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ABSTRACT
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Heart Rate Variability in Ventricular Tachycardia

Thesis Supervisor: George Manis, Assistant Professor

Ventricular Tachycardia, is a type of tachycardia that arises from improper electrical
activity of the heart presented as a rapid heart rhythm that starts in the bottom
chambers of the heart, called ventricles. The ventricles are the main pumping
chambers of the heart, so this is a potentially life threatening arrhythmia because it

may lead to ventricular fibrillation, asystole, and sudden death.

In this thesis we study heart signals, derived from patients with ventricular
tachycardia and we apply various heart rate variability methods. Our main focus was
to investigate how heart rhythm adapts before an incident. But we also compared
some categories of groups, based on age, weight or the kind of ventricular tachycardia

in order to see variations between each case.

Time domain, time- frequency domain and other methods were implemented in order
to investigate the variability of the signals. Finally, we inserted some results derived
of the methods computed, as input to a support vector machine in order to predict if
those are from the time space prior to the episode or from the time space some

minutes before.

The results indicate changes in heart rate, prior to an episode of ventricular

tachycardia, with some metrics performing better than others.
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CHAPTER 1. INTRODUCTION

1.1 Goals
1.2 Contribution
1.3 Thesis Structure

1.1. Goals

Ventricular Tachycardia is a type of a rapid heartbeat that comes from improper
electrical activity of the heart, which starts in the bottom chambers of the heart, called
ventricles. A healthy adult heart normally beats 60 to 100 times a minute when a
person is at rest. When ventricular tachycardia occurs the heart rate in the upper or
lower chambers of the heart, or both, is increased.

In this thesis, our goal is to study hearts behavior before those episodes. More
specifically, we study heart rate variability before the episodes using time, and time—
frequency domain methods in order to determine how heart rhythms change before

ventricular tachycardia.

We split the signals in time intervals, overlapping and non-overlapping, and we
compute various methods in those intervals. We focused our interest in the difference
between the values derived between the firsts and lasts intervals, meaning a time
space apart from the episode and a time space immediately before the episode, so we

can conclude about signals variability.



1.2. Contribution

In our research, we studied the heart rhythm prior to Ventricular Tachycardia in order
to see if the variability of each signal is significant in a way to predict the episode.

It’s the first time that the variability is studied in order to compute changes in time
intervals prior to the episode. Also the data used where from the only database that is
freely available and weren’t many. For those data we implemented various metrics
and most of them gave very good results for the separation of the time intervals of our

interest.

We also compared results involving different patient groups, distinguishing them
based on age, weight or the type of ventricular tachycardia they were suffering from,

in order to study in which cases heart behave differently before an upcoming episode.

Finally we show, by inserting some results as input in a support vector machine, that
the separation of the two areas, the most distant from the nearest to the incident, is

possible, although we did not get great results.

1.3. Thesis Structure

This thesis consists of 7 Chapters. In the current chapter, we did a small introduction
about the goals, the contribution and the previous works on this field.

In Chapter 2, we describe Tachycardia, the illness study, its types, how can be

diagnosed and how can be treated.

Next, we introduce what heart rate variability is and we continue by describing Time-
domain, time-frequency domain and other methods that we used in this thesis for our

computations.



In chapters 5 and 6 we show the results obtained from our experiments and in the last

chapter we conclude our work and suggest future extensions of this work.



CHAPTER 2. TACHYCARDIA

2.1 Tachycardia

2.2 Types of Tachycardia
2.3 Diagnosis

2.4 Treatment

2.1. Tachycardia

The heart is one of the most important organs of the human body. It is responsible for

pumping the blood to every cell in our body in order to make it function.

Heart is made up of four chambers, two upper chambers (atria) and two lower
chambers (ventricles). The left side of the heart, atria and ventricle, is providing
oxygenated blood from the lungs to the rest of the body. The right side is sending the
deoxygenated blood back to the lungs to reoxygenate again. The two sides are
separated from a wall of tissue, called septum, in order to prevent bloods passing from

one side to the other.

The rhythm of the heart is normally controlled by a natural pacemaker, the sinus node,
located in the right atrium. The sinus node produces electrical impulses that normally

start each heartbeat. From the sinus node, electrical impulses travel across atria,



causing the atria muscles to contract and pump the blood into the ventricles. Then the
electrical impulses arrive at a cluster of cells, called the atrioventricular node, AV

node, which slows down the electrical signal before sending it to the ventricles.
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Figure 2.1 "Diagram of the human heart. Licensed under CC BY-SA 3.0

Hearts rhythm is controlled by electrical signals sent across heart tissues. Tachycardia
occurs when an abnormality in the heart produces rapid electrical signal and as a
result heart may not effectively pump blood to the rest of the body, depriving the
organs and tissues of oxygen. Common symptoms are dizziness, shortness of breath,
lightheadedness, rapid pulse rate, chest pain, fainting and some of the reasons that can
cause the disruption of the normal electrical impulses that control the rate of heart
pumping action are damage to the heart tissues due to some heart disease, anemia,
exercise, sudden stress, high blood pressure, smoking, fever, drinking too much
alcohol or many caffeinated beverages, medication side effects or abuse of
recreational drugs, overactive thyroid. However, in some cases, the exact cause of

tachycardia cannot be determined.



2.2. Types of Tachycardia

Tachycardia occurs from different malfunctions in hearts electrical circuitry. So
different types of it occurs. Common types of tachycardia include the following:

o Atrial fibrillation is a rapid heart rate caused by chaotic electrical impulses in
the atria. These signals result in rapid, uncoordinated, weak contraction of the
atria. Atrial fibrillation may be temporary, but some episodes won’t end

unless treated.

o Atrial flutter occurs when the heart’s atria beat very fast but in a regular rate
and is caused by irregular circuitry within the atria. The fast rate results in
weak contraction of the atria. The rapid signals entering the AV node cause a

rapid and sometimes ventricular rate.

e Supraventricular tachycardia which originates somewhere above the
ventricles, is caused by abnormal circuitry in the heart, usually present at
birth, that creates a loop of overlapping signals. An abnormality in the AV
node may split an electrical signal into two, sending one signal to the
ventricles and the other to the atria. Another abnormality is the presence of
an extra electrical pathway from atria to the ventricles that bypasses the AV

node. This may result in a signal going down one pathway and up the other.

e Ventricular fibrillation which occurs when rapid, chaotic electrical impulses
cause the ventricles to quiver ineffectively instead of pumping necessary
blood to the body. This serious problem is fatal if the heart isn’t restored to a
normal rhythm within minutes. Most people who experience ventricular
fibrillation have an underlying heart disease or have experienced serious

trauma, such as being struck by lightning.

e Ventricular tachycardia which is a rapid heart rate that originates with

abnormal electrical signals in the ventricles. The rapid heart rate doesn’t



allow the ventricles to fill and contract efficiently to pump enough blood to

the body. Ventricular tachycardia is often a life-threating medical emergency.

In this thesis we focus on ventricular tachycardia. We collected signals, both from
online databases and other, concerning spontaneous ventricular tachycardia and no

sustained ventricular tachycardia, and we studied their variability.

2.3. Diagnosis

The diagnosis of ventricular tachycardia is made based on the rhythm seen on either
an Electrocardiogram (ECG), which is the most common way, or a telemetry rhythm
strip. An ECG shows the electrical activity of the heart. Electrodes are placed on the
chest, legs and arms and detect the electrical changes on the skin that arise from the

heart muscle depolarizing during each heartbeat.

It may be very difficult to differentiate between ventricular tachycardia and a wide-
complex supraventricular tachycardia in some cases. In particular, supraventricular
tachycardia with aberrant conduction from pre-existing bundle branch block are

commonly misdiagnosed as ventricular tachycardia.

Various diagnostic criteria have been developed to determine whether a wide complex
tachycardia is ventricular tachycardia or a more benign rhythm. In addition to these
diagnostic criteria, if the individual has a past history of a myocardial
infarction, congestive heart failure, or recent angina, the wide complex tachycardia is

much more likely to be ventricular tachycardia.

The proper diagnosis is important, as the misdiagnosis of supraventricular tachycardia
when ventricular tachycardia is present is associated with worse prognosis. This is
particularly true if calcium channel blockers, such as verapamil, are used to attempt to
terminate a presumed supraventricular tachycardia. Therefore, it is wisest to assume

that all wide complex tachycardia is Ventricular Tachycardia until proven otherwise.


https://en.wikipedia.org/wiki/Medical_diagnosis
https://en.wikipedia.org/wiki/Supraventricular_tachycardia
https://en.wikipedia.org/wiki/Bundle_branch_block
https://en.wikipedia.org/wiki/Myocardial_infarction
https://en.wikipedia.org/wiki/Myocardial_infarction
https://en.wikipedia.org/wiki/Congestive_heart_failure
https://en.wikipedia.org/wiki/Angina_pectoris
https://en.wikipedia.org/wiki/Calcium_channel_blocker
https://en.wikipedia.org/wiki/Verapamil

2.4. Treatment

Therapy may be directed either at terminating an episode of the arrhythmia or at

suppressing a future episode from occurring. The treatment for stable Ventricular

Tachycardia is tailored to the specific patient, with regard to how well the individual

tolerates episodes of ventricular tachycardia, how frequently episodes occur, their

comorbidities, and their wishes. Patients suffering from pulseless Ventricular

Tachycardia or unstable Ventricular Tachycardia are hemodynamically compromised

and require immediate cardioversion.

Cardioversion: If a person still has a pulse, it is usually possible to terminate
the episode. This should be synchronized to the heartbeat if the waveform is
monomorphic if possible, in order to avoid degeneration of the rhythm to
ventricular fibrillation. An initial energy of 100J is recommended. If the
waveform is polymorphic, then higher energies and an unsynchronized shock
should be provided (also known as defibrillation). As this is uncomfortable,
shocks should ideally only be delivered only to someone who is unconscious

or sedated.

Defibrillation: A person with pulseless Ventricular Tachycardia is treated the
same as Ventricular Fibrillation with high-energy (360J with a monophasic
defibrillator, or 200J with a biphasic defibrillator) unsynchronized
cardioversion .They will be unconscious. The shock may be delivered to the
outside of the chest using the two pads of an external defibrillator, or
internally to the heart by an Implantable Cardioverter-Defibrillator (ICD) if
one has previously been inserted. An ICD may also be set to attempt to
overdrive pace the ventricle. Pacing the ventricle at a rate faster than the
underlying tachycardia can sometimes be effective in terminating the rhythm.
If this fails after a short trial, the ICD will usually stop pacing, charge up and

deliver a defibrillation grade shock.



Medication: For those who are stable with a monomorphic waveform the
medications may be used. As hypo magnesia is a common cause of
Ventricular Tachycardia, magnesium sulphate can be given for torsade’s or if
hypomagnesemia is found/suspected. Long-term anti-arrhythmic therapy may
be indicated to prevent recurrence of Ventricular Tachycardia.

Surgery: An implantable ICD is more effective than drug therapy for
prevention of sudden cardiac death due to Ventricular Tachycardia and
Ventricular Fibrillation, but may be constrained by cost issues, as well as
patient co-morbidities and patient preference. Catheter ablation is a possible
treatment for those with recurrent Ventricular Tachycardia. Remote Magnetic
Navigation is one effective method to do the procedure. There was consensus
among the task force members that catheter ablation for Ventricular
Tachycardia should be considered early in the treatment of patients with
recurrent Ventricular Tachycardia. In the past, ablation was often not
considered until pharmacological options had been exhausted, often after the
patient had suffered substantial morbidity from recurrent episodes of
Ventricular Tachycardia and ICD shocks. Antiarrhythmic medications can
reduce the frequency of ICD therapies, but have disappointing efficacy and
side effects. Advances in technology and understanding of Ventricular
Tachycardia substrates now allow ablation of multiple and unstable
Ventricular Tachycardia’s with acceptable safety and efficacy, even in patients

with advanced heart disease.
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CHAPTER 3. HEART RATE VARIABILITY

3.1 Introduction

3.2 Time Domain Methods

3.3 Time Frequency Domain Methods
3.4 Other Methods

3.1. Introduction

Heart rate variability (HRV) is the physiological phenomenon of variation in the time
interval between heartbeats. It is measured by the variation in the beat-to-beat
interval. Methods used to detect beats include: ECG, blood pressure,
ballistocardiograms and the pulse wave signal derived from a photoplethysmograph
(PPG). ECG is considered superior because it provides a clear waveform, which
makes it easier to exclude heartbeats not originating in the sinoatrial node. In the
following picture we can see an electrocardiogram (ECG) recording of a heart that
illustrates beat-to-beat variability in RR interval (top) and hear rate (bottom), where R
is a point corresponding to the peak of the QRS complex of the ECG wave, and RR is

the interval between successive Rs.
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HR
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Figure 3.1 ECG example showing RR intervals.

The QRS complex is a wave resulting from the depolarization of the left and right
ventricles. The Q wave is the first negative deflection, followed by the R wave which
is the first positive deflection. S is the last negative deflection. The RR interval
measures the length between two successive R waves. A typical QRS can be seen in
the figure above.

R amplitude

— baseline }

ORS duration

Figure 3.2 The QRS Complex.
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Reduced HRV has been shown to be a predictor of mortality after myocardial
infraction [10], although others have shown that the information in HRV relevant to

acute myocardial infraction survival is fully contained in the mean heart rate.

To perform HRV analysis the most widely used methods can be grouped under time
domain, frequency domain and time- frequency domain methods. Other methods have
been proposed such as non- linear methods. Multiple papers with regard to the study
of cardiac signals, have used HRV analysis to draw conclusions in each topic [5, 6, 7,
9, 10].

3.2. Time-domain Methods

Time- domain methods are based on the beat-to-beat or NN intervals, where "NN" is
used in place of RR to emphasize the fact that the processed beats are "normal” beats.
Time domain methods can be separated into simple time domain variables, statistical
methods and geometrical methods and can either be measured over the whole signal,
or over smaller periods. From time domain methods we can extract information about
the kind of variability that exists in a signal and those methods are less affected by the
presence of artifacts in the signal.

Simple time domain variables include the mean NN interval and the rate NN. Those
methods are easy to obtain while they hold important information for various heart

conditions.

Statistical methods include the standard deviation of the NN intervals (SDNN) which
can be computed over the whole signal but it can give more information when

computed over shorter periods.
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Another important method is the root mean square of successive differences between
adjacent NNs (RMSSD). This method is associated with short term, rapid changes in
the heart rate.

1 N
\[E[Z((x —R)m—ut—x)f)’]
RMSSD = -

where N = number of RR interval terms

There is also the proportion of the number of pairs of successive NNs that differ by
more than 50ms, NN50, divided by total number of NNs (PNN50). This method also
measure short-term variation in the NN interval because is entirely based on

comparisons between successive beats.

PNN50 = NN50count [ n

Where

L
NN 50count = Z_rm =X, av x,, —x, >50ms

And n is the number of heart beats.

3.3. Time- Frequency domain Methods

As we mentioned previously time-frequency domain methods combine characteristics
from both time and frequency spaces. Frequency domain methods concern the
spectral analysis component and the spectral density of the signal. These analyses are
divided into two categories depending the length of the signal studied, in small

duration measurements (2-5 minutes) and long duration measurements (24 hours).
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One of the most popular methods of time-frequency domain are wavelets. Wavelets
are mathematical functions that cut up data into different frequency components, and
then study each component with a resolution matched to its scale. They have
advantages especially in situations where the signal contains discontinuities and sharp

spikes.

The basic idea of wavelet transforms is that the transformation should allow only
changes in time extension, but no in shape. This is effected by choosing suitable basis
functions that allow this. Changes in time extension are expected to conform to the
corresponding analysis frequency of the basis function. Based on the uncertain

principle of signal processing,

1
Aw 2 =
AtAw 2 5

Where t represents time and o angular frequency (w=2xf, where f is temporal

frequency).

The higher the required resolution in time, the lower the resolution in frequency has to
be. The larger the extension of the analysis windows is chosen, the larger is the value
of At.

When At is large results:

e Bad time resolution

e Good frequency resolution

e Low frequency, large scaling factor
When At is small results:

e Good time resolution

e Bad frequency resolution

¢ High frequency, small scaling factor
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Figure 3.3 Examples with different frequency.

The first step while working with wavelets is to choose a family of wavelets to work
with. Depending with the problem we can choose from:

e Haar, which is discontinuous and resembles a step function

15 T T

10+ 0 -
05
no— -
1
-0 5 ! e
]
]

-1 a0 i -1

Figure 3.4 The Haar wavelet.
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e Daubechies, which are orthogonal wavelets defining a discrete wavelet
transform and characterized by a maximal number of vanishing moments for

some given support.

e Biorthogonal, which is a wavelet where the associated wavelet transform is

invertible but not necessarily orthogonal.

e (Gaussian etc.

After choosing a wavelet family, next step is analyzing the signal in various scales.
By doing that we process data at different scales. By looking at a signal with a wide
“window”, we would notice mixed features. Similarly, if we look at a signal with a
small “window”, we would notice small features. With wavelet analysis we can get

both results.

For each scale we compute the approximation and detail coefficients.

x(i)+x(i+1)
3

approximation:

LX) —x(i+1
detail: HO)—xr+7)

The variability in each scale of resolution is given from the standard deviation of the

detail coefficients as follows
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Figure 3.5 A 3 scale wavelet.

So from time domain methods we can learn how variable a signal is, from frequency

domain methods which rhythms are hiding in the signal and which normal procedure

they reveal and from time-frequency domain methods we can combine information

both from time and frequency domains.

3.4. Other Methods

Another method used to analyze heart rates variability is Deceleration Capacity [3]

which computes the capability of the heart to decelerate its rhythm. Beat to Beat

Deceleration Capacity stands for the deceleration capacity of the heart rate from

successive differences only. Beat to beat deceleration capacity is computed as follows

and examines what happens per beat basis

and since x(0) is always larger than x(-1),beat to beat deceleration capacity is always

positive.
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Another form of deceleration capacity is SignDC, which is a different approach of

deceleration capacity and is computed as follows

R
S -
\\\\ e

._z/ HHHHHHH“'-
x(0)+x(1)—x(-1)—x(-2)
4

DC =

Figure 3.6 The formula for DC.

SignDC investigates deceleration in a longer term basis, and given that a series of

segments is deceleration, how well the heart decelerates this period.

Both SignDC and BBDC are variations of the original method DC, Deceleration
Capacity. In this method we define anchor points as the RR intervals which are bigger
from their previous. The intervals which differ more than 5% from their previous are
excluded and then the intervals around the anchor are aligned and the DC value is
computed:

_ X(0)+X()=X(=1) - X(-2)
4

DC

Where X(0) is the mean value derived from all anchor points, X(1) is the mean value
derived from all the points following the anchor point and X(-1), X(-2) the mean

value derived from the previous points respectively.

When computing SignDC the way filters are computing is different and also the way
intervals are characterized as deceleration or acceleration. More specifically,

assuming we have the intervals

RRi=RRI,RR2, .., RRN
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we define the vectors
xi=(RRi, RRi+1, RRi+2 RRi+3)

Where
l<i=N-=-3

Then the vector vi is defined as follows:

|Ir[4} —x{3)|£ 0.05. [FB)=*(2) J[’|:2}|5 0.05 |'I—’[2} — x,(l}|£ 0.05

Vool x(3) X ol

0, otherwise

Where xi(1),xi(2),xi(3),xi(4) are computed respectively to the original method. This
computation results that if one of the inequalities is not satisfied for some points, then
this points are excluded.

_ () +x(3)—x(2)—x(1)
4

acdc,

The value
is also defined and if this value is bigger than 0 a vector is characterized as
deceleration

1, 1ifacdc=0
dc. - _
(0, otherwise

and as acceleration if is smaller than 0

1. 1facde=<0
ac: - )
0, otherwise

The vectors

dc = (de*vi*x( 1), de*vi*x(2), de®*vi*x(3), de*vi*x(4))

ac = (acFvi*x( 1), acFv*x(2), ac*vi*x(3), ac*v.¥x(4))

are also computed and from them is computed the final value of SignDC.
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CHAPTER 4. DATAAND IMPLEMENTATION

4.1 Data

4.2 Implementation

4.1. Data

For the purposes of this thesis, we first searched an online database bank for ECGs
derived from patients suffering from ventricular tachycardia, Physionet Data Bank
[19]. We both searched for whole databases concerning this illness and for signals
included in other databases but containing ventricular tachycardia episodes. Although
ventricular tachycardia isn’t a rare malady, we couldn’t find an oversupply of signals.
We found and wused for our experiments the Spontaneous Ventricular
Tachyarrhythmia Database Version 1.0 from Medtronic, Inc. We also used data from
20 patients with ischemic heart failure. Those signals were first used in a previous
research [2], and were acquired in the First Department of Cardiology, Medical
School, National and Kapodistrian University of Athens, supervised by clinical
experts. At this point, we would like to thank Dr. Petros Arsenos, from the First
Department of Cardiology, Medical School, National and Kapodistrian University of

Athens and this clinic for the courtesy of those data.

Lhttp://physionet.org/physiobank/database/mvtdb/



22

The online database (VT) contains 135 pairs of RR interval time series, recorded by
implanted cardioverter defibrillators in 78 subjects. Episodes were retrieved from
implanted devices during the patient’s scheduled follow-ups and during subsequent
unscheduled visits. Those signals concern both ventricular tachycardia and ventricular
fibrillation Incidents. For the purposes of this thesis we only used the signals related
to ventricular tachycardia. After excluding some signals, we arrived to a database with
86 signals with the 1024 most recently measured RR intervals just prior a ventricular
tachycardia event is detected. Given the information the database provided we could

also split the signals based on the age of the patients and on their weight.

The second database (NSVT) consists of 20 patients, with some of them suffering
from multiple episodes of non-sustained ventricular tachycardia. Totally, we
examined 35 NSVT episodes, also stored in the a equivalent way with those from the
Spontaneous Ventricular Tachyarrhythmia Database Version 1.0 from Medtronic,

Inc., meaning that the last beat of the signal is the just prior to each episode.

4.2. Implementation

Matlab code was produced in order to process all the data and implement our
experiments. The online data didn’t need some preprocessing but the other did. So we
needed to parse every patients signals into sub signals in order to have only files

ending with the beat just prior to the episode.

Next we implemented our metrics, described in Chapter 3. For each signal we
compute each metric in time window intervals. After experimenting with the windows
number we arrived at using 16 time windows for each signal and we computed each
metric for both non-overlapping and overlapping windows. Then we parted those
windows into three areas, the first area was consisted from the first 5 time windows

and the third from the last 5 time windows. The second included all the in between
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intervals. We focused our interest in the first and third area in order to see if hearts

variability changes drastically right before an episode.

So we computed each metric and based on those results we computed the p-values for
each metric for the three areas of the signal. P-value is a function of the observed
function results that is used for testing a statistical hypothesis. In this case, the
hypothesis is that the two groups comparing each time, are coming from distributions
with equal mean value. If the p-value is bigger than 0.05, the hypothesis is accepted,
otherwise is rejected. We assume that our samples are well separated when their p-

value is smallest than 0.05.

Finally, the results of some of the metrics were given as input to a support vector

machine in order to be found if the 2 areas could be correctly categorized.
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CHAPTER 5. EXPERIMENTAL RESULTS

5.1 Results
5.1.1 All Signals
5.1.2 Age of the patient
5.1.3 Weight of the patient
5.1.4 NSVT Signals

5.2 VT and NSVT Comparison

5.1. Results

The goal of this thesis was to examine the variability of the heart before a ventricular
tachycardia episode, in order to conclude whether hearts behavior changes before
those episodes. In this chapter, we will introduce the results of our experimental work.
We will initially present results, concerning the total of the signals used from the
Spontaneous Ventricular Tachyarrhythmia Database Version 1.0 from Medtronic, Inc.
Subsequently, we will show some results for some subsets of the initial database.

Finally, we will show the outcomes for the NSVT database.
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5.1.1. All Signals

As described at Chapter 4, we used signals derived from the online database
Spontaneous Ventricular Tachyarrhythmia Database Version 1.0 from Medtronic, Inc.
We used 86 signals from a total of 102, which concerned ventricular tachycardia.

Those where from males patients, aged from 20 to 78 years old and weighed from 61

to 113 kg.

Follow the plots for each metric computed, for overlapping and non-overlapping time
windows and a table showing the p-value computed over each two areas. We also

present the box plot for each metric, for the first and last area of the signal.

Firstly we computed the RateNN for non-overlapping and overlapping windows. As
we can conclude from all the following plots, both in overlapping and non-
overlapping windows computations heart rate increases right before the episode. That

means that heart accelerates its rhythm preceding to ventricular tachycardia.

i w107 Rate with non overlapping windows
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Rate (millisec)
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05

time windows

Figure 5.1 The RateNN for all the samples, over 16 non-overlapping windows, the
blue line is representing the mean RateNN.
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w10 Rate with non overlapping windows
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Figure 5.2 The mean RateNN from all the samples over 16 non-overlapping windows

w10 Rate with overlapping windows

w
m
T

Rate (millisec)

time windows

Figure 5.3 The RateNN for all the samples, over 16 overlapping windows, the blue
line is representing the mean RateNN.
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Rate with overlapping windows
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Figure 5.4 The mean RateNN from all the samples over 16 non-overlapping windows

In the following pictures we show the box plots for rate concerning areal and area3 of
the signals. As we can see from both pictures, the mean value of rate is completely
different in the two areas, although the values that rate takes aren’t completely
different, something that was pretty obvious from the previous plots. That difference

is shown at the p-value of those area too, as we will see later.
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Figure 5.5 Box plot for RateNN, areal and area2, with non-overlapping windows
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Figure 5.6 Box plot for RateNN, areal and area2, with overlapping windows
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Next we computed MeanNN respectively. To a full much with rate, MeanNN is

decreasing right before the episode as expected.

meanhN with non overlapping windows
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Figure 5.7 The MeanNN for all the samples, over 16 non-overlapping windows, the
blue line is representing the mean MeanNN.
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Figure 5.8 The mean MeanNN from all the samples over 16 non-overlapping

windows
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MeanNN with overlapping windows

1600

1400 |

1200 |

1000

meaniN {(bpm)
[ux}
=0
o

600
400
200 +
D 1 1 1 1 1 1 1 ]
2 4 B 8 10 12 14 16
windows

Figure 5.9 The MeanNN for all the samples, over 16 overlapping windows, the blue

line is representing the mean MeanNN.
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Figure 5.10 The mean RateNN from all the samples over 16 non-overlapping
windows
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As we can see from the box plots following, the mean value of MeanNN is
completely different in the two areas, although the values that MeanNN takes aren’t

completely different in the two areas of our concern.

Box plot for MeanMNN with non overlapping windows
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Figure 5.11 Box plot for MeanNN, areal and area2, with non-overlapping windows
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Figure 5.12 Box plot for MeanNN, areal and area2, with overlapping windows
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Then we computed the RMSSD. As we can see from the following plots, the way our
signals behave result a not so smooth plot for RMSSD. We can see a sharp edge at the
beginning of the second area followed from a not smooth also increment at the third

area too.

RMSSD with non overlapping windows

600

500

400

RMSSD

300

time windows
Figure 5.13 The RMSSD for all the samples, over 16 non-overlapping windows, the
blue line is representing the mean RMSSD.
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Figure 5.14 The mean RMSSD from all the samples over 16 non-overlapping

windows
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Figure 5.15 The RMSSD for all the samples, over 16 overlapping windows, the blue

line is representing the mean RMSSD.
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Figure 5.16 The mean RMSSD from all the samples over 16 overlapping

windows.
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From the box plots following we can see as expected, the values of RMSSD in areal

and area2 are overlapping.

Box plot for RMSSD with overlapping windows
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Figure 5.17 Box plot for RMSSD, areal and area2, with non-overlapping windows
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Figure 5.18 Box plot for RMSSD, areal and area2, with overlapping windows
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We next computed PNN50. We also can observe an abrupt change on this metric
although the mean value is also finally increasing when we have non-overlapping

windows. In case of overlapping this final Increment is follows from as small

decrement.
PNMN50 with non overlapping windows
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Figure 5.19 The PNNS50 for all the samples, over 16 non- overlapping windows, the
blue line is representing the mean PNN50.
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Figure 5.20 The mean PNN50 from all the samples over 16 non-overlapping windows
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PNNS0 with overlapping windows
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Figure 5.21 The PNN50 for all the samples, over 16 overlapping windows, the blue

line is representing the mean PNN50.
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Figure 5.22 The mean PNN50 from all the samples over 16 non-overlapping

windows.
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As we can see from the following box plots, despite the irregular form of the plots,
areal and area3 mean values using PNN50 metric, are different, but with a big

number of outliers.

Box plot for pNNS0 with non ovetlapping windows
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Figure 5.23 Box plot for PNN50, areal and area2, with non-overlapping windows
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Figure 5.24 Box plot for PNN50, areal and area2, with overlapping windows
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We next compute the SDNN. Although in both case SDNN shows an increasing

behavior, when computed with overlapping windows the graph show a sharp form.
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Figure 5.25 The SDNN for all the samples, over 16 non-overlapping windows, the

blue line is representing the mean SDNN.
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Figure 5.26 The mean SDNN from all the samples over 16 non-overlapping windows
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SDNN with overlapping windows

600

500

400

300

SDNN

200

100

2 4 B g 10 12 14 16
time windows

Figure 5.27 The SDNN for all the samples, over 16 overlapping windows, the blue
line is representing the mean SDNN.
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Figure 5.28 The mean SDNN from all the samples over 16 non-overlapping windows.
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As we can see from the following box plots in both cases, areal and area3 mean

values using SDNN metric, are different, but with a big number of outliers.

Box plot for SDNN with non overlapping windows
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Figure 5.29 Box plot for SDNN, areal and area2, with non-overlapping windows
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Figure 5.30 Box plot for SDNN, areal and area2, with overlapping windows
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Continuing, we computed the two deceleration capacity methods described in Chapter
3 section 4. First, we present the results for Beat to Beat Deceleration Capacity. In
both scenarios, we can see an abnormal behavior. We have multiple edges and a quite
different behavior in non-overlapping and overlapping windows. In the first case,
despite all the sharp variations, BBDC is obviously decreasing in the third area, while

in the second case, it concludes to a value close to where it started.
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Figure 5.31 The BBDC for all the samples, over 16 non-overlapping windows, the
blue line is representing the mean BBDC.
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Figure 5.32 The mean BBDC from all the samples over 16 non-overlapping windows
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BBEDC with overlapping windows
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Figure 5.33 The BBDC for all the samples, over 16 overlapping windows, the blue

line is representing the mean BBDC.
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Figure 5.34 The mean BBDC from all the samples over 16 overlapping windows.
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Although the changes described previously, box plots in this case doesn’t give a good
separation, which come accordingly to those areas p-values that we will present to

you.
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Figure 5.35 Box plot for BBDC, areal and area2, with non-overlapping windows
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Figure 5.36 Box plot for BBDC, areal and area2, with overlapping windows
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This measurement, SignDC, also results really sharp lines. There is also a slight
difference in the two cases. In the second case, at the third area the plots shows a clear
Increment, fact which is not the case in the first.
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Figure 5.37 The SignDC for all the samples, over 16 non-overlapping windows, the
blue line is representing the mean SignDC.
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Figure 5.38 The mean SignDC from all the samples over 16 non-overlapping
windows.
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SignDC with overlapping windows
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Figure 5.39 The SignDC for all the samples, over 16 overlapping windows, the blue
line is representing the mean SignDC.
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Figure 5.40 The mean SignDC from all the samples over 16 overlapping windows.
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Although the number of outliers is big in both cases, we can see from the box plots,

that in the case of overlapping windows, SignDC separates well the two areas.

Box plot for SignDC with non overlapping windows
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Figure 5.41 Box plot for SignDC, areal and area2, with non-overlapping windows
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Figure 5.42 Box plot for SignDC, areal and area2, with overlapping windows
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The following table shows the results concerning the p-values for all the previous

methods.

RateNN Non-overlapping

RateNN Overlapping
MeanNN Non-overlapping
MeanNN Overlapping

RMSSD Non-overlapping
RMSSD Overlapping
PNN50 Non-overlapping
PNN50 Overlapping
SDNN Non-overlapping
SDNN Overlapping
SignDC Non-overlapping
SignDC Overlapping
BBDC Non-overlapping
BBDC Overlapping

p-value Areal/Area3 p-value Areal/Area2

0.019096

2.2E-5
0.014897
3.5E-5

0.884934
0.285321
0.010573
0.030309
0.037206
0.013056
0.078924
0.001662
0.173067
0.093777

7.8E-5

3.19E-4
8.5E-5
3.22E-4

0.024604
0.120064
0.968353
0.903082
0.011862
0.024575
0.064140
0.215122
0.440522
0.499556

p-value Area2/Area3
0.078285

0.032876
0.057253
0.013079

0.05728

0.491467
0.008685
0.034366
0.029971
0.021974
0.624847
0.045420
0.304844
0.449341

Table 5-1 p-values for each method, between all the areas.

As we can observe from the above results, MeanNN and RateNN give the best p-

values for areal and area3, given that we assume that every value smaller than 0.05 is

better for separating our data. We can also see that PNN50 and SDNN perform in a

satisfying way, as well as SignDC computed over overlapping windows.
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Finally, we used wavelets, with three different families of them, Haar, Daubechies
and Biorthogonal and we computed the p-value for areal and area3, for scales 1 to 8.

For each scale we computed the standard deviation in each time window interval.

For Haar, we get our best result at scale 8, with p-value 0.0049873 between areal and

area3.
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Figure 5.43 Standard deviation of Haar wavelet in scale 8.

For Daubechies we get our best result at scale 2, with a p-value 0.034 for the two
areas.
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Figure 5.44 Standard deviation of Daubechies wavelet in scale 2.
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For biorthogonal we also get the best p-value at scale 2 and is equal to 0.0023
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Figure 5.45 Standard Deviation of Biorthogonal wavelet, in scale 2

Below is shown the table containing all the p-values for all the scales tested, for the

three wavelets families.

Scalel Scale2 Scale3 Scale4 Scale5 Scale6 Scale7
Haar 0.049 0.011 0582 0.043 0.266 0.243 0.064
Daubechies  0.072 0.003 0.393 0.261 0.199 0.339 0.044
Biorthogonal 0.048 0.002 0.559 0.047 0.246 0.245 0.093

Table 5-2 p-values for all the wavelets standard deviation, for all the scales, between
areal and area3.

5.1.2. Age of the patient

The Spontaneous Ventricular Tachyarrhythmia Database Version 1.0 from Medtronic,
Inc., provided with information about patient’s age, weight, height etc. So, since it is
known that age and weight are factors that affect heart conditions [8], we decided to
split the dataset based on those two operators and do some more experiments. We

Scale8
0.004
0.080
0.678
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isolated each group of signals and computed all the metrics that we computed for the

whole database, but we also compared the behavior of those metrics on young to

elderly and normal weight to overweight patients. In this section, we will present you

the results based on the age of the patient.

The database is not equally split by the age of the patients, since we have 65 signals

derived from patients older than 63 years old and 21 signals from patients younger

than 63 years old.

Since, this is a subclass of the initial database, we will only show the plots comparing

the results between young and old patients. For fullness, we will cite the tables

containing, all the p-values for each group of signals.

p-value

Areal/Area3
RateNN Non-overlapping 0.017021
RateNN Overlapping 7,77E-09
MeanNN Non-overlapping 0.025439
MeanNN Overlapping 3,11E-10
RMSSD Non-overlapping 0.944832
RMSSD Overlapping 0.488118
PNN50 Non-overlapping 0.016175
PNN50 Overlapping 0.132349
SDNN Non-overlapping 0.033717
SDNN Overlapping 0.020773
SignDC Non-overlapping 0.141775
SignDC Overlapping 0.008571
BBDC Non-overlapping 0.369812
BBDC Overlapping 0.092819

p-value
Areal/Area2
5,50E-10
2,62E-11
4,82E-10
2,33E-11
0.019128
0.017400
0.953651
0.983754
0.013049
0.004619
0.227303
0.371669
0.258937
0.265730

p-value
Area2/Area3
0.102475
0.077476
0.098419
0.053737
0.024796
0.050359
0.003658
0.117329
0.026556
0.034088
0.415861
0.024733
0.593788
0.231173

Table 5-3 p-values for each method, between all the areas, for the oldest patients.
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p-value Areal/Area3 p-value Areal/Area2 p-value Area2/Area3

RateNN Non-overlapping  0.143260 0.114298 0.149699
RateNN Overlapping 0.242031 0.017643 0.747767
MeanNN Non-overlapping 0.071911 0.036891 0.088998
MeanNN Overlapping 0.056926 0.040360 0.199596
RMSSD Non-overlapping  0.484356 0.924551 0.319100
RMSSD Overlapping 0.605948 0.817417 0.508314
PNN50 Non-overlapping 0.024432 0.518892 0.033727
PNN50 Overlapping 0.002759 0.738720 0.004571
SDNN Non-overlapping 0.038954 0.063859 0.011197
SDNN Overlapping 0.049508 0.087176 0.070311
SignDC Non-overlapping  0.246524 0.195188 0.789693
SignDC Overlapping 0.011281 0.630899 0.098357
BBDC Non-overlapping 0.987427 0.362112 0.405209
BBDC Overlapping 0.196859 0.216131 0.720670

Table 5-4 p-values for each method, between all the areas, for the youngest patients.

Starting with RateNN we can see, that in both cases, in areal, rate differs a lot. That
can easily be understood since we are having people from different age groups. The
interesting outcome from this measurement, is that despite the age of the patient heart
increases its rhythm just prior to an episode and actually following the same pattern,

despite the fact that the values of rate in the group of oldest people are lower.
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Figure 5.46 Comparing plot for RateNN, between old and young patients with non-
overlapping windows.
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Figure 5.47 Comparing plot for RateNN, between old and young patients with
overlapping windows.



53

Continuing with the MeanNN, as expected we can make the same observations as
with RateNN.

Old VS Young p value of the change
?BD T T T T T T T

A=y T
| Old | Young

700 li
680
660
640

620

MeanNN Non Overlapping Yindows

600 -

p value = p value =
580 [ | 5.5207e-008 0.473371

SBD 1 1 1 1 1
0 2 4 B 8 10 12 14 16

windows

Figure 5.48 Comparing plot for MeanNN, between old and young patients with non-
overlapping windows.
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Figure 5.49 Comparing plot for MeanNN, between old and young patients with

overlapping windows.



54

Then we compared the RMSSD metric. In this case we can observe, that when we

compute RMSSD over overlapping time windows, the plots differs in area 3. For

young patients RMSSD decreases while for older patients increases. This doesn’t

happened for non-overlapping windows.
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Figure 5.50 Comparing plot for RMSSD, between old and young patients with non-

overlapping windows.
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Figure 5.51 Comparing plot for RMSSD, between old and young patients with

overlapping windows.
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Follow, the plots for PNN50. As with all the previous measurements, for both groups,
both plots follow the same pattern. When computed with overlapping windows, the
values of PNN50 for older people are clearly higher, so comes and the separation

between the two groups, but the behavior of the plots is quite similar.
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Figure 5.52 Comparing plot for PNN50, between old and young patients with non-
overlapping windows.
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Figure 5.53 Comparing plot for PNN50, between old and young patients with
overlapping windows.
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We next compared the SDNN for both groups. As it is obvious from the plot
following both resulted almost the same with a small exception at the end of the plot,
in the case of overlapping windows. At that point the standard deviation for older
people Increases while for young decreases.
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Figure 5.54 Comparing plot for SDNN, between old and young patients with non-
overlapping windows.
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Figure 5.55 Comparing plot for SDNN, between old and young patients with
overlapping windows.
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Then we compared both BBDC and SignDC. For BBDC we can see that in areal beat
to beat deceleration capacity differs between young and older people. Young patients
score lower values of deceleration capacity but just prior to the Incident, they almost

have the same mean value as can be seen from the first plot.
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Figure 5.56 Comparing plot for BBDC, between old and young patients with non-
overlapping windows.
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Figure 5.57 Comparing plot for BBDC, between old and young patients with non-
overlapping windows.
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Concerning SignDC we can also see a similar outcome as with BBDC.
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Figure 5.58 Comparing plot for SignDC, between old and young patients with non-
overlapping windows.
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Figure 5.59 Comparing plot for SignDC, between old and young patients with
overlapping windows.
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Summarizing, we can conclude that both in young and in older patients, just prior to
the incident, the heart tends to adapt in the same way. Although some metrics showed
a clear difference in areal between young and older patients, all of them showed a
similar trend for area3.

Finally, we computed the p-value of the change between the two plots for areal and
area 2. The results can be seen in the following table.
p between the change in areal and
change in area 3
RateNN Non-overlapping 0.073126003185100

RateNN Overlapping 3,96E+11

MeanNN Non-overlapping  0.032279989720613
MeanNN Overlapping 0.005604145248088
RMSSD Non-overlapping  0.627374357547858
RMSSD Overlapping 0.524820113700616
PNN50 Non-overlapping 0.483772088100754
PNNS50 Overlapping 0.430484240504543
SDNN Non-overlapping 0.867978480485922
SDNN Overlapping 0.107431673703546
SignDC Non-overlapping 0.771917254174947
SignDC Overlapping 0.440277419561200
BBDC Non-overlapping 0.393210707068313
BBDC overlapping 0.524820113700616

Table 5-5 P-values of the change between area 1 and area 3.
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5.1.3. Weight of the patient

In the same approach with the previous section, we will present results categorizing

the data based on patient’s weight.

This partitioning consist of one group of 36 overweight patients, weighted over 90
kgs, and 50 normal weight patients. Same as before, the results from all the
experiments will be shown at the appendix and in this section we will limit ourselves

in to showing the results comparing the two groups.
Since, this is a subclass of the initial database, as previously, we will only show the
plots comparing the results between young and old patients. For fullness, we will cite

the tables containing, all the p-values for each group of signals.

p-value Areal/Area3 p-value Areal/Area2 p-value Area2/Area3

RateNN Non-overlapping  0.0138683 5,38E-11 0.0581633
RateNN Overlapping 4,14E-10 0.0023621 0.0344021
MeanNN Non-overlapping 0.0083249 5,96E-11 0.0382104
MeanNN Overlapping 471E-10 0.0026693 0.0170296
RMSSD Non-overlapping  0.3400980 0.4583237 0.0949467
RMSSD Overlapping 0.5882471 0.4476670 0.0957566
PNN50 Non-overlapping  0.0059191 0.4951441 0.0163065
PNN50 Overlapping 0.2001720 0.9553997 0.3030982
SDNN Non-overlapping 0.0326903 0.0875797 0.0316093
SDNN Overlapping 0.0844086 0.0184606 0.0078823
SignDC Non-overlapping  0.1537665 0.1582048 0.7687733
SignDC Overlapping 0.0300598 0.5392965 0.1596989
BBDC Non-overlapping 0.8231831 0.7415869 0.9715906
BBDC Overlapping 0.125698 0.205845 0.6570614

Table 5-6 p-values for each method, between all the areas, for the normal weight

patients.
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p-value Areal/Area3 p-value Areal/Area2 p-value Area2/Area3

RateNN Non-overlapping 0.031482 1,49E-11 0.125240
RateNN Overlapping 2,99E-10 4,43E-10 0.047551
MeanNN Non-overlapping  0.035051 5,90E-11 0.108940
MeanNN Overlapping 6,96E-10 1,66E-11 0.021167
RMSSD Non-overlapping 0.181021 0.009214 0.307719
RMSSD Overlapping 0.019989 0.029174 0.666196
PNN50 Non-overlapping 0.689204 0.271627 0.044620
PNN50 Overlapping 0.135420 0.175974 0.650613
SDNN Non-overlapping 0.044990 0.001018 0.028122
SDNN Overlapping 0.003305 7,13E-11 0.097009
SignDC Non-overlapping 0.123665 0.127079 0.512617
SignDC Overlapping 0.009720 0.096396 0.034298
BBDC Non-overlapping 0.063087 0.320469 0.066906
BBDC Overlapping 0.082281 0.256731 0.272896

Table 5-7 p-values for each method, between all the areas, for overweight patients.

Starting with the RateNN, we can see a similar behavior as before. Although in both
cases the rate is following the same pattern, we can see that in the first area normal
weighted people have higher values than overweighed. In the third area rate behaves

in a similar way for both groups.
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Figure 5.60 Comparing plot for RateNN, between normal and overweight patients
with non-overlapping windows.
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Figure 5.61 Comparing plot for RateNN, between normal and overweight patients
with overlapping windows.
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Continuing with MeanNN, we can see the same effect as expected, with the only
difference that in the case of overlapping windows, despite that the plot follows the

same pattern overweight peoples MeanNN gets higher values.
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Figure 5.62 Comparing plot for MeanNN, between normal and overweight patients
with non-overlapping windows.
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Figure 5.63 Comparing plot for MeanNN, between normal and overweight patients
with overlapping windows.
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Then we compared RMSSD. In this case, both plots evolve with same way but each
one has very different values. We can see in both pictures following, that the RMSSD

for overweight people is significantly higher compared with the RMSSD for normal

weight people.
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Figure 5.64 Comparing plot for RMSSD, between normal and overweight patients
with non-overlapping windows.
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Figure 5.65 Comparing plot for RMSDD, between normal and overweight patients
with overlapping windows.
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Next we can see the results for PNN50. In this case also we have some distinctions.

Values for overweigh patients are also higher during the whole signal, but we can also

see a small difference in the way the plot evolve, although both are Increasing.
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Figure 5.66 Comparing plot for PNN50, between normal and overweight patients with
non-overlapping windows.
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Figure 5.67 Comparing plot for PNN50, between normal and overweight
patients with non-overlapping windows.
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Below we can see the comparison for the SDNN. When comes to non-overlapping

windows we can observe that SDNN follows the exact same pattern for both groups,

although the values for the first are higher for overweight patients. On the other hand,

in the case of non-overlapping windows, the pattern is also the same but the values for

SDNN, are higher for overweigh people during the whole signal.
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Figure 5.68 Comparing plot for SDNN, between normal and overweight patients with
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Figure 5.69 Comparing plot for SDNN, between normal and overweight patients with

overlapping windows.
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Subsequently we present the results for BBDC and SignDC.
As expected, values at the first area differ for BBDC but both groups BBDC follows

the same pattern and results to almost the same value.
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Figure 5.70 Comparing plot for BBDC, between normal and overweight patients with
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Figure 5.71 Comparing plot for BBDC, between normal and overweight

patients with non-overlapping windows.
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Exactly the same we can observe, when it comes to SignDC.
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Figure 5.72 Comparing plot for SignDC, between normal and overweight patients
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Figure 5.73 Comparing plot for SignDC, between normal and overweight

patients with overlapping windows.
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In full correspondence with the previous section, we can conclude that although the
values that almost all the metrics get for overweight people are higher than those for
normal weight the pattern they follow is always the same. That means that the way the
heart adjust prior to an episode is the same for all the groups we studied. The
arithmetical is capable, as we can see for the p-value between groups, to separate
sometimes the patients according to the group they belong, but mostly in the area 1,
which is the area farthest from the ventricular tachycardia episode.

Finally, we computed the p-value of the change between the two plots for areal and
area 2. The results can be seen in the following table.

p between the change in areal and change in

area 3
RateNN Non-overlapping  0.007965143549565
RateNN Overlapping 0.128303307568418
MeanNN Non-overlapping 0.007184277396305
MeanNN Overlapping 0.025681020755104
RMSSD Non-overlapping  0.196578262918137
RMSSD Overlapping 0.087103558982400
PNN50 Non-overlapping  0.045282613038112
PNN50 Overlapping 0.030709110788530
SDNN Non-overlapping 0.097566244870082
SDNN Overlapping 0.107534647039655
SignDC Non-overlapping  0.781814043516266
SignDC Overlapping 0.143260403456648
BBDC Non-overlapping 0.196578262918137
BBDC overlapping 0.087103558982400

Table 5-8 P-value results for the change between areal and area3.
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5.1.4. NSVT Signals

In this section we will present the results for all the above methods for the non-sustain
ventricular tachycardia database. As mentioned previously in Chapter 4 section 1, this
database consists of 35 NSVT episodes. Those signals are processed and studied with
the same way as the previous signals. Those signals contained more information,
since they were longer in duration, but they were stored and processed in a
corresponding manner. The last beat of every signal was the beat just prior to each
NSVT episode and thereafter they were stored and used for our experiments. We will
now cite the results for every method computed, correspondingly to those mentioned
in 5.1.1 for the signals of the Spontaneous Ventricular Tachyarrhythmia Database

Version 1.0 from Medtronic, Inc.

Starting with RateNN, we can see some difference relative to the previous results. In
this case rate has a descending trend in the first two areas, while is increasing only in

the third area.

w107 Rate with non averlapping windows
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Figure 5.74 The RateNN for all the samples, over 16 non-overlapping windows, the

blue line is representing the mean RateNN.
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Figure 5.75 The mean RateNN from all the samples over 16 non-overlapping

windows.
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Figure 5.76 The RateNN for all the samples, over 16 non-overlapping windows, the
blue line is representing the mean RateNN.



72

w10 Rate with overlapping windows
132 T T T T T T T

131

1.28

1.26

rate

1.24 1+

1.22F

118 1 1 1 1 1 1 1
0

windows

Figure 5.77 The mean RateNN from all the samples over 16 non-overlapping
windows

As we can see from the box plot following RateNN can separate quite well the first
and the third area in both cases, as despite the overlapping values the mean values of
each area differ.
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Figure 5.78 Box plot for RateNN, areal and area2, with non-overlapping windows.
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Figure 5.79 Box plot for RateNN, areal and area2, with overlapping windows

Continuing with MeanNN, we can see corresponding various, since this time

MeanNN starts with Increment and at the third area decreases, while with the first

dataset was a continuous decrement.
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Figure 5.80 The MeanNN for all the samples, over 16 non-overlapping windows, the

blue line is representing the mean MeanNN.
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Figure 5.81 The mean MeanNN from all the samples over 16 non-overlapping

windows
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Figure 5.82 The MeanNN for all the samples, over 16 overlapping windows, the blue

line is representing the mean MeanNN.
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MeanNM with overlapping windows
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Figure 5.83 The mean RateNN from all the samples over 16 overlapping windows.

As we can see from the following figures, box plots for MeanNN are quite similar

with those for RateNN, as expected.
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Figure 5.84 Box plot for MeanNN, areal and area2, with non-overlapping windows
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Box plot for meanNN with overlapping windows
1200F 3

s
I
i

_

1100+

1000

900

800 =

700+

600

timespace1 timespace3

Figure 5.85 Box plot for MeanNN, areal and area2, with overlapping windows

Then we computed RMSSD, as before isn’t a smooth line. In both this and the
previous database, is modifying abruptly and finally Increases in the third area.
Although in this case, when computed with overlapping windows, has a decrement in

towards the end of the signal.
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Figure 5.86 The RMSSD for all the samples, over 16 non-overlapping windows, the

blue line is representing the mean RMSSD.
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Figure 5.87 The mean RMSSD from all the samples over 16 non-overlapping

windows.
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Figure 5.88 The RMSSD for all the samples, over 16 overlapping windows, the blue

line is representing the mean RMSSD.



78

145

140

135

130

125

RMSSD

120

115

110

105

RMSSD with overlapping windows

T T T

B =] 10 12 14 16

windows

Figure 5.89 The mean RMSSD from all the samples over 16 overlapping windows.

As expected, the box plots cannot give a good and clear result of separation using the

RMSSD measurement.
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Figure 5.90 Box plot for RMSSD, areal and area2, with non-overlapping windows.
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Box plot for RMSSD with overlapping windows
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Figure 5.91 Box plot for RMSSD, areal and area2, with overlapping windows.

Continuing, we present the results for the PNN50 method. This method result similar
plots for those data, as for those of the online database. There also exist sharp

variations, but an Increasing trend exists.
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Figure 5.92 The PNN50 for all the samples, over 16 non-overlapping windows, the

blue line is representing the mean PNN50.
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Figure 5.93 The mean PNN50 from all the samples over 16 non-overlapping

windows.
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Figure 5.94 The PNN50 for all the samples, over 16 overlapping windows, the blue
line is representing the mean PNN50.
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PMNS0 with overlapping windows
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Figure 5.95 The mean PNN50 from all the samples over 16 overlapping windows

As expected, due to the sharp variations, box plots could not result a good separation
of the two areas.
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Figure 5.96 Box plot for PNN50, areal and area2, with non-overlapping windows



82

Box plot for pNN50 with overlapping windows
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Figure 5.97 Box plot for PNN50, areal and area2, with overlapping windows

Following, we can see the results for SDNN. In addition to the previous results, for

this data SDNN results also a sharp line with large changes.
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Figure 5.98 The SDNN for all the samples, over 16 non-overlapping windows, the

SDNN with non overlapping windows
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Figure 5.99 The mean SDNN from all the samples over 16 non-overlapping windows
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Figure 5.100 The SDNN for all the samples, over 16 overlapping windows, the blue

line is representing the mean SDNN.
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Figure 5.101 The mean SDNN from all the samples over 16 non-overlapping
windows.

As expected, box plots cannot give a good a good result of separation.
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Figure 5.102 Box plot for SDNN, areal and area2, with non-overlapping windows.

Box plot for sdnn with overlapping windows

151 it B
g
4
4 +
Fy &
10} _— T .
: |
|
i |
I
I I
! |
5 PR PR sl
0r- £ 4 B
timespace1 timespace3

Figure 5.103 Box plot for SDNN, areal and area2, with overlapping windows.

Next, follow the results for BBDC and SignDC. Let’s first see how BBDC performs
for this data. As before, we result a line with sharp edges. The main difference is, that
with the previous data BBDC ended to a value smaller just prior to the Incident, while

now ends with a higher value.
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Figure 5.104 The BBDC for all the samples, over 16 non-overlapping windows, the
blue line is representing the mean BBDC.
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Figure 5.105 The mean BBDC from all the samples over 16 non-overlapping

windows
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BEDC with overlapping windows
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Figure 5.106 The BBDC for all the samples, over 16 overlapping windows, the blue
line is representing the mean BBDC.
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Figure 5.107 The mean BBDC from all the samples over 16 non-overlapping

windows
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Although, mean values differ for each area we still did not got a great result of

separation neither in this case.

Box plot for bbDC with non overlapping windows
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Figure 5.108 Box plot for BBDC, areal and area2, with non-overlapping windows
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Figure 5.109 Box plot for BBDC, areal and area2, with overlapping windows
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Same as before, SignDC results strong diagrams, very close to those we got as results
for the first database.
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Figure 5.110 The SignDC for all the samples, over 16 non-overlapping windows, the
blue line is representing the mean SignDC.
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Figure 5.111 The mean SignDC from all the samples over 16 non-overlapping
windows
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Figure 5.112 The SignDC for all the samples, over 16 overlapping windows, the blue
line is representing the mean SignDC.
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Figure 5.113 The mean SignDC from all the samples over 16 overlapping windows.
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Considering the large changes on the plots, box plots for SignDC, have multiple

outliers and did not show that SignDC can separate areal and area3.
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Figure 5.114 Box plot for SignDC, areal and area2, with non-overlapping windows.
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Figure 5.115 Box plot for SignDC, areal and area2, with overlapping windows
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Now we will cite a summary table, containing all the p-values, for each metric,

between the three areas.

RateNN Non-overlapping

RateNN Overlapping

MeanNN Non-overlapping
MeanNN Overlapping
RMSSD Non-overlapping

RMSSD Overlapping

PNN50 Non-overlapping

PNNS50 Overlapping

SDNN Non-overlapping

SDNN Overlapping

SignDC Non-overlapping

SignDC Overlapping

BBDC Non-overlapping

BBDC Overlapping

p-value Areal/Area3
6,29E-09
2,16E-11
7,61E-09
1,03E-11
0.295294382913156
0.048707725649728
0.004197863794658
0.011382590887603
0.002151920346042
0.018875243185822
0.054439653757489
0.061080017529610
0.080667001977926
0.048049121009530

p-value Areal/Area2
0.004388647766871
7,90E-11
0.002444545313195
7,12E-11
0.024851295997571
0.063212585005851
0.115931791233024
0.029486596987287
0.051207825586515
0.045449056956394
0,035177613
0.061137166937230
0.135328241472596
0.170680672181119

p-value Area2/Area3
0.003979165005753
0.006163878410999
0.003883097751930
0.006922809853529
0.307308061823022
0.654934903049683
0.211559369264154
0.333182731277476
0.002511260947578
0.008128885016169
0.122132656271298
0.304437920875539
0.242967281695785
0.421194629428976

Table 5-9 p-values for each method, between all the areas.

We also used wavelets, with three different families of them, Haar, Daubechies and

Biorthogonal and we computed the p-value for areal and area3, for scales 1 to 8. For

each scale, we computed the standard deviation in each time window interval.

In this case Haar separates best the two areas, in the first scale with a p-value 0.009.
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Figure 5.116 Standard deviation for Haar wavelet, in scale 1.

Daubechies also performs best in the first scale with a p-value of 0.002 also between

the two areas.
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Figure 5.117Standard deviation for Daubechies wavelet, in scale 1.

Biorthogonal, also performs best at the first scale with a p-value of 0.008
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Figure 5.118 Standard deviation for Biorthogonal wavelet, in scale 1.

Follows a table containing the p-values for all the scales, between areal and area3.

Summarizing we can see that, Daubechies performs better both in scale 1 and scale 2.

Haar
Daubechiess

Biorthogonal

Scalel
0.009
0.002
0.008

Scale2
0.389
0.012
0.229

Scale3  Scale4  Scale5
0.125 0.349 0.842
0.287 0.213 0.763
0.076  0.582  0.669

Scale6
0.938
0.826
0.882

Scale7
0.557
0.232
0.151

Scale8
0.011
0.387
0.481

Table 5-10 p-values for all the wavelets standard deviation, for all the scales, between

areal and area3.
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5.2. VT and NSVT Comparison

Next, and since we already had all the needed information, we compared the HRV
methods results, for the data of the first database, VT signals, and the data from the
NSVT database, NSVT signals.

We will next cite plots for each metric, containing the result for both datasets, and
displaying the p-value between areal for each and area3. Meaning we computed the

p-value between VT’s and NSVT’s areal and respectively for area3.

First we compared the RateNN. As expected from the previous results, each data
behave differently and we can see that p-value is very small for both areas. We can
see that Rate in VT patients Increases continuously before the episode, while for the

NSVT has a slight Increment just prior to it.
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Figure 5.119 Comparing plot for RateNN, between VT and NSVT samples with non-
overlapping windows.
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Figure 5.120 Comparing plot for RateNN, between VT and NSVT samples with
overlapping windows.

Accordingly are the results for MeanNN. In this case, we can also see that the two

conditions score really small p-values in both areas.
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Figure 5.121 Comparing plot for MeanNN, between VT and NSVT samples with non-
overlapping windows.
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Figure 5.122 Comparing plot for MeanNN, between VT and NSVT samples with
overlapping windows.

RMSSD also show a good difference between the two databases. Although both plots
eventually Increase their value prior to the episode, we can observe that VT signals
have values almost equal to half of the values of NSVT and that results the really

small p-values we get for both areas.
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Exactly the same effect we can observe with the PNN50 measurement.
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Figure 5.125 Comparing plot for PNN50, between VT and NSVT samples with non-
overlapping windows.
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Figure 5.126 Comparing plot for PNN50, between VT and NSVT samples with
overlapping windows.
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As we can see with SDNN, the differentiation between the datasets continues with
this measurement too. Although the plots are completely different, the p-value in the

third area is quite big due to the values of results.

Figure 5.127 Comparing plot for SDNN, between VT and NSVT samples with non-

SDNN Overlapping Windows
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BBDC results as all the above methods. As we can see SignDC is the only exception
from all this measurements. Plots in this case follow quite similar patterns and also
take values within the same range. That’s the reason why with this measurement we

cannot get small p-values in any area.
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Figure 5.129 Comparing plot for BBDC, between VT and NSVT samples with non-
overlapping windows.
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Figure 5.130 Comparing plot for BBDC, between VT and NSVT samples with
overlapping windows.
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Figure 5.131 Comparing plot for SignDC, between VT and NSVT samples with non-
overlapping windows.
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Figure 5.132 Comparing plot for SignDC, between VT and NSVT samples with
overlapping windows.



103

Finally, we computed the p-value of the change between the two plots for areal and

area 2. The results can be seen in the table 5-9.

p-value of the change areal-area2
RateNN Non-overlapping  0.009237814890361

RateNN Overlapping 1,57E-05

MeanNN Non-overlapping  0.003049808563208
MeanNN Overlapping 6,23E-06

RMSSD Non-overlapping  0.109132848099495
RMSSD Overlapping 0.033000298815369
PNN50 Non-overlapping 0.251969137031038
PNN50 Overlapping 0.131535273651693
SDNN Non-overlapping 0.042475623228109
SDNN Overlapping 0.001197092663634
SignDC Non-overlapping ~ 0.090444918324349
SignDC Overlapping 0.097080783354982
BBDC Non-overlapping 0.007576864421602
BBDC overlapping 4,41E-05

Table 5-11 p-value of the change between the plots of VT and NSVT for areal and
area3.

After seeing all the above comparisons we can conclude, that except the case of
SignDC, VT and NSVT could be well separable in both areas.
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CHAPTER 6. SUPPORT VECTOR MACHINE

6.1 Support Vector Machines

6.2 Support Vector Machine Performance

6.1. Support Vector Machines

Support Vector Machines are a set of learning methods used for classification
problems. Is one of the most popular methods of classification, becoming the best
choice for problems such as text categorization, hand writing recognition and
biomedical data [16, 17, 18]. The method can be used for two-class problems, but also

for multiclass problems.

A characteristic feature of SVMs, is that their ability in learning is independent of the
dimensions of the space of characteristics. SVMs measure the complexity of cases,
based on the distance that can separate the data, and not on the number of
characteristics. This means that we can generalize even with the presence of too many
features, if our data can be separated by a wide margin using functions from the

assumptions space.

While training, the SVM is trying to find a hyper level, in order to separate the
training data. Actually an SVM is trying to find the best hyper level, called maximum

margin hyperplane, with the capacity to separate the groups of examples with the
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greatest possible distance. This means that the nearest distance between a point on a
hyperplane and a separated point in another hyperplane is maximized. In fact, the
examples should me correctly classified and the hyperplane should be maximized, so
the SVM has to solve a constraint optimization problem. Because of the fact, that in
most problems data are not linear separable, SVMs use a different approach while
training and they try to find a soft margin hyperplane, meaning the level that separates

the data with the smallest error.

Moreover, they can develop effective functions, for each specific problem, in order to
achieve even better results. So, when linear classifier does not perform well and
calculations in bigger dimensions are needed, then support vectors machines based on
the kernel are used. One of the most used functions is RBF kernel (Radial Basis

Function) and this function is used in this thesis.

More specifically, if the training samples are linearly separable, there exists a linear

function [4] on the formula of

flx)=wix+b
Such that yi f(xi) > 0, or f(xi) > 0 for yi = +1 and f(xi) <0 for yi = —1.
The SVM wants to find the hyperplane that maximizes the separating margins

between the two classes, which can be found by minimizing the cost function

1 -+ 1 .
Jw)=-w'w= 5 1wl

Subject to the separability constraints
y(wlis, +b)>1, i=1,..., L.

When the training data is not completely separable by a hyperplane, a set of slack
variables & > 0, i=1, ..., |, is introduced, that represents the amount by which the
linearity constraint is violated. In that case, the cost function is modified to take into

account those violations. So, the function to be minimized becomes
i

1 2 4]
Jw.&) = 5lwlF +C Y6
In this case, C gives the significance of the constraints violations with respect to the

distance between the points and the hyperplane and & is a vector containing the slack
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variables. This problem can be solved by using Lagrange multipliers and the
calculation of w becomes

i

W = E Oy T X

i=1
where o, > 0, i=l1,...,] the Lagrange multipliers associated with the previous

constraints and know the problem is expressed as

m||—~

I | !
L E E E o (1 X% )
=1 i=1 j=1

With the constraints

i

g = 0, Z(li:ih =1

i=1

Therefore, the classification function is

{
= sign (Z 0 1 XK —-—IJ}) :

As said before in this section, for the many datasets a hyperplane will not result a
good classifier and a decision boundary with more complex geometry is needed. One
way to achieve this is to map the attribute vector in a new space of higher
dimensionality and look for a hyperplane in that new space, leading to kernel- based
SVMs.

Let @(-) be a nonlinear operator mapping the input vector x to a higher dimensional
space. The optimization problem for the points ®(x) becomes

l

min J(w, &) ——|| wl* +C> &

i=1

With the constraints

yiw! ®(x;)+b)>1-§&, &>0, i=1,..., L.

The only formula in which the mapping appears is in terms of
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K(x.x,,)=® (x)D(x,)

and finally the problem to be solved is

Pocd | =t

l ! l
max Z ZZ (miy; K (xi,x5) )y

subject to the constraints

I

oy = [, Zn!-g,h =1

i=1
and so the classifier becomes
!
f(x) = sign (Z[nhr;r-ff[x.xi) 1 :'J})
i=1

We used Radial Basis Function Kernel (RBF) with type

F

K(x,x)= exp(;.«||x-f||3) qK(x,x)= exp{- ”“2'_1”]

Where vy is parameter that can be seen as the inverse of the radius of influence of the

training set.

6.2. Support Vector Machine Performance

Therefore, support vector machines take as input some data coming from different
groups and try to find the best hyper level, in order to separate them. Then those data

are able to be correctly classified.

In our case, we build two groups of data, one with samples from areal and one with
samples from area2. We applied exhaustive search evaluation of the features RateNN,
MeanNN, RMSSD, PNN50, SDNN, BBDC and SignDC. After testing the result of

the classification using from 4 to 7 features, we ended using the results from RateNN,
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MeanNN, PNN50, SDNN and SignDC. The classifier took as input all the above data,
and with 10-fold cross validation, stored each time a train and a test set. SVM gets

trained with the train set and then predicts the class of the test set.

We tried both linear and RBF function for our experiments and repeat our experiment
for 250 times, for each function. When using the RBF kernel function we had to set
the cost and sigma (o) parameters. As we mentioned before the cost parameter (C)
trades off misclassification of training examples against simplicity of the decision
surface. A low C makes the decision surface smooth, while a high C aims at
classifying all training examples correctly by give the model freedom to select more
samples as support vectors. The sigma parameter defines how far the influence of a
single training example reaches, with low values meaning ‘far’ and high values
meaning ‘close’. We tried different values for these parameters and we ended using
C=0.9 and sigma= 0.2.

We counted the performance of the SVM using accuracy, sensitivity and specificity.

Sensitivity measures the proportion of positives that are correctly identifies as such
and specificity measures the proportion of negatives that are correctly identified as
that. In our case we define as positive the sample from area3 and respectively as
negative the data from areal. So accuracy is the proportion of total true results among

the number of all the cases examined, true and false.

The Linear function the mean value of success was 71.78% with standard deviation of
0.075. For the RBF function the mean value of success was 73.5% with standard

deviation 0.071. Follows a table with the results of our SVMs performance.

SVM Classifier Accuracy Sensitivity Specificity
Linear 71,80% 73,60% 71,10%
RBF 73,50% 75,20% 68,90%

Table 6-1 Classification Results for the SVM
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Finally, we normalized the values of the features inserted as input to the SVM in order
to see if we could get a more accurate result. As we can see from the following table
for the kernel classifier we get a significant improvement of about 3.74% in accuracy,
5.2% in sensitivity and 3.8% in specificity. The improvement on the result from the

linear SVM is small as we can observe in the Table 6-2.

SVM Classifier Accuracy Sensitivity Specificity
Linear 73.80% 74.12% 70.63%
RBF 77.24% 80.40% 72.70%

Table 6-2 Classification Results for the SVM, after value normalization.
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CHAPTER 7. CONCLUSION

7.1 Conclusion
7.2 Future Work

7.1. Conclusion

The purpose of this work was to investigate how the rhythm of the heart, from
patients suffering from ventricular tachycardia, change before an episode. We used
heart rate variability methods, which are widely used in the study of heart signals, in
order to study the signals in a different way, examining their change prior to a cardiac
episode.

We implemented and computed HRV methods, from time and time-frequency domain
and we also computed the deceleration capacity of the heart. All the above methods,
were computed over time window intervals, we used non-overlapping and
overlapping windows, and we focused our interest in the five first and five last
windows. As areal is the farthest from the episode and area3 is the nearest. We used
signals from an online database, the Spontaneous Ventricular Tachyarrhythmia
Database Version 1.0 from Medtronic, Inc., and from a NSVT database which was

given to us.

First, we focused our interest in investigating the how each signal behave before a
ventricular tachycardia episode. We can now conclude that some methods, as
RateNN, MeanNN,SDNN and SignDC perform well in distinguishing areal from

area3. The p-values between those areas for the above metrics are smaller than 0.05 in
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addition to those for RMSSD and BBDC. The same methods performed well for the
NSVT signals as well.

Then, we compared the results based on age and weight for the samples of the
Spontaneous Ventricular Tachyarrhythmia Database Version 1.0 from Medtronic, Inc.
database. When comparing the patients by diving them to younger and older, we
observed that while at the beginning of the signal their values might differ, when
approaching the episode their values were really close. Also in this case the shape of
the plots were almost the same. So we can conclude, that despite the age of the

patient, prior to a ventricular tachycardia Incident heart behaves the same.

Splitting the patients using their weight we observed a similar behavior as before, but
with the exception that in the cases of RMSSD and PNN50, both the values and the
curve of the plots were different between the two groups of patients. Both methods
focus on short term changes of the signal, since there are both based in differences
and comparisons between adjacent beats.

Continuing we compared the VT and NSVT signals. In this case the results were
different. With all the methods except SignDC, both the values and the curves of the
plots were different. That fact led the p-values between areal of the VT and areal of

the NSVT to be really small, as well as for area3 respectively.

Finally the results of the methods perform better for the VT signals, were given as

input to a support vector machine. The performance of the machine was 73.5%.

7.2. Future Work

This work constitutes an early study of exploring the variability of heart prior to a
ventricular tachycardia episode. Significant expansion of the thesis for the future, is to
increase the number of data, in order to be able to generalize the results. Moreover,

the study of longer duration data will be useful. Also other methods both from time
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domain but also from frequency domain could apply on this data. More experimenting
with the number and size of windows and also with the areas in focus could be also
done. Another important factor is the contribution of specialized doctors, in order to

explain those results and guide the researchers of this field.
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