weight that we want to assign to the time

distance

𝛿𝑇(𝑝𝑖,𝑝𝑖+1)

Denotes the distance between the two phases with

respect to the time. Actually is the distance between

the death date of the pi phase and the birth date of the

pi+1 phase

𝑤𝐶
Denotes the weight that we want to assign to the

change distance

𝛿𝐶(𝑝𝑖,𝑝𝑖+1)

Denotes the distance between the number of changes

of the pi phase in relation to the number of changes of

the pi+1 phase. Actually is the distance between the

number of changes of the last transition of phase pi

and the first transition of phase pi+1

25

4.1.3 Assessment of the method

4.1.3.1 Assessment via divergence from the mean

The first assessment method that we use to evaluate the quality of the phases

that the Phasic Extractor extracts, is connected with the following formula:

𝐸𝑝𝑛 = � � � �𝜇𝑖 − 𝑒𝑗�
𝑝

∀𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑗 ∈ 𝑝ℎ𝑖∀𝑝ℎ𝑎𝑠𝑒 𝑝ℎ𝑖

� 1 𝑝�

where μi is the average number of changes of each phase and ej is the number of

changes of each transition of the phase. Typically p is equal to one or two. In our

evaluation p was set to one. This formula could give us a good evaluation of our

method, because it depicts how similar are the elements that are included by

each phase according to the events that happened into this. The most similar

they are, the smaller value of Epn will give as a result.

So, for this method the goal is to find which set of extraction parameters give us

the best results something that means the smallest Epn and finally investigate a

“winner” set of them, which is the set that performs better at most.

The datasets that were used by Phasic Extractor were eight different datasets

from open-source databases such as Atlas, bioSQL, Coppermine, Ensembl,

mediaWiki, Opencart, phpBB and typo3 with all possible weights of time and

change and either with preprocessing or not and here is how the extracted

phases were assessed by the first method for all of them.

26

Figure 4.1: Atlas Dataset

Figure 4.2: bioSQL Dataset

Figure 4.3: Coppermine Dataset

Figure 4.4: Ensembl Dataset

PPC:OFF
PPT:OFF

PPC:ON
PPT:OFF

PPC:OFF
PPT:ON

PPC:ON
PPT:ON

WC=0.0
WT=1.0

898.38 907.51 898.38 907.51

WC=0.5
WT=0.5

877.94 891.98 840.24 855.17

WC=1.0
WT=0.0

912.11 912.11 859.56 859.56

PPC:OFF
PPT:OFF

PPC:ON
PPT:OFF

PPC:OFF
PPT:ON

PPC:ON
PPT:ON

WC=0.0
WT=1.0

380.15 381.22 380.15 381.22

WC=0.5
WT=0.5

253.84 254.62 375.37 347.37

WC=1.0
WT=0.0

206.54 206.54 325.82 325.82

PPC:OFF
PPT:OFF

PPC:ON
PPT:OFF

PPC:OFF
PPT:ON

PPC:ON
PPT:ON

WC=0.0
WT=1.0

136.45 130.74 136.45 130.74

WC=0.5
WT=0.5

112.54 121.16 130.86 135.71

WC=1.0
WT=0.0

108.29 135.39 138.20 134.35

PPC:OFF
PPT:OFF

PPC:ON
PPT:OFF

PPC:OFF
PPT:ON

PPC:ON
PPT:ON

WC=0.0
WT=1.0

4111.28 4115.63 4111.28 4115.63

WC=0.5
WT=0.5

4081.30 4097.89 4155.04 4083.44

WC=1.0
WT=0.0

3737.57 4044.81 4124.37 3935.95

27

Figure 4.5: mediaWiki Dataset

Figure 4.6: Opencart Dataset

Figure 4.7: phpBB Dataset

Figure 4.8: typo3 Dataset

PPC:OFF
PPT:OFF

PPC:ON
PPT:OFF

PPC:OFF
PPT:ON

PPC:ON
PPT:ON

WC=0.0
WT=1.0 1052.28 1052.28 1052.28 1052.28
WC=0.5
WT=0.5 1025.91 1042.27 1030.86 1053.47
WC=1.0
WT=0.0 920.34 920.34 1061.43 1047.30

PPC:OFF
PPT:OFF

PPC:ON
PPT:OFF

PPC:OFF
PPT:ON

PPC:ON
PPT:ON

WC=0.0
WT=1.0 3390.19 3381.58 3390.19 3381.58
WC=0.5
WT=0.5 1297.10 1294.76 2733.91 2731.19
WC=1.0
WT=0.0 837.30 837.30 2745.29 2743.91

PPC:OFF
PPT:OFF

PPC:ON
PPT:OFF

PPC:OFF
PPT:ON

PPC:ON
PPT:ON

WC=0.0
WT=1.0 870.53 880.23 870.53 880.23
WC=0.5
WT=0.5 861.10 941.45 853.23 791.49
WC=1.0
WT=0.0 843.11 843.11 953.27 872.68

PPC:OFF
PPT:OFF

PPC:ON
PPT:OFF

PPC:OFF
PPT:ON

PPC:ON
PPT:ON

WC=0.0
WT=1.0 648.59 644.33 648.59 644.33
WC=0.5
WT=0.5 658.19 664.04 664.39 485.49
WC=1.0
WT=0.0 486.84 486.84 477.48 438.35

28

Table 4-2: Number of wins for different sets of parameters

 PPC: OFF
PPT: OFF

PPC: ON
PPT: OFF

PPC: OFF
PPT: ON

PPC: ON
PPT: ON

WC = 0.0
WT = 1.0 - - - -

WC = 0.5
WT = 0.5 - - 1 1

WC = 1.0
WT = 0.0 5 3 - 1

We say that a parameter configuration wins each time it produces the lowest Epn

in one of the assessments of the Figures 4.1 – 4.8. Winners are depicted in green

in all these figures. In Table 4-2 we show how many times the different sets of

parameter configurations “win”. Ultimately, the “winner” configuration of

parameters is the one that (a) the data was not preprocessed neither from the

aspect of time nor of change and (b) the time was not taken into account too (0.0

time weight). Second came the set of those parameters that the data was

preprocessed according to changes preprocessing and the time was not taken

into account again. So, from the results we can say that the time has not an

important role in phasic analysis as concerning to these specific datasets and the

changes have.

4.1.3.2 Assessment via spread in the time x change space

The second assessment method can be described as follows:

For each pair of phases phi and phi+1 we have to compute the term δtime as it has

been defined previously. Another term that has to be computed is the term δchange

which is also has been defined previously. When these two terms have been

computed for the whole set of pairs we can represent our results with the scatter

plot format.

In Figures 4.9-4.20 we depict the results of this assessment method with

Coppermine dataset as given input. Note that x-axis is referred to the active time

29

distance (distance in days) and the y-axis is associated with the active changes

distance. We depict the actual (non-normalized) values for both the time and the

change distance. If both distances had been normalized the image of the charts

would be the same and only the values of the numbers would have been

different. So, we can go on with the description of the tables that are following

and with the results of this assessment method.

o Phases: the first column refers to the pair of the source phase and the

destination phase.

o δtime: the second column refers to the active time distance from one phase

to another.

o δc (δchange): the third column refers to the active change distance from one

phase to another.

o The last column represents the scatter plot of the pairs of the second and

third column.

o Concerning the image part of the following Figures, the x-axis of all the

scatterplots is δtime and the y-axis of the scatterplots is δchange.

WC: 0.0 WT: 1.0

PPC:OFF PPT:OFF

Phases δtime δc
0@1 110.50 0

1@2 84.73 4

2@3 90.14 0

3@4 86.63 3

4@5 128.53 2

5@6 132.30 0

6@7 214.35 0

7@8 133.67 0

8@9 80.63 0

Figure 4.9: (δtime, δc) for (WC:0.0, WT:1.0, PPC:OFF, PPT:OFF)

30

WC: 0.0 WT: 1.0

PPC:ON PPT:OFF

Phases δtime δc
0@1 66.91 5

1@2 84.73 4

2@3 80.07 1

3@4 86.63 3

4@5 128.53 2

5@6 63.76 7

6@7 66.46 1

7@8 62.45 1

8@9 56.50 1

Figure 4.10: (δtime, δc) for (WC:0.0, WT:1.0, PPC:ON, PPT:OFF)

WC: 0.0 WT: 1.0

PPC:OFF PPT:ON

Phases δtime δc
0@1 110.50 0

1@2 84.73 4

2@3 90.14 0

3@4 86.63 3

4@5 128.53 2

5@6 132.30 0

6@7 214.35 0

7@8 133.67 0

8@9 80.63 0

Figure 4.11: (δtime, δc) for (WC:0.0, WT:1.0, PPC:OFF, PPT:ON)

31

WC: 0.0 WT: 1.0

PPC:ON PPT:ON

Phases δtime δc
0@1 66.91 5

1@2 84.73 4

2@3 80.07 1

3@4 86.63 3

4@5 128.53 2

5@6 63.76 7

6@7 66.46 1

7@8 62.45 1

8@9 56.50 1

Figure 4.12: (δtime, δc) for (WC:0.0, WT:1.0, PPC:ON, PPT:ON)

WC: 0.5 WT: 0.5

PPC:OFF PPT:OFF

Phases δtime δc
0@1 1.83 1

1@2 0.14 8

2@3 27.56 1

3@4 26.90 14

4@5 2.04 16

5@6 27.39 3

6@7 16.04 8

7@8 5.99 1

8@9 6.99 4

Figure 4.13: (δtime, δc) for (WC:0.5, WT:0.5, PPC:OFF, PPT:OFF)

32

WC: 0.5 WT: 0.5

PPC:ON PPT:OFF

Phases δtime δc
0@1 66.91 5

1@2 5.66 1

2@3 2.04 16

3@4 27.39 3

4@5 84.73 4

5@6 43.09 1

6@7 16.04 8

7@8 5.99 1

8@9 6.99 4

Figure 4.14: (δtime, δc) for (WC:0.5, WT:0.5, PPC:ON, PPT:OFF)

WC: 0.5 WT: 0.5

PPC:OFF PPT:ON

Phases δtime δc
0@1 21.06 1

1@2 9.47 7

2@3 24.45 0

3@4 27.39 3

4@5 84.73 4

5@6 86.63 3

6@7 16.04 8

7@8 5.99 1

8@9 214.35 0

Figure 4.15: (δtime, δc) for (WC:0.5, WT:0.5, PPC:OFF, PPT:ON)

33

WC: 0.5 WT: 0.5

PPC:ON PPT:ON

Phases δtime δc
0@1 21.06 1

1@2 5.66 1

2@3 84.73 4

3@4 43.09 1

4@5 86.63 3

5@6 16.04 8

6@7 5.99 1

7@8 4.11 2

8@9 66.46 1

Figure 4.16: (δtime, δc) for (WC:0.5, WT:0.5, PPC:ON, PPT:ON)

WC: 1.0 WT: 0.0

PPC:OFF PPT:OFF

Phases δtime δc
0@1 0.72 7

1@2 9.47 7

2@3 26.90 14

3@4 2.04 16

4@5 27.39 3

5@6 47.45 2

6@7 0.55 2

7@8 0.03 2

8@9 6.99 4

Figure 4.17: (δtime, δc) for (WC:1.0, WT:0.0, PPC:OFF, PPT:OFF)

34

WC: 1.0 WT: 0.0

PPC:ON PPT:OFF

Phases δtime δc
0@1 0.72 7

1@2 9.47 7

2@3 1.83 1

3@4 0.14 8

4@5 2.04 16

5@6 27.39 3

6@7 47.45 2

7@8 0.55 2

8@9 0.03 2

Figure 4.18: (δtime, δc) for (WC:1.0, WT:0.0, PPC:ON, PPT:OFF)

WC: 1.0 WT: 0.0

PPC:OFF PPT:ON

Phases δtime δc
0@1 12.34 0

1@2 21.06 1

2@3 9.47 7

3@4 24.45 0

4@5 27.39 3

5@6 47.45 2

6@7 5.99 1

7@8 4.11 2

8@9 66.46 1

Figure 4.19: (δtime, δc) for (WC:1.0, WT:0.0, PPC:OFF, PPT:ON)

35

WC: 1.0 WT: 0.0

PPC:ON PPT:ON

Phases δtime δc
0@1 21.06 1

1@2 9.47 7

2@3 5.66 1

3@4 84.73 4

4@5 47.45 2

5@6 16.04 8

6@7 5.99 1

7@8 4.11 2

8@9 66.46 1

Figure 4.20: (δtime, δc) for (WC:1.0, WT:0.0, PPC:ON, PPT:ON)

Observe that the results vary depending on the values of the extraction

parameters in combination with the “morphology” of the dataset. So there are

some plots that show that the changes had more weightiness in the phasic

analysis and the points are close to the y-axis ignoring the time factor. On the

other hand there are some others that are close enough to the x-axis, something

that shows that the change factor had not an important role to the phasic

analysis such as the time factor. Finally there are some plots that the points are

spreading to the whole chart something that evokes that both of the two factors

play similar role to the extraction of the phases.

All the results from all the datasets can be found in Appendix.

4.2 Grouping tables into clusters

In this subsection we solve the problem of grouping the tables of a database into

a cluster to shrink the y-axis of a PLD. We use an agglomerative clustering

36

algorithm which we call Clustering Extractor because this type of algorithms

gives the best result if there are not performance limitations. The Clustering

Extractor gets as input an object that contains the whole set of the tables that

have been appeared during the life of the database and a set of parameters (will

be analyzed in the following subsection) and gives as output a desired number of

clusters. More specifically, the initial step of the algorithm constructs one cluster

for each table, so initially we have as many clusters as tables. The next step has to

do with the computation of the similarity for each pair of the entire set of

clusters according to a distance function that will be analyzed in the sequel.

Then, the most similar pair of compared clusters will be merged into one

common. This procedure is repeated until the desired number of clusters has

been created. At the end of this process, the initial set of database’s tables will

have been partitioned into a set of clusters, that each of them will contain a much

smaller number of tables that have “common” lives.

Algorithm: The Clustering Extractor algorithm

Input: The entire set of the database’s tables T {tab1, ... , tabn}, the desired

number of clusters k, the weight to assign to birth date wb, , the weight to assign

to death date wd, , the weight to assign to heartbeat of the changes date wc

Output: A partition of T, C={c1, … , ck}

variable numClusters=n, counter of the number of clusters

Begin

1. C={c1, … , cn} s.t. ci = {tabi} ∀ i ∈ 1…n

2. while(numClusters>k){

a. for each pair of clusters ci, ci+1, 1 ≤ 𝑖 ≤ 𝑛

i. Compute the δ(ci,ci+1)

b. Merge the most similar clusters, ca and ca+1 into a new cluster c’

c. C = {c1,…, ca-1, c, ca+1, …, cm}

d. numClusters –-

 }

3. Return C;

End

37

4.2.1 Parameters

The first parameter of Clustering Extractor is related with the desired number of

the clusters that we would like to be created. The next two parameters have to

do with the weight that we want to assign to the distance between the birth or

death date of the compared clusters respectively. As date we consider the

transition ID for both cases. The last parameter that is needed for the clustering

extraction is associated with the weight of the distance between changes that

have been committed to each cluster.

o Desired number of clusters (k): refers to the number of clusters that we

would like to be created.

o Birth Weight (BW): refers to the weight of the distance between birth

dates of compared clusters.

o Death Weight (DW): refers to the weight of the distance between death

dates of compared clusters.

o Change Weight (CW): refers to the weight of the distance between the

changes of compared clusters.

4.2.2 Distance Function

The distance function of the clustering analysis contains terms that are

associated with the distances between two clusters as regards birth date, death

date and number of changes between two compared clusters and their assigned

weights. This distance metric is reflected to the following formula, the values of

which are normalized:

𝛿(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐴, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐵) = 𝑤𝑏 ∗ |𝛿𝑏𝑖𝑟𝑡ℎ(𝑐𝐴, 𝑐𝐵)| +

𝑤𝑑 ∗ |𝛿𝑑𝑒𝑎𝑡ℎ(𝑐𝐴, 𝑐𝐵)| +

𝑤𝑐 ∗ |𝛿𝑐ℎ𝑎𝑛𝑔𝑒(𝑐𝐴, 𝑐𝐵)|

38

Table 4-3: Explanation of the distance function

Term Description Formula

𝛿(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐴, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐵) Total distance between two

clusters

𝑤𝑏 The weight that will be

assigned to the distance that

is related with the birth date

𝛿𝑏𝑖𝑟𝑡ℎ(𝑐𝐴, 𝑐𝐵) The distance between birth

dates of the two compared

clusters

Plain

𝑐𝐴. 𝑏𝑖𝑟𝑡ℎ − 𝑐𝐵.𝑏𝑖𝑟𝑡ℎ

Normalized

𝛿𝑏𝑖𝑟𝑡ℎ(𝑐𝐴, 𝑐𝐵)
𝐷𝐵 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑤𝑑 The weight that will be

assigned to the distance that

is related with the death

date

𝛿𝑑𝑒𝑎𝑡ℎ(𝑐𝐴, 𝑐𝐵) The distance between death

dates of the two compared

clusters

Plain

�
∅, 𝒊𝒇 𝒃𝒐𝒕𝒉 𝒂𝒍𝒊𝒗𝒆

𝑐𝐴.𝑑𝑒𝑎𝑡ℎ − 𝑐𝐵.𝑑𝑒𝑎𝑡ℎ, 𝒆𝒍𝒔𝒆 2
�

Normalized

𝛿𝑑𝑒𝑎𝑡ℎ(𝑐𝐴, 𝑐𝐵)
𝐷𝐵 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑤𝑐 The weight that will be

assigned to the distance that

is related with the total

changes

2 If one of the compared clusters is still alive, then its death date is set to the max

transition of the database history +1.

39

𝛿𝑐ℎ𝑎𝑛𝑔𝑒(𝑐𝐴, 𝑐𝐵) The distance between the

total changes that have been

committed to the two

compared clusters

Plain

𝑐𝐴. 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 − 𝑐𝐵𝑐ℎ𝑎𝑛𝑔𝑒𝑠

Normalized
|𝐶ℎ(𝐴)| − |𝐶ℎ(𝐵)|
|𝐶ℎ(𝐴)| + |𝐶ℎ(𝐵)|

where Ch is the total number

of changes

4.2.3 Assessment of the method

In this subsection we will discuss about clustering validity and we will try to

evaluate our clustering technique. In general, there are two main categories for

clustering validity, the internal evaluation and the external evaluation [TaSK05].

The first one refers to methods that do not need external knowledge and can

measure the quality of the clusters that have been produced only with the

information that they keep and which was used from the clustering algorithm.

Otherwise, external evaluation needs external knowledge, i.e., data have to be

classified before the evaluation process, by explicit tracing of human knowledge

on the issue.

4.2.3.1 External Evaluation

For this type of clustering validity there is a large amount of methods that have

been used previously. We decided to choose the most common of them, which

are Entropy, Precision, Recall and F-measure. Our basic source for a more

comprehensive studying on these metrics was [TaSK05].

Entropy: Entropy is defined as the degree to which each cluster consists of

objects of a single class. Moreover, for each cluster j we compute pij, which is the

40

probability that a member of cluster i belongs to class j. This probability is given

by the following formula:

𝑝𝑖𝑗 =
𝑚𝑖𝑗

𝑚𝑖

where mi is the number of objects in cluster i and mij is the number of objects of

class j in cluster i.

So the total entropy of each cluster i is calculated by the following formula:

𝑒𝑖 = −� 𝑝𝑖𝑗 log2 𝑝𝑖𝑗
𝐿

𝑗=1

where L is the number of classes.

In this point, we can define the total entropy of a set of clusters, as the sum of the

entropies of each cluster weighted by the size of each cluster:

𝑒 = �
𝑚𝑖

𝑚
𝑒𝑖

𝐾

𝑖=1

where K is the number of clusters and m is the total number of data points.

This metric substantially give us the purity of the clustering. The less objects of

different classes exist to a cluster the better and so on the smaller value of

entropy. So we want to achieve as soon as smaller values of entropy.

Precision: Precision is defined as the fraction of a cluster that consists of objects

of a specified class. Precision of a cluster i with respect to class j is:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖, 𝑗) = 𝑝𝑖𝑗

41

Recall: Recall depicts the extent to which a cluster contains all the objects of a

specified class. The recall of cluster i with respect to class j is:

𝑟𝑒𝑐𝑎𝑙𝑙(𝑖, 𝑗) =
𝑚𝑖𝑗

𝑚𝑗

where mj is the number of objects in class j.

F-measure: F-measure consists of both precision and recall and measures the

extent to which a cluster contains only objects of a particular class and all objects

of that class. The F-measure of cluster i with respect to class j is calculated by this

formula:

𝐹(𝑖, 𝑗) =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖, 𝑗) × 𝑟𝑒𝑐𝑎𝑙𝑙(𝑖, 𝑗)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖, 𝑗) + 𝑟𝑒𝑐𝑎𝑙𝑙(𝑖, 𝑗)

So, as we have defined the basic metrics that have been used to evaluate our

clustering algorithm we have to say some words about the procedure to classify

the tables clusters that then would be evaluated. We studied four different

datasets (Atlas, bioSQL, Coppermine, phpBB) and we tried to classify their tables.

The source of our classification procedure was the PLD (Parallel Live Diagram).

The most obvious criteria of the PLD are when a table is born (birth date) and

when a table died and not as much the count of changes of each table. So, the

classification is based on more on the first two criteria rather than the third one.

Now we can cite our results for four different datasets (Atlas, bioSQL,

Coppermine, phpBB). Firstly, because of the large amount of data and space that

are needed to show up precision, recall and F-measure results for all the datasets

in combination with our desire not to overflow reader we will analyze only the

bioSQL dataset and the results for the rest will be placed in Appendix. Secondly

we will present and discuss all the results that are referred to entropies.

42

At this point, we will study the bioSQL dataset a little more comprehensively.

First of all, in Figure 4.21 there is a preview of the classification of the clusters

which was extracted from our tool (PPL tool). In bioSQL there are totally 45

tables and we constructed four classes to classify these tables (red, yellow, black

and purple). For some tables, is obvious in which class they belong, but for some

others it is a little more complicated. The “red class” consists of tables that were

born at the beginning of the life of bioSQL database but they died early too and it

is represented by letter “R” in fig. 4.21. The “yellow class” contains tables that

were born in the middle of the life of the database but died a few versions later

too and it is represented by letter “Y”. The “purple class” has tables that were

born after the middle of the database’s life and live until the end too and it is

represented by letter “P”. Finally, the most complicated class, the “black class”

consists initially of tables that were born at the beginning of the life of the

database and lived throughout its whole life too and it is represented by letter

“B”.

There are some tables that is not obvious how to be classified. For example,

seqfeature location table was classified to “black” class and not to the “red” as

someone could expect. To understand this we have to have a look on a prior state

of classifying procedure when neither seqfeature location nor

cache_corba_support had been classified. In some state of the classification

process and after the obvious tables had been classified it was the turn of the

cache_corba_support table to be classified. Cache_corba_support has the same

distance with respect to birth date either to “red class” or to “black class”. With

respect to the death date cache_corba_support’s distance to the “black class” is 14

versions, whereas between the “red class” whose death date is the death date of

remote_seaqfeature_name is 16. So cache_corba_support was classified to “black

class”. Then it was the turn of seqfeature_location, but now it is obvious that this

table is more similar with cache_corba_support that belongs to the “black class”

rather than the remote_seaqfeature_name that belongs to the “red class”. So,

seqfeature_location was classified to the “black class”. This is the logic behind the

classification process.

43

Figure 4.21: bioSQL dataset with classes

After the explanation of the classification process we can have a look at the

results about the others measures that were analyzed before for the bioSQL

dataset and for different set of parameters. We have to note that Class 1 of the

tables with the results refers to “red class”, Class 2 to “black class”, Class 3 to

“purple class” and Class 4 to “yellow class”.

44

Table 4-4: Results for wb: 0.333 , wd: 0.333 , wc: 0.333

Class 1 (R) Class 2 (B) Class 3 (P) Class 4 (Y)

Precision

 Cluster 0 0.50 0.50 0.00 0.00

Cluster 1 0.31 0.55 0.00 0.14

Cluster 2 0.00 0.55 0.45 0.00

Cluster 3 0.00 0.00 1.00 0.00

Recall

 Cluster 0 0.10 0.04 0.00 0.00

Cluster 1 0.90 0.70 0.00 1.00

Cluster 2 0.00 0.26 0.63 0.00

Cluster 3 0.00 0.00 0.38 0.00

F-Measure

 Cluster 0 0.17 0.08 0.00 0.00

Cluster 1 0.46 0.62 0.00 0.24

Cluster 2 0.00 0.35 0.53 0.00

Cluster 3 0.00 0.00 0.55 0.00

45

Table 4-5: Results for wb:0.0 wd:1.0 wc:0.0

Class 1 (R) Class 2 (B) Class 3 (P) Class 4 (Y)

Precision

 Cluster 0 1.00 0.00 0.00 0.00

Cluster 1 0.83 0.00 0.00 0.17

Cluster 2 0.00 0.50 0.00 0.50

Cluster 3 0.00 0.71 0.29 0.00

Recall

 Cluster 0 0.50 0.00 0.00 0.00

Cluster 1 0.50 0.00 0.00 0.25

Cluster 2 0.00 0.13 0.00 0.75

Cluster 3 0.00 0.87 1.00 0.00

F-Measure

 Cluster 0 0.67 0.00 0.00 0.00

Cluster 1 0.63 0.00 0.00 0.20

Cluster 2 0.00 0.21 0.00 0.60

Cluster 3 0.00 0.78 0.44 0.00

46

Table 4-6: Results for wb:0.0 wd:0.5 wc:0.5

Class 1 (R) Class 2 (B) Class 3 (P) Class 4 (Y)

Precision

 Cluster 0 1.00 0.00 0.00 0.00

Cluster 1 0.64 0.14 0.00 0.21

Cluster 2 0.00 0.76 0.24 0.00

Cluster 3 0.00 0.40 0.40 0.20

Recall

 Cluster 0 0.10 0.00 0.00 0.00

Cluster 1 0.90 0.09 0.00 0.75

Cluster 2 0.00 0.83 0.75 0.00

Cluster 3 0.00 0.09 0.25 0.25

F-Measure

 Cluster 0 0.18 0.00 0.00 0.00

Cluster 1 0.75 0.11 0.00 0.33

Cluster 2 0.00 0.79 0.36 0.00

Cluster 3 0.00 0.14 0.31 0.22

47

Table 4-7: Results for wb:0.0 wd:0.0 wc:1.0

 Class 1 (R) Class 2 (B) Class 3 (P) Class 4 (Y)

Precision

 Cluster 0 0.20 0.20 0.60 0.00

Cluster 1 0.27 0.52 0.09 0.12

Cluster 2 0.00 0.83 0.17 0.00

Cluster 3 0.00 0.00 1.00 0.00

Recall

 Cluster 0 0.10 0.04 0.38 0.00

Cluster 1 0.90 0.74 0.38 1.00

Cluster 2 0.00 0.22 0.13 0.00

Cluster 3 0.00 0.00 0.13 0.00

F-Measure

 Cluster 0 0.13 0.07 0.46 0.00

Cluster 1 0.42 0.61 0.15 0.22

Cluster 2 0.00 0.34 0.14 0.00

Cluster 3 0.00 0.00 0.22 0.00

48

Table 4-8: Results for wb:0.5 wd:0.5 wc:0.0

Class 1 (R) Class 2 (B) Class 3 (P) Class 4 (Y)

Precision

 Cluster 0 1.00 0.00 0.00 0.00

Cluster 1 0.00 1.00 0.00 0.00

Cluster 2 0.00 0.00 0.00 1.00

Cluster 3 0.00 0.00 1.00 0.00

Recall

Cluster 0 1.00 0.00 0.00 0.00

Cluster 1 0.00 1.00 0.00 0.00

Cluster 2 0.00 0.00 0.00 1.00

Cluster 3 0.00 0.00 1.00 0.00

F-Measure

 Cluster 0 1.00 0.00 0.00 0.00

Cluster 1 0.00 1.00 0.00 0.00

Cluster 2 0.00 0.00 0.00 1.00

Cluster 3 0.00 0.00 1.00 0.00

49

Table 4-9: Results for wb:0.5 wd:0.0 wc:0.5

Class 1 (R) Class 2 (B) Class 3 (P) Class 4 (Y)

Precision

 Cluster 0 0.26 0.53 0.13 0.08

Cluster 1 0.00 0.33 0.33 0.33

Cluster 2 0.00 1.00 0.00 0.00

Cluster 3 0.00 0.00 1.00 0.00

Recall

 Cluster 0 1.00 0.87 0.63 0.75

Cluster 1 0.00 0.04 0.13 0.25

Cluster 2 0.00 0.09 0.00 0.00

Cluster 3 0.00 0.00 0.25 0.00

F-Measure

 Cluster 0 0.42 0.66 0.22 0.14

Cluster 1 0.00 0.08 0.18 0.29

Cluster 2 0.00 0.16 0.00 0.00

Cluster 3 0.00 0.00 0.40 0.00

50

Table 4-10: Results for wb:1.0 wd:0.0 wc:0.0

Class 1 (R) Class 2 (B) Class 3 (P) Class 4 (Y)

Precision

 Cluster 0 0.38 0.62 0.00 0.00

Cluster 1 0.00 0.64 0.00 0.36

Cluster 2 0.00 0.00 1.00 0.00

Cluster 3 0.00 0.00 1.00 0.00

Recall

 Cluster 0 1.00 0.70 0.00 0.00

Cluster 1 0.00 0.30 0.00 1.00

Cluster 2 0.00 0.00 0.88 0.00

Cluster 3 0.00 0.00 0.13 0.00

F-Measure

 Cluster 0 0.56 0.65 0.00 0.00

Cluster 1 0.00 0.41 0.00 0.53

Cluster 2 0.00 0.00 0.93 0.00

Cluster 3 0.00 0.00 0.22 0.00

Having all these results at hand, it is not obvious to determine which set of

parameters is better. Therefore, we resort to a summarization of these tables. We

have extracted the average values of the different sets of parameters for

precision, recall and F-Measure. The metric that gave us a clear result was the

average F-measure which can be found in Table 4-10 in the right column. In the

left column of table 4.10 there are the values for the different sets of parameters.

Wb refers to the weights that we assign to the birth date. Wd refers to the

weights that we assign to the death date. Wc is related with the weights that we

assign to the heartbeat of changes. The bigger the value of average F-measure is

the better, because that means that clusters contain objects of one class for their

most part.

51

Table 4-11: Average F-Measure

Parameters

Set

wb-wd-wc

Average

 F-Measure

0.33 - 0.33 - 0.33 0.19

0.00 - 1.00 - 0.00 0.22

0.00 - 0.50 - 0.50 0.20

0.00 - 0.00 - 1.00 0.17

0.50 - 0.50 - 0.00 0.25

0.50 - 0.00 - 0.50 0.16

1.00 - 0.00 - 0.00 0.21

As we can observe, the best results are given by the set of parameters that do not

take the changes into account. This was also the case for the classifying process

too. For weights equal to 0.5, 0.5, 0.0 for birth, death and changes respectively,

the measures give us the best results. One cluster contains objects that belong

only to one class something that was depicted from precision measure. Also, each

cluster not only contains objects of one class but contains the whole set of these

objects, a knowledge that was extracted from recall measure.

The results that are related with the entropies that we obtained with different

parameters for all the datasets are presented in Tables 4.11 to 4.14. The first

three columns are related with the weights that were assigned to the distance

function. The first column, wb refers to the weights that were assigned to the

birth date, the second column wd refers to the weights that were assigned to the

death date and the third column wc is connected with the weights that were

assigned to the heartbeat of changes. Finally the bold values denote the best

score for each dataset.

52

Table 4-12: Atlas results

wb wd wc Entropy (e)

0.333 0.333 0.333 0.40

0 1 0 0.45

0 0.5 0.5 0.51

0 0 1 1.14

0.5 0.5 0 0.32

0.5 0 0.5 0.50

1 0 0 0.30

Table 4-13: bioSQL results

wb wd wc Entropy (e)

0.333 0.333 0.333 1.13

0 1 0 0.79

0 0.5 0.5 1.06

0 0 1 1.14

0.5 0.5 0 0.00

0.5 0 0.5 0.57

1 0 0 0.52

53

Table 4-14: Coppermine results

wb wd wc Entropy (e)

0.333 0.333 0.333 0.38

0 1 0 0.19

0 0.5 0.5 0.38

0 0 1 0.38

0.5 0.5 0 0.19

0.5 0 0.5 0.60

1 0 0 0.00

Table 4-15: phpBB results

wb wd wc Entropy (e)

0.333 0.333 0.333 0.13

0 1 0 0.94

0 0.5 0.5 0.28

0 0 1 0.28

0.5 0.5 0 0.00

0.5 0 0.5 0.20

1 0 0 0.26

Now, we discuss the circumstances under which our algorithm gives the best

results. In the Atlas dataset the best entropy is given for the set of weights (1, 0,

0) whereas in second place we find the set (0.5, 0.5, 0). However, the interesting

here is that when the set of parameters (0.5, 0.5, 0) “looses”, it has close result

with the winner, whereas when it “wins” it has a much bigger distance from the

second. That is the reason that we choose this set of parameterσ as the best

alternative. The worst results are come from the set (0, 0, 1) that is the set that

does not take note of the birth and death date of each data point which are the

54

basic criteria that were taken into account for the classification. This pattern

seems to be followed from the next three datasets too, where the entropy in

some cases is even equal to zero. So we can conclude that our algorithm has a

good performance on these datasets and it is quite adaptive as concerns the

values of weights.

4.2.3.2 Internal Evaluation

Internal evaluation contains these types of methods that do not need any

external knowledge as mentioned previously and they can validate the quality of

the clusters with information that is kept by each cluster by itself. Often, internal

evaluation helps us to decide the right set of parameters for the best quality of

the clustering. Two of the most common metrics for this type of evaluation are

cohesion and separation. In general, according to [TaSK05], we can express the

overall cluster validity for a set of K clusters as a weighted sum of the validity of

individual clusters. This is expressed by this formula:

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 = �𝑤𝑖𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦(𝐶𝑖)
𝐾

𝑖=1

The validity function can be expressed by various metrics such as cohesion,

separation or even a combination of them. With regard to the cohesion, higher

values are better, whereas lower values are better for separation. Weights vary

among different metrics.

55

Cohesion of a cluster can be defined as the sum of the proximities with respect to

the prototype (centroid or medoid) of the cluster. With the term proximity we

mean a distance function. So here it is the formula that we used to measure

cohesion:

𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛(𝐶𝑖) = � 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑥, 𝑐𝑖) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑐𝑖)
𝑥∈𝐶𝑖

where ci is the prototype of cluster Ci .

The prototype of each cluster was computed as follows:

We considered that the prototype of a cluster is a vector [x, y, z]. For our

purposes, each data point which is a table of the cluster contains a vector [x, y, z]

too, where x is the birth date of the table, y is the death date of the table and z is

the number of changes of the table. Now we can define how prototype’s vector is

calculated. Prototype’s x value is the average of the x values of the data points

that are included by the cluster. y value is the average of the y values of the data

points that are included by the cluster and z value is the average of the z values

of the data points.

Respectively, separation of a cluster is defined as the proximity between the

centroid ci of the cluster and an overall centroid that has been calculated by the

whole set of data points. Here is how it is expressed in mathematical formula:

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝐶𝑖) = 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑐𝑖, 𝑐)

where c is defined the overall centroid of the dataset.

We can define overall centroid of the dataset similarly with the prototype of the

cluster with the only difference that in this case the entire set of data points take

part in calculation of x, y and z values of overall centroid.

56

For our purposes, we used the Euclidean distance as a measure of proximity. The

weight for cohesion was set to 1, whereas weight for separation was set to the

number of objects of each cluster, because separation combines both information

from the cluster itself and information from the whole dataset, so we would like

each cluster to reflect to the final result depending on its size. Now, we can see

the results about some concrete values for the set of the parameters. In the Wb

column there are the values that were given to the birth weight of distance

function, whereas in the Wd column there are the values that are related with the

death weight and in the Wc column the values that are connected with the

changes respectively. In the Cohesion column there are the results for the

cohesion metric and in column Separation the results for separation metrics.

Table 4-16: Atlas Dataset Results

Wb Wd Wc Cohesion Separation
0.00 1.00 0.00 1323.69 2115.12

0.33 0.33 0.33 650.45 2598.62

0.50 0.50 0.00 331.31 2797.45

0.50 0.00 0.50 1383.74 2049.81

1.00 0.00 0.00 1271.30 2314.82

Atlas is a dataset that does not have a lot of deletions of tables compared to

insertions and changes, so the set of parameters that is more connected with the

birth and the changes and not so much with the deaths give us the best results

with respect to cohesion and separation. In second place comes the set which is

related with only the deaths because there is a big cluster of tables that die in

very close versions and the larger percentage of tables live until the end of the

database, which means that have the same death date.

57

Table 4-17: Coppermine Dataset

Wb Wd Wc Cohesion Separation
0.00 1.00 0.00 211.33 362.10

0.33 0.33 0.33 35.62 421.41

0.50 0.50 0.00 40.16 418.65

0.50 0.00 0.50 35.62 421.41

1.00 0.00 0.00 40.16 418.65

Coppermine’s best set of parameters is 0, 0, 1 for birth, death and changes

respectively. This happens because Coppermine’s dataset contains only one

permanent deletion of table and one temporary. This means that the majority of

the tables has the same death date and so the best clustering is given by the set

of parameters that has to do with only the deaths.

Table 4-18: bioSQL Dataset

Wb Wd Wc Cohesion Separation
0.00 1.00 0.00 320.45 781.45

0.33 0.33 0.33 159.73 890.94

0.50 0.50 0.00 122.00 886.21

0.50 0.00 0.50 473.46 668.98

1.00 0.00 0.00 253.59 827.05

The Biosql dataset also could be characterized as an ascending dataset with

respect to its size. That means that a big weight to deaths would not give as the

best result. As we can see at Table 4-16 this is something that is reflected by the

result, because the winner is the set that is connected with the other two

parameters births and deaths.

58

Table 4-19: Ensembl Dataset

Wb Wd Wc Cohesion Separation
0.00 1.00 0.00 11167.50 30780.37

0.33 0.33 0.33 21301.49 21566.66

0.50 0.50 0.00 5289.72 33661.45

0.50 0.00 0.50 19684.44 24562.84

1.00 0.00 0.00 14182.14 27347.17

The Ensembl dataset is one of the largest datasets that we evaluated. That means

that it has a big number of commits that contain all types of changes such as

deletions, insertions and updates among the whole life of the database. This

could give the intuition that a more balanced set of weights would give us the

best results. Finally, this intuition came true because we have the best cohesion

and separation for the set of 0.33, 0.33, and 0.33.

Table 4-20: mwiki Dataset

Wb Wd Wc Cohesion Separation
0.00 1.00 0.00 4653.55 6882.07

0.33 0.33 0.33 1752.76 9397.74

0.50 0.50 0.00 1033.57 9561.50

0.50 0.00 0.50 5349.92 7390.00

1.00 0.00 0.00 4775.46 7740.74

Table 4-18 shows the results concerning the mediaWiki dataset. The deletions

that are committed in mediaWiki can be grouped with the naked eye, because

there are three different groups of tables that they died in independent time

points in relation to the lifetime of the database something that explains why this

parameter on its own give us the best separation. Although, if we take into

account the other two parameters, we can see that they give as better result with

regard to cohesion. That happens because this set contains the parameter of the

59

changes that are not negligible during the whole life of the database combining

with the births.

Table 4-21: Opencart Dataset

Wb Wd Wc Cohesion Separation
0.00 1.00 0.00 3924.06 15890.54

0.33 0.33 0.33 3359.07 16089.72

0.50 0.50 0.00 2366.92 16189.32

0.50 0.00 0.50 7604.85 13317.76

1.00 0.00 0.00 3202.38 16068.17

The Opencart dataset is another “quiet” dataset with regard to deaths. The most

births of the tables occur in some specific points of the database’s life. The largest

part of changes happened in the early life of the database and only a few changes

committed later. So, these two features we could say that they give us the largest

balance between the tables something that is depicted by Table 4-19 too.

Table 4-22: phpBB Dataset

Wb Wd Wc Cohesion Separation
0.00 1.00 0.00 766.54 2053.20

0.33 0.33 0.33 2243.29 512.37

0.50 0.50 0.00 506.25 2196.72

0.50 0.00 0.50 2104.33 565.81

1.00 0.00 0.00 506.25 2196.72

The phpBB dataset could be described by calmness until the middle age of its

whole life. However, a big amount of deletions, insertions and updates occur at

the middle of the life of the database. In our case this instability can be overcome

if we take into account all types of changes that have been committed and give a

balanced set of the three parameters. That is projected to Table 4-20 where we

60

can observe that the set of 0.33, 0.33, and 0.33 give us the clustering with the

best cohesion and separation.

Table 4-23: typo3 Dataset

Wb Wd Wc Cohesion Separation
0.00 1.00 0.00 414.14 1096.70

0.33 0.33 0.33 192.07 1240.47

0.50 0.50 0.00 239.91 1213.34

0.50 0.00 0.50 208.57 1212.90

1.00 0.00 0.00 277.97 1200.29

The Typo3 dataset does not have an important increase of its size from the

beginning of the life of the database until the end of it. This means that birth is

not the best feature for clustering the tables. The changes are also only a few

during the whole life of the database, so it could not a give a specific result for the

clustering. On the other hand, there is an important piece of the typo3’s life

where tables die continuously. Intuitively, this criterion could give us a better

clustering result, because it includes some more information against the other

two criteria that are almost flat for the whole life of the database. That is why the

set of 0, 1, and 0 in Table 4-21 give us the best results for the metrics of the

cohesion and separation.

To conclude, table 4-24 shows cumulatively how many times each set of

parameters wins. Observe that the winner set is the set that does not take into

account the deaths of the tables. This happens because the datasets generally are

“quiet” something that means that they have not a lot of changes and if they have

we can say that span across many tables. Moreover, usually we have bursts of

births in which a group of tables is born simultaneously and more rarely a

unique table is observed to be born. This happens more often with the deaths of

the tables. So, the changes feature combining with the births give us the best

quality of table clusters.

61

Table 4-24: Number of wins for different sets of parameters

Wb Wd Wc Cohesion Separation
0.00 1.00 0.00 2 3

0.33 0.33 0.33 2 2

0.50 0.50 0.00 - -

0.50 0.00 0.50 4 3

1.00 0.00 0.00 - -

4.3 Zoom into a specific point of overview

If the PLD has as the x-axis the phases that have been extracted by our algorithm

and as the y-axis the tables of the relational schema of a database, then the

zooming into a specific point of the PLD gives as a result the changes that have

been committed to this table at this specific phase for the transitions that this

phase consists of.

In Figure 4.22 which was exported from PPL tool for the loaded dataset of Atlas,

we can see an example of such a case. More concretely, we can see the result of

zooming into a specific point of the whole overview. The selected cell (orange

cell) from the Parallel Lives Diagram refers to the table hlt_prescale_set and to

the Phase 4. This phase includes three transitions, the transitions 4, 5 and six as

we can see. So, as the result of the drilling into this point we have the changes

that have been committed to hlt_prescale_set at these transitions something that

is shown up in Zoom Area.

62

Figure 4.22: Zoom into a specific point of overview (1)

If the PLD has as the x-axis the phases that have been extracted by our algorithm

again, but as y-axis the clusters that have been created by the clustering

algorithm, then zooming into a specific point of this type of PLD would give us

the lives of the tables of this cluster for the transitions of which the respective

phase consists of.

The difference between Figure 4.22 and Figure 4.23 is that at y-axis we have the

clusters that have been created by clustering algorithm. So, the selected cell in

Parallel Lives Diagram refers to the Phase 47 of the loaded dataset of phpBB

database and to the Cluster 13. As a result of zooming into to this point of the

total overview of phpBB database we get the part that is shown up to the Zoom

Area of Figure 4.23. In this area, we can see the lives of the tables of the Cluster

13 for the transitions that are included in Phase 47.

63

Figure 4.23: Zoom into a specific point of overview (2)

4.4 Filter the overview of the history of a relational database schema

The result of the filtering of a PLD is related with the format that the PLD has.

More specifically, if the PLD has as its x-axis the phases that have been extracted,

then we can filter our overview by a unique phase and get the behavior of the

elements of the y-axis, either this axis consists of the tables of the database or it

consists of the clusters that have been created for the transitions of this phase

only.

In Figure 4.24, the selected column refers to Phase 47 of the phpBB dataset. The

filtering of the total overview according to this phase, give as a result the lives

and the changes for every table of the database only for the transitions that

constitute this phase.

64

Figure 4.24: Filter by a specific phase

Moreover if the PLD has as its y-axis the tables of a database we can select one or

more of them and get the whole life only for the selected.

In Figure 4.25 we can see such an example, where we select the table

phpbb_users from the PLD and we isolate its entire life. Its life appears to the

Zoom Area with the changes that have been committed to this table during its

existence.

65

Figure 4.25: Filter by a specific table

If the PLD has as its y-axis the clusters that have been created we can filter our

overview only according to the desired clusters and the tables that they consist

of and get the behavior only for these.

Similarly, in Figure 4.26 we have two selected rows from the PLD. These rows

correspond to Cluster 12 and Cluster 13. So, we can filter the whole overview of

the phpBB database according to these rows and get the result that is projected

to the Zoom Area of Figure 4.26. This area contains the tables of the selected

clusters with their behavior during the whole life of the database, segmented

into the same phases such as in PLD.

66

Figure 4.26: Filter by specific clusters

4.5 Details on demand

We can get different kinds of information according to the format that the PLD

has. More precisely, if the PLD has as its x-axis the phases, we can select one

specific column (phase) and get a more comprehensive description about the

selected phase, such as the ID of the transition that starts or ends with, the total

number of changes that have been committed to this phase and more specifically

the number of updates, additions or deletions for the whole phase.

In Figure 4.27 we can see the details that we get if we select an entire phase

(column) from the PLD. In yellow rectangle where there are the details for the

selected phase, we can get information such as the name of the selected phase

which is Phase 2, the transition ID in which this phase starts which is transition 3

and the transition ID in which this phase ends which is transition 6. Moreover,

we are informed that in Phase 2 two changes took place, from which, one was an

addition and one was a deletion.

67

Figure 4.27: Details on demand (1)

Furthermore, if the PLD has in its y-axis the clusters that have been created by

the clustering algorithm, we can select a specific cluster and get a detailed

description for this, such as the number of tables that it contains, the birth date

of the cluster (the smallest birth date of the tables that it includes), the death

date of the cluster (the biggest death date of the tables that it includes), the

number of the additions, deletions, updates that have been committed to the

tables of the cluster, etc.

In the yellow rectangle of the Figure 4.28, we can get details about the selected

cluster of the PLD. More concretely, we are informed about the name of this

cluster, the name and the transition ID of the birth date of the cluster, the name

and the transition ID of the death date of the cluster, the number of tables that

are included by this cluster and the total number of changes that have been

committed to this cluster during its whole life.

68

Figure 4.28: Details on demand (2)

If the PLD has as its x-axis the extracted phases and as its y-axis the tables of a

database and we select a unique cell, we can get a combination of details for this

specific table and for this specific phase, such as when this phase starts/ends,

when this table was born, how many changes were committed to this table at

this specific phase or what kind of changes were committed to this table in this

phase. Similarly, if the y-axis of the PLD consists of the clusters that have been

created previously by the clustering algorithm, we can get the respective details

for this cluster in relation to this phase.

In Figure 4.29, we have selected a unique cell from a PLD that has the format that

have been described above. The yellow rectangle gives us information both for

the y-axis value (table) and for the x-axis value (phase). Concerning the phase,

we can get details such as the name of the phase, the transition ID of the first

transition that it contains and the transition ID of the last transition that it

contains. Concerning the table, we can get its name, the sql file and ID of its birth

date, the sql file and ID of its death date and the changes that were committed to

this table in this phase.

69

Figure 4.29: Details on demand (3)

Finally, we can get on demand an independent table with a full detailed map of

changes that were happened from version to version for every table of the input,

with the count and the kind of changes and with the birth and the death of each

table during the whole life of the database.

In Figure 4.30 we can see this kind of table. Each row of this table contains the

live of one unique table of the dataset that was imported. In this case, we explore

the phpBB dataset. There is one column for each version of the database, and

between them there are three columns that they refer to the insertions (I),

updates (U), and deletions (D). The red color is related with the deletions, the

blue color is related with the updates and the green color is connected with the

insertions. The deeper a color is, the bigger number of changes for this kind is.

For example the red rectangles tell us that from version v1158386826 to version

v1158530548 phpbb_posts table had one attribute deletion.

70

Figure 4.30: Details on demand (4)

71

CHAPTER 5. SOFTWARE ASPECTS OF OUR

SOLUTION – THE PPL TOOL

5.1 Design and Analysis

5.2 Implementation

In this Chapter we will analyze the software aspects of Plutarch’s Parallel Lives.

In subsection 5.1, we can find the design and the analysis about PPL. Its packages

and its classes will be represented with UML package or class diagrams and they

will be analyzed. In subsection 5.2, we show information about the

implementation of the tool. Moreover, we analyze the technologies and the IDEs

that were used and we comment on two selected classes, which are the classes

that implement the phase extraction algorithm and the clustering extraction

algorithm respectively. Finally, we give some screenshots from Plutarch’s

Parallel Lives software.

5.1 Design and Analysis

In this subsection we will present the design of our software, the Plutarch’s

Parallel Lives. PPL consists of a set of packages each of which handles different

functions such as input, data processing, data management, graphic user

interface, phase analysis or table clustering. In the sequel, we analyze each of this

packages including their sub-packages and their classes.

72

5.1.1 The data Package

Figure 5.1: data UML Diagram

The data package has the main responsibility about whatever is related with the

data that are used by our tool. Moreover, it contains the sub-packages

dataKeeper, dataPPL, dataProcessing and dataSorters.

5.1.1.1 The dataKeeper sub-package

The DataKeeper sub-package contains a unique class that is called

GlobalDataKeeper. This class, as implied by its name, contains all the data that

are needed by PPL for its functions. Moreover it keeps the entire input such as

tables, schemas, transitions etc. and additionally data that have come from

processing input from our algorithms such as phases and clusters. Every other

class that needs some information about any of these constructions has to use a

DataKeeper object of this type of class.

73

5.1.1.2 The dataProcessing sub-package

Figure 5.2: dataProccessing UML diagram

This sub-package is responsible for importing the input to the PPL tool and

moreover to share it to the relative classes to construct the respective objects.

• Class Worker class is the main engine of this package and which handles

the rest classes of this sub-package. Initially, it calls ImportSchemas class

which parses the input with the help of Hecate3 tool [Heca15] and returns

it to Worker. Next, the input is shared among the other classes of the

package to construct objects which depend on the information that they

keep.

3 Hecate is a tool that gets as input DDL files, parses them and creates sorted lists

of relations and the attributes they contain as well as foreign key constrains for

the relations. In PPL for each parsed DLL file, it is created an object of type

Hecate Schema and includes a list of Hecate Table objects that with their turn

they contain a list of Hecate Attribute objects.

74

• Class PPLSchemasConstructions has to construct objects of PPLSchema

type for each SQL schema was parsed.

• Class PPLTableConstruction constructs one object of PPLTable type for

each table of input.

• Class PPLTransitionConstruction makes an object of PPLTransition

type for each transition that was parsed from the input.

• Class TableChangeConstruction construct an object of TableChange type

for the changes that have been committed to each PPLTable.

• Class AtomicChangesConstruction class is responsible for the

construction of objects of AtomicChange type which are individual

changes for each Class PPLTable and they are fed to the TableChange’s

objects.

75

5.1.1.3 The dataPPL sub-package

Figure 5.3: dataPPL UML diagram

The DataPPL package contains classes that could be characterized as the

translation of the input to the objects that PPL understands. It includes two sub-

packages according to the function that they handle. The first sub-package is

76

called pplSQLSchema and contains classes that represent the basic features of a

database such as schema, table and attribute.

• Class PPLSchema keeps the name of an SQL schema, a list of (PPL) tables

that are contained to this schema and a reference to a Hecate schema

which is the initial format of a schema that was parsed by Hecate.

• Class PPLTable keeps all these information that is connected with a table.

Moreover, it includes information such as the name of the table, a list of

Class PPLAtributes which are the attributes of the table, total changes of

the table (count and objects), birth dates, death dates, etc.

• Class PPLAttribute is the translation of a database’s attribute. It contains

information about the name of the attribute, the table that belongs to and

a reference to a Hecate attribute, which is the initial format of an attribute

when the input was parsed by Hecate.

We have to note that some classes keep a reference to Hecate objects because we

would not like to keep double information about each object. So each class keeps

the information that it needs and together they keep the whole information

about a specific object of the database that was given as input.

The second sub-package is called pplTransition and it includes classes that

keep information that is related with the transitions over versions.

• Class PPLTransition is the class that contains the whole information

about a transition between two schemas. Moreover, it keeps the

names of the old and the new version respectively, an ID that makes a

transition unique and a list with the whole set of changes that were

happened to this transition.

• Class TableChange is responsible for the information that has to do

with the changes that were committed to the database. Furthermore it

contains the name of the table whose changes are kept, and a list of

these changes.

• Class AtomicChange class has the responsibility to handle individual

changes that were committed to the database. It refers to the attribute

77

that changed, in which table this attribute was belonged to, in which

transition this change was committed and the type of the change, such

as insertion, deletion or update.

5.1.1.4 The dataSorters sub-package

This package has to do with the sorting of lists, tables, etc., that have to be sorted

by PPL tool. Specifically:

• Class PPLTableSorting class handles the sorting of whole set of the

tables according to their birth date firstly, and their death date secondly.

• Class PldRowSorter is responsible for the sorting of PLD rows, to be

sorted by birth date firstly and by death date secondly.

5.1.2 The phaseAnalyzer Package

Figure 5.4: phaseAnalyzer UML diagram

The PhaseAnalyzer package is connected with those functions that are necessary

for the extraction of phases from the life of a database. Let’s have a more

comprehensive look to them.

78

5.1.2.1 The engine sub-package

This package as its name denotes is the main engine for the extraction of the

phases. It includes one unique class that is called PhazeAnalyzerMainEngine

which it manages the rest of the classes that are needed to break the life of a

database into segments.

5.1.2.2 The parser sub-package

Figure 5.5: parser UML diagram

This package contains the parser of the input that is needed for the extraction of

the phases. Moreover it includes three classes.

• Class IParser is an interface that has been designed for different kinds of

parsers.

• Class ParserFactory is a factory of IParser objects that returns different

kinds of objects of IParser type according to the value that it takes as

argument.

• Class SimpleTextParser is the class that substantially parses the input

and transforms it into objects of the relative classes. When it parses a file

79

it returns an object of TransitionHistory type that will be analyzed

below. It implements IParser interface.

5.1.2.3 The commons sub-package

Figure 5.6: commons UML diagram

80

The commons sub-package includes all these classes that are used most for the

procedure of the extraction of the phases.

• Class TransitionHistory is the class that keeps the information of the

input for the phase extraction when it is parsed. It contains the whole set

of transitions during the life of the database including the stats of each of

them.

• Class TransitionStats contains the information about the stats of a

unique transition such as old or new version of a transition, number of

updates, deletions or insertions, etc. For each transition during the life of

the database, TransitionHistory keeps an object of this type.

• Class Phase is the class that keeps the elements about a unique phase

such as when it starts or when it ends, which transitions it includes,

number of updates, insertions, deletions, etc.

• Class PhaseCollector keeps a list for objects of type Phase. In short, it

keeps all the phases that have been extracted by the phase extraction

algorithm.

81

5.1.2.4 The analysis sub-package

Figure 5.7: analysis UML diagram

The analysis sub-package contains classes that have to do with the extraction of

the phases.

• Class PhaseExtractor is an interface that was designed with this way

with the purpose to be implemented by different types of phase

extractors.

• Class PhaseExtractorFactory is a factory of PhaseExtractor objects

that it returns different kinds of this type of objects according to the value

that is passed as an argument.

• Class BottomUpPhaseExtractor is our basic class that contains the

algorithm for the extraction of the phases and the preprocessing of the

data for the phase extraction. It implements the PhaseExtractor

interface. We analyze this class much more in section 5.2.2.

82

5.1.3 The tableClustering package

Figure 5.8: tableClustering UML diagram

This package offers the functionality for the construction of the clusters of the

tables and the functionality for assessing the validity of these.

5.1.3.1 The engine sub-package

This package contains the main engine which is called

TableClusteringMainEngine for the clustering of the tables. It manages all these

classes that has to do with this procedure.

83

5.1.3.2 The commons sub-package

Figure 5.9: commons UML diagram

The commons sub-package contains the most used classes for the procedure of the

clustering of the tables.

• Class Cluster class keeps information for one cluster such as when it

was born or when it died, how many changes were committed to this

cluster and which tables are included to this.

• Class ClusterCollector keeps a list for the whole set of clusters that

have been created.

84

5.1.3.3 The analysis sub-package

Figure 5.10: analysis UML diagram

This package contains the classes that have to do with the construction of the

clusters.

• Class ClusterExtractor is an interface, which is implemented by

different king of cluster extractors.

• Class ClusterExtractorFactory is a factory for constructors of different

kind of ClusterExtractor objects according to the parameter that is

getting as argument.

• Class AgglomerativeClusterExtractor is the basic class implementing

the procedure of the clustering of the tables. In this class there is the main

algorithm that constructs the clusters according to the similarity of the

tables. Class AgglomerativeClusterExtractor implements the

ClusterExtractor interface. A more detailed analysis for this class exists

in 5.2.2 section.

85

5.1.4 The gui package

Figure 5.11: gui UML diagram

As implied by its name, this package includes the elements of the graphics user

interface.

5.1.4.1 The mainEngine sub-package

The gui sub-package contains the main controller for all the software and the

graphics use interface which is the class GUI.

5.1.4.2 The dialogs sub-package

The dialogs sub-package includes the classes that is related with the dialogs

that are shown up in PPL tool.

• Class CreateProjectJDialog is the class that is connected with the

dialog that appears when a new project either is going to be created, or

edited or even loaded.

86

• Class EnalargeTable is the class that has to do with the enlargement of

the zoom area into a new JDialog window.

• Class ParametersJDialog is the class that is related with the JDialog

that appears to the user to give value to the various parameters either for

the phase extraction or for the table clustering.

5.1.4.3 The treeElements sub-package

The treeElements package contains those classes that are relative with the

construction of the JTrees that appear to the graphics user interface.

• Class TreeConstruction is an interface that is implemented by different

kinds of JTrees.

• Class TreeConstructionGeneral is a class that implements the

TreeConstruction interface and returns a JTree that is connected with

the versions of the database and the tables that they include.

• Class TreeConstructionPhases is a class that implements the

TreeConstruction interface too, but it is related with the construction of

a JTree relative to the phases and the transitions that they include.

• Class TreeConstructionPhasesWithClusters is a class that also

implements the TreeConstruction interface and it is connected with the

clusters and the tables that they include.

5.1.4.4 The tableElements sub-package

This package bothers with the construction of the JTables that are come along

into the main graphics user interface into the PLD area or Zoom area.

• Class JvTable is a class that extends JTable class and handles the

specification that are needed by our tool such as the height of the row, or

the width of the columns. This is the type of all our JTables of the PPL

tool.

87

• Class PLDTableModel extend the AbstractTableModel and it is necessary

for the specifications of the data that we have to pass to our kind of

JTables.

• Class Pld is an interface that is implemented by the whole set of those

classes that construct data for PPL’s JTables.

• Class TableConstructionIDU is the class into which are constructed the

rows and the columns of the PLD JTable. It implements Pld interface.

• Class TableConstructionPhases is the class, which constructs the rows

and the columns of the Phases Pld JTable. It implements Pld interface.

• Class TableConstructionWithClusters is the class, which constructs the

rows and the columns of the PhasesWith Clusters Pld JTable. It

implements Pld interface.

• Class TableConstructionPhasesClusterTable constructs the rows and

the columns of the JTable that appears into the zoom area when details

for a specific phase and cluster are demanded. It implements Pld

interface.

• Class TableConstructionZoomArea constructs the rows and the colunms

of the JTable that appears into the zoom area when a whole column or

row is selected on the PLD and was asked to zoom in. It implements Pld

interface.

5.2 Implementation

5.2.1 Programming Tools and IDEs

PPL has been designed and implemented with Object Oriented Programming

principles, because of the advantages and the flexibility of this kind of

programming.

88

PPL was implemented in programming language Java so the IDE that was

selected was one of the most common IDEs in Java programming, Eclipse IDE

[Ecli15]. Eclipse is widely known for its frequent updates, in order to be up to

date with new technologies and programming techniques. Moreover, there are

plenty of plugins that are useful for object oriented programming such as Object

Aid plugin that can be used for the production of class or sequence diagrams, or

WindowsBuilder that is a helpful tool for the design of graphics user interface.

5.2.2 Selected Classes

In this subsection we will present the most important classes of our tool which

are the classes that handle the phase extraction and the clustering of the tables

into groups. These two classes are called BottomUpPhaseExtractor and

AgglomerativeClusterExtractor.

BottomUpPhaseExtractor is the implementation of Phase Extractor algorithm

that was analyzed above in programming language Java.

BottomUpPhaseExtractor class is an implementation of the interface

IPhaseExtractor which has one unique method to be overridden, the method

extractAtMostKPhases. This is the first method that we can see below.

This method gets as arguments one object of TransitionHistory class in order to

segment the whole history into phases, the desired number of phases, the

weights for time and changes that we want to assign to the distance function and

two boolean variables if we want the data to be preprocessed according to time

or changes. At the beginning of the method, we have to initialize our phases

according to Phase Extractor algorithm, so private method init is called.

Init method constructs one object of type Phase for each transition. This object

has fields such as transition history, start position, end position and total updates

89

for this phase. All of these objects that have been constructed, were being added

to one object of type PhaseCollector that keeps the whole set of phases.

After the initialization of the phases, back to extractAtMostKPhases method, next

step is to preprocess or not our data over time according to the value of the

variable preProcessingTime. If it is true, performTimePreprocessing method is

being called.

PerformTimePreprocessing calls the preProcessOverTime method until no more

phases can be merged into one phase and sends the solution back to

extractAtMostKPhases method. In preProcessOverTime method phases that have

time distance4 smaller than three days are merged into one common phase with

start position the start position of the phase i and end position the end position of

the phase i+1.

After this part of code, in extractAtMostKPhases the equivalent procedure for the

preProcessing of the data or not over changes is taken place into

performChangePreprocessing method where the preProcessOverChanges method

is being called repetitively until no more phases can be merged into one. The

merging procedure merges continuous phases that both of them have zero

changes.

After the preprocessing methods, in extractAtMostKPhases is being called the

most important method that is responsible for the merging of the most similar

phases every time until the desired number of phases have been extracted. This

private method is called newPhaseCollector and gets as arguments the transition

history of the dataset, the previous phase collector that keeps the whole set of

phases and the weights that we would like to assign to time and to changes for

the distance function. It return a new phase collector with the new phases.

4 Actually we talk about the distance between the last transition of the phase i

and the first transition of the phase i+1

90

NewPhaseCollector computes the distance between every continuous pair of

phases. When the computation has been finished, it finds the most similar pair of

phases according to distance function that has to be merged. Then, it constructs a

new phase collector, which has the same objects as the previous phase collector

until the point that it is the turn of the two phases that will be merged to be

added. In this point, a new phase is created which has as start position the start

position of the first of the two phases that are to be merged and as end position

the end position of the second phase. The sum of the changes for both of these

phases is set as the number of changes of the new phase. After the creation of

this new phase, it is added to the phase collector. Finally, the remaining objects

of the previous phase collector, after the second phase they are added too.

NewPhaseCollector is being called by extractAtMostKPhases method until the

desired number of methods have been created.

At this point we will analyze the other significant class of PPL tool which is the

class that implements the Clustering Extractor algorithm and is called

AgglomerativeClusterExtractor.

AgglomerativeClusterExtractor implements the interface ClusterExtractor that

has a unique method which is called extractAtMostKClusters. This is the method

that is overridden by AgglomerativeClusterExtractor and handles the procedures

for the cluster extraction.

ExtractAtMostKClusters method gets as arguments one object of

GlobalDataKeeper type that contains the whole set of tables that are going to be

clustered. The second argument refers to the number of clusters that we desire

to be extracted by the Cluster Extractor algorithm. The next three arguments are

connected with the distance function and more precisely with the weights that

we want to assign to the birth date, the death date and to the number of changes.

At the beginning of the method, init function is called.

Init function as its name denotes, is responsible for the initialization of the

clusters and the construction of the first cluster collector. As it has been

91

described to the Clustering Extractor algorithm, init function constructs one

cluster for each table of the dataset. This cluster has as its birth date the birth

date of the table that is being transformed into cluster, as its death date the date

of the corresponding table and as its changes the changes of the table. All of these

clusters after their construction, they are added to the cluster collector which is

an ArrayList that keeps the whole set of the clusters.

After the initialization of the clusters, the next step of extractAtMostKClusters

method is to call repetitively the most significant method of the class, the method

newClusterCollector until the desired number of clusters will have been

extracted. This is the method that is responsible for the merging of the most

similar clusters according to the clustering distance function. It takes as

arguments the previous cluster collector, the weights that are connected with the

distance function and the duration5 of the dataset and returns as a result a new

cluster collector with the new clusters.

The newClusterCollector method initially computes the distance functions for

every possible pair of clusters that exist to the previous cluster collector. After

the computation of the distance functions, it searches for the smallest value of

them something that means that it is searching for the most similar pair of

clusters. When it finds this, it constructs a new cluster from this pair, which has

as its birth date the smaller birth date of these two clusters, as its death date the

bigger death date of these two clusters, as its changes the sum of the changes of

these clusters and finally as its tables the union of the two sets of tables of the

two clusters. After the creation of the new cluster, it is created a new cluster

collector that contains the whole set of objects of the previous cluster collector

except the two clusters that have been merged into one. Finally the new cluster is

added too to the new phase collector and it is returned to the

extractAtMostKClusters method.

5 Actually duration is the number of transitions

92

5.2.3 PPL Tool Screenshots

We had the opportunity to present some of the PPL’s features in section 4, which

had to do with the zooming into a specific point of the PLD, with the filtering of

the PLD and with the details on demand about a phase, a cluster, a table or a

unique point of the Parallel Lives Diagram. The most significant feature of PPL

however, is its ability to provide an overview of the entire PLD. This overview is

generated automatically after the creation, the editing or the loading of a project.

So, we will cite below two images for each dataset. The upper image is the

overview of the imported dataset and the other image is the full detailed PLD of

the same dataset or a part of this, according to its size.

Observe that the overviews of each dataset are fairly good approximations of the

detailed PLD. There are many points of the detailed PLD that can be recognized

to the overview. One of them are the phases which have a lot of changes and

more concretely the tables of the imported dataset have a lot of co-changes.

These are the columns that have a lot of blue into them. Another observation is

that tables that have exactly the same birth and death date can be recognized at

the overview PLD because all of them have been clustered to the same cluster

which has the same birth and death date with them.

93

Figure 5.12: Synopsis of Atlas

Figure 5.13: PLD of Atlas

94

Figure 5.14: Synopsis of bioSQL

Figure 5.15: PLD of bioSQL

95

Figure 5.16: Synopsis of Coppermine

Figure 5.17: PLD of Coppermine

96

Figure 5.18: Synopsis of Ensembl

Figure 5.19: A part of PLD of Ensembl

97

Figure 5.20: Synopsis of mediaWiki

Figure 5.21: A part of PLD of mediaWiki

98

Figure 5.22: Synopsis of Opencart

Figure 5.23: PLD of Opencart

99

Figure 5.24: Synopsis of phpBB

Figure 5.25: PLD of phpBB

100

Figure 5.26: Synopsis of Typo3

Figure 5.27: PLD of Typo3

101

CHAPTER 6. RELATED WORK

6.1 Empirical Studies of software and schema evolution

6.2 Timeseries Segmentation

6.3 Data Visualization

In Chapter 6 we will analyze the related work that we studied to get insight for

our project. Furthermore in subsection 6.1 we discuss the articles concerning the

evolution of schemas and software. In subsection 6.2 there is the analysis of the

articles that are connected with timeseries segmentation. At the end of this

chapter we analyze the related work that has to do with data visualization.

6.1 Empirical Studies of software and schema evolution

In [SkVZ14], the authors would like to examine if open-source databases comply

with Lehman’s Laws with regard to Software Evolution. First of all, the authors

remind us some basic terminology about the comprehension of the laws such as

what does “positive-feedback” mean (the emphasis at adoption to a changing

environment and growing for more functionality) or the meaning of “negative-

feedback” (changes that are committed should prevent the deterioration of the

maintainability and manageability of the software), or each of the laws.

Consequently they provide us with information about the data that they collected

and with which they experimented on their goal. There were collected eight

different datasets (DDL files of the databases), whose objectives were had to do

102

with different purposes. Data were processed with Hecate tool [Heca15], a tool

that was developed by them too. Hecate can give as a result the differences

between two schemas of a database at the attribute level and more specifically

changes that have been committed on the attributes of the database’s tables such

as deletions, additions, data type changes and participation in a changed primary

key, or the changes that were committed to the relations level between tables of

the database. Additionally it can measure the size of the schemas at the

table/attribute level, the total number of changes for each transition between

database’s versions, etc.

Subsequent to these is the commenting of the experiments that was executed

and how much the open-source databases are attached to the Lehman’s laws. It

seems that the most of the laws like these that refer to the continuous changes,

the existence of regulations, the stability, the familiarity and the continuous

growing were followed by open-source databases either completely or partially.

For these laws that were not referenced, authors commented that there was not

a clear opinion because the meanings of the terms of the laws are not obvious

enough and this is why it could be a future work.

The subject of [ZhSt05] is the evolution of object-oriented software systems from

the point of view of their design. More specifically, the authors propose an

algorithm that is called “UMLDiff” and it has as input different versions of UML

class diagrams of software systems and produces as output a sequence of

differences from version to version. These changes are connected with additions,

deletions, movements, renames or even with relations between software entities

such as packages, classes, interfaces, methods and fields.

The authors give various definitions for the classification of periods-phases of

changes. “Steady state” is the phase that describes the period that the number of

additions and deletions of software entities is small enough and the number of

movements or modifications is small too. “Restructuring” period has to do with

the phase that neither additions nor deletions are many, although the number of

103

movements and modifications is big. “Functionality extensions (rapidly or slowly

developing)” phase refers to the fact that the number of additions and deletions

is big or medium for these two statements respectively but the number of

movements and modifications is much smaller for both of them. Finally, the

“intense developing” phase is defined as the statement that each of the quantities

are very big. Interpretively, the references to the quantity of changes such as

small, medium or big, are referred to the range of [a<b], where a is the lower

bound of additions and removals and b is the higher.

The definitions are followed by the analysis of the evolution of phases with three

different techniques that are the “phasic analysis”, the “gamma analysis” and the

“optimal matching analysis”, due to various characteristics of the evolution of the

software systems. The authors noted that most of the classes when were

introduced into the system followed the “slowly-developing” or “steady-state”

phases and only a much smaller percentage of them followed the rapidly

developing phase. After their introduction a sixty-percent of the classes

remained to the “steady-state” phase, a ten-percent went through the “rapid” or

“slow” development and a thirty-percent was adapted either from “intense

evolution” or “restructuring” phases. Also, the authors underline that most of the

system classes went gradually into a steady state but the classes that ended with

active rapidly developing, restructuring and slowly developing phases were

removed from the system. The final part of the paper is about the evaluation of

the “UMLDiff” algorithm that was 95.2% accurate and the commenting on the

results.

104

6.2 Timeseries Segmentation

The authors of [TeTs06] suggest two algorithms for sequence segmentation of a

timeseries. Both of them are optimal solutions of a dynamic-programming

algorithm that can solve the problem in 𝑂(𝑛2𝑘) time. The first algorithm is called

DnS and the second algorithm is called RDnS and both of them have to do with

the concise representation of the data of a timeseries assisted by the “piecewise-

constant” approximation. This approximation represents a d-dimensional

sequence of length n with the help of k non-overlapping continuous segments

from which the entire sequence consists of.

Usually, approximation methods are characterized by an error function, whose

selection depends on the kind of the problem that would be applied to. So, the

authors define the segmentation problem as a problem that gets as input a

sequence, an error function and the desired number of segments and gives as

output a sequence segmentation and the representatives of each segment,

minimizing the error as regards the optimal algorithm.

The DnS (divide and segment) algorithm is the first algorithm that was suggested

by the authors and its basic idea is to divide the initial problem to smaller sub-

problems. It gets as input a sequence T of length n, a value χ that denotes the

number of the sub-problems, and a number k that denotes the number of the

representatives for each sub-problem. The intuition behind the algorithm is that

we divide the sequence into χ disconnected segments and for each one we find a

segmentation Si and a set Mi that is consisting of k representative points with

adjacent weights that are dependent on the length of the segment that they

represent. Then, the χk representatives are merged and they form a new

sequence T’. Finally the sequence T’ is given as input to the dynamic

programming algorithm that it afterwards gives the output, which is the best

possible segmentation of the sequence into k segments. RDnS algorithm is

105

similar enough with DnS with the only difference that RDnS is run recursively

until a depth of recursion has been reached.

Both algorithms were evaluated with the help of both artificial and real data and

they were compared with heuristic algorithms such as Top-Down Greedy

Algorithm, Bottom-Up Greedy Algorithm, LiR, and GiR. The results were good

enough with both kinds of input data and the suggested algorithms performed

well in relation to the others. Sometimes they were almost closed to the optimal

algorithm.

The basic idea of [TaTT06] is to suggest a segmentation that combines the

results of other segmentation algorithms. The authors claim that the suggested

method that is called “segmentation aggregation” can be applied to various kinds

of data, such as DNA sequences, multi-dimensional categorical data, clustering

etc.

The problem definition consists of the input that is a set of segmentations that a

timeseries were partitioned and a distance function D between each pair of

segmentations. The goal is the finding of a total partition that achieves the

minimum sum of the distances from the segmentations that were given as input.

The author defines the term “aggregation’s cost of the segmentations” that is

computed as the sum of each pair of distances of segmentations. They also

suggest as the distance function a metric that is called “disagreement distance”.

Disagreement distance gets two segmentations (P, Q) as input and constructs

their union segmentation 𝑈 = 𝑃 ∪ 𝑄 with segments {𝑢�1 , … ,𝑢�𝑛}. Then 𝑃(𝑢�𝑖) = 𝑘

and 𝑄(𝑢�𝑖) = 𝑡 are defined to be the labeling of interval 𝑢�i with respect to

segmentations P and Q respectively. There is a disagreement when two segments

𝑢�i and 𝑢�j receive the same label in one segmentation but different in the other. If

so, the function D returns a value that is equal with the multiplication of the

number of the elements that exist into these specific parts. Otherwise, it returns

zero value. The sum of the distances between each pair that is being checked for

differences is defined as the total distance for these two segmentations.

106

After these definitions, authors suggest both optimal and heuristic algorithms for

the segmentation aggregation problem. The first algorithm that is named as

“Candidate segment boundaries” decreases the range of searching for possible

candidate segmentation boundaries from 2N to 2n where n is the size of the union

segmentation. It also moves the problem to the discrete space because of the

reduction of the searching range, and so such kind of algorithms can be applied

to resolve this. Next, is another algorithm that belongs to dynamic programming

family and uses “breakpoints” to decide the boundaries. The algorithm’s

functionality is based on the search of the best breakpoint according to an

“impact” function. It is called like this because it denotes the impact of each

breakpoint to the total cost. Finally, the segmentation that will be given as a

result has the minimum cost in comparison with the optimal segmentation. The

last algorithm is a greedy Bottom Up algorithm that tries to remove as many as

possible boundaries and merge their segments with main goal the achievement

of the minimum cost.

The authors evaluated the suggested algorithms with different sets of data that

belong to various categories, but the dataset that attracted us more was the

dataset that is referred to reality mining data, in which they tried to extract

phases from the lives of users using the disagreement distance function for

different days that is much similar with the goal of our project for phase

extraction of a database history.

6.3 Data Visualization

Schneiderman in [Shne96] has as his main objective to offer to the readers some

different ways of data visualization and to motivate them to think about others.

The data types that the author deals with include one-dimensional data, two-

dimensional data, three-dimensional data, and temporal data such as time lines,

multi-dimensional data, trees and networks. The author mentions examples

107

about the appliance of the paper’s motto, which is “Overview first, zoom and

filter, then details on-demand” for each of the above data types.

The “Overview” term refers to a general concise representation of the entire data

set and also the existence of the ability of the representation for more specific

information to an adjacent point. “Zoom and filter” have to do with the need of

zooming capability into items that user is interested and which have been

primarily filtered and cleaned from the “noise”. The last part of the motto “details

on-demand”, refers to the ability of more comprehensive information about a

group of elements or a specific item.

Apart from these capabilities, the author introduces more features that would be

desirable for a visualization tool. Furthermore, the relation is suggested as a

good feature, because the user could see the relationship between different

items. The retainment of the history of user’s actions could be another wonderful

item because user would have the capability to undo something or even better

find some search terms that he have searched. All of these make a tool much

pleasant to use. Moreover, the extraction and the sharing of individual data or

even the printing or mailing them could make a tool more powerful. Finally this

type of tools could have a more complex searching that different parameters

would be combined to give the desired result to the user.

108

109

CHAPTER 7. CONCLUSIONS AND OPEN ISSUES

In conclusion, the main problem of this thesis was to find a way to fit the entire

life of a database that consists of hundreds of transitions and hundreds of tables

into a window of our screen.

For this purpose we contracted the x-axis of the initial view which includes the

entire set of transitions with the assistance of a phase extraction algorithm that

we designed and which creates a desired number of phases that contain the most

similar transitions according to a distance function. Our phase extraction

algorithm was assessed with two different methods with fairly good results.

In parallel, we designed a cluster extraction algorithm to contract the y-axis of

the initial view that contains the whole set of tables of a database into a set of

clusters each of which contains the most similar tables according to another

distance function. We used both internal validity and external validity techniques

to evaluate our cluster extraction algorithm and both of them gave us satisfying

results.

By combining these two algorithms we have achieved to get a good overview of

the initial map of the life of a database which could not be handled otherwise.

Moreover, this overview itself could further enriched so we implemented

features such as zooming into specific points of the overview, filtering by

different criteria (like one cluster, or one phase, or a unique table) and get details

on demand about various elements such phases, clusters, tables, transitions, etc.

Finally, all of these features were implemented by our tool Plutarch’s Parallel

110

Lives [PPL15]. PPL is publicly available via Github as free and open-source

software.

With regard to the open issues of this thesis and more precisely to the theoretical

part of it, the implementation of different distance metrics for both the phase

extraction algorithm and the cluster extraction algorithm could be a different

approach on this problem.

From the view point of the software, Plutarch’s Parallel Lives can be enriched

with more features such as the exporting of some kind of reports for the phase

and cluster extraction. The user can be provided with the ability to pre-select

some transitions or tables to be at the same phase or cluster respectively. Also,

the selection of more than one phases to drill into is another feature that can be

added. Finally, the graphics of the user interface can be responsive according to

different screen dimensions.

111

REFERENCES

[Ecli15]

Eclipse IDE. Available at https://eclipse.org/downloads/. Last

accessed 2015-09-30.

[Heca15] Hecate. Available at https://github.com/daintiness-group/hecate .

Last accessed 2015-09-30.

[PPL15] Plutarch’s Parallel Lives at https://github.com/daintiness-

group/plutarch_parallel_lives. Last accessed 2015-09-30

[Shne96] Shneiderman, Ben. "The eyes have it: A task by data type taxonomy

for information visualizations." Visual Languages, 1996. Proceedings.,

IEEE Symposium on. IEEE, 1996.

[SkVZ14] Skoulis, Ioannis, Panos Vassiliadis, and Apostolos Zarras. "Open-

Source Databases: Within, Outside, or Beyond Lehman’s Laws of

Software Evolution?."Advanced Information Systems Engineering.

Springer International Publishing, 2014.

[TaSK05] Pang-Ning Tan, Michael Steinbach and Vipin Kumar. Introduction to

Data Mining. 1st ed. Pearson, 2005.

[TaTT06] Mielikäinen, Taneli, Evimaria Terzi, and Panayiotis Tsaparas.

"Aggregating time partitions." Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining.

ACM, 2006.

[TeTs06] Terzi, Evimaria, and Panayiotis Tsaparas. "Efficient Algorithms for

Sequence Segmentation." SDM. 2006.

[ZhSt05] Xing, Zhenchang, and Eleni Stroulia. "Analyzing the evolutionary

history of the logical design of object-oriented software." Software

Engineering, IEEE Transactions on 31.10 (2005): 850-868.

https://eclipse.org/downloads/�
https://github.com/daintiness-group/hecate�
https://github.com/DAINTINESS-Group/Plutarch_Parallel_Lives�
https://github.com/DAINTINESS-Group/Plutarch_Parallel_Lives�

112

113

APPENDIX

Metrics of change for the database level

The history of the database can provide us with zoomed-out metrics for the

quantified version of the database’s heartbeat. Specifically, we can employ the

following measures for the change that a database schema undergoes in the

context of a specific transition t.

Relation change: |relations inserted| + |relations updated| + |relations updated|

Relation change measures each newly inserted/deleted/updated relation just

once within each transition, independently of the number attributes

created/deleted/updated within its schema.

Attribute change:

|attributes born with new relations| + |attributes removed with removed relations|

+ |attributes injected in existing relations| + |attributed removed from existing

relations| + |attributes with type alterations| + |attributes involved in key

alterations|

i.e., the sum of the corresponding individual-relation metrics

114

Assessment of phase extraction

Atlas

Table A- 1: Assessment of phase extraction for Atlas

WC: 0.0 WT: 1.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 98.90 19
1@2 29.54 52
2@3 37.47 0
3@4 50.46 0
4@5 53.97 94
5@6 43.12 3
6@7 113.20 23
7@8 34.57 1
8@9 62.45 3

WC: 0.0 WT: 1.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 25.59 6
1@2 29.44 7
2@3 98.90 19
3@4 29.54 52
4@5 53.97 94
5@6 43.12 3
6@7 113.20 23
7@8 34.57 1
8@9 62.45 3

115

WC: 0.0 WT: 1.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 98.90 19
1@2 29.54 52
2@3 37.47 0
3@4 50.46 0
4@5 53.97 94
5@6 43.12 3
6@7 113.20 23
7@8 34.57 1
8@9 62.45 3

WC: 0.0 WT: 1.0

PPC:ON PPT:ON
Phases δtime δc
0@1 25.59 6
1@2 29.44 7
2@3 98.90 19
3@4 29.54 52
4@5 53.97 94
5@6 43.12 3
6@7 113.20 23
7@8 34.57 1
8@9 62.45 3

WC: 0.5 WT: 0.5

PPC:OFF PPT:OFF
Phases δtime δc
0@1 98.90 19
1@2 2.04 56
2@3 2.04 43
3@4 5.15 7
4@5 29.54 52
5@6 37.47 0
6@7 53.97 94
7@8 43.12 3
8@9 113.20 23

116

WC: 0.5 WT: 0.5

PPC:ON PPT:OFF
Phases δtime δc
0@1 98.90 19
1@2 2.04 56
2@3 2.04 43
3@4 5.15 7
4@5 29.54 52
5@6 53.97 94
6@7 5.79 40
7@8 43.12 3
8@9 113.20 23

WC: 0.5 WT: 0.5

PPC:OFF PPT:ON
Phases δtime δc
0@1 98.90 19
1@2 14.14 54
2@3 8.39 1
3@4 53.97 94
4@5 22.42 12
5@6 5.79 40
6@7 4.24 0
7@8 43.12 3
8@9 113.20 23

WC: 0.5 WT: 0.5

PPC:ON PPT:ON
Phases δtime δc
0@1 29.44 7
1@2 98.90 19
2@3 14.14 54
3@4 8.39 1
4@5 53.97 94
5@6 22.42 12
6@7 5.79 40
7@8 43.12 3
8@9 113.20 23

117

WC: 1.0 WT: 0.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 2.04 56
1@2 2.04 43
2@3 5.15 7
3@4 29.54 52
4@5 1.07 94
5@6 0.01 35
6@7 0.17 17
7@8 7.09 24
8@9 14.21 35

WC: 1.0 WT: 0.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 2.04 56
1@2 2.04 43
2@3 5.15 7
3@4 29.54 52
4@5 1.07 94
5@6 0.01 35
6@7 0.17 17
7@8 7.09 24
8@9 14.21 35

WC: 1.0 WT: 0.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 29.44 7
1@2 14.14 54
2@3 3.87 4
3@4 29.54 52
4@5 8.39 1
5@6 53.97 94
6@7 22.42 12
7@8 5.79 40
8@9 4.15 43

118

WC: 1.0 WT: 0.0

PPC:ON PPT:ON
Phases δtime δc
0@1 29.44 7
1@2 14.14 54
2@3 3.87 4
3@4 29.54 52
4@5 8.39 1
5@6 53.97 94
6@7 22.42 12
7@8 5.79 40
8@9 4.15 43

119

bioSQL Dataset

Table A- 2: Assessment of phase extraction for bioSQL

WC: 0.0 WT: 1.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 57.75 5
1@2 130.54 3
2@3 85.76 1
3@4 50.35 16
4@5 497.28 2
5@6 168.66 0
6@7 1061.08 0
7@8 163.49 2
8@9 1533.19 2

WC: 0.0 WT: 1.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 57.75 5
1@2 130.54 3
2@3 85.76 1
3@4 20.88 46
4@5 50.35 16
5@6 497.28 2
6@7 31.68 2
7@8 163.49 2
8@9 1533.19 2

120

WC: 0.0 WT: 1.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 57.75 5
1@2 130.54 3
2@3 85.76 1
3@4 50.35 16
4@5 497.28 2
5@6 168.66 0
6@7 1061.08 0
7@8 163.49 2
8@9 1533.19 2

WC: 0.0 WT: 1.0

PPC:ON PPT:ON
Phases δtime δc
0@1 57.75 5
1@2 130.54 3
2@3 85.76 1
3@4 20.88 46
4@5 50.35 16
5@6 497.28 2
6@7 31.68 2
7@8 163.49 2
8@9 1533.19 2

WC: 0.5 WT: 0.5

PPC:OFF PPT:OFF
Phases δtime δc
0@1 2.14 34
1@2 85.76 1
2@3 1.51 97
3@4 0.03 93
4@5 20.88 46
5@6 50.35 16
6@7 497.28 2
7@8 1061.08 0
8@9 1533.19 2

121

WC: 0.5 WT: 0.5

PPC:ON PPT:OFF
Phases δtime δc
0@1 2.14 34
1@2 1.28 49
2@3 85.76 1
3@4 1.51 97
4@5 0.03 93
5@6 20.88 46
6@7 50.35 16
7@8 497.28 2
8@9 1533.19 2

WC: 0.5 WT: 0.5

PPC:OFF PPT:ON
Phases δtime δc
0@1 57.75 5
1@2 6.44 1
2@3 85.76 1
3@4 20.88 46
4@5 4.97 16
5@6 50.35 16
6@7 497.28 2
7@8 1061.08 0
8@9 1533.19 2

WC: 0.5 WT: 0.5

PPC:ON PPT:ON
Phases δtime δc
0@1 57.75 5
1@2 6.44 1
2@3 85.76 1
3@4 20.88 46
4@5 4.97 16
5@6 14.77 16
6@7 50.35 16
7@8 497.28 2
8@9 1533.19 2

122

WC: 1.0 WT: 0.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 2.14 34
1@2 0.15 34
2@3 1.28 49
3@4 0.08 2
4@5 1.51 97
5@6 0.03 93
6@7 0.16 14
7@8 20.88 46
8@9 50.35 16

WC: 1.0 WT: 0.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 2.14 34
1@2 0.15 34
2@3 1.28 49
3@4 0.08 2
4@5 1.51 97
5@6 0.03 93
6@7 0.16 14
7@8 20.88 46
8@9 50.35 16

WC: 1.0 WT: 0.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 57.75 5
1@2 6.44 1
2@3 11.21 46
3@4 13.84 2
4@5 85.76 1
5@6 20.88 46
6@7 4.97 16
7@8 14.77 16
8@9 50.35 16

123

WC: 1.0 WT: 0.0

PPC:ON PPT:ON
Phases δtime δc
0@1 57.75 5
1@2 6.44 1
2@3 11.21 46
3@4 13.84 2
4@5 85.76 1
5@6 20.88 46
6@7 4.97 16
7@8 14.77 16
8@9 50.35 16

124

Ensembl Dataset

Table A- 3: Assessment of phase extraction for Ensembl

WC: 0.0 WT: 1.0

PPC:OFF PPT:OFF
Phases δTime δc
0@1 107.20 8
1@2 86.75 6
2@3 76.51 13
3@4 80.71 0
4@5 79.80 0
5@6 72.28 4
6@7 77.62 1
7@8 78.75 0
8@9 73.39 1

WC: 0.0 WT: 1.0

PPC:ON PPT:OFF
Phases δTime δc
0@1 58.37 33
1@2 62.16 4
2@3 107.20 8
3@4 86.75 6
4@5 76.51 13
5@6 67.45 1
6@7 72.28 4
7@8 77.62 1
8@9 73.39 1

125

WC: 0.0 WT: 1.0

PPC:OFF PPT:ON
Phases δTime δc
0@1 107.20 8
1@2 86.75 6
2@3 76.51 13
3@4 80.71 0
4@5 79.80 0
5@6 72.28 4
6@7 77.62 1
7@8 78.75 0
8@9 73.39 1

WC: 0.0 WT: 1.0

PPC:ON PPT:ON
Phases δTime δc
0@1 58.37 33
1@2 62.16 4
2@3 107.20 8
3@4 86.75 6
4@5 76.51 13
5@6 67.45 1
6@7 72.28 4
7@8 77.62 1
8@9 73.39 1

WC: 0.5 WT: 0.5

PPC:OFF PPT:OFF
Phases δTime δc
0@1 25.39 2
1@2 6.02 72
2@3 4.11 279
3@4 8.23 107
4@5 6.91 238
5@6 2.81 242
6@7 5.14 113
7@8 14.29 114
8@9 107.20 8

126

WC: 0.5 WT: 0.5

PPC:ON PPT:OFF
Phases δTime δc
0@1 25.39 2
1@2 6.02 72
2@3 4.11 279
3@4 58.37 33
4@5 6.91 238
5@6 2.81 242
6@7 5.14 113
7@8 14.29 114
8@9 67.45 1

WC: 0.5 WT: 0.5

PPC:OFF PPT:ON
Phases δTime δc
0@1 8.36 47
1@2 19.48 7
2@3 31.55 0
3@4 13.32 23
4@5 58.37 33
5@6 6.91 238
6@7 24.50 0
7@8 47.80 14
8@9 28.80 2

WC: 0.5 WT: 0.5

PPC:ON PPT:ON
Phases δTime δc
0@1 8.36 47
1@2 19.48 7
2@3 21.26 59
3@4 4.11 279
4@5 58.37 33
5@6 6.91 238
6@7 32.70 4
7@8 9.15 1
8@9 54.23 3

127

WC: 1.0 WT: 0.0

PPC:OFF PPT:OFF
Phases δTime δc
0@1 1.82 8
1@2 6.02 72
2@3 0.00 255
3@4 1.03 1
4@5 8.23 107
5@6 5.88 13
6@7 2.10 228
7@8 6.91 238
8@9 2.81 242

WC: 1.0 WT: 0.0

PPC:ON PPT:OFF
Phases δTime δc
0@1 1.82 8
1@2 6.02 72
2@3 4.11 279
3@4 8.23 107
4@5 6.91 238
5@6 2.81 242
6@7 5.14 113
7@8 14.29 114
8@9 0.00 6

WC: 1.0 WT: 0.0

PPC:OFF PPT:ON
Phases δTime δc
0@1 8.98 10
1@2 8.90 1
2@3 4.11 279
3@4 12.28 21
4@5 6.91 238
5@6 24.50 0
6@7 11.37 9
7@8 14.29 114
8@9 25.65 0

128

WC: 1.0 WT: 0.0

PPC:ON PPT:ON
Phases δTime δc
0@1 8.98 10
1@2 8.90 1
2@3 13.32 23
3@4 4.11 279
4@5 6.91 238
5@6 32.70 4
6@7 11.37 9
7@8 14.29 114
8@9 7.25 27

129

MediaWiki Dataset

Table A- 4: Assessment of phase extraction for mediaWiki

WC: 0.0 WT: 1.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 108.78 1
1@2 61.13 19
2@3 56.32 2
3@4 96.87 6
4@5 49.69 1
5@6 64.05 12
6@7 84.22 2
7@8 49.73 2
8@9 76.84 2

WC: 0.0 WT: 1.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 108.78 1
1@2 61.13 19
2@3 56.32 2
3@4 96.87 6
4@5 49.69 1
5@6 64.05 12
6@7 84.22 2
7@8 49.73 2
8@9 76.84 2

130

WC: 0.0 WT: 1.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 108.78 1
1@2 61.13 19
2@3 56.32 2
3@4 96.87 6
4@5 49.69 1
5@6 64.05 12
6@7 84.22 2
7@8 49.73 2
8@9 76.84 2

WC: 0.0 WT: 1.0

PPC:ON PPT:ON
Phases δtime δc
0@1 108.78 1
1@2 61.13 19
2@3 56.32 2
3@4 96.87 6
4@5 49.69 1
5@6 64.05 12
6@7 84.22 2
7@8 49.73 2
8@9 76.84 2

WC: 0.5 WT: 0.5

PPC:OFF PPT:OFF
Phases δtime δc
0@1 49.12 3
1@2 26.80 47
2@3 19.09 0
3@4 0.07 122
4@5 96.87 6
5@6 64.05 12
6@7 30.65 12
7@8 42.15 49
8@9 18.09 14

131

WC: 0.5 WT: 0.5

PPC:ON PPT:OFF
Phases δtime δc
0@1 49.12 3
1@2 26.80 47
2@3 35.62 1
3@4 11.59 3
4@5 56.32 2
5@6 0.07 122
6@7 96.87 6
7@8 64.05 12
8@9 30.65 12

WC: 0.5 WT: 0.5

PPC:OFF PPT:ON
Phases δtime δc
0@1 108.78 1
1@2 21.75 2
2@3 30.21 0
3@4 16.35 0
4@5 96.87 6
5@6 64.05 12
6@7 30.65 12
7@8 10.89 0
8@9 26.85 3

WC: 0.5 WT: 0.5

PPC:ON PPT:ON
Phases δtime δc
0@1 16.96 4
1@2 11.59 3
2@3 56.32 2
3@4 13.05 2
4@5 96.87 6
5@6 64.05 12
6@7 30.65 12
7@8 28.81 5
8@9 26.85 3

132

WC: 1.0 WT: 0.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 1.20 44
1@2 0.02 5
2@3 0.14 129
3@4 30.02 2
4@5 2.93 2
5@6 1.50 50
6@7 42.15 49
7@8 18.09 14
8@9 26.85 3

WC: 1.0 WT: 0.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 1.20 44
1@2 0.02 5
2@3 0.14 129
3@4 30.02 2
4@5 2.93 2
5@6 1.50 50
6@7 42.15 49
7@8 18.09 14
8@9 26.85 3

WC: 1.0 WT: 0.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 38.42 1
1@2 16.96 4
2@3 6.02 13
3@4 6.43 7
4@5 64.05 12
5@6 30.65 12
6@7 36.15 9
7@8 10.89 0
8@9 26.85 3

133

WC: 1.0 WT: 0.0

PPC:ON PPT:ON
Phases δtime δc
0@1 4.09 2
1@2 38.42 1
2@3 16.96 4
3@4 5.28 2
4@5 15.95 5
5@6 13.05 2
6@7 9.92 1
7@8 28.81 5
8@9 26.85 3

134

Opencart Dataset

Table A- 5: Assessment of phase extraction for Opencart

WC: 0.0 WT: 1.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 43.11 600
1@2 108.18 586
2@3 127.09 14
3@4 53.53 1
4@5 87.99 2
5@6 61.47 2
6@7 160.39 2
7@8 341.62 134
8@9 48.77 0

WC: 0.0 WT: 1.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 43.11 600
1@2 33.65 7
2@3 108.18 586
3@4 127.09 14
4@5 53.53 1
5@6 87.99 2
6@7 61.47 2
7@8 160.39 2
8@9 341.62 134

135

WC: 0.0 WT: 1.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 43.11 600
1@2 108.18 586
2@3 127.09 14
3@4 53.53 1
4@5 87.99 2
5@6 61.47 2
6@7 160.39 2
7@8 341.62 134
8@9 48.77 0

WC: 0.0 WT: 1.0

PPC:ON PPT:ON
Phases δtime δc
0@1 43.11 600
1@2 33.65 7
2@3 108.18 586
3@4 127.09 14
4@5 53.53 1
5@6 87.99 2
6@7 61.47 2
7@8 160.39 2
8@9 341.62 134

WC: 0.5 WT: 0.5

PPC:OFF PPT:OFF
Phases δtime δc
0@1 1.07 292
1@2 0.01 292
2@3 43.11 600
3@4 108.18 586
4@5 0.03 711
5@6 3.23 710
6@7 160.39 2
7@8 341.62 134
8@9 48.77 0

136

WC: 0.5 WT: 0.5

PPC:ON PPT:OFF
Phases δtime δc
0@1 1.07 292
1@2 0.01 292
2@3 43.11 600
3@4 108.18 586
4@5 0.03 711
5@6 3.23 710
6@7 160.39 2
7@8 341.62 134
8@9 9.35 3

WC: 0.5 WT: 0.5

PPC:OFF PPT:ON
Phases δtime δc
0@1 3.35 2
1@2 43.11 600
2@3 108.18 586
3@4 127.09 14
4@5 3.23 710
5@6 160.39 2
6@7 8.19 12
7@8 341.62 134
8@9 8.51 0

WC: 0.5 WT: 0.5

PPC:ON PPT:ON
Phases δtime δc
0@1 3.35 2
1@2 43.11 600
2@3 108.18 586
3@4 127.09 14
4@5 3.23 710
5@6 160.39 2
6@7 8.19 12
7@8 341.62 134
8@9 9.35 3

137

WC: 1.0 WT: 0.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 1.07 292
1@2 0.01 292
2@3 43.11 600
3@4 108.18 586
4@5 0.03 711
5@6 3.23 710
6@7 0.43 266
7@8 1.07 268
8@9 341.62 134

WC: 1.0 WT: 0.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 1.07 292
1@2 0.01 292
2@3 43.11 600
3@4 108.18 586
4@5 0.03 711
5@6 3.23 710
6@7 0.43 266
7@8 1.07 268
8@9 341.62 134

WC: 1.0 WT: 0.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 3.35 2
1@2 43.11 600
2@3 108.18 586
3@4 127.09 14
4@5 3.23 710
5@6 160.39 2
6@7 8.19 12
7@8 341.62 134
8@9 5.21 0

138

WC: 1.0 WT: 0.0

PPC:ON PPT:ON
Phases δtime δc
0@1 3.35 2
1@2 43.11 600
2@3 108.18 586
3@4 127.09 14
4@5 3.23 710
5@6 160.39 2
6@7 8.19 12
7@8 341.62 134
8@9 7.40 2

139

PhpBB Dataset

Table A- 6: Assessment of phase extraction for phpBB

 WC: 0.0 WT: 1.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 93.09 5
1@2 115.39 12
2@3 81.67 0
3@4 115.42 0
4@5 128.67 37
5@6 105.90 4
6@7 85.88 30
7@8 101.33 29
8@9 78.75 2

WC: 0.0 WT: 1.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 65.13 1
1@2 93.09 5
2@3 115.39 12
3@4 128.67 37
4@5 105.90 4
5@6 85.88 30
6@7 101.33 29
7@8 78.75 2
8@9 75.06 9

140

WC: 0.0 WT: 1.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 93.09 5
1@2 115.39 12
2@3 81.67 0
3@4 115.42 0
4@5 128.67 37
5@6 105.90 4
6@7 85.88 30
7@8 101.33 29
8@9 78.75 2

WC: 0.0 WT: 1.0

PPC:ON PPT:ON
Phases δtime δc
0@1 65.13 1
1@2 93.09 5
2@3 115.39 12
3@4 128.67 37
4@5 105.90 4
5@6 85.88 30
6@7 101.33 29
7@8 78.75 2
8@9 75.06 9

WC: 0.5 WT: 0.5

PPC:OFF PPT:OFF
Phases δtime δc
0@1 21.68 100
1@2 115.39 12
2@3 128.67 37
3@4 85.88 30
4@5 101.33 29
5@6 10.93 50
6@7 2.69 47
7@8 75.06 9
8@9 0.85 15

141

WC: 0.5 WT: 0.5

PPC:ON PPT:OFF
Phases δtime δc
0@1 21.68 100
1@2 115.39 12
2@3 128.67 37
3@4 101.33 29
4@5 10.93 50
5@6 2.69 47
6@7 75.06 9
7@8 17.29 7
8@9 0.85 15

WC: 0.5 WT: 0.5

PPC:OFF PPT:ON
Phases δtime δc
0@1 21.68 100
1@2 115.39 12
2@3 128.67 37
3@4 85.88 30
4@5 101.33 29
5@6 36.41 21
6@7 15.97 0
7@8 3.42 1
8@9 55.41 8

WC: 0.5 WT: 0.5

PPC:ON PPT:ON
Phases δtime δc
0@1 21.68 100
1@2 115.39 12
2@3 128.67 37
3@4 85.88 30
4@5 101.33 29
5@6 36.41 21
6@7 43.94 44
7@8 75.06 9
8@9 55.41 8

142

WC: 1.0 WT: 0.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 0.49 101
1@2 2.40 3
2@3 2.03 3
3@4 128.67 37
4@5 85.88 30
5@6 101.33 29
6@7 8.77 29
7@8 43.94 44
8@9 0.85 15

WC: 1.0 WT: 0.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 0.49 101
1@2 2.40 3
2@3 2.03 3
3@4 128.67 37
4@5 85.88 30
5@6 101.33 29
6@7 8.77 29
7@8 43.94 44
8@9 0.85 15

WC: 1.0 WT: 0.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 21.10 0
1@2 5.44 0
2@3 128.67 37
3@4 20.68 1
4@5 10.93 50
5@6 23.77 15
6@7 75.06 9
7@8 24.55 19
8@9 55.41 8

143

WC: 1.0 WT: 0.0

PPC:ON PPT:ON
Phases δtime δc
0@1 21.68 100
1@2 7.13 1
2@3 128.67 37
3@4 85.88 30
4@5 20.68 1
5@6 10.93 50
6@7 23.77 15
7@8 3.42 1
8@9 55.41 8

144

Typo3 Dataset

Table A- 7: Assessment of phase extraction for Typo3

WC: 0.0 WT: 1.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 151.07 1
1@2 163.49 27
2@3 116.21 5
3@4 152.03 0
4@5 134.67 0
5@6 140.06 8
6@7 120.31 0
7@8 90.19 0
8@9 114.39 0

WC: 0.0 WT: 1.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 151.07 1
1@2 85.31 3
2@3 163.49 27
3@4 116.21 5
4@5 80.76 5
5@6 140.06 8
6@7 87.32 8
7@8 75.33 34
8@9 75.72 123

145

WC: 0.0 WT: 1.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 151.07 1
1@2 163.49 27
2@3 116.21 5
3@4 152.03 0
4@5 134.67 0
5@6 140.06 8
6@7 120.31 0
7@8 90.19 0
8@9 114.39 0

WC: 0.0 WT: 1.0

PPC:ON PPT:ON
Phases δtime δc
0@1 151.07 1
1@2 85.31 3
2@3 163.49 27
3@4 116.21 5
4@5 80.76 5
5@6 140.06 8
6@7 87.32 8
7@8 75.33 34
8@9 75.72 123

WC: 0.5 WT: 0.5

PPC:OFF PPT:OFF
Phases δtime δc
0@1 151.07 1
1@2 116.21 5
2@3 65.86 31
3@4 140.06 8
4@5 114.39 0
5@6 64.24 4
6@7 87.32 8
7@8 39.20 122
8@9 86.79 0

146

WC: 0.5 WT: 0.5

PPC:ON PPT:OFF
Phases δtime δc
0@1 151.07 1
1@2 116.21 5
2@3 65.86 31
3@4 140.06 8
4@5 37.77 1
5@6 64.24 4
6@7 87.32 8
7@8 63.61 33
8@9 39.20 122

WC: 0.5 WT: 0.5

PPC:OFF PPT:ON
Phases δtime δc
0@1 151.07 1
1@2 116.21 5
2@3 65.86 31
3@4 140.06 8
4@5 64.24 4
5@6 87.32 8
6@7 63.61 33
7@8 39.20 122
8@9 86.79 0

WC: 0.5 WT: 0.5

PPC:ON PPT:ON
Phases δtime δc
0@1 151.07 1
1@2 163.49 27
2@3 116.21 5
3@4 65.86 31
4@5 140.06 8
5@6 40.77 1
6@7 63.61 33
7@8 39.20 122
8@9 75.72 123

147

WC: 1.0 WT: 0.0

PPC:OFF PPT:OFF
Phases δtime δc
0@1 116.21 5
1@2 65.86 31
2@3 8.06 8
3@4 2.78 5
4@5 0.71 19
5@6 63.61 33
6@7 39.20 122
7@8 75.72 123
8@9 2.76 30

WC: 1.0 WT: 0.0

PPC:ON PPT:OFF
Phases δtime δc
0@1 116.21 5
1@2 65.86 31
2@3 8.06 8
3@4 2.78 5
4@5 0.71 19
5@6 63.61 33
6@7 39.20 122
7@8 75.72 123
8@9 2.76 30

WC: 1.0 WT: 0.0

PPC:OFF PPT:ON
Phases δtime δc
0@1 116.21 5
1@2 9.00 18
2@3 29.06 13
3@4 64.24 4
4@5 87.32 8
5@6 63.61 33
6@7 39.20 122
7@8 75.72 123
8@9 86.79 0

148

WC: 1.0 WT: 0.0

PPC:ON PPT:ON
Phases δtime δc
0@1 116.21 5
1@2 65.86 31
2@3 9.00 18
3@4 29.06 13
4@5 15.04 1
5@6 75.33 34
6@7 63.61 33
7@8 39.20 122
8@9 75.72 123

149

Assessment of table clustering

Atlas Dataset

Table A- 8: Assessment of table clustering for Atlas

Wb: 0.333 Wd: 0.333 Wc: 0.333

 Class 1 Class 2 Class 3 Class 4 Class 5

Precision

 Cluster 0 0.00 1.00 0.00 0.00 0.00

Cluster 1 0.00 1.00 0.00 0.00 0.00

Cluster 2 0.83 0.02 0.00 0.17 0.00

Cluster 3 0.00 0.00 0.74 0.11 0.16

Cluster 4 0.00 0.00 1.00 0.00 0.00

Recall

 Cluster 0 0.00 0.09 0.00 0.00 0.00

Cluster 1 0.00 0.82 0.00 0.00 0.00

Cluster 2 1.00 0.09 0.00 0.83 0.00

Cluster 3 0.00 0.00 0.93 0.17 1.00

Cluster 4 0.00 0.00 0.07 0.00 0.00

F-Measure

 Cluster 0 0.00 0.17 0.00 0.00 0.00

Cluster 1 0.00 0.90 0.00 0.00 0.00

Cluster 2 0.91 0.03 0.00 0.29 0.00

Cluster 3 0.00 0.00 0.82 0.13 0.27

Cluster 4 0.00 0.00 0.13 0.00 0.00

150

Wb: 0.0 Wd: 1.0 Wc: 0.0

Class 1 Class 2 Class 3 Class 4 Class 5

Precision

 Cluster 0 0.00 1.00 0.00 0.00 0.00

Cluster 1 0.00 1.00 0.00 0.00 0.00

Cluster 2 0.00 1.00 0.00 0.00 0.00

Cluster 3 0.40 0.20 0.00 0.00 0.60

Cluster 4 0.63 0.00 0.21 0.16 0.00

Recall

 Cluster 0 0.00 0.09 0.00 0.00 0.00

Cluster 1 0.00 0.73 0.00 0.00 0.00

Cluster 2 0.00 0.09 0.00 0.00 0.00

Cluster 3 0.04 0.09 0.00 0.00 1.00

Cluster 4 0.96 0.00 1.00 1.00 0.00

F-Measure

 Cluster 0 0.00 0.17 0.00 0.00 0.00

Cluster 1 0.00 0.84 0.00 0.00 0.00

Cluster 2 0.00 0.17 0.00 0.00 0.00

Cluster 3 0.08 0.13 0.00 0.00 0.75

Cluster 4 0.76 0.00 0.34 0.28 0.00

151

Wb: 0.0 Wd: 0.5 Wc: 0.5

Class 1 Class 2 Class 3 Class 4 Class 5

Precision

 Cluster 0 0.00 1.00 0.00 0.00 0.00

Cluster 1 0.66 0.00 0.22 0.13 0.00

Cluster 2 0.29 0.48 0.00 0.19 0.10

Cluster 3 0.00 0.00 0.00 0.00 1.00

Cluster 4 0.00 0.00 1.00 0.00 0.00

Recall

 Cluster 0 0.00 0.09 0.00 0.00 0.00

Cluster 1 0.88 0.00 0.93 0.67 0.00

Cluster 2 0.13 0.91 0.00 0.33 0.67

Cluster 3 0.00 0.00 0.00 0.00 0.33

Cluster 4 0.00 0.00 0.07 0.00 0.00

F-Measure

 Cluster 0 0.00 0.17 0.00 0.00 0.00

Cluster 1 0.75 0.00 0.35 0.21 0.00

Cluster 2 0.17 0.62 0.00 0.24 0.17

Cluster 3 0.00 0.00 0.00 0.00 0.50

Cluster 4 0.00 0.00 0.13 0.00 0.00

152

Wb: 0.0 Wd: 0.0 Wc: 1.0

Class 1 Class 2 Class 3 Class 4 Class 5

Precision

 Cluster 0 1.00 0.00 0.00 0.00 0.00

Cluster 1 0.61 0.13 0.13 0.13 0.04

Cluster 2 0.55 0.09 0.00 0.36 0.00

Cluster 3 0.52 0.13 0.21 0.10 0.04

Cluster 4 0.00 0.00 1.00 0.00 0.00

Recall

 Cluster 0 0.02 0.00 0.00 0.00 0.00

Cluster 1 0.29 0.27 0.20 0.25 0.33

Cluster 2 0.13 0.09 0.00 0.33 0.00

Cluster 3 0.56 0.64 0.73 0.42 0.67

Cluster 4 0.00 0.00 0.07 0.00 0.00

F-Measure

 Cluster 0 0.04 0.00 0.00 0.00 0.00

Cluster 1 0.39 0.18 0.16 0.17 0.08

Cluster 2 0.20 0.09 0.00 0.35 0.00

Cluster 3 0.54 0.22 0.33 0.16 0.07

Cluster 4 0.00 0.00 0.13 0.00 0.00

153

Wb: 0.5 Wd: 0.5 Wc: 0.0

Class 1 Class 2 Class 3 Class 4 Class 5

Precision

 Cluster 0 0.00 1.00 0.00 0.00 0.00

Cluster 1 0.75 0.16 0.00 0.11 0.00

Cluster 2 0.00 0.00 0.00 1.00 0.00

Cluster 3 0.00 0.00 0.00 0.00 1.00

Cluster 4 0.00 0.00 1.00 0.00 0.00

Recall

 Cluster 0 0.00 0.09 0.00 0.00 0.00

Cluster 1 1.00 0.91 0.00 0.58 0.00

Cluster 2 0.00 0.00 0.00 0.42 0.00

Cluster 3 0.00 0.00 0.00 0.00 1.00

Cluster 4 0.00 0.00 1.00 0.00 0.00

F-Measure

 Cluster 0 0.00 0.17 0.00 0.00 0.00

Cluster 1 0.86 0.27 0.00 0.18 0.00

Cluster 2 0.00 0.00 0.00 0.59 0.00

Cluster 3 0.00 0.00 0.00 0.00 1.00

Cluster 4 0.00 0.00 1.00 0.00 0.00

154

Wb: 0.5 Wd: 0.0 Wc: 0.5

Class 1 Class 2 Class 3 Class 4 Class 5

Precision

 Cluster 0 0.00 1.00 0.00 0.00 0.00

Cluster 1 0.72 0.15 0.00 0.15 0.00

Cluster 2 0.00 0.00 0.76 0.06 0.18

Cluster 3 0.00 0.00 0.50 0.50 0.00

Cluster 4 0.00 0.00 1.00 0.00 0.00

Recall

 Cluster 0 0.00 0.09 0.00 0.00 0.00

Cluster 1 1.00 0.91 0.00 0.83 0.00

Cluster 2 0.00 0.00 0.87 0.08 1.00

Cluster 3 0.00 0.00 0.07 0.08 0.00

Cluster 4 0.00 0.00 0.07 0.00 0.00

F-Measure

 Cluster 0 0.00 0.17 0.00 0.00 0.00

Cluster 1 0.83 0.26 0.00 0.25 0.00

Cluster 2 0.00 0.00 0.81 0.07 0.30

Cluster 3 0.00 0.00 0.12 0.14 0.00

Cluster 4 0.00 0.00 0.13 0.00 0.00

155

Wb: 1.0 Wd: 0.0 Wc: 0.0

Class 1 Class 2 Class 3 Class 4 Class 5

Precision

 Cluster 0 0.80 0.18 0.00 0.03 0.00

Cluster 1 0.00 0.00 0.00 1.00 0.00

Cluster 2 0.00 0.00 0.00 0.63 0.38

Cluster 3 0.00 0.00 1.00 0.00 0.00

Cluster 4 0.00 0.00 1.00 0.00 0.00

Recall

 Cluster 0 1.00 1.00 0.00 0.17 0.00

Cluster 1 0.00 0.00 0.00 0.42 0.00

Cluster 2 0.00 0.00 0.00 0.42 1.00

Cluster 3 0.00 0.00 0.93 0.00 0.00

Cluster 4 0.00 0.00 0.07 0.00 0.00

F-Measure

 Cluster 0 0.89 0.31 0.00 0.06 0.00

Cluster 1 0.00 0.00 0.00 0.59 0.00

Cluster 2 0.00 0.00 0.00 0.50 0.55

Cluster 3 0.00 0.00 0.97 0.00 0.00

Cluster 4 0.00 0.00 0.13 0.00 0.00

156

phpBB Dataset

Table A- 9: Assessment of table clustering for phpBB

Wb: 0.333 Wd: 0.333 Wc: 0.333

Class 1 Class 2 Class 3 Class 4

Precision

 Cluster 0 0.00 1.00 0.00 0.00

Cluster 1 0.08 0.90 0.00 0.02

Cluster 2 0.00 0.00 1.00 0.00

Cluster 3 0.00 0.00 0.00 1.00

Recall

 Cluster 0 0.00 0.02 0.00 0.00

Cluster 1 1.00 0.98 0.00 0.20

Cluster 2 0.00 0.00 1.00 0.00

Cluster 3 0.00 0.00 0.00 0.80

F-Measure

 Cluster 0 0.00 0.03 0.00 0.00

Cluster 1 0.15 0.94 0.00 0.03

Cluster 2 0.00 0.00 1.00 0.00

Cluster 3 0.00 0.00 0.00 0.89

157

Wb: 0.0 Wd: 1.0 Wc: 0.0

Class 1 Class 2 Class 3 Class 4

Precision

 Cluster 0 0.60 0.00 0.40 0.00

Cluster 1 0.67 0.00 0.33 0.00

Cluster 2 0.00 0.98 0.00 0.02

Cluster 3 0.00 0.00 0.00 1.00

Recall

 Cluster 0 0.60 0.00 0.67 0.00

Cluster 1 0.40 0.00 0.33 0.00

Cluster 2 0.00 1.00 0.00 0.20

Cluster 3 0.00 0.00 0.00 0.80

F-Measure

 Cluster 0 0.60 0.00 0.50 0.00

Cluster 1 0.50 0.00 0.33 0.00

Cluster 2 0.00 0.99 0.00 0.03

Cluster 3 0.00 0.00 0.00 0.89

158

Wb: 0.0 Wd: 0.5 Wc: 0.5

Class 1 Class 2 Class 3 Class 4

Precision

 Cluster 0 1.00 0.00 0.00 0.00

Cluster 1 0.00 1.00 0.00 0.00

Cluster 2 0.00 1.00 0.00 0.00

Cluster 3 0.05 0.83 0.05 0.08

Recall

 Cluster 0 0.40 0.00 0.00 0.00

Cluster 1 0.00 0.02 0.00 0.00

Cluster 2 0.00 0.02 0.00 0.00

Cluster 3 0.60 0.96 1.00 1.00

F-Measure

 Cluster 0 0.57 0.00 0.00 0.00

Cluster 1 0.00 0.03 0.00 0.00

Cluster 2 0.00 0.03 0.00 0.00

Cluster 3 0.08 0.89 0.09 0.14

159

Wb: 0.0 Wd: 0.0 Wc: 1.0

Class 1 Class 2 Class 3 Class 4

Precision

 Cluster 0 0.00 1.00 0.00 0.00

Cluster 1 0.00 1.00 0.00 0.00

Cluster 2 0.00 1.00 0.00 0.00

Cluster 3 0.07 0.81 0.04 0.07

Recall

 Cluster 0 0.00 0.02 0.00 0.00

Cluster 1 0.00 0.02 0.00 0.00

Cluster 2 0.00 0.02 0.00 0.00

Cluster 3 1.00 0.95 1.00 1.00

F-Measure

 Cluster 0 0.00 0.03 0.00 0.00

Cluster 1 0.00 0.03 0.00 0.00

Cluster 2 0.00 0.03 0.00 0.00

Cluster 3 0.14 0.87 0.09 0.14

160

Wb: 0.5 Wd: 0.5 Wc: 0.0

Class 1 Class 2 Class 3 Class 4

Precision

 Cluster 0 1.00 0.00 0.00 0.00

Cluster 1 0.00 1.00 0.00 0.00

Cluster 2 0.00 0.00 1.00 0.00

Cluster 3 0.00 0.00 0.00 1.00

Recall

 Cluster 0 1.00 0.00 0.00 0.00

Cluster 1 0.00 1.00 0.00 0.00

Cluster 2 0.00 0.00 1.00 0.00

Cluster 3 0.00 0.00 0.00 1.00

F-Measure

 Cluster 0 1.00 0.00 0.00 0.00

Cluster 1 0.00 1.00 0.00 0.00

Cluster 2 0.00 0.00 1.00 0.00

Cluster 3 0.00 0.00 0.00 1.00

161

Wb: 0.5 Wd: 0.0 Wc: 0.5

Class 1 Class 2 Class 3 Class 4

Precision

 Cluster 0 0.00 1.00 0.00 0.00

Cluster 1 0.00 1.00 0.00 0.00

Cluster 2 0.07 0.82 0.04 0.06

Cluster 3 0.00 0.00 0.00 1.00

Recall

 Cluster 0 0.00 0.02 0.00 0.00

Cluster 1 0.00 0.02 0.00 0.00

Cluster 2 1.00 0.96 1.00 0.80

Cluster 3 0.00 0.00 0.00 0.20

F-Measure

 Cluster 0 0.00 0.03 0.00 0.00

Cluster 1 0.00 0.03 0.00 0.00

Cluster 2 0.14 0.89 0.09 0.11

Cluster 3 0.00 0.00 0.00 0.33

162

Wb: 1.0 Wd: 0.0 Wc: 0.0

Class 1 Class 2 Class 3 Class 4

Precision

 Cluster 0 0.08 0.92 0.00 0.00

Cluster 1 0.00 0.00 1.00 0.00

Cluster 2 0.00 0.00 0.00 1.00

Cluster 3 0.00 0.00 0.00 1.00

Recall

 Cluster 0 1.00 1.00 0.00 0.00

Cluster 1 0.00 0.00 1.00 0.00

Cluster 2 0.00 0.00 0.00 0.80

Cluster 3 0.00 0.00 0.00 0.20

F-Measure

 Cluster 0 0.15 0.96 0.00 0.00

Cluster 1 0.00 0.00 1.00 0.00

Cluster 2 0.00 0.00 0.00 0.89

Cluster 3 0.00 0.00 0.00 0.33

163

Coppermine Dataset

Table A- 10: Assessment of table clustering for Coppermine

Wb: 0.333 Wd: 0.333 Wc: 0.333

Class 1 Class 2

Precision

 Cluster 0 1.00 0.00

Cluster 1 0.86 0.14

Recall

 Cluster 0 0.05 0.00

Cluster 1 0.95 1.00

F-Measure

 Cluster 0 0.10 0.00

Cluster 1 0.90 0.24

 Wb: 0.0 Wd: 1.0 Wc: 0.0

Class 1 Class 2

Precision

 Cluster 0 0.86 0.14

Cluster 1 1.00 0.00

Recall

 Cluster 0 0.95 1.00

Cluster 1 0.05 0.00

F-Measure

 Cluster 0 0.90 0.24

Cluster 1 0.10 0.00

164

Wb: 0.0 Wd: 0.5 Wc: 0.5

Class 1 Class 2

Precision

 Cluster 0 1.00 0.00

Cluster 1 0.86 0.14

Recall

 Cluster 0 0.05 0.00

Cluster 1 0.95 1.00

F-Measure

 Cluster 0 0.10 0.00

Cluster 1 0.90 0.24

 Wb: 0.0 Wd: 0.0 Wc: 1.0

Class 1 Class 2

Precision

 Cluster 0 1.00 0.00

Cluster 1 0.86 0.14

Recall

 Cluster 0 0.05 0.00

Cluster 1 0.95 1.00

F-Measure

 Cluster 0 0.10 0.00

Cluster 1 0.90 0.24

165

Wb: 0.5 Wd: 0.5 Wc: 0.0

Class 1 Class 2

Precision

 Cluster 0 0.86 0.14

Cluster 1 1.00 0.00

Recall

 Cluster 0 0.95 1.00

Cluster 1 0.05 0.00

F-Measure

 Cluster 0 0.90 0.24

Cluster 1 0.10 0.00

 Wb: 0.5 Wd: 0.0 Wc: 0.5

Class 1 Class 2

Precision

 Cluster 0 0.95 0.05

Cluster 1 0.33 0.67

Recall

 Cluster 0 0.95 0.33

Cluster 1 0.05 0.67

F-Measure

 Cluster 0 0.95 0.09

Cluster 1 0.09 0.67

166

Wb: 1.0 Wd: 0.0 Wc: 0.0

Class 1 Class 2

Precision

 Cluster 0 1.00 0.00

Cluster 1 0.00 1.00

Recall

 Cluster 0 1.00 0.00

Cluster 1 0.00 1.00

F-Measure

 Cluster 0 1.00 0.00

Cluster 1 0.00 1.00

167

