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Document clustering in text streams is a text mining problem with increasing interest

in recent years due to its relation to the problems of topic detection and tracking. The

existence of temporal information in the form of document timestamps provides the op-

portunity to modify and improve the typical approaches for document representation and

clustering. A way to exploit temporal information is through the detection and exploita-

tion of bursty terms in text streams, ie terms that appear in many documents during the

same time window.

At �rst, a description of methods that have been developed for the detection of bursty

terms is presented. Next several document representations are presented that integrate

the bursty information in the typical vector space model, and novel forms of term simi-

larity matrices are proposed that take into account the correlation between bursty terms.

Moreover, we propose an alternative approach that �rst partitions the bursty features into

groups and then uses this information for the clustering of the text stream collections.

Finally, experimental results on benchmark collections are provided followed by empirical

conclusions on the performance of the compared approaches.
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Chapter 1

Introduction

Thanks to the development of the second version of the world wide web (Web 2.0), there is

a continuous growth in the available digital content. The vast amount of this information

is described by the term "big data", which came to the fore the last years. Moreover,

the founder of the Web, Tim Berners-Lee, presented in public some interesting results,

when the available data gets linked up1. Tools for clustering are necessary for organizing

and analyzing any available information. Clustering is one of the 6 common tasks in the

data mining �eld [15], the other 5 are classi�cation, regression, anomaly detection, sum-

marization and association rule mining. Each clustering process aims to discover groups

of "similar objects" and is a widely studied problem in the text domains.

Nowadays, text documents could be produced by many sources. From user platforms

like twitter and facebook to newswire sites and blogs. Conventional clustering techniques

have di�culty in handling the large amount of text data (text streams) that produced over

time, as new challenges are faced. Topic detection and tracking (TDT) is a related prob-

lem to that of text stream clustering. The goal of TDT is the identi�cation of clusters of

documents from a non-stationary text collection, where each cluster contains documents

that discuss the same real life event.

Moreover, text representation is an important issue because it a�ects the performance

of a text mining algorithm. The most widely used representation for the task of text

clustering is the Vector space model-bag of words (VSM). In [21] the bursty feature rep-

resentation is proposed, that is appropriate for text streams as it captures the temporal

dimension of a document. The role of bursty features, have been investigated and in other

works proposing di�erent representations [23] [58] that extend the classical vector space

model. However, none of the above works considers the relation between bursty features.

Despite its simplicity, the major limitations of VSM is that terms are statistically inde-

pendent. The generalized vector space model (GVSM) is a generalization of the vector

1http://www.ted.com/talks/tim_berners_lee_the_year_open_data_went_worldwide
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space model that estimates the correlation between terms [46].

The research question that this thesis addresses is if the clustering procedure of text

streams could be further enhanced by exploiting bursty feature correlations. We extend

the GVSM term similarity matrix using the bursty features discovered by the Kleinberg's

2 states automaton [29]. Furthermore, we propose several forms of matrices, based on the

correlation of bursty terms. Finally, we introduce the Correlated Bursty Term Clustering

(CBTC) algorithm for the initialization of the k-means, appropriate for text stream data

collections.

The rest of this thesis is organized as follows. Chapter 2 describes the related work. In

chapter 3, our methodology is documented. The experimental clustering results in bench-

mark datasets are reported in chapter 4. Finally, in chapter 5, we present our conclusions

as well as future research directions.
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Chapter 2

Related Work

2.1 Topic Detection and Tracking

2.2 Bursty Information

2.3 Vector Space Model

2.4 Event Modeling

2.5 Spherical K-means

2.1 Topic Detection and Tracking (TDT)

The TDT program started in 1997 as a pilot study, conducted initially by a small group

of researchers. The research was pursued under the DARPA Translingual Information

Detection, Extraction and Summarization (TIDES) program and the goal was to develop

technologies for organizing the text news from a variety of broadcast news media in order

to detect and track the appearance of news topics. A detailed overview of the results of

the pilot study could be found in [1]. A fundamental concept in TDT is the notion of

an "event" and a "topic". During the pilot study "event" and "topic" meant the same

thing, an incident that happens at a certain place and time. Later, in the second year,

the de�nition of "topic" altered and broadened to include not only the triggering event

but also other events and activities that are directly related to it. The notion of a "topic"

di�ers form the notion of a general category like sports, politics etc. For example the

"�nal game of the FIFA world cup 2014" and the "�nal game of UEFA champions league

2014" although belonging to the same category, the one of sports, they refer to totally

di�erent real life events. As a result, they are two distinct topics.

3



We could imagine a TDT system operating as follows. Given a text stream, the

framework should discover the documents-stories that refer to a topic which have not

been detected before. Furthermore, each topic referring to a real life event, should be

tracked in order to discover more stories that mention it. Other important notions of the

TDT project can be found in the �gure 2.1.

Figure 2.1: TDT De�nitions

According to the TDT community , �ve di�erent research applications are de�ned 1 :

1. Story Segmentation (SS) - detect story boundaries

The automatically transcribed speech data, coming from news agencies, need to be

segmented into stories. In other words, the stream information should be spotted

in discrete stories.

2. Topic Tracking (TT) - Discover all stories that discuss a target topic.

Given an sample of stories that discuss a speci�c topic, TT framework should �nd

all the subsequent stories, within the remaining corpus, that refer to the same topic.

3. Topic Detection (TD) - Identify clusters of stories that discuss the same topic.

For the TD task no prior knowledge is provided as happens for the topic tracking

1http://www.itl.nist.gov/iad/mig/tests/tdt/
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task. It is an unsupervised process. The TD system should detect clusters of stories

that discuss the same topic.

4. First Story Detection (FSD) - If a story is the �rst story of a new, unknown,

topic.

FSD, also known as new event detection, detects the �rst story that refers to an

event. An FSD system should output either YES or NO to the question: "does

this story discuss a new topic?". Like topic detection, �rst story detection is an

unsupervised task.

5. Link Detection (LD) - Detect whether or not two stories are linked.

A LD system should output a decision score determining whether a pair of stories

discuss the same topic. In that case the stories are linked by the same topic.

The above tasks are not necessarily independent, because for the successful implemen-

tation of one of them, probably has another one as a prerequisite. For example task 3

should be solved before we perform any of the rest.

The �ve tasks were shaped after the �rst year of the pilot study. The initial tasks

were segmentation, tracking and detection [1]. Furthermore, the topic detection task, was

divided into the online and the retrospective process. The online method is known as

new event detection (FSD) and the o�ine as retrospective event detection (RED). The

objective of RED is the identi�cation of all the events in a corpus of stories, by grouping

the stories into clusters where each cluster represents an event.

At this point, we should notice that because of long and intensive research in the

TDT �eld, occasionally other problems have been de�ned that are closely related. Fung

et all [18] formalize the problem of "bursty event detection", as the discovery of a set of

bursty words, that are able to descibe an event, while Platakis et all in [40] study the

problem of discvovering hot topics in blogs, from the same perspective. From now and

on, we will be using the notion of "topic" and "event" interchangeably.

Regarding the research so far, we could claim that there are two trends in the litera-

ture on how a topic would be represented. The document-based, originated from the TDT

community, and the feature-based. In the document-based approach, the organization of

documents into clusters de�nes the di�erent set of topics. Therefore, the content of an

event is described by the documents of each cluster or descriptive queries. However, it has

been observed that events from news sources, appear frequently in bursts. In the latter

approach, the feature-based, a topic is signaled by the burst of the frequencies of terms

associated with it. The organization of the terms into groups form the detected events.

The question which arises is how to identify the features whose frequency is signi�cantly

increased, and how to group them in order to shape the �nal events.
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2.1.1 Online vs O�ine TDT

According to [22] topic detection models could be classi�ed into probabilistic and non-

probabilistic. In the �rst category a "topic" is considered as a distribution over either

documents or words, while in the second, the documents are clustered directly. Our re-

search is related to the non-probabilistic case. In both cases there are two approaches to

detect and track topics.

The o�-line (retrospective) approach assumes that the entire text stream is available

for analysis. This, however, requires memory resources for storing and processing the

available information. So decisions are taken periodically, ie non-real time. In contrast,

the on-line approach considers that documents arrive in the system according to a chrono-

logical order. Thus, the required memory should be su�cient only for the processing of the

current information ow. As a result the information is scanned only once, which requires

the system to take decisions in a speci�ed time interval or in strict-real time(immediate

mode).

In [45] are described in detail the state of art approaches to immediate mode of on-line

new event detection. In [35] an online new event detection framework is illustrated that

deals with the above mentioned issues and could be used in practice. Finally, [8] describes

the �rst Turkish news portal supporting event detection and tracking procedures.

2.1.2 Text Stream Visualization

Figure 2.2: The Memetracker tool

The methods that have been developed for the task of topic detection and tracking, as

well as from the broader related research areas, could be used for the visualization of text

streams. Many tools and frameworks have been proposed. The Event River visualizes

each event, by extracting the name of the involved people and the places related to it [34].
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Another well known framework is the Meme-tracker. The novelty of this framework is

that it displays short, distinctive phrases that appear in many documents. Furthermore

someone could observe how these "memes" (phrases) evolve in time [33]. ThemeRiver is

a system that visualizes thematic variations of a collection of documents, over time [19].

Blogpulse [7] was a search engine (no longer available) and analytical system for detecting

trends in blogs, with visualization features . Another system, navigating the blogosphere,

from a spatiotemporal perspective, is blogscope, which takes advantage of bursty key-

words and keywords correlations [4].

Figure 2.3: The ThemeRiver tool

Another tool for analyzing unstructured text streams, by presenting trending key-

words, is produced by Microsoft Research Labs and is called Narratives [16]. Finally,

extended research for the topic detection and tracking �eld, has also been conducted, not

only on data derived from traditional newswire sources like news agencies and weblogs,

but also on the Twitter micro-blog platform. As a result, several tools have been de-

veloped. For example TopicSketch [48] is a framework for real-time detection of bursty

topics, providing a descriptive "snapshot" of the current stream. On the other hand,

CLEar [47], is a system that supports bursty topic detection, popularity prediction, event

summarization, contextualization and visualization. A further extension of the above sys-

tems, that worths mentioning, is Truthy which is produced and maintained by Indiana

University. It's, actually, a framework for real-time analysis of memes di�usion, in social

media by mining massive streams of public micro blogging events [42].
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Figure 2.4: The BlogPulse tool

2.2 Bursty Information

2.2.1 Event Burst

The burst of an event is signaled by the appearance of a large number of relevant docu-

ments in a relative small period of time. This depends on the number of documents and

their spread in time. Thus events are characterized by a life cycle according to their pop-

ularity during time. There are events with long, short or periodic lifespan. For example

events about football matches are periodic (every weekend), while an event related to a

war has a longer lifespan than an event about a car accident.

Figure 2.5: Histogram of a topic from TDT5 data set
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One further problem of topic detection and tracking is the context shifting. During the

life-cycle of an event, the context of documents related to it tends to alter. This is because

when an event is active, more and more documents are published that present diverse
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aspects of it and this results in reduction of the average similarity among the documents

of the same event. As Kleinberg observes in [29], "the burst-and-diverse" phenomenon of

events corresponds to the dynamic behavior of a document stream. According to �gure 2.6

(retrieved from [9]) that concerns the TDT1 copus, when an event is active the number

of related documents (x-axis) is increased, while the average similarity between them is

reduced (y-axis).

Figure 2.6: Documents similarity vs event activeness

	  

2.2.2 Burst detection

The rapid increase in the frequency of a term in a short period is called burst. Thus, a

word is bursty, when its frequency is encountered at an unusual high rate. The detection

of bursty events is known as burst detection procedure and it has a variety of applica-

tions. From monitoring the network tra�c or the price of a stock market to astronomical

observations and web topic Mining. Several methodologies for burst detection have been

proposed [6, 56,59].

In the �eld of data/text mining, occasionally, several burst detection algorithms have

been developed. [29] detects bursty words in email collection, using an in�nite-state au-

tomaton and computes the optimal state sequence using a statistical procedure. A varia-

tion of Kleinberg's method for BBSs (Bulletin Board Systems) and blogs text collection,

where the distribution of documents is not uniform, is described in [17]. In [52] a param-

eter free burst detection algorithm is presented, based on sophisticated data structures,

which detects bursts in multiple windows sizes simultaneously.

Fung et all [18] suggests a probabilistic framework, based on the binomial distribution,

to identify bursty words. Furthermore they apply spectral analysis in order to categorize

words in four categories to discover important and less-reported events. Lappas et all in
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[32] uses concepts from discrepancy theory, to model the burstiness of a word, developing

a parameter-free approach.

In addition, [11] presents the OMRBD algorithm, that detects bursty words by main-

taning multiple sliding windows of di�erent resolution. Moreover, in [51] the di�erence

between a bursty word and a buzzword is highlighted, proposing a buzzword detection

method. As Yi states "Buzzwords are terms of high momentum for a relatively short

period of time. Note that not all bursty events by the Kleinberg's model can be considered

as buzz because the model doesn't take into account the relative duration and the mass of

bursts".

Finally, Vlachos et all in [44] deals with the identi�cation of bursts from the query

logs of Microsoft's search engine. While in [27] it is examined the use of bursts of edits in

the discussion pages of Wikipedia articles to explore the process of how a topic is created.

2.2.3 Kleinberg model

A popular method for burst detection is proposed in [29], where author tries to investigate

the role of time in his personal e-mail by modeling the text stream using an in�nite-state

automaton (�gure 2.7).

Figure 2.7: Kleinberg's in�nite automaton

Figure retrieved from [29]

In this automaton, bursts appear as state transitions, corresponding to points in time

around which the frequency of the examined word changes signi�cantly. Moreover, a hier-

archical tree structure is created by the state transition-burstiness connection (�gure 2.8).

The most basic bursty model is the automaton with two states. It is ideal to describe

the timeline of a term. In this thesis, we used the batch mode of the 2-state automaton,

where documents arrive into consecutive batches. Suppose that there are T batches, where

the sequence (d1; :::; dT ) expresses the total number of documents in each time slice, while

(r1; ::::; rT ) is the number of documents that contain the examined word. The algorithm
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is a kind of a Hidden Markov model. The automaton has 2 states, one with low emission

rate p0 = |Rd|=T and another with higher rate p1 = s · p0, s � 1 (resolution). T is the

whole time range and
T∑
i=1

ri =| Rd | :

Figure 2.8: The hierarchical structure of burst

Figure retrieved from [29]

Figure 2.9: Kleinberg's 2-state automaton

In the proposed model each (ri; di) is considered to be an output symbol, that is

produced probabilistically according to the internal state of the HMM. When such tuple

sequence is given, the goal is to �nd an optimal state sequence q = (q1; :::qT ), where each

qi minimizes the cost that is calculated by the following equation:

�(i; rt; dt) = −ln

[(
dt
rt

)
prti (1− pi)

dt−rt

]
(2.1)
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The state transition sequence s that minimizes the above cost function is derived using

a dynamic programming algorithm, called Viterbi method. For a given input sequence

< r; d >= (< r1; d1 >; : : : ; < rT ; dT >), the Viterbi method identi�es the most likely state

sequence (viterbi path) of a hidden Markov model as follows.

1. t=0, C0(t) = 0 C1(t)= ∞

2. t = t+ 1

3. Compute cost Cj(t) for j=0,1

(a) Cj(t) = min(Cj(t− 1) + r(q; j))− �(j; rt; dt)

(b) r(q,j) is the state transition from the previous state q

and is de�ned as r(q; j) =  ∗ logT for q < j and r(q; j) = 0 for q ≥ j

4. Repeat steps 2 and 3 for all batches of documents

5. Select the state sequence with the minimum cost

Consecutive appearances of state 1 (bursty state) are considered as bursty moments of

the word. Thus, the length of a burst is de�ned from the appearance of the �rst (t1) un-

til the last bursty moment (t2), while the weight of the burst is calculated from equation: .

w =
t∑

t=t1

2(�(0; rt; dt)− �(1; rt; dt)) (2.2)

The weight, which is non-negative, is equal to the improvement in cost incurred by

using state p1 over the interval [t1,t2] rather than state p0.

The algorithm has two parameters. The resolution (s) and the conversion cost ().

The �rst one controls the di�erence between the burst (high emission rate) and the nor-

mal state (low emission rate). As Kleinberg mentions, small values of s often lead to long

bursts, while higher values increase the strictness of the algorithm criterion for how rapid

an increase of activity should in order to be considered as burst.

The second one (conversion cost) de�nes the cost of the automaton when changing

state. Higher (lower) values mean that the burst must be sustained over longer (shorter)

period of time in order to be detected by the algorithm. The default value of this parame-

ter is set to 1 which indicates that the cost is proportional to the increase in state number.

Unfortunately Kleinberg didn't propose any way of tuning these parameters that were

manually set. However, two algorithms are proposed in a recent study [13] for the estima-

tion of the above parameters. The disadvantage of these methods is that the estimation
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of the parameters is investigated at the word and not at the corpus level. Thus, it is time

consuming to �nd the best parameters for each word in the vocabulary, especially when

the vocabulary length is of order 103 in magnitude. Moreover the Kleinberg's burst detec-

tion algorithm is not appropriate for online burst detection. Finally, it is a computational

expensive method as for its implementation is used a dynamic programming algorithm.

2.3 Vector Space Model

The most widely-used text representation in the �eld of text mining is the Vector Space

Model (or term vector model). In VSM, a document is represented by a vector of weights

corresponding to text "features". The weight of each feature quanti�es its importance

to describe the document content. Thus, not all text features are useful in representing

a documents. As features, according to the common approach of Bag of Words (BOW),

distinct words are considered.

A document d, is represented as a vector of V features. In equation 2.3 T denotes the

document transpose and dij the weight of j-th feature (fj) inside document di.

d = [di1; : : : ; di|V |]
T ; d ∈ RV (2.3)

The most popular weighting scheme is the normalized tf-idf, which is the product of

two statistics. Term frequency and inverse document frequency.

tf − idft;d = tft;d × idft = tft;d × log(
N

dft
) (2.4)

Although, various ways for calculating the values of both statistics have been proposed,

we used the simplest and most common choice, where tft;d, is the raw frequency of term t

in document d. The idft, is the logarithmically scaled fraction of documents that contain

the term t, obtained by dividing the total number of documents (N ) by the number of

documents containing the term, and then taking the logarithm. It is a measure of how

much information the term provides. In other words, whether the term is common or

rare across all documents. When the TFIDF representation is used, cosine similarity has

been proved to be an e�ective measure for the task of document clustering. Given two

documents vectors, di and dj, cosine similarity computes the cosine of the angle between

them.

simcos(di; dj) =
dÔi dj

||di||2||dj||2
∈ [0; 1] (2.5)

An extension of VSM-BOW is the bag of phrases (VSM-BOP), where consecutive

words are regarded as distinct features (word n-grams). Despite the simplicity of VSM,

there are some de�ciencies, concerning the assumption of term independence. According
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to this hypothesis, the terms are statistically independent. Moreover, in the vector space

representation, the order in which the terms appear in the document is lost. In addition,

documents are represented in high dimensional and sparse feature space due to the large

vocabulary size. Finally the VSM-BOW cannot handle language phenomena such as

synonymy and polysemy, because the context a word appear is missing. Thus, due to the

semantic sensitivity, documents with similar context but di�erent terms vocabulary are

hard to be associated.

2.3.1 GVSM

Because of the di�culties with VSM, many variations have been proposed that map the

document vectors to a new feature space. This new space of features is known as concept

space and its dimension is equal or less than the initial. A document projection to the

concept space can be de�ned as

P vsm → d′ = Sd ∈ RV ′
V ′ ≤ V (2.6)

The matrix S, of dimension V ′ × V , is called semantic matrix. The cosine similarity

between two documents in the concept space can be computed with equation 2.7 where

lSi is the normalization factor of document di.

sim(cos)
sem (d′i; d

′
j) = (Sdi)

T (Sdj) = (lSi Sdi)
T (lSj Sdj) = lSi l

S
j (d

T
i S

TSdj) (2.7)

As reported by Kalogeratos in [26], the methods that have been proposed so far, ei-

ther interpret the above equation as a dot product of the document images to the new

feature space RV ′
, or as a measure that considers the correlation between features which

is expressed by the matrix STS.

The Generalised Vector Space model (GVSM), estimates the similarity between docu-

ments based on how their terms are related [46]. The image of a document to the concept

space is given by:

d′ = Xd (2.8)

In the above equation, d is part of document collection X. More speci�cally, X is a

NxV Document-Term matrix, whose rows and columns are indexed by the documents

and vocabulary terms respectively. This, according to equation 2.7, implies that STS=

XTX=SIMGV SM is a term similarity matrix. SIMGV SM represents the inner-products

of term vectors, introducing term to term correlation by deprecating at the same time

the pairwise orgononality assumption of the VSM. It is actually a V × V term similarity

matrix where the r-th row has the dot-product similarities between term vr and the rest

terms of the vocabulary.
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There are works that purpose di�erent measures to capture the terms correlations [5,

12, 14, 26]. In [5] the Context Vector Model (CVM-VSM) is introduced, where two co-

occurrence frequency measures are proposed in order to construct the term similarity

matrix. One relies on low level counting the co-occurrence of terms in the same documents

and the other tries to discover terms associations at a higher semantic similarity level.

Finally, [14] suggests the use of the covariance matrix between terms and the matrix of

Pearson's correlation coe�cients to estimate the term similarity matrix.

2.4 Event Modeling

As reported before, in literature two approaches are followed in o�-line or on-line mode,

in order to model an event:

1. Document-Based approaches

• [2] Each new document that arrives in the system, is compared with all clusters

of documents that have been created so far. If its similarity measure with the

cluster exceeds a threshold then is assigned to it. Otherwise, this document

starts a new event. According to this basic algorithmic approach several ideas

have been proposed to improve the clustering procedure. More speci�cally:

• [30, 31, 49] To improve the clustering accuracy they take into account entities

like places, date, time and persons' names that are involved in each event.

• [30,49] They observed that events of speci�c topics use the same sets of words.

Thus, before performing clustering they divided the documents into the respec-

tive topic categories.

• [30, 49, 54, 55] Di�erent reweighting in terms of each topic category, results in

signi�cant improvements in the clustering accuracy.

• [36] Proper names, locations, temporal expressions and normal terms are ex-

tracted forming the corresponding ontology of each document. Thus, each

document story is represented by these four sub-vectors and the similarity of

two documents is conducted by comparing a pair of their corresponding sub-

vectors.

2. Feature-Based approaches

• [18] A feature pivot clustering algorithm is proposed in order to group bursty

features. An event is signaled by the appearance of a group of bursty features.

• [20] An unsupervised greedy event detection algorithm is applied in a pool of

features, that have been categorized in the previous step in four non overlapping

groups. The method is able to detect aperiodic and periodic events.
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• [11] The bursty features are detected with the OMRBD algorithm, and then

a�nity clustering propagation is performed in order to form the events.

• [52] The burst of an event is considered as a set of bursty features, which are

extracted from short text streams.

• [43] A keyword graph is proposed based on word co-occurrences in documents.

Community detection methods, derived from social network analysis, are used

to discover and characterize the events.

For the purposes of this work, we follow the document-based approach. Therefore,

an event consists of a set of documents, thus our problem is transformed to a problem

of documents clustering, with the di�erence that we should take into consideration the

chronological sequence of documents. Therefore, the time factor adds one more dimension

to the problem of clustering. Stories that discuss the same event tend to be in temporal

proximity. Hence lexical similarity and temporal proximity are two major criteria for

our problem. In addition, the high dimensional and sparse feature space in combination

with language phenomena are challenges that a�ect the development of an e�ective al-

gorithm. Moreover, in the case of event detection and tracking, because of the temporal

and unpredictable nature of streams, the above issues complicate even more the problem

of document clustering.

2.4.1 Document based techniques

As expected, conventional clustering methods are not suitable for detecting events in

text stream, because the do not take into account the temporal relationship between the

documents. It is likely, to be clustered to the same group, documents that have similar

semantic content, but refer to di�erent events. On the other hand, algorithms that have

as input the number of clusters to be created are not appropriate. The prede�ned number

of clusters can not cover the changing nature of information ow. It is almost unlikely to

know in advance how many events will be identi�ed because of the complex and unpre-

dictable nature of text streams.

On-line methods

An important issue in on-line clustering (centroid and non-centroid) algorithms, is to

determine the similarity threshold. To be more precise, a known approach in the online

event detection is the single-pass clustering algorithm (�gure 2.10).

However, as pointed out by Allan in [2] and veri�ed by out experimental studies, a

�xed threshold in the on-line process is not appropriate. On the contrary, if the threshold

were adjusted each time to the 'energy' of the event, the results would be much more

e�cient. Intuitively, what we desire is a low threshold when an event is active to allow

the clustering of documents without reducing signi�cantly the accuracy of the clusters.
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Moreover, when an event is inactive, by increasing the threshold the algorithm would

avoid to group together irrelevant to the event documents.

Variations in this algorithm were proposed either by increasing similarity threshold

over time [2], or using a time window which speci�es the number of previous documents

that should be taken into consideration for clustering [55]. But both approaches reach to

the conclusion, that documents relating to events that spans a long time period, delegate

to di�erent groups.

Figure 2.10: Single pass document clustering

	  

In [9] the "life pro�le" for each event is proposed in order to select the appropriate

value of similarity threshold. Moreover, in [10] the life cycle of each event is modeled by

assigning an amount of "energy" to each one. This amount is declining over time, while

it grows as the number of correlated with the event documents increases. The threshold

is de�ned as the amount of energy of each event (�gure 2.11).

O�ine methods

In o�-line event detection, because of the fact that we have available the whole corpus

we could �nd statistical information for each term, concerning the ow of the text stream.

In addition, we could de�ne, from the beginning, the representatives of the events. All

these urge that we could study the problem of event detection and tracking also from this

perspective, the o�-line one, as we don't have to deal with the di�culties of the on-line
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version. Furthermore, we could take into consideration the burst intervals of each term.

The conclusions of such a research could be useful for the on-line process because the

development of an online event detection and tracking system, should �rst of all, deal

with the memory issues and then proceed to the clustering procedure.

Figure 2.11: Energy-based Single Pass clustering

	  

The methods that have been proposed so far, introduce the bursty information in

the text representation (VSM-BOW). Then, they are evaluated using classical clustering

algorithms like spherical K-means.

2.4.2 Bursty Feature representation

A fundamental approach, in this direction is presented in [23], where the bursty feature

representation is proposed. It is based on the bursty information of features as extracted

from the two-state Klenberg's automaton. A document vector d ∈ RV is transformed as

follows:

d(t)ij =

{
FPij + �wj, if fi ∈ B and t ∈ pj
FPij , otherwise,

(2.9)

where B denotes the set of bursty features, FPij the binary weight of term j in document

i at time t, � > 0 the burst coe�cient, wj and pj the bursty weight and its corresponding

interval. So each word in the vocabulary may be either no bursty at all, or bursty at one
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ore more non-overlapping time periods. As a result bursty words are strengthened by a

factor of �w. In the experiments an improvement is observed in the cluster purity and

entropy as well as the class entropy measure.

In their next work [21], the same authors tested the performance of their previous

idea using the TDIFD weighting scheme with the normalized (w') and unormalized bursty

weight (w), proposing the B-VSM representation with 5 di�erent variations. The �rst two

versions of B-VSM use the entire feature space d ∈ RV (equation 2.3)

(SAB) dij =

{
tfidfij + w′j; iffj ∈ B

tfidfij , otherwise,
(2.10)

(SMB) dij =

{
tfidfij · wj, if fj ∈ B
tfidfij , otherwise,

(2.11)

while the last three, use only the bursty feature space B.

di = [di1; : : : ; di|B|]
T (2.12)

(BAB) dij = tfidfij + w′j (2.13)

(BMB) dij = tfidfij · wj (2.14)

(BT) dij = tfidfij (2.15)

One distinction from the previous research [23], is that in [21] only the largest bursty

weight of each feature as its burstiness score are taken into account. Moreover the time

stamp t of each document is not regarded in any of the �ve weighting schemes. As a

result, the bursty weight of a feature fj is applied to the whole document collection and

not to the documents that are published during its bursty interval pj. Their experimental

results, on a subcorpus of the TDT3 dataset, reveal that the B-VSM is able to detect the

top-k bursty topics as well as to improve signi�cantly the recall and precision.

The method in [58] follows the similar concept with previous works [21, 23], aiming

to mine, retrospectively, events from text streams through the procedure of clustering.

The major contribution is the BurstVSM representation. In BurstVSM, the vocabulary

contains only the bursty terms (equation 2.12) and no extra weight is added

(Burst-VSM) d
(t)
ij =

{
tfidfij, if t ∈ pj
0 , otherwise,

(2.16)
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where pj is the bursty period of feature j.

Moreover the bursty feature space is computed by parameterizing the Kleinberg's

method, using a sliding window to recompute the probabilities p0 and p1. Last but

not least, [58] deals with multiple bursts contrary to [21]. The bene�ts from taking into

account the multiple bursty periods of each word are highlighted in the Table reftab:novel.

Table 2.1: Summary of representation models

semantic temporal dimension trend

information information reduction modeling

VSM X X X bad

boostVSM X partially X moderate

BurstVSM X X X good

table derived from [58]

We should notice that according to [23], a bursty-feature-only representation, although

it reduces the feature space, frequently degenerates into a zero-vector due to the sparsity

of the bursty features. Finally, a close method to the aforementioned works is [24]. As-

suming that traditional vector space model cannot capture the temporal aspect of text

streams, the bursty feature space is explored either with the Kleinberg's two state au-

tomaton or using the burst detection method proposed in [32]. The major contribution is

the bursty distance measurement to calculate the similarity between a pair of documents,

as well as the local burstiness score, based on the local word occurrence.

2.5 Spherical K-means

K-means is a fast and easy to understand clustering algorithm. It assumes a representative

of each cluster and an objective function that evaluates the quality of each partition.

Given a dataset and the number K of desired clusters, the algorithm, initially selects K -

representatives, usually by random, as the centers of the clusters. After that, each object

(document) is assigned to the partition with the closest center. Then, the new centers are

recalculated and the algorithm repeats the assignment of all objects (documents) to the

new cluster representatives. The above procedure could be summarized in the following

two steps.

1. Reassignment step: each object(documents) is assigned to the cluster whose center

is nearest to it
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2. Update step: Each cluster representative is updated in such a way that the objective

function is optimized in every algorithmically step.

The k-means converges because in each iteration is created a more homogenous par-

tition (or the clustering error is reduced if take into account the distance measure), ter-

minating at a local maximum(minimum) where no more changes in the clusters could be

occurred. The main disadvantage of the algorithm is that although it converges quickly

and monotonically, it results in a local minimum (or maximum), depending on the ini-

tialization of the centers.

Its time complexity is O(tNV), where t ≤MAX ITER is the number of iterations un-

til convergence. N is the number of documents and V the length of the vocabulary. When

the centers are computed as the arithmetic mean (centroids) the K-means minimizes the

sum of sum of squared euclidean distances between the objects of the cluster and the

centroids. Another well-known method is K -medoid where a cluster is represented with

the medoid object, de�ned as the one that has the maximum average similarity to the

objects of its cluster.

Spherical k-means(spk-means) is a variant of k-means that utilizes the cosine similarity

for the data vectors normalized with respect to L2-norm. The maximized objective func-

tion is the clustering cohesion. The optimal representative for a cluster is its normalized

centroid and the overall clustering cohesion of a partition C is given by:

Cohesion(C) =
�∑

j=1

∑
di∈cj

(rcj)
Tdi (2.17)

where rcj is the representative (normalized centroid) of cluster cj.
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Chapter 3

Correlated Bursty Terms

3.1 Terminologies

3.2 Term similarity matrices

3.3 Correlated Bursty Term Clustering

3.1 Terminologies

As text stream is considered the appearance of documents according to a predi�ned time-

line

Stream = [S1; : : : ; ST ] (3.1)

where Si represents the set of documents with the i-th time-stamp. We denote a corpus of

text streams with N documents as X, and T the time period that it spans. Each document

d
(t)
i that appears in one of the T batches, is represented as a vector of V features using

the TFIDF representation.

For the identi�cation of the bursty feature space B, we used the Kleinberg's two-state

automaton, that returns the bursty weight wj and interval pj of each feature fj. Although

the value of equation 2.2 is a positive number, this does not imply that the individual

weights of each time slot that is enclosed in the interval [t1,t2] are all positive.

wt = �(0; rt; dt)− �(1; rt; dt) (3.2)

After experimental e�orts, we observed that the following burst-reweighing scheme

works better for our data sets.
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d(t)ij =

{
tfidfij · wj, if fj ∈ B and t ∈ pj
tfidfij , otherwise,

(3.3)

where wj is given by 2.2. Thus, after applying the above equation to the document

collection X, we have at our disposal the corpus representation XB given by 3.3.

3.2 Term similarity matrices

The experiments in all previous works [5,12,14], that purpose di�erent variations of the

term similarity matrix, conducted for static document collections. On the other, none of

the works [21,23,58], that study the problem of text stream clustering, use the correlation

between features in order to improve clustering performance.

In our research, we are interested in studying the problem of topic detection and

tracking in a retrospective way(o�ine). Using the vector space bag of words model, we

try to exploit correlations of busrty words, in order to form term similarity matrices that

would be able to improve the clustering of text streams. The term similarity matrix of

the GVSM (X ′X) captures the relation of terms that co-occur in the same documents.

Initially, we propose the SIM bursty
GV SM term similarity matrix, which contains not only the

co-occurrence but also the co-burstiness of terms.

SIM bursty
GV SM = XB′ ·XB (3.4)

Note that the SIM bursty
GV SM and SIMGV SM matrices enclose only the relations of terms

that appear together, in at least one document. However, there are documents that con-

tain totally di�erent words which are semantically related. We claim that if such words

are bursty and refer to the same event, their intervals of high frequency would be over-

lapping. Such a similarity term matrix could capture not only the co-bursty features that

co-occure in the same document vectors, but also features that happen to be bursty dur-

ing the same period. For this reason we propose the SIM1B as well as SIM2B similarity

matrices.

In order to construct the two matrices, �rst we need to create the BI matrix, of

dimension V × T (�gure 3.1), which indicates the time slot a feature is bursty and its

corresponding burstiness score.

BI(i; j) =


0 if fi =∈ B

wj
i ; w

j
i > 0 if fi ∈ B

(3.5)
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where wj
i is the burst weight of feature i at time slot j according to equation 3.2.

Figure 3.1: An example of BI

The white spaces are the bursty periods of each term, that the bursty weight is positive.

SIM1B = BI ·BI ′ (3.6)

SIM1B(i; j) =
T∑
�=1

BIi�BI
′
�j (3.7)

SIM2B = SIM1B=T − A (3.8)

A = (G′ ·G)=T (3.9)

G(i) =


0, if fi =∈ B
or
T∑
j=1

BI(i; j); iffi ∈ B
(3.10)

In a text stream, it is common for some events to overlap in time. For example

the "Ebola virus epidemic in West Africa" and "XXII Olympic Winter Game" events,

emerged according (to Wikipedia1) in news sources on February of 2014 . Moreover the

probability the bursty features of these events to occur in the same time slots is very

high. However, the conceptual content of such events is totally di�erent. In such cases

the SIM1B and SIM2B similarity matrices would capture the co-burst relation of terms

that refer to semantically unrelated events. To tackle this limitation, we propose the

SIM1cor
B

and SIM2cor
B

term matrices.

1http://en.wikipedia.org/wiki/2014
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SIM1(i; j)corB = SIM1B(i; j) · COR(i; j) (3.11)

SIM2(i; j)corB = SIM2B(i; j) · COR(i; j) (3.12)

where COR is the matrix that contains the correlation coe�cients from X. Although the

correlation matrix has been proposed in [14], in our case we are interested only in the

bursty terms. All the above term matrices are symmetric, non negative and positive de�-

nite. However in order to apply them in a document collection we normalize their columns.

The normalization is done by dividing the elements of each column by the square root of

the euclidean norm of term weights. As it is anticipated, after normalization the matrices

are no longer symmetric.

The size of all matrices is O(V 2). The advantage of the above matrices, contrary

to SIM bursty
GV SM and SIM bursty

GV SM , is that they are more sparse since they contain only the

co-burstiness and not the co-occurrence relation of the words. The disadvantage of all

matrices is that the memory requirements is large enough, especially when the number of

terms increases. However, this could be handled with semantic kernels. But such a study

is beyond the scope of this thesis.

3.3 Correlated Bursty Term Clustering

The bursty interval of bursty features denotes the period during which the event associ-

ated with them is "hot". In other words, the majority of document stories that discuss the

same event are published around this time period, thus their temporal proximity tends to

be close. Furthermore and according to Kleinberg's burst detection method (batch mode),

in order for a term to be characterized as bursty, it depends on the number of related

documents. The larger the number of documents that contain the candidate term, the

larger the probability this term to be part of B. At last, the fact that a great amount of

research work that study the problem of topic detection follow the feature based approach

(via the discovery of bursty words) make us to do the following assumption.

The bursty terms could suggest to us to the most important documents of each event.

We regard as important, a document that is close to the centroid (or medoid) of the docu-

ments that are derived from the same class. The discovery of such documents, is expected

to improve the performance of all algorithms that are part of the K-means family, because

their results depend on the selection of the initial cluster centers.

The �rst part of the method, we propose for the selection of the K centers, is based on

the philosophy of the feature-based methods. i) Initially, we create K ′ group of features

applying the Spectral Clustering algorithm to a bursty term graph, then ii) we compute
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the K ′-representatives using the synthetic prototypes procedure [25]. The representatives

are computed from the set of documents that contain the bursty words and are published

during their bursty interval. Moreover, we assign these documents (DocsB) to the near-

est cluster representatives forming K ′ clusters of documents. iii) At the end, we reduce

the number clusters from K ′ to K by merging the most similar clusters according to the

cosine similarity of their representatives. The pseudo-code of our method follows.

function CBTC(D, Pdocs, Pterms, �; �;K;K ′, adj)

1. c(f) ← GraphCuster(adj;K ′)

2. {SP; yc; K ′} ← ConstructBurstySP (c(f); D; Pdocs; P terms; �; � )

3. {SP} ←MergeClusters(yc; SP;K;K
′; Pdocs; P terms; �; �)

3.3.1 Bursty Term Graph

In order to cluster the bursty features, we should de�ne a relation between them. For

that reason, we decided to create a term co-occurence graph from the set of bursty terms

B. In literature there are several works following this concept either for event detection

or topic summarization.

In [39] an event detection algorithm is proposed using a keyword co-occurence graph.In

[43] a graph is created, from noun phrases and name entities, and then a community de-

tection algorithm is applied to discover events. However, none of the these works consider

the burstiness of each feature. Moreover in [37] a network is built for a speci�c trending

topic, where nodes are bursty and nonbursty words and an edge denotes a co-occurence

relation. In addition, in [50] the problem of "bursty event tagging" is studied where an

event is described from a set of tags. The authors observed that tags from various web

sources reect the users' interests over time, thus by applying graph clustering techniques

they detected bursty events. Finally a more sophisticated method for event detection

from social text streams, like blogs and emails is presented in [57].

Our graph network G(V,E) consists of bursty terms only (|B| = |V | ). Nodes corre-
spond to terms, while an edge ekj between two nodes nk and nj is added, if the following

two conditions, for terms wk and wj, are satis�ed:

1. Their bursty intervals overlap.

2. During the overlapping period, the terms wk and wj co-occur in at least one docu-

ment.
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The weight of each edge is derived from [11,44]:

w(k; j) =
1

2

(
|Dk ∩Dj|
|Dk|

+
|Dk ∩Dj|
|Dj|

)
(3.13)

where Dk is the set of documents that include term fk and are published in its bursty

interval. Vertices with degree less than 1 are eliminated from the graph. Using the result-

ing graph, we apply the Spectral Clustering algorithm [38] to partition the bursty terms

into K ′ non-overlapping clusters. Finally, we omit groups with less than two terms.

function GraphCluster(adj;K ′)

input : an adjacent matrix adj that represents the structure of the

bursty-features graph and K' the number of desired clusters

output : c(f) = {c(f)1 ; : : : ; c
(f)
K′ } the clustering

solution with K' groups of terms

1. c(f) ← SpectralClustering(adj;K ′)

2. c(f) ← c(f) − {c(f)i ; :::;∀i = 1 : K ′; |c(f)i | < 2}

3. K ′ ← |c(f)|

4. return(c(f))

3.3.2 Cluster representatives

In the second step of our algorithm, we determine the documents that are related to each

bursty term. The association criterion is for a bursty term to appear in a document at

least once. The considered documents of each term, are only those that are published

during its bursty interval.

Then, the representative of each group of terms is computed, from the documents

that are part of the set Docs.For this task, we used the synthetic prototypes [25] instead

of centroids or medoids. This is due to the fact that, i) the set Docs may possess lit-

tle amount of documents, ii) the high dimensionality and sparsity of the data and iii)

the examined set could possibly contain documents from di�erent topics, therefore we

require a method that would compute the representative of the cluster from documents

of the dominant class. For these reasons, we chose the synthetic prototypes representation.

Given a cluster of documents, the algorithm computes its medoid as the document

with the maximum average similarity to the objects of the cluster. This is the �rst rep-

resentative. Then, selects iteratively the closest documents to the representative. The

number of the closest documents is de�ned as a percentage (Pdocs) of the cluster size. At
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the end of each iteration, it calculates the new representative as the centroid of the se-

lected documents. Finally, the method chooses the most highly weighted features (Pterms

percentage of the vocabulary length) to construct the synthetic prototype.

We should notice, that the set Docs is changing at every iteration. Moreover, a doc-

ument may contain multiple bursty terms, which are clustered in di�erent groups during

the �rst step. Thus, it is possible a document to appear more than one iteration in the

set Docs. All the documents that are published during the bursty intervals, and contain

at least one bursty term, are stored in the variable DocsB. The set DocsB is the pool of

documents from which we are going to create the document clusters.

In the last step, we cluster the documents that belong to the set DocsB into K ′ groups.

This is performed by assigning each document to the cluster with the closest representa-

tive. The similarity measure that is used to perform the comparison is the cosine similarity

(equation 2.5). By performing this clustering step, we partition the set DocsB into K ′

disjoint groups. In that way, we associate the clusters of bursty terms with groups of

documents.

function ConstructBurstySP (c(f); D; Pdocs; P terms; �; �)

input : c(f) is the clustering solution of function GraphCluster

D is the text stream collection

Pdocs, Pterm, � and � parameters for the synthetic prototype method

output : SP = {SP1; : : : ; SPK′} the set of synthetic prototypes
yc = {yc1; : : : ; yK′} the clusters of documents

let : fk denote the k-feature, fk ∈ B

c
(D)
i the i-th group of document with 1 ≤ i ≤ K ′

Dfk is the set of documents containing term fk
ConstructSP: method for the syntetic prototypes

AssignToClosest: clusters the documents DocsB to the K' closest centers (SP)

end let

1. DocsB ← �

2. for i = 1 : : : K ′

3. Docs ← �

4. for each fk ∈ C(f)
i

5. Docs ← Docs+ {Dfk}

6. end for
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7. DocsB ← DocsB + {Docs}

8. SPi ← ConstructSP(Docs; Pdocs; P terms; �; �)

9. end for

10. yc ← AssignToClosest(SP;DocsB)

11. return (SP, yc)

3.3.3 Merging step

In the last step of the algorithm, cluster reduction is performed. In each iteration, the

clusters with most similar representatives are merged forming a new cluster. After that,

the new representative is calculated, using again the synthetic prototype procedure. The

procedure ends until the number of clusters is equal to the desired number.

function MergeClusters(yc; SP , K, K', Pdocs, Pterms, �; �)

input : yc and SP are the outputs of function ConstructBurstySP

K is the number of clusters in which we would like to reduce the set yc
Pdocs, Pterm, � and � are the parameters of constructs of SP method

output : SP: synthetic prototypes centers

let : ClosestCentres: method that �nd the most similar synthetic centers

Merge: method that merges two clusters

end let

1. repeat

2. {�; e} ← ClosestCentres {S; P}

3. yc�e ←Merge{yc�; yce}

4. yc ← yc − {yc�; yce}+ {yc�e}

5. SP�e ← ConstructSP (yc�e ; c; Pdocs; P terms; �; �)

6. SP ← SP + {SP�e} − {SP�; SPe}

7. K ′ ← K − 1

8. until K ′ ≡ K

9. return SP
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Chapter 4

Experiments

4.1 Data-sets

4.2 Text Stream Generator

4.3 Experimental Method

4.4 Experimental Results

4.1 Data-sets

In our experiments, we used 4 di�erent text datasets. D1-D2 are subsets of the 20-

NewsGroups by choosing randomly, 100 documents from each selected category. D3 is

a version of the Reuters-21578 benchmark text collection, by selecting the 10 top-sized

categories. From each category we chose 100 documents at random, except for the last

one, where we took all its documents as its size is below 100.

D5 is a subset of GoogleNews dataset 1, that contains English-written articles from

the "Technology" category. From this text collection we kept the classes with more than

20 documents and we extracted the main content from each article. More details about

this dataset and the way it was annotated, can be found in [28].

D4 is a subset of TDT5 2 text collection, which contains 250 topics gathered form 15

di�erent newswire sources between April and September of 2003. The 75% of the topics

are monolingual (English, Arabic or Mandarin Chinese) and the rest multilingual. From

this dataset we kept the English-written documents and those appearing in two or more

1http://www.db-net.aueb.gr/GoogleNewsDataset/
2https://catalog.ldc.upenn.edu/docs/LDC2006T19/TDT2004V1.2.pdf
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categories were removed. From the resulting categories, we considered only those with

more than 50 document stories.

Pre-processing of a raw text collection is a required step before applying any clustering

algorithm. A standard method consists of two steps. Initially stop-words, numbers and

alphanumerics are eliminated. Then, the stemming algorithm [41] is applied, in order

to replace each word by its corresponding word stem. The derived word stems form the

vocabulary of the text collection. For the pre-processing, we used the "Text to matrix

Generator toolkit" [53].

To reduce the feature space in D1,D2 and D3, we ignored the words that appear in

less than 5 documents, while the threshold, for D4 and D5, was set to 3. For each of

the last two datasets, we calculated three quantiles from the terms document frequency

distribution. In that way, the distribution was divided in three equal parts. We excluded

the corner parts (terms with very high and very low document frequency) and we kept

the rest words for our vocabulary. The documents with no words, after the previous

preprocessing, were not taken into consideration. The characteristics of the above text

datasets are presented in Table 4.1, while Tables 4.4 and 4.3 present the events and the

topics from TDT5, GoogleNews, 20-NewsGroups and Reuters-21578 datasets respectively.

Table 4.1: Characteristics of text document collections

Name Classes N V Balance V'

D1 10 1000 2352 1 45,89

D2 10 1000 2310 1 44,54

D3 10 993 1566 0,93 44,16

D4 30 4972 4717 0,06 21,54

D5 11 268 1298 0,4318 59,07

N denotes the number of documents, V the size of the vocabulary, V' the average document

vocabulary and Balance the ratio of the smallest to the largest class

The pre-de�ned timeline of the TDT5 and GoogleNews datasets was used and docu-

ments that were published the same day were inserted in the same batch. Because of the

lack of timestamps in the 20-NewsGroups and Reuters-21578 data, we used a simulation

method in order, arti�cially, to produce topic bursts.
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Table 4.2: Selected topics for D1,D2 and D3

Dataset Source topic

D1 20-NGs: graphics, windows.misc, pc.hardware,

mac.hardware, windows.x, autos,

motorcycles, politics.guns,

politics.mideast, politics.misc

D2 20NGs: atheism, graphics, ibm.pc.hardware,

forsale, autos, sport.baseball,

crypt, religion.christian

politics.guns, politics.misc

D3 Reuters -21578: acq, corn, crude,

earn, grain, interest, money-fx,

ship, trade, wheat

Table 4.3: D5 - subset of GoogleNews

id topicID Name

1 65 AT&T Unveils Shared Wireless Data Plans

2 186 Apple Considered Investing in Twitter

3 15 Google Nexus 7 tablet goes on sale in US

4 555 VMware buys Nicira for $1.05 billion

5 646 Google unveils price for gigabit Internet service

6 5 Digg acquired by Betaworks

7 252 Microsoft Reboots Hotmail As Outlook

8 425 FTC Fines Google for Safari Privacy Violations

9 454 Nokia cuts Lumia 900 price in half to $50

10 19 Apple Brings Products Back Into EPEAT Circle

11 496 Yahoo con�rms 400k account hacks
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Table 4.4: D4 - subset of TDT5

id topicID Name

1 55005 Sosa ejected, cheating suspected

2 55012 National Do Not Call Registry

3 55016 Gay Bishop

4 55029 Swedish Foreign Minister killed

5 55047 Kobe charged with sexual assault

6 55063 (SARS) Quarantined medics in Taiwan protest

7 55069 Earthquake in Algeria

8 55072 Court indicts Liberian President

9 55076 Protests at 2003 Masters Tournament

10 55078 Looting at Iraqi nuclear site

11 55080 Spanish Elections

12 55087 Earthquake in Turkey

13 55089 Liberian former president arrives in exile

14 55090 Blackout in US and Canada

15 55098 Bush and Blair Summit

16 55103 Two Britons among terror suspects

17 55105 UN o�cial killed in attack

18 55106 Bombing in Riyadh, Saudi Arabia

19 55107 Casablanca bombs

20 55109 Israel withdraws troops from Gaza

21 55117 Cambodian Elections

22 55118 World Economic Forum in Jordan

23 55125 Sweden rejects the Euro

24 55128 Mad cow disease in North America

25 55155 Chinese Submarine Accident

26 55166 Suicide bombers hit Moscow concert

27 55181 Palestine: Ahmed Qureia tapped as next prime minister

28 55200 Iraq: Protection of antiquities

29 55227 Bin Laden Videotape

30 55240 US troops �re on Mosul crowd

4.2 Text Stream Generator

The major assumption we made in order create topic bursts, is that documents from the

same class follow an exponential distribution. Thus, because of the topic bursts, bursts of

terms would be produced too. In every time window a number of documents is assigned.

The probability a term to characterized as bursty in each time window depends on the
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number of documents that contain it. Below the pseudocode of the text stream generator

is displayed3.

The input of the method, consists of the length of the stream timeline T, the number

of topics K and the maximum number of bursts per topic (burstsmax). Furthermore, the

maximum and minimum lambda of the exponential distribution (lmin; lmax) as well as the

maximum and minimum percentage of documents that participate in the topic bursts,

are input of the generator (rdmin; rdmax). The exact number of bursts, documents and

the lambda of each burst is chosen randomly in the respective intervals.

function TextStreamGenerator(T, K, IDS, lmin; lmax; burstsmax; rdmin; rdmax )

input : T the text stream period

K: the number of topics

IDS: the id of each document

lmin; lmax: min and max lambda of the exponential distribution

burstsmax: max number of bursts

rdmax: max ratio of stories in the bursty topic intervals

rdmin: min ratio of stories in the bursty topic intervals

output : text stream S(equation 3.1)

let : Numbersbursts denote the number of bursts per topic

docsratio the percentage of documents from each category in the bursty intervals

select random: method that selects randomly documents from a category

di�: method that returns the di�erence between two sets

distribute: method that distributes the selected document ids into T batches

according to an exponential (or randomly)

end let

1. for i = 1 . . .K

2. Numberbursts ← rand(1;burstsmax)

3. docsratio ← rand(rdmin; rdmax)

4. Docs← select random(Ci; docsratio)

5. Docsrest ← diff(Ci; Docs)

6. forj = 1 : : : Numbersbursts

7. lambda← rand( lmin; lmax)

3It should be noted that the code is developed and maintained by the postdoctoral researcher Argyris

Kalogeratos, email : kalogeratos@cmla.ens-cachan.fr
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8. S← distribute (T; lambda;Docs)

9. S← distribute (T; random;Docsrest)

10. end for

11. end

12. return

4.3 Experimental Protocol

We compared our similarity matrices, SIM bursty
GV SM - SIM1B - SIM2B - SIM1cor

B
- SIM2cor

B
,

with the GVSM matrix as well as the static VSM (t�df) and the bursty feature representa-

tion (equation 3.3). We designed three experiments. The �rst experiment was conducted

on the last two datasets D4 and D5, where the text stream was created based on the

documents' daily timestamps.

For the D1, D2 and D3 datasets, due to the lack of documents' timestamps, we de-

signed two experiments using the stream-generator to create topic bursts. In the �rst

experiment (Experiment A), the duration T was set to 30 and in the second (Experiment

B) to 90 time units. Furthermore, in the �rst case, the number of bursts per topic was

one or two, while in the second all topics had only one burst.

Table 4.5: Parameters of the Text Stream Generator

Experiment A B

T 30 90

lamba [0.2:0.9] [0.2:0.9]

#bursts per topic 1-2 1

%docs in bursts 0.7-0.9 0.7-0.9

For each burst, the parameter lambda of the exponential distribution was selected,

randomly, from the interval [0.2:0.9]. We chose, this interval, because values higher than

1 restricted a burst in only one time window, while values close to zero sustained a burst

over many time slots. The percentage of documents, from each topic, that would be

attached to the bursty intervals was picked, randomly, from 0.7 to 0.9. Finally, each

experiment was executed 5 times, by randomly initializing the stream generator.
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The reason, we designed our experiments in that way, is to study the proposed sim-

ilarity matrices in two kind of situations; in "complicated" (Experiment A) and "more

relaxed" (Experiment B) text streams. In the �rst case, the overlapping between topics

is higher. While in the second situation, the probability of simultaneously occurring two

topic bursts in the same timeslot is lower. For that reason we introduce a supervised

metric, the entropy of a text stream as the mean of entropy of all windows:

Hs =

T∑
t=1

Hst

T
(4.1)

H t
s = −

∑
i

(n(cti)=n
t) · log2(n(cti)=nt) (4.2)

where nt is the number of documents in the t-th batch and n(cti) the number of documents

from class ci.

Table 4.6: Stream Statistics

Name V B m H

D1-T=30 2352 289,4 33,3 2,1157 ±0; 9035
D1-T=90 2342 597 11,4 0,8161 ±0; 7243
D2-T=30 2310 276 29,2 2,31 ±0; 891
D2-T=90 2310 555 11,1 0,8903 ±0; 7132
D3-T=30 1566 290,6 33,1 2,1798 ±0; 8833
D3-T=90 1566 544 11 0.8387 ±0:7442
D4-T=183 4717 4020 23,8483 2,0529 ±0; 5811
D5-T=31 1298 400 8,6452 0,2369 ±0; 5429

V denotes the vocabulary size, B the number of bursty terms, m the average number of

documents per timestamp and H the stream entropy

The new image of a document, after applying on it a term similarity matrix SIM, is

given by the product d′ = d ·SIM . Therefore, the image of a text collection is the product

X ′ = X ·SIM . We multiplied all the similarity matrices with representations X and XB.

To assess the quality of each matrix, we tested each mapping document collection

using the spherical k-means algorithm. The pre-de�ned number of K-clusters corresponds

to the number of events in a collection. In addition, the algorithm ran 100 times and

each time the k centers were randomly initialized, but all representations were booted up

using the same random document seeds.
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For the evaluation of the CBTC algorithm, we conducted experiments on all �ve data

sets running the spherical K-means in X and XB representation. For the D1, D2 and

D3 data sets we used the parameters of Experiment A executed it 1 time, by randomly

initializing the text stream generator. Moreover all methods were initialized using the

same random document seeds.

4.3.1 Evaluation Metrics

The evaluation was based on three di�erent supervised measures. At this point we de�ne

the following:

• N is the number of docs

• C is the cluster solution of k-cluster

c1; :::; c�

• cp is the portion of documents according to their true class labels

cp1; :::; c
p
�

• Ni, the size of c
p
i

• ni, the size of ci

• nij, the number of documents that are clustered to cj but they belong to cpi .

Purity

Purity can be interpreted as the classi�cation accuracy, if all the samples of a cluster are

predicted to be members of the dominant class.

Purity(c) =
1

N

�∑
j=1

max{nij} (4.3)

F1-measure

F1 is the harmonic mean of precision (P = TP
TP+FP

) and recall (R = TP
TP+FN

), where TP,

FP and FN denote True Positive, False Positive and False negative respectively.

F1 =
2 · P ·R
P +R

∈ [0; 1] (4.4)

Lower (higher) values of F1 indicate worse (better) solution.
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Normalized Mutual Information

The numerator is the Mutual Information measure and the denominator is the maximum

between cluster and class entropy.

NMI =

∑
(
nji
N
)log2

(
nij
N

)

(
nP
i
N

)(
nj
N

)

max{H(c); H(cP )}
(4.5)

We report the average value (denoted as 'avg') of each metric over the runs on a

dataset as well as the best value (denoted as 'best') corresponding to the solution with

the the highest clustering objective function (equation 2.17) among the 100 runs.

4.4 Experimental Results

• Term-Similarity matrices

GoogleNews

Table 4.7: Term-Similarity matrices results on the D5 using spherical K-means

avg. avg. avg. best best best

Purity F1 NMI Purity F1 NMI

X 0,55694 0,56595 0,47404 0,56343 0,5928 0,5156

XB 0,79388 0,79319 0,77183 0,89552 0,89624 0,84097

X·SIMGV SM 0,55728 0,58258 0,50198 0,58582 0,62992 0,5359

XB·SIMGV SM 0,7194 0,74308 0,70972 0,83582 0,85363 0,79786

X·SIMbursty
GV SM 0,7222 0,74389 0,69454 0,81716 0,83802 0,76973

XB·SIMbursty
GV SM 0,78138 0,78692 0,77716 0,92164 0,92246 0,87379

X·SIM1cor
B

0,70216 0,72757 0,66245 0,74627 0,78115 0,70301

XB·SIM1cor
B

0,80679 0,81843 0,81033 0,9403 0,94077 0,90035

X·SIM2cor
B

0,69616 0,72219 0,65649 0,78731 0,80006 0,71304

XB·SIM2cor
B

0,80847 0,81924 0,81064 0,95522 0,95472 0,92034

X·SIM1B 0,65396 0,68157 0,63284 0,65299 0,70403 0,65002

XB·SIM1B 0,75784 0,78265 0,77505 0,83209 0,83747 0,8235

X·SIM2B 0,65649 0,68351 0,63315 0,70149 0,72777 0,65982

XB·SIM1B 0,76575 0,7893 0,78022 0,88433 0,89287 0,86173

We observe that the representation XB·SIMbursty
GV SM outperformed all the others. Prob-

ably, because in this text stream the events are well-separated. Moreover, from all
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the datasets, this is the one with the lowest stream entropy.

TDT5

The D4 dataset is an imbalanced text collection, as there are some events with many

and others with limited document stories. In that case the Purity is a biased metric

as it favors the dominant class. For this reason we should pay attention to the

NMI metric, in order to trade o� the quality of the clustering, against the number

of clusters. Although the best solution, for the spk-means algorithm, was accom-

plished using XB·SIMGV SM , we should also notice the performance of XB·SIM1cor
B

that achieved slightly less NMI, but better F1 score. On the other, the XB·SIMbursty
GV SM

representation, gave the highest average measurements.

Table 4.8: Term-Similarity matrices results on the D4 using spherical K-means

avg. avg. avg. best best best

Purity F1 NMI Purity F1 NMI

X 0,56383 0,51125 0,58706 0,61826 0,5767 0,62348

XB 0,61354 0,55601 0,6412 0,66895 0,63935 0,6714

X·SIMGV SM 0,67542 0,62208 0,68046 0,73994 0,68698 0,71128

XB·SIMGV SM 0,71793 0,64839 0,72391 0,76126 0,71067 0,75881

X·SIMbursty
GV SM 0,69997 0,63661 0,69935 0,73632 0,69522 0,72526

XB·SIMbursty
GV SM 0,72068 0,65254 0,72698 0,75201 0,69625 0,75144

X·SIM1cor
B

0,68054 0,62268 0,68317 0,70374 0,66334 0,70293

XB·SIM1cor
B

0,70582 0,63788 0,71551 0,76287 0,72038 0,75339

X·SIM2cor
B

0,67924 0,62238 0,68213 0,70716 0,67449 0,70543

XB·SIM2cor
B

0,70594 0,63856 0,71516 0,75905 0,7156 0,74873

X·SIM1B 0,61754 0,55369 0,63469 0,64642 0,57477 0,65389

XB·SIM1B 0,62709 0,55621 0,65211 0,64019 0,55793 0,66445

X·SIM2B 0,61749 0,55452 0,63513 0,65648 0,58328 0,65463

XB·SIM2B 0,62808 0,55715 0,65311 0,63717 0,55614 0,66371

Reuters

In the Experiment B (T=90), where the text stream is created from the D3 dataset,

the XB representation was the best. But things were little di�erent in Experiment

A, where the stories are published in narrower time period (T=30). The reported

best solution, with max Purity and F1, was derived from the same method as before

(XB), while the maximum NMI from X·SIM1cor
B

similarity matrix. In addition, the

X·SIM2cor
B

produced the highest average measurements for all three metrics.
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Table 4.9: Term-Similarity matrices results on the D3 using spherical K-means

T=30

avg. avg. avg. best best best

Purity F1 NMI Purity F1 NMI

X 0,77058 0,77449 0,74477 0,8711 0,86384 0,82431

XB 0,79441 0,80148 0,75424 0,89648 0,89537 0,82597

X·SIMGV SM 0,75265 0,76099 0,72799 0,83887 0,82763 0,78172

XB·SIMGV SM 0,77239 0,78397 0,73725 0,8433 0,83686 0,78152

X·SIMbursty
GV SM 0,785 0,80196 0,77217 0,86485 0,86639 0,82157

XB·SIMbursty
GV SM 0,78437 0,80077 0,75364 0,8719 0,87698 0,80743

X·SIM1cor
B

0,79639 0,80745 0,77461 0,88419 0,88724 0,83861

XB·SIM1cor
B

0,79047 0,80189 0,74171 0,88218 0,88126 0,80103

X·SIM2cor
B

0,7969 0,80795 0,77549 0,87029 0,87261 0,83362

XB·SIM2cor
B

0,79158 0,80287 0,7441 0,88379 0,88239 0,80426

X·SIM1B 0,70368 0,72187 0,66663 0,76918 0,78179 0,71477

XB·SIM1B 0,66448 0,67963 0,59367 0,69144 0,69447 0,6092

X·SIM2B 0,70989 0,72733 0,67194 0,78691 0,7974 0,72769

XB·SIM2B 0,66713 0,68125 0,59614 0,6856 0,69201 0,60591

T=90

X 0,77058 0,77449 0,74477 0,8711 0,86384 0,82431

XB 0,82896 0,8411 0,82602 0,92991 0,92993 0,88855

X·SIMGV SM 0,75265 0,76099 0,72799 0,83887 0,82763 0,78172

XB·SIMGV SM 0,79833 0,81848 0,79222 0,8709 0,88096 0,84261

X·SIMbursty
GV SM 0,80139 0,82038 0,7921 0,86244 0,86954 0,83152

XB·SIMbursty
GV SM 0,7888 0,8126 0,79615 0,89063 0,89701 0,86274

X·SIM1cor
B

0,79728 0,81459 0,78368 0,87372 0,87071 0,82908

XB·SIM1cor
B

0,78709 0,8057 0,78939 0,90413 0,90213 0,85801

X·SIM2cor
B

0,79871 0,81489 0,78453 0,87412 0,87104 0,82917

XB·SIM2cor
B

0,78924 0,80719 0,79124 0,89486 0,89214 0,85318

X·SIM1B 0,75918 0,79097 0,74672 0,85801 0,85578 0,80142

XB·SIM1B 0,76785 0,7996 0,77028 0,87009 0,88456 0,83716

X·SIM2B 0,76537 0,7954 0,75129 0,86606 0,86156 0,80812

XB·SIM2B 0,77027 0,80119 0,7715 0,87996 0,88731 0,83933

20-Newsgroups

The D1 dataset consists of documents that originated from classes with concep-

tual similar content. In both experiments (A-B) the best NMI achieved from the

SIM bursty
GV SM matrix. In the �rst case, where topic bursts are placed in 30 windows

(Experiment B), the best solution of spk-means, with the maximum Purity and F1

score, attained by SIM2cor
B

matrix. In the second case, the same term-term matrix
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with the representation XB·SIM2cor
B

worked well too. According to the run that

maximized the cohesion of the clusters, the XB·SIM1B representation was that with

the the values for Purity and NMI.

Table 4.10: Term-Similarity matrices results on the D1 using spherical K-means

T=30

avg. avg. avg. best best best

Purity F1 NMI Purity F1 NMI

X 0,51049 0,52423 0,45747 0,593 0,59331 0,51949

XB 0,56356 0,5711 0,49279 0,6304 0,61925 0,5422

X·SIMGV SM 0,54 0,57378 0,53851 0,585 0,5834 0,55855

XB·SIMGV SM 0,57524 0,59583 0,54924 0,6108 0,60108 0,56421

X·SIMbursty
GV SM 0,60046 0,61152 0,55873 0,6334 0,61883 0,57131

XB·SIMbursty
GV SM 0,60052 0,6113 0,5544 0,6366 0,63224 0,57827

X·SIM1cor
B

0,5618 0,57371 0,51602 0,6292 0,62051 0,56491

XB·SIM1cor
B

0,59568 0,60199 0,52376 0,6416 0,62912 0,55398

X·SIM2cor
B

0,55679 0,56885 0,51165 0,6336 0,62469 0,56566

XB·SIM2cor
B

0,59568 0,60156 0,52319 0,6538 0,64227 0,56037

X·SIM1B 0,50416 0,51563 0,41663 0,5618 0,56348 0,46306

XB·SIM1B 0,47065 0,4771 0,36805 0,5036 0,5013 0,39098

X·SIM2B 0,50999 0,52051 0,42155 0,5638 0,56659 0,46509

XB·SIM2B 0,47407 0,48012 0,37182 0,5048 0,50504 0,39342

T=90

X 0,51049 0,52423 0,45747 0,593 0,59331 0,51949

XB 0,65452 0,6588 0,59367 0,7482 0,75071 0,65354

X·SIMGV SM 0,54 0,57378 0,53851 0,585 0,5834 0,55855

XB·SIMGV SM 0,62389 0,6498 0,61264 0,6718 0,68874 0,64655

X·SIMbursty
GV SM 0,63971 0,64973 0,58802 0,705 0,70356 0,62124

XB·SIMbursty
GV SM 0,69174 0,70394 0,6545 0,7808 0,78423 0,70592

X·SIM1cor
B

0,60687 0,62007 0,55751 0,6674 0,66506 0,60209

X·SIM1cor
B

0,70382 0,71608 0,64943 0,7922 0,79322 0,70249

X·SIM2cor
B

0,60721 0,6194 0,55597 0,6518 0,64495 0,59265

XB·SIM2cor
B

0,70721 0,71783 0,65111 0,793 0,79409 0,70438

X·SIM1B 0,60367 0,6331 0,53627 0,6998 0,70581 0,59384

XB·SIM1B 0,68303 0,7137 0,63211 0,8048 0,80336 0,69592

X·SIM2B 0,60865 0,63656 0,53845 0,7222 0,72293 0,6049

XB·SIM2B 0,68389 0,71484 0,63255 0,7908 0,79362 0,6881

The D2 dataset was selected on purpose, as opposed to D1. In the extended ver-

sion of the stream (Experiment B), the XB·SIM2cor
B

and XB·SIM1B representations
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dominated on the best and average runs respectively, with much better results than

X·SIM2cor
B

and X·SIM1B. In comparison with the classical VSM (t�df) the repre-

sentation with bursty information (XB) in the short version of the stream (T=30)

produced slightly better results than the previous case (T=90).

Table 4.11: Term-Similarity matrices results on the D2 using spherical K-means

T=30

avg. avg. avg. best best best

Purity F1 NMI Purity F1 NMI

X 0,57099 0,58035 0,49093 0,686 0,67073 0,56485

XB 0,59983 0,60353 0,51628 0,6876 0,6806 0,58481

X·SIMGV SM 0,60616 0,62771 0,55516 0,652 0,6777 0,58435

XB·SIMGV SM 0,63691 0,65713 0,58709 0,66 0,68877 0,60598

X·SIMbursty
GV SM 0,63297 0,6446 0,56822 0,6588 0,66877 0,58325

XB·SIMbursty
GV SM 0,64419 0,65414 0,5761 0,6806 0,68242 0,59549

X·SIM1cor
B

0,62474 0,63165 0,55026 0,7076 0,70546 0,6075

XB·SIM1cor
B

0,64196 0,64793 0,55513 0,6916 0,6856 0,58247

X·SIM2cor
B

0,62178 0,62906 0,54796 0,6986 0,69727 0,59996

XB·SIM2cor
B

0,64223 0,6479 0,55593 0,7096 0,70136 0,60215

X·SIM1B 0,51282 0,53095 0,43706 0,572 0,57295 0,47098

XB·SIM1B 0,49357 0,51196 0,40729 0,5524 0,55505 0,43814

X·SIM2B 0,51912 0,53693 0,44164 0,584 0,58396 0,48088

XB·SIM2B 0,49595 0,51328 0,40817 0,5518 0,5518 0,44174

T=90

X 0,57099 0,58035 0,49093 0,686 0,67073 0,56485

XB 0,66339 0,66576 0,60469 0,7424 0,73902 0,66036

X·SIMGV SM 0,60616 0,62771 0,55516 0,652 0,6777 0,58435

XB·SIMGV SM 0,67288 0,69339 0,6483 0,726 0,75616 0,68227

X·SIMbursty
GV SM 0,65327 0,66459 0,59129 0,6956 0,68812 0,60852

XB·SIMbursty
GV SM 0,69089 0,70393 0,65602 0,7582 0,75575 0,69054

X·SIM1cor
B

0,66211 0,67312 0,59251 0,733 0,71921 0,63036

XB·SIM1cor
B

0,71492 0,72561 0,66898 0,781 0,77358 0,70545

X·SIM2cor
B

0,66068 0,6713 0,5904 0,7332 0,7182 0,63024

XB·SIM2cor
B

0,71563 0,72611 0,66904 0,781 0,77322 0,70519

X·SIM1B 0,64078 0,67199 0,57726 0,7358 0,73954 0,63166

XB·SIM1B 0,69354 0,72217 0,6511 0,7988 0,79643 0,70785

X·SIM2B 0,64269 0,67262 0,57738 0,7348 0,73653 0,63

XB·SIM2B 0,69311 0,72112 0,65084 0,7972 0,79387 0,70792

Maybe this is an explanation why the XB·SIMGV SM representation achieved the
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highest average F1/NMI and the XB·SIMbursty
GV SM the highest Purity score. Finally as

reported by the best solution, only the SIM bursty
GV SM (F1,NMI) kept performing well

again, while the max purity owned to the SIM2cor
B
.

We conclude that SIM1cor
B

and SIM2cor
B

generally, perform better than SIM1B
and SIM2B matrices. The latter are not appropriate solutions because in many

cases they failed to gain even the initial representation. All the proposed matrices

depend on the burst detection step. Thus, in the matrices there are noisy co-bursty

relations, proportional to the number of false detected bursty terms. We believe,

that this noise is eliminated enough due to the correlation matrix COR. A more

e�ective burst detection method would probably boost more the performance of all

aforementioned matrices.

Shading more light to the second experiment of D3 dataset, it is noticeable that

the X·SIMGV SM is the worst representation. Any additional weight that refers to

terms co-occurrence wasn't not able to beat the XB representation. However, from

the experiment-B in D4 and D5 datasets, as well as from results in D1 collection,

where the stream entropy is low enough, the proposed similarity matrices seem to

perform pretty well.

Our initial argument that the co-bursty terms could enhance text clustering perfor-

mance is veri�ed not only from the experiments on streams with low stream entropy,

but also from the stable performance of XB·SIMbursty
GV SM , which in most cases achieved

better results than the XB representation.

• Correlated Bursty Term Clustering

The execution of the spherical K-means algorithm with initial centers the synthetic

prototypes produced by our method in section 3.3.3 is compared with the average

and best solution of 100 runs of spk-means with random initialization. In the �rst

row of X and XB representations the average value of each metric is displayed, while

in the second row the value of the best solution.

Our method depends on four parameters : Pdocs, Pterms, �; �, K, K'. The �rst

four are important for the synthetic prototype (ConstructSP) method. The � and

� were set to 0, while the Pdocs and Pterms to 0.5 and 0.4 respectively. We chose

these values so that half documents of each cluster and less than 50 percentage of

the words to be taken into consideration for the creation of the representatives. The

K parameter was set to the numbers of the the underlying classes. Finally, K' was
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set to 2K and 3K.

At this point, we should notice that for the evaluation of CBTC algorithm in D4

data set, we regarded all the bursty information that has been extracted from the

Kleinberg's two-state automaton. Because the rest text streams (D1,D2,D3,D5)

spanned only 30-31 time units, we observed after extensive experimental tests, that

our method performed better when we adopted the period with the largest bursty

weight of a feature as its bursty period over the whole duration T. Probably, this

happens because we deal with more complicated streams (Figures 4.1, 4.2) contrary

to the D5 dataset (Figure 4.3).

Table 4.12: Random Initializationation vs CBTC - results on the D5, D4 using spherical

K-means

Purity F1 NMI Purity F1 NMI

D5

X 0,55694 0,56595 0,47404 XB 0,79388 0,79319 0,77183

0,56343 0,5928 0,5156 0,89552 0,89624 0,84097

X-2K 0,78358 0,81382 0,73753 XB-2K 0,89179 0,89504 0,83692

X-3K 0,66791 0,69642 0,64545 X-3K 0,82463 0,80893 0,80116

D4

X 0,56383 0,51125 0,58706 XB 0,61354 0,55601 0,6412

0,61826 0,5767 0,62348 0,66895 0,63935 0,6714

X-2K 0,68866 0,62495 0,71205 XB-2K 0,70555 0,64479 0,72803

X-3K 0,69308 0,63978 0,70533 X-3K 0,70032 0,6536 0,71984

From Table 4.12 we could see that in the D4 dataset our method gave much better

results than the randomly initialized spk-means for both representations. In D5

dataset, things are a little di�erent. First of all, we should remind that it is a small

text collection, less imbalanced and with the lowest stream entropy. Moreover it is

known that K-Means works better in datasets that have equally sized clusters. For

these reasons, especially the �rst two, the clustering problem in the D5 dataset is

much easier. For the X representation, the initialization with CBTC performs the

best, contrary to the XB representation where the random initialization that maxi-

mizes the cohesion of the clusters is dominating. On the other the D3 (Table 4.13)

was the only dataset, that our method didn't achieve better results than the best

solution of X and XB representation. However, we observe that CBTC algorithm

performs much better for all three metrics than the average of 100 spk-means runs.
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Table 4.13: Random Initializationation vs CBTC - results on the D3 using spherical

K-means

Purity F1 NMI

X 0,77058 0,77449 0,74477

0,8711 0,86384 0,82431

X-2K 0,83787 0,85119 0,81308

X-3K 0,86103 0,85392 0,81263

XB 0,77915 0,78156 0,72218

0,87412 0,87378 0,78662

XB-2K 0,81873 0,81737 0,75674

XB-3K 0,84693 0,8362 0,77201

The superiority of our method in all metrics against the average value after running

the spherical K-means 100 times, was expected as the representatives of the clusters

are produced from the combination of documents that are close to the medoid of

each class. The crucial point in our method is that the most important documents

for an event are published when this event is bursty.

Table 4.14: Random Initializationation vs CBTC - results on the D1,D2 using spherical

K-means

Purity F1 NMI Purity F1 NMI

D1

Purity F1 NMI Purity F1 NMI

X 0,51049 0,52423 0,45747 XB 0,58167 0,5905 0,53521

0,593 0,59331 0,51949 0,639 0,64696 0,5645

X-2K 0,587 0,59707 0,55897 XB-2K 0,623 0,63372 0,60387

XB-3K 0,649 0,6629 0,61582 XB-3K 0,631 0,64531 0,59339

D2

X 0,57099 0,58035 0,49093 XB 0,59065 0,60314 0,50202

0,686 0,67073 0,56485 0,653 0,66345 0,54625

X-2K 0,694 0,72323 0,62019 XB-2K 0,679 0,70549 0,58885

X-3K 0,598 0,60933 0,55441 XB-3K 0,587 0,60784 0,53174

As it is observed from the results presented in Table 4.14 for the D2 data collec-

tion, the superiority of our method is clearly. Moreover it performs better for the

X representation for data set D1. Regarding the XB representation, the CBTC

initialization method gave the highest NMI measure.
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Figure 4.1: Text stream distribution of D1 and D2.

Figure 4.2: Text stream distribution of D3.
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Figure 4.3: Text Stream distribution of D5.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

5.2 Future Work

5.1 Conclusions

In this thesis, we studied the problem of text stream clustering, exploiting the bursty

information. In order to discover the busty features we used the Kleineberg's two-

state automaton. We have, also, presented several term-similarity matrices, that

are constructed from bursty features and were evaluated against a bursty-feature

and GVSM representations using the spherical K-means algorithm.

Furthermore, we introduced the CBTC approach, which is used for the initialization

of spherical K-means when this is applied to text stream collections where the notion

of burst is crucial. In order to �nd the initial representatives, we construct a graph

using the bursty terms and then we partition the graph using Spectral Clustering.

In the next step, we assign documents to each cluster of terms and we compute

representatives of each cluster using the synthetic prototype method. At the end

we merge the most similar clusters.

The experiments were conducted on several benchmark datasets. From the cluster-

ing results, we observed that in most cases the CBTC method performs much better

than random initialization. Moreover, because of the lack of timestamps for 20NGs

and Reuters-21578 datasets we used an arti�cial method to create topic bursts.

Moreover, the SIM bursty
GV SM term similarity matrix seems to be superior in most cases

to the GVSM and B-VSM representations. Finally, in text streams where events
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overlap in few time slots, the XB·SIM2corB tends to perform better than GVSM and

SIM bursty
GV SM .

5.2 Future Work

Our plans for future work are to test the CBTC algorithm against other methods

that are used for the initialization of the spherical K-means like K-means++ [3].

We could also investigate further ways to improve our algorithm by building a graph

with bursty and non-bursty features or testing other methods in order to partition

the graph into groups of features. It is also interesting to assess the behavior of our

algorithm on short and long-running events.

Regarding the term correlation matrices, we could study ways to calculate the cor-

responding semantic kernels. Moreover, the proposed methods should be evaluated

in the future using other clustering algorithms. We have, also, the intuition, that

if graph clustering is successfully we could extract groups of terms from the bursty

keywords graph, that would be able to construct several term similarity matrices

corresponding to di�erent topics of a text stream. Finally, it would also be interest-

ing to check the performance of our method on data derived from social platforms

like Twitter.
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