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Abstract

Christos V. Theodorakis, MSc, Computer Science Department, University of Ioannina,

Greece. July, 2015. E�cient Storage Managment of Multi-version Structured Data

Thesis Supervisor: Stergios V. Anastasiadis.

Large scale distributed storage systems are the basic components of today's cloud com-

puting infrastructures. They play a crucial role in the overall system functionality, as

they often become system bottleneck. Hence they a�ect the overall end user experience.

In order to maintain a high throughput ratio, most of these systems are designed to only

provide access to the most recent version of each record.

In this thesis we examine the possibility of combining partial persistence with a key-

value store based on a write-optimized data structure. We identify the ine�ciencies that

a multilevel key-value store presents when users should store more than one values for

the same key. Therefore we design and implement the Multiversion RangeMerge in a

prototype subsystem that we created based on a widely open-source, key-value store.

Through extensive experimentation, we study the performance for retrieving a range of

older values and we show that our implementation achieves lower latency for several

workloads.
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ÐïëëáðëÝò Åêäüóåéò Ôéìþí.

ÅðéâëÝðïíôáò: ÓôÝñãéïò ÁíáóôáóéÜäçò.

Ç ñáãäáßá áíÜðôõîç ôùí ìÝóùí êáé ôùí óõóêåõþí ðïõ ìðïñïýí íá ðáñÜãïõí äåäïìÝíá

å÷åé ïäçãÞóåé óôçí áíÜêãç äçìéïõñãßáò ìåãÜëùí êáôáíåìçìÝùí óõóôçìáôùí áðïèçêåõóçò.

ÁõôÜ ôá óõóôÞìáôá áðïôåëïýí ôï âáóéêü êïììÜôé ôçò õðïäïìÞò ðïõ ðáñÝ÷åé ôï õðïëïãéóôéêü

íÝöïò. Ôá óõóôÞìôá áõôÜ èá ðñÝðåé íá Ýéíáé óå èÝóç íá ðáñÝ÷ïõí ôçí êáëýôåñç äõíáôÞ

åìðåéñßá óôïí ÷ñÞóôç, áêïìÞ êáé üôáí ðïëëïß ÷ñÞóôåò ðñïóðáèïýí ôáõôü÷ñïíá íá áðïèçêåýóïõí

Þ íá áíáêôÞóïõí ôá äåäïìÝíá ôïõò.

Ç áðïäïôéêÞ áðïèÞêåõóç êáé áíÜêôçóç äåäïìÝíùí åßíáé Ýíá êñßóéìï ÷áñáêôçñéóôéêü

ãéá ôá äïìçìÝíá óõóôÞìáôá áðïèÞêåõóçò. Óå áñêåôÝò ðåñéðôþóåéò õðÜñ÷åé ç áíÜãêç

äéáôÞñçóçò êáé áíÜêôçóçò ðïëëáðëþí åêäüóåùí ôéìþí ãéá ôá ßäéá êëåéäéÜ. Ìåëåôïýìå ôï

ðñüâëçìá ôçò áðïèÞêåõóçò êáé áíÜêôçóçò äïìçìÝíùí äåäïìÝíùí ôá ïðïßá åíçìåñþíïíôáé

ìå ôï ðÝñáóìá ôïõ ÷ñüíïõ óå óõóôÞìáôá áðïèÞêåõóçò êëåéäéïý-ôéìÞò. ÐñïêåéìÝíïõ íá

åëá÷éóôïðïéÞóïõìå ôï ÷ñüíï áíÜêôçóçò ðáëáéüôåñùí ôéìþí, ó÷åäéÜóáìå êáé õëïðïéÞóáìå

ìéá êáéíïýñéá äïìÞ êáé ìÝèïäï áðïèÞêåõóçò ãéá ôç äéá÷åßñéóç ðïëëáðëþí ôéìþí ôïõ ßäéïõ

êëåéäéïý.

Ç ìÝèïäïò ðïõ ðñïôåßíïõìå âáóßæåôáé óôïí áëãüñéèìï RangeMerge êáé ôçí åíóùìáôþóáìå

óôï óýóôçìá LevelDB ôçò Google. Ìå ðåéñáìáôéêÞ ìåëÝôç ôçò ðñùôüôõðçò õëïðïßçóçò

äåß÷íïõìå üôé ç ìÝèïäïò ìáò ðåôõ÷áßíåé ìåßùóç ôïõ ÷ñüíïõ áíÜêôçóçò ðïëëáðëþí åêäüóåùí

ãéá ôï ßäéï êëåéäß, êáé ôáõôü÷ñïíá äéáôçñåß ôç ñõèìáðüäïóç ôïõ óõóôÞìáôïò ìáò ðïëý êïíôÜ

óôï ìÝãéóôï äõíáôü åðßðåäï. ÓõíïëéêÜ ôï óýóôçìÜ ìáò ìðïñåß íá ðñïóöÝñåé ãñÞãïñç

êáé óôáèåñÞ áðüäïóç áíÜêôçóçò ãéá ðïëëáðëÝò ôéìÝò ðïõ áíáöÝñïíôáé óôï ßäéï êëåéäß,

áíåîÜñôçôá áðü ôçí êáôáíïìÞ ðïõ ðåñéãñÜöåé ôçí åìöÜíéóç ôùí æåõãþí êëåéäéïý-ôéìÞò.
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Chapter 1

Introduction

1.1 Thesis Scope

1.2 Thesis Outline

1.1 Thesis Scope

In the era of BigData, we observe a rapid increase in the usage of cloud computing infras-

tructures. Applications such as e-commerce, advertising analytics and social networking

are used by millions of users who concurrently store or retrieve data. Interaction with

those users drives the underling storage infrastructure to archive, process and serve enor-

mous amount of data. This increase has led scalable data management systems to be a

critical component of overall cloud infrastructure.

Traditional relational databases used to be the ubiquitous backend storage system.

They provide a wide variety of retrieval API calls and the use of B-trees makes them

ideal for point insertion and retrieval. Also the choice of B-tree data structure makes

relational databases capable of e�ciently storing data which have a prede�ned scheme.

On the other hand their performance degrades when large amounts of data should be

retrieved. The time needed for a disk seek limits the performance of Relational Database

Management Systems (RDBMS). Another drawback arises from the fact that they can

not scale linearly.

In contrast to traditional Relational Database Management Systems (RDBMS), NoSQL

scalable datastores provide 
at data organization, horizontal scalability, simple design

and interface. Due to their bene�ts in scalability, simplicity and performance many of the

1



largest and commonly used distributed storage systems employ general purpose Key-Value

stores as their storage backend. For instance Google uses a variation of LevelDB [20] as

the storage backbone for Bigtable [6] and every other system based on it. That makes

KV stores one of the most critical component of the system. An e�cient key-value data-

store should concurrently insert data to the system while at the same time answer point

or range queries. Thus, performance for workloads which contain point or batch write

requests and point or range queries, has a major impact on the quality of service that the

end user will perceive.

In cases such as stock trading, advertising analytics and bank transactions multiple

values should be stored for every key. A downside of existing key-value stores is that they

do not e�ciently handle older values. In most cases they fail to preserve any multiversion

semantics and force the developer or the user to provide appropriate key-value pairs. On

the other hand, if it is part of a larger system another mechanism should be used to

e�ciently handle updates for preexisting keys.

In the present thesis, we investigate the performance characteristics of persistent stor-

age in the context of key-value stores and the overhead for retrieving archived values for

a key. In order to provide partial persistence and e�ciently store the older values, we

introduce the Multiversion RangeMerge algorithm, which constitutes an enhancement of

the original RangeMerge [21] algorithm. In particular the primary idea is to split the

data into two layers. The �rst layer contains only the most recent value for every key

inserted to the system. The second layer sorts and stores older values for keys that have

been updated. Therefore, we can exploit hard disk's performance for sequential access

and e�ciently retrieve the requested key ranges. Thus we manage to maintain almost

constant latency for queries which retrieve older key-value pairs. At the same time we

move the burden of e�ciently storing data from the user to the system, because we na-

tively support multiversioning for the storage system. To evaluate our idea we created

a system prototype based on RangeDB [23], which implements the original RangeMerge

algorithm.

1.2 Thesis Outline

The remainder of this thesis is organizes as follows:

In Chapter 2, we provide an overview of the related research. We review previous

research related to methods that have been proposed in order to convert an ephemeral

data structure to a persistent one. Also we present proposed persistent data structures

based on B-trees and we overview their performance characteristics. Furthermore we

2



examine the performance characteristics of various key-value stores which are based on

the LSM-Trees. Finally we inspect key components of some of the largest distributed

storage systems which use key-values as their persistent storage back-end.

In Chapter 3, we describe the structural components of a key-value store. Speci�cally,

we examine internal mechanisms of LevelDB, which provide a persistent storage based on

the structure of an LSM-Tree.

In Chapter 4, we de�ne the general design of our system together with the objectives

and the decisions which lead to it.

In Chapter 5, we introduce the Multiversion RangeMerge method that we designed

and implemented in our prototype system. Our idea is based on the separation of the

historical values for each key from the most recent value for that key. We intend to

maximize locality between key and time dimension which leads us to minimize latency of

retrieval operations.

In Chapter 6, we describe the experimentation environment that we used in our study

and present the measurements for various settings. Experimental results are displayed

graphically and our conclusions are justi�ed.

In Chapter 7, the conclusions and the future directions of this thesis are outlined.

3



Chapter 2

Related Research

2.1 Multi version data structures

2.2 B-trees and Multi-versioning

2.4 Scalable data storage systems

2.3 Key-Value Stores

2.5 Summary

In this chapter, we describe some data structures that have been proposed in the

literature in order to store multiple versions of the same data while keeping time and

storage cost bounded. Furthermore, we review the most advanced data storage systems

which utilize the Log-Structured Merge Trees (LSM-Trees) as their on-disk storage back-

end.

2.1 Multi version data structures

Every time a new insertion is performed the corresponding data structure should either

create a new instance or overwrite the one that already existed. We can assume that every

time a new insertion is performed data structures change their shape. In most cases, an

update overwrites the existing data and makes it irretrievable. Data structures can be

divided in two major categories based on the way they handle updates for preexisting

data. They can be characterized as either ephemeral or persistent. The ephemeral data

structures store only the most recent version of the data, while they delete the older

4



versions. Respectively, the persistent data structures keep every change in shape and

allow access at any version of the stored data. This category is further divided in two

classes based on the data that can be modi�ed. The �rst class consists of the partially

persistent data structures which allow access to all previous versions of the data and

only the latest one to be modi�ed. The second class is composed of the fully persistent

data structures which store every data version and provide full access to preexisted data

contained at any version of the structure.

The most obvious way for storing multiple versions for the inserted data is to keep a

copy of the entire structure every time data is renewed. However, this approach has the

drawback of requiring space and time proportional to the size of the entire data structure.

To avoid that, Driscoll et al. [11] proposed two techniques to convert any ephemeral data

structure to persistent. The �rst and simplest of these techniques, called fat node, uses a

binary tree in order to store every update e�ciently. Every time an update is inserted, the

corresponding node is found and an update record is stored alongside with the previous

ones. To do so each node keeps an arbitrary number of labels while maintaining the same

pointer �elds with those in the ephemeral data structure. Also for every update each

node keeps a unique record, called versionstamp, indicating when that label was added.

That method also needs an auxiliary data structure for storing access pointers to various

versions. That structure can be implemented as an array where after the i-th update,

pointers to each label with the appropriate versionstamp are placed in the i-th position.

That allows systems to access values for a speci�c version in O(1) time.

The fat node technique consumes O(1) space for every update, but the time for access-

ing or updating a node needs O(logm) in time, with m indicating the number of versions.

To overcome that drawback the authors proposed the path-copying technique. According

to this technique, each node has a �xed number of �elds. If updates to these �elds lead to

an over
ow, a new copy for that node which contains only the most recent value for every

label is created. Also, the predecessor of that node should be informed for that new copy.

In particular when a new node is inserted or updated, a copy of the path that leads to the

corresponding leaf node is created. If the inserted data has to update a preexisting label,

the data structure just changes the record in that label. In case of inserting new data,

the structure creates a new node and appends that node to the end of a newly created

path. This means that a new sub-tree is always created which contains all nodes from the

root to the one that should be updated. As a result, the path copying access time costs

O(1), after searching for the appropriate root node. If there have been m modi�cations,

the search costs O(logm) time. After �nding the appropriate root, the time needed to

access each node is O(1). The downside of that technique is that the space and time
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needed for modi�cations is bounded by the number of nodes that must be copied. In the

worst case, a modi�cation may need to copy the whole tree, which leads to space and

time consumption O(n).

These techniques can convert any ephemeral structure, that can be represented by a

linked list, to a partially persistent one. Minor modi�cations to the proposed ways can

also provide full persistence to ephemeral data structures. Also despite its drawbacks

the path-copying technique is used on the Copy-on-Write (CoW) B-tree which is key

component of modern �le systems [7, 4, 28]

2.2 B-trees and Multi-versioning

B-trees are a generalization of binary trees where each node can hold more than two

children. They were developed in order to improve the e�ciency during reading and

writing large blocks of data.

2.2.1 Partially Persistent

Lomet and Salzbert [19] claimed that transaction time databases which are supported by

TSB-trees, a variation of original B-trees, can also provide backup functionality in order

to protect the database from hardware failures. They support their claim based on the

observation that history versions of each transaction resembles these needed for backup.

The cost of keeping periodical backups using a TSB-tree is comparable to that of keeping

a conventional di�erential backup. In particular the proposed method splits the database

in two components; the �rst, called archive, stores historical data, while the second holds

only the most recent values. Access to both components is provided by a single index.

The database is partially persistent as archived values can be accessed but not modi�ed.

The cost of search and insertion is O(log n) in time while the storage cost is O(n) in size.

It also requires n/B number of I/O operations in case of a range query, in which n is

the size of accessed versions and B stands for the size of the block. Moreover it provides

locality to time-slices and an integrated index for both databases.

Becker et al. proposed the Multiversion B-tree [3], a variation of original B-tree, which

is asymptotically optimal compared to the ephemeral one (space and time are the same

at worst case). The proposed Multiversion B-tree is partially persistent because it allows

modi�cations only for the most recent version while at the same time it supports point

and range queries for any version. To facilitate version handling, the proposed method

�rst adds an insertion and a deletion time indicator in order to keep track of the lifespan
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of each record. Blocks are characterized as live or dead. Live are the blocks that have

not been copied yet, while dead are the blocks that their content has been copied during

an update or deletion operation. The Multiversion B-tree changes its shape either when

a node block over
ows or when a deletion leads a block to under
ow. In the case of an

over
ow, the structural modi�cation creates a new copy of that block and removes all

updates from it. This modi�cation, called version split, is similar to the node copying

operation described earlier. On the other hand, an under
ow happens only if a deletion

is performed for a record in a node that contains the minimum number of entries allowed.

That occurs only to a node storing the most recent version for a record because nodes

that store older values can not be modi�ed. In MVBT an update costs O(log2
B
n) I/O

operations,while O(log
B
n + r=B) I/O operations are required to answer a range query.

Note that, B is the size of the block, r is the number of returned records and n indicates

the number of updates.

Following the same principles the Multi Version Access Structure [31] proposed by

Varman and Verma achieves the optimal query time for key range and key history search

while optimally processing time range queries. In contrast to previous methods MVAS,

is based on a multiversion B+-tree. Values are stored in leaf nodes of the B+-tree which

are called data nodes. Interior nodes of the tree, called index nodes, store only pointers

which form paths from the root node to each leaf. Both node types consist of records

which contain a key label and a set of two variables indicating start and �nish version of

that record. Each node is either live, if it contains any live record, or dead if there are no

live records in it. An insertion or an update of a new record can lead to an over
ow. In

that case the over
ow is handled based on the number of live records that exist in that

node.

Three cases are distinguished based on the two parameters which mark the needed

occupancy from live records contained in the block that over
ew. In the �rst case, where

the live records exceed an upper bound, the over
own node is split equally between two

new nodes. In the second case, live records, which are between a lower and the upper

bound, are moved from the current block to a new one. In the third case, where live

records are beneath the lower bound, the structure �nds a sibling node and copies all

live records from the over
own node and either all or part of the sibling node to a new

one. The deletion operation for a record just populates the end variable using the current

version number. If the end �eld of a record contains a value, this record is considered

dead. If a deletion operation reduces the number of the live records below a certain

threshold then a mechanism similar to the one used for insertion operations is triggered.

This mechanism �nds the appropriate sibling node and merges the two nodes. Figure 2.1
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Index block

Data nodes

A,1 A,5 D,5 A,8

A,1 C,2 D,3 F,4

A,1 C,2 C,5 A,6

D,3 F,4

A,6 B,8

Z,7

A,9

Denotes 

dead block

Figure 2.1: Multiversion Access Structure. Each record stores a value and an insertion

timestamp. The records of the index node store a pointer to a data block; the value in

the index record indicates the smallest key that can be found in a data node and the

timestamp shows the creation time of that node. Data nodes contain the actual records,

each followed by a timestamp indicating its insertion time. We can observe that records

in leaf nodes are not lexicographically ordered but they are sorted based on their arrival

order.

depicts the MVAS after the insertion of multiple entries that trigger the creation of new

nodes while updating certain values.

MVAS allow users to search either a key, or a range of keys, that existed at time

t. At the same time, it e�ciently facilitates queries which retrieve all occurrences for

a key in a time range. To do so, the proposed method stores each unique record in a

C-list which contains pointers for that key in each block. MVAS achieves asymptotically

the optimal number of input/output operations for retrieving all keys that exist in a

speci�c time range. Compared to MVBT, MVAS achieves the same asymptotical cost of

input/output operations records and range queries as MVBT. However, MVAS provides

better performance for the deletion operations as well as a wider variety of range request,

which may include more than one dimension.

2.2.2 Fully Persistent

Apart from the partial persistence, B-trees also support full persistence. This is achieved

by modifying some key components of the original structure. Stolting et al. [5] present a

way to convert an ephemeral B-tree to a fully persistent one. The proposed structure sup-
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ports range queries at any version costing O(log
B
n+ t=B) input/output operations.The

modi�cation of any version of the fully persistent tree is performed in O(log
B
n+ log2B)

amortized input/output operations. The proposed approach is based on the node splitting

method enhanced with new features such as a global version list and a linked list. The

latter records all changes for an ephemeral node and creates its family.

Another approach to make a B-tree fully persistent was proposed by Twigg et al. [30]

Strati�ed B-trees present a versioned dictionary which modi�es nodes in any version, two

order of magnitudes faster than the Copy-on-Write B-tree. Also, it reduces the latency for

range queries by an order of magnitude compared to Copy-on-Write B-tree. To achieve

the aforementioned gain, the proposed approach utilizes a collection of arrays to store

sorted tuples (key, version, value) arranged into levels. Each of those arrays is tagged

with a subtree of the version tree. Arrays of the same level have disjoint version sets.

The supported operations in Strati�ed B-tree are (i) a key update in some version, (ii)

multiple key return in a range for a certain version and (iii) feedback information related

to a version.

Fully persistent data structures provide modi�cation to any value at any moment.

That further complicates the construction of mechanisms which provide the consistency

semantics, especially in cases system serves concurrent transactions. For that reason, in

this thesis, we mainly focus on partially persistent data structures.

2.3 Key-Value stores

The Log-Structured Merge Tree (LSM-tree) [26] is a data structure created to minimize

the cost of insertion and deletion of randomly distributed data. A con�guration of an

LSM-tree can be split in two components. The �rst component is a indexed structure kept

in main memory and used to accumulate new entries. The second component consists

of multiple modi�ed B-trees that reside on disk. These B-Trees can be organized into

multiple levels. In fact, organizing on-disk B-Trees in multiple levels, and having the size

of each level greater than the previous one by a constant factor r, minimizes the memory

and disk cost. The LSM-tree achieves better insertion performance than the B-tree due

to the fact that it batches incoming requests in the main memory of the system and then

exploits sequential throughput of the persistent storage medium. Several well known

systems use variations of the original LSM-Tree as their storage backend [6, 33, 12].

Dynamo [10], Voldemort [32] and Cassandra [17] are some of the most popular key-

value storage systems providing the backend storage to some of the biggest companies in
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IT. Indeed, user experience is greatly a�ected by the performance of the storage backend.

In their study Lum et al. designed and implemented SILT [18]. SILT's main goal is to

e�ciently handle memory in order to serve as many read operations as possible without

a�ecting the insertion time. SILT is designed for 
ash storage disks and needs only a

small portion of memory for each key-value; at the same time it needs to perform almost

one read to the storage media. SILT can be divided in three smaller key-value stores, with

each one playing a di�erent role in data insertion and retrieval. The �rst component, the

LogStore, is responsible for inserting key-value pairs in 
ash memory. LogStore also keeps

an in-memory index which indicates each key location in the 
ash log. In order to keep

the memory usage as low as possible, the in-memory index stores the output of cuckoo

hashing for each key. Each key is inserted at the corresponding position according to

a hash function. If a slot is occupied by a previous entry, it is discarded and the new

one is placed at its place. Then, the previous entry tries to �nd the next appropriate

position in the index map. If it fails, the system stops the insertion of new keys and

converts the LogStore to an immutable HashStore. While inserted to the HashStore,

the key-value pairs are re-ordered based on the hash output of each key. At this point

the system maintains another map which contains only the hash output of each key

for every HashStore, alongside with a �lter which provides the same functionality to a

Bloom �lter. The third component is the SortedStore which stores entries on the storage

media, sorted by the key attribute. Except from sorting HashStore key-value pairs, the

SortedStore also merges them with the corresponding existing �les. To facilitate the

e�cient look up queries an entropy-coded trie is created. Leaves of that trie are pointing

to the location of a particular key on disk. Hence, when the system looks up for a key in

the SortedStore, it incrementally reads the trie's representation. The system provides to

the lookup function the actual key and its trie representation. Then the system follows

a speci�c path reaching to the leaf which indicates the appropriate o�set of data in disk,

from where the corresponding key-value pair should be retrieved.

In order to improve the performance of LSM-tree Sears and Ramakrishnan proposed

bLSM [29] key-value store. The authors argue that the storage systems should not only

achieve high write throughput but they should also provide stable low latency for read

operations. To achieve these goals bLSM tries to exploit the read performance of B-trees

and, at the same time, to e�ciently serve the write requests using an LSM-tree approach.

The system is divided in three levels, where each level has an append only B-treelike

format. The �rst of the three levels is kept in memory, while the others are stored on

disk. In order to improve the read performance they store a Bloom �lter for each tree

stored on disk. To limit read ampli�cation for frequently updated data, the system stores
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the entire key of every key-value pair instead of keeping just a delta from a previous one.

A read operation starts searching from the �rst tree, which is also the smallest, and stops

when it �nds the �rst suitable record. Bloom �lters allow system to avoid unnecessary

disk seeks for keys that are not stored in a level. On the other hand, Bloom �lters do not

help in cases of range requests. So the choice of maintaining only tree levels targets to to

minimize the impact of the scan operation. Another novelty that bLSM inserted is the

spring-and-gear scheduler. The scheduler tries to maintain the size of the in-memory data

structure in a certain range. If the �rst in-memory level approximates the lower end of

that range system pauses the merging procedure in lower levels. On the other hand when

the upper bound of the range is reached, the system forces application to stall insertion

requests. Those mechanisms allow system to adapt its form based on the needs of each

workload. Nevertheless that system does not take into consideration older values for the

same key.

A most recent approach for constructing an e�cient key-value stored based on LSM-

tree is presented in LSM-trie [33]. Authors follow the same design principles as in LevelDB

(explained in Section 3). The proposed method improves the system's performance by

minimizing write ampli�cation. As in most recent key-value stores, the design is based on

the fact that the system in addition to the appealing characteristics for write operations

should support low latency in get requests. In this direction, LSM-trie modi�es the

internal structure of each level of LevelDB. More speci�cally, each level is divided in

a number of sub-levels. While the total size of each level is exponentially larger than

its previous, the total size of each sub-level is growing linearly. Write ampli�cation is

reduced using the above design, because when a sort-merge operation is performed the

system chooses only �les from the sub-level of a current level that do not overlap. The

output of that operation contains one or more �les which are stored in the appropriate

sub-level of the next level. That method requires the output of the compaction operation

to avoid overlapping with any preexisting �le in the next level. To achieve this, the LSM-

trie changes the way the keys are stored in a �le. To �nd the appropriate �le for a key

an SSTable-trie is constructed. Each node in that trie is like a container for a number

of separate SSTables. Then each key is stored in the �le indicated by the result of a

prede�ned cryptographic hash function over that key. That renders the insertion process

faster, but the system has the same overhead in the case of read operations as the original

LevelDB. To overcome this obstacle, the authors changed the entire format of the SSTable

�le. They introduced a di�erent �le format called HTable. In HTable each data block

acts as a bucket for incoming entries. Before a key-value pair is written to an HTable

they use a hashing function over the key. The output of this function indicates the bucket
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in which key-value pair will be inserted. The use of cryptographic hash-functions ensures

that key-value pairs will be uniformly distributed across the buckets of each �le. Another

key di�erence is that Bloom �lters for buckets from di�erent levels are kept in a single disk

block. That minimizes the number of disk seeks needed for a key. LSM-trie is basically

designed around Solid State Drives. The extended use of hashing techniques uniformly

distributes keys across di�erent �les or di�erent blocks in the same �le. Hence, it does

not take into consideration the locality characteristics of the actual keys. That lack of

locality does not allow system to e�ciently perform range queries with respect to the key.

2.4 Scalable data storage systems

Large-scale datastores play a crucial role on today's data-center infrastructures. Bigtable [6]

is the �rst large-scale storage system that e�ciently handles petabytes of structured data.

It is used by a variety of applications, which produced heterogeneous types of workloads.

In order to e�ciently support the di�erent application Bigtable does not support a fully

relational data model. Instead of providing strict relational schemes, clients are allowed

to store data based on the locality needs they have. Data indexing is performed using

arbitrary strings in a form of a matrix-like structure that contains rows and columns.

The 
exibility of the dynamic schema allows users to determine if data will be retrieved

from memory or from disk �les. Bigtable is like a multi-dimensional map spread across

many commodity machines. Each value in this map is indexed by a string indicating

a row, another one indicating the column and an integer representing a timestamp for

every entry. Figure 2.2 provides an abstract view of a row in Bigtable. All row keys are in

lexicographical order and each key occupies up to 64KB. Ranges of rows are partitioned

dynamically to form what is known as a tablet. Tablet is the smallest unit that can be

distributed and is used for load balancing.

Column attributes are also grouped together in order to create the Column Families.

Each attribute should be part of a column family even if that set contains only one

attribute. Column families provide an e�cient way to provide access control for data

stored either in memory or on disk. Each cell of the map in Bigtable can hold multiple

instances for the same key, using a unique timestamp identi�er. That timestamp is

appended by the system, and represent the real time in microsecond in which the cell has

been populated. As an alternative, users can also provide their unique identi�er. Bigtable

provides a mechanism to remove cells that ful�ll a certain criterion provided by the user.

Among other important pieces that compose Bigtable, such as GFS [14] and Chubby,

data is stored using the Google SSTable �le format which stores direct key-value pairs in
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unique_id

Key id CF1:Attr1 CF 2:Attr1 CF1:Attr2

Value1:t1

Value2:t3

Value5:t4

Value3:t2 Value4:t5Multiple
Versions

Figure 2.2: Representation of a row in Bigtable [6]. Each row is identi�ed by a unique

key, that is associated with values divided in columns, indicated by Attribute. A number

of columns can participate in the same Column Family. Bigtable is similar to a sparse

matrix and as a result many empty cells exist between two columns. As shown, each cell

stores more than one values

raw �les. Each SSTable is constructed by blocks of 64KB that contain the actual data

and an index which allows e�cient lookup operations for a key or a key range. Bigtable

compacts ranges of SSTables into a single one in order to keep read latency as low as

possible. This keeps the number of �les that may be read, bounded by the same number

of �les which participated in a compaction.

Despite its relatively good performance Bigtable does not support cross-row trans-

actions. To overcome that drawback Peng and Dabek proposed Percolator [27] which

incrementally processes updates in large datasets. An idealistic system should be able to

e�ciently process a large amount of small concurrent updates while tracking which up-

dates have been processed. Many threads may need to concurrently change the content

of �les that are stored in a repository. To e�ciently support that, Percolator provides

ACID [15] and snapshot semantics [34] over transactions. That makes it easier for devel-

opers to reason about the state of stored data. Every machine participating in Percolator

system contains a Percolator worker, a Bigtable tablet server and a GFS chunkserver.

Each application communicates with Percolator worker which is responsible for �nding

any changes that may have happened in tablets stored in Bigtable. Transactions are per-

formed by sending RPCs to the Bigtable table servers. Then each tablet server should

communicate with the GFS server. Furthermore two more services are needed. The �rst

is a timestamp oracle which provides monotonically increasing timestamps at any trans-

actions. The second is a lightweight lock service. Percolator uses the same API calls as

Bigtable while adding support of multi-row transactions. Multiple versions of data are

also stored in Percolator but they are used primevally for providing snapshot isolation.

A unique timestamp is appended to each transaction, thus system guarantees that all
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committed transactions before a start timestamp will be returned.

The Bigtable's lack of an extended API and the loose consistency model harden the

application development. On the other hand, traditional relational database management

systems fall sort when the need of serving millions of users appears. To overcome these

obstacles Baker et al. proposed Megastore [2]. The basic novelty of Megastore is the com-

bination of the scalability characteristics of a NoSQL system with the functionalities of

traditional RDBMS. It provides fully serializable ACID semantics even between replicas

that are distributed across a wide area. At the same time it tries to keep latency in levels

that real-time applications can bene�t from. More speci�cally, hosts across datacenters

are partitioned in entity groups. Each group provide ACID semantics for each operation

referring to a node contained in that group. However, the ACID semantics are not guar-

anteed across di�erent entity groups. The data of every entity group and the replication

metadata is stored in scalable NoSQL datastores.

In contrast to Bigtable, Megastore requires a declaration schema for the inserted data.

Each schema contains a set of tables consisting of multiple entities. Each entity has a

prede�ned set of properties called values. A set of properties de�ne the primary key of

the entity. Furthermore, all entities have a primary key that is unique for each table. As

mentioned earlier, Megastore uses Bigtable as its storage back-end. To e�ciently store

data, keys are chosen in order to collocate entities that will be read together. Each entity

is placed in a single row of the Bigtable map and all primary keys are combined in order

to produce a unique Bigtable row key. All the other properties of an entity are placed in

separate columns. Users are able to retrieve any property from entities by using secondary

indexes. Megastore supports local indexes which are used to �nd keys stored in a local

entity. Moreover users can create global indexes that are useful in cases when a �eld can

be found in more than one entities. Scans on global indexes may result into partially

consistent output. Index entries are stored as single rows of Bigtable, with the row key

constructed by the concatenation of the primary key with the index property. Finally, the

underling timestamping mechanism of Bigtable is used by Megastore in order to provide

multiversion concurrency control.

Despite its relatively poor performance, Megastore was used by crucial applications

such as Gmail, Calendar and Android Market. The semi-relational tables and synchronous

replication features makes Megastore a better choice for application development in con-

trast to Bigtable. Google developed Spanner with the goal to combine the key features

that made Megastore attractive with the performance characteristics of Bigtable. Span-

ner [9] is a scalable multi-version distributed database with synchronous replication. In

Spanner each application can create a number of databases, each of them consisting of a
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number of tables. In contrast to Megastore, every database in Spanner is split in one or

more hierarchies of tables. These tables are similar to those of relational databases which

contain rows, columns and versioned values. Each table has one or more primary keys

and o�ers a mapping from a unique primary key to a number of value �elds. In Spanner

a new mechanism, called TrueTime, is responsible for timestamping each transaction, by

representing time as an interval. TrueTime allows Spanner to e�ciently support read-only

transactions which can retrieve values from the latest completely committed transaction.

Also Spanner provides snapshot reads to allow users retrieve the state of the underling

database some time in the past. Both the retrieval methods do not need any locking, thus

they can be concurrently served.

2.5 Summary

Cloud computing and the growing need for e�cient storage has made storage backbone

one of the most important parts of a system's infrastructure. Previous research has shown

that relational databases lose their e�ciency as the insertion rate grows. On the other

hand, key-value stores do not provide the same semantics as RDBMSes.

Furthermore, modern key-value stores are mostly oriented in providing very fast inser-

tion rates while compromising the read performance. They achieve this goal by avoiding

to write data immediately on disk using structures similar to LSM-Tree. In such struc-

tures the read latency is a�ected by the compaction (sort-merge) algorithm which is used

in order to keep the data structured. Moreover, modern key-value stores minimize the

amount of stored data by discarding older values for the same key. However, we agree

that multiple versions for the same key ful�lls a variety of needs.

In this thesis we reconsider the ability of key-value stores to e�ciently handle multiple

versions of the same key. Towards this end we modify one of the most widely used

key-value stores in order to e�ciently store and retrieve updates for the same key. We

demonstrate that it is possible to achieve nearly constant latency when retrieving data

without dramatically a�ecting performance during insertion.
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Chapter 3

Background of LevelDB

3.1 Overview

3.2 Put Pairs

3.3 Compaction

3.4 Get Pairs

3.5 Summary

The growing demand for managing and storing large amount of data in cloud environ-

ments, has resulted in wide deployment of key-value stores over the traditional database

systems. In particular, key-value stores provide e�cient storage management over struc-

tured data. In this chapter we inspect the key components of LevelDB, a key-value store

based on the LSM-tree data structure. We start by taking a look at the general design

of the system and the features provided to the end user. Then we describe the basic

mechanism behind read and write operations, and also the way those mechanisms are

implemented in order to provide consistency and durability.

3.1 Overview

LevelDB is a database library which provides the basic functionality for storing key-value

pairs on disk. It is developed by Google and distributed freely under the New BSD

License [24]. The design of LevelDB follows the same pattern as Bigtable tablet stack,

but it was written from scratch in order to avoid dependencies from other non-free libraries
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DiskMemory

Level 0 ~ max: 4 Files

Level 1 ~ max: 10 MB

Level 2 ~ max: 100 MB

...

... ...

Level 3 ~ max: 1 GB
... ...

Level 4 ~ max: 10 GB
...... ...

Level 5 ~ max: 100 GB
...... ...

Level 6 ~ max: 1 TB
...... ... ...

Figure 3.1: General LevelDB overview. After the MemTable is full, it is 
ushed to Level

0. When the number of �les exceeds the prede�ned threshold all �les along with the

overlapping �les from Level 1 perform a compaction. Compactions may cause over
ow at

a level L > 0 (the total amount of data stored exceeds the max for each level). Then a

new compaction is scheduled for one �le from level L and all overlapping �les in L+ 1.

which are developed and used by Google. Developers should include the library as part

of their application since it neither provides a complete storage server nor supports a

command line interface.

3.1.1 Design

The basic system can be split in two major parts shown in Figure 3.1. The �rst part is

associated with the main memory and the logging of most resent insertions. While data is

sent from the application to the storage layer, it is inserted to an in-memory bu�er called

MemTable. In order to facilitate e�cient insertion and search operations the MemTable

is implemented as a skip list. Furthermore, each key-value pair is also appended in a log

�le.

The second part is composed of multiple levels at which data �les exist. In particular,

key-value pairs in LevelDB are organized in seven separate levels. Data stored in each level

is separated into a number of non-overlapping �les, which are similar to an SSTable. Each
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level can store a certain amount of data divided in �les, each currently holding 2 MB of

data. Consistently adding data to a speci�ed level can result in over
ow. This eventually

triggers a compaction process. During the compaction, LevelDB initially matches each �le

of the current level with the overlapping �les of the net one. Then, those �les are merged

together in order to produce again a sequence of �les, which handle non overlapping key

ranges. Newly created �les are stored in the latter level and do not overlap with other

preexisted �les stored there.

3.1.2 Features and API

In order to perform the basic operations of insertion and retrieval of a single key, users

can interact with the database through the basic API calls, put(key, value), get(key) and

delete(key). Deletion of a key is handled as a special case of write where the same key is

placed before the one we want to erase. Additionally, LevelDB provides external iterators

which are proportional to range queries. Another interesting feature of LevelDB is the

batching of updates, in which a number of put operations can be bundled together and

sent as a single write request. In cases of batch writes, the underling system guarantees

atomicity, in a way that neither get operations nor iterators are able to see the newly

added values until the last one has been written properly.

Moreover the system allows the user to provide a function which is used when keys are

getting ordered. Keys and values are stored as sorted pairs of character arrays. By default

and if no user function is provided, key-value pairs are sorted via byte-wise comparison

between keys. Another functionality that the original system provides is the Snapshots,

which are a consistent read-only view of the database in the past. Additionally it provides

durability guarantees through mechanisms such as logging and block checksums. Finally,

a user is able to use the Snappy library, in order to minimize the database's on-disk

footprint.

3.2 Put pairs

As mentioned in the previous section, there are two ways to modify the database. Users

are able to de�ne their own keys which will be associated with each value. After key or

keys have been created, users are able to insert pairs either by calling the Put(key, value)

API call, or else they can import them as a collection using the write batch abstraction.

Deletion of a key, and the value associated with it, are handled as a special case of write.

For the rest of this thesis, what holds for insert operations applies also to deletes, unless
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Figure 3.2: Key value pair insertion stages. Write requests are inserted in a queue. In

order to avoid congestion, writers queue is protected by a mutual exclusion variable.

When a thread is at the head of the queue appends it key-value pair in the log fail and

also inserts it in the MemTable

mentioned otherwise.

3.2.1 Write Path

LevelDB uses the MemTable at the �rst step of data insertion. Key value pairs coming

from a write thread are inserted in a lock free skip list. There, the pairs are sorted using

either a user-speci�ed function, or a system prede�ned comparison method. When an

update comes for a preexisting key, it is stored just before the �rst occurrence of that

key in skip list. This ensures that the system is able to e�ciently fetch the most recent

value for a key in the case of get operation. When a MemTable bu�er reaches a prede�ned

threshold, it stops accepting new entries. Then, it is converted to an Immutable MemTable

and the system allocates memory for a new MemTable The system should only maintain

one MemTable and either one or none Immutable MemTable at each time.

Every time a new write should be inserted, the system checks if an Immutable MemTable

has been created. If there exists an Immutable MemTable and Level 0 has some available

space, Level 0 currently stores up to 4 �les, LevelDB 
ushes the table in that young level.

Due to the di�erent insertion rate of the main memory and disk, this procedure can lead

the system to a situation in which there is an Immutable MemTable and Level 0 holds
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the maximum number of �les. In this case the system should stop serving incoming write

requests until some space in the �rst level is free. Then the immutable table is written to

that young level and the system is able to continue accepting new write requests.

Reduction, or avoidance, of contention is achieved by slowing down incoming write

operations. More speci�cally, when the number of �les in Level 0 surpasses a certain

threshold each incoming request is delayed by one millisecond. This is helpful in situations

at which the input rate varies. Over time, when the number of write operations keep

growing and the MemTable becomes full, the system stops accepting any put operation

for one second.

3.2.2 Logging and Recovery

One of the most important features that a database should provide is durability. We

can correctly assume that data inserted in LevelDB is durable after it has been written

to a �le on persistent media. Nevertheless, the modi�cations of a write operation may

remain in memory, either in the Immutable table or in the main MemTable. The system

guarantees durability by logging every write request before inserting it to MemTable.

When the current in-memory skip list becomes immutable, the logging procedure stops,

the current log �le is closed, and a new �le is created alongside with a new MemTable. In

that moment all incoming requests are headed to the new log �le. Finally, the Immutable

MemTable is written on disk and the associated log �le is removed from the system.

After a crash recovery, the system should have the same structure as before. To achieve

that, LevelDB holds a �le, called the Manifest, which keeps information about the �les

that are stored in each level, the current active log �le, the corresponding key range for

each �le, and other important metadata. When a database is reopened after a crash, the

system �rst reads that manifest �le and reconstructs each level. Then it replays the log

in order to recreate the key-value pair stored in memory at the time of failure. As a �nal

step, when all keys from the log �le are eventually inserted in memory, the system tries to


ush the current MemTable to Level 0 even if it has not reached its maximum capacity.

3.2.3 Concurrency

LevelDB architecture is based on the principle of single-writer multiple-readers. Actually

more than one threads may request to perform a write operation concurrently in the

database. That can lead to an inconsistent log and can also create problems to the in-

memory skip list. To avoid those drawbacks, the system serializes incoming write requests

by inserting each write thread in a queue. Multiple threads may try to insert themselves
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in the queue concurrently, so it is protected by a mutual exclusion variable. In order to

insert a key-value pair, a thread should perform the following steps:

1. Lock a mutual exclusion variable

2. Insert itself in writers queue

3. Wait if it is not inserted at the head of the queue

4. Check if MemTable is full

5. Unlock the mutual exclusion variable

Following those steps only the thread at the head of the queue can continue the insertion

procedure, after the previous one has �nished. Insertion at the log �le and the MemTable,

is not part of the critical area because at that point only one writer may wake up and

continue its writing process. When the insertion is complete, the thread performs the

steps described below in order to �nalize the procedure of populating the database:

1. Lock a mutual exclusion variable

2. Drop itself out of the head of the queue

3. Check whether there is another thread in the head, in which case it wakes it up

4. Unlock mutual exclusion variable

The previous analysis gives us a more detailed view of the system's behavior from the

moment a write request is triggered, until data is written in a persistent �le at the �rst

level.

3.3 Compaction

The overall design of LevelDB is based on the LSM-Tree. In order to exploit the advan-

tages of this data structure, the system needs a mechanism to keep data sorted at each

level. Also LevelDB should migrate data from one level to the next one when a certain

threshold for that level is reached. This mechanism is called Compaction and its func-

tionality is to �nd the �le or �les that should be sent to the next level, and also detect all

the overlapping �les at the next one. The compaction process merges all key-value pairs

contained in those �les and produces a set of �les containing the resulting sorted keys.

The compaction procedure starts when the young Level 0 becomes full. At that point

the system picks a �le from that level and all overlapping �les from Level 1 and creates
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an iterator over their corresponding entries. In order for the view of the database to

be consistent, the iterator creation is protected by the same mutual exclusion variable

mentioned in the previous section. The �les participating in that compaction can not be

removed from the system until the iterator has ended its life cycle. Although the creation

of the �le iterator is part of a critical area, the actual compaction work is performed

while the other threads continue their execution. This allows the concurrent insertion of

key-value pairs to the MemTable, as well as read operation. As mentioned earlier, �les

in Level 0 may contain multiple occurrences of the same key. Those values are dropped

during the iteration over the keys stored in Level 0. The output of compaction is a

series of non-overlapping �les, with each �le containing a unique key range. As a �nal

step, the thread responsible for the compaction informs the system about the new �les,

deletes older �les if no other threads read them, and makes those changes persistent by

appending them to the Manifest �le. This �nal step is also protected by the mutual

exclusion variable. A compaction can result in over
ow at the level that new �les will be

stored at. Then, another compaction is scheduled. The same procedure is followed for

the level that over
ew. The same routine is applied recursively until either the resulting

�les �t at a particular level, or the last level has been reached.

Compaction consumes a large amount of disk resources. Indeed, every time a com-

paction is triggered the system should read one or two �les from current level and ap-

proximately ten to twelve �les from the next one. As a result, concurrent read requests

stall and impact the user experience.

3.4 Get Pairs

A user is allowed to retrieve key-value pairs concurrently with storing data. Especially, a

user can request either a single pair through the Get API call, or otherwise iterate over a

bunch of pairs. In contrast to insert operations, multiple read requests can be performed

at the same time without the need for serialization or any other type of synchronization

among them.

3.4.1 Concurrency

When the Get API call is used, the system tries to �nd the corresponding key �rst in

the MemTable. If the key is not found and an Immutable MemTable exists, the system

tries to �nd it there. In case where a key is not present in either of MemTables, the

system searches each �le at every level. In the previous section, we mentioned that write
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operations may trigger a compaction, which could either erase any of the in-memory data

structures, or delete �les which where part of a �nished compaction. That could lead to an

indeterminate behavior during execution of get operations. To avoid such circumstances,

the system uses reference counters for every structure that can simultaneously participate

in a write or get operation. Thus, every time a thread needs to retrieve a key-value pair

from the database, the following steps should be followed:

1. Lock of a global mutual exclusion variable

2. Increment of the value of reference counter for MemTable by one

3. If an immutable MemTable exists increment of the reference counter value by one

4. Increment of the reference counter for all �les by one

5. Unlock of the global mutual exclusion variable

At that point all structures available to read are referenced so they can not be deleted dur-

ing information retrieval. This enables the system to perform other tasks concurrently.

Whenever necessary, the system deletes obsolete �les as part of the garbage collection

mechanism. In order to completely remove a �le, or even the in-memory data structures,

and free the occupied space, the system checks the corresponding reference counter. If

that value equals to zero and these structures have been marked as outdated, no one

requested to access them. The key-value pairs stored there have been updated or moved

to another �le, and at that point it is safe to remove those �les from the system. In order

for the reference counter to decrease and reach to zero value, the following actions should

take place every time a read operation ends:

1. Lock of the global mutual exclusion variable

2. Decrement of the reference counter of MemTable by one

3. If an immutable MemTable exists decrement of its reference counter by one

4. Decrement of the reference counter for all �les by one

5. Unlock of the global mutual exclusion variable

The usage of reference counters forms a suitable �ne grained solution for the problem of

concurrent read and write operations.
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3.4.2 Iterators

Iterators follow the same principles with get operations. Actually the get operation is

based on low-level internal iterators, which stop their recursion over key-value pairs when

they �nd the �rst suitable entry. On the other hand iterators allow users to retrieve

more than one value, if necessary. To do so, when an iterator constructor is called, the

system creates internal iterators for every level that contains data. Then they are merged

together in order to give the impression of a single one. Every time a seek for a key is

performed, all the iterators internally seek each level in order to �nd the requested user

key or the next one based on the result given by the comparison function.

When a user wants to retrieve a range of keys, one should use the seek(key) function

provided by the iterator abstraction. This function searches for the �rst (smallest) key,

based on the ways mentioned before and then uses the next() function in order to �nd

the next smallest key. When the next() function is called the system moves all iterators

to the subsequent entry, which is greater than the current retrieved key. In order to fetch

the key which is closer to the current one, internal iterator values are compared and the

one with the smallest key is returned to the user.

3.5 Summary

The LevelDB [20] has been created by Google as a lightweight storage back-end. It was

written from scratch in order to have no dependencies from any library used internally

by Google. Its architecture is based on the storage layer used by Bigtable [6]. The main

goal of this system is to achieve fast insertion of random write operations, while keeping

the cost of read operations as low as possible.

To achieve low latency in write operations, key-value pairs are �rst inserted in an in-

memory skip-list, called MemTable, in which they are sorted based on the key attribute.

A user can specify sorting by providing a function to be used for key comparison. If there

is no such function provided, the system performs byte-wise comparison between keys. At

this point, more than one value for each key may exist. Data stored in MemTable should

be protected against failures that may cause main memory to erase its data. Hence, every

key inserted in the system is also appended to a log �le. After the MemTable reaches a

prede�ned threshold, it is written as an entity in a �le on disk.

The disk is organized in seven di�erent levels. When the MemTable is 
ushed to disk

it is written in the young level (Level 0). The main functionality of that level is to act

as a "bu�er" which stores a number of �les before they create a totally ordered array of
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smallest ones. At that young level the content of di�erent �les may overlap. Furthermore,

when Level 0 �lls up, a compaction is triggered. Then, one or more �les are chosen along

with the overlapping �les from the next level. Subsequently, the entries of those �les are

sorted and multiple versions for a particular key are discarded. Each level L can store up

to 10L megabytes. When the limit for a level is exceeded another compaction is triggered.

Finally, the system allows the user to perform queries in order to retrieve stored data.

The end user can request a speci�c value through the Get API call, similar to point

queries. Alternatively a user can read a number of consecutive key-value pairs using

an iterator abstraction, similar to range queries. Data consistency is achieved in cases

of concurrent read and write operations with the use of mutual exclusion variables and

reference counters.
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Chapter 4

System Design

4.1 Design Goals

4.2 Overview

4.3 Insertion

4.4 Retrieval

4.5 Summary

In this chapter we initially present the design goals of our study. We also provide

the key insights of the architectural components that compose our system. We start by

de�ning some ine�ciencies of the current design of LevelDB, which lead to unnecessary

overhead during systems normal operation. Then, we propose a more e�cient way for

storing data with respect to the time that the system needs to answer range queries.

4.1 Design Goals

Most modern datastores are oriented in providing fast and reliable storage for randomly

distributed key-value pairs. While they o�er relatively low insertion latency they should

also provide low latency, when users want to retrieve their data. Except from retrieving

only the most recent value for a key-value pair, a number of systems provide the possibility

of storing and retrieving older values for a certain key [16, 13, 9].

Large scale systems, such as Bigtable [6],HyperDex [12] and Hbase, have developed

internal complex mechanisms in order to keep data sorted based on time dimension. On
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the other hand, smaller scale key-value data-stores, such as the LevelDB, do not use any

mechanism that preserves older values for a key. Instead, they transfer the weight of

�nding an e�cient way for key sorting to the user. The most e�cient way of data storage

should take locality into consideration. Therefore, in order to e�ciently retrieve ranges of

data, referring to the same dimension from disk, a user should �nd a way to store them

sequentially on disk. Hence the user can get the maximum throughput of the device.

In the case of a multi level LSM-tree, such as LevelDB, we can sort data along one

dimension. More speci�cally, if we should take into consideration the key space and time

dimension we should choose to store either continued keys sequentially or keys continually

in the order they arrive in our system. That choice could lead to retrieve e�ciently either

a key and all of its updates in a time range or every key that has been inserted in a time

range. Another drawback in multi level LSM-trees has to do with the fact that when a

large amount of data has been inserted in the system, and some of them are updates,

values for the same key can be located in di�erent levels. So when we perform a query to

retrieve values for that key, a disk should do more than one seek (in the worst case one

for each �le).

In this study we propose an alternative way for storing data. We focus on e�ciently

answering queries that request either the most recent value for a range of keys, or the

result of every update that has been performed for a single key in a speci�c time range.

The user can take advantage of this functionality through two new API calls. Also, we

strive to take the responsibility of key creation and sorting of the user to the system. A

system that has its own mechanism to provide versioning to data at the storage layer,

it can be used by users who want to access older values. Similarly, large-scale systems

can take advantage of our design in order to natively provide features related to multiple

versions of a speci�c key.

4.2 Overview

In our design we want to take advantage of data locality, in order to store data sequentially

on disk. Ideally we would like to be able to store data from di�erent dimensions closely

on disk. That could lead to an optimal response time for range queries which include

di�erent areas of key space. Various solutions for this problem have been proposed (e.g

Strati�ed B-trees [30], HyperDex [12]) especially in cases where data does not expand in

many dimensions. In practice those solutions are not widely used because they either do

not fully utilize the underlying hardware, or need more recourses.
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Figure 4.1: In Figure (a) we see the architectural overview of the original RangeMerge.

The system keeps in Memstore a number of MemTables, each of them corresponding to

a range of keys included in one �le at the �rst layer. In Figure (b) we see the architec-

tural overview of Multiversion RangeMerge where we added the Historical layer. In our

approach each MemTable in memory corresponds to a range that exists on the second

(Historical) layer.

Therefore we propose a new scheme in which there are two separate layers, shown in

Figure 4.1. In the �rst layer, called Primary Level we store only those �les which contain

the most recent value for a particular key-value pair. In the second layer, called Historical

Level, all the updates for a speci�c key are sorted and stored sequentially taking into

account the time dimension. Thus, we allow the user to get a set of keys along with their

most recent value as fast as possible. Also, we allow the user to retrieve all the values
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Algorithm 4.1 Pseudocode indicating Key-value pair Insertion procedure

1: function Insert KV Pair(key; value)

2: Memstore := Container for multiple MemTables

3: MaxMem := Maximum memory provided by the user

4: // If Memstore exceeds its maximum capacity

5: // 
ush and compact the appropriate MemTable

6: if (Memstore:size() > Max Mem) then

7: MaxTable := Find Max MemTable(Memstore)

8: Flush And Compact(MaxTable)

9: end if

10: // Find appropriate MemTable in Memostore for the key

11: ApprTable := Find Appr MemTable(key)

12: Insert KV Pair(ApprTable, key, value)

13: end function

1: function Flash And Compact(MaxTable)

2: // Find �les from Level One that overlap with MaxTable and compact them

3: // Store dropped values in DropedPairs and compact them with

4: // overlapping �les from history Level

5: // Create new split in memory based on the �les they produced the latter com-

paction

6: L1 files := vector storing pointers to all �les in Level One

7: DropedPairs := MemTable to store dropped key value pairs during compactions

8: over files := Find Overlap(MaxTable, L1 files)

9: Compact(MaxTable, over files, DropedPairs)

10: LH files := vector storing pointers to all �les in history Level

11: over files := Find Overlap(DroppedPairs, LH files)

12: created files := Compact(DroppedPairs, over files)

13: CreateNewMemSplits(CreatedF iles)

14: end function

for a particular key within a time range e�ciently by exploiting the maximum available

throughput of the device.

4.3 Insertion

The proposed system architecture is based on RangeMerge [21]. The basic idea behind

RangeMerge is that instead of having a number of levels that store data, we only have

one. Each �le in this level is responsible for a di�erent key range. In memory, we keep one

MemTable for every key range stored in every �le and each new key-value pair is placed

in the corresponding table. When that table �lls up, it is compacted with the overlapping
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�les in that �rst level. As a result, this compaction can produce �les with new ranges,

which are also mapped in memory. To achieve that the system should split the MemTable

from which the compaction began into smaller tables. We bene�t from RangeMerge since

it performs only small compactions that do not interfere with the retrieval operations.

The scheme described above is very useful when we need to store only the most recent

value for every key. When, multiple versions of a value are required, the problem of

locality arises. Therefore, we introduce the Multiversion RangeMerge algorithm, which

provides maintenance of multiple versions for particular key by adding one more storage

layer. That layer stores older values for each key kept sorted. An update request can

refer to either a completely new key or a pre-existing one. An abstraction of insertion

procedure is described in algorithm 4.1. An incoming key-value pair should be inserted in

the appropriate MemTable in main memory. If there is no space left, the memory bu�er

which occupies the most space is 
ushed to disk and compacted with the overlapping

�les. At that point, the original RangeMerge keeps only the most recent record for each

key and drops the older ones. Multiversion RangeMerge gathers the dropped records

in a temporary MemTable and stores them in the second layer. In order to keep data

sorted in the second layer, the Multiversion RangeMerge compacts dropped values with

the overlapping �les in the second layer. That leads us to change the way that ranges for

each MemTable are de�ned. In our design we split the memory in ranges based on the

keys that each �le in the second layer holds. Overall, we take the above decision with the

goal to minimize the resource consumption during the compaction procedure.

4.4 Retrieval

In the original design of LevelDB, in cases of range queries, the user should provide the

�rst key that should be retrieved and then the system should scan over all following keys

until an end criterion is met. For instance, a user may provide the starting key, A, and

require from the system to iterate over all values until it �nds key F, or until the system

has retrieved 10 values. If we assume that keys are stored sequentially based on the time

dimension and the user wants to retrieve only the newest value for a range of keys, the

system should iterate over keys which are not actually needed. The number of updates for

particular key impacts signi�cantly the time spent for iterating over unneeded key-value

pairs.

On the other hand our proposed design is capable of retrieving the most recent value

of a range of keys by iterating over those that exist in the �rst layer. The keys at this

layer are sorted lexicographically without taking into consideration older values that may
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exist. So the system can sequentially read from storage media the keys that satisfy the

user's query. Furthermore, the system e�ciently uses sequential read disk access when

retrieving a number of values for the same key that has been updated within a certain

time range. To achieve that, the system �nds the �le or �les which contain values in the

time period needed in the second layer that we added. There, the values for each key are

sorted based on their insertion time. This approach gives us the advantage of iterating

over contiguous records in the �le at sequential disk throughput.

4.5 Summary

In the present chapter we highlighted some of the characteristics that make multi-level

LSM-trees inadequate to handle more than one versions of a key. In particular we pointed

out that storing multiple values for the same key could result in poor locality which further

causes higher latency in range queries. We also introduced the Multiversion RangeMerge

an improvement over the original RangeMerge in which we added one more layer which

is responsible for storing older data. Thus we take advantage of the fact that keys should

be sorted along two di�erent dimensions and we introduce a dimension in each level.

Subsequently we are able to perform sequential reads which allows the system to minimize

latency when answering to queries either in key dimension for a range of keys, or in time

dimension for a single key.
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Chapter 5

Prototype Implementation

5.1 Timestamps

5.2 Compaction

5.3 Memory Management

5.4 Retrieval

5.5 Summary

The performance characteristics of LSM-tree make it preferable over all other data

structures when it comes to inserting large volumes of data. It exploits the maximum

throughput of the storage medium by converting random writes to sequential. However,

its design limitations prohibit the storage of multiple versions of the same key, while its

compaction algorithm is characterized by a huge impact on the retrieval latency. In this

chapter we describe our approach which enables storing of multiple versions for each key

and signi�cantly reduces the retrieval latency. Towards this direction, we implemented

the Multiversion RangeMerge adding a new storage layer in the RangeMerge algorithm

[21]. Our prototype is called Mneme and it is based on RangeDB [22]. Because both

Mneme and RangeDB are based on LevelDB for the rest of this chapter we base our

terminology on LevelDB.

5.1 Timestamps

Each key should have a �eld that keeps a unique number indicating the relative arrival

order. In the original system, each record is represented by an array of bytes. In that
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array some other auxiliary information except from the actual key and the respective

value are also stored. Just after the end of the actual key there are eight bytes that store

information about the type of the key and a unique sequence number. Also in the original

LevelDB, the system initializes a new counter every time a new database is created. When

an insertion request arrives, the system increases this counter by one and appends it just

after each key. This indicator is usable only in cases where user takes a snapshot of the

database. The system decides not to discard each pair with greater indicator value than

the smallest snapshot.

In our system there is no need for snapshots since we store every key that arrives. So

we modi�ed the timestamping mechanism by inserting the actual time that each key-value

pair is written in the MemTable. Every time a key is inserted in the skip list, we append

the time in microseconds since UNIX time. Therefore, we uniquely characterize each key.

At the same time that enables us to easily �nd out which pairs were present at a speci�c

time range in the past.

5.2 Compaction

In the previous chapter we have already mentioned that our approach relies on Range-

Merge [22]. According to the RangeMerge algorithm, RangeDB keeps a unique key range

every time a new �le is created on disk. More speci�cally RangeDB consists of an in-

memory structure called Memstore. Memstore contains multiple MemTables. Also it

maintains an on disk layer called the Primary Level. Each �les in that level contains

a disjoint range of keys. Each of this range is associated with one MemTable. Upon

the arrival of a new key-value pair RangeDB inserts it in the corresponding MemTable.

When the total size of Memstore reaches a prede�ned threshold, the system picks the

MemTable with the largest memory footprint, it 
ushes it on disk, and compacts it with

the overlapping �les.

In our prototype, we add a second layer for archived values, the Historical Level, and

we modify the compaction procedure. Especially, every time a compaction is performed,

we sort and store the older values at the history layer. In particular when the available

memory reaches a prede�ned threshold, the system tries to store a �le in Level 0. If a �le

already exists, it reads the minimum and the maximum keys stored in that �le and detects

all �les from the primary level which contain keys in that range. In Mneme we also �nd

the �les in historical level which may be a�ected by the compaction output. In contrast

to the primary level, it is not enough to just check if each �le content may overlap with

the range between maximum and minimum key. As an example, we can assume that the
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�les which should be compacted from Level 0 store keys in ranges between A and F, and

there can be more than one occurrences of a key. In the historical level we assume that

there are ten �les storing some values only for key A. After those �les there should be

one �le storing keys between every older value for keys from A to F. And after that there

are other ten �les storing multiple values of F. If system just reads each �le that overlaps

with that range, it will end up reading all contents from every one of those twenty one

�les. In fact the system needs only to read only two of them, the one containing all the

updates from A to F, and the last �le that stores the last value for key F.

So we change the way that compaction mechanism chooses which �les should be fetched

in order to retrieve the minimum possible number of them from the historical level. In

our system we decided to read either only the �le with the same smallest and largest key

value but stores the biggest timestamp for that key or the one �le that covers the same

range as the �le from Level 0. As we explain in the next section, facilitating in-memory

splits based on ranges of �les in the historical level, allows us to read only the minimal

amount of �les from disk.

5.3 Memory Management

In the original LevelDB design there is only one skip-list kept in memory, which sorts

all the incoming key-value pairs based on a user-de�ned function. When a threshold is

reached, the system writes to disk the memory contents. Flushing can cause a number

of recursive compactions that can interfere with simultaneous read requests. In contrast,

in RangeDB there are as many MemTables as the ranges that comprise primary level.

In RangeDB the collection of MemTables are grouped together and stored in Memstore,

allowing the system to perform a small immediate compaction between only two �les.

In our approach we keep Memstore but we create each MemTable based on ranges

stored in the Historical Level. In this case, arises the problem of storing multiple values

for the same key in a single �le. To make the problem easier to understand we consider

the case where we want to store keys in range from A to F. For simplicity we assume that

we need to store only one occurrence of A, two occurrences of C and only one occurrence

of F. Additionally, each �le can store only two keys. Thus, a compaction ends up creating

two �les, one containing A and C with oldest timestamp, and the other containing the

second occurrence of C and F. If we reserve two MemTables with those ranges the next

update request for key C will result in breaking the basic assumption of keeping keys

sorted in each level. This can happen if an update for C is inserted to the MemTable
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Algorithm 5.2 Pseudocode for Creating Range Splits

1: history files := File created by compaction for Historical Level

2: range splits := Array to store new memory splits

3: // Iterate over history files to �nd proper ranges

4: for every �le i in History F iles do

5: if �le i contains di�erent keys then

6: if ( max stored key in �le i == min stored key in next �le) then

7: // create the range [i.min, i.max)

8: new max := First key previous to i.max

9: insert i.min and new max in range splits

10: else

11: // create the range [i.min, i.max]

12: insert i.min and i.max in range splits

13: end if

14: else

15: // �le contains same keys

16: if ( max stored key in �le i != min stored key in next �le) then

17: // that split will contain only keys which are equal to i.max

18: insert i.min and i.max in range splits

19: end if

20: end if

21: end for

which contains the range from A to C. When this table is compacted with the associated

�le in the historical level, it creates a �le storing a newest update for key C than the one

in the �le containing C and F. In order to avoid this situation, in Mneme we �nd the

appropriate ranges that will be created in memory by using the algorithm shown in 5.2.

At the end of each compaction, we get the ranges of the new �les stored in Historical

Level. In order to retrieve the appropriate information about �les stored in each level

we use MetaIndex. MetaIndex is a simple data structure which maintains all metadata

information about each �le stored in each Level. It was integrated in the original LevelDB

and we also use it in Mneme. For each �le we check whether it contains a range of keys

or the same key. In the �rst case, if the maximum key for the �le is the same as the

minimum key of next �le, we create a slightly smaller range for this �le in memory. Thus

the current range will serve every key which is smaller than the maximum key for the

corresponding range. At the same time, when the next range is created, its smaller key

will be the same as the one we omitted. In the second case, the �le stores updates for

a single key. This key can also participate in another range. If there is no other �le

containing this key we create a MemTable which serves incoming updates only for values

coming with the speci�c identi�er. If a newer update for that key is found in the next
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A : 20 A : 10 A : 3 B : 15 B : 2 Z : 25 Z : 1...

A : 20 B : 15 Z : 1...

Figure 5.1: Skip list in LevelDB. Every node in skips list indicates a key:timestamp pair.

We can observe that at every level of the skip list, the keys are sorted in ascending order

based on their key attribute. In contrast updates for each key are sorted in descending

order

�le, we do nothing because it can be used as the starting point of the next range.

5.3.1 Memory Consumption

Every time a compaction is performed LevelDB 
ushes skip list in Level 0. As shown in

Figure 5.1 while the unique keys are kept in ascending order the updates for each key are

sorted from the newest to the oldest. We follow the same principle in our system. This is

suitable when we need to store only the newest occurrence of a key. The system is able to

�nd the most recent update for each key easily by just keeping the �rst occurrence of each

di�erent key. When a table is 
ushed from memory to Level 0, it contains every update

that has been applied to each key while in memory. Hence, every time a compaction is

performed, the updates for each key are discarded from the most recent to the oldest one.

If our system just appended those values at a disk �le until the �le reached a certain size,

we could result in storing �les where the minimum key for some of them would be greater

than the minimum key of the next ordered �le.

Therefore, we reform the keys that are dropped by concatenating the time stamp at

the end of each key. Additionally, we insert the reformed keys in a temporary MemTable,

which acts as an intermediate bu�er. Insertion and sorting of those reformed keys practi-

cally does not add any latency in our system, because those operations are performed in

memory while a �le is read from disk in the background. Disk Input/Output operations

are slower by an order of magnitude compared to Input/Output operations performed

in main memory. So the latency for sorting those data in memory is amortized over the

latency of disk I/O seeks.

Furthermore the temporary MemTable occupies only a very small portion of system's

memory. Actually the amount of memory needed is equal to the size of all key-value pairs
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that have been updated for the �le participating in the compaction. In the worst case

scenario the MemTable ends up occupying the same size as an on-disk �le. A corner case

can occur before any split is created in memory, when the system is possible to end up

using up to three times the provided memory, for a short period of time. That corner case

could happen only when there is no data in our system and no split has been performed

yet. Especially, if all the incoming requests are updates for the same key, the system keeps

in main memory (i) a MemTable storing the current incoming requests, (ii) an Immutable

MemTable and (iii) almost all values for the ongoing compaction.

During normal operation, the memory consumption of our system is more e�cient in

comparison to LevelDB. On average, over time our system keeps in memory a Memstore

of user-de�ned size, a small immutable MemTable �lled and 
ushed from Memstore and

a small MemTable to store the dropped pairs of ongoing compaction. On the contrary,

LevelDB requires the memory for the MemTable and the Immutable Memtable, which is

equivalent to two times the size of Memstore.

5.4 Retrieval

As stated earlier our goal is to provide an e�cient way of retrieving both every update

in a certain time period, and also allow the user to retrieve the most recent values for

a particular range of keys. Therefore, we provide two ways for retrieving keys from the

underlying database. Both of our methods are based on an Internal Iterator abstraction

which is implemented internally in LevelDB. Those retrieval methods are provided to end

users through the following API calls that we introduce:

1. GetHistory(key, start , �nish, bu�er): In order to properly retrieve older updates

for a particular key in a range, the user should provide (i) the key to be retrieved,

(ii) a starting value which indicates the oldest point in time back to which the key

is considered valid, a �nish value indicating the newest point in time up to which

the key is considered valid, and (iv) a bu�er where output is stored.

2. GetRecentKeys(start, �nish, bu�er): To properly retrieve the newest updates for a

range of keys, should only populate start variable with the smallest key and �nish

with the largest key that is considered valid. Also user should provide an appropriate

bu�er where retrieved values are stored.

Our introduced API calls takes advantages of the fact that values are stored sequentially

on disk. Thus, we can contiguously retrieve multiple values with a single disk seek.
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Particularly upon a GetHistory call, the system searches the historical level for the key

provided by the user which has a timestamp equal to start value. We can correctly assume

that it is di�cult for a user to provide the exact point in time that the key was inserted.

So if this time value is not found, the system searches for the �rst key with timestamp

attribute following the one provided by the user. Subsequently we retrieve all the values

that have a timestamp smaller than the one stored in the �nish argument. If the system

�nds a timestamp for that key that is greater than the �nish time, it stops searching and

returns the key-value pairs involved to the user. In case that the �nish value is greater

than the ones stored in the historical level for that key, the system also tries to �nd the

appropriate �le in the primary level where the most recent value of that key is stored. If

the key has a timestamp within the time range provided by the user, it is added in the

bu�er and returned to the user.

Moreover the GetRecentKeys() call provides a functionality similar to the iterator.

Upon a GetRecentKeys() call, the system tries to �nd the �le containing the requested

key in primary Level. Again if the key is not found, the smallest key which is greater

than the one requested is retrieved. Then, the system stores all values until it �nds a

key greater than the one stored in �nish. Retrieved values are appended to the provided

bu�er and returned to user. Finally our system also supports point get queries through

the Get API called provided by LevelDB.

5.5 Summary

In the previous sections of this chapter we described the key components of the Mneme

system. Our system uses real timestamps in order to determine the order that the key-

value pairs are inserted to the system. Also we added the Historical Level which stores

dropped key-value pairs sequentially based on the key and the time dimensions. Further-

more we described how Mneme uses the Multiversion RangeMerge algorithm to perform

the appropriate compactions and split the Memstore in multi MemTables. Finally we

gave an overview of the new API calls that we inserted in order to allow users to retrieve

the required key-value pair e�ciently.
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Chapter 6

Experimental Evaluation

6.1 Experimental Environment

6.2 Query Latency

6.3 Insertion Time

6.4 Key Distribution

6.5 Key Size

6.6 Summary

In this section we will present the result of our systems performance. We will start

by mentioning the environment in which experiments took place. Afterwards we study

the needs of Mneme and we compare its performance with LevelDB when historical data

should be stored and retrieved. We graphically present our results.

6.1 Experimental Environment

We implemented the Multiversion RangeMerge in Mneme. Our prototype implementation

was evaluated using an x86 64 based server running the latest Debian (Jessie) distribution.

For our experiments we used nodes equipped with two quad-core 2.33 GHz processors

(64-bit x86), one activated gigabit ethernet port, and two 7200RPM SATA2 disks. We

con�gure the server RAM equal to 4GB. Each hard drive has 500GB capacity, 16MB

cache bu�er size, average seek time 8.5-9.5 ms, and 90 MB sustained data transfer rate.

We use the Linux ext4 as the underlying �lesystem. In Multiversion RangeMerge we use
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range�les of size F=32 MB. We also examine the case of LevelDB, which is similar to the

storage backend of Bigtable [6] and HBase.

In order to study the characteristics of our system and evaluate our implementation,

we performed extensive measurements. Due to lack of public traces [1], we use synthetic

datasets with keys that follow the uniform or the Zip�an distribution. To produce the syn-

thetic dataset and to measure our system performance, we use a microbenchmark created

to test RangeMerge. We extended that microbenchmark so that it can create updates for

key-value pairs that already exist. Speci�cally in the case of a uniform distribution, we

let the system choose either that the new entry will be a new key-value pair, or it will be

an update for a preexisting one. In our experiments we modify the number of updates by

making it easier for the system to choose between the two states.

Both Mneme and LevelDB, are using a total of M=512 MB for the accumulation of

items in memory. In most of our experiments we insert key-value pairs until the total

inserted data is equal to 10GB. That size for the datasets �lls up 20 times the in-memory

bu�er and creates interesting compaction activity in both systems. We insert a key whose

size varies from 16 to 100 bytes, but we keep the size of the corresponding values stable

at 1 KB. Additionally we take measurements every 5 seconds which include average, 95th

and 99th percentile of latency for all request in that time period. All requests are range

queries. They retrieve either all keys in a time period of 3 seconds. In case of time range

queries, retrieved values have di�erent sizes due to the randomness of key creation. On

average, both systems retrieve approximately 10 key-value pairs when the distribution of

keys is uniform and half of the inserted key-value pairs are unique. In the case of Zip�an

distribution systems retrieve on average 78 key-value pairs, but the number of returned

values may vary from 1 to 200 entries per request.

Finally, we modify LevelDB in order to keep all the inserted key-value pairs. Before

inserting a key in memory, we reform it by appending the timestamp at the end of each

key. This is the simplest approach which the user can follow in order to store all key-value

pairs in the database. This approach also minimizes the cost for retrieving contiguous

entries in cases of time range queries. Furthermore, we facilitate time range queries with

the use of iterator abstraction provided by the system to the end user. We concatenate

the starting timestamp for the range at the end of the requested key and we request from

the system to seek for the �rst key that is greater or equal to the constructed one. Then

we iterate over all keys until we retrieve a key that either has a timestamp greater than

the one de�ned as an end point by the user or if the key has changed.
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Figure 6.1: In Figure (a) we see the average latency for retrieving all the updates for a

key in a timerange. Mneme keeps latency below 100 ms. LevelDB needs more time to

retrieve the same amount of data. In Figure (b) we can see the di�erence in throughput

of these systems. Mneme achieves to respond in almost 15 request every second. LevelDB

again manages to serve considerably less requests every second

6.2 Query Latency

First we measure the query latency in the case of concurrent puts and gets. On our

system a disk seek takes on average 12.9ms allowing max of 79req/s. We con�gure our

system to perform random get with rate 20 req/s. That leads the disk to spend almost

25% of its time to answer the user get requests. Part of the disk's bandwidth is available

for insertions and compactions. Due to key randomness we are not able to determine the

amount of bandwidth that system may need during the insertion process. Thus, we set

the put rate at 2500 requests/s, which is slightly lower than the half of the maximum

possible (shown in Figure 6.3(c)). Combining the above settings, the system consumes

about two thirds of the total disk bandwidth, allowing the background compactions to

consume the rest of the disk bandwidth. The created workload is write-dominated with

read/write ratio about 1/125 requests.

When the memory �lls up, the put thread is blocked until the system frees space

in memory. Hence, the granularity and the duration of a compaction a�ects system

performance. Creating more threads that concurrently request to retrieve data from disk,

would lead to an increase of total latency. Yet, this burden is equally a�ecting both

systems so the relative di�erence between the compared systems remains constant. For

simplicity in this thesis, the systems use one read thread.

In Figure 6.1(a) we can observe the relative di�erence between our system and Lev-
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Figure 6.2: In that Figure we see 95th and 99th percentile of get latency. In sub�gure (a)

we see that Mneme retrieves 95 percent with almost a constant latency. Our system has

similar results for 99th percentile. Spikes in LevelDB indicate that system needes more

than 1 second to retrieve the same amount of data

elDB. The experiment runs until a total of 10GB was inserted to the system. We observe

that our system almost never surpasses 80 ms for retrieving the appropriate key-value

pairs. On the other hand for the same range and the same number of keys, LevelDB

requires almost 100 ms to retrieve the appropriate data. Furthermore, we notice that

our system shows low variation in the time needed to answer a request. In contrast, the

behavior of LevelDB is not stable. That leads to delays in the order of a second. Both

systems present similar behavior in the throughput that they achieve every second shown

in Figure 6.1(b). Mneme serves more than 15 requests every second, while at the same

time LevelDB handles less than 15 requests. Similar unstable behavior leads LevelDB

to answer from 10 to 12 requests per second while in cases of background compactions

system's throughput falls lower than 5 requests per second.

Inspecting further the time needed to retrieve a range of archived key-value pairs we

inspect the 95th and 99th percentile of latency. According to a potential Service Level

Agreement [10] users should be able to retrieve the requested data within a prede�ned

time period. In Figure 6.2(a) we observe that 95% of the appropriate key-value pairs

are retrieved in just over 100 ms. Again our system achieves a relatively small latency

throughout its operation, due to the small period of each compaction. That feature

allows Mneme to maintain the same latency upper bound for 99% of all requests (shown

in Figure 6.2(b)). On the other hand in both Figures LevelDB needs more time to answer

to the same queries. At the same time, it has the same unstable behavior that makes it

di�cult to maintain an constant upper bound in latency requests.
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Figure 6.3: (a) We present the total amount of time to insert 10GB. There is su�cient dif-

ference between Mneme and the original LevelDB. We see also the time that RangeMerge

would need to store the same size of unique data. (b) The total amount of transferred

data reveals that our system transfers four times the amount of data that LevelDB trans-

fer. (c) The insertion time while keeping the number of request constant and changing

the put rate

6.3 Insertion Time

In this section we inspect the total time needed to insert 10GB of data to each system. We

notice from Figure 6.3(a) that the insertion in our system is signi�cantly slower than the

LevelDB. The main reason behind this delay is that our insertion algorithm is designed

to �rstly provide low latency and stable characteristics when user retrieves data from

the system. On the other hand, LevelDB is write optimized, thus it is capable of faster

inserting the same amount of data even from the original implementation of RangeMerge.

Furthermore, we see in Figure 6.3(b) that the total size of transferred data is 4 times

larger than the corresponding size for LevelDB. Also in comparison with the original

algorithm of RangeMerge the total amount of transfer data is almost double. This happens

because every time a compaction is triggered, the system should read one or two �les from

the Primary Level and one �le from the Historical Level. Additionally, another drawback

comes from the fact that storing all the updates for each key may split the memory in

many small pieces. This results in writing only a small part of the total available memory.

So, in our system every time a small portion of the total memory is compacted with 2

or 3 larger on disk �les. This results in reading and writing the same data while adding

only a small part of new key-value pairs. The same behavior may occur in the original

RangeMerge algorithm.
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Figure 6.4: (a)the relative di�erence between the system when the a parameter is 0.4.

Mneme presents a more stable behavior. (b) Demonstrates the number of requests an-

swered by each system. Again Mneme is able to retrieve more requests every second while

also preserving that number almost stable.

Mneme and LevelDB have a totally di�erent storage structure. That makes it di�cult

to reason about the amount of e�ort that a designer would need to make in order to

achieve a structure similar to the one presented in Mneme. The two systems are designed

to ful�ll di�erent needs. So we let as a future work to �nd a method where insertion

of key-value pairs will minimize the total insertion time, while at the same achieves the

performance of Mneme.

6.4 Key Distribution

There are many cases where the key indicators follow di�erent distributions. In this

section we study the performance of our system compared to LevelDB while inserting

key-value pairs that follow either the Zip�an or the Uniform distribution.
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(a) Average latency for Mneme and the a parameter alternatively set equal 0, 0.8 and 1.1
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(b) Average throughput for Mneme and the a parameter alternatively set equal to 0, 0.8 and

1.1

Figure 6.5: Our system maintains similar performance for almost each tested value of a

parameter of the Zip�an distribution(Figure 6.5(a)). Throughput also has the same be-

havior for each di�erent value(Figure 6.5(b)).

6.4.1 Zip�an Distribution

When the keys follow a Zip�an distribution, a di�erent number of updates is applied to

each key. Based on the a parameter of the distribution, every new key-value pair is more

or less likely to update a preexisting one. Furthermore, as the value of a increases the

total amount of updates becomes larger. Also, few keys receive more updates than other.

This leads our system to slit the memory unevenly.

Figure 6.4 presents the relative di�erence between our system and LevelDB. The total

amount inserted is 10GB and the a parameter is set to 0.4, meaning that most recent

key-value pairs occupy almost 985MB while most updates for these keys occupy 8.7GB.

At Figure 6.4(a) and at all similar �gures the gray background indicates that the sys-

tem performed a compaction while replying to the corresponding requests. Our system

performs small compactions, which does not a�ect the get latency and allow system to

serve around 15 requests every second. On the other hand the LevelDB performs large

compactions which seems to a�ect both the latency and the throughput. From the Fig-
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Figure 6.6: Both systems remain una�ected from the key distribution. Our system still

shows signi�cantly lower latency than LevelDB. Also the 95th and 99th percentiles indi-

cate that our system guarantees an almost stable latency for the majority of requests.

ure 6.4(b) we see that when LevelDB performs heavy compactions, throughput shows a

large variation which leads the system to serve almost none request.

To further study the performance characteristics of our system, we imported data

using di�erent values for the parameter a. We evaluated the system for parameters of a

equal to 0, 0.8, 1.1 which inserts 1.05GB, 950MB and 566MB of di�erent keys respectively.

Although the number and the size of inserted keys vary, our system achieves similar latency

and throughput for every tested case. Furthermore, the last graph from Figure 6.5(a)

illustrates the case where data stored at Primary Level gets smaller. In this case, the

system serves the get requests faster and handles larger number of requests per second.

This happens due to the fact that more than one MemTables refer to the same �les in the

Primary Level. These �les are cached in system's main memory, minimizing the latency

for processing records stored in the respective �les.

6.4.2 Uniform Distribution
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Figure 6.7: (a)99th percentile of Latency when half of the inserted key-value pairs are

unique and the other half are updates for preexisting ones. Throughput graph (b) reveals

a higher variation due to slightly heavier compactions

Increasing the value of the Zip�an parameter creates a smaller footprint for the di�erent

key-value pairs. This leads to unrealistic scenarios where only 1% (or less) of total data

create new entries in the Primary Level. To further stress our system we created and

inserted keys based on a uniform distribution. More speci�cally, every time that the

benchmark tool inserts a key-value pair it chooses a number in the range [0, 1]. If this

number is smaller than a prede�ned threshold system creates a new key-value pair else it

updates a preexisting one. Based on the fact that every number in this range has same

probability to be chosen, by tuning the parameter we determine the percentage of unique

keys that the tool will create.

We study our system's behavior under two di�erent thresholds while inserting 10GB.

First we inspect the case where the amount of di�erent keys is approximately 20% of the

total inserted data. This is twice the amount of di�erent keys compared to the Zip�an

distribution presented in the previous section. In Figure 6.6 both systems present similar

performance for history range requests with the Zip�an distribution. Our system is able

to reduce the average latency by almost an order of magnitude in comparison to LevelDB.

Furthermore in both systems 95th and 99th percentile appear to have the same form, with

the 99th percentile of latency slightly increased for both systems.

In Figure 6.7 we demonstrate the 99th percentile of the latency and the average

throughput in the case of a uniform distribution, where half of the dataset consist of

unique keys and the rest are updates for the preexisting keys. Latency (Figure 6.7(a)) for

most of get requests is slightly more than 100ms which again seems to follow the same

pattern as in previous distributions. Additionally our systems maintains its through-
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Table 6.1: Mneme slightly serves almost 17 requests per second. Average latency of

LevelDB varies signi�cantly due to background compactions

Latency(ms) and Throughput of history range queries

Key size
Average 95th 99th Throughput

Mneme LvlDB Mneme LvlDB Mneme LvlDB Mneme LvlDB

16 36.67 132.55 127.82 316.20 184.49 445.89 16.92 11.71

25 36.76 129.87 12.03 302.69 180.94 438.38 16.95 12.08

50 37.18 150.317 128.87 334.49 190.44 450.73 16.90 11.20

100 38.30 135.71 130.97 334.82 206.59 453.9 16.75 10.79

put(Figure 6.7(b)) performance and serves from 13 to 17 requests per second. Compared

to Zip�an distribution, the throughput in our system has a higher variation. This happens

because the number of �les in the Primary Level increases. The consequence is that the

�les participating in a compaction increases. That leads our system to perform heavier

compactions. We can assume that while the number of �les for the ratio between the �les

stored in the Primary Level and the �les stored in Historical Level increases, our system

performs similar to Remerge [22] sort-merge algorithm.

6.5 Key size and Scalability

Previous research [33, 25] argues that the allocated size for each key should be 68 (or less)

bytes. On the other hand, in Bigtable [6] may occupy up to 64KB, with a typical size

between 10 to 100 bytes. Therefore, we insert in both systems records of di�erent key

sizes. We tried to insert keys that occupy 16, 25, 50 and 100 bytes, while at the same

time each corresponding value needs 1KB. In practice both systems do not have any strict

restriction for the size because they hand records as arbitrary strings.

Table 6.1 summarizes the relative di�erence between the two systems. In section 6.4 we

saw that key distribution has a minor impact on system's performance. Nevertheless, the

number of update request may cause heavier compactions in our system. The evaluation

shown in table 6.1 was tested for the ostensibly worst tested case, where only half of the

incoming key-value pairs are updates. Our system increases the average response time

only by 1.6 ms as the size of the key increases. Also it manages to answer in almost 17

requests. In contrast LevelDB shows a smaller serving ability. Finally the average time

that LevelDB needs to answer a range query is almost 4 time higher than in our system.

The number of the key-value pairs inserted for the 10GB dataset is between 9.7 to 10.5

millions. This is only a small part of the data that a production server handles. Thus,
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(a) Average Latency and throughput for 20% of non-updated keys
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(b) Average Latency and throughput for 80% of non-updated keys

Figure 6.8: In the case where 20% (top) of the dataset corresponds to di�erent keys

Mneme maintains the same latency and throughput as this for the dataset of 10GB. In

the case where the vast majority of inserted keys are unique (bottom), the average latency

seems to follow the same pattern with previous experiments. In the end our system gains

the characteristics of the original RangeMerge

we examine the scalability characteristics of our system by inserting 20GB of data. In

order to stress the system, we keep the key size constant at 100 bytes and the value size

at 1KB. That correspond at almost 20 million key-value pairs. Additionally we kept the

in-memory bu�er constant at 512MB (similar to previous experiments). This forces our

system to perform more compactions while serving the incoming requests.

In the �rst set of this experiment (Figure 6.8(a)) we tested the case of inserting approx-

imately 4GB(20%) of the unique key-value pairs which the system distributes uniformly.

Average latency has slightly greater values than these presented in the case of 10GB, but

our system achieves almost the same latency for all requests. Throughput demonstrates a

higher variation due to concurrent compactions but the system is capable of serving more

than 10 requests at any moment. In the second case we further pushed our system by

forcing it to accumulate a workload which contains 16GB(80%) unique keys. Interestingly
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our system starts to increase the latency for every request, which also has an impact to

the average throughput, but after the 150 minute it keeps an almost constant latency well

below 100ms. That happens due to the fact that Mneme maintains also the characteristics

of original RangeMerge. More speci�cally, at this point only a few �les form the Primary

Level are related with some �les from the Historical Level. Our system has taken that

into consideration and has split the memory based on the range of the �les in the �rst

level. Thus, the system achieves to minimize the impact of each compaction.

6.6 Summary

To study the performance characteristics of our idea, we modi�ed RangeDB, a key-value

store based on Google's LevelDB. We test our system under many di�erent parameters

of a synthetic workload and we demonstrate that it achieves to minimize historical range

queries latency. At the same time it has a minimum sensitivity to background compactions

and has a stable behavior. Furthermore we compared our system with the original Lev-

elDB, which we modify to keep every key-value pair that is inserted to the system. We

observe that our system achieves better performance than LevelDB for every range get

operation.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.2 Future Work

7.1 Conclusions

The unique demands placed by maintaining multiple versions for the same key indicate

that modern key-value pairs lack the design characteristics which allow the system to e�-

ciently handle this kind of workload. A persistent general-purpose storage backend, is one

of the most crucial components of todays large scale systems. In our vision, these systems

can be used by a variety of applications in the range of monitoring every day activity to

e�ciently handling transactions. The retrieval of older values in such applications is im-

portant, especially when retrieved data should be consistent. Advanced key-value stores

use either a general purpose snapshooting mechanism or they do not provide any guaran-

tee for older values. Motivated from the emerging need of e�ciently storing and retrieving

large number of key-value pairs we thought a new approach for making a key-value store

persistent.

We used a well known key-value store, and we demonstrated the ine�ciencies that

its sort-merge algorithm implies, when a user should store every update that has been

inserted to the system. These ine�ciencies lead to unnecessary latency and low request

throughput. The main reason behind low performance are the compactions executed

in the background. Then, we introduced the idea of storing older values based on the

RangeMerge compaction algorithm. In order to implement Multi-Version RangeMerge we

51



create the Mneme system. Our system is separated in two components: the in memory

skip-lists, which sorts and temporally stores incoming records, and the two storage layers,

which are responsible for storing only separately the most recent and the older values.

Also, we tuned the compaction mechanism to take into consideration the updates values

that may be overwritten. Thus, we changed the way that system splits the provided

memory in smaller ranges. Using a microbenchmark, we evaluated the performance for

both our system and the original LevelDB. We found that the performance of our system

is not a�ected neither from the key distribution nor from the size of the key. Furthermore

we saw that on average retrieves ranges of updates three to four times faster than the

compared system. Also we demonstrated that our system maintains the same performance

for larger workloads. Overall our system provides e�cient storage and fast retrieval of

older values for the same key while sacri�cing a part of its insertion performance.

7.2 Future Work

In the future we �rstly plan to make our system more e�cient for data insertion. Per-

forming better splits in-memory can lead system to e�ciently 
ush larger parts of the in-

memory bu�er. Choosing the appropriate ranges is not trivial because while the 
ushed

size is getting bigger the compactions are getting heavier.

Another approach that we could follow is to consider a way to handle data in more

than two dimensions. In the current work we take into consideration only the key and

the time dimension. When storing data that correspond to di�erent dimensions closely

on disk, application can bene�t from the sequential disk bandwidth. Deciding which data

should be stored closely, a�ects the performance and the type of the queries that can be

performed on the system.

Furthermore, we plan to extend the experimental measurements of our prototype

implementation, to validate further the contributions of our study and emphasize the

o�ered performance gains. Therefore, initially, we aim to examine the behavior of our

system in production systems that use LevelDB as their storage backend. In particular, a

real workload with varying number of clients applying concurrent read requests of archived

data to the same storage server, will provide a more realistic environment in terms of the

ability of Multiversion RangeMerge to serve real-world workloads.

Finally, we intend to examine the behavior of historic RangeMerge under the Yahoo!

Cloud Serving Benchmark [8] suite. YSCB provides a framework and many common sets

of workloads for evaluating the performance of various key-value stores. It simulates core

workloads which �ll out the space of performance trade o�s made by the larges NoSQl
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database management systems. Additionally it provides useful workload generators which

can produce synthetic traces. The form of these traces can be de�ned by the user through

the appropriate modi�cation of the provided client.
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