
Õëïðïßçóç ÓõóôÞìáôïò Áñ÷åßùí ìå ÊáôáãñáöÞ
Åíçìåñþóåùí ãéá ÁðïèçêåõôéêÝò ÓõóêåõÝò Áóýììåôñçò

ÐñïóðÝëáóçò

Ç ÌÅÔÁÐÔÕ×ÉÁÊÇ ÅÑÃÁÓÉÁ

õðïâÜëëåôáé óôçí

ïñéóèåßóá áðü ôçí ÃåíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò

ÔìÞìáôïò Ìç÷áíéêþí Ç/Õ êáé ÐëçñïöïñéêÞò

ÅîåôáóôéêÞ ÅðéôñïðÞ

áðü ôïí

Âáóßëåéï Ðáðáäüðïõëï

ùò ìÝñïò ôùí Õðï÷ñåþóåùí ãéá ôç ëÞøç ôïõ

ÌÅÔÁÐÔÕ×ÉÁÊÏÕ ÄÉÐËÙÌÁÔÏÓ ÓÔÇÍ ÐËÇÑÏÖÏÑÉÊÇ

ÌÅ ÅÎÅÉÄÉÊÅÕÓÇ

ÓÔÁ ÕÐÏËÏÃÉÓÔÉÊÁ ÓÕÓÔÇÌÁÔÁ

Éïýíéïò 2015

Dedication

This is the beginning.

Table of Contents

1 Introduction 1

1.1 Thesis Scope . 1

1.2 Thesis Organization . 3

2 Background 5

2.1 Flash Memory . 5

2.1.1 Introduction . 6

2.1.2 NOR and NAND Architectures . 6

2.1.3 Multi Level Cell Memory . 9

2.2 Solid State Drives . 12

2.2.1 Organization . 12

2.2.2 Flash Translation Layer . 14

2.2.3 Challenges . 18

2.3 Fast and Reliable File Systems . 21

2.3.1 Basic Concepts . 21

2.3.2 Caching and Bu�ering . 22

2.3.3 Journaling File Systems . 23

2.3.4 Log-Structured File Systems . 26

2.4 Summary . 28

3 Related Research 29

3.1 Log-Structured File Systems . 29

3.2 FTL Approaches . 30

3.3 Flash Memory File Systems . 31

i

4 System Design 32

4.1 Motivation . 32

4.2 Design Goals . 33

4.3 Proposed Design . 34

4.3.1 Proactive Cleaning . 34

4.3.2 Garbage Collection . 35

4.3.3 Crash Recovery . 37

4.3.4 Synchronous Writes . 37

4.4 Summary . 38

5 System Prototype 39

5.1 Overview . 39

5.2 Background . 40

5.2.1 Linux Journaling . 40

5.2.2 Log-Structured File System . 41

5.3 Implementation . 44

5.3.1 Journal Integration . 44

5.3.2 Transactions . 46

5.3.3 Journaling Data . 47

5.3.4 Commit . 47

5.3.5 Checkpoint . 48

5.3.6 Failure Recovery . 51

5.3.7 Synchronous Writes . 52

5.4 Summary . 53

6 Experimental Results 54

6.1 Experimentation Environment . 54

6.2 Asynchronous Writes . 55

6.2.1 Sequential Workloads . 56

6.2.2 Random Workloads . 57

6.3 Synchronous Writes . 60

6.4 Summary . 62

ii

7 Conclusions and Future Work 63

7.1 Conclusions . 63

7.2 Future Work . 64

A Appendix 72

Non-Volatile Memory . 72

Floating-Gate Transistor . 76

iii

List of Figures

2.1 NOR and NAND Flash architectures. 7

2.2 NOR and NAND Flash architectures. 8

2.3 Single Level Cell and Multiple Level Cell memory voltages. 11

2.4 NAND Flash memory organization . 13

2.5 NAND Flash Channel Organization . 14

2.6 Block diagram of an SSD memory controller 15

2.7 Page state transitions. Blank boxes stand for clean pages that can be used

to write data, valid pages have their name assigned in the box while invalid

pages are coloured grey. 16

2.8 Organization of a novel �le system: Superblock, Inode bitmap, Data block

bitmap, Inode blocks and Data blocks . 23

2.9 Creating and updating a �le in a Log-Structured File System. The grey

color indicates a block that contains stale data. 27

5.1 Allocation, Write and Recovery units of NILFS2 42

6.1 Sequential writes tests on disk-based con�guration. 56

6.2 Sequential writes tests on hybrid con�guration. 56

6.3 Sequential writes tests on ssd-based con�guration. 56

6.4 Random writes tests on disk-based con�guration. 58

6.5 Random writes tests on hybrid con�guration. 58

6.6 Random writes tests on ssd-based con�guration. 58

6.7 Random writes - Zip�an distribution tests on disk-based con�guration. . . 59

6.8 Random writes - Zip�an distribution tests on hybrid con�guration. 59

6.9 Random writes - Zip�an distribution tests on ssd-based con�guration. . . . 59

6.10 Synchronous Writes - Sequential tests on disk-based con�guration. 61

iv

6.11 Synchronous Writes - Sequential tests on hybrid con�guration. 61

6.12 Synchronous Writes - Sequential tests on ssd-based con�guration. 61

A.1 A typical PROM. The red X marks a fuse which has been blown. 74

A.2 A cross-section sketch of the Floating-Gate Transistor and its Circuit symbol. 75

A.3 Programming a Floating-Gate Transistor: CHE Injection and FN Tunneling. 77

A.4 Erasing and Reading a Floating-Gate Transistor. 78

A.5 Stages of Oxide Layer Breakdown. 79

v

List of Tables

2.1 Comparison of NOR and NAND Flash architecture characteristics 9

2.2 Comparison of SLC and MLC memory characteristics 11

vi

List of Listings

5.1 Added journal superblock �elds . 44

5.2 Journal support functions . 44

5.3 Main loop of the segment constructor . 49

vii

Abstract

Papadopoulos, Vasileios, S.

MSc, Computer Science and Engineering Department, University of Ioannina, Greece.

June 2015

Implementation of a Journaling File System for Asymmetric Storage Devices

Thesis Supervisor: Stergios V. Anastasiadis

Asymmetric storage devices are increasingly o�ering competitive advantages as either

standalone storage devices or as a distinct layer in the storage hierarchy. Compatibil-

ity with legacy systems is possible through a typical block interface o�ered by a special

�rmware running on the device's controller. By utilizing application semantical informa-

tion, the �le system running at the top is able to improve the performance of the device

and exploit the intrinsic characteristics of asymmetric storage to its advantage.

More speci�cally, Log-Structured �le systems o�er increased performance and reduced

latency compared to traditional �le systems. In many cases however, they do not manage

the available space e�ectively and as a result are hurdled by garbage collection overheads.

In addition, the amount of data that can be recovered in case of a system crash depends

on the pressure that was put into the system when the crash occurred and can be very

limited.

In order to solve these problems we propose Metis, a composite �le system that com-

bines journaling with the log-structured �le system in order to improve the garbage col-

lection process, reduce write tra�c and increase the utilization of the available storage

space. We implemented our system in the Linux kernel. By using a set of tools that eval-

uate our system across di�erent workloads, we are able to show that our implementation

increases the utilization of the available storage space while also improving the recovery

point objective of the system while its performance remains comparable to that of the

viii

original implementation.

ix

ÅêôåôáìÝíç Ðåñßëçøç óôá ÅëëçíéêÜ

Âáóßëåéïò Ðáðáäüðïõëïò ôïõ ÓùêñÜôç êáé ôçò Ãåùñãßáò.

MSc, ÔìÞìá Ìç÷áíéêþí Ç/Õ êáé ÐëçñïöïñéêÞò, ÐáíåðéóôÞìéï Éùáííßíùí, Éïýíéïò 2015.

Õëïðïßçóç ÓõóôÞìáôïò Áñ÷åßùí ìå ÊáôáãñáöÞ Åíçìåñþóåùí ãéá ÁðïèçêåõôéêÝò ÓõóêåõÝò

Áóýììåôñçò ÐñïóðÝëáóçò.

ÅðéâëÝðùí: ÓôÝñãéïò Â. ÁíáóôáóéÜäçò

Ïé óõóêåõÝò áóýììåôñçò ðñïóðÝëáóçò, åßôå ùò êñõöÞ ìíÞìç åßôå ùò îå÷ùñéóôÜ áðïèç-

êåõôéêÜ ìÝóá, ðáñÝ÷ïõí ðïëëáðëÜ ðëåïíåêôÞìáôá óå ó÷Ýóç ìå ôá ðáñáäïóéáêÜ ìÝóá

áðïèÞêåõóçò. Ç åðéêïéíùíßá ôùí óõóêåõþí áõôþí ìå ôá õðÜñ÷ïíôá óõóôÞìáôá åßíáé

åöéêôÞ ìÝóù åéäéêïý ëïãéóìéêïý ðïõ åêôåëåßôáé óôïí åëåãêôÞ ôçò óõóêåõÞò êáé õðïóôçñßæåé

ìéá ðáñáäïóéáêÞ äéåðáöÞ ôýðïõ ìðëïê. Ìå êáôÜëëçëç áîéïðïßçóç ôùí óçìáóéïëïãéêþí

ðëçñïöïñéþí ðïõ ðñïóöÝñïíôáé áðü ôéò åöáñìïãÝò Ýíá óýóôçìá áñ÷åßùí åßíáé äõíáôüí íá

âåëôéþóåé ôçí áðüäïóç ôçò óõóêåõÞò, êáèþò åðßóçò êáé íá åêìåôáëëåõôåß ôéò éäéáéôåñüôçôåò

ôçò áóýììåôñçò ðñïóðÝëáóçò ðñïò üöåëüò ôùí åöáñìïãþí.

Åéäéêüôåñá, ôá óõóôÞìáôá ìå äïìÞ áñ÷åßïõ êáôáãñáöÞò (log-structured) ðáñÝ÷ïõí

áõîçìÝíç áðüäïóç êáé ìåéþíïõí ôï ÷ñüíï áðüêñéóçò. Ùóôüóï, óå áñêåôÝò ðåñéðôþóåéò

äåí äéá÷åéñßæïíôáé áðïäïôéêÜ ôïí áðïèçêåõôéêü ÷þñï êáé åðéâáñýíïíôáé óçìáíôéêÜ êáôÜ ôç

äéáäéêáóßá åêêáèÜñéóÞò ôïõ. ÅðéðëÝïí, ï üãêïò ôùí äåäïìÝíùí ðïõ ìðïñåß íá áíáêôçèåß

ìåôÜ áðü êáôÜññåõóç ôïõ óõóôÞìáôïò åîáñôÜôáé áðü ôïí öïñôßï åñãáóßáò ôç ÷ñïíéêÞ

óôéãìÞ ôçò êáôÜññåõóçò êáé ìðïñåß íá åßíáé ðåñéïñéóìÝíïò.

ÐñïêåéìÝíïõ íá áíôéìåôùðßóïõìå áõôÝò ôéò áäõíáìßåò ðñïôåßíïõìå ôï Metis, Ýíá óýóôçìá

ìå äïìÞ áñ÷åßïõ êáôáãñáöÞò (log-structured) ðïõ ÷ñçóéìïðïéåß Ýíá îå÷ùñéóôü áñ÷åßï

êáôáãñáöÞò åíçìåñþóåùí (journal) ðñïêåéìÝíïõ íá âåëôéþóåé ôç äéáäéêáóßá åêêáèÜñéóçò,

íá ìåéþóåé ôéò áðáéôÞóåéò óå åýñïò æþíçò áðïèÞêåõóçò, êáé íá ðåôý÷åé áðïäïôéêüôåñç

x

äéá÷åßñéóç ôïõ áðïèçêåõôéêïý ÷þñïõ. ÕëïðïéÞóáìå ôï óýóôçìÜ ìáò óôïí ðõñÞíá ôïõ

ëåéôïõñãéêïý óõóôÞìáôïò Linux. ÌÝóù ëåðôïìåñþí ðåéñáìáôéêþí ìåôñÞóåùí äåß÷íïõìå

üôé åðéôõã÷Üíïõìå áðïäïôéêüôåñç äéá÷åßñéóç ôïõ áðïèçêåõôéêïý ÷þñïõ êáé âåëôéùìÝíç

éêáíüôçôá áíÜêôçóçò äåäïìÝíùí, åíþ ç áðüäïóç ôïõ óõóôÞìáôïò ðáñáìÝíåé óõãêñßóéìç

ìå áõôÞ ôïõ áñ÷éêïý.

xi

Chapter 1

Introduction

1.1 Thesis Scope

1.2 Thesis Organization

1.1 Thesis Scope

Technological advances increasingly make
ash memory useful as either standard storage

device in mobile systems or desirable storage layer in enterprise servers. Flash memory

exhibits several attractive characteristics, such as low power consumption, high transac-

tion throughput and reduced access latency. However, it has several limitations such as

the erase-before-write requirement, the limited number of Program/Erase cycles per block

and the need to write to erased blocks sequentially.

Early systems utilized \raw" NAND
ash memory as their primary storage managed

by a special purpose �le system [66, 58]. As the storage needs grew however, a new layer

of abstraction was added in the form of a �rmware running on the controller known as

the Flash Translation Layer (FTL). The FTL hides the underlying complexity of NAND

ash memory by exposing a generic block interface to the system. Examples of such

devices include SD memory cards, USB sticks and Solid State Drives. Solid State Drives

in particular, are able to exploit the parallelism provided by the underlying architecture

1

and outperform their mechanical counterpart by orders of magnitude when it comes to

random I/Os while o�ering very low access latency.

Even with the addition of the FTL however,
ash memory bears idiosyncrasies that

render its performance highly workload-dependent. Frequent random writes on an SSD

lead to internal fragmentation of the underlying media and degrade its performance even

by an order of magnitude [47]. More speci�cally, random writes trigger the garbage

collection mechanism of the FTL and as a result, valid pages within victim blocks have

to be relocated before the block itself can be erased. This phenomenon is known as write

ampli�cation [21, 41, 53] and is of utmost importance to the industry and the academia

since the extra writes impair the device's performance and have also a negative impact

on its lifetime.

Random-write patterns are quite common in modern applications. For example, the

Facebook mobile application issues 150% more random writes that sequential ones while

WebBench issues 70% more [30]. In addition, 80% of the total I/O operations issued

are random and more than 70% of them use the fsync system call to force the data

into persistent memory [25]. Therefore, unless handled carefully, random workloads can

seriously a�ect the performance of the drive and reduce its lifetime.

Much e�ort has been devoted by researchers into resolving the random writes prob-

lem, reduce the write ampli�cation factor and extend the device's lifetime. Most of the

work focuses on the Flash Translation Layer with some studies attempting to categorize

incoming writes with respect to the update frequency of the underlying pages, so that

frequently modi�ed pages (hot) do not pollute blocks with rarely modi�ed pages (cold)

[34, 18]. Others, exploit physical aspects of the device in order to improve its lifetime and

increase its performance [26, 22]. Nonetheless, ine�ciencies of the FTL have led to the

proposal of a number of non-FTL solutions in the literature [36, 23, 61, 24].

One might expect that the use of a log-structured �le system [57, 31] or one that follows

the copy-on-write strategy like BTRFS [55] would help soothe the detrimental e�ects of

random writes. However, these �le systems do not consider the unique characteristics

of
ash storage and are therefore sub-optimal in terms of performance, reliability and

device lifetime. As a result, a number of
ash-aware �le systems have been suggested

that help optimize the usage of
ash media [33, 47, 40]. Still, these �le systems either

use complicated mechanisms to identify hot and cold data in memory or exchange the

2

dependability of the drive for performance.

In this thesis we propose Metis, a composite
ash-aware �le system that combines

journaling with the log-structured �le system. By using a set of novel techniques that

add minimal writing overhead, our system is able to:

1. Provide hot/cold block separation

2. Increase the e�ciency of the garbage collection mechanism

3. Improve the recovery point objective of the system

4. Improve disk utilization

Experimental results show that our system is able to improve the utilization of the disk

by up to 80% while performance remains comparable to that of the original �le system.

Our work is based on a previously proposed idea published by our group [19, 20].

1.2 Thesis Organization

The remainder of the thesis is organized as follows:

In Chapter 2, we provide the background required to understand the underlying

problems of Solid State Drives. We then proceed to an overview of the various problems

and techniques that have been proposed in order to improve their reliability and perfor-

mance. In addition, we discuss the problem of �le system consistency and present some

basic information about Log-Structured File Systems.

In Chapter 3, the design goals of our system are de�ned and a general description of

its key features and architecture is provided.

In Chapter 4, we introduce Metis, the composite �le system that we have designed

and developed. Our work is based on the idea of combining journaling with the Log-

Structured File System. Frequently updated blocks are accumulated on the journal par-

tition while only cold blocks are written on their �nal location in order to improve the

reliability of the drive and increase its utilization.

In Chapter 5, we specify the characteristics of our experimentation platform. We

then evaluate our system across di�erent workloads and present our results graphically.

3

In Chapter 6, the concluding remarks of this thesis are drawn and future work is

discussed.

4

Chapter 2

Background

2.1 Flash Memory

2.2 Solid State Drives

2.3 Fast and Reliable File Systems

2.4 Summary

2.1 Flash Memory

Semiconductor memories can be divided into two major categories: Volatile memories

and Non-Volatile memories. Volatile memories can be programmed fast, easily and an

unlimited number of times but require power to preserve the stored information. Non-

Volatile memories are able to retain the stored information in the event of a power loss,

but fall short in terms of speed and durability. Early designs of non-volatile memory were

fabricated with permanent data and did not provide the ability to modify their content.

Current designs allow their content to be erased and re-programmed a limited number of

times although at a signi�cantly slower speed compared to volatile memories [8, 6].

Flash Memory is a type of non-volatile memory that incorporates technologies from

both EPROM and EEPROM memories. Invented in 1984 by Dr Fujio Masuoka, the

term \
ash" was chosen because a large chunk of memory could be erased at one time

5

compared to EEPROMs where each byte had to be erased individually. It is considered

to be a very mature technology and has become extremely popular, especially since the

development of battery operated portable electronic devices in the mid 1990s. Nowadays,

ash memory is used on virtually all hand-held devices, USB memory sticks and memory

cards with its main advantages being the high Read/Write speeds, small size, low power

consumption and shock resistance. It also serves as the main component of Solid State

Drives.

2.1.1 Introduction

The heart of the
ash memory cell is the Floating-Gate Transistor. Its structure is similar

to a conventional MOSFET1, with an additional gate added. The newly added gate called

the Floating Gate, occupies the position of the original gate with the original gate (known

as the Control Gate) now being on top of the
oating gate (Figure A.2). The
oating

gate is insulated all around by an oxide layer and as a result, any electrons placed on

it are trapped there and |under normal conditions| will not discharge for many years

[46]. It is because of this phenomenon, that the
oating-gate transistor can be used as

non-volatile memory.

The reliability of a
oating-gate transistor is one of its most important concerns.

There are multiple leakage paths which can lead to loss of the programmed
oating-gate

electron charges however, with the use of proper monitoring systems
ash memory is

able to detect and correct bit errors in order to provide reliable storage. [46, 49]. Flash

memory manufacturers typically need to guarantee at least 10 years of charge retention

and 1k to 100k Program/Erase cycles for a product chip.

2.1.2 NOR and NAND Architectures

Depending on how the memory cells are organized within the chip,
ash memory comes in

two main architecture variants: NOR and NAND. NOR
ash memory came to the market

�rst as an EEPROM replacement and is mainly used as code and parameter storage where

reliability and high speed random access is required. NAND
ash is used mainly for data

storage due to its high speed serial access and high density. We now look at the two

1Metal-Oxide-Semiconductor Field-E�ect-Transistor

6

Bit Line (BL)

WL<29>

WL<30>

WL<28>

WL<1>

WL<31>

WL<0>

(a)

Bit Line (BL)

WL<31>

WL<30>

WL<29>

WL<0>

BSL

SSL

(b)

Figure 2.1: NOR and NAND Flash architectures.

architectures and discuss their advantages and disadvantages.

NOR Flash Memory

In NOR
ash memory, each cell has one end connected directly to ground, while the other

end is connected to a Bit Line (BL) (Figure 2.1a). This arrangement resembles a NOR

gate: When one of the Word Lines (WL) is brought high, the corresponding transistor

pulls the output bit line low. The main advantage of this arrangement is that it allows

each memory cell to be individually addressed, which results to high speed random access

capability. In addition, NOR
ash memory o�ers reliable storage due to the large size of

the memory cell, which reduces the number of disturb faults which in turn, reduces the

need for expensive error correction codes.

It is because of these features, that NOR Flash Memory is mainly used as code and

parameter storage. When a program is executed, it generally requires fast random access

reads, since the code usually jumps from one memory location to another while branching.

Moreover, any errors in the code are likely to produce a system fault so a high degree of

reliability is required. Since NOR
ash provides all of the above features, it is an ideal

solution for �rmware storage and in-place execution.

7

BL0

BSL

WL<63>

WL<62>

WL<61>

WL<0>

SSL

Source line
(SL)

...

...

...

...

...

...

...

BL1 BL2

Page

N
A

N
D

 S
tr

in
g

N
A

N
D

 S
tr

in
g

N
A

N
D

 S
tr

in
g

N
A

N
D

 S
tr

in
g

N
A

N
D

 S
tr

in
g

N
A

N
D

 S
tr

in
g

N
A

N
D

 S
tr

in
g

N
A

N
D

 S
tr

in
g

N
A

N
D

 S
tr

in
g

N
A

N
D

 S
tr

in
g

N
A

N
D

 S
tr

in
g

N
A

N
D

 S
tr

in
g

B
lo

ck
 0

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 3

Source line (SL)

Source line (SL)

BL0 BL1 BL2

BSL0

WL0

SSL0

<63:0>

SSL1

WL1

BSL1

<63:0>

BSL2

WL2

SSL2

<63:0>

SSL3

WL3

BSL3

<63:0>

Figure 2.2: NOR and NAND Flash architectures.

NAND Flash Memory

In NAND
ash memory, the transistors are connected in a way that resembles a NAND

gate: Several transistors are connected in series and only if all word lines are pulled high

is the bit line pulled low. The transistor group is then connected via some additional

transistors to a bit line in the same way that a single transistor is connected to a bit line

in NOR
ash (Figure 2.1b).

In order to read a value, �rst the desired group is selected by using the Bit Select

Line (BSL) and Source Select Line (SSL) transistors2. Next, most of the word lines are

pulled high while one of them is read by applying the proper voltages to its connectors.

Since there are no contacts directly accessing the memory cells, random performance is

slow compared to NOR
ash. However, the reduction in source lines and bit line contacts

leads to a smaller e�ective cell size resulting in a smaller chip size and a lower cost per

bit. More speci�cally, the cell size for NOR
ash memory is in the 10F 2 range (where F

is the design rule of the chip), while for NAND
ash memory it is reduced to 4F 2 [44, 6].

When it comes to cell organization within a chip, NAND strings are packed to form

a matrix in order to optimize silicon area occupation. Strings that share the same source

2When designing the chip, the ground contacts of �gure 2.1 are replaced with Source Lines (SL)

8

NOR NAND

Read parallelism 8-16 Word 2Kbyte

Write parallelism 8-16 Word 2Kbyte

Read access time < 80ns 20�s

Program time 9�s=Word 400�s=Page

Erase time 1s=Sector 1ms=Sector

Table 2.1: Comparison of NOR and NAND Flash architecture characteristics

line but have di�erent bit lines form a logical Block. Transistors within a block that share

the same word line form a logical Page (Figure 2.2). A typical page has a size of about

8-32kB while a block usually contains hundreds of pages. Read and write operations are

performed at the granularity of a page and are relatively fast operations (25-60�s for

Read and 250-900�s for Write). The erase operation is performed at the granularity of a

block and is considered to be a very slow operation (about 3.5ms) [26].

To sum up, the main advantages of NAND Flash Memory are:

• Fast write performance, since multiple cells can be programmed simultaneously.

• High density and low cost per bit due to the small cell size.

• Low power consumption because of the use of the FN Tunneling mechanism (See

Appendix A).

These characteristics make it an ideal candidate for data storage since most applica-

tions need to store large amounts of data and read them sequentially. A comparison of

characteristics of NOR and NAND
ash architectures can be seen in Table 2.1. For the

rest of this thesis we are going to focus on NAND
ash memory only as it is the main

component of Solid State Drives discussed in the next section.

2.1.3 Multi Level Cell Memory

Until now, we assumed that only one bit of information could be stored in a single memory

cell. This type of memory, where a memory cell can only store one bit and its value is

determined by judging whether electrons are trapped in the
oating gate or not, is known

9

as Single-Level Cell (SLC) memory. Let us now assume that the voltage applied to the

control gate to produce the two states is 1.00 and 3.00 volts respectively, with a Reference

Voltage Vref of 2.00 volts (Figure 2.3a). The bell-shaped area exists because the threshold

voltage is not going to be exactly the same for all the cells in a chip. In order to read

the contents of a memory cell, the reference voltage is applied to the control gate. If the

cell is in an erased state (bit value 1), current will
ow through the cell. If there is no

current
ow, the
oating gate must be occupied by electrons and therefore the cell is in

a programmed state (bit value 0).

Multi Level Cell (MLC) memory technology uses multiple levels per cell to allow more

bits to be stored in a single transistor. More speci�cally, MLCmemory has 4 distinct states

with each state representing 2 bits: 11, 10, 01 and 00. A cell in an erased state will be seen

as the value 11 while the remaining three states are determined by accurately measuring

the amount of current that
ows through the cell during read operation. Instead of having

two threshold voltages we now have four (0.50V , 1.50V , 2.50V and 3.50V respectively),

while the reference points between the states are now three (Figure 2.3b).

The main bene�t of MLC memory, is that the storage capacity can be increased by

using the same number of transistors and without an increase in process complexity.

Speci�cally, transitioning from SLC to MLC technology is equivalent to a partial shrink

of the device from one process technology generation to the next. 3-bit and 4-bit per cell

memories have also been constructed (known as X3 and X4 MLC memories), however

the cost per bit reduction in becoming smaller as we transition from one technology to

another. When transitioning from SLC to MLC an approximate 40-50% cost reduction

can be obtained but this �gure drops to 20% for MLC to X3 MLC and to 10% for X3

MLC to X4 MLC [45, 38, 14].

Programming and reading a memory cell that stores multiple bits is also extremely

demanding. Since we now need to control and sense the number of electrons trapped in

the
oating gate, high accuracy is required. In particular, high precision sensors and a

more complex error correcting circuitry need to be used, which in turn leads to slower

programming and reading speeds of about 3-4 times compared to those of SLC memory.

Moreover, the bell shaped areas are now narrower since the voltage di�erence between the

threshold voltages is now less and there is also a smaller voltage separation between the

reference voltage and the upper and lower bounds of the threshold voltages on each side

10

V

Vref

1.00 3.002.00

1 0

(a)

V

Vref1

1.00 3.002.00

Vref0 Vref2

0.50 1.50 2.50 3.50

11 10 01 00

(b)

Figure 2.3: Single Level Cell and Multiple Level Cell memory voltages.

SLC MLC

Pages per Block 64 128

ECC bits 4-24 bits 16-40 bits

Program/Erase cycles 100.000 10.000

Raw bit error rate 10−4 10−3

Read latency 25�s 50�s

Program latency 200− 300�s 600− 900�s

Erase latency 2ms 3ms

Table 2.2: Comparison of SLC and MLC memory characteristics

of the reference voltage. As the
oating gate will slowly lose its ability to retain electrons

over time (remember that a memory cell can sustain a certain number of Program/Erase

cycles), its threshold voltage will start to shift until it is o� the bell shaped area and the

chip will then be considered unusable since we cannot distinguish the value that is stored

in it. Therefore, the smaller this area of distribution around the threshold voltage is, the

less longevity the cell has. As a result, MLC memory cells can only sustain up to 10.000

P/E cycles while SLC cells can sustain up to 100.000 [9, 63]. A summary of the various

characteristics of SLC and MLC memory can be found in Table 2.2.

11

2.2 Solid State Drives

NAND
ash based Solid State Drives (SSDs) have been revolutionizing data storage sys-

tems in the latest years. A solid state drive is a purely electronic device based on semicon-

ductor memory that has no mechanical parts compared to traditional Hard Disk Drives

(HDDs). As a result, it has minimal seek time and provides very low access latencies.

Moreover because of its electronic nature it o�ers low power consumption, lack of noise,

shock resistance and most importantly very high performance for random data accesses.

Although the SSD technology has been around for more than 30 years, it remained too

expensive for broad adoption. The introduction however of MP3 players, smartphones

and a whole other class of devices that used
ash memory as their main storage changed

everything and led to the widespread availability of cheap non-volatile memory. As a

result, consumer grade SSDs started to appear in the market in 2006 with their market

share growing ever since [11, 46]. Still, two serious problems are limiting the wider deploy-

ment of SSDs: Limited lifespan and relatively poor random write performance [47]. In

the next sections we look at the basic organization of an SSD and discuss its weaknesses.

2.2.1 Organization

Hard Disk Drives and SSDs are part of a class of storage called block devices. These

devices use logical addressing to access data and abstract the physical media using small,

�xed, contiguous segments of bytes as the addressable unit called blocks. A typical solid

state drive incorporates three major parts: The NAND
ash storage media, the controller

and the host interface.

The NAND
ash memory is the basic building block of an SSD and is organized in a

hierarchical fashion (Figure 2.4). As we described in section 2.1.2,
ash memory consists

of Pages (2KB, 4KB or 8KB size) and Blocks (64-512 Pages). A page is the basic unit of

read and write operations while erase operations are performed at the block level3. A

plane is a matrix of few thousand blocks, while a die usually contains 4 planes and has a

size of 2-16 GBytes. Each die can operate independently from one another and perform

3It is important not to confuse the block unit of a block device known as logical block with the
ash

block. A logical block usually has a size of 4KB and is used by the operating system. A
ash block is

about 256KB - 4MB, it is comprised of multiple pages and is used by the NAND
ash memory.

12

Page 0

Page 1

Page 255

Page 0

Page 1

Page 255

Block 0

Block 4095

Page 0

Page 1

Page 255

Page 0

Page 1

Page 255

Block 0

Block 4095

Page 0

Page 1

Page 4096

Page 0

Page 1

Page 4096

Block 0

Block 1024

Page 0

Page 1

Page 255

Page 0

Page 1

Page 255

Block 0

Block 4095

Page 0

Page 1

Page 255

Page 0

Page 1

Page 255

Block 0

Block 4095

Plane 0 Plane 1 Plane 2 Plane 3

NAND Die

Figure 2.4: NAND Flash memory organization

operations in one or two planes. Multiple dies (2-32) can be organized to share the same

memory channel and only one of them should be active at any given time. A typical SSD

has multiple memory channels (usually 4-8) that are directly connected to the NAND

Controller (Figure 2.5). It is because of this organization that SSDs are able to provide

high bandwidth rates (about 500MB/s) even though a single
ash package has limited

performance (about 40MB/s). By splitting the data up into separate memory channels, a

high degree of parallelism can be achieved which leads to a vast increase in performance

[2, 11, 46].

Some �le systems |mainly used for embedded applications| opt to use raw
ash

memory in order to store their data [58, 39, 66]. In contrast, solid state drives use the a

special �rmware that runs on the controller called the Flash Translation Layer in order to

expose a linear array of logical block addresses to the host while hiding its inner workings.

As a result, existing �le systems can be used with SSDs without virtually any problems

while the migration from a HDD to an SSD becomes seamless. The Flash Translation

13

NAND
Interface

Channel 0

Die 1

Channel 0

Die 7

Channel 1

Die 0

Channel 0

Die 0

Channel 1

Die 1

Channel 1

Die 7

Channel 3

Die 1

Channel 3

Die 7

Channel 2

Die 0

Channel 3

Die 0

Channel 2

Die 1

Channel 2

Die 7

Figure 2.5: NAND Flash Channel Organization

Layer and its mechanics are discussed in detail in the next section.

The host interface also plays an important role in SSD design. The majority of solid

state drives utilizes existing standards and interfaces such as SATA and SAS in order

to achieve maximum compatibility with HDDs. Some high-end SSDs use the PCIe (Pe-

ripheral Component Interconnect Express) interface which is a more e�cient interconnect

since it does not use the host bus adapter that is required in order to translate the SATA

and SAS protocols. This in turn leads to a decrease in latency and in power consumption.

The use of traditional block-access protocols however leads to the loss of higher-level

semantics that could be utilized in order to make the SSD more e�cient. This is one of

the most important problems in Solid State Drive block management and while various

solutions have been proposed in the literature[13, 15], most modern SSDs continue to use

existing protocols and interfaces.

2.2.2 Flash Translation Layer

In order to protect and control the underlying NAND
ash media solid state drives employ

a complex embedded system with standalone processing in the memory controller that

runs a special �rmware called the Flash Translation Layer (FTL) (Figure 2.6). The FTL

14

Host Interface

NAND Interface

Block Mapping

Bad Block Management

Wear Leveling

Garbage Collection

Flash Translation Layer

Memory Controller

Figure 2.6: Block diagram of an SSD memory controller

exposes an interface similar to that of a HDD to the host system while hiding the unique

ash physical aspects. Thus, it takes care of all the necessary operations that otherwise

the host �le system would have to in order to make the NAND
ash robust and reliable.

The FTL plays a key role in SSD design and many sophisticated mechanisms have been

adopted over the years in order to optimize its performance [41, 26, 59]. A typical FTL

performs four main operations: logical block mapping, garbage collection, wear leveling

and bad block management.

Logical Block Mapping

As we mentioned in previous sections, pages in NAND
ash memory cannot be overwritten

and have to be erased before we are able to program them again. However, the program

operation is performed at page granularity while the erase operation is performed at the

block level. As a result writes in
ash memory cannot be performed in place as in disks

and a di�erent page has to be used in order to store the updated data, a process known

as out-of-place update.

The FTL maintains a state for every physical page while exposing an array of logical

block addresses to the host system. A page can be in either one of three states:

15

P3

P1

P0

P7

P6

P5

P4 P8

Block 0 Block 1 Block 2 Block 3

(a)

P1

P7

P5

P6

P4

P3

P0

P8

Block 0 Block 1 Block 2 Block 3

(b)

P1

P6

P4

P3

P0

P8

P7

P5

Block 0 Block 1 Block 2 Block 3

(c)

Figure 2.7: Page state transitions. Blank boxes stand for clean pages that can be used

to write data, valid pages have their name assigned in the box while invalid pages are

coloured grey.

• Clean, meaning that it is a page that has been erased and is now available for

programming

• Valid, if it contains valid data

• Invalid, if the data contained is now stale and the page can be erased

Data is written into clean pages initially, which are then marked as valid. When an

update occurs, a new clean page is used to store the updated data while the old page

is now marked as invalid (Figures 2.7a & 2.7b). Hence, the FTL employs a mapping

mechanism in order to map a logical block address (LBA) to a physical block address

(PBA) and keep track of all the page state changes. The mapping granularity of such

mechanism varies and it can be as large as a block or as small as a page. In general there

are three mapping schemes that can be adopted [17, 9, 47]:

• In a page-level FTL scheme a logical block number is translated to a physical page

number. This results to a �ne-grained page-level mapping table that adds very low

garbage collection overheads. Such granularity however comes at a price a large

mapping table needs to be stored in RAM which might not always be possible.

• A block-level scheme maps a logical block number to a physical block number while

the page o�set within a block is �xed. The mapping is now coarse-grained and

therefore the mapping table is small enough to be kept in memory entirely without

16

a problem however, garbage collection overheads have now raised especially when

only a few pages within a block must be updated.

• An intermediate solution is to use a hybrid-level scheme that extends the block-

level schemes by partitioning the
ash blocks into data blocks and log blocks. Data

blocks are mapped using the block-level scheme in order to reduce the required RAM

size while log blocks are mapped using page-level mapping. The idea is to reduce

the garbage collection overhead for the log blocks and use them as log bu�ers by

directing small random writes to them that can be later grouped and written to

data blocks.

The majority of SSDs today use a hybrid FTL scheme with the mapping table maintained

in persistent
ash memory and rebuilt in RAM at startup time.

Garbage Collection

The number of invalid pages grows as the device is written. Since writes can be written

only to clean pages the FTL must maintain a pool of free blocks by triggering the conver-

sion of invalid pages into clean ones. This process known as garbage collection is triggered

either when the FTL runs out of free blocks or when the SSD is inactive for a period of

time.

During the Garbage Collection process sparsely �lled victim blocks with lots of invalid

pages are selected, their valid pages copied into new blocks, while the old blocks are

erased (Figure 2.7c). The newly erased blocks can now be used to accommodate new

writes. Depending on the mapping scheme used, di�erent policies need to be followed:

If a page-level mapping is used, the valid pages in the victim block are copied out and

condensed into a new block. If a block-level mapping is used, the valid pages need to be

merged together with the updated pages in the same block.

Copying the remaining valid data of a victim block presents a signi�cant overhead and

therefore the garbage collection process should be triggered only when necessary since it

has a great impact at the performance of the drive.

17

Wear Leveling

NAND blocks have limited endurance and are able to sustain a speci�c number of Pro-

gram/Erase cycles. In addition, not all the information stored within the same memory

location change with the same frequency: Because of the locality exhibited in most work-

loads writes are often performed in a subset of blocks which is frequently overwritten

[26]. This can lead to certain blocks wearing out earlier than other blocks which poses a

problem as it can lead to the device becoming unusable prematurely.

To counter this problem the FTL employs a wear-leveling mechanism in order to max-

imize the use of the blocks' limited endurance and guarantee a su�cient device lifetime.

More speci�cally, the FTL keeps track of the number of P/E cycles for each block and

aims to keep the wear as low and uniform as possible by \shu�ing" blocks that are up-

dated frequently (hot) with blocks of data that remain the same for a very long time

(cold) and have a low P/E count. This poses a major challenge for SSD manufacturers

and academic researchers and over the years various solutions and algorithms have been

proposed. A discussion of the problem and its proposed solutions can be found in the

next section.

Bad Block Management

No matter how good the wear leveling algorithm is, eventually bad blocks are going to start

to appear in the NAND
ash. A block is considered bad when a program or erase operation

fails or when the bit error rate grows close to the Error Correcting Code capabilities.

Therefore, the FTL maintains a map of bad blocks that is created during the factory

initialization of the device and contains a list of the bad blocks that have been found

during factory testing [46]. When a block is found to be bad during the device lifetime it

is added to the list and the FTL will stop using it. However, if there are no spare blocks

to replace all the failing blocks the device will be considered unusable and will die.

2.2.3 Challenges

Despite their obvious advantage of providing performance that is orders of magnitude

higher than that of hard disk drives, the design of solid state drives presents signi�cant

challenges that need to be addressed. We now look at the most important ones and

18

describe the various solutions that have been proposed.

Random Writes

Random writes are generally considered harmful in solid state drives. Although the ran-

dom read performance of an SSD remains the same through the device's lifetime, random

writes can cause internal fragmentation of the underlying media and thus lead to a de-

crease in performance even by an order of magnitude. The main reason behind this drop

is the erase-before-write property and the asymmetry of the NAND
ash memory. Mul-

tiple random writes result to multiple pages in di�erent blocks becoming invalidated as

their contents are updated and copied out to a new page. As a result, many blocks now

contain a relatively small number of valid pages which leads to an increase in the garbage

collection overhead or if a hybrid FTL scheme is used, a costly full merge operation has

to be performed [47, 35].

To counter this problem many researchers have proposed the use of a Log-Structured

File System (LFS) in the FTL [57, 17, 2, 18]. The LFS groups multiple write requests and

writes them to the disk as a single segment. As a result multiple write requests are written

to the disk sequentially in a log-like fashion which leads to higher write performance and

less internal fragmentation.

Hot Block Management

Since copying the remaining data of a victim block into a new block during the garbage

collection process adds a signi�cant overhead, blocks selected for erasing should have as

many invalid pages as possible. To achieve this many researchers have proposed the idea

of grouping data with similar update frequencies, a process known as Hot/Cold Block

Separation. More speci�cally, data blocks are separated into two (or sometimes more)

categories: Data that is likely to be updated soon (i.e., hot blocks) and data that will

probably remain the same for a long time (i.e., cold blocks). A block that contains hot

data is likely to contain a small number of valid pages since most of its pages will have

already been invalidated by the time garbage collection begins and therefore a lower

garbage collection overhead is to be expected. To identify hot blocks, various heuristics

have been suggested in the literature over time [50, 47, 37].

19

The process of separating data according to their temperature is crucial not only for

performance reasons but also because it a�ects the endurance of the drive. Hot blocks

can be kept in memory longer and wait for updates on their data before writing it to the

SSD drive. Various schemes have also been proposed that use Non-Volatile RAM [23]

or a hard disk drive [61] to direct hot blocks before writing them to their �nal location.

In addition, the wear leveling algorithms can now be improved since hot blocks can be

identi�ed and sent to NAND blocks with a low P/E cycle count. Some researchers have

also proposed directing hot blocks to MLC NAND blocks that have been modi�ed to

act as SLC blocks [36, 51] or to speci�c blocks that have been measured to have higher

endurance than others [26]. The lifetime of the device can thus be extended and its

performance improved without an increase in its resources.

Write Ampli�cation

Operating systems assume that the time taken to complete an I/O operation is propor-

tional to the size of the I/O request. While that might be true for HDDs, things di�er

when it comes to solid state drives. Since data in
ash memory are always updated out

of place, multiple updates can trigger the garbage collection process, which results to a

series of write and erase operations being performed. This phenomenon is known as write

ampli�cation (WA) and may lead to a reduction of the drive's endurance since the extra

writes wear out the
ash cells more quickly [53].

This problem is addressed by employing one of the hot/cold block separation tech-

niques mentioned before and by increasing the over-provisioning space of the device [60].

The over-provisioning (OP) space is a specially reserved portion of the
ash blocks of

the device that is not visible to the user. It is used to aid the garbage collection process

by facilitating the migrated valid pages from victim blocks and also to extend the device

lifetime by providing extra blocks that can be used to replace blocks marked as bad. The

OP space in an SSD is typically de�ned as Ctotal−Cusr

Cusr
where Ctotal is the total amount

of physical blocks and Cusr is the number of blocks that are available to the user. Most

commodity SSDs set aside about 8% to 25% of their capacity as over-provisioning space

while enterprise SSDs can set as much as 50% of their capacity. The use of more over-

provisioning space greatly reduces the WA factor which is de�ned as the ratio of total

physical writes to the writes perceived by the host and can increase the lifetime of the

20

device by up to 7 times [22].

2.3 Fast and Reliable File Systems

The main purpose of computers is to create, manipulate, store and retrieve data. A �le

system provides the mechanisms to support such tasks by storing and managing user

data on disk drives and by ensuring that what is read from storage is identical to what

was originally written. It considered as one of the most important parts of an operating

system in order to manage permanent storage and besides storing user data in �les, the

�le system also stores and handles information about �les and about itself. A typical �le

system is expected to be extremely reliable and guarantee the integrity of all the stored

data while providing very good performance.

2.3.1 Basic Concepts

Let us now review the basic building blocks of a �le system:

• A Volume can be a physical disk or some subset (or superset) of the physical disk

space known as a disk partition.

• A Block is the smallest unit writable by a disk or a �le system. All �le system

operations are composed of operations done on blocks.

• Critical information about a particular �le system is stored in a special structure

called Superblock. A superblock usually contains information such as how large a

volume is, the number of used and unused blocks, a magic number to identify the

�le system type and so on.

• Data blocks store the actual data of a �le. No other information describing those

data (such as the �le's name) is stored in those blocks.

• The �le system Metadata is a generic term that refers to its internal data structures

concerning a �le except the �le's actual data. Metadata includes time stamps,

ownership information, access permissions, storage location on the disk etc.

21

• All the information about a �le except the data itself is stored in an inode. A typical

inode contains �le permissions, �le type, number of links to the �le and also some

pointers to data blocks that contain the �le's actual data. Each inode is assigned a

unique inode number in order to distinguish it from all the others.

2.3.2 Caching and Bu�ering

Reading and writing to a �le requires issuing many I/O operations to the disk, a process

which takes a considerable amount of time. To counter this problem, most �le systems

use a part of the system memory as a cache for important blocks. The advantages of such

approach are obvious: read and write requests now take place in the cache and the overall

performance of the �le system is improved.

Let us now consider an example where we want to read some data from the disk. If it

was the �rst I/O request issued on the disk, a lot of I/O tra�c is going to be generated

since we have to access several directories before reaching the �le inode. If however a

similar read request was issued before, most of the requested data would now be available

in the cache and thus no I/O is needed. Instead the only thing that we now have to read

from the disk is the inode of the �le and its corresponding data blocks.

Caching has also an important e�ect on write performance. Write requests are now

being ful�lled by the cache and as a result require minimal time to complete. Besides

the decrease in latency, write bu�ering has also a number of performance bene�ts. By

delaying writes the system can batch some updates that would otherwise require multiple

I/O requests into a single one (for example when a �le is updated). In addition, the I/O

controller can now schedule subsequent I/Os and thus increase the performance of the

drive while sometimes it is even possible to avoid some requests (e.g., when writing a �le

and then erasing it).

Eventually however we need to
ush the modi�ed blocks to the disk in order to become

persistent. Most modern �le systems bu�er writes in memory for 5 to 30 seconds and

then
ush them to the disk. If the system crashes before the updated blocks are sent

to disk, the updates are lost. For that reason, applications that require a high degree of

reliability are able to force the updates to be sent directly to the disk by using the fsync()

system call.

22

SB iB dB Inode Blocks Data Blocks

Figure 2.8: Organization of a novel �le system: Superblock, Inode bitmap, Data block

bitmap, Inode blocks and Data blocks

Contemporary systems use �le system pages that are integrated with virtual memory

pages into a uni�ed page cache to store disk blocks. Multiple block bu�ers are stored

within a page and each block bu�er is assigned a specialized descriptor called the bu�er

head that contains all the necessary information required by the kernel to locate the

corresponding block on the disk. As a result, physical memory can be allocated much

more
exibly between the virtual memory and the �le system depending on the needs of

the operating system at any given time.

Before a write occurs, the kernel veri�es that the corresponding page exists in the

page cache. If the page is not found and the write operation has the exact size of a

complete page, a new page is allocated, �lled with data and marked dirty. Otherwise the

corresponding page is fetched from the disk, its contents are modi�ed accordingly and

then it is marked as dirty. During the writeback operation the kernel searches the page

cache for dirty pages and
ushes them to disk. Writeback occurs in two cases: Either

when the age of dirty pages grows beyond a certain threshold or when the kernel wants

to free some memory up.

2.3.3 Journaling File Systems

We now present a simple �le system organization that will help us understand �le system

consistency. As we have already mentioned, the logical volume is split into blocks. Let

us assume that the �rst block of the disk hosts the superblock structure that contains

important information about the �le system. After that we use two blocks to keep the

inode and data bitmaps that keep track of the free inode and data blocks in the system.

We then use some blocks to keep the inodes organized in a table fashion, a structure

known as the inode table. A typical size for an inode is about 256 bytes while a typical

disk block has a size of 4KB as a result, a single block is able to store multiple inodes.

23

After the inode blocks we have the data blocks which eventually take up most of the disk's

space (Figure 2.8).

Suppose that we want to append some data to a �le that is written on disk and extend

its size by 5 blocks. Even though appending the new data seems to be a single atomic

operation at the system call level, the actual process involves a number of steps that need

to be carried out at the block level:

1. First, �ve new data blocks are allocated by searching the corresponding bitmap and

marking them as in-use

2. Next, the �le inode is updated to point to the new data blocks and record the new

size of the �le

3. Finally, the actual data are written into the data blocks

Remember now that the operating system bu�ers write requests to the system memory

for some time before writing them to disk. If the system crashes before
ushing the

dirty blocks to the disk, the updates are lost. If however a failure occurs, while writing

the blocks to the disk, the system is left at an inconsistent state. Any of the following

outcomes is possible which impacts the integrity and the reliability of the �le system:

• Just the bitmap changes are written to disk. We now have reserved some blocks

but they do not contain data, nor there is an inode pointing at them.

• Just the inode is written. We have updated the inode, but it points to blocks that

contain no valid data. Moreover, those blocks can be used by other �les since they

are not marked as in-use on the bitmap.

• Just the data blocks are written. As the �le metadata have not been updated we

cannot read the data stored in those blocks anyhow.

• The bitmap and the inode blocks are written to disk. The metadata have been fully

updated however, the inode now points to data blocks that contain garbage.

• The bitmap and the data blocks are written. New data blocks have now been

allocated and they are not going to be overwritten since they are marked as in-use

in the bitmap, but there is no �le inode to point at them.

24

• The inode and the data blocks are written. We now have the correct data on disk

and an inode that points to them however, the data blocks are eventually going to

be overwritten since they are marked as free in the data block bitmap.

To counter this problem, early �le systems employed a tool called fsck to examine all

of the system's blocks and detect, report and repair any inconsistencies before mounting

it. The main problem with this approach is that the fsck tool is required to scan all of the

�le systems blocks which is an extremely time consuming process. More speci�cally, the

time required to complete the scan grows linearly according to the size of the partition

and can take up to 30 minutes for a 300GB disk. In addition such, an approach cannot

�x all the problems (consider the fourth case above) but it is rather used to make sure

that the �le system metadata is internally consistent.

Recent �le systems use Journaling to keep track of all the changes that are going to

be made to the �le system before applying them. The idea was originally invented by

the database community (where it is known as write-ahead logging) and is based on the

power of transactions. Just like in a database system a journaling �le system treats a

sequence of changes as a single atomic operation. However, instead of tracking updates

to tables, it records changes to the �le system metadata and/or data. The transaction

scheme guarantees that either all or none of the �le system updates are done.

The records of the �le system changes are stored in a separate part of the �le system

known as the journal or log. The log can be either a separate partition or a special

inode structure within the �le system itself and is treated by the kernel as circular bu�er.

Journal records that store �le system changes are initially written to the log and once

they are safely stored, the changes are applied to the �le system. If the write operation

is completed successfully, the corresponding transaction is removed from the journal. If

a system crash occurs, all we have to do is read the journal and replay valid transactions

by copying the corresponding blocks to the �le system.

The main advantage of such approach is that the time required in order to bring the

�le system into a consistent state is now minimized and is independent of the partition

size. In addition, the chances of losing data due to �le consistency problems are greatly

reduced while scalability is also improved. We discuss the inner workings of the Journal

Block Device layer (JBD2) which is used in most modern �le systems today in the next

25

chapter.

2.3.4 Log-Structured File Systems

In 1991 John Ousterhout and Mendel Rosenblum proposed a new �le system type known

as the Log-Structured File System (LFS). Based on a number of observations they sug-

gested that an ideal �le system should focus on providing high write performance since

more and more read requests could be serviced in the cache as a result of the rapidly

growing the memory sizes. To achieve this, large chunks of data would have to be written

sequentially to the disk in order to minimize seek costs and make use of the high sequen-

tial bandwidth while the �le system performance would approach the peak performance

of the disk [57, 3].

In a log-structured �le system the disk is treated as a continuous, append-only log

divided into Segments. A typical segment contains multiple disk blocks and has a size of

4-8MB. The LFS bu�ers all data and metadata updates in an in-memory segment before

writing them to the disk in one long, sequential transfer. As a result, writes are becoming

e�cient and the overall performance of the system is increased.

We now describe an example of how the log-structured �le system allocates and writes

�les (Figure 2.9): Let us suppose that a new �le with 5 data blocks is created. The

LFS writes the 5 data blocks and the corresponding inode into a disk segment along with

other �le updates. If we update the data on the last data block and extend the �le size to

include two more data blocks, a new segment will be written that contains the three data

blocks (one updated and two new) and the updated inode. The �le inode now points to

the �rst four blocks in the old segment and also to the three new blocks while the �fth

block in the old segment and the old inode are invalidated.

Since both the data and metadata updates are now scattered over the log, the LFS has

to periodically write the complete and consistent �le structures safely at a �xed location

of the disk called the Checkpoint Region. In case of a system crash the LFS uses the

checkpoint region to quickly recover by going to the end of the log and performing a roll

forward operation in order to salvage any segments written after the latest checkpoint.

As the �le system size grows, the number of free segments reduces and eventually the

log will become full when all the free segments have been used. However as we described

26

Segment 0 Segment 1 Segment 2 Segment 3

D0 D1 D2 D3 D4 I

Segment 0 Segment 1 Segment 2 Segment 3

D0 D1 D2 D3 D4 I D4 D5 D6 I

Figure 2.9: Creating and updating a �le in a Log-Structured File System. The grey color

indicates a block that contains stale data.

before, when updating a �le the previous copy of the data will remain in its old location

resulting in a \hole" in the segment. If this hole grows too big we could be using only a

few blocks of a segment, while the rest of the space remains idle. Therefore periodically

or when the number of segments in the disk falls below a threshold the LFS triggers the

Garbage Collection process. During garbage collection a number of segments are scanned

and the valid blocks are copied out to a new segment. The old segments are now free to

be reused and the head of the log can wrap around to its tail and use the new segments.

The need for garbage collection is one of the major disadvantages of the Log-Structured

File System. It is a very time consuming process that interrupts the normal disk operation

and as a results no new writes can be serviced. Although it can be scheduled to run

proactively when the disk is idle and while various algorithms have been suggested over

time to improve its performance [4, 42], it still remains a burden to the wide adoption of

LFS.

Various �le systems based on the design of the LFS have been developed over time

such as the Sprite FS [57], LinLog FS [12], F2FS [33] and some other prototypes for linux.

Our design is based on the NILFS2 �le system which is considered as one of the most

27

modern and active LFS implementations up to date [31].

2.4 Summary

Flash memory exhibits several attractive characteristics, such as low power consumption,

high transaction throughput and reduced access latency. Even though it has several limita-

tions such as the erase-before-write requirement and the limited number of Program/Erase

cycles per block it has become extremely popular and is used by many devices as their

primary storage mean.

Contemporary devices use a layer of abstraction known as the
ash translation layer

that hides the underlying complexity of NAND
ash memory and exposes a generic block

interface to the system. Moreover, the FTL takes care of wearing-out the device evenly and

monitors the error correction codes of each block. Examples of such devices include SD

memory cards, USB sticks and Solid State Drives. Solid State Drives in particular, exploit

the parallelism provided by the underlying architecture and outperform their mechanical

counterpart by orders of magnitude when it comes to random I/Os while o�ering very low

access latency. Frequent random writes on SSDs however, trigger the garbage collection

mechanism of the device and degrade their performance.

The �le system used to store data on a solid state drive seriously impacts the device's

performance and lifetime. Most �le systems update the data in place and as a result,

performance and consistency problems arise. Journaling �le systems attempt to improve

consistency by temporarily storing block updates into the journal and then transferring

them to their �nal location. Tra�c to the device however is increased, especially for

sequential workloads. Log-structured �le systems on the other hand, treat the disk as a

continuous log and have shown to be bene�ciary for
ash media.

28

Chapter 3

Related Research

3.1 Log-Structured File Systems

3.2 FTL Approaches

3.3 Flash Memory File Systems

3.1 Log-Structured File Systems

Much work has been done in order to optimize log-structured �le systems for conventional

hard disks. Beginning with the original LFS proposal by Rosenblum et al. [57], Wilkes

et al. proposed the hole plugging method [65] in which valid blocks in victim segments

are overwritten to holes, i.e. invalid blocks, in dirty segments. This technique however,

applies only to storage media that allow in-place updates. Matthews et al. proposed

an adaptive cleaning policy that alternated between the original logging policy and the

hole-plugging policy based on cost-bene�t evaluation [42]. The cost model used however,

is based on the performance characteristics of HDDs and takes into consideration the

seek and rotational delay of the drive. Finally, Oh et al. introduced the idea of threaded

logging that writes modi�ed data to invalid areas of used segments in order to improve

performance on a highly utilized volume [48].

A number of studies focus on separating hot and cold data. WOLF separates hot and

cold pages into two di�erent segments according to their update frequency and writes the

29

two segments to disk at once [62]. Nevertheless, this mechanism works well only when the

number of hot and cold pages is approximately equal. HyLog adopts a hybrid approach

and uses logging for hot pages to increase write performance and overwriting for cold

pages to reduce the cleaning cost [64]. In order to determine the update policy however,

it too uses a cost model that is based on the performance characteristics of HDDs.

SFS is a
ash-aware �le system that uses logging to eliminate random writes [47].

In order to reduce the cost of cleaning it separates hot and cold data based on the

\update likelihood" of each block measured by tracking write counts and the block's

age. Quantization is then used to partition segments into groups based on the measured

hotness. This method adds signi�cant overheads to the system since the update likelihood

is calculated for each block that is sent to disk.

F2FS estimates the update likelihood using information readily available such as �le

operation, �le type and �le extensions [33]. It then categorizes blocks into hot, warm

and cold and writes them into di�erent parts of the disk. While this mechanism is fairly

e�ective, the system uses threaded logging when it is under pressure in order to avoid

garbage collection overheads. Such an approach however, negative impacts the device's

lifetime since random writes cause fragmentation of the underlying media.

NVMFS is a composite �le system assuming two distinct storage media: Non-Volatile

RAM and Solid State Drive [52]. The fast, byte-addressable storage provided by the

NVRAM is used to store hot data and metadata, while cold block updates are written

to the SSD sequentially. TridentFS operates in a similar way, but also uses a Hard Disk

Drive for cold data [23].

3.2 FTL Approaches

There has been much work in the industry and the academia aiming at improving random

write performance at the FTL level. Most FTLs use a log-structured approach in order

to overcome the erase-before-write limitation of
ash memory and attempt to categorize

data to hot and cold and store them to di�erent parts of the disk.

FAST o�ers increased random performance by improving the log area utilization with

exible mapping [35]. LAST improves upon FAST by separating random log blocks

30

to hot and cold regions to reduce the full merge cost [37]. DAC provides a page-level

mapping scheme that groups data according to their update frequency into the same

segment to reduce garbage collection costs. A number of schemes that direct hot blocks

to MLC NAND blocks that have been modi�ed to act as SLC blocks [36, 51] or to

speci�c blocks that have been measured to have higher endurance than others [26] have

also been proposed in the literature. Nevertheless, FTL-level approaches face serious

limitations since they rely only on logical block addresses to decide sequentiality, hotness

and clustering.

3.3 Flash Memory File Systems

Raw
ash memory �le systems are common in embedded systems with limited resources.

These �le systems directly access NAND
ash memory and address all the low-level issues

such as wear leveling and bad block management by themselves. In order to handle the

unique characteristics of
ash memory most of these systems follow the log-structured ap-

proach. JFFS [66] and UBIFS [58] are two popular
ash-based log-structured �le systems

that incorporate wear-leveling into the segment cleaning process. More speci�cally, the

two �le systems alternate between two di�erent cleaning policies. The �rst one provides

e�cient garbage collection, while the other is used to wear-out blocks evenly.

A special case in
ash memory �le systems is the Direct File System (DFS) which

leverages support from host-run FTL to simplify the �le system design [27]. It is however,

limited to speci�c
ash devices and con�gurations and is not open source.

31

Chapter 4

System Design

4.1 Motivation

4.2 Design Goals

4.3 Proposed Design

4.4 Summary

4.1 Motivation

Even though Solid State Drives o�er very low access latency and are able to outperform

their mechanical counterpart by orders of magnitude when it comes to random I/Os, they

bear idiosyncrasies that render their performance highly workload-dependent. Frequent

random writes on an SSD lead to internal fragmentation of the underlying media and

degrade its performance even by an order of magnitude [47]. More speci�cally, random

writes trigger the garbage collection mechanism of the FTL and as a result, valid pages

within victim blocks have to be relocated before the block itself can be erased. The extra

writes impair the device's performance and have a negative impact on its lifetime.

Much e�ort has been devoted by researchers into resolving the random writes problem

and extend the device's lifetime. Most of the work focuses around the Flash Translation

Layer with some studies attempting to categorize incoming writes with respect to the

32

update frequency of the underlying pages, so that frequently modi�ed pages (hot) do not

pollute blocks with rarely modi�ed pages (cold). Hot pages are then treated in a way

that bene�ts the underlying
ash media while cold pages are usually written to their

�nal location as they would normally do [37, 29, 28, 34, 18, 36]. The physical aspects of

the device have also been studied and a number of solutions that exploit its underlying

characteristics in order to improve its endurance have also been proposed [26, 22]. Finally,

writing mechanisms that allow the FTL to control block allocation decisions have been

suggested in the literature in order to improve the utilization of the available disk space

[67, 10].

The inability of the FTL to leverage semantic information about the application access

patterns in order to optimize the tra�c to the storage medium has led to the proposal

of a number of non-FTL solutions in the literature. More speci�cally, various hybrid

storage implementations that use Hard Disk Drives and/or Non-Volatile RAM alongside

SSDs have been proposed [23, 61, 24]. By using a number of techniques these schemes

are able to direct frequently updated data to the HDD or the NVRAM while cold blocks

are written to the SSD.

One might expect that the use of a log-structured �le system [57, 31] or one that follows

the copy-on-write strategy like BTRFS [55] would help soothe the detrimental e�ects of

random writes. However, these �le systems do not consider the unique characteristics

of
ash storage and are therefore sub-optimal in terms of performance, reliability and

device lifetime. As a result, a number of
ash-aware �le systems have been suggested

that help optimize the usage of
ash media [33, 47, 40]. Nonetheless, these �le systems

either use complicated mechanisms to identify hot and cold data in memory or exchange

the dependability of the drive for performance.

4.2 Design Goals

We propose Metis, a composite �le system that combines journaling with the log-struc-

tured �le system. Our work is based on a previously proposed idea from our group[19, 20].

In the
ash-aware �le system that we propose, we set the following goals:

• Identify page access characteristics in host memory using existing mechanisms of

33

cache replacement in order to provide hot/cold data separation. Our system refrains

from using complicated techniques that add signi�cant overheads by calculating the

hotness for each individual block. Instead, it uses existing mechanisms in order to

�nd hot pages and direct them to the journal.

• Minimize the write tra�c from host memory to
ash storage without compromising

data persistence. By sending hot data to the journal and cold data to the
ash

media the endurance of the device is improved. In addition, data written to the

journal can be easily recovered in case of a system crash.

• Optimize the performance of the garbage collection mechanism by sending cold

data to the LFS partition and by grouping blocks with similar hotness to the same

segment.

• Use the journaling mechanism in order to ensure consistency and improve the re-

covery point objective of the log-structured �le system.

• Improve the �le system's segment utilization by batching synchronous block updates

into the journal before writing them to the LFS. Since multiple block updates are

written into the same segment, the overall disk utilization is increased.

4.3 Proposed Design

Flash storage in Metis is organized into two partitions: The journal partition and the LFS

partition. The LFS partition stores the permanent state of written pages into a segmented

log while the journal partition temporarily organizes data and metadata writes in the

form of transactions. Even though journaling and LFS are already known individually,

combining them into the same �le system is novel and has numerous advantages.

4.3.1 Proactive Cleaning

In the past, journaling has been extensively used for fast metadata recovery from transient

system failures. In our design however, the journal is designed to undertake the additional

responsibility of proactively cleaning the permanent state from frequently updated data

34

and metadata. Written pages �rst reach the system cache. Flush daemons periodically

transfer recently modi�ed pages to the journal, where the pages are safe if a failure occurs.

If a written page remains unmodi�ed in memory until a timer expires, we transfer the

page to LFS. Metis then informs the
ash storage (e.g. by using the TRIM command) to

erase those journal blocks, whose pages have been either transfered to LFS or invalidated

by newer updates.

Instead of using complex methods to measure the hotness of each block, our system

relies on cache timers to categorize pages to hot or cold and store them into the journal or

LFS accordingly. The blocks in the LFS partition mostly contain valid pages, while the

journal partition has valid blocks at the front part of the log and clean blocks at the rest.

Journal transactions are written to/removed from the disk sequentially while the journal

log is treated by the system as a circular bu�er. Sequential workloads are bene�ciary for

the underlying media as they increase write performance and also reduce the device wear-

out.

Arguably, writing all modi�ed data �rst to the journal and subsequently to the LFS

doubles the device tra�c for sequential workloads. However, writes to the journal are

relatively cheap. In addition, a page remapping scheme [10, 67] can be utilized in order

to reduce the writing costs and improve performance.

The journal partition can also be hosted on a di�erent device such as a hard disk

drive in order to reduce write tra�c to the SSD. In this case, write requests are �rstly

directed to the HDD before writing them to their �nal location in the SSD. Since hard

disk drives are more resilient than SSDs the lifetime of the device is improved however,

writes perform poorer than before. Read performance on the other hand remains optimal

since read requests are serviced either by the host memory or the SSD and therefore the

slow speeds of the HDD are completely avoided.

4.3.2 Garbage Collection

Log-Structured �le systems are hurdled by garbage collection overheads. Cleaning occurs

when the underlying storage capacity has been �lled up and scattered blocks have to be

reclaimed in order to obtain free segments for further writing. It is a very time consuming

process that interrupts the normal disk operation and therefore, no new write requests can

35

be serviced. The garbage collector is responsible for selecting the appropriate segments

for cleaning and copy their valid blocks into a new segment. It then informs the system

of the newly reclaimed available space and normal operation is resumed. Making garbage

collection executions faster or less frequent is critical to the performance of a log-structured

�le system. As a result, various cleaning algorithms have been proposed in the literature

over time [57, 43, 32].

When selecting segments for cleaning, many garbage collection algorithms opt for

segments with the smallest number of valid blocks, in hope of reclaiming as much space

as possible with the least copy-out overhead. Such policies however, have shown to be

ine�ective since they do not consider the hotness of the data blocks contained within

the reclaimed segment. Let us suppose for example that a segment that contains a large

amount of frequently updated data is reclaimed by the garbage collector along with other

segments that mostly contain cold data. After a short period of time the hot data in the

newly written segment are updated and as a result a number of blocks within the segment

are invalidated. The garbage collector would then have to be called again, in order to

reclaim the blocks that were recently invalidated which results to a signi�cant reduction

in the performance of the system.

In order to reduce the cleaning overheads, modern garbage collection algorithms con-

sider the hotness of the blocks contained within a segment and select those whose contents

remain unchanged for a long time. In addition, it has been proven that grouping blocks

with similar hotness into the same segment increases the e�ectiveness of garbage collection

since the hotness of each segment can be calculated more accurately while the underlying

ash media are also bene�ted [47].

Traditional Log-Structured �le systems do not put any e�ort to distinguish hot and

cold data or to group blocks with similar hotness into the same segment. Our design on

the other hand, writes only cold data into LFS segments while hot data are placed on the

journal where pages can be simply invalidated in the presence of updates. In addition,

blocks are written to the LFS in a less-recently-modi�ed order. As a result, blocks that

remained unmodi�ed are written together in the �rst same segment, while blocks that

were recently updated are written into the last segment. The performance of the garbage

collection mechanism is therefore improved, while cleaning also takes place less frequently

since data on the LFS segments is not likely to be updated for a long time.

36

4.3.3 Crash Recovery

During normal operation, Log-Structured �le systems bu�er writes in a segment, write the

segment to the disk and update the checkpoint region periodically (e.g. every 30 seconds

or so) to ensure consistency. When recovering from a system crash, the checkpoint region

is read and the last valid state of the �le system is reconstructed. The system then tries

to recover segments written after the latest checkpoint, a process known as roll-forward.

LFS places all metadata information right after writing all data blocks and just before

updating the checkpoint region. As a result, in case of a system failure any changes in

metadata written after the latest checkpoint are lost. During the process of roll-forward,

LFS is able to recover only certain types of segments that contain data blocks written for

data sync purposes. Therefore, the amount of data that would be lost in case of a system

crash depends on the amount of pressure that was put into the system when the crash

occurred and the time that had passed since the latest checkpoint.

Metis is designed to signi�cantly improve the recovery point objective of the system

since all data and metadata changes are sent periodically (i.e. every 5 seconds) to the

journal. In case of a system crash, the journal is replayed and all the necessary blocks

are recovered and written to the LFS partition. Although the process is relatively slower

than that of LFS since all recovered blocks have to be written in the form of segments and

therefore some processing is required, the recovery procedure is e�cient and independent

of the size of the �le system.

4.3.4 Synchronous Writes

Synchronous writes pose a major problem for Log-Structured �le systems. A typical

LFS writes data in the form of segments that cannot be modi�ed after they are placed

in their �nal location. The synchronous write mechanism submits write requests and

waits for them to be completed before submitting the next ones. In order to service these

requests, LFS allocates segments and writes the requested data to the disk. Unfortunately,

only a small portion of the segment is used for storage purposes while the rest of it

cannot accommodate any extra writes unless reclaimed by the garbage collector. If the

synchronous requests are frequent, the capacity of the drive is going to be quickly reduced

and the garbage collector would have to be called repeatedly in order to reclaim disk space.

37

Metis services synchronous writes in a far more e�ective way than that of traditional

log-structured �le systems. In the event of a synchronous write request, bu�ered data

is committed to the journal a process which is both fast and e�cient. The segment

containing this data can be constructed at a later time when the data becomes cold.

Moreover, if the data is updated within a certain time period, the write operation is

avoided altogether.

Multiple synchronous requests can also be grouped together in the same segment which

leads to an improvement of the drive's utilization. In addition, since the available space is

now organized in a more e�cient way, the garbage collection process would not be called

as early and as frequent as in the original implementation and therefore the performance

of the system is also improved.

4.4 Summary

As it is clear from the above analysis, traditional log-structured �le systems do not take

into consideration the idiosyncrasies of
ash memory and are sub-optimal in terms of

performance and disk utilization. Even though the introduction of the
ash translation

layer has helped things, the use of a
ash-aware �le system can greatly improve the e�ec-

tiveness and endurance of the system. However, all
ash-aware �le systems to date either

use complicated mechanisms to separate hot and cold blocks or sacri�ce the endurance of

the disk for performance.

In this thesis we propose Metis, a
ash-aware �le system that utilizes existing cache

replacement mechanisms in order to provide hot/cold block separation. It also reduces

garbage collection overheads and improves the disk utilization of traditional log-structured

�le systems. In the next chapter, we provide more details on the underlying architecture

of our prototype system.

38

Chapter 5

System Prototype

5.1 Overview

5.2 Background

5.3 Implementation

5.4 Summary

5.1 Overview

We implement our Metis prototype based on the NILFS2 �le system. The New Implemen-

tation of the Log-Structured File System (NILFS2) was developed by Nippon Telegraph

and Telephone corporation in 2005 [31]. It is considered to be a state-of-the-art Log-Struc-

tured �le system that applies modern �le system techniques such as B-tree structures and

continuous snapshotting.

More speci�cally, NILFS2 creates a number of read-only checkpoints periodically of per

synchronous write basis that users are able to mount in order to restore �les mistakenly

overwritten or destroyed a few seconds ago. Although checkpoints have a short lifespan,

users have the ability to convert certain checkpoints to snapshots which will be preserved

for as long as required.

39

In Metis we fully preserve those features. In addition to that we (i) provide hot/cold

block separation, (ii) increase the e�ciency of the garbage collection, (iii) improve the

recovery point objective of the system (i.e., the maximum targeted period in which data

might be lost in case of a system crash), and (iv) improve disk utilization. In order to meet

our design goals, the current implementation of Metis integrates the Linux Journaling

Block Device Layer (JBD2) with the NILFS2 �lesystem.

5.2 Background

5.2.1 Linux Journaling

The journal in JBD2 can be implemented either as a hidden .journal �le in the root

directory of the �le system or as a standalone disk partition. It is treated by the system

as a circular bu�er, meaning that the space that was used in order to store the various

data blocks can be reclaimed and reused once they are written to the �nal location on

the disk.

By design, journaling adds a bit of work during updates to greatly reduce the amount

of recovery time required in the event of a system failure. Since logging every kind of

write operation results to a signi�cant performance overhead, some �le systems opt to log

only updates in the metadata while others choose to log all data and metadata updates.

JBD2 is build upon three essential units: Log records, atomic operation handles and

transactions.

• Log records: A log record describes the low-level operation issued by the �le system

in order to update a single disk block. JBD2 stores the updated blocks by saving

the entire modi�ed block rather than the range of bytes that were actually modi�ed.

As a result, log records inside the journal can be represented as normal blocks and

do not require special handling.

• Atomic operation handles: Atomic operation handles are used to denote a set of

low-level operations that represent a single high-level system operation. If a system

crash occurs, either the whole high-level operation is applied during the recovery

process or none of its low-level counterparts is.

40

• Transactions: Multiple atomic operation handles are grouped into a single transac-

tion for reasons of e�ciency. All the log records of a transaction are stored in consec-

utive blocks in the journal and are managed by the JBD2 as a whole. Thus, blocks

used by a transaction can be reclaimed only after all data included in its log records

are committed to the �le system. During its life, a transaction goes through the

following states: T RUNNING, T FLUSH, T COMMIT and T FINISHED. When

recovering from a crash, the system checks the status of each transaction and only

recovers the complete ones.

5.2.2 Log-Structured File System

On-Disk Layout

As in a traditional LFS, the disk in NILFS2 is divided in a number of segments known as

Full Segments preceded by a superblock (Figure 5.1). A full segment is the basic division

and allocation unit and is addressable by its index number. Given that the block size in

Linux is usually 4KB, a typical full segment by default has the ability to store a number

of 2048 blocks and therefore has a size of 8MB. Once a full segment is written and even if

a very small portion of it is used, it cannot be re-written or �lled with extra information

until it is reclaimed by the garbage collector.

A Partial Segment is the basic write unit of the �le system. Each partial segment

consists of Segment Summary blocks and Payload blocks and its size cannot be greater

than that of a full segment1. The segment summary area stores information about how

the partial segment is organized while payload blocks can store any type of data and

metadata information required by the �le system. Typical information stored within

the segment summary area are the length of the partial segment, a pointer to the next

segment, checksum information, a number of status
ags etc.

One or more partial segments are used to construct a Logical Segment. A logical

segment is the basic recovery unit of NILFS2 and represents the di�erence between two

consistent states of the �le system. Typically it contains a number of �le blocks, �le B-tree

node blocks, inode blocks, inode B-tree node blocks and a number of blocks for �nding

1Even though it is called a \partial" segment, it can end up having the size of a full segment thus

�lling it up completely.

41

Superblock Segment 0 Segment 1 Segment 2 Segment 3 Segment 4

 Full Segment

Partial Segment

Segment Summary Empty SpacePayload Blocks

File A
File A

B-Tree
File B

File B
B-Tree

iFile
iFile

B-Tree
Checkpoint

Logical Segment

Allocation Unit

Write Unit

Recovery Unit

Figure 5.1: Allocation, Write and Recovery units of NILFS2

and managing checkpoints.

We now take a quick look on the various metadata structures used by the NILFS2 �le

system.

• B-tree Inode Structures: Inode structures for large �les in NILFS2 are organized in

B-tree form. B-tree structures have the main advantage of allowing for fast data

block lookup since they remain balanced independently of the ordering or spacing

of the keys inserted or removed.

• Inode File: Whereas in other �le systems inodes are stored in �xed locations within

the device, in NILFS2 the inode table is simply another �le called the iFile. As in

a regular �le, the iFile has its own inode which describes the locations of the blocks

that store the inode information.

• Checkpoint File: To record checkpoints and snapshots that are present in the �le

system, NILFS2 uses a special �le known as the Checkpoint File (cpFile). Every

time a checkpoint is created, a new record is added at the end of the cpFile that

42

includes (among others) the current timestamp and the inode for the iFile.

• Disk Address Translation File: Relocating a block that belongs to multiple snap-

shots can be quite di�cult since the inode of every snapshot that the block belongs

to would have to be updated to point to the new address of the block. This could

result in a very intensive process since there can be tens or even hundreds of snap-

shots active at any given time. To counter this problem, NILFS2 adds a level of

indirection by using a special �le called the Disk Address Translation (DAT) �le.

The DAT �le includes an array of 64-bit addresses that translates logical addresses

used by the �le system to actual device addresses.

• Segment Usage File: The Segment Usage (SU) �le records the usage details of each

segment. More speci�cally, it records when the segment was written and also the

number of active blocks within the segment.

• The Super Root: The Super Root block is inserted at the end of every logical segment

and includes three inodes: the inode for the DAT �le, the inode for the cpFile and

the one for the SU �le. By using these three inodes, NILFS2 is able to �nd all

the necessary structures needed for accessing and managing the �les stored within

the �lesystem. A pointer to the latest super root block is kept in the superblock

structure.

Segment Construction

Dirty blocks in NILFS2 are written to the disk in the form of segments by using the Seg-

ment Constructor. Instead, however, of planning the whole image of the logical segment

and how it should be split in partial segments in order to write it to the disk beforehand,

the segment constructor employs a special bu�er called the Segment Bu�er. The segment

bu�er has the capacity of a full segment and is used in order to build partial segments one

by one rather than handling long logical segments that cross over multiple full segments.

To ensure that data blocks are placed in the correct order within the segment and

to also make sure that a �le has been completely updated before writing it to the disk,

the original NILFS2 implementation uses a system of novel transactions. Only completed

transactions are written to disk while several transactions can be nested inside of one

43

\outer" transaction. It is important to note through, that all nested transactions commit

only when the outermost transaction is successfully completed.

Committing transactions are responsible for calling the segment constructor either

when the number of dirty blocks in the dirty �les list has exceeded the capacity of a full

segment or 5 seconds after the �rst outermost transaction commits. In case of a write-

intensive workload, the segment constructor is called to continuously
ush dirty �le blocks

to the disk while the metadata �les are written periodically every 30 seconds. If a crash

happens in before writing the super root block, all data and metadata changes are lost.

5.3 Implementation

5.3.1 Journal Integration

In order to integrate the linux journaling block device layer with the NILFS2 �le system,

a number of steps had to be taken. We began by adding the following �elds to the

superblock of the system in order to store all the necessary information required by the

JBD2 layer:

Listing 5.1: Added journal superblock �elds

struct block_device *journal_bdev; /* Journal Block Device */

unsigned long ns_journal_devnum; /* Journal Device Number */

struct journal_s * s_journal; /* JBD Journal Structure */

unsigned long s_commit_interval; /* Journal Commit Interval */

We then proceeded by adding a new option to the command line interface (jdev)

so that users could specify the location of the journaling partition. Consecutively, we

implemented a set of functions in order to load the journal during the mount process and

initialize the JDB Journal Structure. More speci�cally the following functions were added

to NILFS2:

Listing 5.2: Journal support functions

/* Open the external journal device */

44

struct block_device *nilfs_blkdev_get(dev_t , struct super_block)

/* Release external journal device */

void nilfs_blkdev_put(struct block_device)

/* Report and clear any journal errors */

void nilfs_clear_journal_err(struct super_block , struct the_nilfs)

/* Setup per -fs journal parameters */

void nilfs_init_journal_params(struct super_block , struct the_nilfs ,

journal_t)

/* Get journal structure from external device */

journal_t *nilfs_get_dev_journal(struct super_block , struct the_nilfs ,

dev_t)

/* Load the JBD2 journal structure on the NILFS2 superblock */

int nilfs_load_journal(struct the_nilfs , struct super_block)

The above functions issue calls to the appropriate JBD2 functions in order to load the

journal during mount, detect any errors caused by a system crash and start recovery if

necessary. They also release the journal during unmount and write a clean bill of health

that can be used in order to detect whether a system failure occurred.

To achieve a seamless integration, the load nilfs function of the original �le system

was modi�ed in order to issue a call to nilfs load journal. This function in turn, calls

the nilfs get dev journal function to load the journal structure into the s journal

superblock �eld. To achieve this it uses nilfs blkdev get, which loads the block device

descriptor on the journal bdev �eld of the superblock. The system then checks whether

the device was properly unmounted. If a crash took place, the recovery procedure of

JBD2 is triggered, else the journal is erased and its parameters are initialized by calling

the nilfs init journal params function.

To properly unmount the system, the nilfs put super function was properly mod-

i�ed in order to destroy the journal structure by calling jbd2 journal destroy. This

function
ushes any data blocks stored in the journal to its �nal location and writes a

clean bill of health in order to indicate that the system was properly unmounted. The

nilfs blkdev put function is then called to release the journal device.

45

5.3.2 Transactions

To ensure that data and metadata blocks are placed in the correct order within the

segment and to also make sure that a �le has been completely updated before writing it

to the disk, the original NILFS2 implementation uses a system of novel transactions. Only

completed transactions are written to disk while several transactions can be nested inside

of one \outer" transaction. It is important to note through, that all nested transactions

commit only when the outermost transaction is successfully completed.

The JBD2 layer also works by wrapping �le system changes into transactions. More

speci�cally two basic functions, jbd2 journal start and jbd2 journal stop are pro-

vided, which are used to indicate the beginning and the end of a transaction. When the

jbd2 journal start function is used, a transaction handle is returned that the system

can use in order to indicate which blocks are going to be part of this transaction. The

two transaction functions are nestable, however, each task can only have a single out-

standing transaction at any one time and therefore, nothing commits until the outermost

jbd2 journal stop.

We implement a set of wrapper functions in order to call the journal start/stop

functions from the NILFS2 �le system. The fact that NILFS2 already uses some sort of

transaction mechanism allows us to conveniently place JBD2 transaction calls just outside

NILFS2 transactions. We refrain from putting JBD2 transaction calls inside NILFS2

transactions in order to avoid deadlocks during the checkpoint process (discussed below).

A serious problem emerges however: both mechanisms use the journal info �eld of

the task scheduler in order to store and access their transaction information. Therefore,

the two mechanisms cannot be used in parallel since the transaction information of the

one mechanism will be overwritten by that of the other mechanism, resulting in a system

crash. To solve this problem we added a new �eld to the superblock structure (struct

*nilfs transaction info ns ti) and modi�ed the transaction mechanism of NILFS2

to store its transaction information into that �eld. As a result, a seamless integration of

the two transaction mechanisms has been achieved.

46

5.3.3 Journaling Data

The modi�cations of each individual bu�er need to be wrapped with calls to the JBD2

layer in order to let it know which blocks should be sent to the journal. In order

to do this, JBD2 provides the following functions: jbd2 journal get create access,

jbd2 journal get write access, jbd2 journal dirty metadata. Prior to modifying

a bu�er, a call to the jbd2 journal get write access function is issued in order to en-

sure that the function has exclusive access of the bu�er. In case of a newly created bu�er,

jbd2 journal get create access is called instead. After the modi�cation is complete,

jbd2 journal dirty metadata is called in order to mark the bu�er as ready to be com-

mitted to the journal.

The original NILFS2 implementation simply marked the blocks as dirty, when they

had to be written back to disk. In case of a journaling �le system however, marking

blocks directly as dirty could lead to serious consistency problems as some of them could

be written to the disk by the writeback mechanism before being committed to the journal.

Instead, when a call to the jbd2 journal dirty metadata function is issued, bu�ers are

marked as JBDDirty in order to be copied to the journal �rst.

To solve this problem, all bu�er changes in our system were wrapped with calls to the

appropriate JBD2 functions in order to mark them as JBDDirty. Even though NILFS2

transactions indicated most of the places where bu�er changes were being made, we

had to modify several generic functions that the original implementation used and re-

place them with our own customized implementations that added transaction support

and/or calls to the appropriate functions in order to mark the bu�ers as JBDDirty. In

particular, the following generic functions have been replaced: generic write begin,

generic write end, block commit write, block write end, walk page buffers.

5.3.4 Commit

Dirty data and metadata blocks need to be
ushed to the journal after a short period of

time before being written to their �nal location on the disk, a process is known as the

commit phase. A specialized kernel thread known as kjournald is employed by the JBD2

layer in order to trigger the commit phase periodically. The thread starts its execution

when the journal is initialized and terminates when the journal is destroyed.

47

As already mentioned in the previous section, pages that contain dirty data that has

not yet been written into the journal is marked as JBDDirty. During the commit phase,

the bu�ers that were marked as JBDDirty are
ushed into the journal in the form of

transactions and the corresponding pages are marked as Dirty. Subsequently, dirty pages

can be written to their �nal location by the writeback mechanism or by the checkpoint

process.

The elapsed time between two commit phases is known as the commit interval and

by default it is set to 5 seconds. A new option was added during mount (jcinv) so that

users can adjust it according to their needs.

5.3.5 Checkpoint

Dirty data and metadata bu�ers in our system should be
ushed into their �nal location

on the disk in the form of segments after being committed to the journal. This process is

known as the checkpoint phase, and in order achieve this, a mechanism used by the original

implementation is employed known as the Segment Constructor. More speci�cally, the

segment constructor scans the page cache for dirty pages, organizes them into segments,

and writes them to their �nal location.

In the original NILFS2 implementation, committing NILFS2 transactions are respon-

sible for calling the segment constructor, either when the number of dirty blocks has

exceeded the capacity of a full segment or 5 seconds after the �rst outermost transac-

tion commits. In case of a write-intensive workload, the segment constructor is called

to continuously
ush dirty �le blocks to the disk, while the metadata �les are written

periodically every 30 seconds. We modify this behavior, in order to trigger the checkpoint

process in two cases:

• Each JBD2 transaction requests a number of guaranteed bu�ers in order to start

the logging operation. If the number of free bu�ers is smaller than the number of

bu�ers requested, checkpointing needs to be performed in order to reclaim space.

The amount of free space in the journal is checked every time a write request is

completed. If the ratio of free journal space is less than 1/4 of the journal size, the

segment constructor is called to start the checkpoint process.

• After completing the �rst write request, a timer is started in our system. When

48

the timer expires the checkpoint process is triggered since the data that are stored

in the journal can now be characterized as cold. By default the timer is set to 30

seconds, but users can change its value during mount by using the new cinv option

that we have implemented.

Calling the segment constructor unconditionally can result to serious problems if the

commit phase is initiated by kjournald while data is checkpointed. Therefore we modi-

�ed the main loop of the segment constructor by adding calls to functions that prevent

any journal updates while checkpointing takes place (Listing 5.3). In particular, the

jbd2 journal lock updates function blocks any further transactions from being started

while running ones are waited upon completion. The NILFS locking transaction mecha-

nism does have this feature where further updates are simply blocked and the execution

continues. Had we selected to insert JBD2 transactions inside NILFS2 transactions, then

a deadlock could be very easily caused since multiple transactions lie nested within one

another. Finally, calls to the appropriate functions that remove written back bu�ers from

the journal were added in order to reclaim journal space after the segment constructor

�nishes its work.

Listing 5.3: Main loop of the segment constructor

1 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci ,

2 int mode)

3 {

4 struct nilfs_transaction_info ti;

5 struct the_nilfs *nilfs = sci ->sc_super ->s_fs_info;

6

7 if(nilfs_doing_construction ())

8 return;

9 /* Lock journal updates */

10 jbd2_journal_lock_updates(nilfs ->s_journal);

11 /* Lock NILFS2 updates */

12 nilfs_transaction_lock(sci ->sc_super , &ti, 0);

13 /* Start segment constructor */

14 nilfs_segctor_construct(sci , mode);

15 /* Start the timer for unclosed segment */

16 if (test_bit(NILFS_SC_UNCLOSED , &sci ->sc_flags))

49

17 nilfs_segctor_start_timer(sci);

18 /* Unlock NILFS2 updates */

19 nilfs_transaction_unlock(sci ->sc_super);

20 /* Unlock journal updates */

21 jbd2_journal_unlock_updates(nilfs ->s_journal);

22 /* Remove written back buffers from the journal */

23 spin_lock (&nilfs ->s_journal ->j_list_lock);

24 __jbd2_journal_clean_checkpoint_list(nilfs ->s_journal);

25 spin_unlock (&nilfs ->s_journal ->j_list_lock);

26

27 mutex_lock (&nilfs ->s_journal ->j_checkpoint_mutex);

28 jbd2_cleanup_journal_tail(nilfs ->s_journal);

29 mutex_unlock (&nilfs ->s_journal ->j_checkpoint_mutex);

30 }

It is important to note that only committed bu�ers are written to the LFS partition.

As we have already mentioned, pages that contain data that has not yet been committed

to the journal is marked as JBDDirty in the page cache. During the segment construction

process, the segment constructor scans the page cache for dirty pages in order to write

them to the LFS partition. As a result, pages that are marked as JBDDirty are not

written to the LFS.

This approach makes sense since data that were recently updated and have not been

committed to the journal are considered hot and should not be written to their �nal

location. Instead, they will be written to the journal and transfered to the LFS if and

only if they remain unchanged after next commit in which they will be marked as dirty.

Each time a �le is modi�ed or when a new �le is created in NILFS2, its inode is added

to the dirty �les list. When the segment constructor needs to search for dirty bu�ers, in

uses the dirty �les list in order to search the proper address space and avoid exhaustive

lookups over the page cache.

Inodes in the dirty �les list are organized in a �rst-modi�ed fashion. If a �le is modi�ed

and its inode is already on the dirty �les list, it is not inserted again. Given that �les

are written into segments in the order they appear on the dirty �les list, it would be a

good idea to organize the inodes in a less-recently-modi�ed fashion. That way, �les that

have remained unchanged will be written together in the �rst segments while hot �les will

50

probably be written on the last segment. This approach increases the e�ciency of the

garbage collection mechanism since blocks are grouped into segments according to their

hotness.

5.3.6 Failure Recovery

In the original NILFS2 implementation recovering from a system crash is a fast and

e�cient process. Initially, the superblock is read and the location of the last valid super

root block is found. If the superblock is corrupted, information is taken from the secondary

superblock which is kept in another part of the disk. After �nding the super root it is

easy to locate all the necessary �les in order to mount the �le system in a consistent state.

NILFS2 then tries to recover segments written after the latest super root block, a process

know as roll forward. It begins by reading the segment summary of the last segment

where a pointer to the next segment is stored. It then reads the next segments and tries

to recover the data from them however, it is able to recover only data sync segments since

the metadata �les have been lost.

Our system retains the original recovery mechanism of NILFS2 that stores and mounts

the last consistent state of the device and improves it using journaling techniques. More

speci�cally, after a system crash occurs the superblock is read and the system is mounted

in a consistent state. Metis then replays the journal in order to recover all data and

metadata blocks that were stored in it. However at this point, a serious problem emerges.

For every block that is committed to the journal, its corresponding block number is saved

in a special descriptor block. Traditional journaling �le systems use this number in order

to recover the block and copy it to its �nal location on the disk. In Log-Structured �le

systems the position of the blocks is \transiently indeterminable" and cannot be decided

until just before writing them since multiple �le updates are going to be grouped together

and written into a segment. As a result we are unaware of where to copy the block.

To counter this problem, we modi�ed the journaling mechanism provided by the JBD2

layer so that the number of the block's inode is saved within the journal descriptor block.

Since the inode numbers of metadata �les are statically de�ned, we can easily distin-

guish between data and metadata block updates. We also modi�ed the original recovery

mechanism of the JBD2 layer. In case of a system crash the blocks stored in the journal

51

are recovered and then by using a set of high level operations they are written to the

NILFS2 partition. Metadata block updates are written �rst while data blocks follow.

Since the journal has not yet been loaded, the writing procedure is the same as in the

original NILFS2 implementation. Finally, the segment constructor is started in order to

collect the data and write them to their �nal location on the disk. Although the recovery

procedure in Metis is relatively slower than that of NILFS2 since the segment constructor

is involved, it remains e�cient and independent of the size of the �le system.

5.3.7 Synchronous Writes

Synchronous writes pose a major problem for Log-Structured �le systems. As in a typical

LFS, NILFS2 writes data in the form of segments that cannot be modi�ed after they are

placed in their �nal location. The synchronous write mechanism submits write requests

and waits for them to be completed before submitting the next ones. In order to serve

these requests, NILFS2 triggers the segment construction mechanism. Depending on the

nature of the �le update, either a logical segment is constructed that includes all the

necessary data and metadata of the �le, or a data sync segment can be created. A data

sync segment is a special type of segment that is written only when the �le's blocks are

updated while the inode remains unchanged. Dsync segments only contain the updated

�le blocks and do not contain any metadata.

Constructing a segment for syncing purposes negatively impacts the utilization of the

disk since a small amount of data blocks have to be written to a full segment. In our

system, we modify the behavior of the original mechanism in order to trigger the commit

phase by invoking calls to the jbd2 journal force commit function. During the commit

phase, all data and metadata updates are sent to the journal where they are safely stored

in case of a system crash. The segment containing those data can be constructed at

a later time when the data becomes cold while multiple synchronous requests can also

be grouped together in the same segment which leads to an improvement of the drive's

utilization.

52

5.4 Summary

In this chapter, the underlying architecture of our prototype system was presented. We

have based our Metis implementation on the NILFS2 �le system and the Journaling

Block Device layer. The internal operations of both systems were discussed in detail and

a number of changes that had to be done in order to create our composite �le system

were presented.

As we can see, the integration of journaling with the log-structured �le system poses

many challenges especially with the checkpoint and recovery procedures. However, by

adding the proper functions and by precisely modifying the operation of existing mecha-

nisms we are able to successfully overcome any problems and create a prototype system

that o�ers the numerous advantages of Metis.

53

Chapter 6

Experimental Results

6.1 Experimentation Environment

6.2 Asynchronous Writes

6.3 Synchronous Writes

6.4 Summary

6.1 Experimentation Environment

We implemented Metis in the Linux kernel version 3.14.17. We evaluate our prototype

implementation using x64-based server nodes running the Debian distribution. For all of

our experiments we used nodes with two 2.33GHz processors and 4GB of RAM Memory.

The majority of our experiments were run on a SATA 7200RPM disk with a capacity of

250GB and 16MB of on-disk cache. A solid state drive with a capacity of 60GB was also

used to run a smaller set of experiments. In both disks the write cache was enabled in

order to take advantage of the increased performance.

In all of the described scenarios, two separate disk partitions were used: one for the

journal and the other for the LFS partition. The default parameters of linux were kept and

the block size was de�ned to 4K. In addition, the writeback and expiration period as well

54

as the dirty pages ratio of the virtual memory manager were tuned for best performance.

All write requests issued to the system where within the range of 1K-4K.

Three di�erent schemes were tested: one that used hard disks for both the journal

and the LFS partition, one that placed the LFS partition in a solid state drive and the

journal partition in a hard drive and one that placed both in a solid state drive. The

journal partition in our setup had a size of 2GB and in the �rst two cases it was hosted

by the same disk that hosted the root partition. This con�guration was selected in order

to decouple the journal tra�c from the tra�c directed to the LFS partition.

In our evaluation, we used the �o micro-benchmark tool [1] in order to stress the

system under di�erent workloads. In addition, we experimented with di�erent checkpoint

intervals. We examine the number of Input/Output Operations Per Second (IOPS), the

average latency, the number of segments constructed in the LFS partition and the amount

of tra�c directed to the disk and analyze the results.

6.2 Asynchronous Writes

We began by evaluating the performance of our system in the case of asynchronous write

requests. We experimented with three types of workloads: Sequential, Random and

Random that followed a Zip�an distribution. The last type of workload was chosen in

order to simulate a case with frequent block overwrites.

For each workload a number of checkpoint interval was tried and tested in order to

better understand the impact of the checkpoint phase to the performance of the system.

More speci�cally, intervals of 10, 30 and 60 seconds were evaluated. A special case in which

the checkpoint interval was set to a very high value (marked as Inf in our experiments) was

also tested. The Inf checkpoint interval was chosen in order to check our system under the

optimal case where no checkpoints occur and all updates are sent to the journal. Finally,

the size of the dataset was selected to be 1GB as we did not wanted to push the system to

its limits rather than investigate its performance by experimenting with various options.

55

0

2000

4000

1 2 3 4 5

N
um

be
r

of
 IO

P
S

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

50

100

150

200

1 2 3 4 5

La
te

nc
y

(u
se

c)

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

500

1000

1500

2000

1 2 3 4 5

M
B

s
W

rit
te

n

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

Figure 6.1: Sequential writes tests on disk-based con�guration.

0

2000

4000

6000

1 2 3 4 5

N
um

be
r

of
 IO

P
S

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

50

100

150

1 2 3 4 5

La
te

nc
y

(u
se

c)

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

500

1000

1500

2000

1 2 3 4 5

M
B

s
W

rit
te

n

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

Figure 6.2: Sequential writes tests on hybrid con�guration.

0

2000

4000

6000

1 2 3 4 5

N
um

be
r

of
 IO

P
S

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

50

100

150

1 2 3 4 5

La
te

nc
y

(u
se

c)

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

500

1000

1500

2000

1 2 3 4 5

M
B

s
W

rit
te

n

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

Figure 6.3: Sequential writes tests on ssd-based con�guration.

6.2.1 Sequential Workloads

Our �rst experiment writes updates to the disk sequentially. We run the experiment

on the disk-based, hybrid and ssd-based schemes and examine the number of IOPS, the

56

average latency and the number of MBs written to the LFS partition. The results are

illustrated in Figures 6.1, 6.2 and 6.3 respectively.

As we can see, performance and latency in the �rst two con�gurations remain compa-

rable to that of the original system. In addition, the performance in case of the disk based

con�guration that uses the Inf checkpoint interval is increased by about 20% while the la-

tency also drops by 22%. In the ssd-based con�guration performance drops slightly except

from the case where the Inf checkpoint interval is used. When it comes to the amount of

tra�c written to the disk, our system achieves optimal performance and essentially halves

the number of MBs written to the disk.

6.2.2 Random Workloads

Uniform Distribution

We then proceed to workloads that write data to the disk in a random manner. We expect

the performance of our system to be lower than that of the traditional LFS in the �rst

two schemes due to the way the original implementation applies the random updates. In

addition, we anticipate that the drop will be much higher in the hybrid con�guration,

since the original implementation writes directly to the solid state drive while our system

has to direct block updates to the disk-based journal �rst. Experimental results shown

in Figures 6.4, 6.5 and 6.6 con�rm our suspicions. Performance in the disk based scheme

is decreased by about 10%, while in the hybrid con�guration it is decreased by 36%.

However, performance in the ssd-based scheme remains comparable to that of the original

�le system and increases as the checkpoint interval is increased. We believe that this

behavior is a result of the sequential way that updates are written to/removed from the

journal. Latency in the �rst two schemes is increased by 18% and 38% respectively while

for the third scheme it is reduced by 10%.

The amount of MBs written to the disk on the other hand, is reduced while the check-

point interval increases. In the optimal case tra�c is reduced by 82% in the disk-based

con�guration, by 60% in the hybrid scheme and by 76% in the ssd-based con�guration.

When using a modest checkpoint interval value such as 30 seconds, it is reduced by 48%,

64% and 59% respectively. In general, the performance of random workloads in our sys-

tem is slightly worse than that of the original implementation in the disk con�guration

57

0

100

200

300

1 2 3 4 5

N
um

be
r

of
 IO

P
S

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

1000

2000

3000

1 2 3 4 5

La
te

nc
y

(u
se

c)

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

2000

4000

6000

1 2 3 4 5

M
B

s
W

rit
te

n

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

Figure 6.4: Random writes tests on disk-based con�guration.

0

1000

2000

3000

1 2 3 4 5

N
um

be
r

of
 IO

P
S

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

100

200

300

400

1 2 3 4 5

La
te

nc
y

(u
se

c)

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

1000

2000

3000

4000

1 2 3 4 5

M
B

s
W

rit
te

n

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

Figure 6.5: Random writes tests on hybrid con�guration.

0

1000

2000

3000

4000

1 2 3 4 5

N
um

be
r

of
 IO

P
S

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

100

200

1 2 3 4 5

La
te

nc
y

(u
se

c)

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

1000

2000

3000

4000

1 2 3 4 5

M
B

s
W

rit
te

n

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

Figure 6.6: Random writes tests on ssd-based con�guration.

and slightly better is the ssd con�guration. In the hybrid con�guration the system is

signi�cantly slower however, our system greatly improves the disk utilization.

58

0

200

400

600

1 2 3 4 5

N
um

be
r

of
 IO

P
S

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

500

1000

1500

1 2 3 4 5

La
te

nc
y

(u
se

c)

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

1000

2000

3000

1 2 3 4 5

M
B

s
W

rit
te

n

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

Figure 6.7: Random writes - Zip�an distribution tests on disk-based con�guration.

0

2000

4000

6000

1 2 3 4 5

N
um

be
r

of
 IO

P
S

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

50

100

150

200

1 2 3 4 5

La
te

nc
y

(u
se

c)

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

1000

2000

1 2 3 4 5

M
B

s
W

rit
te

n

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

Figure 6.8: Random writes - Zip�an distribution tests on hybrid con�guration.

0

2000

4000

6000

8000

1 2 3 4 5

N
um

be
r

of
 IO

P
S

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

50

100

1 2 3 4 5

La
te

nc
y

(u
se

c)

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

0

1000

2000

1 2 3 4 5

M
B

s
W

rit
te

n

Metis/10sec
Metis/30 sec
Metis/60 sec
Metis/Inf
NILFS2

Figure 6.9: Random writes - Zip�an distribution tests on ssd-based con�guration.

Zip�an Distribution

Since we have examined the performance of our system under a purely random workload,

we now need to investigate what will happen in the case of frequent block overwrites.

59

In order to do this, we test our system by using a random workload that follows the

zip�an distribution. We expect that some of the overwrites will be caught by the journal

and therefore the amount of tra�c that will be directed to the LFS partition will be

considerably lower that that of the original implementation. The results are shown in

Figures 6.7, 6.8 and 6.9. Performance shows a similar behavior as before however this

time the amount of disk space used by all three schemes is reduced dramatically. In the

optimal case the amount of tra�c in the hybrid scheme is reduced by 78% while by using

a 30 seconds commit interval it is reduced by 73%. We suspect that the reason behind

this drop is because the hybrid scheme is able to apply more data updates within a given

time period due to the use of the SSD. As a result, more overwrites can be \caught"

by the journal before the checkpoint process begins. In the ssd con�guration tra�c is

reduced by up to 82% in the case of the Inf checkpoint interval.

To sum up our system o�ers the same performance as in the previous case where

random workloads were used, which is lower than that of the original implementation in

the �rst two schemes and a slightly better in the ssd scheme. The disk utilization on all

three cases however, is signi�cantly improved since less writes are directed to the LFS

partition.

6.3 Synchronous Writes

We now evaluate the performance of our system in the presence of synchronous writes.

In order to achieve this, we use a sequential workload that synchronizes the data after a

number of write requests. We experiment with the number of requests and examine three

cases: When synchronization occurs every 1 write request, every 10 and every 100 requests.

Once again we compare our system with the original implementation in both disk-based

and hybrid con�gurations and examine the number of IOPS, the average latency and the

amount of tra�c directed to the LFS partition. The results for the disk-based scheme are

shown in Figure 6.10, for the hybrid scheme in Figure 6.11 and for the ssd-based scheme

in Figure 6.12.

As we can see performance increasingly drops as the number of writes requests between

synchronous requests decreases. The average latency on the other hand, remains lower

60

0

1000

2000

100 Writes 10 Writes 1 Write

N
um

be
r

of
 IO

P
S

Metis
NILFS2

0

100

200

300

100 Writes 10 Writes 1 Write

La
te

nc
y

(u
se

c)

Metis
NILFS2

0

5000

10000

15000

100 Writes 10 Writes 1 Write

M
B

s
W

rit
te

n

Metis
NILFS2

Figure 6.10: Synchronous Writes - Sequential tests on disk-based con�guration.

0

2000

4000

100 Writes 10 Writes 1 Write

N
um

be
r

of
 IO

P
S

Metis
NILFS2

0

100

200

100 Writes 10 Writes 1 Write

La
te

nc
y

(u
se

c)

Metis
NILFS2

0

5000

10000

15000

100 Writes 10 Writes 1 Write

M
B

s
W

rit
te

n

Metis
NILFS2

Figure 6.11: Synchronous Writes - Sequential tests on hybrid con�guration.

0

2000

4000

100 Writes 10 Writes 1 Write

N
um

be
r

of
 IO

P
S

Metis
NILFS2

0

100

200

100 Writes 10 Writes 1 Write

La
te

nc
y

(u
se

c)

Metis
NILFS2

0

5000

10000

15000

100 Writes 10 Writes 1 Write

M
B

s
W

rit
te

n

Metis
NILFS2

Figure 6.12: Synchronous Writes - Sequential tests on ssd-based con�guration.

than that of the original implementation and increases much slower. In case the case of

1 write per synchronous request in particular, the average latency is decreased by 35%.

Disk utilization remains optimal and dramatically improves that of the original NILFS2

�le system. In the case of 10 writes per synchronous request, the average tra�c is reduced

61

by 80% while in the case of 1 write per request it is reduced by 99.4%. In the general

case our system improves the latency of the original implementation, and dramatically

improves the disk utilization however, the performance of the system is reduced, especially

when a hybrid con�guration is used.

6.4 Summary

We evaluate our system by using the �o micro-benchmark tool in order to stress our

system under di�erent workloads. We examine the number of Input/Output Operations

Per Second (IOPS), the average latency, the number of segments constructed in the LFS

partition and the amount of tra�c directed to the disk and analyze the results. Three

di�erent schemes were tested depending on the type of media that the journal and the

LFS partition resided in.

Results show that our system o�ers performance comparable to that of the original �le

system with sequential workloads, while improving the overall disk utilization. Random

workloads negatively impact the performance of our system, especially in the hybrid

con�guration mode however, the write tra�c directed to the LFS partition is reduced by

up to 78%. Finally, our systems o�ers reduced latency and dramatically increases disk

utilization by up to 99:4% with synchronous workloads, although at reduced performance.

62

Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.2 Future Work

7.1 Conclusions

Asymmetric storage devices are becoming increasingly useful as either standard storage

device in mobile systems or desirable storage layer in enterprise servers. Though such

devices exhibit several attractive characteristics and are able to outperform their mechan-

ical counterpart by even by an order of magnitude when it comes to random workloads,

they have several limitations such as the erase-before-write requirement and limited block

endurance. As a result, their performance and lifetime is highly workload-depended.

Researchers have tried to solve this problem by adding a level of indirection between

the device and the �le system known as the
ash translation layer. This solution however,

is not able to utilize application semantic information in order to exploit the intrinsic

characteristics of asymmetrical storage to its advantage. As a result, a number of
ash-

aware �le systems have been suggested that help optimize the usage of
ash media. Still,

these �le systems either use complicated mechanisms to identify hot and cold data in

memory or exchange the dependability of the drive for performance.

63

In this thesis we proposed Metis, a composite
ash-aware �le system that combines

journaling with the log-structured �le system. Our work is based on previously published

work of our group [19, 20]. By using a set of novel techniques that add minimal writing

overhead, our system is able to provide hot/cold block separation, increase the e�ciency

of the garbage collection mechanism, reduce the recovery point objective of the system,

and improve disk utilization.

We implemented Metis in the Linux kernel version 3.14.17. We evaluated our prototype

implementation by using a set of micro-benchmark tools that stressed our system under

di�erent types of workloads. In addition, we tried and tested three di�erent setup schemes:

One that used hard disks for both the journal and the LFS partition, one that placed the

journal partition in a hard disk drive and the LFS partition in a solid state drive and one

where both partitions resided in an SSD. Results show that our system o�ers performance

comparable to that of the original �le system with sequential workloads, while improving

the overall disk utilization. Random workloads on the other hand negatively impact the

performance of our system in the disk-based and hybrid con�guration modes. However,

the performance of the ssd-based con�guration is slightly improved while write tra�c

directed to the LFS partition is reduced by up to 78% for all three schemes. Finally with

synchronous writes, our system o�ers reduced latency and dramatically increases disk

utilization by up to 99:4% although at reduced performance.

7.2 Future Work

There are many directions for future work, especially regarding the performance evaluation

of our implementation. In the future we plan to extend our experiments in order to stress

our system using real-world application workloads. Such tests would allow us to study

the behavior of our system under extensive pressure and discover its advantages and

weaknesses. In addition, a con�guration during which synchronous writes over the same

blocks are applied should be tested, in order to investigate the capability of our system to

\catch" synchronous overwrites in the journal and not send them to the LFS partition.

Finally, the e�ect of the journal partition size should be tested in order to get a clear view

of its role in the block separation process.

64

Bibliography

[1] Fio micro-benchmark tool. http://freecode.com/projects/fio. Accessed: 2015-

06-05.

[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark S Manasse,

and Rina Panigrahy. Design tradeo�s for ssd performance. In USENIX Annual

Technical Conference, pages 57{70, 2008.

[3] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three

Easy Pieces. Arpaci-Dusseau Books, 0.80 edition, May 2014.

[4] Trevor Blackwell, Je�rey Harris, and Margo I Seltzer. Heuristic cleaning algorithms

in log-structured �le systems. In USENIX, pages 277{288, 1995.

[5] Daniel P Bovet and Marco Cesati. Understanding the Linux kernel. " O'Reilly Media,

Inc.", 2005.

[6] Joe Brewer and Manzur Gill. Nonvolatile Memory Technologies with Emphasis on

Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices,

volume 8. Wiley. com, 2011.

[7] Neil Brown. A NILFS2 score card. https://lwn.net/Articles/522507/. Accessed:

2015-05-07.

[8] Giovanni Campardo, Rino Micheloni, and David Novosel. VLSI-design of non-volatile

memories. Springer, 2005.

[9] Feng Chen, David A Koufaty, and Xiaodong Zhang. Understanding intrinsic charac-

teristics and system implications of
ash memory based solid state drives. In ACM

SIGMETRICS Performance Evaluation Review, volume 37, pages 181{192. ACM,

2009.

65

[10] Hyun Jin Choi, Seung-Ho Lim, and Kyu Ho Park. Jftl: A
ash translation layer

based on a journal remapping for
ash memory. ACM Transactions on Storage

(TOS), 4(4):14, 2009.

[11] Michael Cornwell. Anatomy of a solid-state drive. Commun. ACM, 55(12):59{63,

2012.

[12] Christian Czezatke and M Anton Ertl. Linlogfs-a log-structured �le system for linux.

In USENIX Annual Technical Conference, FREENIX Track, pages 77{88, 2000.

[13] Timothy E Denehy, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Bridg-

ing the information gap in storage protocol stacks. In USENIX Annual Technical

Conference, General Track, pages 177{190, 2002.

[14] Eran Erez. Methods for optimizing page selection in
ash-memory devices, April 28

2009. US Patent 7,525,870.

[15] Gregory R Ganger. Blurring the line between OSes and storage devices. School of

Computer Science, Carnegie Mellon University, 2001.

[16] Dominic Giampaolo. Practical �le system design with the Be �le system. Morgan

Kaufmann Publishers Inc., 1998.

[17] Garth Goodson and Rahul Iyer. Design tradeo�s in a
ash translation layer. In

Proceedings of Workshop on the Use of Emerging Storage and Memory Technologies,

2010.

[18] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: a
ash translation

layer employing demand-based selective caching of page-level address mappings, vol-

ume 44. ACM, 2009.

[19] Andromachi Hatzieleftheriou and Stergios V. Anastasiadis. Jlfs: Journaling the log-

structured �lesystem for proactive cleaning in
ash storage. In USENIX Annual

Technical Conference (ATC), Portland, OR.

[20] Andromachi Hatzieleftheriou and Stergios V. Anastasiadis. Improving bandwidth ef-

�ciency for consistent multistream storage. In ACM Transactions on Storage (TOS),

volume 9, March 2013.

66

[21] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.

Write ampli�cation analysis in
ash-based solid state drives. In Proceedings of SYS-

TOR 2009: The Israeli Experimental Systems Conference, page 10. ACM, 2009.

[22] Ping Huang, GuanyingWu, Xubin He, andWeijun Xiao. An aggressive worn-out
ash

block management scheme to alleviate ssd performance degradation. In Proceedings

of the Ninth European Conference on Computer Systems, EuroSys '14, pages 22:1{

22:14, New York, NY, USA, 2014. ACM.

[23] Ting-Chang Huang and Da-Wei Chang. Tridentfs: a hybrid �le system for non-

volatile ram,
ash memory and magnetic disk. Software: Practice and Experience,

2014.

[24] Yeonseong Hwang, Hyunho Gwak, and Dongkun Shin. Two-level logging with non-

volatile byte-addressable memory in log-structured �le systems. In Proceedings of the

12th ACM International Conference on Computing Frontiers, CF '15, pages 38:1{

38:2, New York, NY, USA, 2015. ACM.

[25] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won. I/o

stack optimization for smartphones. In USENIX Annual Technical Conference, pages

309{320, 2013.

[26] Xavier Jimenez, David Novo, and Paolo Ienne. Wear unleveling: improving nand

ash lifetime by balancing page endurance. In 12th USENIX Conference on File and

Storage Technologies (FAST 14), pages 47{59, 2014.

[27] William K Josephson, Lars A Bongo, Kai Li, and David Flynn. Dfs: A �le system

for virtualized
ash storage. ACM Transactions on Storage (TOS), 6(3):14, 2010.

[28] Dawoon Jung, Jeong-UK Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee. Su-

perblock ftl: a superblock-based
ash translation layer with a hybrid address transla-

tion scheme. ACM Transactions on Embedded Computing Systems (TECS), 9(4):40,

2010.

[29] Sanghyuk Jung, Yangsup Lee, and Yong Ho Song. A process-aware hot/cold iden-

ti�cation scheme for
ash memory storage systems. Consumer Electronics, IEEE

Transactions on, 56(2):339{347, 2010.

67

[30] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting storage for smart-

phones. ACM Transactions on Storage (TOS), 8(4):14, 2012.

[31] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Kihara, and

Satoshi Moriai. The linux implementation of a log-structured �le system. SIGOPS

Oper. Syst. Rev., 40(3):102{107, July 2006.

[32] Ohhoon Kwon, Kern Koh, Jaewoo Lee, and Hyokyung Bahn. Fegc: An e�cient

garbage collection scheme for
ash memory based storage systems. Journal of Sys-

tems and Software, 84(9):1507{1523, 2011.

[33] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. F2fs: A new �le

system for
ash storage. In 13th USENIX Conference on File and Storage Technolo-

gies (FAST 15), pages 273{286, Santa Clara, CA, February 2015. USENIX Associa-

tion.

[34] Jongsung Lee and Jin-Soo Kim. An empirical study of hot/cold data separation

policies in solid state drives (ssds). In Proceedings of the 6th International Systems

and Storage Conference, SYSTOR '13, pages 12:1{12:6, New York, NY, USA, 2013.

ACM.

[35] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park, and

Ha-Joo Song. A log bu�er-based
ash translation layer using fully-associative sector

translation. ACM Transactions on Embedded Computing Systems (TECS), 6(3):18,

2007.

[36] Sungjin Lee, Keonsoo Ha, Kangwon Zhang, Jihong Kim, and Junghwan Kim. Flexfs:

A
exible
ash �le system for mlc nand
ash memory. In USENIX Annual Technical

Conference, 2009.

[37] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. Last: locality-aware

sector translation for nand
ash memory-based storage systems. ACM SIGOPS

Operating Systems Review, 42(6):36{42, 2008.

[38] Yan Li, Seungpil Lee, Yupin Fong, Feng Pan, Tien-Chien Kuo, Jongmin Park, Tapan

Samaddar, Hao Thai Nguyen, Man L Mui, Khin Htoo, et al. A 16 gb 3-bit per cell

68

(x3) nand
ash memory on 56 nm technology with 8 mb/s write rate. Solid-State

Circuits, IEEE Journal of, 44(1):195{207, 2009.

[39] Seung-Ho Lim and Kyu-Ho Park. An e�cient nand
ash �le system for
ash memory

storage. Computers, IEEE Transactions on, 55(7):906{912, 2006.

[40] Youyou Lu, Jiwu Shu, and Wei Wang. Reconfs: a reconstructable �le system on
ash

storage. In FAST, pages 75{88, 2014.

[41] Youyou Lu, Jiwu Shu, Weimin Zheng, et al. Extending the lifetime of
ash-based

storage through reducing write ampli�cation from �le systems. In FAST, pages 257{

270, 2013.

[42] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y. Wang, and

Thomas E. Anderson. Improving the Performance of Log-structured File Systems

with Adaptive Methods. SOSP '97. ACM, New York, NY, USA, 1997.

[43] Jai Menon and Larry Stockmeyer. An age-threshold algorithm for garbage collection

in log-structured arrays and �le systems. In High Performance Computing Systems

and Applications, pages 119{132. Springer, 1998.

[44] Rino Micheloni, Giovanni Campardo, and Piero Olivo. Memories in wireless systems.

Springer, 2008.

[45] Rino Micheloni, Luca Crippa, and Alessia Marelli. Inside NAND
ash memories.

Springer, 2010.

[46] Rino Micheloni, Alessia Marelli, and Kam Eshghi. Inside Solid State Drives (SSDs).

Springer, 2013.

[47] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom.

Sfs: random write considered harmful in solid state drives. In 10th USENIX Confer-

ence on File and Storage Technologies (FAST 12), page 12, 2012.

[48] Yongseok Oh, Eunsam Kim, Jongmoo Choi, Donghee Lee, and Sam H Noh. Opti-

mizations of lfs with slack space recycling and lazy indirect block update. In Pro-

ceedings of the 3rd Annual Haifa Experimental Systems Conference, page 2. ACM,

2010.

69

[49] Alan R Olson and Denis J Langlois. Solid state drives data reliability and lifetime.

Imation White Paper, 2008.

[50] Dongchul Park, Biplob Debnath, Youngjin Nam, David HC Du, Youngkyun Kim,

and Youngchul Kim. Hotdatatrap: a sampling-based hot data identi�cation scheme

for
ash memory. In Proceedings of the 27th Annual ACM Symposium on Applied

Computing, pages 1610{1617. ACM, 2012.

[51] Jung-Wook Park, Seung-Ho Park, Charles C Weems, and Shin-Dug Kim. A hybrid

ash translation layer design for slc{mlc
ash memory based multibank solid state

disk. Microprocessors and Microsystems, 35(1):48{59, 2011.

[52] Sheng Qiu et al. Nvmfs: A hybrid �le system for improving random write in nand-

ash ssd. In Mass Storage Systems and Technologies (MSST), 2013 IEEE 29th Sym-

posium on, pages 1{5. IEEE, 2013.

[53] Abhishek Rajimwale, Vijayan Prabhakaran, and John D Davis. Block management

in solid-state devices. In USENIX Annual Technical Conference, 2009.

[54] Bruno Ricco, Gianfranco Gozzi, and Massimo Lanzoni. Modeling and simulation

of stress-induced leakage current in ultrathin sio 2 �lms. Electron Devices, IEEE

Transactions on, 45(7):1554{1560, 1998.

[55] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The linux b-tree �lesystem. ACM

Transactions on Storage (TOS), 9(3):9, 2013.

[56] Elyse Rosenbaum and Leonard F Register. Mechanism of stress-induced leakage

current in mos capacitors. Electron Devices, IEEE Transactions on, 44(2):317{323,

1997.

[57] Mendel Rosenblum and John K Ousterhout. The design and implementation of

a log-structured �le system. ACM Transactions on Computer Systems (TOCS),

10(1):26{52, 1992.

[58] Andreas Schierl, Gerhard Schellhorn, Dominik Haneberg, and Wolfgang Reif. Ab-

stract speci�cation of the ubifs �le system for
ash memory. In FM 2009: Formal

Methods, pages 190{206. Springer, 2009.

70

[59] Ilhoon Shin. An optimal ftl for ssds.

[60] Kent Smith. Understanding ssd over provisioning. LSI Corporation,[online],

http://www. edn. com/design/systems-design/4404566/Understanding-SSD-over-

provisioning, 2013.

[61] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted Wob-

ber. Extending ssd lifetimes with disk-based write caches. In FAST, volume 10, pages

101{114, 2010.

[62] Jun Wang and Yiming Hu. Wolf-a novel reordering write bu�er to boost the perfor-

mance of log-structured �le systems. In 1st USENIX Conference on File and Storage

Technologies (FAST 02), pages 47{60, 2002.

[63] Wei Wang, Tao Xie, and Deng Zhou. Understanding the impact of threshold voltage

on mlc
ash memory performance and reliability. In Proceedings of the 28th ACM

International Conference on Supercomputing, ICS '14, pages 201{210, New York,

NY, USA, 2014. ACM.

[64] Wenguang Wang, Yanping Zhao, and Rick Bunt. Hylog: A high performance ap-

proach to managing disk layout. In 3rd USENIX Conference on File and Storage

Technologies (FAST 04), volume 4, pages 145{158, 2004.

[65] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The hp autoraid

hierarchical storage system. ACM Transactions on Computer Systems (TOCS),

14(1):108{136, 1996.

[66] David Woodhouse. J�s: The journalling
ash �le system. In Ottawa Linux Sympo-

sium, volume 2001, 2001.

[67] Yiying Zhang, Leo Prasath Arulraj, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-

Dusseau. De-indirection for
ash-based ssds with nameless writes. In FAST, page 1,

2012.

71

Appendix A

Appendix

Non-Volatile Memory

Semiconductor memories can be divided into two major categories: Volatile memories

and Non-Volatile memories. Volatile memories can be programmed fast, easy and an

unlimited number of times but require power to preserve the stored information. Non-

Volatile memories are able to retain the stored information in the event of a power loss,

but fall short in terms of speed and durability. Early designs of non-volatile memory were

fabricated with permanent data and did not provide the ability to modify their content.

Current designs allow their content to be erased and re-programmed a limited number of

times although at a signi�cantly slower speed compared to volatile memories [8, 6].

Read-Only Memory

The earliest form on non-volatile semiconductor memory was the Read-Only Memory

(ROM). As the name implies, data stored in a ROM cannot be modi�ed and even if they

can, the process for altering the data is either too slow or too di�cult.

In it's strictest sense, the term ROM refers to Mask ROM which is fabricated with

the desired data permanently stored in it. In fact, the contents of a Mask ROM are

programmed by the integrated circuit manufacturer and cannot be changed at all. The

term \Mask" refers to the fabrication process where regions of the chip are actually masked

of during the process o� photolithography.

72

Mask ROM is the oldest type of ROM and while the process of creating a mask is

costly, laborious and prone to errors, once it is completed chips are fabricated with a very

low cost per bit, use very little power, are extremely reliable and are cheaper than any

other kind of semiconductor memory.

Programmable Read-Only Memory

Creating ROM chips from scratch and for small quantities is very expensive and time-

consuming. As a result, a new type of ROM was created in 1956 known as the Pro-

grammable Read-Only Memory (PROM). PROM chips are manufactured with all bits set

to 1 and by using a special tool called programmer, selected bits can be changed from

1 to 0 and therefore store the desired data into the chip. Blank PROM chips can be

bought inexpensively and coded by anyone with a programmer, which leads to a reduced

manufacturing cost.

As illustrated in Figure A.1, a typical PROM chip consists of a grid of columns and

rows. At every intersection of a column and a row, there is a fuse connecting the two

lines. If a charge is sent through a column and passes through the fuse in a cell to a

grounded row, it indicates a value of 1. The memory can thus be programmed by Blowing

the fuses, which is an irreversible process. By blowing a fuse the connection opens and

indicates a value of 0 to the user. Although it is physically impossible to un-blow a fuse,

it is often possible to change the contents of the memory after initial programming by

blowing additional fuses and change some of the remaining 1 bits to 0s.

Erasable Programmable Read-Only Memory

Even though the invention of PROM reduced the manufacturing cost for a ROM chip,

it was not a
exible solution. Changes or updates to the stored data meant that a new

chip had to be used, leading to an increase in cost. To put it di�erently even though the

PROM was inexpensive per chip, the cost could add up over time if multiple chips had

to be used. To address this issue a new type of ROM was invented in 1971, the Erasable

Programmable Read-Only Memory (EPROM).

Much like the PROM an EPROM chip consists of a grid of rows and columns. The

main di�erence is that instead of using a fuse to connect the two lines, a new type of

73

Figure A.1: A typical PROM. The red X marks a fuse which has been blown.

�eld-e�ect transistor is used, the Floating-Gate Transistor. When an EPROM chip is

manufactured, all bits are set to 1. In order to change a transistor's state from 1 to 0

a special programmer is used that applies an electrical charge of 10 to 13 volts to the

oating gate, a process known as Fowler-Nordheim Tunneling.

In order to erase an EPROM chip, a special tool that emits a certain frequency of UV

light has to be used. It is a very sensitive and time consuming procedure during which

speci�c rules have to be followed in order to prevent the chip from being destroyed1. To

allow the exposure to UV Light during erasing, a transparent quartz window is installed

at the top of the chip through which the silicon chip is visible.

Electrically Erasable Programmable Read-Only Memory

The invention of EPROM was a major step forward for non-volatile memories, especially

with the introduction of the
oating-gate transistor. However, it still required dedicated

equipment to program the chips and a labor-intensive process to remove and reinstall them

each time a change in the data was necessary. Moreover, one of the main disadvantages

of EPROM was that changes could not be made incrementally and the whole chip had to

be erased and reprogrammed. Therefore, a new type of ROM was invented in 1978, the

Electrically Erasable Programmable Read-Only Memory (EEPROM).

1Typical setup: The chip has to be exposed to UV light at 253:7nm of at least 15W − sec

cm
2 for about

20 to 30 minutes with a lamp at a distance of about 2:5cm

74

(a)

S

D

G

(b)

Figure A.2: A cross-section sketch of the Floating-Gate Transistor and its Circuit symbol.

As the term \Electrically Erasable" implies, EEPROMs can be erased and rewritten

on-chip by using a high-voltage pulse. This new technology eliminated the biggest draw-

backs of EPROM since the chip does not have to be removed to be rewritten, it does not

have to be completely erased to change a speci�c portion of it and it does not require

additional equipment in order to change its contents. The Write/Erase procedure on an

EEPROM however, damages the layer of insulating material on the chip, so the number of

Write/Erase cycles is limited. Early models would fail after tens or hundreds of thousand

times, while modern EEPROMs can sustain one million Write/Erase operations or more.

Flash Memory

Flash memory is specialized descendant of EEPROM that is also based on
oating-gate

transistors that can be electrically erased and reprogrammed. Although EEPROM mem-

ories are versatile, their contents are changed 1 byte at a time making them extremely

slow. Moreover, EEPROM uses two transistors per memory cell compared to EPROM

that uses one therefore it is more expensive and its density is much lower.

To address this problem, Dr. Fujio Masuoka invented the Flash Memory technology

in 1984. Flash memory provides a good compromise between EPROM and EEPROM. It

uses a single transistor per cell providing low cost per bit and high density much like an

EPROM while at the same time its contents can be electrically altered like an EEPROM.

75

Moreover, it uses in-circuit wiring to erase data by applying an electrical �eld to the

entire chip, or to predetermined sections of the chip called blocks leading to a much faster

design. Finally, it writes data in chunks (usually 512 bytes in size) instead of 1 byte at

a time making it ideal for both code and data storage. In the following sections, we are

going to examine the main components and architectures of modern
ash memory.

Floating-Gate Transistor

The heart of the
ash memory cell is the Floating-Gate Transistor. Its structure is similar

to a conventional MOSFET2, with an additional gate added. The newly added gate

called the Floating Gate, occupies the position of the original gate with the original gate

(now known as the Control Gate) now being on top of the
oating gate (Figure A.2). The

oating gate is insulated all around by an oxide layer and as a result, any electrons placed

on it are trapped there and - under normal conditions - will not discharge for many years

[46]. It is because of this phenomenon, that the
oating-gate transistor can be used as

non-volatile memory. Let us now look at the basic operating principles of the
oating

gate transistor and then discuss its reliability.

Program

In order to program a
oating-gate transistor two basic physical mechanisms are exploited,

depending on the
ash memory architecture: Channel Hot Electron (CHE) Injection and

Fowler-Nordheim (FN) Tunneling [6, 44, 8, 45].

CHE Injection applies a relatively high voltage (between 4V and 6V) to the transistor's

Drain (D), a high voltage (8V to 11V) to the Control Gate (CG) while the Source (S) and

Bulk (B) terminals are kept at 0V . As a result, a large current (between 0.3mA to 1mA)

ows in the cell and the hot electrons generated in the channel acquire su�cient energy to

jump the gate oxide barrier and get trapped into the Floating Gate (FG) (Figure A.3a).

CHE Injection is typically used with NOR-type
ash architectures and is a relatively fast

procedure since it takes only a few microseconds to shift the threshold voltage from the

2Metal-Oxide-Semiconductor Field-E�ect-Transistor

76

(a)

Bulk (B)

S

CG

D

0V

20V

0V

0V

(b)

Figure A.3: Programming a Floating-Gate Transistor: CHE Injection and FN Tunneling.

erased value to the programmed value. However, it is also an ine�cient method since less

than 0.001% of the channel current will be directed to the
oating gate.

In NAND architectures, Fowler-Nordheim Tunneling is used to program the
oating

gate. A high voltage of about 20V is applied to the control gate, while the drain, source

and bulk terminals are kept at 0V (Figure A.3b). Once again, electrons gain su�cient

energy to overcome the oxide barrier, but the process is now better controlled and more

e�cient. Even though FN Tunneling is slower than CHE Injection, it requires very small

programming current per cell (less than 1nA) which allows many cells to be programmed

simultaneously.

Erase

To erase a
oating-gate transistor, both architectures use the FN Tunneling mechanism

although with di�erent parameters. In NAND architectures, the control gate is biased

with a negative voltage of about -20V , between 4V and 6V are applied to the drain, while

the source and bulk terminals are kept at 0V (Figure A.4a). In NOR architectures a

similar setup is used however this time the source terminal is
oated and a lower voltage

of about -10V is applied to the control gate.

During the erasure process a high electric �eld is applied across the gate oxide that

pushes the electrons out of the
oating gate and reduces the transistor's threshold voltage.

When erased, a NOR memory cell conventionally stores a logic 0 value while a NAND

77

Bulk (B)

S

CG

D

0V

-20V

5V

0V

(a) (b)

Figure A.4: Erasing and Reading a Floating-Gate Transistor.

memory cell a logic 1 value. It is considered to be a relatively slow procedure compared

to programming as it usually takes a few milliseconds.

Read

With the mechanism to store a bit as either 0 or 1, all that is left is to read the stored

value. In read mode, the control gate is biased at about 5V , the source and bulk terminals

are kept grounded while a small voltage of about 1V is applied to the drain. If electrons

are trapped in the
oating gate, the Threshold Voltage Vth required for electrons to be

pulled from the source and form a channel between the Source and the drain will be

higher than the applied Reference Voltage Vref . As a result, there will be no current
ow

through the cell. However, if no electrons are trapped in the
oating Gate the behavior

of the control gate is similar to that of a regular MOSFET and current will start
owing

through the channel (Figure A.4b). This current
ow can be monitored by an external

circuit in order to determine the state of the cell as being either 0 or 1.

In
ash technology, the process of reading does not destroy the data however, caution

has to be exercised when applying voltage to the cell drain during a read operation.

If higher voltages are applied, then the cell would experience Read-Disturb caused by

Channel Hot Electron generation. Although the generated current is relatively small (10

to 50�A), it has to be considered that a
ash cell is in read mode most of the time and

therefore, even small amounts of read-disturb can have an impact on data integrity over

78

New Oxide

Electron
Traps

(a)

Stress Induced Leakage Current

Damaged Oxide

(b)

Oxide Breakdown

Electric Discharge

(c)

Figure A.5: Stages of Oxide Layer Breakdown.

time [6].

Reliability

The reliability of a
oating-gate transistor is one of its most important features since
ash

memory manufacturers typically need to guarantee at least 10 years of charge retention

and 1k to 100k Program/Erase cycles for a product chip. There are multiple leakage

paths which can lead to loss of the programmed
oating-gate electron charges [46, 49].

Electrons can be lost through current
owing from the
oating gate to the control gate

(IIPD−leak) or through the side wall oxide (ISW−leak) however, the main cause of Charge

Loss is the leakage though the tunnel oxide layer separating the
oating gate from the

substrate (ITOX−leak).

The tunnel oxide insulation layer is very thin (less than 10nm) and the erasure and

programming processes subject it to stress from large electric �elds. Such changes can

result to structural changes in the SiO2 layer and lead to defects that trap electrons in

the oxide layer. As a result, tiny \cracks" start to appear in the insulation material that

permit the charge on the
oating gate to leak into the substrate by Stress Induced Leakage

Current (SILC) [56, 54]. These cracks are in fact broken bonds of the atoms in the SiO2

layer (electron traps) that are caused by the electron tunneling processes. As the number

of Program/Erase cycles is increased more and more defects are starting to appear and

eventually lead to a Breakdown of the oxide layer (Figure A.5).

Programming, erasing and reading memory cells can cause charge disruptions within

adjacent memory cells and lead to Disturb Faults. By taking into consideration the high

79

density of the memory cells in modern
ash memories, voltage changes that are capaci-

tively coupled between adjacent memory cells can lead to random bit errors in the stored

data. Disturb faults are not detected easily and usually the
ash controller has to keep

track of the number of Read/Program/Erase operations across the whole storage device

in order to prevent them.

The deterioration of the tunnel oxide over time and disruptions from adjacent memory

cells can eventually lead to random bit errors in the stored data and while the chances

of any given data bit becoming corrupted are extremely small, the number of data bits

stored in a system increases the likelihood of data corruption. Therefore, Error Detection

and Correction Codes (ECC) are used in modern most
ash memory systems to prevent

the data from becoming corrupted. Although the use of ECCs limits the performance of

the system, it is necessary in order to correct bit errors and provide reliable storage.

80

Short Vita

Vasileios Papadopoulos was born in Ioannina, Greece in 1989. He graduated from the 1st

High School of Ioannina in 2006 and in 2012 he obtained his Diploma in Computer Engi-

neering from the Computer Engineering and Informatics Department of the University of

Patras. Currently he is a Postgraduate student at the Department of Computer Science

and Engineering of the University of Ioannina and a member of the Systems Research

Group. His research interests include Storage Systems, Solid-State Drives and Operating

Systems.

