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Abstract

Dimitrios C. Zavantis: MsC, Department of Computer Science & Engineering, Uni-

versity of Ioannina, Greece; Graduation September, 2015.

MsC thesis: Circadian Variability and Discrimination in Day-Night periods based on

Morphological Characteristics of P & T waves

Supervisor: George Manis, Assistant Professor.

One of the most important research issues of recent years in the section of biomedical

informatics is the electrocardiogram (ECG) since it represents a non-invasive method

which provides information about the heart rate. The provided information is signi�cant

for comprehending the function of human heart and its in
uencing factors. Apart from

the most visible peak (the R one), there also exist the T one and the less examined, the

P wave.

The aim of this thesis is an extensive study of P & T waves in ECGâ��s of healthy

people. Using a multitude of exported features, which describe the morphology of these

waves, we enhanced the analysis of a potential di�erentiation between day and night

periods and a suspected occurrence of circadian rhythm in the waves.

The export of P & T waves initially implemented in a manual mode. However, the

need for a rapid and e�ective detection algorithm prompted the creation of two automated

algorithms: the percentile based Automatic Detection and the Graphical based Automatic

Detection. Both algorithms use statistical and probabilistic concepts (functions) to achieve

adequate delineation and detection of the waves. The �rst of them, uses percentile to

de�ne and restrict the location of these waves, while the second one takes advantage of

the existing monotonicity and slope of an ECG and creates a collection of waves which

then imports to a probabilistic graphical model for classifying them to P or T.
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Finally, the extraction of the provided information in combination with the number of

our waves, extends our research area to the study of PP and TT intervals in comparison

to the already well-known RR interval by examining the potential of their relationship.

The analysis of these intervalsâ�� behavior in terms of morphological characteristics in

two time windows (30 and 60 minutes) is becoming the focal point of our thesis for the

recognition of periodic behavior (throughout the 24- hour period) which will con�rm the

existence of circadian rhythm.
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Éùáííßíùí. Áðïöïßôçóç, ÓåðôÝìâñéïò 2015.

Ìåôáðôõ÷éáêÞ ÄéáôñéâÞ: ÊéñêÜäéá Ìåôáâëçôüôçôá êáé ÄéÜêñéóç ÇìÝñáò-Íý÷ôáò óôá

÷áñáêôçñéóôéêÜ ôçò ìïñöïëïãßáò ôùí P & Ô êõìÜôùí

ÅðéâëÝðùí: Ãåþñãéïò ÌáíÞò, Åðßêïõñïò ÊáèçãçôÞò.

¸íá áðü ôá óçìáíôéêüôåñá áíôéêåßìåíá - Ýñåõíáò, ôùí ôåëåõôáßùí åôþí, óôïí ÷þñï ôçò

âéïúáôñéêÞò ðëçñïöïñéêÞò áðïôåëåß ôï çëåêôñïêáñäéïãñÜöçìá (ÇÊÃ) êáèþò åêðñïóùðåß

ìßá ìç åðåìâáôéêÞ ìÝèïäï ðïõ äßíåé ðëçñïöïñßåò, ìåôáîý Üëëùí, êáé ãéá ôïí êáñäéáêü

ñõèìü. Ç ðëçñïöïñßá ç ïðïßá ðáñÝ÷åé åßíáé óçìáíôéêÞ ãéá ôçí êáôáíüçóç ôçò ëåéôïõñãßá

ôçò êáñäéÜò üðùò êáé ôùí ðáñáãüíôùí ðïõ ôçí åðçñåÜæïõí.

Óôü÷ïò áõôÞò åñãáóßáò åßíáé ìßá åêôåôáìÝíç ìåëÝôç óå õãéåßò áíèñþðïõò ôùí Ñ &

Ô êõìÜôùí, ôá ïðïßá áðïôåëïýí óçìáíôéêÜ åðÜñìáôá ôïõ çëåêôñïêáñäéïãñáöÞìáôïò. Ç

÷ñÞóç ðëçèþñáò ÷áñáêôçñéóôéêþí ðïõ åîÞ÷èçóáí, ôá ïðïßá ðåñéãñÜöïõí ôçí ìïñöïëïãßá

áõôþí ôùí êõìÜôùí, åíéó÷ýåé ôçí áíÜëõóç ãéá ôçí ðéèáíÞ äéáöïñïðïßçóç ôïõò áíÜìåóá óå

äýï ÷ñïíéêÝò ðåñéüäïõò çìÝñáò-íý÷ôáò, üðùò åðßóçò êáé ôçò õðüíïéá åìöÜíéóçò êéñêÜäéïõ

ñõèìïý óôá êýìáôá. Ç åîáãùãÞ ôùí Ñ & Ô êõìÜôùí Ýãéíå ìå ÷åéñùíáêôéêü ôñüðï

áñ÷éêÜ. Ùóôüóï, ç áíÜãêç ãéá Ýíá ãñÞãïñï êáé áðïôåëåóìáôéêü áëãüñéèìï áíß÷íåõóçò

ôÝôïéùí êõìÜôùí ìáò þèçóå óôçí äçìéïõñãßá äýï áõôïìáôïðïéçìÝíùí áëãïñßèìùí: ôïõ

percentile based Automatic Detection, êáé ôïõ Graphical based Automatic Detection.

Ïé äýï áëãüñéèìïé ÷ñçóéìïðïéïýí óôáôéóôéêÝò êáé ðéèáíïôéêÝò Ýííïéåò (óõíáñôÞóåéò)

ãéá ôçí ïñéïèÝôçóç êáé áíß÷íåõóç ôùí êõìÜôùí. Ï ðñþôïò åî áõôþí ÷ñçóéìïðïéåß ôï

åêáôïóôçìüñéï ãéá íá êáèïñßóåé êáé ðåñéïñßóåé ôçí ðåñéï÷Þ ðïõ âñßóêïíôáé ôá êýìáôá åíþ
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ï äåýôåñïò åêìåôáëëåõüìåíïò ôçí ìïíïôïíßá êáé ôçí êëßóç ôïõ çëåêôñïêáñäéïãñáöÞìáôïò

äçìéïõñãåß ìßá óõëëïãÞ êõìÜôùí ôá ïðïßá ôá åéóÜãåé óôçí óõíÝ÷åéá óå Ýíá ðéèáíïèåùñçôéêü

ãñáöéêü ìïíôÝëï ãéá ôçí ôáîéíüìçóç ôïõò óå Ñ & Ô.

ÔÝëïò, ç åîüñõîç üëçò áõôÞò ôçò ðëçñïöïñßáò êáé ôïõ ðëÞèïõò ôùí êõìÜôùí åíôåßíåé ôçí

Ýñåõíá ìáò ãéá ôç ìåëÝôç ôùí ÷ñïíéêþí äéáóôÞìáôþí PP êáé ÔÔ Ýíáíôé ôïõ Þäç ãíùóôïý

RR êáé ôïõ äõíáìéêïý ôçò ó÷Ýóçò ôïõò. Ï Ýëåã÷ïò ôçò óõìðåñéöïñÜò ôùí ðáñáðÜíù

äéáóôçìÜôùí êáé ôùí ìïñöïëïãéêþí ÷áñáêôçñéóôéêþí óå äýï ÷ñïíéêÜ ðáñÜèõñá (30 êáé

60 ëåðôþí) ãßíåôáé ôï åðßêåíôñï ôçò ðáñïýóáò åñãáóßáò ãéá ôçí áíáãíþñéóç ðåñéïäéêÞò

óõìðåñéöïñÜò (óå üëï ôï 24-ùñï) ç ïðïßá èá åðéâåâáéþóåé ôçí ýðáñîç ôïõ êéñêÜäéïõ ñõèìïý.
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Chapter 1

Introduction

1.1 Chronobiology

1.1.1 Biological Rhythms

1.1.2 Circadian Rhythms

1.2 The heart anatomy

1.3 Electrocardiogram

1.4 ECG waves and intervals

1.5 Holter Monitoring

1.6 ECG Database

1.7 Motivation and objectives

1.8 Thesis Structure

1.1 Chronobiology

Chronobiology [1] is known to be a �eld of biology that investigates periodic phenomena

in living organisms and their adjustment to solar- and lunar-related rhythms, known as

1



biological rhythms. The major study in chronobiology includes the research of biological

clocks mechanisms and their relationships with the environment. This knowledge has been

adapted to other scienti�c �eld (e.g. genetics, comparative anatomy, molecular biology,

ecology, physiology, neuroscience, and much more).

1.1.1 Biological Rhythms

Biological rhythms [1] are related to some physiological functions or activities of the body

and usually run on a diurnal cycle. These rhythms can be internal or external depending

on the in
uence factor. The �rst is associated with body functions and necessary activi-

ties (e.g. body temperature, daily performance, alertness, sleep schedules and endocrine

activity) while the latter is related with environmental time cues (e.g. sunlight, noise,

food, drugs, ca�eine).

The period time with reference point 24-hour can categorize the biological rhythms as

follows:

• Circadian rhythms (24-hour cycle)

• Diurnal rhytms (circadian day/night cycle)

• Ultradian rhythms (shorter period times than circadian)

• Infradian rhythms (more than 24 hours period times)

In our research we will focus only on circadian rhythms.

1.1.2 Circadian Rhythms

Circadian1 originates from a Latin phrase meaning \about a day" (circa + diem). These

rhythms are part of a 24-hour cycle and can be physiological and behavioral rhythms.

These occur in sleep/wakefulness cycle, blood pressure, body temperature, hormone se-

cretions, digestive secretions, etc. In general, the brain controls and helps maintain the

\internal clock" for these rhythms.

1https://en.wikipedia.org/wiki/Circadian rhythm
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Figure 1.1: Human circadian biological clock.

The circadian rhythm is a 24-hour cycle that tells our bodies when to sleep and

arranges many other physiological processes as displayed in �g. 1.12. When one's circadian

rhythm is disrupted, some patterns can run amok like sleeping and eating. A lot of research

is examining if adverse health results can disrupt circadian rhythm, like increasing the

chances of cardiovascular events and a correlation with neurological problems like bipolar

disorder and depression.

The circadian rhythm decreases and increases at di�erent times of the day. For in-

stance, adults' strongest sleep drive occurs between 2:00-4:00 in the morning and between

1:00-3:00 in the afternoon, even though this varies according to the type of person we

are ("morning or evening person"). During these circadian decreases, the sleepiness we

experience will be less intense after a su�cient sleep, and more intense with lack of sleep.

The circadian rhythm keeps us in alert at �xed points of the day, even if we have been

awake for hours and our sleep/wake stimulative process would either-way make us feel

2"Biological clock human" by NoNameGYassineMrabetTalk �xed by Addicted04 - The work
was done with Inkscape by YassineMrabet. Informations were provided from "The Body Clock
Guide to Better Health" by Michael Smolensky and Lynne Lamberg; Henry Holt and Com-
pany, Publishers (2000). Landscape was sampled from Open Clip Art Library (Ryan, Pub-
lic domain). Vitruvian Man and the clock were sampled from Image:P human body.svg (GNU
licence) and Image:Nuvola apps clock.png, respectively. Licensed under CC BY-SA 3.0 via
Wikimedia Commons - https://commons.wikimedia.org/wiki/File:Biological clock human.svg # /me-
dia/File:Biological clock human.svg
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Figure 1.2: The heart, showing valves, arteries and veins. The white arrows shows the
normal direction of blood 
ow.

more sleepy.

1.2 The heart anatomy

Our heart3 has 4 chambers as shown in �g. 1.24. The two upper chambers de�ned as the

left and right atria, and the two lower chambers de�ned as the left and right ventricles.

The septum is a wall of muscle that divides the left and right atria and the left and right

ventricles. The largest and strongest chamber in our heart is the left ventricle, while the

left ventricle's chamber walls are about a half-inch thick. The latter despite its thickness

is able to push blood into our body through the aortic valve.

Four valves regulate blood 
ow through our heart:

• The blood 
ow between the right atrium and right ventricle is controlled by the

tricuspid valve.

3https://en.wikipedia.org/wiki/Heart
4"Diagram of the human heart (cropped)" by Own work. Licensed under CC BY-SA 3.0 via Com-

mons - https://commons.wikimedia.org/wiki/File:Diagram of the human heart (cropped).svg# /me-
dia/File:Diagram of the human heart (cropped).svg

4



• The blood 
ow from the right ventricle inside the pulmonary arteries is regulated

by the pulmonary valve, carrying blood to our lungs to pick up oxygen.

• The oxygen-rich blood from our lungs passes through the mitral valve, from the left

atrium into the left ventricle.

• The oxygen-rich blood passes through the aortic valve, from the left ventricle into

the aorta, which represents our body's largest artery.

1.3 Electrocardiogram

Electrocardiogram5 (abbreviated ECG) is a tool mostly used in the clinical practice due

to its excellent bene�t-cost relationship, as well for diagnosis that indicates the electrical

activity of heart by skin electrode recordings. The cardiac health of human heart beat

is expressed by the morphology and heart rate. It is a noninvasive technique, meaning

the surface of human body is used for the measurement of the signal, which helps in

identi�cation of the heart diseases. Any change in the morphological pattern or disorder

of heart rate or rhythm, is an evidence of cardiac arrhythmia and could be recognized

using waveform analysis on the recorded ECG. The ECG waveform is well characterized

by the waves: P, QRS, and T. The most signi�cant wave is the QRS complex, but there

is much interest in examining T-waves and, especially lately, P-waves. The duration and

amplitude of the P-QRS-T wave expresses useful information about the nature of the

heart disorders. Atrial and ventricular depolarization and repolarization of Na+ and K−

ions in the blood are the origin of the electrical wave. The ECG signal provides the

following information of a human heart:

• heart rhythm and conduction disturbances

• heart position and its relative chamber size

5https://en.wikipedia.org/wiki/Electrocardiography
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Figure 1.3: Schematic representation of normal ECG waveform.

• changes in electrolyte concentrations

• extent and location of myocardial ischemia

• drug e�ects on the heart

• impulse origin and propagation

1.4 ECG waves and intervals

As described in the previous section the ECG (see �g. 1.36) consists of:

• The P wave is associated with right and left atrial depolarization. The wave of

atrial repolarization is invisible because of low amplitude. A clear P wave before

the QRS complex represents sinus rhythm whereas absence of P waves may suggest

junctional rhythm or ventricular rhythm, atrial �brillation. It is very di�cult to

6"SinusRhythmLabels" by Created by Agateller (Anthony Atkielski), converted to
svg by atom. - en:Image:SinusRhythmLabels.png. Licensed under Public Domain
via Commons - https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg# /me-
dia/File:SinusRhythmLabels.svg
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analyze P waves with a high signal-to-noise ratio in ECG signal. Normal P wave

is less than 2.5 mm (two-and-a half 1-mm-divisions) tall and no more than 120 ms

(three 1-mm-divisions) in width in any lead.

• The second wave is the QRS complex. Typically this complex has a series of 3

de
ections that represent the current related with right and left ventricular depo-

larization. By convention the �rst negative de
ection in the complex is called a Q

wave, whereas, the R wave is the �rst positive de
ection in the complex. Finally, a

negative de
ection after an R wave is de�ned as S wave. A second positive de
ec-

tion after the S wave is called the R wave, if there is one. Some QRS complexes do

not have all three de
ections. But irrelevant of the present number of waves, they

are all QRS complexes. Duration of the QRS complex expresses the time for the

ventricles to depolarize and can give information about conduction problems in the

ventricles such as bundle branch block. QRS duration is the width of that complex

from beginning to end, irrespective of the number of de
ections. Normally it lasts

less than 120 ms (three 1-mm-divisions).

• The T wave represents the current of rapid phase 3 ventricular repolarization. The

polarity of this wave normally follows that of the main QRS de
ection in any lead.

During that period of repolarization the ventricles are observed to be electrically

unstable extending from the peak of the T wave to its primary downslope. A

stimulus (e.g. a premature beat) falling on this vulnerable period has the power to

trigger ventricular �brillation: the so call R-on-T phenomenon. Large T waves may

represent ischemia, and Hyperkalaemia.

1.5 Holter Monitoring

A Holter monitor [2] is a portable device operated with battery that measures and records

our heart's activity (ECG) continuously for 24 to 48 hours or longer according to the
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monitor used. The device is the size of a small camera. Wired silver dollar-sized electrodes

attach to our skin to tape records. The Holter monitor and other devices that record our

ECG as we go about our daily activities are called ambulatory electrocardiograms. As

a result of extended recording period, the observation of occasional cardiac arrhythmia

or epileptic events is possible. On the other hand, such disorders would be di�cult to

identify in a shorter period of time. In transient symptoms patients have to wear for a

month or more a holter to monitor a cardiac event.

1.6 ECG Database

In this study the MIT-BIH Normal Sinus Rhythm Database was used. The dataset in-

cludes 18 long-term (24-hour) ECG recordings. The subjects had no signi�cant arrhyth-

mia. They include 5 men, aged 26 to 45, and 13 women, aged 20 to 50. The database

is sampled at 128 Hz and the data is available at uniform intervals of 7.8125 msec [3].

From this database we selected day and night periods from one to three o'clock in order

to study the discrimination in diametrically opposed time intervals.

1.7 Motivation and Objectives

Generally, the shape of heart rate and ECG waveform re
ects the state of cardiac heart.

It is obtained by a non invasive way which can provide a lot of information directly or

indirectly. In this thesis we focus mostly in the detection of P and T waves from healthy

people.

The �rst objective is the discrimination of day-night periods using exclusively P & T

Waves. In particular we will investigate several features extracted from P and T waves

that have been detected manually or automatic in diametrically opposed time intervals.

One manual detection has been implemented. The manual detection is initially created
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to show that there is a signi�cant di�erence between those two time periods.

However, the need for a fast and su�cient detection algorithm for these waves moti-

vated us to create two new automatic detections. The �rst automatic detection named

as Percentile based Automatic Detection; it uses the percentile in order to �nd the waves

within a bounded area. The second automatic detection named as Graphical based Auto-

matic Detection; it uses a Graphical Probabilistic model (HCRF) which classi�es the two

categories of the waves (P or T).

Hence, the waves that have been extracted from the methods described above give

us the opportunity to investigate more about these waves. The big amount of collected

waves makes possible the study for the PP and TT intervals against RR intervals and

their potential relationship with the Circadian Rhythm. Finally, an additional inspection

in the behavior of wave's feature in the sleep/wake cycle (24-hour) opposite to circadian's

behavior becomes the objective of this work.

1.8 Thesis Structure

This master thesis includes 8 chapters:

The Chapter 1 of this thesis explains the chronobiology with two rhythms, biological

and circadian. The basic of ECG and ECG morphology as well as the MIT-BIH Normal

Sinus Rhythm Database is discussed. At last, the motivation and the objectives of this

work are described.

In Chapter 2, a manual detection of P & T waves is described. This algorithm uses

visual inspection every 2000 values in ECG signal.

Chapter 3 de�nes two novel automatic detections with their results for the waves that

have been selected.

A variety of characteristic features of ECG are extracted, which consist of morpholog-

ical features and their ratios for each wave. In Chapter 4 feature extraction methodology

of above features are discussed.

9



The Discrimination between day and night using paired t-test and its results are

performed in Chapter 5.

In Chapter 6 several classi�cation methods are applied to strengthen the discrimination

hypothesis using the extracted features.

Chapter 7 investigates the Circadian behavior of PP and TT intervals as well as the

existence of this rhythm in features.

Finally, in Chapter 8 the discussion of all above results takes place with future work

improvements for the described methods.
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Chapter 2

Manual Detection

2.1 Introduction

2.2 Methodology

2.3 Results

2.1 Introduction

Manual detection was used to provide a known information for the research. The aim

of gathering waves manually was the collection of reliable results independent of poten-

tial limitations of an automatic method. Two time periods were selected knowing the

in
uences between day and night in human physiology and behavior as shown in �g. 2.1.

According to that �gure and with the knowledge of dips and rises of the circadian rhythm

two time periods were selected for the detection and further analysis described in next

Chapters.

This kind of detection can be characterized as time-consuming, exhaustive and sub-

jective task. The waves correctness depends on quality of the signals, the experience of

the researcher and ECG lead. In order to convert the nature of this task to an objective
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one and to achieve better and reliable results, we assembled a team of four people. The

team was familiar with the concepts of heart rate, ECG's components.

Figure 2.1: Rhythmic changes in human physiology and behavior from 2PM to 2PM

2.2 Methodology

A manual selection was implemented using an auxiliary visual inspection tool to assist fast

and accurate selection, uniformly per period. The ECG signal is very large, 24-hour long.

However, we focused on two speci�c time periods during the 24-hour period, daytime and

nighttime. Daytime and nighttime periods are de�ned as the periods from 1 PM to 3 PM

and from 1 AM to 3 AM respectively. Thus, we want to manually detect P-waves and

T-waves during these periods. In order to minimize the risk of error, the detection is done

in two phases.

At �rst, the ECG was cut into buckets of 2000 values (�g. 2.2). Each value represents

7:8125msec, so every bucket describes a 15:625sec part of ECG. This tactic provides
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the opportunity for a better visual inspection using local information in a di�erent scale

(1=#ofBuckets) for the detection of the waves. In the procedure of manual detection

the user reads each bucket of ECG and marks the beginning and end of every P-wave

and T-wave as shown in �g. 2.3. The number of waves which would be selected was

determined by the user for each bucket. For the rejection of waves common guidelines

were set among the team members. Rejection was decided is presence of :

• noise,

• variability

• baseline drift

• double peak.

In the second phase, a second crosscheck was performed on the waves selected during

the previous phase, to avoid any malfunction during the �rst selection. Furthermore, this

check helped us to achieve more accuracy on the onset and o�set points of the waves,

improving their quality.

Figure 2.2: Sample of a bucket

13



Figure 2.3: Sample of a bucket with manual selection

2.3 Results

We manually detected P-waves and T-waves in the MIT-BIH Normal Sinus Rhythm

Database, which was described in Chapter 1. The workload was distributed equivalently

to the members of the team. The total number extracted from those two time periods was

2700 P and 2700 T waves from all patients. The next step was an additional research of

the waves. For that purpose several features were extracted according to their morphology

that will be discussed below (see Chapter 4).
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Chapter 3

Automatic Detection

3.1 Introduction

3.2 Hidden Conditional Random Fields

3.3 Methodology for percentile based Automatic Detection

3.3.1 Filtering

3.3.2 Preservation of R peak & Adaptive Threshold

3.3.3 Delimitation of the waves

3.4 Methodology for Graphical based Automatic Detection

3.4.1 Use P & T waves extracted from pAD

3.4.2 Training with HCRFs

3.4.3 Procedure for selection of the waves

3.4.4 Classi�cation

3.4.5 Check for false records

3.5 Results
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3.1 Introduction

Over the last few years, many sophisticated methods have been proposed for the detection

of P & T waves. Trahanias and Skordalakis [4] applied a syntactic approach to ECG

pattern recognition and parameter measurement for the detection of P, QRS and T waves.

Murthy and Prasad [5] used the discrete cosine transform (DCT) for delineation of P

waves, whereas Murthy & Niranjan [6] the discrete Fourier transform (DFT). Thakor and

Zhu [7] used their own adaptive �lters focusing on P waves.

The detection and furthermore the annotation of P and T waves is not as simple

compared to the QRS complex for a number of reasons which include a low signal-to-

noise ratio (SNR), morphological variability, low amplitude and amplitude variability and

the chance of overlapping of the P or T wave with the QRS complex. The P wave may

not even be present in some ECG recordings. In the majority of these methods P and

T waves are detected by their relativity to the position of the R peak by applying the

appropriate threshold. The primary problems of the thresholding methods are the acute

sensitivity to noise and their poor e�ciency when dealing odd morphologies (e.g. negative

or biphasic waves).

The initial aim of this work is to propose automated detection methods with the

knowledge that the subjects are healthy with normal waves. Hence, we present two meth-

ods; The percentile Automatic Detection, and the Graphical based Automatic Detection.

Both of these two methods are used to increase the number of the sample of the waves,

for better and reliable statistical analysis.

The percentile Automatic Detection (pAD) detects T and P waves using the percentile.

If we suppose that the values of the ECG are sorted in ascending then it is noticeable

that most frequent values are close to baseline or near it. pAD takes advantage of this

observation and detects the peaks of the waves that belong in a certain area determined

by speci�c percentile values of the signal, preventing interaction with the values of QRS

complex. The buckets of 2000 values are also used in pAD so that the baseline drift

of the signal to be eliminated. As the set of peaks of the waves is determined, two
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phases are following: the delineation and acceptation. The delineation of the wave is

the determination of onset and o�set point of the wave based on its monotonicity left

and right to the peak. The acceptation of the candidate waves is decided by comparison

with R peaks, indicated as P waves those before R peak and as T waves those after R

peak. pAD can be categorized in methods using threshold but percentile is changing from

bucket to bucket taking into consideration the wave. As a result, the threshold is not

�xed for the entire ECG but changing dynamic according to the wave.

Generally, the annotation of R peak is not always provided in online databases. The

need for a further analysis in ECGs' waves led us in creating a second approach for the

detection of the waves which can handle more loose demands independent of R peaks.

The second method of automatic detection Graphical based Automatic Detection (GlAD)

is using a "feature wave-bank" to learn features of the waves of each patient and using

a graphical probabilistic model named as Hidden Conditional Random Field (HCRF) to

categorize the candidate waves in P and T waves online. In brief, a random subset of

selected waves from pAD is used to extract some morphology features for each patient.

These features are used to train HCRF. The next phase is a procedure for the selection

of candidate waves and their feature extraction. Finally, HCRF classi�es candidates in P

or T waves.

3.2 Hidden Conditional Random Fields

Hidden Markov model (HMM) [8] is one of the most widely used tools that includes

hidden-state structure instead of fully observable construction. HMM is a �nite automa-

ton containing individual-valued states H broadcasting a data vector X at each time point,

depending on the current state of the distribution of the data at each time point. This

kind of models are generative requiring evaluation of the joint probability density func-

tion (PDF) over multiple time points in the observed data samples. In order to make

the problem's assumption manageable, we should make some a�airs conditioned on the
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states about independence of the data at each time point. Although such hypotheses are

disrupted in many practical schemes.

Conditional Random Fields (CRFs) were �rst introduced by La�erty etal: [9] overcome

the independence assumptions, since these are discriminative models that prevent the need

to model the data distribution. Despite the fact they deal with independence issues, they

propose a label assignment for each observation which is not so easy task with big data.

Moreover, CRFs do not use hidden states nor precisely provide a way for the estimation

of the conditional probability of a class label. CRF training for wave recognition requires

an appropriate assignment of part labels to the local features in the training data. In

public datasets this kind of information is not always available, and manual annotation

(e.g. P or T wave) is a time-consuming task.

Figure 3.1: Graphical representation of HMM and CRF

Hidden Conditional Random Fields (HCRFs) [10] are based on CRFs as a natural

extension of them. HCRFs directly output the action label and do not require the as-

signment of part labels in the training data. They model the spatial and temporal struc-

tures by introducing an additional layer of structured hidden variables with dependencies

among them. HCRFs decide the joint distribution of a class label and hidden state labels

conditioned on observations and expressed using an undirected graph.
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Figure 3.2: Graphical representation of HCRF

The di�erence between HMMs, CRFs and HCRFs can be shown using graphical rep-

resentations in Fig. 3.1,3.2. The colored rectangles in HCRF denote the relationship

between observation and hidden states (yellow), hidden states and labels (red), as well as

the compatibility of class label with a transition from one hidden state to another (green).

Our target is a mapping of observations X to class labels y ∈ Y , where x is a vector

of m local observations, X = {x1; x2; :::xm}, and each local observation xj is a feature

vector �(xj) ∈ Rd, where d is the dimensionality of the representation as described in

Bousmalis et al. [11]. An HCRF models the conditional probability of a class label given

an observation sequence by:

P (y|x; �) =
∑
h

P (y; h|x; �) =

∑
h exp Ψ(y; h; x; �)∑

y′∈Y
∑

h exp Ψ(y′; h; x; �)
(3.1)

where h = {h1; h2; :::; hT}, are the hidden variables hi ∈ H. If we assume that there is a

single class label y and that h is observed then the conditional probability of h given x

turns into a regular CRF. The potential function Ψ(y; h; x; �) ∈ R, is parameterized by �,

which measures the compatibility between a set of observations, a label and a con�guration

of the hidden states. The graph of our model is a chain where each node corresponds
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to a latent variable hj. Our parameter vector � is made up of three components: � =

[�Tk1�
T
k2
�Tk3 ]

T . Parameter vector �k1 models the relationship between features �(xj) and

hidden states hj ∈ H and is typically of length (d × |H|). �k2 models the relationship of

the hidden states hj ∈ H and labels y ∈ Y and is of length (|Y|× |H|). �k3 represents the

links between hidden states. It is equivalent to the transition matrix in a HMM, with a

signi�cant di�erence that a HCRF keeps a matrix of \transition" weights for each label

and �k3 is of length (|Y| × |H| × |H|). We de�ne potential functions for each of these

relationships, and our Ψ as their product along the chain

Ψ(y; h; x; �) =
∑
j∈V

∑
k1∈K1

�k1·�k1(xj; hj)+
∑
j∈V

∑
k2∈K2

�k2·�k2(y; hj)+
∑

(i;j)∈E

∑
k3∈K3

�k3·�k3(y; hi; hj)

(3.2)

Note that this function is a general form and it is formulated in this way for simplicity.

The �rst two terms are node terms and the third is one edge term.

We use the notation �k1 · �k1(xj; hj) to the weight or potential that estimates the

compatibility between the feature indexed by state hj ∈ H and xj. Similarly,�k2 ·�k2(y; hj)

stand for weights or potentials that correspond to class y and state hj , whereas �k3 ·

�k3(y; hi; hj) measure the compatibility of the label y with a transition from hi to hj.

From Eq.(3.1) and P (y; h|x; �), we can use Bayes' rule to derive the joint probability

of assigning a set of part labels h when its features x, class label y and weight parameters

� are known:

P (h|y; x; �) =
P (y; h|x; �)

P (y|x; �)
=

eΨ(y;h;x;�)∑
h e

Ψ(y;h;x;�)
: (3.3)

The training of HCRF model is the same as the ordinary CRF model except the sum

of hidden variables. Following previous work on CRF, we want to maximize the joint

conditional probability P (y|x; �) for all training examples. The objective function used

for training parameters � is de�ned as:

L(T ; �) =
∑

(x;y)∈T

L(�|y; x)− 1

2�2
‖�‖2 =

∑
(x;y)∈T

logP (y|x; �)− 1

2�2
‖�‖2: (3.4)
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The �rst term in Eq.(3.4) is the conditional log-likelihood on the training waves. The

second term is a penalized term to prevent the L2 norm of the model parameter ‖�‖

becoming too big. It is the log of a Gaussian prior with variance �2 . That is, we assume

the model parameter follows a normal distribution P (�) ∼ N(0; �2) to constrain ‖�‖. The

optimal �? is learned by maximizing the objective function in Eq.(3.4), thus

�? = arg max
�
L(�): (3.5)

The optimal �? which maximize L can not be computed analytically; instead we need to

employ iterative methods to estimate it.

For the evaluation of the optimal weight described by Eq.(3.5) from a set of train-

ing samples we use an iterative gradient-based optimization method. Broyden-Fletcher-

Goldfarb-Shanno (BFGS) is nowadays considered the most e�cient and is indisputably

the most popular quasi-Newton update formula. However, if the number of the variables

is very large it becomes too expensive method. For that reason a less computationally

intensive method has been proposed. Liu et al. [12] �rst introduced Limited-memory

BFGS (LBFGS) as a method that requires repeated estimations of objective function L

and its derivatives with respect to each model parameter in �. LBFGS method instead

of storing and updating the entire inverse Hessian matrix (next search direction) it stores

only the information from the past m iterations using implicitly this information for the

inverse Hessian matrix requirements.

However, likewise with other hidden states models (e.g. HMM) the addendum of

hidden states leads to a non convex objective function L(�) implying not always a global

optimum point. Therefore we search for parameters by initializing from random start

points and searching for the best local optimum.

The next step is to describe an e�ective way to calculate the gradient of L(�). Denote

the log-likelihood of the training set as

L(�) = logP (y|x; �) = log

∑
h exp Ψ(y; h; x; �)∑

y′∈Y
∑

h exp Ψ(y′; h; x; �)
: (3.6)
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The calculation of the derivatives would be really time consuming because if we have m

features there are |H|m possible h. For the avoidance of such situation we use a belief

propagation (BP) algorithm to calculate marginal probabilities and their normalization

term e�ciently.

∀y ∈ Y ; Z(y|x; �) =
∑
s

eΨ(y;s;x;�); (3.7)

∀y ∈ Y ;∀j ∈ V; ∀� ∈ H; P (hj = �|y; x; �) =
∑

h:hj=�

P (h|y; x; �); (3.8)

∀y ∈ Y ;∀(j; k) ∈ E;∀� ∈ H;∀b ∈ H; P (hj = �; hk = b|y; x; �) =
∑

h:hj=�;hk=b

P (h|y; x; �):

(3.9)

Eq.(3.7) de�nes a normalization term Z(y|x; �) that sums over all possible h. Eq.(3.8)

de�nes a marginal probability over an individual variable hj . Eq.(3.9) de�nes a marginal

probability over pairs of variables hj and hk, which correspond to edges in graph G.

The �rst derivatives of Eq.(3.6) with respect to each parameter �k1 ; �k2 and �k3with

the use of BP algorithm are:

@L(�|y; x)

@�k1
=
∑
h∈H

{
exp Ψ(y; h; x; �)∑

t exp Ψ(y; st = hk; x; �)

@Ψ(y; h; x; �)

@�k1

}

−
∑
y′∈Y

∑
h∈H

{
exp Ψ(y′; h; x; �)∑

y′∈Y
∑

h∈H exp Ψ(y′; h; x; �)

@Ψ(y′; h; x; �)

@�k1

}

=
∑
h∈H

∑
j∈V

P (y; hj = s|x; �) · �k1(xj; hj)

−
∑
y′∈Y

∑
h∈H

∑
j∈V

P (hj = s|y′; x; �) · �k1(xj; hj)

= gk1(y; h; x; �): (3.10)

@L(�|y; x)

@�k2
=
∑
s∈H

∑
j∈V

P (y; hj = s|x; �) · �k2(y; hj = s)

−
∑
y′∈Y

∑
s∈H

∑
j∈V

P (hj = s|y′; x; �) · �k2(y′; hj = s)

= gk2(y; h; x; �) (3.11)
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@L(�|y; x)

@�k3
=
∑
s∈H

∑
s′∈H

∑
(i;j)∈E

P (y; hj = s; hi = s′|x; �) · �k3(y; hj = s; hi = s′)

−
∑
y′∈Y

∑
s∈H

∑
s′∈H

∑
(i;j)∈E

P (hj = s; hi = s′|y′; x; �) · �k3(y′; hj = s; hi = s′)

= gk3(y; h; x; �) (3.12)

Here s ∈ H is a hidden state and the
∑

s∈H is the summation of all possible states of hj

at site j, j ∈ V .

Using Eq. (3.8) and (3.9) in gradients above (Eq. (3.10),(3.11),(3.12)) we can say that

all four probabilities P (y; hj = s|x; �); P (hj = s|y′; x; �); P (y; hj = s; hi = s′|x; �); P (hj =

s; hi = s′|y′; x; �) can be calculated in a time that grows only linearly with the number of

part labels.

Several works using HCRFs have been implemented in speech or action recognition,

in ECGs classi�cation of di�erent types of heart beats.
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3.3 Methodology for percentile Automatic Detection

Figure 3.3: Block diagram representation of the pAD method for P & T wave detection

A �rst approach in percentile based Automatic Detection for P & T wave is proposed. The

block diagram of the proposed method is shown in the �g. 3.3. The detailed description

of the proposed method is given bellow.

3.3.1 Filtering

Initially, the signals are pre-processed to eliminate the undesirable frequencies (parasitic,

noises). To achieve that, a moving average �lter was implemented to smooth data by

replacing each data point with the average of the N neighboring data points. This process
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is equivalent to lowpass �ltering and is given by the di�erence equation:

ys(i) =
1

2N + 1
(y(i + N) + y(i + N − 1) + :: + y(i−N)) (3.13)

where ys(i) is the smoothed value for the ith data point andN is the number of neighboring

data points (in our case N = 5). Fig. 3.4 points out the original ECG and the result

obtained after �ltering which is a smooth response to the original data.

Figure 3.4: Original & Filtered ECG

3.3.2 Preservation of R peak & Adaptive Threshold

The signal has been divided into buckets of 2000 values as has been discussed in Manual

Detection (see Chapter 2) to reduce baseline drift. The detection of P and T waves, with

respect to R peak, would be easier if R peaks were preserved una�ected by the �lter.

Thus, the location and the value of R were used from the original signal and not from the

�ltered one.

The peak of each wave has been detected using as threshold the percentile. The

kth percentile of the signal is the value below which k percent of the observations may

be found. It has been noticed that the intervals IT = [90th percentile ± 0:3 mV ] and

IP = [65th percentile± 0:2 mV ] contain a set of values and among them the peaks of T
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and P-wave respectively. Hence, the values that are inside those limits of percentile will

be selected including some other values of noise or QRS complex.

3.3.3 Delimitation of the wave

For the detachment of the peaks, the set S must be found:

S = {x : f(x) ∈ IT (or IP )}; (3.14)

where f(x) are ECG values and x their locations. The set S has to be divided into

subsets Si, where each contains consecutive elements. Next, maximum values for subsets,

M = {maxSi} were found which are acceptable only if they were not the �rst or last

element of Si, in order to avoid points of QRS complex. For each R, the peak of M which

is (35 ∗ 7:8125)msec = 0:2734sec after R or (25 ∗ 7:8125)msec = 0:1953sec before R was

kept. The �rst interval denotes the T wave while the latter the P wave respectively. Those

intervals preserve the known P and T waves time interval.Finally, the set M ′ = {maxSi}

consists of the location of the peaks.

For each peak we move to the right until the gradient stops to be negative (assuming

there is no noise) and we consider this point the end (o�set) of the wave. The start (onset)

is the point on the left part of the wave having the closest ordinate with the ending point.

This approximation has the opportunity to select the waves that are inside an area

de�ned by percentile values with an excellent result for both P and T waves. However,

in most cases an ECG signal has a shifted baseline across the time (change in mV). For

that, a new method has been created in order to achieve better results defying those shifts

among other things that will be discussed below.
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Figure 3.5: Block diagram representation of the proposed method for P & T wave detec-
tion

3.4 Methodology for Graphical based Automatic Detection

From the previous process several waves have been extracted both P and T. Due to the

thresholds that have been used in the �rst automatic we had the chance to collect an

adequate number of waves. However, this was the initial step for our research. The next

goal is to isolate as much as possible waves from the ECG.

The way that the Graphical based Automatic Detection has been implemented is

shown in �g. 3.5.

27



3.4.1 Use P & T waves extracted from pAD

The main idea was to use a set of 200 P waves and 200 T waves randomly selected from

every patient separately. The waves as have been mentioned before are extracted from

pAD algorithm. Morphology of the waves provides a lot of information that seems to

be a good separator. Hence, four features (area, height, left slope and right slope) are

estimated based on those waves. Further details for the features will be discussed in

Chapter 4.

3.4.2 Training with HCRF

Given a training set (x1; y1); (x2; y2); : : : ; (xm; ym), where xi denotes a vector with the four

features described above and yi is the class label for every wave (P or T), the HCRF model

trains the model parameter �. Several numbers of hidden states h were used in order to

�nd the lower possible without disrupting the success rate of the algorithm. In our case

4 is the ideal number for hidden states. The goal of the model targets in keeping weights

of edges (�) higher for correct assignments of labels (possessing higher probabilities), and

lower for the incorrect assignments (possessing lower probabilities). In brief, only the

important edges will determine the output (label) for the model. Therefore, even if we

use more hidden states the �nal estimated � can reject all the unnecessary states.

For the estimation of � the objective function is de�ned in Eq. 3.4 as the di�erence of

conditional log-likelihood term and a penalty term to avoid over�tting. The maximization

of this objective function will output the desirable �. Generally, the maximization of a

function is achieved by the following steps:

• denote the partial derivatives of the function and set it equal to 0

• solve the above equations in order to �nd critical points

• those critical points (belong in domain) for which the second derivative is negative,

are the local maximum.
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In our case the calculation of these derivatives are so hard to be calculated analytically.

So, the The Belief Propagation (BP) is used (Eq. 3.10, 3.11, 3.12) as an approach. In

order to �nd the optimal parameters �? (see Eq. 3.5) the L-BFGS method is used, which

requires the gradient of the �rst term (Eq. 3.4) with respect to each parameter.

As soon as the training phase is over the optimal parameters �? will form the model

which will be used in testing phase of classi�cation.

3.4.3 Procedure for selection of the waves

The �rst two steps before recording the waves is the same as discussed in previous sections.

Thus, a moving average �lter is applied all over the ECG signal which is separated into

buckets.

In the proposed method the di�erence between adjacent values is calculated in order to

�nd all the ascending and descending values as an approximation of �rst derivative. The

objective is to select both P and T waves. For this purpose three stages are implemented

in the algorithm.

First stage

Determination of the start-to-peak of the waves. The rise on the values of di�erences

does not represent only the waves start points but also noise. For that reason

a second statement is implemented to dispose every noise. If the rise di�erences

exceed 4 continuous values and until there are three declines in di�erences (a.k.a.

variability), we denote these values as the �rst half of the wave (onset to peak). Fig.

3.6 denotes the results from the First Stage.

Second stage

It is obvious that in First stage QRS complex is also selected. Hence, to reject

these errors the left �tting slope is calculated and used as a constrain. The range

of the slope will be in a speci�c area. The minimum threshold value is de�ned as

the minimum of left �tting slope from both P and T waves for all patients, whereas

the maximum threshold value as the maximum left �tting slope. Fig. 3.7 depicts
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the results from the Second Stage.

Third stage

To �ll the other half in the remaining waves an addendum with the half length of

the current wave is implemented to locate the maximum value. From this value we

will move to the right until variability is less than three values. Fig. 3.8 shows the

results from the Third Stage.

Figure 3.6: The First stage in the procedure for the selection of the waves

Figure 3.7: The Second stage in the procedure for the selection of the waves
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Figure 3.8: The Third stage in the procedure for the selection of the waves

3.4.4 Classi�cation

In the classi�cation phase from each wave the same four features are calculated as de-

noted in training phase. Those features are imported in the HCRF algorithm with the

corresponding weights extracted from learning phase and the output denotes the class

label where they belong (P or T waves).

3.4.5 Check for false records

As we may consider there is a possibility where the GlAD will enter a false wave or will

miss in the classi�cation stage. Therefore, a check for false records is implemented in every

patient respectively. The criterion for this is the R peak annotation. The results show a

85%−97% success rate in subjects with low noise ratio whereas 70%−80% success rate in

more noisy signals almost equally for P and T waves. The intuition of these percentages

(e.g. in 97%) is to declare that among 100K R peaks the 97K are detected correctly. The

other 3K may not be even present nor can be detected (e.g. variability, odd morphology).
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3.5 Results

In order to evaluate the performance, the proposed algorithm was tested using MIT-BIH

Normal Sinus Rhythm database. The pAD algorithm is able to detect both P and T

waves as shown in Fig. 3.9 and 3.10 respectively.

Figure 3.9: P wave Detection using pAD

Figure 3.10: T wave Detection using pAD

For the GlAD algorithm an example of the results is shown in �g. 3.11.
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Figure 3.11: P and T wave Detection using GlAD

The total number of selected waves for both methods are shown in Table 3.1. As we

may notice all P waves from pAd algorithm are less than P waves from GlAD algorithm.

In the majority of T waves the results are also better in GlAD than in pAD. The cases

where T waves are less in second method are because P and T waves don't di�er much

and that leads to miss-classi�cation. It is worth to mention that the results of this table

show only the correct waves.
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Table 3.1: Total number of selected waves

Patients
pAD GlAD

P-wave T-wave P-wave T-wave

16265 40750 45735 77226 88728
16272 34529 47859 38397 32450
16273 34473 31194 69669 78351
16420 10256 48185 69695 66254
16483 55872 57013 97105 95334
16539 23185 51229 63752 61663
16773 40964 39231 44572 42628
16786 50609 60555 94747 99008
16795 20912 47167 66253 65458
17052 39109 142 59290 3173
17453 22945 26530 67457 69313
18177 39405 44993 86504 23555
18184 25583 36931 68329 76334
19088 3681 45140 58787 28827
19090 24060 60745 76291 77974
19093 53507 59771 60255 63873
19140 9316 41690 77213 86136
19830 10880 11949 24708 76440

Mean 30002 42003 66681 63083
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Chapter 4

Feature Extraction

4.1 Peak - Height - Duration

4.2 Global Area

4.3 Left & Right Area

4.4 Upper & Down Area

4.5 Upper Left & Right Area

4.6 Left & Right Slope

4.7 Left & Right Fitting Slope

4.8 Ratios of Features

The selection of features aims to illustrate that su�cient information can be obtained,

not only from the entire wave, but also from part of it. Arsenos et al. [13] and Zeraatkar et

al. [14] have used some conventional ones before. A signi�cant advantage of this approach

is the independence between the accuracy of metrics and the accuracy of onset and o�set

points.

The detection of P and T waves from ECG signal prepares the �eld to extract necessary

descriptors or features from these parts of signal. In this work 30 features have been
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Figure 4.1: Sample of T wave

considered and extracted, the same for both waves. There are 15 features characterizing

the morphology of the wave and 15 referring to their ratio. By morphology the author

means the peak (maximum value), minimum value, height or duration of the wave, as

well as, the global area and the semi-areas such as left or right area, upper or down area

and upper left or upper right area. There are also left or right slope given from onset

point to peak and from peak to o�set point and the slope that �ts better to data points.

For simplicity, the set wave was de�ned

wave = {f(xi) : xi ∈ D}; i = 1; :::; n (4.1)

where Pi = (xi; f(xi)) corresponds to ith point and D = [onset point; offset point] (�g.

4.1). Each feature is described analytically bellow:

4.1 Peak - Height - Duration

• Feature 1: Maximum value or Peak (�g. 4.2) of the wave

Max = max(f(xi)) (4.2)
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• Feature 2: Minimum value of the wave

Min = min(f(xi)) (4.3)

Figure 4.2: Peak, height & Duration

• Feature 3: Amplitude or Height (�g. 4.2) is the distance from minimum to Peak

H = Max−Min (4.4)

• Feature 4: Duration (�g. 4.2) of the wave

D = xn − x1 (4.5)

4.2 Global Area

In order to calculate areas, the wave must be shifted, in such way that the minimum value

of the wave falls on the x axis.

• Feature 5: Global Area (�g. 4.3) is de�ned as the area under the curve formed from
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the onset to the o�set point of the wave

AG =
n−1∑
i=1

∫ xi+1

xi

(�(x− xi) + f(xi)) dx

and � =
f(xi+1)− f(xi)

xi+1 − xi
; (4.6)

where the amount in the integral is the line formed between two consecutive points

Pi and Pi+1. The � is the slope of this line.

Figure 4.3: Global Area

4.3 Left & Right Area

• Feature 6: Left Area (�g. 4.4) is de�ned as the area under the curve formed from

the onset to the Peak of the wave

AL =

p−1∑
i=1

∫ xi+1

xi

(�(x− xi) + f(xi)) dx; (4.7)

and Pp are the coordinates of the Peak.

• Feature 7: Right Area (�g. 4.4) is de�ned as the area under the curve formed from
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the Peak to the o�set of the wave

AR =
n−1∑
i=p

∫ xi+1

xi

(�(x− xi) + f(xi)) dx; (4.8)

and Pp are the coordinates of the Peak.

Figure 4.4: Left & Right Area

4.4 Upper & Down Area

For the next four features the wave has to be divided horizontally by a line. This line is

de�ned as the horizontal line vertical to the height (vector) and passing through the middle

(of the height). The intersection points between the line and the wave were determined

as points with the shortest distance from the line, Pl and Pr (left and right) with respect

to the Peak.

• Feature 8: Upper Area (�g. 4.5) is de�ned as the area under the curve formed from

the Pl point to the Pr point

AU =
r∑
i=l

∫ xi+1

xi

(�(x− xi) + f(xi)) dx; (4.9)
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shifted according to the min(f(xl); f(xr)).

• Feature 9: Down Area (�g. 4.5) is de�ned as the area under the curve formed from

the onset to the Pl point, from the Pl to the Pr point (below) and from the Pr to

the o�set point

AD = A1 + A2 + A3;

A1 =
l−1∑
i=1

∫ xi+1

xi

(�(x− xi) + f(xi)) dx;

A2 =

∫ xr

xl

(
f(xr)− f(xl)

xr − xl
(x− xl) + f(xl)

)
dx;

A3 =
n−1∑
i=r

∫ xi+1

xi

(�(x− xi) + f(xi)) dx (4.10)

Figure 4.5: Upper & Down Area
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4.5 Upper Left & Right Area

• Feature 10: Upper Left Area (�g. 4.6) is de�ned as the area under the curve formed

from the Pl to the Peak

AUL =

p−1∑
i=l

∫ xi+1

xi

(�(x− xi) + f(xi)) dx; (4.11)

shifted according to the f(xl).

• Feature 11: Upper Right Area (�g. 4.6) is de�ned as the area under the curve

formed from the Peak to the Pr point

AUR =
r−1∑
i=p

∫ xi+1

xi

(�(x− xi) + f(xi)) dx; (4.12)

shifted according to the f(xr).

Figure 4.6: Upper Left & Right Area
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4.6 Left & Right Slope

• Feature 12: Left Slope (�g. 4.7) is de�ned as the slope of the line formed from P1

and the Peak

SL =
f(xp)− f(x1)

xp − x1

(4.13)

• Feature 13: Right Slope (�g. 4.7) is de�ned as the slope of the line formed from

Peak and the Pn

SR =
f(xn)− f(xp)

xn − xp
(4.14)

Figure 4.7: Left & Right Slope

4.7 Left & Right Fitting Slope

• Feature 14: Fitting Left Slope (�g. 4.8) is de�ned as the slope of the straight line

which would provide a best �t for the data points Pi; i = 1; :::; p. This line has to

minimize the sum of squared residuals of the linear regression model min�;�Q(�; �)

for Q(�; �) =
n∑
i=1

"̂ 2
i =

n∑
i=1

(f(xi)− � − �xi)
2 (4.15)
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where � is the y-intercept and � is the slope FL.

• Feature 15: Fitting Right Slope (�g. 4.8) is de�ned as the slope of the straight line

which would provide a best �t for the data points Pi; i = p; :::; n. The � is the slope

FR.

Figure 4.8: Left & Right Fitting Slope

4.8 Ratios of Features

The other 15 features are some of the ratios:

AL
AG

; AR
AG

; AL
AR
; AU

AG
; AD

AG
; AU

AD
; AUL

AL
; AUR

AR
;

AUL
AUR

; AUL
AU

; AUR
AU

; AUL
AG

; AUR
AG

; SL
SR
; FL

FR
:
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Chapter 5

Discrimination of day-night periods

5.1 Introduction

5.2 Procedure for paired t-test

5.3 Results

5.1 Introduction

Many researchers studied P or T waves for certain time periods or for the whole 24 hour

recording. Neyroud et al. [15] concluded that there is an in
uence of day and night

in ventricular repolarization behavior. Braga et al. [16] and Ramirez et al. [17] studied

QT/RR di�erences between day and night for both genders. Dilaveris et al. [18] presented

the diurnal pattern of P-wave duration, P area, and PR interval.

The �rst objective of this thesis is to examine the discrimination of day-night periods

based on P and T waves. New features have been employed, which have been discussed

in Chapter 4, for examining P and T wave's morphology.

Paired t-test is used for the evaluation of the values extracted from features; the

signi�cance level is set at � = 0:05 = 5%. A lower value for p − value expresses the
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discrimination of the waves between the two opposing periods that will be discussed in

next section.

5.2 Procedure for paired t-test

The paired t-test is used to compare two population means or medians. In our case, we

have two samples day and night in which observations in �rst sample can be paired with

observations in the second sample. Suppose a sample of n waves during the day (1:00-3:00

AM) and n waves during the night (1:00-3:00 PM) similarly for P or T waves.

Let x =daytime waves and y = nighttime waves. We calculate the di�erence between

the two observations on each pair as di = yi − xi, making sure we distinguish between

positive and negative di�erences.

There are three assumptions must be checked:

• The sample is randomly selected.

• The percentage of extreme outliers in available observations di is no more than 10%.

• The paired t-test does not assume that observations within each group are normal,

only that the di�erences are normally distributed; the Shapiro Wilk test is used in

order to test the normality of our data.

The null hypothesis is that the mean di�erence between paired observations is zero.

When the mean di�erence is zero, the means of the two groups must also be equal.

We can use the results from our sample of waves to draw conclusions about the impact

of this discrimination in general.
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5.3 Results

After implementing the paired t-test the p-values of manual selection, for both waves,

are all signi�cantly lower for all features (p < 0:00001) except AUL=AG. Also, p-values of

pAD give for every feature signi�cantly lower value (p < 0:00001) except Min (with p =

0:0047 for P waves) and appeared to be better, compared to manual selection, due to

larger amount of data analyzed. The majority of investigated features for both manual

and pAD have been proved rich descriptors for heart performance.

The correlation coe�cient (CC) and the corresponding p-value for T and P waves

collected by the pAD, are presented in Table 5.1. In this thesis the dependent variable

is each feature of the wave of daytime period and the independent variable is the same

feature of nighttime period. The results have shown signi�cant dependence for these

variables (p < 0:00001) except AU=AD for P waves. It is important to be mentioned that

10 features of T waves (Max, H, AG, AL, AR, AD, SL, SR, FL, FR) had approximately

CC greater than 0.7, which indicate a strong positive linear relationship via a �rm linear

rule and predicts 50% of the variance in the independent variable.
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Table 5.1: Results for Association

Features
T-wave P-wave

Features
T-wave P-wave

CC CC CC CC

Max 0:6956 0:4144 AL=AG 0:2793 0:3777
Min 0:5185 0:3134 AR=AG 0:2767 0:3762
H 0:7895 0:4140 AL=AR 0:3343 0:3944
D 0:2572 0:2449 AU=AG 0:3920 0:2474
AG 0:8408 0:4253 AD=AG 0:4043 0:2508
AL 0:8252 0:4249 AU=AD 0:2890 0:0036
AR 0:8321 0:3946 AUL=AL 0:3144 0:2423
AU 0:5384 0:2011 AUR=AR 0:3700 0:2328
AD 0:8630 0:4064 AUL=AUR 0:0607 0:3567
AUL 0:5265 0:2048 AUL=AU 0:0721 0:3424
AUR 0:5058 0:2437 AUR=AU 0:0728 0:1313
SL 0:7286 0:2762 AUL=AG 0:3426 0:1615
SR 0:7431 0:3803 AUR=AG 0:3453 0:3102
FL 0:6957 0:2652 SL=SR 0:2476 0:2036
FR 0:7495 0:3783 FL=FR 0:3510 0:1714
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Chapter 6

Classification

6.1 Introduction

6.2 Naive Bayes

6.3 K Nearest Neighbor

6.4 Decision Tree

6.5 Support Vector Machine

6.6 10-fold Cross Validation

6.7 Classi�cation Performance

6.1 Introduction

For the discrimination capability of day-night periods for P or T wave several methods of

classi�cation have been tested.

The naive Bayes classi�er or simple Bayesian classi�er [19], is a classi�er built upon

the Bayes' theorem. It is essentially a simple Bayesian Network (BN) and particularly

suitable for the case when the dimensionality of the inputs is high.
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K-Nearest Neighbor (KNN) method [20] has been used in applications such as recog-

nition of handwriting, data mining, statistical pattern recognition, ECG disease classi�-

cation and image processing. This work is primarily motivated by the desire to create an

algorithm for accurate and precise delineation of P & T waves between two time periods.

Decision trees [21] are among the most livable medical decision support models, which

are already successfully used for many medical decision making purposes. The goal is to

learn how to classify objects by analyzing a set of instances whose classes are known.

The technique of SVM [22] is a powerful, widely used technique for solving supervised

classi�cation problems due to its generalization ability. Basically, SVM classi�ers max-

imize the margin between training data and the decision boundary, hence the optimal

hyperplane that separates them. Maximization problem can be formulated as a quadratic

optimization problem in a feature space. Support vectors are called subset of examples

(patterns) which are closest to the decision boundary.

6.2 Naive Bayes

The naive Bayes algorithm [19] depends on a strong hypothesis; the value of any feature

is independent of the existence of any other feature. Generally, in most of the real life

examples, the naive Bayes hypothesis is never satis�ed but the algorithm predicts with a

good enough accuracy the classes.

Assume that a set of samples xi; i = 1; :::; K is given with their associated class labels

cxi ∈ Ω = {c1; c2; :::; cL}. Further assume that the samples have n features denoted as

zj; j = 1; :::; n. The task is to use the samples to learn a naive Bayes model that will

predict the label cx for any future sample x.

A general BN classi�er, which uses the Bayes rule to compute the posterior of clas-

si�cation variable c based on the feature variables zj; j = 1; :::; n, can be described as

follows:

p(c|z1; z2; :::; zn) =
p(z1; z2; :::; zn|c)p(c)

p(z1; z2; :::; zn)
(6.1)
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By default, the MATALB software models the predictor distribution within each class

using a Gaussian distribution having some mean and standard deviation.

6.3 K Nearest Neighbor

KNN [20] is a classi�cation method based on closest training samples. It is an instance-

based learning algorithm that, instead of performing explicit generalization, compares new

problem instances with stored in memory instances seen in training. It is called instance-

based because it constructs hypotheses directly from the training instances themselves.

The classi�cation is performed by �nding the minimum distance from a data set which

contains the training data and data set which contains the reference values. During the

training phase no actual model or learning is performed, although a training dataset is

required. It is used solely to �ll with instances whose class is known from a sample of

the search space, for this reason, this algorithm is also known as lazy learning algorithm.

KNN do not perform any generalization and during the testing phase all the training data

is needed. The decision of an instance, whose class is unknown, is made by computing

its K closest neighbors. The majority of votes among those neighbors assign the class of

that instance.

The KNN algorithm consists of two phases. The �rst one is training while the other is

testing phase. In training phase, the training examples are vectors in a multidimensional

feature space. In this phase, the feature vectors (mean of every feature from Chapter 4)

and class labels of training samples are stored. In the testing phase, K is a user-de�ned

constant. The label assigned to a test point (unlabeled vector) for the classi�cation is the

most frequent among the K training samples nearest to that query point. In other words,

the KNN method compares the library of reference vectors with the input feature vector.

For labeling the query point the nearest class of library feature vector is used. This way

of categorizing query points based on their distance to points in a training data set is an

e�ective and a simple way of classifying new points.
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One of the advantages of the KNN method for an object classi�cation is that it requires

only few parameters to be de�ned: K and the distance metric. By default (in Matlab)

K was assigned equal to 1 and Euclidean distance metric was used for distance. In our

experiments several K values were assigned but the most preferable was 1. Euclidean

distance is de�ned as the root of square di�erences between coordinates of a pair of

objects and is de�ned as follows:

dist =

√√√√ n∑
i=1

(xi − yi)2 (6.2)

6.4 Decision Tree

A decision tree (DT) [21] is a tree shaped classi�er which consists of nodes and edges. Root

node is called the node without any incoming edge. Leaves are called the nodes which

do not possess any outcoming edges. The remaining nodes are called internal nodes. To

each leaf a class or a probability class is assigned. Every non-leave node represents a split

regarding the input space.

Growing a classi�cation tree faces the task of recursive partitioning the input space.

The input space is commonly represented by a learning set consisting of N instances which

are represented by a feature vector x and its belonging class y. For the classi�cation of an

instance x trained by a decision tree, i.e. making hypothesis on the class membership of

x, the instance is spread through the tree and a class is assigned to which the leaf belongs

where the instance ends up.

For learning and classi�cation by a decision tree the author used the ECG features

(see Chapter 4). More precisely, since ECG records consist of rows of each wave; several

values were extracted from the attributes. The most common use is averages of each

attribute in a single ECG record.

The experiment was performed with classi�cation into two classes, where one class is

daytime and the other class is nighttime. The motivation for this experiment was the
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question whether it is possible to discriminate dependably between the P & T waves

during the day and night. The best values were acquired with attribute average values

using all features for decision tree generation.

6.5 Support Vector Machine

SVMs [22] revolve around the notion of a \margin"â��either side of a hyperplane that

separates two data classes. Creating the largest possible distance between the separating

hyperplane and the instances on either side of it and thereby maximizing the margin has

been proven to decrease the expected generalization error.

If the training data is linearly separable, then a pair, (w; b) exists such that


wTxi + b ≥ 1 when yi = +1

wTxi + b ≤ −1 when yi = −1

(6.3)

where xi is input, w is weight vector, b is a bias and yi are class labels {−1; 1} with the

decision rule given by fw;b = yi(w
Txi + b).

It is easy to show that, when it is possible separating two classes linearly, an optimum

separating hyperplane can be found by minimizing the squared norm of the separating

hyperplane. In many practical situations, a separating hyperplane does not exist. The

minimization can be achieved as a convex quadratic programming (QP) problem:

Minimize
w;b

Φ(x) =
1

2
‖w‖2 (6.4)

The solution induces to an objective function of the form:

f(x) = sgn

[
l∑

i=1

(yi�i(x:xi) + b)

]
(6.5)

where �i are Lagrange multipliers. Only a small fraction of the �i coe�cients are nonzero.
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The objective function is de�ned by support vectors which are corresponding pairs of xi

entries.

By applying the kernel function K(x; xi) instead of inner product (x:xi) the input data

are mapped to a higher dimensional space. Hence, the seperating hyperplane constructed

to maximize the margin is in this higher dimensional space. As long as the kernel function

can be applied, the SVM will operate correctly even if the designer does not know exactly

what kind of features are being used in the kernel-induced transformed feature space from

the training data.

In this thesis several Kernel functions were tested and the most suitable for the features

was Radial-basis function (RBF):

K(x; y) = exp

(
−‖x− y‖2

2�2

)
(6.6)

6.6 10-fold Cross Validation

Cross-validation [23] is a technique to evaluate predictive models by partitioning the

original sample into a train set that helps in the creation of a model and a test set to

evaluate it. In K-fold cross-validation, the sample is randomly separated into K equal

size subsamples. Of the K subsamples, a single subsample is kept as the validation data

for testing the model, and the remaining K − 1 subsamples are used as training data.

The process is repeated K times (with respect to the number of folds), with each of

the K subsamples used exactly once as the validation data. The estimation is formed

by averaging (or otherwise combining) the K results from the folds. The advantage of

this method is that all observations are used for both training and validation, and each

observation is used for validation one time only.

For classi�cation problems, one typically uses strati�ed 10-fold cross-validation, in

which the selected folds contain roughly the same proportions of class labels. We also

used 2-fold cross-validation.
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In repeated cross-validation, the procedure is repeated n times, yielding n random

partitions of the original sample. Hence, the estimation is formed by averaging the n

results.

6.7 Classi�cation Performance

The classi�cation performance are analyzed on 18 records of the MIT/BIH Normal Sinus

Rhythm database, which includes approximately 100,000 P and 100,000 T waves of pAD

algorithm to be classi�ed into two types, day and night. The extracted features are

taken for the calculation of averages which are given to the four classi�cation methods

discussed above. Two di�erent ways are used in order to show the discrimination: 2-Fold

Cross-Validation and 10-Fold Cross-Validation for every method.

Table 6.1: Results for Classi�cation

T-wave P-wave

CM CA CM CA

2-fold NB 91.805 90.485 82.924 80.696

10-fold NB 91.009 89.658 83.774 80.736

2-fold KNN 91.671 94.500 81.934 87.784

10-fold KNN 91.973 94.987 84.863 87.801

2-fold DT 90.152 93.383 84.865 85.456

10-fold DT 91.681 93.128 83.127 85.943

2-fold SVM 95.011 95.542 85.389 89.451

10-Fold SVM 93.592 94.881 89.039 89.153
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Chapter 7

Circadian Rhythm

7.1 Introduction

7.2 Procedure on PP and TT intervals and features

7.3 Results

7.1 Introduction

Several circadian rhythm studies can be found in the literature. Many of them [24{27]

reported di�erences in RR intervals and Heart Rate Variability (HRV). They all showed

a signi�cant circadian variation in healthy subjects. In order to show that the annotation

of P and T peaks in the GlAD method worked well, the PP and TT intervals are created.

In literature the only interval have been used is the RR due to the visible peaks that di�er

all over the signal. The annotation in P and T peaks is not an easy task as it is described

in previous Chapter.

The next goal of this thesis is to determine that the waves extracted from every patient

and by extension the peaks of P and T waves are more than enough for the research. So,

we want to check if the PP and TT intervals are following the same Circadian rhythm as

RR interval does. Thus, PP or TT interval is de�ned the di�erence between two adjacent
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peaks. The expected result is to show that the GlAD is a well characterized method for

detecting P and T waves that can perform in the same way the recognition of a Circadian

rhythm through those intervals.

After showing that the intervals revealed a Circadian rhythm, the same task has been

implemented in features extracted from all over the signal.

7.2 Procedure on PP and TT intervals and features

Initially, as it has been mentioned in section 3.4.5 a check for false waves has been pre-

ceded. The sets of waves are seperated in 2 time windows: every 30 minutes and every

1 hour. From every set the mean is computed as well the standard deviation (SDNN).

Even if the standard deviation of any interval is usually a single number over the whole

signal, we calculate SDNN for each time separately using the Eq. 7.1.

SDNN =

√√√√ 1

N − 1

N∑
n=2

[xi − x̄]2 (7.1)

For the avoidance of the outliers the median value is also calculated.

The start of the recordings in every patient is in di�erent time. The classi�cation

is done using the information given from the database. A 24-hour period is produced

starting at 11:00 AM.

The process followed for the features is the same as mentioned for the intervals. Two

time windows are selected here too. The mean and the median for every feature is

calculated as well the SDNN.
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7.3 Results

The experimental results for the PP and TT intervals show a Circadian behavior in the

same way as RR operates. The SDNN shows no signi�cant change in the time domain.

The �g. 7.1 indicates the mean values of each interval per hour while �g. 7.2 shows the

median for all intervals per hour. It is worth to notice that the di�erence (d) between the

graphs of intervals (e.g. 0.9 sec in TT interval and 0.92 sec for PP interval) is represented

as the d ∗ 7:8125 msec.

A poly�t curve is also implemented in every result. The poly�t function of Matlab

R2014b is used which returns the coe�cients for a polynomial p(x) of degree n that is a

best �t (in a least-squares sense) for the data in y (mean, median or SDNN values). The

coe�cients in 7.2 are in descending powers, and the length of p is n + 1.

p(x) = p1x
n + p2x

n−1 + · · ·+ pnx + pn+1 (7.2)

Figure 7.1: Mean values for all intervals per hour
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Figure 7.2: Median values for all intervals per hour

The SDNN across the 24-hours is shown in �g. 7.3.

Figure 7.3: SDNN values for all intervals per hour
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Figure 7.4: SDNN values for all intervals per hour using 5th degree polynomial curve

Figure 7.5: SDNN values for all intervals per hour using 10th degree polynomial curve

Bellow in Fig. 7.6, 7.7, 7.8 we display the results computed every 30 minutes.

Figure 7.6: Mean values for all intervals per 30 minutes
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Figure 7.7: Median values for all intervals per 30 minutes

Figure 7.8: SDNN values for all intervals per 30 minutes
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Figure 7.9: SDNN values for all intervals per 30 minutes using 5th degree polynomial
curve

Figure 7.10: SDNN values for all intervals per 30 minutes using 10th degree polynomial
curve

The �g. 7.4, 7.5, 7.9, 7.10 represent a polynomial �t as described above in eq. 7.3 of

the SDNN (5 and 10 degree polynomial function). It seems there is a di�erence in PP

against RR and TT intervals during the day as well in TT against PP and RR intervals

during the night. But, we will try to indicate a signi�cant linear relationship between

them.
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In order to show that kind of relationship between RR and PP intervals, RR and TT

intervals and also PP and TT intervals a linear regression is implemented. Fig. 7.11

depicts this relationship in every case.

Figure 7.11: Linear Regression of the intervals

Table 7.1: Results from Linear Regression in all intervals

�0 �1 SE MSE t− statistic p− value

RR-PP -0.2001 1.1966 0.0418 0.0003124 28.6446 � 0:0001
RR-TT -0.2471 1.2613 0.0501 0.0003986 25.160 � 0:0001
PP-TT -0.0367 1.0510 0.0228 0.0000826 46.0567 � 0:0001

Table 7.1 indicates the results in each case. The �0 and �1 declare the y-intercept and

the slope respectively of the eq 7.3. We want to reject the null hypothesis (see eq. 7.4);

observed test statistic (value bigger than 2) with a low p-value can conclude that there is

a signi�cant linear relationship between those intervals.

y = �0 + �1x + �; � = noise (7.3)
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H0 : �1 = 0;

Ha : �1 6= 0

use
�̂1

SE(�̂1)
(7.4)

Fig. 7.12 indicates the results of meadian for all intervals while �g. 7.13 shows the

means respectively.

Figure 7.12: Median values for all intervals per 30 minutes using polynomial �t

Figure 7.13: Mean values for all intervals per 30 minutes using polynomial �t
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Fig. 7.14 depicts the SDNN for the PP, RR and TT intervals. We can see here the

di�erence between the intervals as it is expected. All the intervals tend to be higher

during the nighttime whereas during the daytime exactly the opposite.

Figure 7.14: SDNN values for all intervals per 30 minutes using polynomial �t

The results for the mean, median and SDNN are also displayed in a di�erent time

frame (1 hour) in �g. 7.16, 7.15 and 7.17 respectively.

Figure 7.15: Median values for all intervals per hour using polynomial �t
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Figure 7.16: Mean values for all intervals per hour using polynomial �t

Figure 7.17: SDNN values for all intervals per hour using polynomial �t

As we may notice in �g. 7.13, 7.12, 7.16, 7.15 the polynomial line in the �rst hour of

every interval starts from a lower point. This is due to the fact of low information at the

start time of the records.

What is common for every interval is the low values during the day (0; 7 − 0:75sec)

and higher values during the night (0; 9− 0:95sec) with an increase in the afternoon and

a decrease early in the morning. It is obvious that these values have to be in that way
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because as we are awake our heartbeat works faster than when we sleep. According to

Circadian rhythm the alertness of body in the morning rises so the interval decreases On

the contrary at the �rst night hours the rhythm falls so the intervals increases.

After seeing the behavior in the PP, RR and TT intervals with respect to Circadian

rhythm, the results on features will be discussed below compared with circadian behavior

also.

Figure 7.18: Mean and Standard Deviation values per hour for Amplitude feature with
polynomial �t
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Figure 7.19: Mean and Standard Deviation values per hour for Amplitude feature with
polynomial �t

Fig. 7.18 and 7.19 depict the amplitude (duration) of the 24-hour pattern of mean

and the standard deviation in P and T waves respectively. We can notice that in P and

T waves the amplitude has lower values in the daytime than in the nighttime. This is

obvious since RR intervals show similar behavior in those time periods.

Figure 7.20: Mean and Standard Deviation values per hour for Height feature with poly-
nomial �t
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Figure 7.21: Mean and Standard Deviation values per hour for Height feature with poly-
nomial �t

Fig. 7.20 and 7.21 show the alternations in height curve of P and T waves over the

24-hour. Here the height of P waves seems to have an opposite behavior with those of T

waves. So, when the mean height values of P waves decrease the correspond values of T

waves increase and vice versa.

Figure 7.22: Mean and Standard Deviation values per hour for Global Area feature with
polynomial �t
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Figure 7.23: Mean and Standard Deviation values per hour for Global Area feature with
polynomial �t

Fig. 7.22 and 7.23 above present the diurnal pattern of mean and the standard devia-

tion of the global area in P and T waves respectively. We can observe that in P waves the

global area has greater values in the daytime than in the nighttime, while the global area

in T waves has exactly the opposite behavior. This pattern was expected according to

amplitude and height ones. While the amplitude in both waves have the same behavior,

the height of these waves will determine their area (lower height implies lower area) as is

shown in above �gures.

However, the standard deviation seems to have the same pattern in those features

(amplitude, height, global area). This indicates high variation or dispersion in data points

during the day and low during the night.

As we can mention, there is a usual circadian pattern in all features discussed above

in their mean value and standard deviation. Similar results are shown in the rest features

(see Appendix).
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Chapter 8

Conclusion and Future work

8.1 Conclusion

8.2 Future work

8.1 Conclusion

Summary of the thesis

In this thesis, we presented new methods and we examined new features for the dis-

crimination of day and night periods, by implementing one manual and two automatic P

& T wave detection. We presented the comparison between the results of all features and

for every method. Also we achieved to indicate that there is a circadian behavior in P

and T waves.

We introduced the processing of our manual detection algorithm, a simple idea that

triggered the creation of the automatic algorithms in order to extend our results and

generalize the idea of discrimination. After that, we presented these new automatic algo-

rithms and explains their characteristics; pAD was �rst implemented by using dynamic

threshold (percentile) for the limitation and the new version GlAD in which a proba-

bilistic model named as HCRF was used and the selection of the waves was done online.
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We analyze in detail every feature that we implemented in order to examine the ability

of discrimination between day and night periods, we presented the ratios of them. We

pair-tested the hypothesis of the referring discrimination that gave us remarkable results.

Next we discussed the classi�cation that came from the implementation of our features

and we analyze the main famous classi�cation methods. Finally, we brought to light

the dependencies and relationships between consecutive intervals of ECG; PP and TT

intervals are following the same behavior of RR intervals in terms of circadian rhythm.

This fact can be extremely important especially in some cases where the QRS complex

shows defects in terms of morphology. Several features showed a possible association with

circadian behavior.

Contribution of the thesis

This thesis has developed a manual and two automatic algorithms for the detection of

P and T waves in an ECG signal. The results are used to extract many new features of

these waves that seem to have the ability of discriminating between day and night periods.

This work reveals that by examining the P and T waves of an ECG signal one can

decide if they refer to a day or to a night period. Although the QRS complex is usually

the central and most visually obvious part of the tracing, since it corresponds to the

depolarization of the ventricles of the human heart, it is also most a�ected by some

dysfunctions of the heart and thus, in some cases, may be more defected than P or T

wave. For this reason, our ability to discriminate day and night periods through the next

two more signi�cant waves of an ECG signal, could give more information.

Because R wave can be more defected than P or T waves in some cases, such us

tachycardia or Wolf Parkinson White Syndrome, the examination of RR intervals may be

less signi�cant than PP or TT intervals and thus there is an obvious danger of misleading

to wrong results in terms of circadian rhythm. Our thesis supports that the PP and TT

intervals should be reset and re-analyzed in order to decide about circadian rhythm in

cases of speci�c human disorders.

Another new approach of our thesis, is the GlAD algorithm, where the annotation of

P and T waves is happening with no respect to R waves. This is also an advantage of
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detecting these waves when several dysfunctions do not allow the R peak to be the most

visible and signi�cant point of a beat tracing.

Limitations of the current work

The database we examined in our thesis, corresponds to healthy volunteers; the im-

portance of P and T detection might be even more remarkable in cases where some

patients are su�ering from certain diseases. A comparison between the classi�cation rates

of healthy and unhealthy patients as will be mentioned on Future Work section. In our

thesis we presented only a certain 2-hour timing of each period, 13:00 -15:00 and 01:00

â�� 03:00. For some people it is possible that none of these two periods are working or

resting period.

8.2 Future work

While our thesis has demonstrated novel methodology for detecting the P and T waves

and discriminating between day and night periods of an ECG signal, many opportunities

for extending the scope of this thesis remain.

A crucial parameter for evaluating the contribution of our thesis to the medical com-

munity is the implementation of our methods to ECG databases that refer to unhealthy

patients. That work, could reveal the importance of P and T waves annotation, if it

indicates better classi�cation results from the current thesis, or in comparison to defected

R waves.

Another comparison that could be done, is to implement our methods and features to

all the sequential 2-hour periods during all day and compare between each other. This

method could reveal the best classi�cation rate for each period per patient or examine the

heart behavior during or after lunch or even analyze waves' behavior between patients of

di�erent biological clock.

In addition, the implementation of our thesis according to the schedule of each patient

so as to distinguish the 2-hours sampling intervals that one is sleeping or working, could
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give better results and thus enforce our hypothesis of circadian rhythm annotation through

P and T waves.

The most obvious stage is to improve the GlAD algorithm in order to achieve better

results. The four features used for the training phase from HCRF may be increased

learning more details in the waves' condition for a better classi�cation.
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Appendix

This appendix containts the results from all features extracted either from P or T waves,

as described in Chapter 7. Thus, all the �gures below denote the results of the mean value

and the standard deviation all over the 24-hour in a time window of 1 hour. A polynomial

of 5th degree is computed in order to show the circadian behavior in those features.

Figure 8.1: Mean and Standard Deviation values per hour for Maximum feature with
polynomial �t
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Figure 8.2: Mean and Standard Deviation values per hour for Minimum feature with
polynomial �t

Figure 8.3: Mean and Standard Deviation values per hour for Left Area feature with
polynomial �t
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Figure 8.4: Mean and Standard Deviation values per hour for Right Area feature with
polynomial �t

Figure 8.5: Mean and Standard Deviation values per hour for Upper Area feature with
polynomial �t
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Figure 8.6: Mean and Standard Deviation values per hour for Down Area feature with
polynomial �t

Figure 8.7: Mean and Standard Deviation values per hour for Upper Left Area feature
with polynomial �t
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Figure 8.8: Mean and Standard Deviation values per hour for Upper Right Area feature
with polynomial �t

Figure 8.9: Mean and Standard Deviation values per hour for Left/Global Area feature
with polynomial �t
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Figure 8.10: Mean and Standard Deviation values per hour for Right/Global Area feature
with polynomial �t

Figure 8.11: Mean and Standard Deviation values per hour for Left/Right Area feature
with polynomial �t
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Figure 8.12: Mean and Standard Deviation values per hour for Upper/Global Area feature
with polynomial �t

Figure 8.13: Mean and Standard Deviation values per hour for Down/Global Area feature
with polynomial �t
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Figure 8.14: Mean and Standard Deviation values per hour for Upper/Down Area feature
with polynomial �t

Figure 8.15: Mean and Standard Deviation values per hour for Upper Left/Left Area
feature with polynomial �t
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Figure 8.16: Mean and Standard Deviation values per hour for Upper Right/Right Area
feature with polynomial �t

Figure 8.17: Mean and Standard Deviation values per hour for Upper Left/Upper Right
Area feature with polynomial �t
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Figure 8.18: Mean and Standard Deviation values per hour for Upper Left/Upper Area
feature with polynomial �t

Figure 8.19: Mean and Standard Deviation values per hour for Upper Right/Upper Area
feature with polynomial �t
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Figure 8.20: Mean and Standard Deviation values per hour for Upper Left/Global Area
feature with polynomial �t

Figure 8.21: Mean and Standard Deviation values per hour for Upper Right/Global Area
feature with polynomial �t
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Figure 8.22: Mean and Standard Deviation values per hour for Left Slope feature with
polynomial �t

Figure 8.23: Mean and Standard Deviation values per hour for Right Slope feature with
polynomial �t
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Figure 8.24: Mean and Standard Deviation values per hour for Left Slope/Right Slope
feature with polynomial �t

Figure 8.25: Mean and Standard Deviation values per hour for Fitting Left Slope feature
with polynomial �t
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Figure 8.26: Mean and Standard Deviation values per hour for Fitting Right Slope feature
with polynomial �t

Figure 8.27: Mean and Standard Deviation values per hour for Fitting Left / Fitting
Right Slope feature with polynomial �t
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Figure 8.28: Mean and Standard Deviation values per hour for Maximum feature with
polynomial �t

Figure 8.29: Mean and Standard Deviation values per hour for Minimum feature with
polynomial �t
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Figure 8.30: Mean and Standard Deviation values per hour for Left Area feature with
polynomial �t

Figure 8.31: Mean and Standard Deviation values per hour for Right Area feature with
polynomial �t
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Figure 8.32: Mean and Standard Deviation values per hour for Upper Area feature with
polynomial �t

Figure 8.33: Mean and Standard Deviation values per hour for Down Area feature with
polynomial �t
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Figure 8.34: Mean and Standard Deviation values per hour for Upper Left Area feature
with polynomial �t

Figure 8.35: Mean and Standard Deviation values per hour for Upper Right Area feature
with polynomial �t
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Figure 8.36: Mean and Standard Deviation values per hour for Left/Global Area feature
with polynomial �t

Figure 8.37: Mean and Standard Deviation values per hour for Right/Global Area feature
with polynomial �t
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Figure 8.38: Mean and Standard Deviation values per hour for Left/Right Area feature
with polynomial �t

Figure 8.39: Mean and Standard Deviation values per hour for Upper/Global Area feature
with polynomial �t
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Figure 8.40: Mean and Standard Deviation values per hour for Down/Global Area feature
with polynomial �t

Figure 8.41: Mean and Standard Deviation values per hour for Upper/Down Area feature
with polynomial �t
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Figure 8.42: Mean and Standard Deviation values per hour for Upper Left/Left Area
feature with polynomial �t

Figure 8.43: Mean and Standard Deviation values per hour for Upper Right/Right Area
feature with polynomial �t
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Figure 8.44: Mean and Standard Deviation values per hour for Upper Left/Upper Right
Area feature with polynomial �t

Figure 8.45: Mean and Standard Deviation values per hour for Upper Left/Upper Area
feature with polynomial �t
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Figure 8.46: Mean and Standard Deviation values per hour for Upper Right/Upper Area
feature with polynomial �t

Figure 8.47: Mean and Standard Deviation values per hour for Upper Left/Global Area
feature with polynomial �t
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Figure 8.48: Mean and Standard Deviation values per hour for Upper Right/Global Area
feature with polynomial �t

Figure 8.49: Mean and Standard Deviation values per hour for Left Slope feature with
polynomial �t
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Figure 8.50: Mean and Standard Deviation values per hour for Right Slope feature with
polynomial �t

Figure 8.51: Mean and Standard Deviation values per hour for Left Slope/Right Slope
feature with polynomial �t
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Figure 8.52: Mean and Standard Deviation values per hour for Fitting Left Slope feature
with polynomial �t

Figure 8.53: Mean and Standard Deviation values per hour for Fitting Right Slope feature
with polynomial �t
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Figure 8.54: Mean and Standard Deviation values per hour for Fitting Left / Fitting
Right Slope feature with polynomial �t
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