XYNOWEIX THX BIOTPA®IAY EEEAIZXOMENQN XXHMATQN BAXEQN AEAOMENQN

H
METAIITYXIAKH EPT'AXIA EZEIAIKEYXHX

YmofdAAeTtaL otV
oploBeioa amo v evikn Zuvérevon Ew8ikng ZuvBeong

Tov Tunuatog Mnyavikwv H/Y kat [TAnpo@opikng
E¢etaotikn Emitpomm

oTtO TOV

['idxo Ogo@avn

WG LEPOG TWV YTIOXPEWOEWV
yla ™ Anym
TOU
METAIITYXIAKOY AIITAQMATOZX XTHN I[TAHPO®OPIKH

ME EEEIAIKEYZH XTO AOT'IEMIKO

Oxtwpplog 2015

ACKNOWLEDMENTS

I would like to express my gratitude to my supervisor, Associate Professor Panos
Vassiliadis for his immense guidance and assistance in every difficulty that

I met in this Thesis.

I am also grateful to my family that it is alongside me in every step of my life. Also |
could not forget my friends and fellow students Maria Spai, Michael Kolozoff and
Kostas Noulis for all the great moments that we had. Special thanks to my friends

Vasilis Spais and Dimitris Moustos too.

To those people that I have met in my life,

and helped me to be a better man...

ii

TABLE OF CONTENTS

ACKNOWLEDMENTS
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
ABSTRACT
EKTETAMENH ITEPIAHWH XTA EAAHNIKA
CHAPTER 1. Introduction
1.1 Thesis Scope
1.2 Thesis Structure
CHAPTER 2. Fundamentals
2.1 Definitions of main concepts
2.2 Identified Changes per Transition of each Relation
2.3 Matrix Representation of Database Evolution
2.4 Visual representation of a history of a database
CHAPTER 3. Problem Specification
3.1 Segmentation of the history into phases
3.2 Clustering of tables into groups
3.3 Zoom into a specific point of the overview
3.4 Filter the overview
3.5 Details on demand
CHAPTER 4. Creating an overview of the history of a schema
4.1 Computing a segmentation of the history into phases
4.1.1 Parameters
4.1.2 Distance Function
4.1.3 Assessment of the method
4.2 Grouping tables into clusters
4.2.1 Parameters
4.2.2 Distance Function
4.2.3 Assessment of the method
4.3 Zoom into a specific point of overview
4.4 Filter the overview of the history of a relational database schema
4.5 Details on demand
CHAPTER 5. Software aspects of our solution - the PPL tool
5.1 Design and Analysis
5.1.1 The data Package
5.1.2 The phaseAnalyzer Package
5.1.3 The tableClustering package

iii

5.1.4 The gui package
5.2 Implementation
5.2.1 Programming Tools and IDEs
5.2.2 Selected Classes
5.2.3 PPL Tool Screenshots
CHAPTER 6. Related work
6.1 Empirical Studies of software and schema evolution
6.2 Timeseries Segmentation
6.3 Data Visualization
CHAPTER 7. conclusions and open issues
REFERENCES
APPENDIX
Metrics of change for the database level
Assessment of phase extraction
Assessment of table clustering

85
87
87
88
92
101
101
104
106
109
111
113
113
114
149

iv

LIST OF TABLES

Table Page
Table 2-1: Types of changes that occur to a relation R, during a transition t 12
Table 4-1: Explanation of the distance function 24
Table 4-2: Number of wins for different sets of parameters 28
Table 4-3: Explanation of the distance function 38
Table 4-4: Results for wb: 0.333, wd: 0.333, wc: 0.333 44
Table 4-5: Results for wb:0.0 wd:1.0 wc:0.0 45
Table 4-6: Results for wb:0.0 wd:0.5 wc:0.5 46
Table 4-7: Results for wb:0.0 wd:0.0 wc:1.0 47
Table 4-8: Results for wb:0.5 wd:0.5 wc:0.0 48
Table 4-9: Results for wb:0.5 wd:0.0 wc:0.5 49
Table 4-10: Results for wb:1.0 wd:0.0 wc:0.0 50
Table 4-11: Average F-Measure 51
Table 4-12: Atlas results 52
Table 4-13: bioSQL results 52
Table 4-14: Coppermine results 53
Table 4-15: phpBB results 53
Table 4-16: Atlas Dataset Results 56
Table 4-17: Coppermine Dataset 57
Table 4-18: bioSQL Dataset 57
Table 4-19: Ensembl Dataset 58
Table 4-20: mwiki Dataset 58
Table 4-21: Opencart Dataset 59
Table 4-22: phpBB Dataset 59
Table 4-23: typo3 Dataset 60
Table 4-24: Number of wins for different sets of parameters 61
Table A- 1: Assessment of phase extraction for Atlas 114
Table A- 2: Assessment of phase extraction for bioSQL 119
Table A- 3: Assessment of phase extraction for Ensembl 124
Table A- 4: Assessment of phase extraction for mediaWiki 129
Table A- 5: Assessment of phase extraction for Opencart 134
Table A- 6: Assessment of phase extraction for phpBB 139
Table A- 7: Assessment of phase extraction for Typo3 144
Table A- 8: Assessment of table clustering for Atlas 149
Table A- 9: Assessment of table clustering for phpBB 156
Table A- 10: Assessment of table clustering for Coppermine 163

LIST OF FIGURES

Figure Page
Figure 2.1: A part of Ensembl’s PPL diagram 14
Figure 4.1: Atlas Dataset 26
Figure 4.2: bioSQL Dataset 26
Figure 4.3: Coppermine Dataset 26
Figure 4.4: Ensembl Dataset 26
Figure 4.5: mediaWiki Dataset 27
Figure 4.6: Opencart Dataset 27
Figure 4.7: phpBB Dataset 27
Figure 4.8: typo3 Dataset 27
Figure 4.9: (6time, 6c) for (WC:0.0, WT:1.0, PPC:OFF, PPT:OFF) 29
Figure 4.10: (6time, &6c) for (WC:0.0, WT:1.0, PPC:ON, PPT:0FF) 30
Figure 4.11: (6time, &c) for (WC:0.0, WT:1.0, PPC:OFF, PPT:ON) 30
Figure 4.12: (6time, 6c) for (WC:0.0, WT:1.0, PPC:ON, PPT:0ON) 31
Figure 4.13: (6time, 6c) for (WC:0.5, WT:0.5, PPC:OFF, PPT:0FF) 31
Figure 4.14: (6time, 6c) for (WC:0.5, WT:0.5, PPC:ON, PPT:0FF) 32
Figure 4.15: (8time, 6c) for (WC:0.5, WT:0.5, PPC:OFF, PPT:ON) 32
Figure 4.16: (6time, 6c) for (WC:0.5, WT:0.5, PPC:ON, PPT:0ON) 33
Figure 4.17: (6time, 6c) for (WC:1.0, WT:0.0, PPC:OFF, PPT:OFF) 33
Figure 4.18: (6time, &6c) for (WC:1.0, WT:0.0, PPC:ON, PPT:0FF) 34
Figure 4.19: (6time, &c) for (WC:1.0, WT:0.0, PPC:OFF, PPT:ON) 34
Figure 4.20: (6time, 6c) for (WC:1.0, WT:0.0, PPC:ON, PPT:ON) 35
Figure 4.21: bioSQL dataset with classes 43
Figure 4.22: Zoom into a specific point of overview (1) 62
Figure 4.23: Zoom into a specific point of overview (2) 63
Figure 4.24: Filter by a specific phase 64
Figure 4.25: Filter by a specific table 65
Figure 4.26: Filter by specific clusters 66
Figure 4.27: Details on demand (1) 67
Figure 4.28: Details on demand (2) 68
Figure 4.29: Details on demand (3) 69
Figure 4.30: Details on demand (4) 70
Figure 5.1: data UML Diagram 72
Figure 5.2: dataProccessing UML diagram 73
Figure 5.3: dataPPL UML diagram 75
Figure 5.4: phaseAnalyzer UML diagram 77
Figure 5.5: parser UML diagram 78
Figure 5.6: commons UML diagram 79

vi

Figure 5.7: analysis UML diagram
Figure 5.8: tableClustering UML diagram
Figure 5.9: commons UML diagram

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:
Figure 5.25:
Figure 5.26:
Figure 5.27:

analysis UML diagram
gui UML diagram
Synopsis of Atlas

PLD of Atlas

Synopsis of bioSQL

PLD of bioSQL

Synopsis of Coppermine
PLD of Coppermine
Synopsis of Ensembl

A part of PLD of Ensembl
Synopsis of mediaWiki

A part of PLD of mediaWiki
Synopsis of Opencart
PLD of Opencart
Synopsis of phpBB

PLD of phpBB

Synopsis of Typo3

PLD of Typo3

81
82
83
84
85
93
93
94
94
95
95
96
96
97
97
98
98
99
99
100
100

vii

ABSTRACT

Theofanis Giachos

MSc, Department of Computer Science and Engineering
University of loannina, Greece

October 2015

Biography synopses for evolving relational database schemata.
Supervisor: Panos Vassiliadis

Studying the evolution of database schemata is of great importance as a change
in the schema of the database (e.g., the deletion of a table or attribute) can
impact semantically and syntactically the entire ecosystem of applications that
are built on top of the database. The study of schema evolution entails extracting
schema versions and their delta changes from software repositories,
subsequently leading to the extraction of patterns and regularities. The history of
a typical database can consists of hundreds of transitions from version to version
and includes a potentially large number of tables that change during the life of

the database.

In order to study the evolution of databases, we have devised the Parallel Lives
Diagram, a detailed 2D visual representation that graphically visualizes the life of
tables in parallel lines. However, this representation has to fit into a computer
screen -at best- or into a much smaller window at worst. Therefore, in this
Thesis, we construct a synopsis of the entire life of a database in which the set of
transitions is segmented into phases and the set of tables is organized in clusters.
For this purpose, we have designed two algorithms for the construction of this
synopsis. The first of our algorithms segments the entire set of transitions into
phases according to their similarity in terms of activity. The second of our
algorithms, extracts clusters from the entire set of the tables of a database by

taking into account their similarity in terms of their creation and destruction

viil

time points as well as their change activity. Both of these algorithms are assessed

with different methods to evaluate the effectiveness of the grouping methods.

Our algorithms are part of a tool that we have developed, called Plutarch’s
Parallel Lives, that visualizes the entire life of a database in a multi-view,
interactive fashion. A central feature of the tool is the visualization of the
aforementioned (a) Parallel Lives Diagram, and (b) the synopsis of the lifetime of
the database. Apart from these central constructs, the tool is also supplied with
features such as drilling into specific points, filtering according to various criteria

or providing the user with details on demand.

X

EKTETAMENH IIEPIAHWH XTA EAAHNIKA

['iaxog Beo@avng tou Kwvotavtivou kat tng lewpylog

MAE, Tuqua Mnxavikov H/Y kat IlTAnpo@opkng, Mavemiot)uo lwavvivwv
Oxktwpplog 2015

Tuvoyels g Ploypagiog eEedloodpevwy oxnuatwy Bacewv Sedopévwv.
EmAémovtag: avaywwtng Bacletadng

H peAétn g €éAng oxnuatwyv Pacewv dedopévwy eival Heyaing onuaciag,
KaBwg pla aAdayn oto oynua tng Pdong (mx. n Saypaen &vog mivaka M
yvwpiopatog) pmopel va £€xel EMMTWOE TOOO ONUACLOAOYIKEA OO0 Kol
OUVTOKTIKA GTO UTIOAOLTIO OLKOGUOTNUN EQAPLOYWV TO OTIO(0 Elval XTIOREVO ETIL
™G Bdong. H peAetn g €§€AENg €vOG OXNUATOG CUVETIAYETAL TNV €Eaywyn
EMUEPOVG EKSOTEWV TNG BAONG KAL TWV HETAED TOUG SL@OPWV Ao amobeTipla
AOYLOUIKOV, 0AAQ KaL TNV €Eaywyn] TPOTUTIWV atd auTtd. H 1otopla pag Tumiknig
Bdong Sedopevwy pmopel va amotele(tal amd ekatovtadeg petafdoelg amd
¢kboom oe €kdoomn kal mepAapfavel Eéva l0Aov evkaTAPPOVNTO aAplOuUd amo

TIVOKEG 0L 0TtoloL AAAG{OVY KaTA TNV Sldpkela TNG {wn g TNG.

Ma va peletnoovpe v €CéAEn twv Pdoewv, emvonoape To «Aldypappa
[MapdAANAwv Zowv», pia Aemtopept] SISLACTATN OTITIKY AVATIHPACTACT 1 OTIo(X
OTITIKOTIOTIOLEL YPAPIKA TNV {WT] TWV TIVAKWV O€ TAPAAANAES YPAUUES. QOTOOO,
N avamapdotoon auth €lval avaykaio va xwpéoel oe pia 006vn vmoAoylot)
otNV KaAUTEPN TepimTwon 1 o€ éva TMoAD HKpOTEPO TApabupo ot XEPOTEPT.
Emopévwg, otn ovykekpipévn Statpifi), kataokevalovpe pia ovvoym g {wng
uag Baong dedopévwy, oty omoia To oUVoA0 TwV petafdoewv ™G amo ékdoon
o€ €k8001N TUNUATOTOLE(TAL OE (PACEL KAl TO OUVOAO TWV TIVAKWV TNG
opyavwvetal oe ocvotddes. ' Tov okomd auto, oxedidoape Vo aAyopiBuovg
Y@ TNV Kataokeun tng ovvoyms. O mpwtog amd toug SVo aAyoplBpovg

TUNUXTOTIOLEL TO CUVOAO TWV PETABACEWY TNG BAONG O€ PAGELS, CULPWVA LE TNV

OHOLOTNTA TOUG O€ OYEOM HE TNV SpacTnploTNTd TouG. O SeUTEPOG ATO TOUG
aAyopiBuovg pag, oxetiletal pe v €Eaywyn oLvoTASWV ATO TO GUVOAO TWV
TIVAKWV TG Baong, Aapfdvovtag vty TV oHoLOTNTA TOUG OGOV APOPA TOCO
T onpela g Snuovpylag Kal KAataoTpo@ng Toug 060 Kol TIG aAAayeg Toug. Kot
ot §Vo avtol aAydpiBpol aflodoyovvtal pe Sla@opeTikeég peBOSoLG yia va kpLBet

1] ATIOTEAECPATIKOTNTA TWV HEBOSWV opadotoinong.

Ot aAyoplOpol pag amoteAoUV KOUUATL EVOG EPYAAEIOV TIOV EXOVIE AVATITUEEL KL
ovopdletatr “IlapdAAnAot Biot tov TAoUTapyov” kAl €Xel WG QAVTIKEIPNEVO TNV
OTITIKOTIOMON 0AOKANPNG ™G {wng plag Pdaong dedopuévwv pe v Ponbewx
TeYvoAoylwv ToAAaTmANG oymng kot Swadpactikotntas. ‘Eva Baocwko
XAPAKTNPLOTIKO TOV gpyaAieiov elvat 1 omtikomoinon (a) Tou «AlxypAppatog
[MapaAAnAwv Zowwv», kat () g ocvvoymng g {wns g Baong. Ektog amd v
VTIOOTNPLEN AUTWV TWV V0 BACIK®OV XAPAKTNPLOTIKWY, TO PYUAEi0 lval emiong
€QOSLAOEVO UE AelTovpyleg OTwG N eufabuvon oe ouykekpléva onpeia ™G
oVVOYMG, TO @IATPAPLOUA TNG CUUPWVA UE SLAPOPA KPLTNPLX AAAQ KL 1] TIoLpOoxM

OTOV XP1)OTH AETITOUEPELWV VOTEPA ATIO ALITNOT] TOV.

Xi

CHAPTER 1. INTRODUCTION

1.1 Thesis Scope

1.2 Thesis Structure

1.1 Thesis Scope

Studying the evolution of database schemata is of great importance as a change
in the schema of the database (e.g., the deletion of a table or attribute) can
impact semantically and syntactically the entire ecosystem of applications that
are built on top of the database. The study of schema evolution entails extracting
schema versions and their delta changes from software repositories,
subsequently leading to the extraction of patterns and regularities. The history of
a typical database can consist of hundreds of transitions from version to version
and includes a potentially large number of tables that change during the life of

the database.

One of the main tools to study schema evolution is the visual inspection of the
history of the schema. This can allow the scientists to construct research
hypotheses as well as to drill into the details of inspected phenomena and try to
understand what has happened at particular points in time. However, such an
effort is constrained by our means of visual representation. Mainly, such a
representation is targeted for a two-dimensional representation target in a
computer screen or a printed paper. The space available in these representation
media is simply too small for encompassing the hundreds of transitions from one

version to another and the hundreds of tables involved in such a history, at the

same time. In other words, if we want to represent the space of transitions x
tables in a two dimensional canvas, it is practically impossible, even for the
typical case to put in every detail in the diagram, in a way that is humanly

exploitable.

A solution to the problem is to follow the traditional method for handling this
kind of problems [Shne96] and start with an overview of the detailed
representation. This becomes even more useful if this overview is enriched with
features such as zooming into specific point of the history, or filtering by
different elements, etc. Our solution to the problem starts with the main idea of
creating a synopsis of the history of the schema evolution, where the number of
transitions is abstracted by a limited set of phases and the number of tables is
represented by a limited number of table clusters. Then, we can represent this
synopsis as a 2D diagram, with phases at the x-axis and clusters at the y-axis, with

the details of change in the contents of this 2D space.

The first challenge that we have addressed involves fitting the timeline of
transitions into a fixed space on screen. This requires extracting phases of the
timeline. The related work includes a small number of works on this issue. So,
our take to the problem was to introduce a hierarchical agglomerative clustering
algorithm that merges the most similar transitions according to the time that
have been committed and their heartbeat of changes into one phase. As a result,
in the end we can have a desired number of phases, each of which encompasses

subsequent and similar transitions.

The main advantage of a hierarchical agglomerative clustering algorithm is that
it can always give us the best quality of clustering for a given distance function
on the data that will be called to cluster. The main disadvantage of this type of
algorithms is that for large datasets, it comes with reduced performance and
speed, as all the algorithms of this family have to compute a distance for each
pair of data points, and progressively merge smaller clusters into bigger one.
However, within the scope of our problem, the datasets involved contain only

some hundreds of data points, which is not prohibitive in terms of performance.

To make the algorithm work we introduce a distance function that computes the
distance between two contiguous transitions. This function depends on two
parts. The first part has to do with the time distance between the involved
transitions, whereas the second part has to do with the difference between the
numbers of changes that have been committed to these transitions. The more
closely two transitions are with regards to time and changes, the most similar

they are considered.

Second, we address a respective challenge to reduce the large number of tables
of a database that have to be fitted into a fixed height of window. As already
mentioned, we extract clusters out of the entire set of the tables. Our solution
adopts the same approach as with transitions and we introduce another
hierarchical agglomerative clustering algorithm that creates a desired number of
clusters. Within each cluster, the desideratum is to maximize the similarity of the
contained tables. In this case, the distance function considers three parameters
that can characterize a table: The first parameter involves the birth dates of the
involved tables; the second parameter is concerns the death dates of these
tables; the last parameter has to do with the number of changes of a table.
Combining them, we can find similar tables that were born and removed in close

dates and also have a similar number of changes.

We have combined our abovementioned contribution in a tool that is called
Plutarch’s Parallel Lives that allows the interactive exploration of the history of
schema. The tool gets the history of the database, i.e., a temporally sorted list of
schemata. Firstly, the tool produces a detailed visualization of the life of the
database, called Parallel Lives Diagram that contains the transitions of the
database in its x-axis and the tables in its y-axis. Each row of this visualization
contains the entire life of a table. Secondly, the tool extracts an overview for this
visualization, which has the phases that are produced by the phase extraction
algorithm in its x-axis and the clusters that have been extracted by the clustering
extraction algorithm in its y-axis. This overview has been designed to be
interactive and can provide the user with features like zooming into specific

points, filters according to specific criteria and details on demand. Plutarch’s

Parallel Lives has been designed to be easily extended due to its architecture that
includes all the basic principles of object-oriented programming such as abstract

coupling via interfaces, factories, and similar mechanisms.

In summary, we can list our contributions as follows:

e We have designed a phase extraction algorithm for the transitions of the
entire life of a database that segments this life into phases according to
the similarity of the transitions.

e We have designed an algorithm for cluster extraction over the entire set
of the tables that are contained by a database, which divides the tables
into clusters according to the similarity of their lives and in particular the
similarity of their birth, death and change activity.

e We have assessed our algorithms with a principled method. We have used
two different methods to assess our phase extraction algorithm. At the
same time, we have also used both internal and external validity
evaluation techniques to assess our clustering algorithm.

e We have designed and implemented a tool called Plutarch’s Parallel Lives,
in short, PPL [PPL15], that visualizes the entire life of a database. When a
dataset is given as input to Plutarch’s Parallel Lives, PPL produces an
overview of the life of the respective database. Continuing, the tool allows
the user to zoom into specific points of the overview, to filter it according
to various features and to get information about details of the transitions

and tables.

1.2 Thesis Structure

The structure of this thesis is as follows. In Chapter 2, we give the definitions of
the main concepts of the thesis. In Chapter 3, we present the problem
formulations and intuition on how we could solve them. In Chapter 4, we present
the solutions that we designed for these problems and how we assessed these
solutions. In Chapter 5, the interested reader can find details about the software
that we have developed, such as the design and analysis of the Plutarch’s Parallel

Lives, some coding of the most significant classes and some screenshots of how it

performs. In Chapter 6, there is an overview of the related work that we have
studied. Finally, in Chapter 7, we conclude our results and offer roads for future

work.

CHAPTER 2. FUNDAMENTALS

2.1 Definitions of main concepts
2.2 Identified Changes per Transition of each Relation
2.3 Matrix Representation of Database Evolution

2.4 Visual representation of a history of a database

2.1 Definitions of main concepts
In this subsection, we start by giving the definitions and terminology for the

concepts of dataset, version, transition, and revision.

Schema Version, or simply, Version: A snapshot of the database schema,
committed to the public repository that hosts the different versions of the
system. To facilitate our deliberations, we assign an artificial version id to each
version, in the form of an auto-incrementing integer with step one. Thus, version
ID’s are isomorphic to a contiguous subset of the set of positive integers.
Whenever possible, we also assign a timestamp to the version, which is the

commit time to the public repository.

Synonymous term: Commit.

Dataset: A sequence of versions, respecting the order by which they appear in

the repository that hosts the project to which the database belongs. In our case,

we have monitored only the versions committed to the trunk (master

development branch) of the project to which the database belongs.

Transition: The fact that the database schema has been migrated from version v;
to version vj, i < j. We refer to v; as the source version of the transition and to vj as
the target version of the transition. We denote such a transition by an arrow
from the source towards the target of the transition, e.g., vi—>v;. Throughout all
our deliberations, we employ the term old to refer to properties of the source
version and the term new to refer to properties of the target version of a
transition. Each transition includes a set of changes to the DB schema. We

discuss these kinds of changes in the following subsection.

Revision: A transition between two sequential versions, i.e., from version v; to
version vi+1. Each transition incurs a set of differences to the database schema.
We measure the alteration of tables and attributes in a manner that will be
clearly defined right away. To simplify expressions, we frequently use the term
“version” instead of “transition that leads to this version”. So, for example, if we
say the “new number of relations for version vi+1“, we refer to the number of

tables of vi.1, after a transition from v has taken place.

In the rest of our deliberations, unless otherwise specified, the term transition

refers to a revision. Apart from an old and a new version, each revision has a

timestamp, which signifies the date that the target, new version was made public
on the public repository from which it was retrieved. For convenience, we also

assign revisions with id’s which are consecutive integers.

2.2 Identified Changes per Transition of each Relation

The evolution history of each database schema can be thought of as (a) a
sequence of versions, but also as (b) a sequence of revisions. For each relation of
the database schema, and for each revision, we identify the set of changes that

have occurred.

Specifically, for each transition, for each relation, we can identify the following

data:

Old Attributes: The set of attributes of the relation at the source, old version of

the transition.

New Attributes: The set of attributes of the relation at the target, new version of

the transition.

Attributes Inserted: The set of attribute names inserted in the relation in the new
version of the transition. Attribute insertions can be of two types: attributes
inserted at table formation, which are the attributes with which the table is born
(i.e., the relation did not exist in the source version of the transition) and
attributes inserted to an existing relation, of the relation existed in the old version

of the transition.

Note that the two above subcategories of “Attributes inserted” are mutually
exclusive for the case of a specific relation in a specific transition: either the
relation is in its “birth” transition, in which case we have attributes inserted at
table formation, or the transition takes place after the relation’s birth, in which

case we have tables injected in an existing relation.

Note also that although this is a mutually exclusive situation for a specific
relation in a specific transition, the two metrics are can have non-zero values
simultaneously when we study the evolution at the database level (meaning that,
in the context of a specific transition, a new table can be created and another

table can be updated at the same time).

Attributes Deleted: The set of attribute names deleted from the relation during
the transition from the old to the new version. Attribute deletions can be of two
types: (a) attributes deleted at table removal, which are the attributes that existed

in relation in the source version of the transition, while, at the same time, the

10

relation does not exist in the target version of the transition, and, (b) attributes
deleted from a surviving relation, for a relation that continues to exist in the new

version of the transition.

The comments of the previous category concerning the disjointness of the two

subcategories apply here too, in a direct manner.

Attributes with Type Alternations: The set of attributes whose data type changed

during a transition.

Attributes involved in Key Alternations: The set of attributes that reversed their
status concerning their participation to the primary key of the relation between
the old and the new version of the transition. Specifically, these are the attributes
that either became primary keys in the new version (while they were not in the
old version) or stopped being part of the primary key in the new version while

being part of the primary key in the old version.

The above sets can be treated (a) directly as sets, but, most commonly, (b) via the
cardinality of this set. In other words, to measure the amount of change, we
measure the size of each of these sets. In Table 2-1, we summarize the notation

for the different sets and measures of change.

Having the respective measures, we can also measure the growth and alteration
of a relation, as well as its total change. Specifically, we employ the following

measures for the change of a relation during a transition:

Attribute Alternations: The sum of Attribute Type Alterations and Attribute Key

Alterations.

Schema Growth: The difference between the cardinalities of the new and old
attributes of a transition, i.e.,, Number of New Attributes — Number of OldAttributes

(attn: not the absolute, but the actual value of the subtraction).

11

Total Change: the sum of absolute values of Attribute Alterations and Schema

Growth.

2.3 Matrix Representation of Database Evolution

We define the history of a database schema between revisions s(tart) and e(nd) as
a sequence of contiguous revisions: H = { ts, ts+1, ..., te-1, te}. Assuming that our
knowledge for the life of a schema spans from revision 1 to revision m, we will
use the simplified term history or entire history of a database schema to refer to
the history between revisions 1 and m. The diachronic schema of the database is
the union of all relation names appearing in the schema of the database

throughout its entire history; we denote it as Sy = {Ry, ..., Rn}-.

To measure evolution, we adopt a convenient representation of the history of a
database schema as a two-dimensional matrix, with one row per relation and
one column per transition. The content of each cell of the matrix is a tuple with
all the measures that correspond to the specific transition of the specific table
that act as coordinates of the cell. We refer to this matrix as the CART Matrix

(Change Analysis per Relation and Transition).

CART[R, t] = [At"ld(R), At“ew(R), I (R), D¢ (R), T¢ (R), K: (R), U (R), gt (R), M; (R), Chy (R)]

Then, we can define the projection of the CART Matrix per (a) measure, if we are
interested in only one measure, (b) aggregate measures per transition, where we
aggregate all the measures for all relations for each transition, or (c) aggregate
measures per relation, where we can aggregate the change measures for each
relation over all the transitions. We can employ several aggregate functions for
the two marginal aggregate measures (e.g., sum to measure total change, count to
measure occurrences of change, avg to measure average change, max to see

peaks in change, etc).

12

Table 2-1: Types of changes that occur to a relation R, during a transition t

Set of attributes involved in the

Measures of change for a relation R during a transition t

change

0ld Attributes Ald(R) Number of Old Attributes Al(R)
New Attributes Apew(R) Number of New Attributes Aprew(R)
Attributes Inserted I(R) Attribute Insertions It (R)
Attributes Deleted D: (R) Attribute Deletions D: (R)
Attributes with Type

T: (R) Attribute Type Alterations T: (R)
Alterations
Attributes in Key

K: (R) Attribute Key Alterations K: (R)
Alterations

Schema Growth

Attribute Alterations

Schema Modifications

Total Change

2.4 Visual representation of a history of a database

g(R) = Acev(R) - A4(R)

Ui (R) = T: (R)+ K: (R)

Mt(R) = It(R) + Dt(R)

Ch(R) = |U(R)| + | M«(R) |

We have developed a visualization tool that equips us with visual aids to study

the history of a database.

We depict the matrix in its well-known, two dimensional rectilinear grid! format,

having relations for rows and transitions for columns.

1 See http://en.wikipedia.org/wiki/Regular_grid for the definition of the term

13

We define the Parallel (Table) Lives Diagram of a database schema as a two
dimensional rectilinear grid having all the revisions of the schema’s history as
columns and all the relations of the diachronic schema as its rows. Each cell
PLD[i,j] represents the changes undergone and the status of the relation at row i

during the revision j.

Specifically, we employ the following visual notation:

e The blue cells (mildly grey in black and white) correspond to transitions
where some form of change occurred to the respective table.

e Dark cells denote that the table was not part of the database at that time.

e Green solid cells (lightly colored in black and white) denote zero change.

e In Figure 2.1 there is a PPL diagram that has been extracted by Plutarch’s
Parallel Lives and contains a small part of Ensembl’s database life. In its x-
axis there is a part of the transitions that have been committed to the
database. In y-axis we can see a part of the entire set of the tables of the
database. Combining these with the above bullets we can realize that each
row of the below figure contains the life of a table of a database including

when it was born, when it died or when it was changed.

Whereas the ordering of the transitions is fixed and isomorphic to their
timestamps, the ordering of relations can vary. We will discuss issues of relation

ordering and grouping in Chapter 3.

14

Figure 2.1: A part of Ensembl’s PPL diagram

15

In the context of the Parallel Lives Diagram, we will refer to the line that
corresponds to a specific relation R as the Biography Line of R. This is also why
we will refer to the Parallel Lives Diagram as the Parallel Biographies Diagram,

as an alternative terminology.

Intuition on the problem:

Although intuitive enough, the diagram of Fig. 2.1 suffers from the limitations of
the two-dimensional display media that we use for showing it (on screen and on
paper that is). Clearly, the available space that screens and paper-sheets can
offer, requires an excessive shrinking of the Parallel Lives Diagram in order to fit
within the available area. This makes the visual inspection process ineffective as

crucial details are unobservable.

So the idea came from the mantra that Shneiderman underlines in his article at

1996 [Shne96], which is

Overview first, zoom and filter, details on demand.
We thought that the substitution of the extra-detailed diagram of Figure 2.1 with
an overview that could be filtered and zoomed in and to provide us with helpful

details on demand could be the ideal approach of our problem.

So in Chapter 3, we formalize these concepts as well as our solution to the

interactive exploration process.

16

17

CHAPTER 3. PROBLEM SPECIFICATION

3.1 Segmentation of the history into phases
3.2 Clustering of tables into groups
3.3 Filter the overview

3.4 Details on demand

To address the problem of effectively representing the PLD in the limited space
of 2D representation media, we need to solve two problems. The first problem
deals with zooming out on transitions, and replacing them by phases, and the
second one deals with zooming out on relations and replacing them by relation
groups. More specifically we desire a number of phases that fits into a part of the
width of the screen and also we desire a number of clusters that fits into a part of

the height of the screen.

3.1 Segmentation of the history into phases

The idea is that we want to zoom-out on the time/version axis. So, we need to
group transitions to phases, i.e., partition the set of transitions to disjoint groups
of consecutive transitions, such that each phases is “homogeneous” internally
(and disjoint from its neighbors).

The formulation of the problem is as follows:

Given the evolution history of a database schema,

18

group transitions into phases

such that the transitions of each phase share similar

3.2 Clustering of tables into groups

The idea is that we want to zoom-out on the vertical axis with the tables (in case
the relations are too many). The idea here is that we partition the set of relations
into disjoint subsets or else clusters. Each cluster has relations with similar lives
i.e., lives with similar start, death and heartbeat of changes. This way we can
zoom-out over the vertical dimension of the Parallel Lives Diagram (i.e., if the
relations are too many, we can group them in a number of clusters that fits our

visual space).

The formulation of the problem is as follows:

Given the evolution history of a database schema,

group relations into groups of relations with similar lives

such that the relations of each group share similar

3.3 Zoom into a specific point of the overview

If we have zoomed out the history of a relational database schema, there are
many times that we would like to drill down more on what was happened to a
specific point of this overview. For example, if we have a matrix in which the x-

axis contains the phases that have been extracted and the y-axis contains the

19

tables of the database or the clusters that have been created how we could zoom

into a specific cell of this table?

3.4 Filter the overview

Sometimes there is the desire to isolate a component of an overview including its
elements to compare for example how similar are the elements from which it
consists of. More precisely, maybe we would like to show up only the facts of a
specific phase, or the behavior of the tables of one specific cluster, or even the life
of a unique table. Then we would have to filter the overview according to these

features.

3.5 Details on demand

According to the format of the PLD and the selection on it, we would like to have
the ability to get some details on demand. For example, if the PLD contains in its
x-axis the phases that have been extracted and in its y-axis the clusters that have

been created by database’s tables what details we could get about a cell of PLD?

To conclude, the tool that we will develop has to implement all of the above.
Moreover, Plutarch’s Parallel Lives must have the ability to create an overview
for the importing dataset. This overview will be a combination of segmenting the
entire set of transitions into phases according to their distance and sharing the
entire set of tables into clusters according to their similarity. Furthermore, this
overview has to be interactive to provide the user with the ability to zoom into a
specific point, or with the ability to filter the overview according to the feature
that he desires. Finally, it has to supply user with details on his demand about

specific elements of the overview.

20

21

CHAPTER 4. CREATING AN OVERVIEW OF THE
HISTORY OF A SCHEMA

4.1 Computing a segmentation of the history into phases

4.2 Grouping tables into clusters

4.3 Zoom into a specific point of overview

4.4 Filter the overview of the history of a relational database schema

4.5 Details on demand

In this subsection, we address the problems that were referenced in chapter 3.
For the goal of extracting phases from the entire history of a database, we
designed and implemented a Phasic Extractor. For the purpose of clustering of
the tables, a Clustering Extractor was designed and implemented. Subsequently,
we are going to analyze their main algorithms, the parameters that are needed
and were explored and the distance metrics that were implemented for both of

them. Finally, the assessment of these two methods completes the section.

4.1 Computing a segmentation of the history into phases

The Phasic Extractor gets as input the entire history of a database (and some
extraction parameters that will be explained more in the sequel), and it produces
a segmentation of the history into phases. More specifically, the Phasic Extractor
parses the input (.csv file each line of which contains details about a transition

from an older version of the database to a newer) and constructs one phase for

22

each transition. When the parsing will have been finished the Phasic Extractor
will have as many phases as the number of the transitions that have been
committed to the database. Next to this, is the execution of an agglomerative
clustering algorithm that attempts to merge the most similar phases according to
a distance metric. The new merged phases are given as input to the
agglomerative clustering algorithm recursively, until the desired number of
phases will have been extracted. At the end, database will be segmented

according to the result of the recursive-clustering algorithm.

Algorithm: The Phasic Extractor algorithm
Input: A list of schema transitions H = { &, ts+1, ..., te-1, te}, the desired number
of phases k, the weight to assign to time wy, the desired weight to assign to
changes wc, the choice if we want the data to be preprocessed according to
the time preProcessing Time, the choice if we want the data to be preprocessed
according to the changes preProcessingChanges.
Output: A partition of H, P = {p1...px}
variable numPhases=e, counter of the number of phases.
Begin
1. P={py,..pe}st.pi={ti} Vi€Es...e
2. while(numPhases>k){
a. for each pair of phases ph;, phis1;, 1 <i<n
i. compute §(ph, phi«1)
b. Merge the most similar phases, pa and pa+1 into a new phase p’

c. P= {pl;; Pa-1, P, Pa+1, - pm}

d. numPhases --
}
3. Return P;
End

23

4.1.1 Parameters

One of the extraction parameters that are used by Phasic Extractor is associated
with the desired number of phases that we wish to segment the history. The
weight that we want to assign to the time and changes between transitions is
another parameter. Finally the last part of the extracted parameters is the
execution or not of some preprocessing methods which are associated with the
time or changes between transitions. Transitions that have time distance less
than three days or transitions that have zero number of changes are merged into
a phase each, before Phasic Extractor begin processing the data.

o Desired number of segments (k): refers to the number of phases that
we would like to be extracted.

o Pre-Processing Changes (PPC): refers to the preprocessing of the data
from the aspect of changes (ON if the data has been preprocessed, OFF
otherwise).

o Pre-Processing Time (PPT): refers to the preprocessing of the data from
the aspect of time (ON if the data has been preprocessed, OFF otherwise).

o Weight Change (WC): refers to the weight of changes (0.5 normal weight,
0 if changes is not taken into account).

o Weight Time (WT): refers to the weight of time (0.5 normal weight, 0 if

time is not taken into account).

4.1.2 Distance Function

Next we present the distance function that gives as outcome how similar are two
phases. This distance on its normal form that both time and changes have a non-
zero weight depends on both to the time that the compared phases differ with
regard to the date that have been committed and to the difference of the changes
that have been occurred to each other too. Here is the definition of this distance

function:

24

For two phases pj, pi+1:

(i, Piv1) = W' X 8T (py, piv1) + W X 8 (D1, Div1)

Table 4-1: Explanation of the distance function

Symbolism

Description

S(Pi, Di+1)

Denotes the term of the Distance Function between

phases

Denotes the weight that we want to assign to the time

distance

8" (pi, Piv1)

Denotes the distance between the two phases with
respect to the time. Actually is the distance between
the death date of the pi phase and the birth date of the

pi+1 phase

Denotes the weight that we want to assign to the

change distance

8¢ (pi Pit1)

Denotes the distance between the number of changes
of the pi phase in relation to the number of changes of
the pi+1 phase. Actually is the distance between the

number of changes of the last transition of phase pij

and the first transition of phase pi+1

25

4.1.3 Assessment of the method

4.1.3.1 Assessment via divergence from the mean

The first assessment method that we use to evaluate the quality of the phases

that the Phasic Extractor extracts, is connected with the following formula:

e VDI S TRl

Vphase ph; Vtransition ej Eph;
where y; is the average number of changes of each phase and e; is the number of
changes of each transition of the phase. Typically p is equal to one or two. In our
evaluation p was set to one. This formula could give us a good evaluation of our
method, because it depicts how similar are the elements that are included by
each phase according to the events that happened into this. The most similar

they are, the smaller value of Ep, will give as a result.

So, for this method the goal is to find which set of extraction parameters give us
the best results something that means the smallest Ep, and finally investigate a

“winner” set of them, which is the set that performs better at most.

The datasets that were used by Phasic Extractor were eight different datasets
from open-source databases such as Atlas, bioSQL, Coppermine, Ensembl,
mediaWiki, Opencart, phpBB and typo3 with all possible weights of time and
change and either with preprocessing or not and here is how the extracted

phases were assessed by the first method for all of them.

26

PPC:OFF PPC:ON PPC:OFF PPC:ON
PPT:OFF PPT:OFF PPT:ON PPT:ON

WC=0.0

898.38 907.51 898.38 907.51
WT=1.0
WC=0.5

877.94 891.98 840.24 855.17
WT=0.5
WC=1.0

912.11 912.11 859.56 @ 859.56
WT=0.0

Figure 4.1: Atlas Dataset

PPC:OFF PPC:ON PPC:OFF PPC:ON
PPT:OFF PPT:OFF PPT:ON PPT:ON

WC=0.0

WT=1.0

WC=0.5

WT=0.5

WC=1.0

WT=0.0

380.15 381.22 380.15 381.22
253.84 254.62 375.37 347.37

206.54 206.54 325.82 325.82

Figure 4.2: bioSQL Dataset

PPC:OFF PPC:ON PPC:OFF PPC:ON
PPT:OFF PPT:OFF PPT:ON PPT:ON

WC=0.0

WT=1.0

WC=0.5

WT=0.5

WC=1.0

WT=0.0

136.45 130.74 136.45 130.74
112.54 121.16 130.86 135.71

108.29 135.39 138.20 134.35

Figure 4.3: Coppermine Dataset

PPC:OFF PPC:ON PPC:OFF PPC:ON
PPT:OFF PPT:OFF PPT:ON PPT:ON
WC=0.0
4111.28 4115.63 4111.28 4115.
WI=10 8 4115.63 8 4115.63

WC=0.5 19130 4097.89 4155.04 4083.44
WT=0.5

W9 573757 4044.81 412437 3935.95
WT=0.0

Figure 4.4: Ensembl Dataset

27

PPC:OFF PPC:ON PPC:OFF PPC:ON
PPT:OFF PPT:OFF PPT:ON PPT:ON
WC=0.0
WT=1.0 1052.28 1052.28 1052.28 1052.28
WC=0.5
WT=0.5 1025.91 1042.27 1030.86 1053.47
WC=1.0
WT=0.0 920.34 920.34 1061.43 1047.30

Figure 4.5: mediaWiki Dataset

PPC:OFF PPC:ON PPC:OFF PPC:ON
PPT:OFF PPT:OFF PPT:ON PPT:ON
WC=0.0
WT=1.0 3390.19 3381.58 3390.19 3381.58
WC=0.5
WT=0.5 1297.10 1294.76 2733.91 2731.19
WC=1.0
WT=0.0 837.30 837.30 2745.29 2743.91

Figure 4.6: Opencart Dataset

PPC:OFF PPC:ON PPC:OFF PPC:ON
PPT:OFF PPT:OFF PPT:ON PPT:ON

WC=0.0

WT=1.0 870.53 880.23 870.53 880.23

WC=0.5

WT=0.5 861.10 941.45 853.23 791.49

WC=1.0

WT=0.0 843.11 843.11 953.27 872.68

Figure 4.7: phpBB Dataset

PPC:OFF PPC:ON PPC:OFF PPC:ON
PPT:OFF PPT:OFF PPT:ON PPT:ON
WC=0.0
WT=1.0 64859 644.33 648.59 644.33
WC=0.5
WT=0.5 658.19 664.04 664.39 485.49
WC=1.0
WT=0.0 486.84 486.84 477.48 438.35

Figure 4.8: typo3 Dataset

28

Table 4-2: Number of wins for different sets of parameters

PPC: OFF |PPC: ON |PPC: OFF |PPC: ON
PPT: OFF |PPT: OFF [PPT: ON |PPT: ON

WC = 0.0]]]]

WT = 1.0

WC=05

WT = 0.5 - - 1 1

WC = 1.0

WT = 0.0 5 3 i 1

We say that a parameter configuration wins each time it produces the lowest Epn
in one of the assessments of the Figures 4.1 - 4.8. Winners are depicted in green
in all these figures. In Table 4-2 we show how many times the different sets of
parameter configurations “win”. Ultimately, the “winner” configuration of
parameters is the one that (a) the data was not preprocessed neither from the
aspect of time nor of change and (b) the time was not taken into account too (0.0
time weight). Second came the set of those parameters that the data was
preprocessed according to changes preprocessing and the time was not taken
into account again. So, from the results we can say that the time has not an
important role in phasic analysis as concerning to these specific datasets and the

changes have.

4.1.3.2 Assessment via spread in the time x change space

The second assessment method can be described as follows:

For each pair of phases phiand phi+1 we have to compute the term §tme as it has
been defined previously. Another term that has to be computed is the term Schange
which is also has been defined previously. When these two terms have been
computed for the whole set of pairs we can represent our results with the scatter

plot format.

In Figures 4.9-4.20 we depict the results of this assessment method with

Coppermine dataset as given input. Note that x-axis is referred to the active time

29

distance (distance in days) and the y-axis is associated with the active changes
distance. We depict the actual (non-normalized) values for both the time and the
change distance. If both distances had been normalized the image of the charts
would be the same and only the values of the numbers would have been
different. So, we can go on with the description of the tables that are following

and with the results of this assessment method.

o Phases: the first column refers to the pair of the source phase and the
destination phase.

o &time: the second column refers to the active time distance from one phase
to another.

o &c (8change): the third column refers to the active change distance from one
phase to another.

o The last column represents the scatter plot of the pairs of the second and
third column.

o Concerning the image part of the following Figures, the x-axis of all the

scatterplots is 6time and the y-axis of the scatterplots is dchange.

C:0.0 WT:1.0
PPC:OFF PPT:OFF

Phases &time &c
0@1 11050 0
Stime-6change

1@2 84.73 4 is
2@3 90.14 0 a °

35
3@4 86.63 3 s .
4@5 128.53 2 25

2 L]
5@6 13230 O 15
6@7 21435 0 !

0.5
7@8 133.67 O 0 Y °

0 50 100 150 200 250
8@9 80.63 0

Figure 4.9: (8time, 8¢) for (WC:0.0, WT:1.0, PPC:OFF, PPT:OFF)

30

C:0.0 WT: 1.0
PPC:ON PPT:OFF

Phases &time &c
0@1 66.91 5
Stime-6change
1@2 84.73 4 .
2@3 80.07 1 7 °
3@4 86.63 3 °
5 []
4@5 12853 2, .
5@6 63.76 7 3 o
6@7 66.46 1 ¢
1 [N X] L]
7@8 62.45 1 0
0 20 40 60 80 100 120 140
8@9 56.50 1

Figure 4.10: (Stime, 6c) for (WC:0.0, WT:1.0, PPC:ON, PPT:OFF)

C:0.0 WT:1.0
PPC:OFF PPT:ON

Phases &time &c
0@1 11050 O
6time-6¢change

1@2 84.73 4 i
2@3 90.14 0 ¢ .

3.5
3@4 86.63 3 s .
4@5 128.53 2 25

2 L]
5@6 13230 0 .
6@7 21435 0 1

0.5
7@8 133.67 0 0 ve o ® .
8@9 8063 0 0 50 100 150 200 250

Figure 4.11: (Stime, 8c) for (WC:0.0, WT:1.0, PPC:0FF, PPT:ON)

31

C:0.0 WT: 1.0
PPC:ON PPT:ON

Phases &time &c
0@1 6691 5 _
dtime-bchange

1@2 84.73 4 .
2@3 80.07 1 7 .
3@4 8663 3 °

5 []
4@5 12853 2, .
5@6 63.76 7 3 °
6@7 6646 1 °

1 o 00 []
7@8 62.45 1 0

0 20 40 60 80 100 120

8@9 56.50 1

Figure 4.12: (8time, 6c) for (WC:0.0, WT:1.0, PPC:ON, PPT:ON)

C:0.5 WT:0.5
PPC:OFF PPT:OFF

Phases &time &c
0@1 1.83 1

1@2 014 8
203 2756 1 1 e
14 °
3@4 2690 14
4@5 204 16 U

Stime-6change

g e []
5@6 2739 3 ¢
6@7 16.04 8 4 e
2
7@8 5.99 1 o ® ° °
0 5 10 15 20 25
8@9 6.99 4

Figure 4.13: (8time, 6c) for (WC:0.5, WT:0.5, PPC:OFF, PPT:OFF)

32

18
16
14
12
10

(== S R A

Stime-bchange

20 40 60 80 100

Figure 4.14: (Stime, 6c) for (WC:0.5, WT:0.5, PPC:ON, PPT:OFF)

C:0.5 WT:05
PPC:ON PPT:OFF
Phases &time &c
0@1 66.91 5
1@2 5.66 1
2@3 2.04 16
3@4 27.39 3
4@5 84.73 4
5@6 43.09 1
6@7 16.04 8
7@8 5.99 1
8@9 6.99 4

C:0.5 WT:0.5
PPC:OFF PPT:ON
Phases &time &c
0@1 21.06 1
1@2 9.47 7
2@3 2445 0
3@4 27.39 3
4@5 84.73 4
5@6 86.63 3
6@7 16.04 8
7@8 5.99 1
8@9 21435 0

[R CURE U Uy B = TN B « <N <]

Stime-6change

50 100 150 200 250

Figure 4.15: (8time, 8c) for (WC:0.5, WT:0.5, PPC:OFF, PPT:ON)

33

C:0.5 WT:05
PPC:ON PPT:ON
Phases &time &c
0@1 21.06 1
Stime-6change
1@2 5.66 1 .
2@3 84.73 4 8 °
3@4 4309 1 |
4@5 86.63 3 >
4 °
5@6 16.04 8 5 °
6@7 5.99 T e
1 [] [[[
7@8 4.11 2 0
0 20 40 60 80 100
8@9 66.46 1
Figure 4.16: (Stime, 6c) for (WC:0.5, WT:0.5, PPC:ON, PPT:0ON)
C:1.0 WT:0.0

PPC:OFF PPT:OFF

Phases &time &c
0@1 0.72 7
Stime-6change

1@2 9.47 7 s
2@3 26.90 14 16 e

14 °
3@4 2.04 16
4@5 27.39 3 10

8
5@6 4745 2 e e
6@7 0.55 2 4 ¢ N

) °
7@8 0.03 2 0

0 10 20 30 40 50
8@9 6.99 4

Figure 4.17: (Stime, 8c) for (WC:1.0, WT:0.0, PPC:OFF, PPT:OFF)

34

C:1.0 WT:0.0
PPC:ON PPT:OFF

Phases &time &c
0@1 0.72 7

1@2 9.47 7

2@3 1.83 1 16| e
3@4 0.14 8
4@5 2.04 16 10

Stime-6change

gEe
5@6 2739 3 ¢ ® °
6@7 4745 2 4 .
2 @ []
7@8 0.55 2 o L®
0 10 20 30 40 50
8@9 0.03 2

Figure 4.18: (Stime, 6c) for (WC:1.0, WT:0.0, PPC:ON, PPT:OFF)

C:1.0 WT:0.0
PPC:OFF PPT:ON

Phases &time &c
@1 12.34 0
Stime-6change

1@2 21.06 1 o
2@3 9.47 7 7 °
3@4 2445 0 °

5
4@5 2739 3,
5@6 47.45 2 3 °
6@7 599 1~ ° ‘

1 L] L] L]
7@8 411 2 0 P °

0 10 20 30 40 50 60 70
8@9 66.46 1

Figure 4.19: (Stime, 8c) for (WC:1.0, WT:0.0, PPC:0FF, PPT:ON)

35

C:1.0 WT:0.0
PPC:ON PPT:ON

Phases &time &c
@1 21.06 1 ,
Stime-dchange

1@2 9.47 7 o
2@3 5.66 1 8 °
3@4 8473 4 .
4@5 47.45 2 g

4 ®
5@6 1604 8 |
6@7 5.99 y

1] [] L]
7@8 411 2 0

0 20 40 60 80 100

8@9 66.46 1

Figure 4.20: (Stime, 6c) for (WC:1.0, WT:0.0, PPC:ON, PPT:0ON)

Observe that the results vary depending on the values of the extraction
parameters in combination with the “morphology” of the dataset. So there are
some plots that show that the changes had more weightiness in the phasic
analysis and the points are close to the y-axis ignoring the time factor. On the
other hand there are some others that are close enough to the x-axis, something
that shows that the change factor had not an important role to the phasic
analysis such as the time factor. Finally there are some plots that the points are
spreading to the whole chart something that evokes that both of the two factors

play similar role to the extraction of the phases.

All the results from all the datasets can be found in Appendix.

4.2 Grouping tables into clusters

In this subsection we solve the problem of grouping the tables of a database into

a cluster to shrink the y-axis of a PLD. We use an agglomerative clustering

36

algorithm which we call Clustering Extractor because this type of algorithms
gives the best result if there are not performance limitations. The Clustering
Extractor gets as input an object that contains the whole set of the tables that
have been appeared during the life of the database and a set of parameters (will
be analyzed in the following subsection) and gives as output a desired number of
clusters. More specifically, the initial step of the algorithm constructs one cluster
for each table, so initially we have as many clusters as tables. The next step has to
do with the computation of the similarity for each pair of the entire set of
clusters according to a distance function that will be analyzed in the sequel.
Then, the most similar pair of compared clusters will be merged into one
common. This procedure is repeated until the desired number of clusters has
been created. At the end of this process, the initial set of database’s tables will
have been partitioned into a set of clusters, that each of them will contain a much

smaller number of tables that have “common” lives.

Algorithm: The Clustering Extractor algorithm
Input: The entire set of the database’s tables T {tabs, .. , tabn}, the desired
number of clusters k, the weight to assign to birth date wy,, the weight to assign
to death date wy,, the weight to assign to heartbeat of the changes date w,
Output: A partition of T, C={cy, ..., ck}
variable numClusters=n, counter of the number of clusters
Begin
1. C={cy, ..., cn}st.ci={tabi} Vi€ 1l..n
2. while(numClusters>k){
a. for each pair of clustersci,ciz1, 1 <i<n
i. Compute the 6(cj,ci+1)
b. Merge the most similar clusters, ca and ca+1 into a new cluster ¢’
c. C={cy..., Ca1, C Cat1, ..., Cm}
d. numClusters --
}
3. Return G;
End

37

4.2.1 Parameters

The first parameter of Clustering Extractor is related with the desired number of
the clusters that we would like to be created. The next two parameters have to
do with the weight that we want to assign to the distance between the birth or
death date of the compared clusters respectively. As date we consider the
transition ID for both cases. The last parameter that is needed for the clustering
extraction is associated with the weight of the distance between changes that

have been committed to each cluster.

o Desired number of clusters (K): refers to the number of clusters that we
would like to be created.

o Birth Weight (BW): refers to the weight of the distance between birth
dates of compared clusters.

o Death Weight (DW): refers to the weight of the distance between death
dates of compared clusters.

o Change Weight (CW): refers to the weight of the distance between the

changes of compared clusters.

4.2.2 Distance Function

The distance function of the clustering analysis contains terms that are
associated with the distances between two clusters as regards birth date, death
date and number of changes between two compared clusters and their assigned
weights. This distance metric is reflected to the following formula, the values of

which are normalized:

S (clustery, clusterg) = wy * |Spiren(ca, c)| +
Wq * |6death(CA' CB)l +

We * |5change(CA' CB)l

38

Table 4-3: Explanation of the distance function

Term Description Formula

6 (clustery, clusterg)(Total distance between two

clusters

wy The weight that will be
assigned to the distance that]

is related with the birth date

Spirtn(CarCp) The distance between birth Plain
dates of the two compared C4. birth — cg. birth
clusters
Normalized

Opiren(Car Cp)
DB duration

Wy The weight that will be
assigned to the distance that

is related with the death

date
Sgeatn(Ca,Cp) The distance between death Plain

dates of the two compared @,if both alive

clusters c4.death — cg.death, else”
Normalized
S8aearn(Car Cp)
DB duration

w, The weight that will be

assigned to the distance that]

is related with the total

changes

2 If one of the compared clusters is still alive, then its death date is set to the max

transition of the database history +1.

39

Ochange(Ca,cg) [The distance between the Plain
total changes that have been| c,.changes — cgchanges
committed to the two

compared clusters Normalized

|Ch(A)| — ICh(B)]
|Ch(A)| + |Ch(B)]

where Ch is the total number

of changes

4.2.3 Assessment of the method

In this subsection we will discuss about clustering validity and we will try to
evaluate our clustering technique. In general, there are two main categories for
clustering validity, the internal evaluation and the external evaluation [TaSKO05].
The first one refers to methods that do not need external knowledge and can
measure the quality of the clusters that have been produced only with the
information that they keep and which was used from the clustering algorithm.
Otherwise, external evaluation needs external knowledge, i.e., data have to be
classified before the evaluation process, by explicit tracing of human knowledge

on the issue.

4.2.3.1 External Evaluation

For this type of clustering validity there is a large amount of methods that have
been used previously. We decided to choose the most common of them, which
are Entropy, Precision, Recall and F-measure. Our basic source for a more

comprehensive studying on these metrics was [TaSK05].

Entropy: Entropy is defined as the degree to which each cluster consists of

objects of a single class. Moreover, for each cluster j we compute pj, which is the

40

probability that a member of cluster i belongs to class j. This probability is given

by the following formula:

where m;is the number of objects in cluster i and mj; is the number of objects of

classjin cluster i.

So the total entropy of each cluster i is calculated by the following formula:

L
e = —Z. pijlog, p;j

Jj=1
where L is the number of classes.

In this point, we can define the total entropy of a set of clusters, as the sum of the

entropies of each cluster weighted by the size of each cluster:

K m;
= —e;
i=1Mm

where K is the number of clusters and m is the total number of data points.
This metric substantially give us the purity of the clustering. The less objects of
different classes exist to a cluster the better and so on the smaller value of

entropy. So we want to achieve as soon as smaller values of entropy.

Precision: Precision is defined as the fraction of a cluster that consists of objects

of a specified class. Precision of a cluster i with respect to class j is:

precision(i,j) = p;;

41

Recall: Recall depicts the extent to which a cluster contains all the objects of a
specified class. The recall of cluster i with respect to classj is:
mi]

recall(i,j) = F
i

where mj is the number of objects in class j.

F-measure: F-measure consists of both precision and recall and measures the
extent to which a cluster contains only objects of a particular class and all objects
of that class. The F-measure of cluster i with respect to class j is calculated by this

formula:

2 X precision(i, j) X recall(i, j)

Fei i) =
) precision(i, j) + recall(i, j)

So, as we have defined the basic metrics that have been used to evaluate our
clustering algorithm we have to say some words about the procedure to classify
the tables clusters that then would be evaluated. We studied four different

datasets (Atlas, bioSQL, Coppermine, phpBB) and we tried to classify their tables.

The source of our classification procedure was the PLD (Parallel Live Diagram).
The most obvious criteria of the PLD are when a table is born (birth date) and
when a table died and not as much the count of changes of each table. So, the

classification is based on more on the first two criteria rather than the third one.

Now we can cite our results for four different datasets (Atlas, bioSQL,
Coppermine, phpBB). Firstly, because of the large amount of data and space that
are needed to show up precision, recall and F-measure results for all the datasets
in combination with our desire not to overflow reader we will analyze only the
bioSQL dataset and the results for the rest will be placed in Appendix. Secondly

we will present and discuss all the results that are referred to entropies.

42

At this point, we will study the bioSQL dataset a little more comprehensively.
First of all, in Figure 4.21 there is a preview of the classification of the clusters
which was extracted from our tool (PPL tool). In bioSQL there are totally 45
tables and we constructed four classes to classify these tables (red, yellow, black
and purple). For some tables, is obvious in which class they belong, but for some
others it is a little more complicated. The “red class” consists of tables that were
born at the beginning of the life of bioSQL database but they died early too and it
is represented by letter “R” in fig. 4.21. The “yellow class” contains tables that
were born in the middle of the life of the database but died a few versions later
too and it is represented by letter “Y”. The “purple class” has tables that were
born after the middle of the database’s life and live until the end too and it is
represented by letter “P”. Finally, the most complicated class, the “black class”
consists initially of tables that were born at the beginning of the life of the
database and lived throughout its whole life too and it is represented by letter

MBH

There are some tables that is not obvious how to be classified. For example,
seqfeature location table was classified to “black” class and not to the “red” as
someone could expect. To understand this we have to have a look on a prior state
of classifying procedure when neither seqfeature location nor
cache_corba_support had been classified. In some state of the classification
process and after the obvious tables had been classified it was the turn of the
cache_corba_support table to be classified. Cache_corba_support has the same
distance with respect to birth date either to “red class” or to “black class”. With
respect to the death date cache_corba_support’s distance to the “black class” is 14
versions, whereas between the “red class” whose death date is the death date of
remote_seaqfeature_name is 16. So cache_corba_support was classified to “black
class”. Then it was the turn of seqfeature_location, but now it is obvious that this
table is more similar with cache_corba_support that belongs to the “black class”
rather than the remote_seaqfeature_name that belongs to the “red class”. So,
seqfeature_location was classified to the “black class”. This is the logic behind the

classification process.

43

[Zoom In] [Zoom Out]

Table name TR oo o o o o o Y T T O e o o |

Figure 4.21: bioSQL dataset with classes

After the explanation of the classification process we can have a look at the
results about the others measures that were analyzed before for the bioSQL
dataset and for different set of parameters. We have to note that Class 1 of the
tables with the results refers to “red class”, Class 2 to “black class”, Class 3 to

“purple class” and Class 4 to “yellow class”.

44

Table 4-4: Results for wb: 0.333, wd: 0.333, wc: 0.333

Class 1 (R) Class 2 (B)] Class3 (P)] Class 4 (Y)
Precision
Cluster 0 0.50 0.50 0.00 0.00
Cluster 1 0.31 0.55 0.00 0.14
Cluster 2 0.00 0.55 0.45 0.00
Cluster 3 0.00 0.00 1.00 0.00
Recall
Cluster 0 0.10 0.04 0.00 0.00
Cluster 1 0.90 0.70 0.00 1.00
Cluster 2 0.00 0.26 0.63 0.00
Cluster 3 0.00 0.00 0.38 0.00
F-Measure
Cluster 0 0.17 0.08 0.00 0.00
Cluster 1 0.46 0.62 0.00 0.24
Cluster 2 0.00 0.35 0.53 0.00
Cluster 3 0.00 0.00 0.55 0.00

45

Table 4-5: Results for wb:0.0 wd:1.0 wc:0.0

Class 1 (R) Class 2 (B)] Class3 (P)] Class 4 (Y)
Precision
Cluster 0 1.00 0.00 0.00 0.00
Cluster 1 0.83 0.00 0.00 0.17
Cluster 2 0.00 0.50 0.00 0.50
Cluster 3 0.00 0.71 0.29 0.00
Recall
Cluster 0 0.50 0.00 0.00 0.00
Cluster 1 0.50 0.00 0.00 0.25
Cluster 2 0.00 0.13 0.00 0.75
Cluster 3 0.00 0.87 1.00 0.00
F-Measure
Cluster 0 0.67 0.00 0.00 0.00
Cluster 1 0.63 0.00 0.00 0.20
Cluster 2 0.00 0.21 0.00 0.60
Cluster 3 0.00 0.78 0.44 0.00

46

Table 4-6: Results for wb:0.0 wd:0.5 wc:0.5

Class 1 (R) Class 2 (B)] Class3 (P)] Class 4 (Y)
Precision
Cluster 0 1.00 0.00 0.00 0.00
Cluster 1 0.64 0.14 0.00 0.21
Cluster 2 0.00 0.76 0.24 0.00
Cluster 3 0.00 0.40 0.40 0.20
Recall
Cluster 0 0.10 0.00 0.00 0.00
Cluster 1 0.90 0.09 0.00 0.75
Cluster 2 0.00 0.83 0.75 0.00
Cluster 3 0.00 0.09 0.25 0.25
F-Measure
Cluster 0 0.18 0.00 0.00 0.00
Cluster 1 0.75 0.11 0.00 0.33
Cluster 2 0.00 0.79 0.36 0.00
Cluster 3 0.00 0.14 0.31 0.22

47

Table 4-7: Results for wb:0.0 wd:0.0 wc:1.0

Class 1 (R) Class 2 (B)] Class3 (P)] Class 4 (Y)
Precision
Cluster 0 0.20 0.20 0.60 0.00
Cluster 1 0.27 0.52 0.09 0.12
Cluster 2 0.00 0.83 0.17 0.00
Cluster 3 0.00 0.00 1.00 0.00
Recall
Cluster 0 0.10 0.04 0.38 0.00
Cluster 1 0.90 0.74 0.38 1.00
Cluster 2 0.00 0.22 0.13 0.00
Cluster 3 0.00 0.00 0.13 0.00
F-Measure
Cluster 0 0.13 0.07 0.46 0.00
Cluster 1 0.42 0.61 0.15 0.22
Cluster 2 0.00 0.34 0.14 0.00
Cluster 3 0.00 0.00 0.22 0.00

48

Table 4-8: Results for wb:0.5 wd:0.5 wc:0.0

Class 1 (R) Class 2 (B)] Class3 (P)] Class 4 (Y)
Precision
Cluster 0 1.00 0.00 0.00 0.00
Cluster 1 0.00 1.00 0.00 0.00
Cluster 2 0.00 0.00 0.00 1.00
Cluster 3 0.00 0.00 1.00 0.00
Recall
Cluster 0 1.00 0.00 0.00 0.00
Cluster 1 0.00 1.00 0.00 0.00
Cluster 2 0.00 0.00 0.00 1.00
Cluster 3 0.00 0.00 1.00 0.00
F-Measure
Cluster 0 1.00 0.00 0.00 0.00
Cluster 1 0.00 1.00 0.00 0.00
Cluster 2 0.00 0.00 0.00 1.00
Cluster 3 0.00 0.00 1.00 0.00

49

Table 4-9: Results for wb:0.5 wd:0.0 wc:0.5

Class 1 (R) Class 2 (B)] Class3 (P)] Class 4 (Y)
Precision
Cluster 0 0.26 0.53 0.13 0.08
Cluster 1 0.00 0.33 0.33 0.33
Cluster 2 0.00 1.00 0.00 0.00
Cluster 3 0.00 0.00 1.00 0.00
Recall
Cluster 0 1.00 0.87 0.63 0.75
Cluster 1 0.00 0.04 0.13 0.25
Cluster 2 0.00 0.09 0.00 0.00
Cluster 3 0.00 0.00 0.25 0.00
F-Measure
Cluster 0 0.42 0.66 0.22 0.14
Cluster 1 0.00 0.08 0.18 0.29
Cluster 2 0.00 0.16 0.00 0.00
Cluster 3 0.00 0.00 0.40 0.00

50

Table 4-10: Results for wb:1.0 wd:0.0 wc:0.0

Class 1 (R) Class 2 (B)] Class3 (P)] Class 4 (Y)
Precision
Cluster 0 0.38 0.62 0.00 0.00
Cluster 1 0.00 0.64 0.00 0.36
Cluster 2 0.00 0.00 1.00 0.00
Cluster 3 0.00 0.00 1.00 0.00
Recall
Cluster 0 1.00 0.70 0.00 0.00
Cluster 1 0.00 0.30 0.00 1.00
Cluster 2 0.00 0.00 0.88 0.00
Cluster 3 0.00 0.00 0.13 0.00
F-Measure
Cluster 0 0.56 0.65 0.00 0.00
Cluster 1 0.00 0.41 0.00 0.53
Cluster 2 0.00 0.00 0.93 0.00
Cluster 3 0.00 0.00 0.22 0.00

Having all these results at hand, it is not obvious to determine which set of
parameters is better. Therefore, we resort to a summarization of these tables. We
have extracted the average values of the different sets of parameters for
precision, recall and F-Measure. The metric that gave us a clear result was the
average F-measure which can be found in Table 4-10 in the right column. In the
left column of table 4.10 there are the values for the different sets of parameters.
Wb refers to the weights that we assign to the birth date. Wd refers to the
weights that we assign to the death date. Wc is related with the weights that we
assign to the heartbeat of changes. The bigger the value of average F-measure is
the better, because that means that clusters contain objects of one class for their

most part.

51

Table 4-11: Average F-Measure

Parameters Average
Set F-Measure
wb-wd-wc
0.33-0.33-0.33 0.19
0.00-1.00-0.00 0.22
0.00-0.50-0.50 0.20
0.00-0.00-1.00 0.17
0.50-0.50-0.00 0.25
0.50-0.00-0.50 0.16
1.00 - 0.00 - 0.00 0.21

As we can observe, the best results are given by the set of parameters that do not
take the changes into account. This was also the case for the classifying process
too. For weights equal to 0.5, 0.5, 0.0 for birth, death and changes respectively,
the measures give us the best results. One cluster contains objects that belong
only to one class something that was depicted from precision measure. Also, each
cluster not only contains objects of one class but contains the whole set of these

objects, a knowledge that was extracted from recall measure.

The results that are related with the entropies that we obtained with different
parameters for all the datasets are presented in Tables 4.11 to 4.14. The first
three columns are related with the weights that were assigned to the distance
function. The first column, wy refers to the weights that were assigned to the
birth date, the second column wy refers to the weights that were assigned to the
death date and the third column w. is connected with the weights that were
assigned to the heartbeat of changes. Finally the bold values denote the best

score for each dataset.

52

Table 4-12: Atlas results

Wh Wd we| Entropy (e)
0.333| 0.333| 0.333 0.40
0 1 0 0.45

0 0.5 0.5 0.51

0 0 1 1.14

0.5 0.5 0 0.32
0.5 0 0.5 0.50

1 0 0 0.30

Table 4-13: bioSQL results

Wh Wd we| Entropy (e)
0.333| 0.333| 0.333 1.13
0 1 0 0.79

0 0.5 0.5 1.06

0 0 1 1.14

0.5 0.5 0 0.00
0.5 0 0.5 0.57

1 0 0 0.52

53

Table 4-14: Coppermine results

Wb Wd w¢| Entropy (e)
0.333] 0.333] 0.333 0.38
0 1 0 0.19

0 0.5 0.5 0.38

0 0 1 0.38

0.5 0.5 0 0.19
0.5 0 0.5 0.60

1 0 0 0.00

Table 4-15: phpBB results

Wh Wd we| Entropy (e)
0.333| 0.333| 0.333 0.13
0 1 0 0.94

0 0.5 0.5 0.28

0 0 1 0.28

0.5 0.5 0 0.00
0.5 0 0.5 0.20

1 0 0 0.26

Now, we discuss the circumstances under which our algorithm gives the best
results. In the Atlas dataset the best entropy is given for the set of weights (1, 0,
0) whereas in second place we find the set (0.5, 0.5, 0). However, the interesting
here is that when the set of parameters (0.5, 0.5, 0) “looses”, it has close result
with the winner, whereas when it “wins” it has a much bigger distance from the
second. That is the reason that we choose this set of parameterc as the best
alternative. The worst results are come from the set (0, 0, 1) that is the set that

does not take note of the birth and death date of each data point which are the

54

basic criteria that were taken into account for the classification. This pattern
seems to be followed from the next three datasets too, where the entropy in
some cases is even equal to zero. So we can conclude that our algorithm has a
good performance on these datasets and it is quite adaptive as concerns the

values of weights.

4.2.3.2 Internal Evaluation

Internal evaluation contains these types of methods that do not need any
external knowledge as mentioned previously and they can validate the quality of
the clusters with information that is kept by each cluster by itself. Often, internal
evaluation helps us to decide the right set of parameters for the best quality of
the clustering. Two of the most common metrics for this type of evaluation are
cohesion and separation. In general, according to [TaSK05], we can express the
overall cluster validity for a set of K clusters as a weighted sum of the validity of

individual clusters. This is expressed by this formula:

K
overall validity = z w;validity(C;)

=1

The validity function can be expressed by various metrics such as cohesion,
separation or even a combination of them. With regard to the cohesion, higher
values are better, whereas lower values are better for separation. Weights vary

among different metrics.

55

Cohesion of a cluster can be defined as the sum of the proximities with respect to
the prototype (centroid or medoid) of the cluster. With the term proximity we
mean a distance function. So here it is the formula that we used to measure

cohesion:

cohesion(C;) = Z proximity(x,c;) = distance(x, c;)

X€EC;
where ¢; is the prototype of cluster C;.
The prototype of each cluster was computed as follows:

We considered that the prototype of a cluster is a vector [x, y, z]. For our
purposes, each data point which is a table of the cluster contains a vector [x, y, Z]
too, where x is the birth date of the table, y is the death date of the table and z is
the number of changes of the table. Now we can define how prototype’s vector is
calculated. Prototype’s x value is the average of the x values of the data points
that are included by the cluster. y value is the average of the y values of the data
points that are included by the cluster and z value is the average of the z values

of the data points.

Respectively, separation of a cluster is defined as the proximity between the

centroid c; of the cluster and an overall centroid that has been calculated by the

whole set of data points. Here is how it is expressed in mathematical formula:
separation(C;) = proximity(c;, c)

where c is defined the overall centroid of the dataset.

We can define overall centroid of the dataset similarly with the prototype of the

cluster with the only difference that in this case the entire set of data points take

part in calculation of x, y and z values of overall centroid.

56

For our purposes, we used the Euclidean distance as a measure of proximity. The
weight for cohesion was set to 1, whereas weight for separation was set to the
number of objects of each cluster, because separation combines both information
from the cluster itself and information from the whole dataset, so we would like
each cluster to reflect to the final result depending on its size. Now, we can see
the results about some concrete values for the set of the parameters. In the Wb
column there are the values that were given to the birth weight of distance
function, whereas in the Wd column there are the values that are related with the
death weight and in the Wc column the values that are connected with the
changes respectively. In the Cohesion column there are the results for the

cohesion metric and in column Separation the results for separation metrics.

Table 4-16: Atlas Dataset Results

Wb Wwd Wc Cohesion Separation
0.00 1.00 0.00 1323.69 2115.12
0.33 0.33 0.33 650.45 2598.62
0.50 0.50 0.00 331.31 2797.45
0.50 0.00 0.50 1383.74 2049.81
1.00 0.00 0.00 1271.30 2314.82

Atlas is a dataset that does not have a lot of deletions of tables compared to
insertions and changes, so the set of parameters that is more connected with the
birth and the changes and not so much with the deaths give us the best results
with respect to cohesion and separation. In second place comes the set which is
related with only the deaths because there is a big cluster of tables that die in
very close versions and the larger percentage of tables live until the end of the

database, which means that have the same death date.

57

Table 4-17: Coppermine Dataset

Wb Wwd Wc Cohesion Separation
0.00 1.00 0.00 211.33 362.10
0.33 0.33 0.33 35.62 421.41
0.50 0.50 0.00 40.16 418.65
0.50 0.00 0.50 35.62 421.41
1.00 0.00 0.00 40.16 418.65

Coppermine’s best set of parameters is 0, 0, 1 for birth, death and changes
respectively. This happens because Coppermine’s dataset contains only one
permanent deletion of table and one temporary. This means that the majority of
the tables has the same death date and so the best clustering is given by the set

of parameters that has to do with only the deaths.

Table 4-18: bioSQL Dataset

Wb wd Wc Cohesion Separation
0.00 1.00 0.00 320.45 781.45
0.33 0.33 0.33 159.73 890.94
0.50 0.50 0.00 122.00 886.21
0.50 0.00 0.50 473.46 668.98
1.00 0.00 0.00 253.59 827.05

The Biosql dataset also could be characterized as an ascending dataset with
respect to its size. That means that a big weight to deaths would not give as the
best result. As we can see at Table 4-16 this is something that is reflected by the
result, because the winner is the set that is connected with the other two

parameters births and deaths.

58

Table 4-19: Ensembl Dataset

Wb Wwd Wc Cohesion Separation
0.00 1.00 0.00 11167.50 30780.37
0.33 0.33 0.33 21301.49 21566.66
0.50 0.50 0.00 5289.72 33661.45
0.50 0.00 0.50 19684.44 24562.84
1.00 0.00 0.00 14182.14 27347.17

The Ensembl dataset is one of the largest datasets that we evaluated. That means
that it has a big number of commits that contain all types of changes such as
deletions, insertions and updates among the whole life of the database. This
could give the intuition that a more balanced set of weights would give us the
best results. Finally, this intuition came true because we have the best cohesion

and separation for the set of 0.33, 0.33, and 0.33.

Table 4-20: mwiki Dataset

Wb wd Wc Cohesion Separation
0.00 1.00 0.00 4653.55 6882.07
0.33 0.33 0.33 1752.76 9397.74
0.50 0.50 0.00 1033.57 9561.50
0.50 0.00 0.50 5349.92 7390.00
1.00 0.00 0.00 4775.46 7740.74

Table 4-18 shows the results concerning the mediaWiki dataset. The deletions
that are committed in mediaWiki can be grouped with the naked eye, because
there are three different groups of tables that they died in independent time
points in relation to the lifetime of the database something that explains why this
parameter on its own give us the best separation. Although, if we take into
account the other two parameters, we can see that they give as better result with

regard to cohesion. That happens because this set contains the parameter of the

59

changes that are not negligible during the whole life of the database combining

with the births.
Table 4-21: Opencart Dataset
Wb wd Wc Cohesion Separation
0.00 1.00 0.00 3924.06 15890.54
0.33 0.33 0.33 3359.07 16089.72
0.50 0.50 0.00 2366.92 16189.32
0.50 0.00 0.50 7604.85 13317.76
1.00 0.00 0.00 3202.38 16068.17

The Opencart dataset is another “quiet” dataset with regard to deaths. The most

births of the tables occur in some specific points of the database’s life. The largest

part of changes happened in the early life of the database and only a few changes

committed later. So, these two features we could say that they give us the largest

balance between the tables something that is depicted by Table 4-19 too.

Table 4-22: phpBB Dataset

Wb Wwd Wc Cohesion Separation
0.00 1.00 0.00 766.54 2053.20
0.33 0.33 0.33 2243.29 512.37
0.50 0.50 0.00 506.25 2196.72
0.50 0.00 0.50 2104.33 565.81
1.00 0.00 0.00 506.25 2196.72

The phpBB dataset could be described by calmness until the middle age of its

whole life. However, a big amount of deletions, insertions and updates occur at

the middle of the life of the database. In our case this instability can be overcome

if we take into account all types of changes that have been committed and give a

balanced set of the three parameters. That is projected to Table 4-20 where we

60

can observe that the set of 0.33, 0.33, and 0.33 give us the clustering with the

best cohesion and separation.

Table 4-23: typo3 Dataset

Wb wd Wc Cohesion Separation
0.00 1.00 0.00 414.14 1096.70
0.33 0.33 0.33 192.07 1240.47
0.50 0.50 0.00 239.91 1213.34
0.50 0.00 0.50 208.57 1212.90
1.00 0.00 0.00 277.97 1200.29

The Typo3 dataset does not have an important increase of its size from the
beginning of the life of the database until the end of it. This means that birth is
not the best feature for clustering the tables. The changes are also only a few
during the whole life of the database, so it could not a give a specific result for the
clustering. On the other hand, there is an important piece of the typo3’s life
where tables die continuously. Intuitively, this criterion could give us a better
clustering result, because it includes some more information against the other
two criteria that are almost flat for the whole life of the database. That is why the
set of 0, 1, and 0 in Table 4-21 give us the best results for the metrics of the

cohesion and separation.

To conclude, table 4-24 shows cumulatively how many times each set of
parameters wins. Observe that the winner set is the set that does not take into
account the deaths of the tables. This happens because the datasets generally are
“quiet” something that means that they have not a lot of changes and if they have
we can say that span across many tables. Moreover, usually we have bursts of
births in which a group of tables is born simultaneously and more rarely a
unique table is observed to be born. This happens more often with the deaths of
the tables. So, the changes feature combining with the births give us the best

quality of table clusters.

61

Table 4-24: Number of wins for different sets of parameters

Wb wd Wc Cohesion Separation
0.00 1.00 0.00 2 3
0.33 0.33 0.33 2 2
0.50 0.50 0.00 - -
0.50 0.00 0.50 4 3
1.00 0.00 0.00 - -

4.3 Zoom into a specific point of overview

If the PLD has as the x-axis the phases that have been extracted by our algorithm
and as the y-axis the tables of the relational schema of a database, then the
zooming into a specific point of the PLD gives as a result the changes that have
been committed to this table at this specific phase for the transitions that this

phase consists of.

In Figure 4.22 which was exported from PPL tool for the loaded dataset of Atlas,
we can see an example of such a case. More concretely, we can see the result of
zooming into a specific point of the whole overview. The selected cell (orange
cell) from the Parallel Lives Diagram refers to the table hit_prescale_set and to
the Phase 4. This phase includes three transitions, the transitions 4, 5 and six as
we can see. So, as the result of the drilling into this point we have the changes
that have been committed to hit_prescale_set at these transitions something that

is shown up in Zoom Area.

62

LifeTime Table

Parallel Lives Diagram | Same Width | | Over Time |

Table name
hit_component
hit_cp_to_pa
hit_dl_to_en
hit_dil
hit_environ...
hit_force_dll
hit_master_t...
hit_parameter
hit_prescale
hit_prescale... O
hit_property
hit_re_to_d|
hit_release
hit_setup

Table name
hit_prescale_set

=
v

mmT®» FOOMN

Figure 4.22: Zoom into a specific point of overview (1)

If the PLD has as the x-axis the phases that have been extracted by our algorithm
again, but as y-axis the clusters that have been created by the clustering
algorithm, then zooming into a specific point of this type of PLD would give us
the lives of the tables of this cluster for the transitions of which the respective

phase consists of.

The difference between Figure 4.22 and Figure 4.23 is that at y-axis we have the
clusters that have been created by clustering algorithm. So, the selected cell in
Parallel Lives Diagram refers to the Phase 47 of the loaded dataset of phpBB
database and to the Cluster 13. As a result of zooming into to this point of the
total overview of phpBB database we get the part that is shown up to the Zoom
Area of Figure 4.23. In this area, we can see the lives of the tables of the Cluster

13 for the transitions that are included in Phase 47.

63

LifeTime Table

Parallel Lives Diagram | Same Width | | Over Time

Table name
Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8
Cluster 9
Cluster 10

Cluster 11 . .
Cluster 12
Cluster 13

Table name

phpbb_netification_types
phpbb_netifications
phpbb_teampage
phpbb_user_notifications

JooMN

TS

Figure 4.23: Zoom into a specific point of overview (2)

4.4 Filter the overview of the history of a relational database schema

The result of the filtering of a PLD is related with the format that the PLD has.
More specifically, if the PLD has as its x-axis the phases that have been extracted,
then we can filter our overview by a unique phase and get the behavior of the
elements of the y-axis, either this axis consists of the tables of the database or it
consists of the clusters that have been created for the transitions of this phase

only.

In Figure 4.24, the selected column refers to Phase 47 of the phpBB dataset. The
filtering of the total overview according to this phase, give as a result the lives
and the changes for every table of the database only for the transitions that

constitute this phase.

64

LifeTime Table

Parallel Lives Diagram [Same Width J [Over Time]

Table name | o)l e e e e ua s ua s axa x| U O Y ua s ua s ua s exa] uaa

Table name P O e e

me» goonN

Figure 4.24: Filter by a specific phase

Moreover if the PLD has as its y-axis the tables of a database we can select one or

more of them and get the whole life only for the selected.

In Figure 4.25 we can see such an example, where we select the table
phpbb_users from the PLD and we isolate its entire life. Its life appears to the
Zoom Area with the changes that have been committed to this table during its

existence.

65

LifeTime Table

Parallel Lives Diagram | Same Width | | Over Time

Table name
phpbb_smilies
phpbb_styles

phpbb_styles_i.. |]
phpbb_styles_t...

phpbb_styles_t... |
phpbb_styles_t...

phpbb_topics
phpbb_topics ...
phpbb_topics ...
phpbb_topics ...
phpbb_user_gr...
phpbb_users
phpbb_warnings
phpbb_words

.0 1 2 (3 (45 6|7 8 9 101112131415 16 17 18/19/20/21 22 23 24|25/ 26/27|28/29 30 31/32(33|34/35(36/37 38 3940 41 42 43 44 45
Il = =

Joom™N

©m B

Figure 4.25: Filter by a specific table

If the PLD has as its y-axis the clusters that have been created we can filter our
overview only according to the desired clusters and the tables that they consist

of and get the behavior only for these.

Similarly, in Figure 4.26 we have two selected rows from the PLD. These rows
correspond to Cluster 12 and Cluster 13. So, we can filter the whole overview of
the phpBB database according to these rows and get the result that is projected
to the Zoom Area of Figure 4.26. This area contains the tables of the selected
clusters with their behavior during the whole life of the database, segmented

into the same phases such as in PLD.

66

Parallel Lives Diagram | Same Width | | Over Time

Table name
Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8
Cluster 9
Cluster 10
Cluster 11 [] []
Cluster 12
Cluster 13

Table name

phpbb ext

phpbb login att...
phobb migrations
phpbb notificati...
DRDEE {Jser not...
phpbb teampage
phobb notificati...

JoomMN

P

Figure 4.26: Filter by specific clusters

4.5 Details on demand

We can get different kinds of information according to the format that the PLD
has. More precisely, if the PLD has as its x-axis the phases, we can select one
specific column (phase) and get a more comprehensive description about the
selected phase, such as the ID of the transition that starts or ends with, the total
number of changes that have been committed to this phase and more specifically

the number of updates, additions or deletions for the whole phase.

In Figure 4.27 we can see the details that we get if we select an entire phase
(column) from the PLD. In yellow rectangle where there are the details for the
selected phase, we can get information such as the name of the selected phase
which is Phase 2, the transition ID in which this phase starts which is transition 3
and the transition ID in which this phase ends which is transition 6. Moreover,
we are informed that in Phase 2 two changes took place, from which, one was an

addition and one was a deletion.

67

[]
File Table Help

LifeTime Table

Parallel Lives Diagram

Table name
Cluster D
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
— Cluster 7
| Cluster 8
Phase 2 Cluster 9
First Transition ID:3 Cluster 10

Last Transition ID:6 Cluster 11
Total Changes For This Phase:2 Cluster 12
Additions For This Phase:1 Cluster 13

Deletions For This Phase:1
BO0E: ¢ - ODEEEEEEEE e B

Updates For This Phase:0

Figure 4.27: Details on demand (1)

Furthermore, if the PLD has in its y-axis the clusters that have been created by
the clustering algorithm, we can select a specific cluster and get a detailed
description for this, such as the number of tables that it contains, the birth date
of the cluster (the smallest birth date of the tables that it includes), the death
date of the cluster (the biggest death date of the tables that it includes), the
number of the additions, deletions, updates that have been committed to the

tables of the cluster, etc.

In the yellow rectangle of the Figure 4.28, we can get details about the selected
cluster of the PLD. More concretely, we are informed about the name of this
cluster, the name and the transition ID of the birth date of the cluster, the name
and the transition ID of the death date of the cluster, the number of tables that
are included by this cluster and the total number of changes that have been

committed to this cluster during its whole life.

68

@
| File Table Help

Parallel Lives Diagram | SameWidth | | Over Time

Table name
Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8
Cluster:Cluster 11 Cluster 9
Birth Version Name:1367288527.sql Cluster 10
Birth Version ID:0 Cluster 11
Death Version ID:133 Cluster 13

Tables:52

Total Changes:643

el 011121314 51617 | 819 fusshssf el sal ssh el e sl s s o] o

Figure 4.28: Details on demand (2)

If the PLD has as its x-axis the extracted phases and as its y-axis the tables of a
database and we select a unique cell, we can get a combination of details for this
specific table and for this specific phase, such as when this phase starts/ends,
when this table was born, how many changes were committed to this table at
this specific phase or what kind of changes were committed to this table in this
phase. Similarly, if the y-axis of the PLD consists of the clusters that have been
created previously by the clustering algorithm, we can get the respective details

for this cluster in relation to this phase.

In Figure 4.29, we have selected a unique cell from a PLD that has the format that
have been described above. The yellow rectangle gives us information both for
the y-axis value (table) and for the x-axis value (phase). Concerning the phase,
we can get details such as the name of the phase, the transition ID of the first
transition that it contains and the transition ID of the last transition that it
contains. Concerning the table, we can get its name, the sql file and ID of its birth
date, the sql file and ID of its death date and the changes that were committed to
this table in this phase.

69

Parallel Lives Diagram Same Width Over Time

Table name

phpbb_acl_groups
phpbb_acl_options

phpbb_acl_roles
phpbb_acl_roles_data
phpbb_acl_users
phpbb_attachments

phpbb_banlist

phpbb_bbcodes
phpbb_bookmarks

Phase 4 phpbb_bots

First Transition ID:8 phpbb_config

Last Transition ID:16 phpbb_confirm O
phpbb_disallow
Table:phpbb_confirm phpbb_drafts

Birth Version Name:1158386826.sql S

Birth Version ID:0
Death Version Name:1367288527.sgl
Death Version ID:133

Total Changes For This Phase:1

012131455 71819 |us]

Figure 4.29: Details on demand (3)

Finally, we can get on demand an independent table with a full detailed map of
changes that were happened from version to version for every table of the input,
with the count and the kind of changes and with the birth and the death of each

table during the whole life of the database.

In Figure 4.30 we can see this kind of table. Each row of this table contains the
live of one unique table of the dataset that was imported. In this case, we explore
the phpBB dataset. There is one column for each version of the database, and
between them there are three columns that they refer to the insertions (I),
updates (U), and deletions (D). The red color is related with the deletions, the
blue color is related with the updates and the green color is connected with the
insertions. The deeper a color is, the bigger number of changes for this kind is.
For example the red rectangles tell us that from version v1158386826 to version

v1158530548 phpbb_posts table had one attribute deletion.

a
@
=]
53
3
k-
a
E'

‘U D v1160444819

/U D vl159900559

/U |D |v1159692512

‘U D |v1159015188

V1158530548

v D

Table name Ivl]SEiEﬁSZG l

o e e e RN
0000 000000000000 00000000000000000000GE

000D OO COO0O0DO00C0O0C00000000C0000000DOEC

0000 000000000000 00000000000000000000GE

OO 0P OO COOCO0D00C0O0C00000000CO0000B0O00EC

o e RN

OO 0P OO COOCO0D00C0O0C00000000CO0000B0O00EC
o e e e RN

0000 000000000000 000000000000000000006¢

o e e e R
000000000-0-00-000-000-000-00000000n

000D OO COO0O0DO00C0O0C00000000C0000000DOEC

0000 000000000000 00000000000000000000GE

OO 0P OO COOCO0D00C0O0C00000000CO0000B0O00EC

o e RN

CCO0POOCOO0C0D00O00O0COO00 000 coocococoooc

coccococeocoooooooRoEeREER e O cocococecooc

0000 0000000000000 000000000 cococococoooe

Details on demand (4)

Figure 4.30

71

CHAPTER 5. SOFTWARE ASPECTS OF OUR
SOLUTION - THE PPL TOOL

5.1 Design and Analysis

5.2 Implementation

In this Chapter we will analyze the software aspects of Plutarch’s Parallel Lives.
In subsection 5.1, we can find the design and the analysis about PPL. Its packages
and its classes will be represented with UML package or class diagrams and they
will be analyzed. In subsection 5.2, we show information about the
implementation of the tool. Moreover, we analyze the technologies and the IDEs
that were used and we comment on two selected classes, which are the classes
that implement the phase extraction algorithm and the clustering extraction
algorithm respectively. Finally, we give some screenshots from Plutarch’s

Parallel Lives software.

5.1 Design and Analysis

In this subsection we will present the design of our software, the Plutarch’s
Parallel Lives. PPL consists of a set of packages each of which handles different
functions such as input, data processing, data management, graphic user
interface, phase analysis or table clustering. In the sequel, we analyze each of this

packages including their sub-packages and their classes.

72

5.1.1 The data Package

1
=<Java Package>>
fHdata.dataSorters |..._
H o - —l
Tt walava Packagess
fHdata.dataKeeper
|I - i :
<=lava Packages= i
F# data.dataPPL : o i '
1 1

=<Java Package==
fH data.dataProccessing

e N
=<Java Package==
fH data.dataPPL.pplSQLSchema

I TR
=<Java Package=>
fH data.dataPPL.pplTransition

Figure 5.1: data UML Diagram

The data package has the main responsibility about whatever is related with the
data that are used by our tool. Moreover, it contains the sub-packages

dataKeeper, dataPPL, dataProcessing and dataSorters.

5.1.1.1 The dataKeeper sub-package

The DataKeeper sub-package contains a unique class that is called
GlobalDataKeeper. This class, as implied by its name, contains all the data that
are needed by PPL for its functions. Moreover it keeps the entire input such as
tables, schemas, transitions etc. and additionally data that have come from
processing input from our algorithms such as phases and clusters. Every other
class that needs some information about any of these constructions has to use a

DataKeeper object of this type of class.

73

5.1.1.2 The dataProcessing sub-package

<<Java Class>>
(©TableChangeConstruction

dala dataProcoessing

c*atomicChanges: ArrayList<AtomicChange>
nsa\ITameChanges' TreeMap<Siring TableChange>

c“allTables: TreeMap<String PPLTable>

<<Java Class>>

ocTameChangeCunslru(:'tlcntArrayLlsl<Alom icChange=>,TreeMap<String PPLTable>)
@ makeTableChanges():void
@ getTableChanges():TreeMap<String, TableChange>

(@ PPLSchemasConstruction
data.dataPracoassing
“allSchemas: ArrayList<Schema>
<allPPLSchemas: TreeMap<String,PPL Schema>
o‘F'F'LSchema5Con5!ruc1mn[ArrayLi5t<Schema>)
@ makePPLSchemas():void
@ getAllPPLSchemas|) TreeMap<String PPLSchema> [Feo...

<<Java Class>>
©Worker

dala dataProcoessing

<<Java Class>>
(G PPLTablesConstruction

data.dataProccessing

nsa\IF'FLSchemaE‘TreeMap<Strmg.F‘F‘LSchema>
o allPPLTables: TreeMap<String PPLTable>

o filename: String
o transitionsFile: String

T o allPPLSchemas: TreeMap<String PPLSchema>

o allTables: TreeMap<String, PPLTable>

o atomicChanges: ArrayList<AtomicChange>

o tableChanges: TreeMap<String TableChange>

o allPPLTransitions: TreeMap<Integer PPLTransition>

_..~7| @ makeTransitions(Transitions)void

o‘FFLTab\e5Construcﬂon(TreeMap<Smng‘FFLSchema>]

© makeAllPPLTables()void

@ matchTableChanges(TreeMap<String, TableChange=>)void
@ getAllPPLTables(): TreeMap<String PPLTable>

7 Fworker(String,String)

@ work():void

@ gelAlIPPLSchemas(): TreeMap<String PPLSchema>

@ getAllPPLTables() TreeMap<String PPLTable>

@ getAtomicChanges():ArrayList<AtomicChange>

@ getAllTableChanges(): TreeMap<String, TableChange>
@ getAllPPLTransitions() TreeMap<Integer,PPLTransition>
@ getDataFolder():String

<<Java Class>>
@ImportSchemas

data dataProcoessing

oallSchemas: ArrayList<Schema>

o filepath: String

o transitionsFile: String

o“allTransitions: ArrayLisi<TransitionList>
oc\mponSchemas(Stnng‘Slrmg]

@ loadDatasel():void

@ getAllHecSchemas()ArrayList<Schema>
@ getAllTransitions():ArrayList<TransitionList>

E?makeRego ri(}:void

<<Java Class>>

(@ AtomicChangeConstruction
dala dataProcosssing

c*atomicChanges: ArrayList<AtomicChange>
cAallTransitions: ArrayList<TransitionList>

ocAIomlcChangeCunstruc‘tlcn(ArrayL ist<TransitionList>)
@ makeAtomicChanges():void
@ getAtomicChanges():ArrayList<AtomicChange>

<<Java Class>>
®PPLTransitionConstruction

data.dataProccessing

nsaI\PPLTransmons‘TreeMag(\meger,F‘F‘LTransltlun)
o“allPPLSchemas: TreeMap<String,PPLSchema>
ofallTableChanges: TreeMap<String, TableChange>

c°F'F'LTranEitionConEtrud\on[TreeMap<Smng‘F'F'LSchemazTreeMap<StHng.Tab\eCha nge=>)
@ makePPLTransitions():void
@ getAllPPLTransitions():TreeMap<Integer PPLTransition>

Figure 5.2: dataProccessing UML diagram

This sub-package is responsible for importing the input to the PPL tool and

moreover to share it to the relative classes to construct the respective objects.

e C(lass Worker class is the main engine of this package and which handles

the rest classes of this sub-package. Initially, it calls ImportSchemas class

which parses the input with the help of Hecate3 tool [Hecal5] and returns

it to Worker. Next, the input is shared among the other classes of the

package to construct objects which depend on the information that they

keep.

3 Hecate is a tool that gets as input DDL files, parses them and creates sorted lists

of relations and the attributes they contain as well as foreign key constrains for

the relations. In PPL for each parsed DLL file, it is created an object of type

Hecate Schema and includes a list of Hecate Table objects that with their turn

they contain a list of Hecate Attribute objects.

74

Class PPLSchemasConstructions has to construct objects of PPLSchema
type for each SQL schema was parsed.

Class PPLTableConstruction constructs one object of PPLTable type for
each table of input.

Class PPLTransitionConstruction makes an object of PPLTransition
type for each transition that was parsed from the input.

Class TableChangeConstruction construct an object of TableChange type
for the changes that have been committed to each PPLTable.

Class AtomicChangesConstruction class is responsible for the
construction of objects of AtomicChange type which are individual
changes for each Class PPLTable and they are fed to the TableChange’s

objects.

75

5.1.1.3 The dataPPL sub-package

<< >>
Java Class <<Java Class>>

=<Java Class>>

dab_f;':.';fj;‘: ,_r?cahsm ®PPLAttribute (@PPLTransition

- data.dataPPL.pplSQLSchema data.dataPPL.pplTransition

: ::T:C':;:IIE . o tolalAttributeChanges: int o oldSchema: String
o hecAttribute: Aftribute = newschema: String
Z:;EI[:z:::::']FreeMap«Stnng.F‘F‘LTabIe:v] FPPLAtribute(Attribute) a pp\Transn?c?mD: |n.t _
acPPLSchema(String] & PPLAttribute(} ocF'F'LTransmon[smng.stnr?g.mt] .
& PPLSchema(String,Schemal @ getName():String @ sefTableCha nge5(ArrayLls.tcTablecnange)}:mld
& getName():String @ getTotalAtiribute ChangesiJ:int @ getTab\eCha.n.gest}:A.rrayLlskTableCha nge>
o gefTables()-TreeMap<Sting,PPLTable> @ setTotalAttribute Changes(intj:void] QEIF'F'LTranE.illlﬂﬂlD(lilﬂll)
o getHecTable()Schema @ getHecAttribute(:Attribute @ getNewVEralonName(}.st.rlng
- @ getOldVersionName():String

OEINEEE G IR -attrs/ 0. & getNumberOfAdditionsForOneTr(int
@ toStr!ng(}‘.Strmg @ getNumberOfDeletionsForOneTr(jint
@ QEtSIZe”:”?ﬂ] . @ getNumberOfpdatesForOneTr()int
@ setTnIe(Stnr?g}'vold @ getNumberOfChangesForOneTr()int
© gefTableAtiniy PP Table @ getNumberOfClusterAdditionsForOneTr{String[I[)int

@ getNumberOfClusterDeletionsForOneTr(String[[J)int
@ getNumberOfClusterUpdatesForOneTr{String[][]):int
-tables | 0.7 @ getMumberOfClusterChangesForOneTr(String(J]):int

<<Java Class>>

GPPLTable
data dataPPL.pplSQLSchema

-ableChanges [0.*

<<Java Class>>

age:int
e - (©TableChange
o totalChanges: int data.dataPPL.ppiTransition
o C“g‘;mcm’”fs'rm - o affectedTable: String
: < >
o coChanges: HashMap<String Integer = atomicChanges: TreeMap<Integer ArrayList<AtomicChange>>

o sequenceCoChanges: HashMap<String Integer>
o windowCoChanges: HashMap<5tring Integer>

o changesForChart: ArrayList<integer>

o hecTable: Table

o name: String

o birth: String -tableChanges
o birthVersion|D: int 0.1
o death: String

o deathVersionlD: int
o active: boolean

& TableChange(String, TreeMap<Integer ArrayList<AtomicChange>>)

& TableChange()

& TableChange(String ArrayList<AtomicChange>)

@ getTableAtomicChanges():TreeMap<integer ArrayList<AtomicChange>>
@ getTableAtChForOneTransition{Integer):ArrayList<AtomicChange>

@ getTableAtChForOneTransition{}:ArrayList<AtomicChange>

@ getNumberOfAdditionsForOneTr{lnteger)int

@ getNumberOfDeletionsForOneTr{Integer)int

o getNumberOfUpdatesForCneTr{Integer)int

@ getNumberOfadditionsForOneTr{)int

zccs'zgag:e(smngjanm] & getNumberOMeletionsForOneTr(jint

N setB\:h[:tir}lng]'vmd & gethumber0fUpdatesForoneTr(yint
y . © toString():String

@ setBirthVersionID(int):void O s

@ setDeath(String)void
@ setDeathVersionID(int)void
@ setActive():void
@ getActive():boolean -atomicChangesForOneTransition
@ getBirth():String

<<Java Class>>

o getBirthVersionlD(}int
o getDeathVersionID()int GAtumIcChang_e
data.dataPPL.pplTransition

@ getDeath():String

o affectedTable: String

o affectedAttribute: String

o type: String

o oldSchema: String

o newSchema: String

o transition|D: Integer

& AtomicChange(String,String,String String,String, Integer)
© toString|):String

@ getAffectedTableName():String
@ getAffectedAtirName().String

@ gefType():String

@ getOldNewVersions():String[]
@ getTransitionlD{kinteger

Figure 5.3: dataPPL UML diagram

The DataPPL package contains classes that could be characterized as the
translation of the input to the objects that PPL understands. It includes two sub-

packages according to the function that they handle. The first sub-package is

76

called pplsQLSchema and contains classes that represent the basic features of a

database such as schema, table and attribute.

e C(lass PPLSchema keeps the name of an SQL schema, a list of (PPL) tables

that are contained to this schema and a reference to a Hecate schema

which is the initial format of a schema that was parsed by Hecate.

e C(lass PPLTable keeps all these information that is connected with a table.

Moreover, it includes information such as the name of the table, a list of

Class PPLAtributes which are the attributes of the table, total changes of

the table (count and objects), birth dates, death dates, etc.

e (lass PPLAttribute is the translation of a database’s attribute. It contains

information about the name of the attribute, the table that belongs to and

a reference to a Hecate attribute, which is the initial format of an attribute

when the input was parsed by Hecate.

We have to note that some classes keep a reference to Hecate objects because we

would not like to keep double information about each object. So each class keeps

the information that it needs and together they keep the whole information

about a specific object of the database that was given as input.

The second sub-package is called pplTransition and it includes classes that

keep information that is related with the transitions over versions.

Class PPLTransition is the class that contains the whole information
about a transition between two schemas. Moreover, it keeps the
names of the old and the new version respectively, an ID that makes a
transition unique and a list with the whole set of changes that were
happened to this transition.

Class TableChange is responsible for the information that has to do
with the changes that were committed to the database. Furthermore it
contains the name of the table whose changes are kept, and a list of
these changes.

Class AtomicChange class has the responsibility to handle individual

changes that were committed to the database. It refers to the attribute

77
that changed, in which table this attribute was belonged to, in which

transition this change was committed and the type of the change, such

as insertion, deletion or update.

5.1.1.4 The dataSorters sub-package

This package has to do with the sorting of lists, tables, etc., that have to be sorted
by PPL tool. Specifically:
e C(lass PPLTableSorting class handles the sorting of whole set of the
tables according to their birth date firstly, and their death date secondly.
e C(lass P1ldRowSorter is responsible for the sorting of PLD rows, to be

sorted by birth date firstly and by death date secondly.

5.1.2 The phaseAnalyzer Package

1
<<Java Package>>] <<Java Package>>
fphaseAnalyzer.parser {1 phaseAnalyzer.engine

L PR
<< Java Package=>

t phaseAnalyzer.analysis

N
<< Java Package==
t# phaseAnalyzer.commons

Figure 5.4: phaseAnalyzer UML diagram

The PhaseAnalyzer package is connected with those functions that are necessary
for the extraction of phases from the life of a database. Let's have a more

comprehensive look to them.

78

5.1.2.1 The engine sub-package

This package as its name denotes is the main engine for the extraction of the
phases. It includes one unique class that is called PhazeAnalyzerMainEngine
which it manages the rest of the classes that are needed to break the life of a

database into segments.

5.1.2.2 The parser sub-package

<=Java Class>>
(2 ParserFactory

phasefnaly zer.parser

GCF'ars. erFactory()
| @ createParser{String):Parser

<<.lava Interface==
8 lParser

phasefnaly zer.parser

@ parse(5Siring, Siring): TransitionHistory

A

<=Java Class==

(2 SimpleTextParser

phazednaly zer. parser

OcSimpleTextF'ars er{)
@ parse(Siring, String): TransfionHistory

Figure 5.5: parser UML diagram

This package contains the parser of the input that is needed for the extraction of
the phases. Moreover it includes three classes.

e C(lass IParser isan interface that has been designed for different kinds of
parsers.

e C(lass ParserFactory is a factory of IParser objects that returns different
kinds of objects of IParser type according to the value that it takes as
argument.

e (lass SimpleTextParser is the class that substantially parses the input

and transforms it into objects of the relative classes. When it parses a file

79

it returns an object of TransitionHistory type that will be analyzed

below. It implements IParser interface.

5.1.2.3 The commons sub-package

<<Java Class>> <<Java Class>>
(& TransitionHistory (®PhaseCollector
phassAnalyzer.commons phaseAnalyzer.commons
o totalUpdates: int o totalSum: double
o totalTime: double & PhaseCollector(}
& TransitionHistory() & PhaseCollector(ArrayList<Phase>)
& TransitionHistory{ArrayList<TransitionStats=>) @ getPhases()Arraylist<Phase>
@ getTotalUpdates()int @ setPhases(ArrayList<Phase>)void
@ addValue(TransitionStats):void @ addPhase(Phase)void
@ consoleVerticalReport()void @ getTotalSum():double
@ getValues()ArrayList<TransitionStats> @ getSize()int
@ sefTotalUpdates(intjvoid @ toStringShort():String
@ setTotalTime():void @ toStringShortAss2():String
@ getTotalTime():double @ connectPhasesWithTransitions(Global DataKeeper)void

-transitionHistory {0..1
]

<<Java Class>>
(®TransitionStats
-phases 0.+ phaseAnalyzer.commons
o fransitionld: int
=<Java Class>> o time: int
(®Phase o+ @ oldVersionFile: String
phaseAnalyzer.commons " | = newVersionFile: String
o startPos: int o numOldTables: int
o endPos: int o numNewTables: int
a startSQLFile: String = numOldAtributes: int
o endSQLFile: String o numNewAttributes: int
o totalUpdates: int o numTablesins: int
o sum: double o numTablesDel: int
o phasePPLTransitions: TreeMap<Integer PFLTransition= o numAttrins: int
& Phase(TransitionHistory) o numAttrDel: int
© getStartPos()int o numAttrWithTypeAlt: int
© getEndPos(}int o numAttrinkeyAlt: int
@ getTransitionHistory():TransitionHistory] o numAttrinsinNewTables: int
o getTotalUpdates()int o numAttrDelWithDelTables: int
@ setStartPos(int)void o totalTablelnsDel: int
o setEndPos(int):void o totalAttrinsDel: int
o setTransitionHistory(TransitionHistory):void o totalAttrUpd: int
© setTotalUpdates(int):void o totalAttrChange: int
o getTotalAdditionsOfPhase()int o timeDistFromPrevious: int
@ getTotalDeletionsOfPhase()int o totalUpdatesiInTr: int
@ getTotalUpdatesOfPhase(jint & TransitionStats{int,int String, String,intint int,intintint int int int int,int,int int)
© getSum().double @ getTransitionld():int
@ getPhasePPLTransitions(). TreeMap<Integer,PPLTransition=> o getTime(jint
© toStringShort(}:String © getOldVersionFile():String
@ distance({Phase float float).double © getNewVersionFile():String
@ mergeWithNextPhase(Phase):Phase © getNumOldTables(jint
@ connectWithPPLTransitions(GlobalDataKeeper):void -subPhasgsgetMumNewTables()int
© getSize()int \jn__. © getNumOldAtributes()int
@ getNumNewAttributes()int
@ getNumTablesins(yint
@ getNumTablesDel()int
@ getNumAttrins{)int
@ getMumAttrDel(yint

Figure 5.6: commons UML diagram

80

The commons sub-package includes all these classes that are used most for the

procedure of the extraction of the phases.

Class TransitionHistory is the class that keeps the information of the
input for the phase extraction when it is parsed. It contains the whole set
of transitions during the life of the database including the stats of each of
them.

Class TransitionStats contains the information about the stats of a
unique transition such as old or new version of a transition, number of
updates, deletions or insertions, etc. For each transition during the life of
the database, TransitionHistory keeps an object of this type.

Class Phase is the class that keeps the elements about a unique phase
such as when it starts or when it ends, which transitions it includes,
number of updates, insertions, deletions, etc.

Class PhaseCollector keeps a list for objects of type Phase. In short, it
keeps all the phases that have been extracted by the phase extraction

algorithm.

81

5.1.2.4 The analysis sub-package

<=Java Class>=
(9 PhaseExtractorFactory

phaseAnaly zer.analy sis

OCFhas ebExtractorFactory()

i @ createPhas eExtractor(String)-PhaseBxtractor

<<Java Interface==
3 PhaseExtractor

phaseAnaly zer.analy sis

@ extractAtMostKPhases(TransitionHistory,ink float float, boolean, boolean)-Phas eCollector

8

==lava Class==

(2 BottomUpPhaseExtractor

phasefnaly zer analy sis

OCElutturrUpH'las eExtractor()

@ extractAtMosiKPhases(TransitionHistory,ink float float boolean, boolean)-Phas.eCollector
® performTimePreproces sing(TransitionHistory, PhaseCollector):Phas eCollector

B performChangePreprocessing| TransiionHistory, Phas eCollector):Phas eCollector

@ new Phas eCollector| TransitionHistory, Phas eCollector float float)-Phas eCollector

B preProcessOver Time(Trans tionHistory, Phas eCollector)-PhaseCollector

B preProcessOverChanges(TransitionHistory, Phas eCollector):PhaseCollector

@ inif{ TransitionHistory, Phas eCollector)-Phas eCollectar

Figure 5.7: analysis UML diagram

The analysis sub-package contains classes that have to do with the extraction of

the phases.

e C(lass PhaseExtractor is an interface that was designed with this way

with the purpose to be implemented by different types of phase

extractors.

e C(lass PhaseExtractorFactory is a factory of PhaseExtractor objects

that it returns different kinds of this type of objects according to the value

that is passed as an argument.

e C(lass BottomUpPhaseExtractor is our basic class that contains the

algorithm for the extraction of the phases and the preprocessing of the

data for the phase extraction. It implements the PhaseExtractor

interface. We analyze this class much more in section 5.2.2.

82

5.1.3 The tableClustering package

1

=< Java Package>>
fHtableClustering.clusterExtractor.engine

1
<< Java Package>>

fHtableClustering.clusterExtractor.analysis

4._._“ v

<< Java Package==
fiHtableClustering.clusterExtractor.commons

Figure 5.8: tableClustering UML diagram

This package offers the functionality for the construction of the clusters of the

tables and the functionality for assessing the validity of these.

5.1.3.1 The engine sub-package

This package contains the main engine which is called
TableClusteringMainEngine for the clustering of the tables. It manages all these

classes that has to do with this procedure.

83

5.1.3.2 The commons sub-package

<<Java Class>>
(3 ClusterCollector

table Clustering . clusterExtractor.commaons.

& ClusterCollector(}

@ addClusteriCluster):void

@ sortClustersByBirth():void

@ sortClustersByDeath(}:void

o sornClustersByChanges():void

© sorClustersByBirthDeath()void Fusters

<< Java Class>>
@®Cluster

tableClusternng.clusterExtractor.commons

a birth: int

o birth\ersion: String

o death: int

o death\ersion: String

o totalChanges: int

o tables: TreeMap<5String PPLTable>

@ soriClustersByBirthDeathChanges()void | 0.

@ getClusters(ArrayList<Cluster>
@ setClusters(ArrayList<Cluster>):void
@ toString():String

& Cluster()

& Cluster(int,String,int,String,int)

@ getTables(). TreeMap<String, PPLTable>
@ getNamesOfTables():ArrayList<String>
@ addTable(PPLTable):void

@ getBirth()int

@ getDeath{)int

@ getBirthSqlFile():String

@ getDeathSqglFile():String

@ getTotalChanges()int

@ distance(Cluster,Double, Double,Double,int).double
@ mergeWithNextCluster(Cluster):Cluster
@ toString():String

Figure 5.9: commons UML diagram

The commons sub-package contains the most used classes for the procedure of the

clustering of the tables.

e C(lass Cluster class keeps information for one cluster such as when it

was born or when it died, how many changes were committed to this

cluster and which tables are included to this.

e C(lass ClusterCollector keeps a list for the whole set of clusters that

have been created.

84

5.1.3.3 The analysis sub-package

==lava Class==

(® ClusterExtractorFactory

tableClustering.clusterExtractor.analy sis

OcGustechtractanactary()
@ createClusterExtractor{Siring):ClusterExtractor

=<Java Interface>>
3 ClusterExtractor

tableClustering. clusterExtractor. analy sis

@ extractAtMos K Clusters(GlobalDatakKeeper, int, Double, Double, Double) . ClusterCollector

A

=<Java Class=>
(® AgglomerativeClusterExtractor

tableClustering. clusterExtractor. analy sis

ocAgglomerati\r eClusterExiractor()

@ extractAiMostkKClusters(GlobalDataKeeper,int, Double, Double, Double):ClusterCollector
@ new ClusterCollector{ClusterCollector, Double, Double, Double, ink):Cluster Collector

@ init{GlobalDataKeeper,CusterCollector):ClusterCollector

Figure 5.10: analysis UML diagram

This package contains the classes that have to do with the construction of the

clusters.

Class ClusterExtractor is an interface, which is implemented by
different king of cluster extractors.

Class ClusterExtractorFactory is a factory for constructors of different
kind of ClusterExtractor objects according to the parameter that is
getting as argument.

Class AgglomerativeClusterExtractor is the basic class implementing
the procedure of the clustering of the tables. In this class there is the main
algorithm that constructs the clusters according to the similarity of the
tables. Class AgglomerativeClusterExtractor implements the
ClusterExtractor interface. A more detailed analysis for this class exists

in 5.2.2 section.

85
5.1.4 The gui package

1

| ==Java Package==
1 gui.mainEngine

<<Java Package=>
v .
—<Java Fackagens 1 guitreeElements
 guidialogs
—

==.Java Package==
— £ gui.tableElements

Figure 5.11: gui UML diagram

As implied by its name, this package includes the elements of the graphics user

interface.

5.1.4.1 The mainEngine sub-package

The gui sub-package contains the main controller for all the software and the

graphics use interface which is the class GUI.

5.1.4.2 The dialogs sub-package

The dialogs sub-package includes the classes that is related with the dialogs

that are shown up in PPL tool.
e (lass CreateProjectJIDialog is the class that is connected with the
dialog that appears when a new project either is going to be created, or

edited or even loaded.

86

Class EnalargeTable is the class that has to do with the enlargement of
the zoom area into a new JDialog window.

Class ParametersJDialog is the class that is related with the JDialog
that appears to the user to give value to the various parameters either for

the phase extraction or for the table clustering.

5.1.4.3 The treeElements sub-package

The treeElements package contains those classes that are relative with the

construction of the JTrees that appear to the graphics user interface.

Class TreeConstruction is an interface that is implemented by different
kinds of JTrees.

Class TreeConstructionGeneral is a class that implements the
TreeConstruction interface and returns a JTree that is connected with
the versions of the database and the tables that they include.

Class TreeConstructionPhases 1is a class that implements the
TreeConstruction interface too, but it is related with the construction of
a JTree relative to the phases and the transitions that they include.

Class TreeConstructionPhasesWithClusters is a class that also
implements the TreeConstruction interface and it is connected with the

clusters and the tables that they include.

5.1.4.4 The tableElements sub-package

This package bothers with the construction of the JTables that are come along

into the main graphics user interface into the PLD area or Zoom area.

Class 3JvTable is a class that extends JTable class and handles the
specification that are needed by our tool such as the height of the row, or
the width of the columns. This is the type of all our JTables of the PPL

tool.

87

Class PLDTableModel extend the AbstractTableModel and it is necessary
for the specifications of the data that we have to pass to our kind of
JTables.

Class P1ld is an interface that is implemented by the whole set of those
classes that construct data for PPL’s JTables.

Class TableConstructionIDU is the class into which are constructed the
rows and the columns of the PLD JTable. It implements P1d interface.
Class TableConstructionPhases is the class, which constructs the rows
and the columns of the Phases Pld JTable. It implements P1d interface.
Class TableConstructionWithClusters is the class, which constructs the
rows and the columns of the PhasesWith Clusters Pld]Table. It
implements Pld interface.

Class TableConstructionPhasesClusterTable constructs the rows and
the columns of the JTable that appears into the zoom area when details
for a specific phase and cluster are demanded. It implements Pld
interface.

Class TableConstructionZoomArea constructs the rows and the colunms
of the JTable that appears into the zoom area when a whole column or
row is selected on the PLD and was asked to zoom in. It implements Pld

interface.

5.2 Implementation

5.2.1 Programming Tools and IDEs

PPL has been designed and implemented with Object Oriented Programming

principles, because of the advantages and the flexibility of this kind of

programming.

88

PPL was implemented in programming language Java so the IDE that was
selected was one of the most common IDEs in Java programming, Eclipse IDE
[Ecli15]. Eclipse is widely known for its frequent updates, in order to be up to
date with new technologies and programming techniques. Moreover, there are
plenty of plugins that are useful for object oriented programming such as Object
Aid plugin that can be used for the production of class or sequence diagrams, or

WindowsBuilder that is a helpful tool for the design of graphics user interface.

5.2.2 Selected Classes

In this subsection we will present the most important classes of our tool which
are the classes that handle the phase extraction and the clustering of the tables
into groups. These two classes are called BottomUpPhaseExtractor and

AgglomerativeClusterExtractor.

BottomUpPhaseExtractor is the implementation of Phase Extractor algorithm
that was analyzed above in programming language Java.
BottomUpPhaseExtractor class is an implementation of the interface
[PhaseExtractor which has one unique method to be overridden, the method

extractAtMostKPhases. This is the first method that we can see below.

This method gets as arguments one object of TransitionHistory class in order to
segment the whole history into phases, the desired number of phases, the
weights for time and changes that we want to assign to the distance function and
two boolean variables if we want the data to be preprocessed according to time
or changes. At the beginning of the method, we have to initialize our phases

according to Phase Extractor algorithm, so private method init is called.

Init method constructs one object of type Phase for each transition. This object

has fields such as transition history, start position, end position and total updates

89

for this phase. All of these objects that have been constructed, were being added

to one object of type PhaseCollector that keeps the whole set of phases.

After the initialization of the phases, back to extractAtMostKPhases method, next
step is to preprocess or not our data over time according to the value of the
variable preProcessingTime. If it is true, performTimePreprocessing method is

being called.

PerformTimePreprocessing calls the preProcessOverTime method until no more
phases can be merged into one phase and sends the solution back to
extractAtMostKPhases method. In preProcessOverTime method phases that have
time distance* smaller than three days are merged into one common phase with
start position the start position of the phase iand end position the end position of

the phase i+1.

After this part of code, in extractAtMostKPhases the equivalent procedure for the
preProcessing of the data or not over changes is taken place into
performChangePreprocessing method where the preProcessOverChanges method
is being called repetitively until no more phases can be merged into one. The
merging procedure merges continuous phases that both of them have zero

changes.

After the preprocessing methods, in extractAtMostKPhases is being called the
most important method that is responsible for the merging of the most similar
phases every time until the desired number of phases have been extracted. This
private method is called newPhaseCollector and gets as arguments the transition
history of the dataset, the previous phase collector that keeps the whole set of
phases and the weights that we would like to assign to time and to changes for

the distance function. It return a new phase collector with the new phases.

4 Actually we talk about the distance between the last transition of the phase i

and the first transition of the phasei+1

90

NewPhaseCollector computes the distance between every continuous pair of
phases. When the computation has been finished, it finds the most similar pair of
phases according to distance function that has to be merged. Then, it constructs a
new phase collector, which has the same objects as the previous phase collector
until the point that it is the turn of the two phases that will be merged to be
added. In this point, a new phase is created which has as start position the start
position of the first of the two phases that are to be merged and as end position
the end position of the second phase. The sum of the changes for both of these
phases is set as the number of changes of the new phase. After the creation of
this new phase, it is added to the phase collector. Finally, the remaining objects
of the previous phase collector, after the second phase they are added too.
NewPhaseCollector is being called by extractAtMostKPhases method until the

desired number of methods have been created.

At this point we will analyze the other significant class of PPL tool which is the
class that implements the Clustering Extractor algorithm and is called

AgglomerativeClusterExtractor.

AgglomerativeClusterExtractor implements the interface ClusterExtractor that
has a unique method which is called extractAtMostKClusters. This is the method
that is overridden by AgglomerativeClusterExtractor and handles the procedures

for the cluster extraction.

ExtractAtMostKClusters method gets as arguments one object of
GlobalDataKeeper type that contains the whole set of tables that are going to be
clustered. The second argument refers to the number of clusters that we desire
to be extracted by the Cluster Extractor algorithm. The next three arguments are
connected with the distance function and more precisely with the weights that
we want to assign to the birth date, the death date and to the number of changes.

At the beginning of the method, init function is called.

Init function as its name denotes, is responsible for the initialization of the

clusters and the construction of the first cluster collector. As it has been

91

described to the Clustering Extractor algorithm, init function constructs one
cluster for each table of the dataset. This cluster has as its birth date the birth
date of the table that is being transformed into cluster, as its death date the date
of the corresponding table and as its changes the changes of the table. All of these
clusters after their construction, they are added to the cluster collector which is

an ArrayList that keeps the whole set of the clusters.

After the initialization of the clusters, the next step of extractAtMostKClusters
method is to call repetitively the most significant method of the class, the method
newClusterCollector until the desired number of clusters will have been
extracted. This is the method that is responsible for the merging of the most
similar clusters according to the clustering distance function. It takes as
arguments the previous cluster collector, the weights that are connected with the
distance function and the duration® of the dataset and returns as a result a new

cluster collector with the new clusters.

The newClusterCollector method initially computes the distance functions for
every possible pair of clusters that exist to the previous cluster collector. After
the computation of the distance functions, it searches for the smallest value of
them something that means that it is searching for the most similar pair of
clusters. When it finds this, it constructs a new cluster from this pair, which has
as its birth date the smaller birth date of these two clusters, as its death date the
bigger death date of these two clusters, as its changes the sum of the changes of
these clusters and finally as its tables the union of the two sets of tables of the
two clusters. After the creation of the new cluster, it is created a new cluster
collector that contains the whole set of objects of the previous cluster collector
except the two clusters that have been merged into one. Finally the new cluster is
added too to the new phase collector and it is returned to the

extractAtMostKClusters method.

5 Actually duration is the number of transitions

92

5.2.3 PPL Tool Screenshots

We had the opportunity to present some of the PPL’s features in section 4, which
had to do with the zooming into a specific point of the PLD, with the filtering of
the PLD and with the details on demand about a phase, a cluster, a table or a
unique point of the Parallel Lives Diagram. The most significant feature of PPL
however, is its ability to provide an overview of the entire PLD. This overview is
generated automatically after the creation, the editing or the loading of a project.
So, we will cite below two images for each dataset. The upper image is the
overview of the imported dataset and the other image is the full detailed PLD of

the same dataset or a part of this, according to its size.

Observe that the overviews of each dataset are fairly good approximations of the
detailed PLD. There are many points of the detailed PLD that can be recognized
to the overview. One of them are the phases which have a lot of changes and
more concretely the tables of the imported dataset have a lot of co-changes.
These are the columns that have a lot of blue into them. Another observation is
that tables that have exactly the same birth and death date can be recognized at
the overview PLD because all of them have been clustered to the same cluster

which has the same birth and death date with them.

93

Parallel Lives Diagram [Same Width] [Owver Time]

Table name

Figure 5.12: Synopsis of Atlas

| Zoemin | [Zoom out |

Figure 5.13: PLD of Atlas

94

Parallel Lives Diagramm

Table mame

Figure 5.14: Synopsis of bioSQL

| Zoomm In | Foom Out |

Table mame 12 1A 12|31]15 16 | F 1819 | cecl conl conl conl conl coel coel coel col cnel col coal col coel col ool conl coel coel cnel cnel coel coel coel coel coel ceel ceel coel aae

-

Figure 5.15: PLD of bioSQL

95

Parallel Lives Diagram [

Same Width] [Owver Time]
ey ey ey ey ey ey ey e [ey ey [y [ooy ey ey e eeny ey ey ey [ey ey sy ey ey ey ey e ey ey ey [poesy [y ey sy [pene [y ey ey e oo

Table name

Figure 5.16: Synopsis of Coppermine

1011231451617 1819 sl s sl sl sl s s sl sl sl s sl s s s s s s s s o s s s s s s o o s s o s s s s sl s s) s s o s s s s s s]]

Table name

Figure 5.17: PLD of Coppermine

96

Parallel Lives Diagram [Same Width] [Owver Time]

Table name

Figure 5.18: Synopsis of Ensembl

[Foomin] [ZoomOut |

'i

Figure 5.19: A part of PLD of Ensembl

97

Same Width | | Over Time |

Parallel Lives Diagram [

Table name

Figure 5.20: Synopsis of mediaWiki

Figure 5.21: A part of PLD of mediaWiki

98

Parallel Lives Diagram [Same Width] [Owver Time]

LI LT o L e e e e e o e e e e e e e e e o ey e ey [oy [oy [y e oy [ooy [y ey [y o sy [y e | aee] ne |

Figure 5.22: Synopsis of Opencart

T T W ——ry

Figure 5.23: PLD of Opencart

99

Parallel Lives Diagram | samewidth | | Over Time |

Table name

Figure 5.24: Synopsis of phpBB

_ Zeomin | [Zeom Oul |
S———

Figure 5.25: PLD of phpBB

100

[Same Width] [Owver Time]

Parallel Lives Diagram

Table name

ERN

Figure 5.26: Synopsis of Typo3

e e

| ZoomIn | [ZoomOut |

R L e e e e e e P P P e P el

Figure 5.27: PLD of Typo3

101

CHAPTER 6. RELATED WORK

6.1 Empirical Studies of software and schema evolution
6.2 Timeseries Segmentation

6.3 Data Visualization

In Chapter 6 we will analyze the related work that we studied to get insight for
our project. Furthermore in subsection 6.1 we discuss the articles concerning the
evolution of schemas and software. In subsection 6.2 there is the analysis of the
articles that are connected with timeseries segmentation. At the end of this

chapter we analyze the related work that has to do with data visualization.

6.1 Empirical Studies of software and schema evolution

In [SkVZ14], the authors would like to examine if open-source databases comply
with Lehman’s Laws with regard to Software Evolution. First of all, the authors
remind us some basic terminology about the comprehension of the laws such as
what does “positive-feedback” mean (the emphasis at adoption to a changing
environment and growing for more functionality) or the meaning of “negative-
feedback” (changes that are committed should prevent the deterioration of the

maintainability and manageability of the software), or each of the laws.

Consequently they provide us with information about the data that they collected
and with which they experimented on their goal. There were collected eight

different datasets (DDL files of the databases), whose objectives were had to do

102

with different purposes. Data were processed with Hecate tool [Hecal5], a tool
that was developed by them too. Hecate can give as a result the differences
between two schemas of a database at the attribute level and more specifically
changes that have been committed on the attributes of the database’s tables such
as deletions, additions, data type changes and participation in a changed primary
key, or the changes that were committed to the relations level between tables of
the database. Additionally it can measure the size of the schemas at the
table/attribute level, the total number of changes for each transition between

database’s versions, etc.

Subsequent to these is the commenting of the experiments that was executed
and how much the open-source databases are attached to the Lehman’s laws. It
seems that the most of the laws like these that refer to the continuous changes,
the existence of regulations, the stability, the familiarity and the continuous
growing were followed by open-source databases either completely or partially.
For these laws that were not referenced, authors commented that there was not
a clear opinion because the meanings of the terms of the laws are not obvious

enough and this is why it could be a future work.

The subject of [ZhSt05] is the evolution of object-oriented software systems from
the point of view of their design. More specifically, the authors propose an
algorithm that is called “UMLDiff” and it has as input different versions of UML
class diagrams of software systems and produces as output a sequence of
differences from version to version. These changes are connected with additions,
deletions, movements, renames or even with relations between software entities

such as packages, classes, interfaces, methods and fields.

The authors give various definitions for the classification of periods-phases of
changes. “Steady state” is the phase that describes the period that the number of
additions and deletions of software entities is small enough and the number of
movements or modifications is small too. “Restructuring” period has to do with

the phase that neither additions nor deletions are many, although the number of

103

movements and modifications is big. “Functionality extensions (rapidly or slowly
developing)” phase refers to the fact that the number of additions and deletions
is big or medium for these two statements respectively but the number of
movements and modifications is much smaller for both of them. Finally, the
“intense developing” phase is defined as the statement that each of the quantities
are very big. Interpretively, the references to the quantity of changes such as
small, medium or big, are referred to the range of [a<b], where a is the lower

bound of additions and removals and b is the higher.

The definitions are followed by the analysis of the evolution of phases with three
different techniques that are the “phasic analysis”, the “gamma analysis” and the
“optimal matching analysis”, due to various characteristics of the evolution of the
software systems. The authors noted that most of the classes when were
introduced into the system followed the “slowly-developing” or “steady-state”
phases and only a much smaller percentage of them followed the rapidly
developing phase. After their introduction a sixty-percent of the classes
remained to the “steady-state” phase, a ten-percent went through the “rapid” or
“slow” development and a thirty-percent was adapted either from “intense
evolution” or “restructuring” phases. Also, the authors underline that most of the
system classes went gradually into a steady state but the classes that ended with
active rapidly developing, restructuring and slowly developing phases were
removed from the system. The final part of the paper is about the evaluation of
the “UMLDiff” algorithm that was 95.2% accurate and the commenting on the

results.

104

6.2 Timeseries Segmentation

The authors of [TeTs06] suggest two algorithms for sequence segmentation of a
timeseries. Both of them are optimal solutions of a dynamic-programming
algorithm that can solve the problem in O(n?k) time. The first algorithm is called
DnS and the second algorithm is called RDnS and both of them have to do with
the concise representation of the data of a timeseries assisted by the “piecewise-
constant” approximation. This approximation represents a d-dimensional
sequence of length n with the help of k non-overlapping continuous segments

from which the entire sequence consists of.

Usually, approximation methods are characterized by an error function, whose
selection depends on the kind of the problem that would be applied to. So, the
authors define the segmentation problem as a problem that gets as input a
sequence, an error function and the desired number of segments and gives as
output a sequence segmentation and the representatives of each segment,

minimizing the error as regards the optimal algorithm.

The DnS (divide and segment) algorithm is the first algorithm that was suggested
by the authors and its basic idea is to divide the initial problem to smaller sub-
problems. It gets as input a sequence T of length n, a value y that denotes the
number of the sub-problems, and a number k that denotes the number of the
representatives for each sub-problem. The intuition behind the algorithm is that
we divide the sequence into y disconnected segments and for each one we find a
segmentation Si and a set Mi that is consisting of k representative points with
adjacent weights that are dependent on the length of the segment that they
represent. Then, the yk representatives are merged and they form a new
sequence T’. Finally the sequence T’ is given as input to the dynamic
programming algorithm that it afterwards gives the output, which is the best

possible segmentation of the sequence into k segments. RDnS algorithm is

105

similar enough with DnS with the only difference that RDnS is run recursively

until a depth of recursion has been reached.

Both algorithms were evaluated with the help of both artificial and real data and
they were compared with heuristic algorithms such as Top-Down Greedy
Algorithm, Bottom-Up Greedy Algorithm, LiR, and GiR. The results were good
enough with both kinds of input data and the suggested algorithms performed
well in relation to the others. Sometimes they were almost closed to the optimal

algorithm.

The basic idea of [TaTT06] is to suggest a segmentation that combines the
results of other segmentation algorithms. The authors claim that the suggested
method that is called “segmentation aggregation” can be applied to various kinds
of data, such as DNA sequences, multi-dimensional categorical data, clustering
etc.

The problem definition consists of the input that is a set of segmentations that a
timeseries were partitioned and a distance function D between each pair of
segmentations. The goal is the finding of a total partition that achieves the
minimum sum of the distances from the segmentations that were given as input.
The author defines the term “aggregation’s cost of the segmentations” that is
computed as the sum of each pair of distances of segmentations. They also
suggest as the distance function a metric that is called “disagreement distance”.
Disagreement distance gets two segmentations (P, Q) as input and constructs
their union segmentation U = P U Q with segments {1, ...,un}. Then P(ui) = k
and Q(ui) =t are defined to be the labeling of interval @i with respect to
segmentations P and Q respectively. There is a disagreement when two segments
ui and uj receive the same label in one segmentation but different in the other. If
so, the function D returns a value that is equal with the multiplication of the
number of the elements that exist into these specific parts. Otherwise, it returns
zero value. The sum of the distances between each pair that is being checked for

differences is defined as the total distance for these two segmentations.

106

After these definitions, authors suggest both optimal and heuristic algorithms for
the segmentation aggregation problem. The first algorithm that is named as
“Candidate segment boundaries” decreases the range of searching for possible
candidate segmentation boundaries from 2N to 2n where n is the size of the union
segmentation. It also moves the problem to the discrete space because of the
reduction of the searching range, and so such kind of algorithms can be applied
to resolve this. Next, is another algorithm that belongs to dynamic programming
family and uses “breakpoints” to decide the boundaries. The algorithm’s
functionality is based on the search of the best breakpoint according to an
“impact” function. It is called like this because it denotes the impact of each
breakpoint to the total cost. Finally, the segmentation that will be given as a
result has the minimum cost in comparison with the optimal segmentation. The
last algorithm is a greedy Bottom Up algorithm that tries to remove as many as
possible boundaries and merge their segments with main goal the achievement

of the minimum cost.

The authors evaluated the suggested algorithms with different sets of data that
belong to various categories, but the dataset that attracted us more was the
dataset that is referred to reality mining data, in which they tried to extract
phases from the lives of users using the disagreement distance function for
different days that is much similar with the goal of our project for phase

extraction of a database history.

6.3 Data Visualization

Schneiderman in [Shne96] has as his main objective to offer to the readers some
different ways of data visualization and to motivate them to think about others.
The data types that the author deals with include one-dimensional data, two-
dimensional data, three-dimensional data, and temporal data such as time lines,

multi-dimensional data, trees and networks. The author mentions examples

107

about the appliance of the paper’s motto, which is “Overview first, zoom and

filter, then details on-demand” for each of the above data types.

The “Overview” term refers to a general concise representation of the entire data
set and also the existence of the ability of the representation for more specific
information to an adjacent point. “Zoom and filter” have to do with the need of
zooming capability into items that user is interested and which have been
primarily filtered and cleaned from the “noise”. The last part of the motto “details
on-demand”, refers to the ability of more comprehensive information about a

group of elements or a specific item.

Apart from these capabilities, the author introduces more features that would be
desirable for a visualization tool. Furthermore, the relation is suggested as a
good feature, because the user could see the relationship between different
items. The retainment of the history of user’s actions could be another wonderful
item because user would have the capability to undo something or even better
find some search terms that he have searched. All of these make a tool much
pleasant to use. Moreover, the extraction and the sharing of individual data or
even the printing or mailing them could make a tool more powerful. Finally this
type of tools could have a more complex searching that different parameters

would be combined to give the desired result to the user.

108

109

CHAPTER 7. CONCLUSIONS AND OPEN ISSUES

In conclusion, the main problem of this thesis was to find a way to fit the entire
life of a database that consists of hundreds of transitions and hundreds of tables

into a window of our screen.

For this purpose we contracted the x-axis of the initial view which includes the
entire set of transitions with the assistance of a phase extraction algorithm that
we designed and which creates a desired number of phases that contain the most
similar transitions according to a distance function. Our phase extraction

algorithm was assessed with two different methods with fairly good results.

In parallel, we designed a cluster extraction algorithm to contract the y-axis of
the initial view that contains the whole set of tables of a database into a set of
clusters each of which contains the most similar tables according to another
distance function. We used both internal validity and external validity techniques
to evaluate our cluster extraction algorithm and both of them gave us satisfying

results.

By combining these two algorithms we have achieved to get a good overview of
the initial map of the life of a database which could not be handled otherwise.
Moreover, this overview itself could further enriched so we implemented
features such as zooming into specific points of the overview, filtering by
different criteria (like one cluster, or one phase, or a unique table) and get details
on demand about various elements such phases, clusters, tables, transitions, etc.

Finally, all of these features were implemented by our tool Plutarch’s Parallel

110

Lives [PPL15]. PPL is publicly available via Github as free and open-source

software.

With regard to the open issues of this thesis and more precisely to the theoretical
part of it, the implementation of different distance metrics for both the phase
extraction algorithm and the cluster extraction algorithm could be a different

approach on this problem.

From the view point of the software, Plutarch’s Parallel Lives can be enriched
with more features such as the exporting of some kind of reports for the phase
and cluster extraction. The user can be provided with the ability to pre-select
some transitions or tables to be at the same phase or cluster respectively. Also,
the selection of more than one phases to drill into is another feature that can be
added. Finally, the graphics of the user interface can be responsive according to

different screen dimensions.

111

REFERENCES

[Ecli15]

[Hecal5]

[PPL15]

[Shne96]

[SkVZ14]

[TaSKO5]

[TaTT06]

[TeTs06]

[ZhSt05]

Eclipse IDE. Available at https://eclipse.org/downloads/. Last
accessed 2015-09-30.

Hecate. Available at https://github.com/daintiness-group/hecate .
Last accessed 2015-09-30.

Plutarch’s Parallel Lives at https://github.com/daintiness-

group/plutarch parallel lives. Last accessed 2015-09-30

Shneiderman, Ben. "The eyes have it: A task by data type taxonomy
for information visualizations." Visual Languages, 1996. Proceedings.,

IEEE Symposium on. IEEE, 1996.

Skoulis, loannis, Panos Vassiliadis, and Apostolos Zarras. "Open-
Source Databases: Within, Outside, or Beyond Lehman’s Laws of
Software Evolution?."Advanced Information Systems Engineering.

Springer International Publishing, 2014.

Pang-Ning Tan, Michael Steinbach and Vipin Kumar. Introduction to

Data Mining. 1st ed. Pearson, 2005.

Mielikdinen, Taneli, Evimaria Terzi, and Panayiotis Tsaparas.
"Aggregating time partitions." Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining.

ACM, 2006.

Terzi, Evimaria, and Panayiotis Tsaparas. "Efficient Algorithms for

Sequence Segmentation.”" SDM. 2006.

Xing, Zhenchang, and Eleni Stroulia. "Analyzing the evolutionary
history of the logical design of object-oriented software." Software

Engineering, IEEE Transactions on 31.10 (2005): 850-868.

https://eclipse.org/downloads/�
https://github.com/daintiness-group/hecate�
https://github.com/DAINTINESS-Group/Plutarch_Parallel_Lives�
https://github.com/DAINTINESS-Group/Plutarch_Parallel_Lives�

112

113

APPENDIX

Metrics of change for the database level

The history of the database can provide us with zoomed-out metrics for the
quantified version of the database’s heartbeat. Specifically, we can employ the
following measures for the change that a database schema undergoes in the

context of a specific transition t.

Relation change: [relations inserted| + [relations updated| + [relations updated|

Relation change measures each newly inserted/deleted/updated relation just
once within each transition, independently of the number attributes

created/deleted /updated within its schema.

Attribute change:

[attributes born with new relations| + [attributes removed with removed relations|
+ [attributes injected in existing relations| + [attributed removed from existing
relations| + [attributes with type alterations| + [attributes involved in key
alterations|

i.e., the sum of the corresponding individual-relation metrics

114

Assessment of phase extraction

Atlas

WC: 0.0
PPC:OFF
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

Table A- 1: Assessment of phase extraction for Atlas

WT: 1.0
PPT:OFF

Stime 8¢ 100
98.90 19 22
2954 52
37.47 0 60
5046 0 50
5397 94 ;‘g
4312 3 "
113.20 23 10
3457 1 0
62.45 3

WT: 1.0

PPT:OFF

6time oc 100
2559 6 :g
2944 7 .

98.90 19 60

29.54 52 20
40

5397 94
4312 3 i
11320 23 1w
3457 1 0
6245 3

6Time-6Change

20 40 60 80 100

6Time-6Change

20 40 60 80 100

120

120

115

WC: 0.0
PPC:OFF
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 1.0

PPT:ON

Stime 6c 100
98.90 19 :g
29.54 52 .
3747 0 60
5046 0 50
53.97 94 40
4312 3 ;
113.20 23 0
3457 1 0
6245 3

WT: 1.0

PPT:ON

Stime 6c 100
2559 6 :g
29.44 7 0

98.90 19 60

29.54 52 50
40

5397 94
4312 3 0
113.20 23 10
3457 1 0
62.45 3

WT: 0.5

PPT:OFF

Stime 6¢ 100
9890 19 0
204 56 o
2.04 43 60
5.15 7 50
29.54 52 40
3747 0 o,
53.97 94
4312 3 0
113.20 23

20

20

20

40

40

6Time-6Change

6Time-6Change

6Time-6Change

60

60

80

80

80

100

100

100

120

120

120

116

WC: 0.5
PPC:ON
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:ON
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.5

PPT:OFF

Stime 6c 100
98.90 19 :g
2.04 56 "
2.04 43 60
5.15 7 50
29.54 52 40
5397 94
5.79 40 0
43.12 3 0
113.20 23

WT: 0.5

PPT:ON

Stime 6c 100
98.90 19 :g
1414 54 0
8.39 1 60
53.97 94 50
2242 12 :g
5.79 40 "
4.24 0 10
43.12 3 0
113.20 23

WT: 0.5

PPT:ON

otime oc 100
29.44 7 %

80
9890 19

14.14 54 60
8.39 1 50
53.97 94 :g
2242 12,
5.79 40 10
43.12 3 0

113.20 23

20

20

6Time-6Change

40 60 80

6Time-6Change

40 60 80

6Time-6Change

40 60 80

100

100

100

120

120

120

117

WC: 1.0
PPC:OFF
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:ON
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:OFF
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:OFF
Otime
2.04
2.04
5.15
29.54
1.07
0.01
0.17
7.09
14.21

WT: 0.0
PPT:OFF
Otime
2.04
2.04
5.15
29.54
1.07
0.01
0.17
7.09
14.21

WT: 0.0
PPT:ON
otime
29.44
14.14
3.87
29.54
8.39
53.97
22.42
5.79
4.15

100
90
80
70
60
50
40
30
20
10

100
90
80
70
60
50
40
30
20
10

100
90
80
70
60
50
40
30
20
10

10

10

6Time-6Change

15 20 25

6Time-6Change

15 20 25

6Time-6Change

20 30 40

30

30

50

35

35

60

118

WC: 1.0
PPC:ON
Phases
0@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0

PPT:ON

Stime 6c 100
29.44 7 :g
1414 54 B,
3.87 4 60
29.54 52 50
8.39 1 :g
53.97 94

20
22.42 12 10

5.79 40 0
4.15 43

6Time-6Change

20

30

40

50

60

119

bioSQL Dataset

WC: 0.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

Table A- 2: Assessment of phase extraction for bioSQL

WT: 1.0

PPT:OFF

otime
57.75
130.54
85.76
50.35
497.28
168.66
1061.08
163.49
1533.19

WT: 1.0

PPT:OFF

otime
57.75
130.54
85.76
20.88
50.35
497.28
31.68
163.49
1533.19

oc

= W Ul

N DN O ONN

18
16
14
12
10

L= T N - A T ¢ -]

50
45
40
35
30
25
20
15
10

dTime-dChange

500 1000

dTime-dChange

500 1000

1500

1500

2000

2000

120

WC: 0.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 1.0
PPT:ON
Otime oc
57.75 5
130.54 3
85.76 1
50.35 16
497.28 2
168.66 0
1061.08 0
163.49 2
1533.19 2
WT: 1.0
PPT:ON
Otime oc
57.75 5
130.54 3
85.76 1
20.88 46
50.35 16
497.28 2
31.68 2
163.49 2
1533.19 2
WT: 0.5
PPT:OFF
otime oc
2.14 34
85.76 1
1.51 97
0.03 93
20.88 46
50.35 16
497.28 2
1061.08 0
1533.19 2

18
16 '@
14
12
10

== A A - =]

50
45 @
40
35
30
25
20

10

120
100 ‘
80
60

40

dTime-dChange

500 1000

dTime-dChange

500 1000

dTime-dChange

500 1000

1500

1500

1500

2000

2000

2000

121

WC: 0.5
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.5
PPT:OFF
Otime
2.14
1.28
85.76
1.51
0.03
20.88
50.35
497.28
1533.19

WT: 0.5
PPT:ON
Otime
57.75
6.44
85.76
20.88
4.97
50.35
497.28
1061.08
1533.19

WT: 0.5
PPT:ON
otime
57.75
6.44
85.76
20.88
497
14.77
50.35
497.28
1533.19

2
2

120
100

80

50
45 @
40
35
30
25
20
15 0@

10

50
45 @
40
35
30
25
20

10

5@
D @@

0

dTime-dChange

500 1000

dTime-dChange

500 1000

dTime-dChange

500 1000

1500

1500

1500

2000

2000

2000

122

WC: 1.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:OFF
Otime
2.14
0.15
1.28
0.08
1.51
0.03
0.16
20.88
50.35

WT: 0.0
PPT:OFF
Otime
2.14
0.15
1.28
0.08
1.51
0.03
0.16
20.88
50.35

WT: 0.0
PPT:ON
otime
57.75
6.44
11.21
13.84
85.76
20.88
497
14.77
50.35

oc
34
34
49

97
93
14

16

oc
34
34
49

97
93
14
46
16

120
100
80
60
40

20

0@

120

100 o
80
60
40

20

0@

50
a5
40
35
30
25
20
15 | @
10

dTime-dChange

dTime-dChange

dTime-dChange

20

40

60

50

50

80

60

60

100

123

WC: 1.0
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:ON
Otime
57.75
6.44
11.21
13.84
85.76
20.88
497
14.77
50.35

50
45
40
35
30
25
20
15
10

20

dTime-dChange

40

60

80

100

124

Ensembl Dataset

WC: 0.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

Table A- 3: Assessment of phase extraction for Ensembl

WT: 1.0
PPT:OFF
6Time
107.20
86.75
76.51
80.71
79.80
72.28
77.62
78.75
73.39

WT: 1.0
PPT:OFF
6Time
58.37
62.16
107.20
86.75
76.51
67.45
72.28
77.62
73.39

(@)}

[S NG WY

35

30

25

20

15

10

20

20

6Time-6Change

40

60

80

6Time-6Change

40

100

100

120

120

125

WC: 0.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 1.0
PPT:ON
6Time
107.20
86.75
76.51
80.71
79.80
72.28
77.62
78.75
73.39

WT: 1.0
PPT:ON
6Time
58.37
62.16
107.20
86.75
76.51
67.45
72.28
77.62
73.39

WT: 0.5
PPT:OFF
6Time
25.39
6.02
4.11
8.23
6.91
2.81
5.14
14.29
107.20

o¢

o

= O = A~ O O

@)

_ N

oc
2
72
279
107
238
242
113
114
8

14

12

10

35

30

25

20

15

10

300

250

200

150

100

50

20

20

6Time-6Change

40

6Time-6Change

40

6Time-6Change

40

60

60

80

100 120
L

100 120
[

100 120

126

WC: 0.5
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.5
PPT:OFF
6Time
25.39
6.02
411
58.37
6.91
2.81
5.14
14.29
67.45

WT: 0.5
PPT:ON
6Time
8.36
19.48
31.55
13.32
58.37
6.91
24.50
47.80
28.80

WT: 0.5
PPT:ON
6Time
8.36
19.48
21.26
4.11
58.37
6.91
32.70
9.15
54.23

o¢

279
33

238
242
113
114

238

14

éc

59
279

238

W A

300

250

200

150

100

50

250

200

150

100

50

300

250

200

150

100

50

10

10

20

20

6Time-6Change

30

40

50

6Time-6Change

30

40

6Time-6Change

30

40

50

50

60

70

60

60

80

70

70

127

WC: 1.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:OFF
6Time
1.82
6.02
0.00
1.03
8.23
5.88
2.10
6.91
2.81

WT: 0.0
PPT:OFF
6Time
1.82
6.02
4.11
8.23
6.91
2.81
5.14
14.29
0.00

WT: 0.0
PPT:ON
6Time
8.98
8.90
4.11
12.28
6.91
24.50
11.37
14.29
25.65

o¢

72
255

107
13

228
238
242

6¢

72

279
107
238
242
113
114

éc

279
21
238

114

300
250 @
200
150
100

50

300
250
200
150
100

50

300
250
200
150
100

50

6Time-6Change

6Time-6Change

10

6Time-6Change

10

15

20

12 14 16

L
25 30

128

WC: 1.0
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:ON
6Time
8.98
8.90
13.32
4.11
6.91
32.70
11.37
14.29
7.25

o¢

23
279
238

114
27

300

250

200

150

100

50

10

6Time-6Change

15

20

25

30

35

129

MediaWiki Dataset

WC: 0.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

Table A- 4: Assessment of phase extraction for mediaWiki

WT: 1.0
PPT:OFF
otime
108.78
61.13
56.32
96.87
49.69
64.05
84.22
49.73
76.84

WT: 1.0
PPT:OFF
otime
108.78
61.13
56.32
96.87
49.69
64.05
84.22
49.73
76.84

N NN

oc

19

U=y

N NN

20
18
16
14
12

L= B AR =]

20
18
16
14
12

[== T N LA]

20

20

6Time - 6Change

40

60

80

6Time - 6Change

40

60

80

100

100

120

120

130

WC: 0.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 1.0
PPT:ON
Otime
108.78
61.13
56.32
96.87
49.69
64.05
84.22
49.73
76.84

WT: 1.0
PPT:ON
Otime
108.78
61.13
56.32
96.87
49.69
64.05
84.22
49.73
76.84

WT: 0.5
PPT:OFF
otime
49.12
26.80
19.09
0.07
96.87
64.05
30.65
42.15
18.09

N DN N

N DN DN

oc

47

122

12

12

49
14

20
18
16
14
12

L R AR -]

20
18
16
14
12

L= T LA -]

140
120 @
100
80
60
40

20

6Time - 6Change

20 40 60 80 100

6Time - 6Change

20 40 60 80 100

6Time - 6Change

[®
L ° °
° 4 ¢
20 40 60 80 100

120

120

120

131

WC:0.5 WT:0.5
PPC:ON PPT:OFF
Phases Otime 6c 140
0@1 49.12 3 120 ®
1@2 26.80 47
2@3 35.62 1
3@4 11.59 3
4@5 56.32 2
5@6 0.07 122

6Time - 6Change

80
60

40

6@7 96.87 6 20 o .
7@8 64.05 12 0 L] ™ Y ol
8@9 30.65 12 0 20 40 60 80 100 120

WC: 0.5 WT:0.5
PPC:OFF PPT:ON
Phases Stime 6c 14

6Time - 6Change

‘@1 108.78 1 12 ° °

1@2 21.75 2 10

2@3 30.21 0 .

3@4 16.35 0 ; .

4@5 96.87 6

5@6 6405 12 ° .

6@7 30.65 12 2 . .
7@8 10.89 0 0 oo .

8@9 26.85 3 0 20 40 60 80 100 120

WC: 0.5 WT:0.5
PPC:ON PPT:ON
Phases 6time oc 14

6Time - 6Change

‘@1 1696 4 12 ° °

1@2 1159 3

2@3 5632 2 .

3@4 13.05 2 . .
4@5 9687 6 .

5@6 6405 12 W

6@7 3065 12 ? . .

7@8 28.81 5 0
8@9 26.85 3 0 20 40 60 80 100 120

132

WC: 1.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:OFF
Otime
1.20
0.02
0.14
30.02
2.93
1.50
42.15
18.09
26.85

WT: 0.0
PPT:OFF
Otime
1.20
0.02
0.14
30.02
2.93
1.50
42.15
18.09
26.85

WT: 0.0
PPT:ON
otime
38.42
16.96
6.02
6.43
64.05
30.65
36.15
10.89
26.85

140

120

100

80

60

40

20

140

120

100

80

60

40

20

14

12

10

6Time - 6Change

10 20 30

6Time - 6Change

10 20 30

6Time - 6Change

40

40

60

50

50

70

133

WC:1.0 WT:0.0

PPC:ON PPT:ON 6Time - 5Change
Phases Stime 6c 6

0@1 4.09 2 . .
1@2 3842 1

2@3 1696 4 o

3@4 5.28 2 3 .
4@5 1595 5 L .. .

5@6 13.05 2

6@7 9.92 1 ! o

7@8 2881 5 o

8@9 2685 3 0 10 20 30

134

Opencart Dataset

WC: 0.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

Table A- 5: Assessment of phase extraction for Opencart

WT: 1.0
PPT:OFF
otime
43.11
108.18
127.09
53.53
87.99
61.47
160.39
341.62
48.77

WT: 1.0
PPT:OFF
otime
43.11
33.65
108.18
127.09
53.53
87.99
61.47
160.39
341.62

éc
600
586

éc
600

586

700

600

500

400

300

200

100

700

600

500

400

300

200

100

6Time - 6Change

50 100 150 200 250 300 350

6Time - 6Change

50 100 150 200 250 300 350

400

400

135

WC: 0.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 1.0
PPT:ON
Otime
43.11
108.18
127.09
53.53
87.99
61.47
160.39
341.62
48.77

WT: 1.0
PPT:ON
Otime
43.11
33.65
108.18
127.09
53.53
87.99
61.47
160.39
341.62

WT: 0.5
PPT:OFF
otime
1.07
0.01
43.11
108.18
0.03
3.23
160.39
341.62
48.77

6¢
600
586

6¢
600

586

oc

292
292
600
586
711
710

134

700

600

500

400

300

200

100

700

600

500

400

300

200

100

800
700
600
500
400
300
200
100

50

100

100

6Time - 6Change

6Time - 6Change

150

200

250

6Time - 6Change

150

200

250

300 350
L J

300 350
L J

300 350

400

400

400

136

WC: 0.5
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.5
PPT:OFF
Otime
1.07
0.01
43.11
108.18
0.03
3.23
160.39
341.62
9.35

WT: 0.5
PPT:ON
Otime
3.35
43.11
108.18
127.09
3.23
160.39
8.19
341.62
8.51

WT: 0.5
PPT:ON
otime
3.35
43.11
108.18
127.09
3.23
160.39
8.19
341.62
9.35

oc

292
292
600
586
711
710

134

6¢

600
586
14

710

12
134

éc

600
586
14

710

12
134
3

800
700 @
600
500
400
300 @
200
100

800
700 ®
600
500
400
300
200
100

800
700 ®
600
500
400
300
200
100

0 ®

50

50

50

6Time - 6Change

100 150 200 250

6Time - 6Change

100 150 200 250

6Time - 6Change

100 150 200 250

300 350
L J

300 350
L J

300 350

400

400

400

137

WC: 1.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:OFF
Otime
1.07
0.01
43.11
108.18
0.03
3.23
0.43
1.07
341.62

WT: 0.0
PPT:OFF
Otime
1.07
0.01
43.11
108.18
0.03
3.23
0.43
1.07
341.62

WT: 0.0
PPT:ON
otime
3.35
43.11
108.18
127.09
3.23
160.39
8.19
341.62
5.21

oc

292
292
600
586
711
710
266
268
134

oc

292
292
600
586
711
710
266
268
134

éc

600
586
14

710

12
134

800
700 @
600
500
400
300 '
200
100

800
700 @
600
500
400
300 '
200
100

800
700 ®
600
500
400
300
200
100

0o @

50

50

6Time - 6Change

100 150 200 250

6Time - 6Change

100 150 200 250

6Time - 6Change

100 150 200 250

300 350
L J

300 350
L J

300 350

400

400

400

138

WC: 1.0
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:ON
Otime
3.35
43.11
108.18
127.09
3.23
160.39
8.19
341.62
7.40

6¢

600
586
14

710

12
134
2

800
700 ®
600
500
400
300
200
100
0 @

50

100

150

200

6Time - 6Change

250

300

350

400

139

PhpBB Dataset

WC: 0.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

Table A- 6: Assessment of phase extraction for phpBB

WT: 1.0
PPT:OFF
otime
93.09
115.39
81.67
115.42
128.67
105.90
85.88
101.33
78.75

WT: 1.0
PPT:OFF
otime
65.13
93.09
115.39
128.67
105.90
85.88
101.33
78.75
75.06

éc

o

37

30
29

éc

Ul

12
37

30
29
2
9

40
35
30
25
20
15
10

40
35
30
25
20
15
10

20

20

40

40

6Time-6Change

60

6Time-6Change

60

80

100

120

140

140

WC: 0.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 1.0
PPT:ON
Otime
93.09
115.39
81.67
115.42
128.67
105.90
85.88
101.33
78.75

WT: 1.0
PPT:ON
Otime
65.13
93.09
115.39
128.67
105.90
85.88
101.33
78.75
75.06

WT: 0.5
PPT:OFF
otime
21.68
115.39
128.67
85.88
101.33
10.93
2.69
75.06
0.85

o¢

12

37

30
29

Ul =

12
37

30
29

O N

100

40
35
30
25
20
15
10

40
35
30
25
20
15
10

120

100

80

60

40

20

20

20

20

40

40

40

6Time-6Change

60

6Time-6Change

60

6Time-6Change

60

80

80

100

100

120

120

140

140

140

141

WC: 0.5
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.5
PPT:OFF
Otime
21.68
115.39
128.67
101.33
10.93
2.69
75.06
17.29
0.85

WT: 0.5
PPT:ON
Otime
21.68
115.39
128.67
85.88
101.33
36.41
15.97
3.42
55.41

WT: 0.5
PPT:ON
otime
21.68
115.39
128.67
85.88
101.33
36.41
43.94
75.06
55.41

oc
100
12
37
29
50
47

15

6¢
100

oc
100
12
37
30
29
21
44

120

100

80

60

40

20

120

100

80

60

40

20

120

100

80

60

40

20

20

20

6Time-6Change

40 60 80 100

6Time-6Change

40 60 80 100

6Time-6Change

40 60 80 100

120

120

120

140

140

140

142

WC: 1.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:OFF
Otime
0.49
2.40
2.03
128.67
85.88
101.33
8.77
43.94
0.85

WT: 0.0
PPT:OFF
Otime
0.49
2.40
2.03
128.67
85.88
101.33
8.77
43.94
0.85

WT: 0.0
PPT:ON
otime
21.10
5.44
128.67
20.68
10.93
23.77
75.06
24.55
55.41

o¢
101

6¢
101

éc

o O

50
15

19

120

100

80

60

40

20

120

100

80

60

40

20

60

50

40

30

20

10

®
0 20
°
°
°
®
0 20
°
°
))

40

40

40

6Time-6Change

60

6Time-6Change

60

6Time-6Change

60

80

80

80

100

100

100

120

120

120

140

140

140

143

WC: 1.0
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:ON
Otime
21.68
7.13
128.67
85.88
20.68
10.93
23.77
3.42
55.41

o¢
100

37
30

50
15

120

100

80

60

40

20

40

6Time-6Change

60

80

100

120

140

144

Typo3 Dataset

WC: 0.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

Table A- 7: Assessment of phase extraction for Typo3

WT: 1.0
PPT:OFF
Otime
151.07
163.49
116.21
152.03
134.67
140.06
120.31
90.19
114.39

WT: 1.0
PPT:OFF
Otime
151.07
85.31
163.49
116.21
80.76
140.06
87.32
75.33
75.72

éc

S O O 0O O Ul

123

30

25

20

15

10

140

120

100

80

60

40

20

50

50

6Time - 6Change

6Time - 6Change

o

100

100

150

150

200

200

145

WC: 0.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 1.0
PPT:ON
Otime

151.07
163.49
116.21
152.03
134.67
140.06
120.31
90.19

114.39

WT: 1.0
PPT:ON
Otime
151.07
85.31
163.49
116.21
80.76
140.06
87.32
75.33
75.72

WT: 0.5
PPT:OFF
Otime
151.07
116.21
65.86
140.06
114.39
64.24
87.32
39.20
86.79

Sc 30
1 25
27 .
5

0 15
0 10
8

0 5
0 0
0

Sc 140
1 120
3 100
27 -
g 60
3 40
8 20
34 0
123

Sc 140
1 120
5 100
31 20
8

0 60
4 40
8 20
122 0
0

6Time - 6Change

o o0 o %
50 100 150 200

6Time - 6Change

50 100 150 200

6Time - 6Change

20 40 60 80 100 120 140 160

146

WC: 0.5
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 0.5
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.5
PPT:OFF
Otime
151.07
116.21
65.86
140.06
37.77
64.24
87.32
63.61
39.20

WT: 0.5
PPT:ON
Otime
151.07
116.21
65.86
140.06
64.24
87.32
63.61
39.20
86.79

WT: 0.5
PPT:ON
Otime
151.07
163.49
116.21
65.86
140.06
40.77
63.61
39.20
75.72

Ul

S0

33
122

122

éc

27

31

33

122
123

140

120

100

80

60

40

20

140

120

100

80

60

40

20

140

120

100

80

60

40

20

6Time - 6Change

20 40 60 80 100 120 140

6Time - 6Change

20 40 60 80 100 120 140

6Time - 6Change

50 100 150

160

160

200

147

WC: 1.0
PPC:OFF
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:ON
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WC: 1.0
PPC:OFF
Phases
@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:OFF
Otime
116.21
65.86
8.06
2.78
0.71
63.61
39.20
75.72
2.76

WT: 0.0
PPT:OFF
Otime
116.21
65.86
8.06
2.78
0.71
63.61
39.20
75.72
2.76

WT: 0.0
PPT:ON
Otime
116.21
9.00
29.06
64.24
87.32
63.61
39.20
75.72
86.79

122
123
30

122
123
30

122
123

140

120

100

80

60

40

20

140

120

100

80

60

40

20

140

120

100

80

60

40

20

&Time - 6Change

0 20 40 60 80 100 120

6Time - 6Change

20 40 60 80 100 120

6Time - 6Change

20 40 60 80 100 120

140

140

140

148

WC: 1.0
PPC:ON
Phases
l@1
1@2
2@3
3@4
4@5
5@6
6@7
7@8
8@9

WT: 0.0
PPT:ON
Otime
116.21
65.86
9.00
29.06
15.04
75.33
63.61
39.20
75.72

6¢

31
18
13

34
33
122
123

140

120

100

80

60

40

20

40

6Time - 6Change

60

80

100

120

140

149

Assessment of table clustering

Atlas Dataset

Table A- 8: Assessment of table clustering for Atlas

Wb: 0.333 Wd:0.333 Wc: 0.333

Class 1 Class 2 Class3 Class4 Class5
Precision
Cluster 0 0.00 1.00 0.00 0.00 0.00
Cluster 1 0.00 1.00 0.00 0.00 0.00
Cluster 2 0.83 0.02 0.00 0.17 0.00
Cluster 3 0.00 0.00 0.74 0.11 0.16
Cluster 4 0.00 0.00 1.00 0.00 0.00
Recall
Cluster 0 0.00 0.09 0.00 0.00 0.00
Cluster 1 0.00 0.82 0.00 0.00 0.00
Cluster 2 1.00 0.09 0.00 0.83 0.00
Cluster 3 0.00 0.00 0.93 0.17 1.00
Cluster 4 0.00 0.00 0.07 0.00 0.00
F-Measure
Cluster 0 0.00 0.17 0.00 0.00 0.00
Cluster 1 0.00 0.90 0.00 0.00 0.00
Cluster 2 0.91 0.03 0.00 0.29 0.00
Cluster 3 0.00 0.00 0.82 0.13 0.27

Cluster 4 0.00 0.00 0.13 0.00 0.00

150

Wh: 0.0 Wd: 1.0 Wc: 0.0

Class 1 Class 2 Class3 Class4 Class5
Precision
Cluster 0 0.00 1.00 0.00 0.00 0.00
Cluster 1 0.00 1.00 0.00 0.00 0.00
Cluster 2 0.00 1.00 0.00 0.00 0.00
Cluster 3 0.40 0.20 0.00 0.00 0.60
Cluster 4 0.63 0.00 0.21 0.16 0.00
Recall
Cluster 0 0.00 0.09 0.00 0.00 0.00
Cluster 1 0.00 0.73 0.00 0.00 0.00
Cluster 2 0.00 0.09 0.00 0.00 0.00
Cluster 3 0.04 0.09 0.00 0.00 1.00
Cluster 4 0.96 0.00 1.00 1.00 0.00
F-Measure
Cluster 0 0.00 0.17 0.00 0.00 0.00
Cluster 1 0.00 0.84 0.00 0.00 0.00
Cluster 2 0.00 0.17 0.00 0.00 0.00
Cluster 3 0.08 0.13 0.00 0.00 0.75

Cluster 4 0.76 0.00 0.34 0.28 0.00

151

Wh: 0.0 Wd: 0.5 Wc: 0.5

Class 1 Class 2 Class3 Class4 Class5
Precision
Cluster 0 0.00 1.00 0.00 0.00 0.00
Cluster 1 0.66 0.00 0.22 0.13 0.00
Cluster 2 0.29 0.48 0.00 0.19 0.10
Cluster 3 0.00 0.00 0.00 0.00 1.00
Cluster 4 0.00 0.00 1.00 0.00 0.00
Recall
Cluster 0 0.00 0.09 0.00 0.00 0.00
Cluster 1 0.88 0.00 0.93 0.67 0.00
Cluster 2 0.13 0.91 0.00 0.33 0.67
Cluster 3 0.00 0.00 0.00 0.00 0.33
Cluster 4 0.00 0.00 0.07 0.00 0.00
F-Measure
Cluster 0 0.00 0.17 0.00 0.00 0.00
Cluster 1 0.75 0.00 0.35 0.21 0.00
Cluster 2 0.17 0.62 0.00 0.24 0.17
Cluster 3 0.00 0.00 0.00 0.00 0.50

Cluster 4 0.00 0.00 0.13 0.00 0.00

152

Wh: 0.0 Wd: 0.0 Wc: 1.0

Class 1 Class 2 Class3 Class4 Class5
Precision
Cluster 0 1.00 0.00 0.00 0.00 0.00
Cluster 1 0.61 0.13 0.13 0.13 0.04
Cluster 2 0.55 0.09 0.00 0.36 0.00
Cluster 3 0.52 0.13 0.21 0.10 0.04
Cluster 4 0.00 0.00 1.00 0.00 0.00
Recall
Cluster 0 0.02 0.00 0.00 0.00 0.00
Cluster 1 0.29 0.27 0.20 0.25 0.33
Cluster 2 0.13 0.09 0.00 0.33 0.00
Cluster 3 0.56 0.64 0.73 0.42 0.67
Cluster 4 0.00 0.00 0.07 0.00 0.00
F-Measure
Cluster 0 0.04 0.00 0.00 0.00 0.00
Cluster 1 0.39 0.18 0.16 0.17 0.08
Cluster 2 0.20 0.09 0.00 0.35 0.00
Cluster 3 0.54 0.22 0.33 0.16 0.07

Cluster 4 0.00 0.00 0.13 0.00 0.00

153

Wh: 0.5 Wd: 0.5 Wc: 0.0

Class 1 Class 2 Class3 Class4 Class5
Precision
Cluster 0 0.00 1.00 0.00 0.00 0.00
Cluster 1 0.75 0.16 0.00 0.11 0.00
Cluster 2 0.00 0.00 0.00 1.00 0.00
Cluster 3 0.00 0.00 0.00 0.00 1.00
Cluster 4 0.00 0.00 1.00 0.00 0.00
Recall
Cluster 0 0.00 0.09 0.00 0.00 0.00
Cluster 1 1.00 0.91 0.00 0.58 0.00
Cluster 2 0.00 0.00 0.00 0.42 0.00
Cluster 3 0.00 0.00 0.00 0.00 1.00
Cluster 4 0.00 0.00 1.00 0.00 0.00
F-Measure
Cluster 0 0.00 0.17 0.00 0.00 0.00
Cluster 1 0.86 0.27 0.00 0.18 0.00
Cluster 2 0.00 0.00 0.00 0.59 0.00
Cluster 3 0.00 0.00 0.00 0.00 1.00

Cluster 4 0.00 0.00 1.00 0.00 0.00

154

Wh: 0.5 Wd: 0.0 Wc: 0.5

Class 1 Class 2 Class3 Class4 Class5
Precision
Cluster 0 0.00 1.00 0.00 0.00 0.00
Cluster 1 0.72 0.15 0.00 0.15 0.00
Cluster 2 0.00 0.00 0.76 0.06 0.18
Cluster 3 0.00 0.00 0.50 0.50 0.00
Cluster 4 0.00 0.00 1.00 0.00 0.00
Recall
Cluster 0 0.00 0.09 0.00 0.00 0.00
Cluster 1 1.00 0.91 0.00 0.83 0.00
Cluster 2 0.00 0.00 0.87 0.08 1.00
Cluster 3 0.00 0.00 0.07 0.08 0.00
Cluster 4 0.00 0.00 0.07 0.00 0.00
F-Measure
Cluster 0 0.00 0.17 0.00 0.00 0.00
Cluster 1 0.83 0.26 0.00 0.25 0.00
Cluster 2 0.00 0.00 0.81 0.07 0.30
Cluster 3 0.00 0.00 0.12 0.14 0.00

Cluster 4 0.00 0.00 0.13 0.00 0.00

155

Wh: 1.0 Wd: 0.0 Wc: 0.0

Class 1 Class 2 Class3 Class4 Class5
Precision
Cluster 0 0.80 0.18 0.00 0.03 0.00
Cluster 1 0.00 0.00 0.00 1.00 0.00
Cluster 2 0.00 0.00 0.00 0.63 0.38
Cluster 3 0.00 0.00 1.00 0.00 0.00
Cluster 4 0.00 0.00 1.00 0.00 0.00
Recall
Cluster 0 1.00 1.00 0.00 0.17 0.00
Cluster 1 0.00 0.00 0.00 0.42 0.00
Cluster 2 0.00 0.00 0.00 0.42 1.00
Cluster 3 0.00 0.00 0.93 0.00 0.00
Cluster 4 0.00 0.00 0.07 0.00 0.00
F-Measure
Cluster 0 0.89 0.31 0.00 0.06 0.00
Cluster 1 0.00 0.00 0.00 0.59 0.00
Cluster 2 0.00 0.00 0.00 0.50 0.55
Cluster 3 0.00 0.00 0.97 0.00 0.00

Cluster 4 0.00 0.00 0.13 0.00 0.00

156

phpBB Dataset

Table A- 9: Assessment of table clustering for phpBB

Wb: 0.333 Wd:0.333 Wc: 0.333

Class 1 Class 2 Class 3 Class 4
Precision
Cluster 0 0.00 1.00 0.00 0.00
Cluster 1 0.08 0.90 0.00 0.02
Cluster 2 0.00 0.00 1.00 0.00
Cluster 3 0.00 0.00 0.00 1.00
Recall
Cluster 0 0.00 0.02 0.00 0.00
Cluster 1 1.00 0.98 0.00 0.20
Cluster 2 0.00 0.00 1.00 0.00
Cluster 3 0.00 0.00 0.00 0.80
F-Measure
Cluster 0 0.00 0.03 0.00 0.00
Cluster 1 0.15 0.94 0.00 0.03
Cluster 2 0.00 0.00 1.00 0.00

Cluster 3 0.00 0.00 0.00 0.89

157

Whb: 0.0 Wwd: 1.0
Class 1
Precision
Cluster 0 0.60
Cluster 1 0.67
Cluster 2 0.00
Cluster 3 0.00
Recall
Cluster 0 0.60
Cluster 1 0.40
Cluster 2 0.00
Cluster 3 0.00
F-Measure
Cluster 0 0.60
Cluster 1 0.50
Cluster 2 0.00
Cluster 3 0.00

Wc: 0.0
Class 2

0.00
0.00
0.98
0.00

0.00
0.00
1.00
0.00

0.00
0.00
0.99
0.00

Class 3

0.40
0.33
0.00
0.00

0.67
0.33
0.00
0.00

0.50
0.33
0.00
0.00

Class 4

0.00
0.00
0.02
1.00

0.00
0.00
0.20
0.80

0.00
0.00
0.03
0.89

158

Whb: 0.0 wd: 0.5
Class 1
Precision
Cluster 0 1.00
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 0.05
Recall
Cluster 0 0.40
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 0.60
F-Measure
Cluster 0 0.57
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 0.08

Wc: 0.5
Class 2

0.00
1.00
1.00
0.83

0.00
0.02
0.02
0.96

0.00
0.03
0.03
0.89

Class 3

0.00
0.00
0.00
0.05

0.00
0.00
0.00
1.00

0.00
0.00
0.00
0.09

Class 4

0.00
0.00
0.00
0.08

0.00
0.00
0.00
1.00

0.00
0.00
0.00
0.14

159

Whb: 0.0 wd: 0.0
Class 1
Precision
Cluster 0 0.00
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 0.07
Recall
Cluster 0 0.00
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 1.00
F-Measure
Cluster 0 0.00
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 0.14

Wc:1.0
Class 2

1.00
1.00
1.00
0.81

0.02
0.02
0.02
0.95

0.03
0.03
0.03
0.87

Class 3

0.00
0.00
0.00
0.04

0.00
0.00
0.00
1.00

0.00
0.00
0.00
0.09

Class 4

0.00
0.00
0.00
0.07

0.00
0.00
0.00
1.00

0.00
0.00
0.00
0.14

160

Whb: 0.5 wd: 0.5
Class 1
Precision
Cluster 0 1.00
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 0.00
Recall
Cluster 0 1.00
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 0.00
F-Measure
Cluster 0 1.00
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 0.00

Wc: 0.0
Class 2

0.00
1.00
0.00
0.00

0.00
1.00
0.00
0.00

0.00
1.00
0.00
0.00

Class 3

0.00
0.00
1.00
0.00

0.00
0.00
1.00
0.00

0.00
0.00
1.00
0.00

Class 4

0.00
0.00
0.00
1.00

0.00
0.00
0.00
1.00

0.00
0.00
0.00
1.00

161

Whb: 0.5 wd: 0.0
Class 1
Precision
Cluster 0 0.00
Cluster 1 0.00
Cluster 2 0.07
Cluster 3 0.00
Recall
Cluster 0 0.00
Cluster 1 0.00
Cluster 2 1.00
Cluster 3 0.00
F-Measure
Cluster 0 0.00
Cluster 1 0.00
Cluster 2 0.14
Cluster 3 0.00

Wc: 0.5
Class 2

1.00
1.00
0.82
0.00

0.02
0.02
0.96
0.00

0.03
0.03
0.89
0.00

Class 3

0.00
0.00
0.04
0.00

0.00
0.00
1.00
0.00

0.00
0.00
0.09
0.00

Class 4

0.00
0.00
0.06
1.00

0.00
0.00
0.80
0.20

0.00
0.00
0.11
0.33

162

Whb: 1.0 wd: 0.0
Class 1
Precision
Cluster 0 0.08
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 0.00
Recall
Cluster 0 1.00
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 0.00
F-Measure
Cluster 0 0.15
Cluster 1 0.00
Cluster 2 0.00
Cluster 3 0.00

Wc: 0.0
Class 2

0.92
0.00
0.00
0.00

1.00
0.00
0.00
0.00

0.96
0.00
0.00
0.00

Class 3

0.00
1.00
0.00
0.00

0.00
1.00
0.00
0.00

0.00
1.00
0.00
0.00

Class 4

0.00
0.00
1.00
1.00

0.00
0.00
0.80
0.20

0.00
0.00
0.89
0.33

163

Coppermine Dataset

Table A- 10: Assessment of table clustering for Coppermine

Wb: 0.333 Wd:0.333 Wc: 0.333

Class 1 Class 2
Precision
Cluster 0 1.00 0.00
Cluster 1 0.86 0.14
Recall
Cluster 0 0.05 0.00
Cluster 1 0.95 1.00
F-Measure
Cluster 0 0.10 0.00
Cluster 1 0.90 0.24
Wh: 0.0 Wd: 1.0 Wc: 0.0
Class 1 Class 2
Precision
Cluster 0 0.86 0.14
Cluster 1 1.00 0.00
Recall
Cluster 0 0.95 1.00
Cluster 1 0.05 0.00
F-Measure
Cluster 0 0.90 0.24

Cluster 1 0.10 0.00

164

Whb: 0.0 wd: 0.5
Class 1

Precision

Cluster 0 1.00

Cluster 1 0.86

Recall

Cluster 0 0.05

Cluster 1 0.95

F-Measure

Cluster 0 0.10

Cluster 1 0.90

Whb: 0.0 wd: 0.0
Class 1

Precision

Cluster 0 1.00

Cluster 1 0.86

Recall

Cluster 0 0.05

Cluster 1 0.95

F-Measure

Cluster 0 0.10

Cluster 1 0.90

Wc: 0.5
Class 2

0.00
0.14

0.00
1.00

Class 2

0.14

0.00
1.00

0.00
0.24

165

Whb: 0.5 wd: 0.5
Class 1

Precision

Cluster 0 0.86

Cluster 1 1.00

Recall

Cluster 0 0.95

Cluster 1 0.05

F-Measure

Cluster 0 0.90

Cluster 1 0.10

Whb: 0.5 wd: 0.0
Class 1

Precision

Cluster 0 0.95

Cluster 1 0.33

Recall

Cluster 0 0.95

Cluster 1 0.05

F-Measure

Cluster 0 0.95

Cluster 1 0.09

Wc: 0.0
Class 2

0.14
0.00

1.00
0.00

Class 2

0.67

0.33
0.67

0.09
0.67

166

Whb: 1.0 wd: 0.0
Class 1

Precision

Cluster 0 1.00

Cluster 1 0.00

Recall

Cluster 0 1.00

Cluster 1 0.00

F-Measure

Cluster 0 1.00

Cluster 1 0.00

Wc: 0.0
Class 2

0.00
1.00

0.00
1.00

0.00
1.00

167

