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ABSTRACT

Panagiotis Zagorisios.

MSe, Computer Science Department, University of loannina, Greece.
Text Stream Clustering using bursty information.

Supervisor: Aristidis Likas

Document clustering in text streams is a text mining problem with increasing interest
in recent years due to its relation to the problems of topic detection and tracking. The
existence of temporal information in the form of document timestamps provides the op-
portunity to modify and improve the typical approaches for document representation and
clustering. A way to exploit temporal information is through the detection and exploita-
tion of bursty terms in text streams, ie terms that appear in many documents during the
same time window.

At first, a description of methods that have been developed for the detection of bursty
terms is presented. Next several document representations are presented that integrate
the bursty information in the typical vector space model, and novel forms of term simi-
larity matrices are proposed that take into account the correlation between bursty terms.
Moreover, we propose an alternative approach that first partitions the bursty features into
groups and then uses this information for the clustering of the text stream collections.
Finally, experimental results on benchmark collections are provided followed by empirical
conclusions on the performance of the compared approaches.
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CHAPTER 1

INTRODUCTION

Thanks to the development of the second version of the world wide web (Web 2.0), there is
a continuous growth in the available digital content. The vast amount of this information
is described by the term ”big data”, which came to the fore the last years. Moreover,
the founder of the Web, Tim Berners-Lee, presented in public some interesting results,
when the available data gets linked up'. Tools for clustering are necessary for organizing
and analyzing any available information. Clustering is one of the 6 common tasks in the
data mining field [15], the other 5 are classification, regression, anomaly detection, sum-
marization and association rule mining. Each clustering process aims to discover groups
of ”similar objects” and is a widely studied problem in the text domains.

Nowadays, text documents could be produced by many sources. From user platforms
like twitter and facebook to newswire sites and blogs. Conventional clustering techniques
have difficulty in handling the large amount of text data (text streams) that produced over
time, as new challenges are faced. Topic detection and tracking (TDT) is a related prob-
lem to that of text stream clustering. The goal of TDT is the identification of clusters of
documents from a non-stationary text collection, where each cluster contains documents
that discuss the same real life event.

Moreover, text representation is an important issue because it affects the performance
of a text mining algorithm. The most widely used representation for the task of text
clustering is the Vector space model-bag of words (VSM). In [21] the bursty feature rep-
resentation is proposed, that is appropriate for text streams as it captures the temporal
dimension of a document. The role of bursty features, have been investigated and in other
works proposing different representations [23] [58] that extend the classical vector space
model. However, none of the above works considers the relation between bursty features.
Despite its simplicity, the major limitations of VSM is that terms are statistically inde-
pendent. The generalized vector space model (GVSM) is a generalization of the vector

'http://www.ted.com/talks/tim_berners_lee_the_year_open_data_went_worldwide



space model that estimates the correlation between terms [46].

The research question that this thesis addresses is if the clustering procedure of text
streams could be further enhanced by exploiting bursty feature correlations. We extend
the GVSM term similarity matrix using the bursty features discovered by the Kleinberg’s
2 states automaton [29]. Furthermore, we propose several forms of matrices, based on the
correlation of bursty terms. Finally, we introduce the Correlated Bursty Term Clustering
(CBTC) algorithm for the initialization of the k-means, appropriate for text stream data
collections.

The rest of this thesis is organized as follows. Chapter 2 describes the related work. In
chapter 3, our methodology is documented. The experimental clustering results in bench-
mark datasets are reported in chapter 4. Finally, in chapter 5, we present our conclusions
as well as future research directions.



CHAPTER 2

RELATED WORK

2.1 Topic Detection and Tracking
2.2 Bursty Information

2.3 Vector Space Model

2.4 Event Modeling

2.5 Spherical K-means

2.1 Topic Detection and Tracking (TDT)

The TDT program started in 1997 as a pilot study, conducted initially by a small group
of researchers. The research was pursued under the DARPA Translingual Information
Detection, Extraction and Summarization (TIDES) program and the goal was to develop
technologies for organizing the text news from a variety of broadcast news media in order
to detect and track the appearance of news topics. A detailed overview of the results of
the pilot study could be found in [1]. A fundamental concept in TDT is the notion of
an "event” and a "topic”. During the pilot study "event” and ”topic” meant the same
thing, an incident that happens at a certain place and time. Later, in the second year,
the definition of ”topic” altered and broadened to include not only the triggering event
but also other events and activities that are directly related to it. The notion of a ”topic”
differs form the notion of a general category like sports, politics etc. For example the
”final game of the FIFA world cup 2014” and the ”final game of UEFA champions league
2014” although belonging to the same category, the one of sports, they refer to totally
different real life events. As a result, they are two distinct topics.



We could imagine a TDT system operating as follows. Given a text stream, the
framework should discover the documents-stories that refer to a topic which have not
been detected before. Furthermore, each topic referring to a real life event, should be
tracked in order to discover more stories that mention it. Other important notions of the
TDT project can be found in the figure 2.1.

Figure 2.1: TDT Definitions
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According to the TDT community , five different research applications are defined ! :

1. Story Segmentation (SS) - detect story boundaries
The automatically transcribed speech data, coming from news agencies, need to be
segmented into stories. In other words, the stream information should be spotted
in discrete stories.

2. Topic Tracking (TT) - Discover all stories that discuss a target topic.
Given an sample of stories that discuss a specific topic, TT framework should find
all the subsequent stories, within the remaining corpus, that refer to the same topic.

3. Topic Detection (TD) - Identify clusters of stories that discuss the same topic.
For the TD task no prior knowledge is provided as happens for the topic tracking

thttp://www.itl.nist.gov /iad /mig/tests/tdt/



task. It is an unsupervised process. The TD system should detect clusters of stories
that discuss the same topic.

4. First Story Detection (FSD) - If a story is the first story of a new, unknown,
topic.
FSD, also known as new event detection, detects the first story that refers to an
event. An FSD system should output either YES or NO to the question: ”does
this story discuss a new topic?”. Like topic detection, first story detection is an
unsupervised task.

5. Link Detection (LD) - Detect whether or not two stories are linked.
A LD system should output a decision score determining whether a pair of stories
discuss the same topic. In that case the stories are linked by the same topic.

The above tasks are not necessarily independent, because for the successful implemen-
tation of one of them, probably has another one as a prerequisite. For example task 3
should be solved before we perform any of the rest.

The five tasks were shaped after the first year of the pilot study. The initial tasks
were segmentation, tracking and detection [1]. Furthermore, the topic detection task, was
divided into the online and the retrospective process. The online method is known as
new event detection (FSD) and the offline as retrospective event detection (RED). The
objective of RED is the identification of all the events in a corpus of stories, by grouping
the stories into clusters where each cluster represents an event.

At this point, we should notice that because of long and intensive research in the
TDT field, occasionally other problems have been defined that are closely related. Fung
et all [18] formalize the problem of "bursty event detection”, as the discovery of a set of
bursty words, that are able to descibe an event, while Platakis et all in [40] study the
problem of discvovering hot topics in blogs, from the same perspective. From now and
on, we will be using the notion of "topic” and ”event” interchangeably.

Regarding the research so far, we could claim that there are two trends in the litera-
ture on how a topic would be represented. The document-based, originated from the TDT
community, and the feature-based. In the document-based approach, the organization of
documents into clusters defines the different set of topics. Therefore, the content of an
event is described by the documents of each cluster or descriptive queries. However, it has
been observed that events from news sources, appear frequently in bursts. In the latter
approach, the feature-based, a topic is signaled by the burst of the frequencies of terms
associated with it. The organization of the terms into groups form the detected events.
The question which arises is how to identify the features whose frequency is significantly
increased, and how to group them in order to shape the final events.



2.1.1 Online vs Offline TDT

According to [22] topic detection models could be classified into probabilistic and non-
probabilistic. In the first category a "topic” is considered as a distribution over either
documents or words, while in the second, the documents are clustered directly. Our re-
search is related to the non-probabilistic case. In both cases there are two approaches to
detect and track topics.

The off-line (retrospective) approach assumes that the entire text stream is available
for analysis. This, however, requires memory resources for storing and processing the
available information. So decisions are taken periodically, ie non-real time. In contrast,
the on-line approach considers that documents arrive in the system according to a chrono-
logical order. Thus, the required memory should be sufficient only for the processing of the
current information flow. As a result the information is scanned only once, which requires
the system to take decisions in a specified time interval or in strict-real time(immediate
mode).

In [45] are described in detail the state of art approaches to immediate mode of on-line
new event detection. In [35] an online new event detection framework is illustrated that

deals with the above mentioned issues and could be used in practice. Finally, [8] describes
the first Turkish news portal supporting event detection and tracking procedures.

2.1.2 Text Stream Visualization

Figure 2.2: The Memetracker tool
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The methods that have been developed for the task of topic detection and tracking, as
well as from the broader related research areas, could be used for the visualization of text
streams. Many tools and frameworks have been proposed. The Event River visualizes
each event, by extracting the name of the involved people and the places related to it [34].
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Another well known framework is the Meme-tracker. The novelty of this framework is
that it displays short, distinctive phrases that appear in many documents. Furthermore
someone could observe how these "memes” (phrases) evolve in time [33]. ThemeRiver is
a system that visualizes thematic variations of a collection of documents, over time [19].
Blogpulse [7] was a search engine (no longer available) and analytical system for detecting
trends in blogs, with visualization features . Another system, navigating the blogosphere,
from a spatiotemporal perspective, is blogscope, which takes advantage of bursty key-
words and keywords correlations [4].

Figure 2.3: The ThemeRiver tool
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Another tool for analyzing unstructured text streams, by presenting trending key-
words, is produced by Microsoft Research Labs and is called Narratives [16]. Finally,
extended research for the topic detection and tracking field, has also been conducted, not
only on data derived from traditional newswire sources like news agencies and weblogs,
but also on the Twitter micro-blog platform. As a result, several tools have been de-
veloped. For example TopicSketch [48] is a framework for real-time detection of bursty
topics, providing a descriptive ”"snapshot” of the current stream. On the other hand,
CLEar [47], is a system that supports bursty topic detection, popularity prediction, event
summarization, contextualization and visualization. A further extension of the above sys-
tems, that worths mentioning, is Truthy which is produced and maintained by Indiana
University. It’s, actually, a framework for real-time analysis of memes diffusion, in social

media by mining massive streams of public micro blogging events [42].
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2.2 Bursty Information

2.2.1 Event Burst

The burst of an event is signaled by the appearance of a large number of relevant docu-
ments in a relative small period of time. This depends on the number of documents and
their spread in time. Thus events are characterized by a life cycle according to their pop-
ularity during time. There are events with long, short or periodic lifespan. For example
events about football matches are periodic (every weekend), while an event related to a

war has a longer lifespan than an event about a car accident.

Figure 2.5: Histogram of a topic from TDT5 data set

One further problem of topic detection and tracking is the context shifting. During the
life-cycle of an event, the context of documents related to it tends to alter. This is because
when an event is active, more and more documents are published that present diverse
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aspects of it and this results in reduction of the average similarity among the documents
of the same event. As Kleinberg observes in [29], ”the burst-and-diverse” phenomenon of
events corresponds to the dynamic behavior of a document stream. According to figure 2.6
(retrieved from [9]) that concerns the TDT1 copus, when an event is active the number
of related documents (x-axis) is increased, while the average similarity between them is
reduced (y-axis).

Figure 2.6: Documents similarity vs event activeness
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2.2.2 Burst detection

The rapid increase in the frequency of a term in a short period is called burst. Thus, a
word is bursty, when its frequency is encountered at an unusual high rate. The detection
of bursty events is known as burst detection procedure and it has a variety of applica-
tions. From monitoring the network traffic or the price of a stock market to astronomical
observations and web topic Mining. Several methodologies for burst detection have been
proposed [6,56,59].

In the field of data/text mining, occasionally, several burst detection algorithms have
been developed. [29] detects bursty words in email collection, using an infinite-state au-
tomaton and computes the optimal state sequence using a statistical procedure. A varia-
tion of Kleinberg’s method for BBSs (Bulletin Board Systems) and blogs text collection,
where the distribution of documents is not uniform, is described in [17]. In [52] a param-
eter free burst detection algorithm is presented, based on sophisticated data structures,
which detects bursts in multiple windows sizes simultaneously.

Fung et all [18] suggests a probabilistic framework, based on the binomial distribution,
to identify bursty words. Furthermore they apply spectral analysis in order to categorize
words in four categories to discover important and less-reported events. Lappas et all in



[32] uses concepts from discrepancy theory, to model the burstiness of a word, developing
a parameter-free approach.

In addition, [11] presents the OMRBD algorithm, that detects bursty words by main-
taning multiple sliding windows of different resolution. Moreover, in [51] the difference
between a bursty word and a buzzword is highlighted, proposing a buzzword detection
method. As Yi states ” Buzzwords are terms of high momentum for a relatively short
period of time. Note that not all bursty events by the Kleinberg’s model can be considered
as buzz because the model doesn’t take into account the relative duration and the mass of
bursts”.

Finally, Vlachos et all in [44] deals with the identification of bursts from the query
logs of Microsoft’s search engine. While in [27] it is examined the use of bursts of edits in
the discussion pages of Wikipedia articles to explore the process of how a topic is created.

2.2.3 Kleinberg model

A popular method for burst detection is proposed in [29], where author tries to investigate
the role of time in his personal e-mail by modeling the text stream using an infinite-state
automaton (figure 2.7).

Figure 2.7: Kleinberg’s infinite automaton
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Figure retrieved from [29]

In this automaton, bursts appear as state transitions, corresponding to points in time
around which the frequency of the examined word changes significantly. Moreover, a hier-
archical tree structure is created by the state transition-burstiness connection (figure 2.8).

The most basic bursty model is the automaton with two states. It is ideal to describe
the timeline of a term. In this thesis, we used the batch mode of the 2-state automaton,
where documents arrive into consecutive batches. Suppose that there are T batches, where
the sequence (dy, ..., dr) expresses the total number of documents in each time slice, while
(r1,....,r) is the number of documents that contain the examined word. The algorithm
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is a kind of a Hidden Markov model. The automaton has 2 states, one with low emission
rate pg = |Rd|/T and another with higher rate p; = s - py, s > 1 (resolution). T is the

T
whole time range and ) r; =| Rd | .
=1

2

Figure 2.8: The hierarchical structure of burst
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Figure retrieved from [29]

Figure 2.9: Kleinberg’s 2-state automaton

State 0 | State 1

P,=Ru/T Pi=s"F,

In the proposed model each (r;,d;) is considered to be an output symbol, that is
produced probabilistically according to the internal state of the HMM. When such tuple
sequence is given, the goal is to find an optimal state sequence ¢ = (¢, ...g7), where each
¢; minimizes the cost that is calculated by the following equation:

o(i,ry,dy) = —In [( di )p?(l —pi)dt_”] (2.1)

Ty
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The state transition sequence s that minimizes the above cost function is derived using
a dynamic programming algorithm, called Viterbi method. For a given input sequence
<r,d>=(<ry,dy >,...,<rp,dp >), the Viterbi method identifies the most likely state
sequence (viterbi path) of a hidden Markov model as follows.

2.t=t+1
3. Compute cost C;(t) for j=0,1

(a) C;(t) =min(Ci(t — 1) +r(q,5)) — o (j, e, dr)
(b) r(q,j) is the state transition from the previous state q
and is defined as (g, j) = v * logT for ¢ < j and r(q,j) =0 for ¢ > j

4. Repeat steps 2 and 3 for all batches of documents

5. Select the state sequence with the minimum cost

Consecutive appearances of state 1 (bursty state) are considered as bursty moments of
the word. Thus, the length of a burst is defined from the appearance of the first (t1) un-
til the last bursty moment (t2), while the weight of the burst is calculated from equation: .

t

w=> o(c(0,r.dp) — o(1,7,,dy)) (2.2)

t=t1
The weight, which is non-negative, is equal to the improvement in cost incurred by
using state p; over the interval [t1,t2] rather than state py.

The algorithm has two parameters. The resolution (s) and the conversion cost (7).
The first one controls the difference between the burst (high emission rate) and the nor-
mal state (low emission rate). As Kleinberg mentions, small values of s often lead to long
bursts, while higher values increase the strictness of the algorithm criterion for how rapid
an increase of activity should in order to be considered as burst.

The second one (conversion cost) defines the cost of the automaton when changing
state. Higher (lower) values mean that the burst must be sustained over longer (shorter)
period of time in order to be detected by the algorithm. The default value of this parame-
ter is set to 1 which indicates that the cost is proportional to the increase in state number.

Unfortunately Kleinberg didn’t propose any way of tuning these parameters that were
manually set. However, two algorithms are proposed in a recent study [13] for the estima-
tion of the above parameters. The disadvantage of these methods is that the estimation
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of the parameters is investigated at the word and not at the corpus level. Thus, it is time
consuming to find the best parameters for each word in the vocabulary, especially when
the vocabulary length is of order 10% in magnitude. Moreover the Kleinberg’s burst detec-
tion algorithm is not appropriate for online burst detection. Finally, it is a computational

expensive method as for its implementation is used a dynamic programming algorithm.

2.3 Vector Space Model

The most widely-used text representation in the field of text mining is the Vector Space
Model (or term vector model). In VSM, a document is represented by a vector of weights
corresponding to text "features”. The weight of each feature quantifies its importance
to describe the document content. Thus, not all text features are useful in representing
a documents. As features, according to the common approach of Bag of Words (BOW),
distinct words are considered.

A document d, is represented as a vector of V features. In equation 2.3 T denotes the
document transpose and d;; the weight of j-th feature (f;) inside document d;.

d=[d,....dyv]",de R (2.3)

The most popular weighting scheme is the normalized tf-idf, which is the product of

two statistics. Term frequency and inverse document frequency.

tf —idfyg = tfig xidfy = tfiqax 509(%) (2.4)

Although, various ways for calculating the values of both statistics have been proposed,
we used the simplest and most common choice, where tf; 4, is the raw frequency of term ¢
in document d. The idf;, is the logarithmically scaled fraction of documents that contain
the term ¢, obtained by dividing the total number of documents (N) by the number of
documents containing the term, and then taking the logarithm. It is a measure of how
much information the term provides. In other words, whether the term is common or
rare across all documents. When the TFIDF representation is used, cosine similarity has
been proved to be an effective measure for the task of document clustering. Given two
documents vectors, d; and d;, cosine similarity computes the cosine of the angle between
them.

_ dfd;
Slmcos(di, d]) = m - [0, 1] (25)

An extension of VSM-BOW is the bag of phrases (VSM-BOP), where consecutive
words are regarded as distinct features (word n-grams). Despite the simplicity of VSM,
there are some deficiencies, concerning the assumption of term independence. According
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to this hypothesis, the terms are statistically independent. Moreover, in the vector space
representation, the order in which the terms appear in the document is lost. In addition,
documents are represented in high dimensional and sparse feature space due to the large
vocabulary size. Finally the VSM-BOW cannot handle language phenomena such as
synonymy and polysemy, because the context a word appear is missing. Thus, due to the
semantic sensitivity, documents with similar context but different terms vocabulary are
hard to be associated.

2.3.1 GVSM

Because of the difficulties with VSM, many variations have been proposed that map the
document vectors to a new feature space. This new space of features is known as concept
space and its dimension is equal or less than the initial. A document projection to the
concept space can be defined as

P 5 d =8deRV V' <V (2.6)

The matrix S, of dimension V' x V| is called semantic matrix. The cosine similarity

between two documents in the concept space can be computed with equation 2.7 where
I¢ is the normalization factor of document d;.

sim&9)(dy, di) = (Sdi)" (Sdj) = (17 Sdy)" (155d;) = 1§15 (d] S" Sd) (2.7)

sem 13 g

As reported by Kalogeratos in [26], the methods that have been proposed so far, ei-
ther interpret the above equation as a dot product of the document images to the new
feature space RV, or as a measure that considers the correlation between features which
is expressed by the matrix S”S.

The Generalised Vector Space model (GVSM), estimates the similarity between docu-
ments based on how their terms are related [46]. The image of a document to the concept
space is given by:

d = Xd (2.8)

In the above equation, d is part of document collection X. More specifically, X is a
NxV Document-Term matrix, whose rows and columns are indexed by the documents
and vocabulary terms respectively. This, according to equation 2.7, implies that S7S=
XTX=STMgysa is a term similarity matrix. STMgy gy represents the inner-products
of term vectors, introducing term to term correlation by deprecating at the same time
the pairwise orgononality assumption of the VSM. It is actually a V' x V' term similarity
matrix where the r-th row has the dot-product similarities between term v, and the rest
terms of the vocabulary.
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There are works that purpose different measures to capture the terms correlations [5,
12,14,26]. In [5] the Context Vector Model (CVM-VSM) is introduced, where two co-
occurrence frequency measures are proposed in order to construct the term similarity
matrix. One relies on low level counting the co-occurrence of terms in the same documents
and the other tries to discover terms associations at a higher semantic similarity level.
Finally, [14] suggests the use of the covariance matrix between terms and the matrix of
Pearson’s correlation coefficients to estimate the term similarity matrix.

2.4 Event Modeling

As reported before, in literature two approaches are followed in off-line or on-line mode,
in order to model an event:

1. Document-Based approaches

e [2] Each new document that arrives in the system, is compared with all clusters
of documents that have been created so far. If its similarity measure with the
cluster exceeds a threshold then is assigned to it. Otherwise, this document
starts a new event. According to this basic algorithmic approach several ideas
have been proposed to improve the clustering procedure. More specifically:

e [30,31,49] To improve the clustering accuracy they take into account entities
like places, date, time and persons’ names that are involved in each event.

e [30,49] They observed that events of specific topics use the same sets of words.
Thus, before performing clustering they divided the documents into the respec-
tive topic categories.

e [30,49,54,55] Different reweighting in terms of each topic category, results in

significant improvements in the clustering accuracy.

e [36] Proper names, locations, temporal expressions and normal terms are ex-
tracted forming the corresponding ontology of each document. Thus, each
document story is represented by these four sub-vectors and the similarity of
two documents is conducted by comparing a pair of their corresponding sub-
vectors.

2. Feature-Based approaches

e [18] A feature pivot clustering algorithm is proposed in order to group bursty
features. An event is signaled by the appearance of a group of bursty features.

e [20] An unsupervised greedy event detection algorithm is applied in a pool of
features, that have been categorized in the previous step in four non overlapping
groups. The method is able to detect aperiodic and periodic events.
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e [11] The bursty features are detected with the OMRBD algorithm, and then
affinity clustering propagation is performed in order to form the events.

e [52] The burst of an event is considered as a set of bursty features, which are
extracted from short text streams.

e [43] A keyword graph is proposed based on word co-occurrences in documents.
Community detection methods, derived from social network analysis, are used
to discover and characterize the events.

For the purposes of this work, we follow the document-based approach. Therefore,
an event consists of a set of documents, thus our problem is transformed to a problem
of documents clustering, with the difference that we should take into consideration the
chronological sequence of documents. Therefore, the time factor adds one more dimension
to the problem of clustering. Stories that discuss the same event tend to be in temporal
proximity. Hence lexical similarity and temporal proximity are two major criteria for
our problem. In addition, the high dimensional and sparse feature space in combination
with language phenomena are challenges that affect the development of an effective al-
gorithm. Moreover, in the case of event detection and tracking, because of the temporal
and unpredictable nature of streams, the above issues complicate even more the problem

of document clustering.

2.4.1 Document based techniques

As expected, conventional clustering methods are not suitable for detecting events in
text stream, because the do not take into account the temporal relationship between the
documents. It is likely, to be clustered to the same group, documents that have similar
semantic content, but refer to different events. On the other hand, algorithms that have
as input the number of clusters to be created are not appropriate. The predefined number
of clusters can not cover the changing nature of information flow. It is almost unlikely to
know in advance how many events will be identified because of the complex and unpre-
dictable nature of text streams.

On-line methods

An important issue in on-line clustering (centroid and non-centroid) algorithms, is to
determine the similarity threshold. To be more precise, a known approach in the online
event detection is the single-pass clustering algorithm (figure 2.10).

However, as pointed out by Allan in [2] and verified by out experimental studies, a
fixed threshold in the on-line process is not appropriate. On the contrary, if the threshold
were adjusted each time to the ’energy’ of the event, the results would be much more
efficient. Intuitively, what we desire is a low threshold when an event is active to allow
the clustering of documents without reducing significantly the accuracy of the clusters.

16



Moreover, when an event is inactive, by increasing the threshold the algorithm would
avoid to group together irrelevant to the event documents.

Variations in this algorithm were proposed either by increasing similarity threshold
over time [2], or using a time window which specifies the number of previous documents
that should be taken into consideration for clustering [55]. But both approaches reach to
the conclusion, that documents relating to events that spans a long time period, delegate
to different groups.

Figure 2.10: Single pass document clustering

Event Detection Algorithin:
E = null,
For each news document & from on-line news stream
¢ = ARGMATX, —g(sim(e,d)),
If sim(e &) >=threshold  then

G Pector Update @I

else
Epey = CreateNews Event(d),
add &, into £,
end 1f
end for

In [9] the "life profile” for each event is proposed in order to select the appropriate
value of similarity threshold. Moreover, in [10] the life cycle of each event is modeled by
assigning an amount of "energy” to each one. This amount is declining over time, while
it grows as the number of correlated with the event documents increases. The threshold
is defined as the amount of energy of each event (figure 2.11).

Offline methods

In off-line event detection, because of the fact that we have available the whole corpus
we could find statistical information for each term, concerning the flow of the text stream.
In addition, we could define, from the beginning, the representatives of the events. All
these urge that we could study the problem of event detection and tracking also from this
perspective, the off-line one, as we don’t have to deal with the difficulties of the on-line
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version. Furthermore, we could take into consideration the burst intervals of each term.
The conclusions of such a research could be useful for the on-line process because the
development of an online event detection and tracking system, should first of all, deal
with the memory issues and then proceed to the clustering procedure.

Figure 2.11: Energy-based Single Pass clustering

Energy-based Event Detection Algorithm:

E = null

For each news document & from on-line news stream
¢ = ARGMAX, g(s1m(e,d)),
If sim(e,d) >= thresholdy,, . then

e. Energy Update(d),
e. Vector Update(d),

else
Epey = CreateNews Event(d),
add e,,,, into £,
end 1f
end for

The methods that have been proposed so far, introduce the bursty information in
the text representation (VSM-BOW). Then, they are evaluated using classical clustering
algorithms like spherical K-means.

2.4.2 Bursty Feature representation

A fundamental approach, in this direction is presented in [23], where the bursty feature
representation is proposed. It is based on the bursty information of features as extracted
from the two-state Klenberg’s automaton. A document vector d € R" is transformed as
follows:

(2.9)

d(t): FPij+5wj, if fz eB anthpj
Y FP,; , otherwise,

where B denotes the set of bursty features, F'P;; the binary weight of term j in document
¢ at time ¢, § > 0 the burst coeflicient, w; and p; the bursty weight and its corresponding
interval. So each word in the vocabulary may be either no bursty at all, or bursty at one
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ore more non-overlapping time periods. As a result bursty words are strengthened by a
factor of 0w. In the experiments an improvement is observed in the cluster purity and
entropy as well as the class entropy measure.

In their next work [21], the same authors tested the performance of their previous
idea using the TDIFD weighting scheme with the normalized (w’) and unormalized bursty
weight (w), proposing the B-VSM representation with 5 different variations. The first two
versions of B-VSM use the entire feature space d € RY (equation 2.3)

Af tiff e B
(SAB) dyy = W Twp il EB g 0
tfidf;; , otherwise,
(SMB) dy; = { Wi TLED 4y
tfidf;; , otherwise,
while the last three, use only the bursty feature space B.
di = [dih s Jdi\BdT (212)
(BT) dij = tfidf;; (2.15)

One distinction from the previous research [23], is that in [21] only the largest bursty
weight of each feature as its burstiness score are taken into account. Moreover the time
stamp ¢ of each document is not regarded in any of the five weighting schemes. As a
result, the bursty weight of a feature f; is applied to the whole document collection and
not to the documents that are published during its bursty interval p;. Their experimental
results, on a subcorpus of the TDT3 dataset, reveal that the B-VSM is able to detect the
top-k bursty topics as well as to improve significantly the recall and precision.

The method in [58] follows the similar concept with previous works [21, 23], aiming
to mine, retrospectively, events from text streams through the procedure of clustering.
The major contribution is the BurstVSM representation. In BurstVSM, the vocabulary
contains only the bursty terms (equation 2.12) and no extra weight is added

tfidfij, ift € Dj

2.16
0 , otherwise, ( )

(Burst-VSM) d.) = {
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where p; is the bursty period of feature j.

Moreover the bursty feature space is computed by parameterizing the Kleinberg’s
method, using a sliding window to recompute the probabilities py and p;. Last but
not least, [58] deals with multiple bursts contrary to [21]. The benefits from taking into
account the multiple bursty periods of each word are highlighted in the Table reftab:novel.

Table 2.1: Summary of representation models

semantic temporal dimension trend
information information reduction modeling

VSM v X X bad
boostVSM v partially X moderate
BurstVSM v v v good

table derived from [58]

We should notice that according to [23], a bursty-feature-only representation, although
it reduces the feature space, frequently degenerates into a zero-vector due to the sparsity
of the bursty features. Finally, a close method to the aforementioned works is [24]. As-
suming that traditional vector space model cannot capture the temporal aspect of text
streams, the bursty feature space is explored either with the Kleinberg’s two state au-
tomaton or using the burst detection method proposed in [32]. The major contribution is
the bursty distance measurement to calculate the similarity between a pair of documents,
as well as the local burstiness score, based on the local word occurrence.

2.5 Spherical K-means

K-means is a fast and easy to understand clustering algorithm. It assumes a representative
of each cluster and an objective function that evaluates the quality of each partition.
Given a dataset and the number K of desired clusters, the algorithm, initially selects K-
representatives, usually by random, as the centers of the clusters. After that, each object
(document) is assigned to the partition with the closest center. Then, the new centers are
recalculated and the algorithm repeats the assignment of all objects (documents) to the
new cluster representatives. The above procedure could be summarized in the following
two steps.

1. Reassignment step: each object(documents) is assigned to the cluster whose center
1s nearest to it
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2. Update step: Each cluster representative is updated in such a way that the objective
function is optimized in every algorithmically step.

The k-means converges because in each iteration is created a more homogenous par-
tition (or the clustering error is reduced if take into account the distance measure), ter-
minating at a local maximum(minimum) where no more changes in the clusters could be
occurred. The main disadvantage of the algorithm is that although it converges quickly
and monotonically, it results in a local minimum (or maximum), depending on the ini-

tialization of the centers.

Its time complexity is O(tNV), where ¢t < M AX_ITER is the number of iterations un-
til convergence. N is the number of documents and V the length of the vocabulary. When
the centers are computed as the arithmetic mean (centroids) the K-means minimizes the
sum of sum of squared euclidean distances between the objects of the cluster and the
centroids. Another well-known method is K-medoid where a cluster is represented with
the medoid object, defined as the one that has the maximum average similarity to the
objects of its cluster.

Spherical k-means(spk-means) is a variant of k-means that utilizes the cosine similarity
for the data vectors normalized with respect to L2-norm. The maximized objective func-
tion is the clustering cohesion. The optimal representative for a cluster is its normalized
centroid and the overall clustering cohesion of a partition C is given by:

Cohesion(C) = Z Z (re,)"d; (2.17)

where r.; is the representative (normalized centroid) of cluster c;.
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CHAPTER 3

CORRELATED BURSTY TERMS

3.1 Terminologies
3.2 Term similarity matrices

3.3 Correlated Bursty Term Clustering

3.1 Terminologies

As text stream is considered the appearance of documents according to a predifined time-

line

Stream =[S, ..., St (3.1)

where S; represents the set of documents with the i-th time-stamp. We denote a corpus of
text streams with N documents as X, and T the time period that it spans. Each document
dgt) that appears in one of the T batches, is represented as a vector of V features using
the TFIDF representation.

For the identification of the bursty feature space B, we used the Kleinberg’s two-state
automaton, that returns the bursty weight w; and interval p; of each feature f;. Although
the value of equation 2.2 is a positive number, this does not imply that the individual
weights of each time slot that is enclosed in the interval [t1,t2] are all positive.

wt = U(O,Tt,dt) —U(l,Tt,dt) (32)

After experimental efforts, we observed that the following burst-reweighing scheme
works better for our data sets.
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(3.3)

d(t)_ tfldfw - Wy, if fj € Bandte Dj
Y tfidfi; , otherwise,

where w; is given by 2.2. Thus, after applying the above equation to the document
collection X, we have at our disposal the corpus representation XB given by 3.3.

3.2 Term similarity matrices

The experiments in all previous works [5,12,14], that purpose different variations of the
term similarity matrix, conducted for static document collections. On the other, none of
the works [21,23,58], that study the problem of text stream clustering, use the correlation

between features in order to improve clustering performance.

In our research, we are interested in studying the problem of topic detection and
tracking in a retrospective way(offline). Using the vector space bag of words model, we
try to exploit correlations of busrty words, in order to form term similarity matrices that
would be able to improve the clustering of text streams. The term similarity matrix of
the GVSM (X'X) captures the relation of terms that co-occur in the same documents.
Initially, we propose the ST Mg%;tﬁ/[ term similarity matrix, which contains not only the
co-occurrence but also the co-burstiness of terms.

SIMM, = XB' - XB (3.4)

Note that the SIMg%gtf(/[ and STMgy sy matrices enclose only the relations of terms
that appear together, in at least one document. However, there are documents that con-
tain totally different words which are semantically related. We claim that if such words
are bursty and refer to the same event, their intervals of high frequency would be over-
lapping. Such a similarity term matrix could capture not only the co-bursty features that
co-occure in the same document vectors, but also features that happen to be bursty dur-
ing the same period. For this reason we propose the SIM1p as well as STM?2p similarity
matrices.

In order to construct the two matrices, first we need to create the Bl matrix, of
dimension V' x T (figure 3.1), which indicates the time slot a feature is bursty and its
corresponding burstiness score.

0if f; ¢ B
BI(i,j) = (3.5)
wl,w! > 0if f; € B
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where wg is the burst weight of feature i at time slot j according to equation 3.2.

Figure 3.1: An example of BI

The white spaces are the bursty periods of each term, that the bursty weight is positive.
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SIM1g = BI - BI' (3.6)
T
SIM1p(i,j) = Y BIL.BI}, (3.7)
k=1
SIM2p = SIM1,/T — A (3.8)
A= (G Q)T (3.9)
0, iff; ¢ B
Giy=4{ (3.10)

" BIGLj), iff; € B
j=1

In a text stream, it is common for some events to overlap in time. For example
the ”Ebola virus epidemic in West Africa” and ”XXII Olympic Winter Game” events,
emerged according (to Wikipedia') in news sources on February of 2014 . Moreover the
probability the bursty features of these events to occur in the same time slots is very
high. However, the conceptual content of such events is totally different. In such cases
the SIM1p and SIM?2p similarity matrices would capture the co-burst relation of terms
that refer to semantically unrelated events. To tackle this limitation, we propose the

SIM1%" and STM?2%" term matrices.

'http://en.wikipedia.org/wiki/2014
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SIM1(i, §)5" = SIM1g(i, j) - COR(i, ) (3.11)

SIM?2(i, )" = SIM2g(i, j) - COR(i, ) (3.12)

where COR is the matrix that contains the correlation coefficients from X. Although the
correlation matrix has been proposed in [14], in our case we are interested only in the
bursty terms. All the above term matrices are symmetric, non negative and positive defi-
nite. However in order to apply them in a document collection we normalize their columns.
The normalization is done by dividing the elements of each column by the square root of
the euclidean norm of term weights. As it is anticipated, after normalization the matrices
are no longer symmetric.

The size of all matrices is O(V?). The advantage of the above matrices, contrary
to STMZT and STMS% s that they are more sparse since they contain only the
co-burstiness and not the co-occurrence relation of the words. The disadvantage of all
matrices is that the memory requirements is large enough, especially when the number of
terms increases. However, this could be handled with semantic kernels. But such a study
is beyond the scope of this thesis.

3.3 Correlated Bursty Term Clustering

The bursty interval of bursty features denotes the period during which the event associ-
ated with them is "hot”. In other words, the majority of document stories that discuss the
same event are published around this time period, thus their temporal proximity tends to
be close. Furthermore and according to Kleinberg’s burst detection method (batch mode),
in order for a term to be characterized as bursty, it depends on the number of related
documents. The larger the number of documents that contain the candidate term, the
larger the probability this term to be part of B. At last, the fact that a great amount of
research work that study the problem of topic detection follow the feature based approach
(via the discovery of bursty words) make us to do the following assumption.

The bursty terms could suggest to us to the most important documents of each event.
We regard as important, a document that is close to the centroid (or medoid) of the docu-
ments that are derived from the same class. The discovery of such documents, is expected
to improve the performance of all algorithms that are part of the K-means family, because
their results depend on the selection of the initial cluster centers.

The first part of the method, we propose for the selection of the K centers, is based on

the philosophy of the feature-based methods. i) Initially, we create K’ group of features
applying the Spectral Clustering algorithm to a bursty term graph, then ii) we compute
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the K'-representatives using the synthetic prototypes procedure [25]. The representatives
are computed from the set of documents that contain the bursty words and are published
during their bursty interval. Moreover, we assign these documents (Docsg) to the near-
est cluster representatives forming K’ clusters of documents. iii) At the end, we reduce
the number clusters from K’ to K by merging the most similar clusters according to the
cosine similarity of their representatives. The pseudo-code of our method follows.

function CBTC(D, Pdocs, Pterms, A, 8, K, K', adj)
1. V)« GraphCuster(adj, K')
2. {SP,y., K'} + ConstructBurstySP(cY), D, Pdocs, Pterms, \, )

3. {SP} < MergeClusters(y., SP, K, K', Pdocs, Pterms, \, B)

3.3.1 Bursty Term Graph

In order to cluster the bursty features, we should define a relation between them. For
that reason, we decided to create a term co-occurence graph from the set of bursty terms
B. In literature there are several works following this concept either for event detection

or topic summarization.

In [39] an event detection algorithm is proposed using a keyword co-occurence graph.In
[43] a graph is created, from noun phrases and name entities, and then a community de-
tection algorithm is applied to discover events. However, none of the these works consider
the burstiness of each feature. Moreover in [37] a network is built for a specific trending
topic, where nodes are bursty and nonbursty words and an edge denotes a co-occurence
relation. In addition, in [50] the problem of "bursty event tagging” is studied where an
event is described from a set of tags. The authors observed that tags from various web
sources reflect the users’ interests over time, thus by applying graph clustering techniques
they detected bursty events. Finally a more sophisticated method for event detection
from social text streams, like blogs and emails is presented in [57].

Our graph network G(V,E) consists of bursty terms only (|B| = |V| ). Nodes corre-
spond to terms, while an edge ey; between two nodes n;, and n; is added, if the following
two conditions, for terms wy and w;, are satisfied:

1. Their bursty intervals overlap.

2. During the overlapping period, the terms wj and w; co-occur in at least one docu-

ment.
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The weight of each edge is derived from [11,44]:

_ 1 (!DkﬂDﬂ |DkﬂDj|>

w(k,j) = (3.13)
2 | Dy| | Dy

where Dy is the set of documents that include term f; and are published in its bursty
interval. Vertices with degree less than 1 are eliminated from the graph. Using the result-
ing graph, we apply the Spectral Clustering algorithm [38] to partition the bursty terms
into K’ non-overlapping clusters. Finally, we omit groups with less than two terms.

function GraphCluster(adj, K')

input : an adjacent matrix adj that represents the structure of the
bursty-features graph and K’ the number of desired clusters
output : ) = {cgf), el c(lf,)} the clustering
solution with K’ groups of terms

1. ¢¥) < SpectralClustering(adj, K')
2. ) e — () vi=1:K, || <2}
3. K' <« ||

4. return(c))

3.3.2 Cluster representatives

In the second step of our algorithm, we determine the documents that are related to each
bursty term. The association criterion is for a bursty term to appear in a document at
least once. The considered documents of each term, are only those that are published
during its bursty interval.

Then, the representative of each group of terms is computed, from the documents
that are part of the set Docs.For this task, we used the synthetic prototypes [25] instead
of centroids or medoids. This is due to the fact that, i) the set Docs may possess lit-
tle amount of documents, ii) the high dimensionality and sparsity of the data and iii)
the examined set could possibly contain documents from different topics, therefore we
require a method that would compute the representative of the cluster from documents
of the dominant class. For these reasons, we chose the synthetic prototypes representation.

Given a cluster of documents, the algorithm computes its medoid as the document
with the maximum average similarity to the objects of the cluster. This is the first rep-
resentative. Then, selects iteratively the closest documents to the representative. The
number of the closest documents is defined as a percentage (Pdocs) of the cluster size. At
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the end of each iteration, it calculates the new representative as the centroid of the se-
lected documents. Finally, the method chooses the most highly weighted features (Pterms
percentage of the vocabulary length) to construct the synthetic prototype.

We should notice, that the set Docs is changing at every iteration. Moreover, a doc-
ument may contain multiple bursty terms, which are clustered in different groups during
the first step. Thus, it is possible a document to appear more than one iteration in the
set Docs. All the documents that are published during the bursty intervals, and contain
at least one bursty term, are stored in the variable Docsg. The set Docsp is the pool of
documents from which we are going to create the document clusters.

In the last step, we cluster the documents that belong to the set Docsg into K’ groups.
This is performed by assigning each document to the cluster with the closest representa-
tive. The similarity measure that is used to perform the comparison is the cosine similarity
(equation 2.5). By performing this clustering step, we partition the set Docsp into K’
disjoint groups. In that way, we associate the clusters of bursty terms with groups of
documents.

function ConstructBurstySP(c), D, Pdocs, Pterms, ), 3)

input . ¢ is the clustering solution of function GraphCluster
D is the text stream collection
Pdocs, Pterm, A and § parameters for the synthetic prototype method
output : SP ={SPy,...,SPx} the set of synthetic prototypes
Ye = {Ye1, - - -, yr } the clusters of documents
let . fr denote the k-feature, f, € B
CZ(-D) the i-th group of document with 1 <7 < K’
Dy, is the set of documents containing term f;,
ConstructSP: method for the syntetic prototypes
AssignToClosest: clusters the documents Docsp to the K’ closest centers (SP)

end let

1. Docsg + ©

2. fori=1...K'

3. Docs <~ @

4. for each f; € CZ-(f)

5. Docs < Docs + {Dy, }
6. end for
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7. Docsp < Docsg + {Docs}
8. SP; < ConstructSP(Docs, Pdocs, Pterms, A, [5)
9. end for

10. y. < AssignToClosest(SP, Docsp)

11. return (SP, y.)

3.3.3 Merging step

In the last step of the algorithm, cluster reduction is performed. In each iteration, the
clusters with most similar representatives are merged forming a new cluster. After that,
the new representative is calculated, using again the synthetic prototype procedure. The
procedure ends until the number of clusters is equal to the desired number.

function MergeClusters(y., SP, K, K’, Pdocs, Pterms, A, 5)

input : 9. and SP are the outputs of function ConstructBurstySP
K is the number of clusters in which we would like to reduce the set y,
Pdocs, Pterm, A and ( are the parameters of constructs of SP method
output : SP: synthetic prototypes centers

let : ClosestCentres: method that find the most similar synthetic centers
Merge: method that merges two clusters
end let
1. repeat
2. {k,e} < ClosestCentres {S, P}
3. Yewe < Merge{yex, Yee}
4. Ye < Yo — {ycm yce} + {ycﬁe}
5. SP,. + ConstructSP(y,,., c, Pdocs, Pterms, \, )

6.  SP< SP+{SP.}—{SP. SR}
7. K+« K-1
8. until K' =K

9. return SP
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CHAPTER 4

FEXPERIMENTS

4.1 Data-sets
4.2 Text Stream Generator
4.3 Experimental Method

4.4 Experimental Results

4.1 Data-sets

In our experiments, we used 4 different text datasets. D1-D2 are subsets of the 20-
NewsGroups by choosing randomly, 100 documents from each selected category. D3 is
a version of the Reuters-21578 benchmark text collection, by selecting the 10 top-sized
categories. From each category we chose 100 documents at random, except for the last
one, where we took all its documents as its size is below 100.

D5 is a subset of GoogleNews dataset !, that contains English-written articles from
the ”"Technology” category. From this text collection we kept the classes with more than
20 documents and we extracted the main content from each article. More details about
this dataset and the way it was annotated, can be found in [28].

D4 is a subset of TDT5 2 text collection, which contains 250 topics gathered form 15
different newswire sources between April and September of 2003. The 75% of the topics
are monolingual (English, Arabic or Mandarin Chinese) and the rest multilingual. From
this dataset we kept the English-written documents and those appearing in two or more

http://www.db-net.aueb.gr/GoogleNewsDataset /
2https://catalog.ldc.upenn.edu/docs/LDC2006T19/TDT2004V1.2.pdf
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categories were removed. From the resulting categories, we considered only those with
more than 50 document stories.

Pre-processing of a raw text collection is a required step before applying any clustering
algorithm. A standard method consists of two steps. Initially stop-words, numbers and
alphanumerics are eliminated. Then, the stemming algorithm [41] is applied, in order
to replace each word by its corresponding word stem. The derived word stems form the
vocabulary of the text collection. For the pre-processing, we used the ”Text to matrix
Generator toolkit” [53].

To reduce the feature space in D1,D2 and D3, we ignored the words that appear in
less than 5 documents, while the threshold, for D4 and D5, was set to 3. For each of
the last two datasets, we calculated three quantiles from the terms document frequency
distribution. In that way, the distribution was divided in three equal parts. We excluded
the corner parts (terms with very high and very low document frequency) and we kept
the rest words for our vocabulary. The documents with no words, after the previous
preprocessing, were not taken into consideration. The characteristics of the above text
datasets are presented in Table 4.1, while Tables 4.4 and 4.3 present the events and the
topics from TDTH, GoogleNews, 20-NewsGroups and Reuters-21578 datasets respectively.

Table 4.1: Characteristics of text document collections

Name Classes N V Balance V’

D1 10 1000 2352 1 45,89
D2 10 1000 2310 1 44,54
D3 10 993 1566 0,93 44,16
D4 30 4972 4717 0,06 21,54
D5 11 268 1298  0,4318 59,07

N denotes the number of documents, V the size of the vocabulary, V’ the average document

vocabulary and Balance the ratio of the smallest to the largest class

The pre-defined timeline of the TDT5 and GoogleNews datasets was used and docu-
ments that were published the same day were inserted in the same batch. Because of the
lack of timestamps in the 20-NewsGroups and Reuters-21578 data, we used a simulation
method in order, artificially, to produce topic bursts.
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Table 4.2: Selected topics for D1,D2 and D3

Dataset

Source topic

D1

D2

D3

20-NGs: graphics, windows.misc, pc.hardware,

mac.hardware, windows.x, autos,
motorcycles, politics.guns,

politics.mideast, politics.misc

20NGs: atheism, graphics, ibm.pc.hardware,
forsale, autos, sport.baseball,

crypt, religion.christian

politics.guns, politics.misc

Reuters -21578: acq, corn, crude,

earn, grain, interest, money-fx,

ship, trade, wheat

Table 4.3: D5 - subset of GoogleNews

id topicID Name
1 65 AT&T Unveils Shared Wireless Data Plans
2 186 Apple Considered Investing in Twitter
3 15 Google Nexus 7 tablet goes on sale in US
4 555 VMware buys Nicira for $1.05 billion
5t 646  Google unveils price for gigabit Internet service
6 5t Digg acquired by Betaworks
7 252 Microsoft Reboots Hotmail As Outlook
8 425  FTC Fines Google for Safari Privacy Violations
9 454 Nokia cuts Lumia 900 price in half to $50

10 19 Apple Brings Products Back Into EPEAT Circle

11 496 Yahoo confirms 400k account hacks
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Table 4.4: D4 - subset of TDT5

id topiclD Name
1 55005 Sosa ejected, cheating suspected
2 55012 National Do Not Call Registry
3 55016 Gay Bishop
4 55029 Swedish Foreign Minister killed
5 55047 Kobe charged with sexual assault
6 55063 (SARS) Quarantined medics in Taiwan protest
7 55069 Earthquake in Algeria
8 55072 Court indicts Liberian President
9 55076 Protests at 2003 Masters Tournament

10 55078 Looting at Iraqi nuclear site

11 55080 Spanish Elections

12 55087 Earthquake in Turkey

13 55089 Liberian former president arrives in exile

14 55090 Blackout in US and Canada

15 55098 Bush and Blair Summit

16 55103 Two Britons among terror suspects

17 55105 UN official killed in attack

18 55106 Bombing in Riyadh, Saudi Arabia

19 55107 Casablanca bombs

20 55109 Israel withdraws troops from Gaza

21 95117 Cambodian Elections

22 55118 World Economic Forum in Jordan

23 55125 Sweden rejects the Euro

24 55128 Mad cow disease in North America

25 55155 Chinese Submarine Accident

26 55166 Suicide bombers hit Moscow concert

27 55181 Palestine: Ahmed Qureia tapped as next prime minister

28 55200 Iraq: Protection of antiquities

29 55227 Bin Laden Videotape

30 55240 US troops fire on Mosul crowd

4.2 Text Stream Generator

The major assumption we made in order create topic bursts, is that documents from the
same class follow an exponential distribution. Thus, because of the topic bursts, bursts of
terms would be produced too. In every time window a number of documents is assigned.
The probability a term to characterized as bursty in each time window depends on the
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number of documents that contain it. Below the pseudocode of the text stream generator

is displayed?.

The input of the method, consists of the length of the stream timeline 7', the number

of topics K and the maximum number of bursts per topic (burstsq,). Furthermore, the

maximum and minimum lambda of the exponential distribution (lin, lmaz) as well as the

maximum and minimum percentage of documents that participate in the topic bursts,

are input of the generator (rdmin, "dmaez). The exact number of bursts, documents and

the lambda of each burst is chosen randomly in the respective intervals.

function TextStreamGenerator(T, K, IDS, luin, lmazs DU StSmaz, "Amin, Tdmaz )

input

output
let

end let

T the text stream period

K: the number of topics

IDS: the id of each document

Lmins lmaz: min and max lambda of the exponential distribution

burstSma..: max number of bursts

rdmae: Max ratio of stories in the bursty topic intervals

rdmin: min ratio of stories in the bursty topic intervals

text stream S(equation 3.1)

Numbersy,,ss denote the number of bursts per topic

docs,qtio the percentage of documents from each category in the bursty intervals
select_random: method that selects randomly documents from a category
diff: method that returns the difference between two sets

distribute: method that distributes the selected document ids into T batches
according to an exponential (or randomly)

1. for i=1... K

6.

7.

Numberyy,sis <— rand(1,bursts,,q.)

docsyatio < rand(rdpmin, Tdmaz)

Docs < select_random(C;, docs,atio)

Docsyest < dif f(C;, Docs)

forj = 1... Numberspyrsis

lambda < rand( lmin, lnaz)

31t should be noted that the code is developed and maintained by the postdoctoral researcher Argyris

Kalogeratos, email : kalogeratos@cmla.ens-cachan.fr
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8. S« distribute (7', lambda, Docs)

9. S+« distribute (T, random, Docs,est)
10. end for
11. end

12. return

4.3 Experimental Protocol

We compared our similarity matrices, S[Mgggt]\yj -SIM1p-SIM2p-SIM1%" - SIM2%",
with the GVSM matrix as well as the static VSM (tfidf) and the bursty feature representa-
tion (equation 3.3). We designed three experiments. The first experiment was conducted
on the last two datasets D4 and D5, where the text stream was created based on the
documents’ daily timestamps.

For the D1, D2 and D3 datasets, due to the lack of documents’ timestamps, we de-
signed two experiments using the stream-generator to create topic bursts. In the first
experiment (Ezperiment A), the duration T was set to 30 and in the second (Ezperiment
B) to 90 time units. Furthermore, in the first case, the number of bursts per topic was
one or two, while in the second all topics had only one burst.

Table 4.5: Parameters of the Text Stream Generator

Experiment ‘ A B

T 30 90

lamba | [0.2:0.9] [0.2:0.9]

#bursts per topic 1-2 1

%docs in bursts | 0.7-0.9  0.7-0.9

For each burst, the parameter lambda of the exponential distribution was selected,
randomly, from the interval [0.2:0.9]. We chose, this interval, because values higher than
1 restricted a burst in only one time window, while values close to zero sustained a burst
over many time slots. The percentage of documents, from each topic, that would be
attached to the bursty intervals was picked, randomly, from 0.7 to 0.9. Finally, each

experiment was executed 5 times, by randomly initializing the stream generator.
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The reason, we designed our experiments in that way, is to study the proposed sim-
ilarity matrices in two kind of situations; in ”complicated” (FEzperiment A) and ”more
relaxed” (Ezperiment B) text streams. In the first case, the overlapping between topics
is higher. While in the second situation, the probability of simultaneously occurring two
topic bursts in the same timeslot is lower. For that reason we introduce a supervised
metric, the entropy of a text stream as the mean of entropy of all windows:

T
ST Hst
H, =% 4.1
T (4.1)

Hi =~ (n(c))/n') - logs(n(c))/n") (4.2)

1

where n' is the number of documents in the ¢-th batch and n(c}) the number of documents
from class ¢;.

Table 4.6: Stream Statistics

Name V B m H

DI1-T=30 2352 2894 33,3 2,1157 £0,9035
D1-T=90 2342 597 11,4 0,8161 +0, 7243
D2-T=30 2310 276 29,2 2,31 +0, 891
D2-T=90 2310 555 11,1 0,8903 0, 7132
D3-T=30 1566 290,6 33,1 2,1798 +0, 8833
D3-T=90 1566 544 11 0.8387 40.7442
D4-T=183 4717 4020 23,8483 2,0529 40,5811
D5-T=31 1298 400 8,6452 0,2369 +0, 5429

V denotes the vocabulary size, B the number of bursty terms, m the average number of

documents per timestamp and H the stream entropy

The new image of a document, after applying on it a term similarity matrix SIM, is
given by the product d’ = d-SIM. Therefore, the image of a text collection is the product
X' = X -SIM. We multiplied all the similarity matrices with representations X and XB.

To assess the quality of each matrix, we tested each mapping document collection
using the spherical k-means algorithm. The pre-defined number of K-clusters corresponds
to the number of events in a collection. In addition, the algorithm ran 100 times and
each time the k centers were randomly initialized, but all representations were booted up

using the same random document seeds.

36



For the evaluation of the CBTC algorithm, we conducted experiments on all five data
sets running the spherical K-means in X and XB representation. For the D1, D2 and
D3 data sets we used the parameters of Experiment A executed it 1 time, by randomly
initializing the text stream generator. Moreover all methods were initialized using the

same random document seeds.

4.3.1 Evaluation Metrics

The evaluation was based on three different supervised measures. At this point we define
the following:

e N is the number of docs

e C is the cluster solution of k-cluster

Cly ..., Cg

e c? is the portion of documents according to their true class labels

Ao
e N, the size of ¢
e n;, the size of ¢;

e n;;, the number of documents that are clustered to ¢; but they belong to ¢!,

Purity
Purity can be interpreted as the classification accuracy, if all the samples of a cluster are
predicted to be members of the dominant class.

Purity(c) = % Z maz{n;;} (4.3)

Fl-measure

%) and recall (R = TPZ%), where TP,

FP and FN denote True Positive, False Positive and False negative respectively.

F1 is the harmonic mean of precision (P =

29.P-R
F=Z2 2t
" P+R

Lower (higher) values of F; indicate worse (better) solution.

€ [0,1] (4.4)
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Normalized Mutual Information
The numerator is the Mutual Information measure and the denominator is the maximum
between cluster and class entropy.

n,

Z(%)lofﬂﬁ
NMI = N N
max{H(c), H(c)}

(4.5)

We report the average value (denoted as ’avg’) of each metric over the runs on a
dataset as well as the best value (denoted as ’best’) corresponding to the solution with
the the highest clustering objective function (equation 2.17) among the 100 runs.

4.4 Experimental Results

e Term-Similarity matrices

GoogleNews

Table 4.7: Term-Similarity matrices results on the D5 using spherical K-means

avg. avg. avg. best best best

Purity F1 NMI Purity F1 NMI

X 0,55694  0,56595  0,47404 0,56343  0,5928 0,5156
XB 0,79388  0,79319  0,77183 0,89552  0,89624  0,84097

X-SIMevsy | 055728 0,58258  0,50198 0,58582  0,62992  0,5359
XB-SIMevsy | 07194  0,74308  0,70972 0,83582  0,85363  0,79786
X-SIMBwsty | 07222 0,74389  0,69454 0,81716  0,83802  0,76973
XB-SIMY75% | 078138  0,78692  0,77716 0,02164  0,92246  0,87379

X-SIM 15 0,70216  0,72757  0,66245 0,74627  0,78115  0,70301
XB-SIM1%" | 0,80679 0,81843  0,81033 0,9403  0,94077  0,90035
X-SIM2¢er 0,69616  0,72219  0,65649 0,78731  0,80006  0,71304
XB-SIM2%" | 0,80847 0,81924 0,81064  0,95522 0,95472 0,92034
X-SIM1p 0,65396  0,68157  0,63284 0,65209  0,70403  0,65002
XB-SIM1p 0,75784  0,78265  0,77505 0,83209 0,83747  0,8235
X-SIM25 0,65649  0,68351  0,63315 0,70149  0,72777  0,65982

XB-SIM1p 0,76575  0,7893  0,78022 0,88433  0,89287  0,86173

We observe that the representation XB-SIMZ‘&‘?]Z{/[ outperformed all the others. Prob-
ably, because in this text stream the events are well-separated. Moreover, from all
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the datasets, this is the one with the lowest stream entropy.

TDT5

The D4 dataset is an imbalanced text collection, as there are some events with many
and others with limited document stories. In that case the Purity is a biased metric
as it favors the dominant class. For this reason we should pay attention to the
NMI metric, in order to trade off the quality of the clustering, against the number
of clusters. Although the best solution, for the spk-means algorithm, was accom-
plished using XB-SIMgy g, we should also notice the performance of XB-SIM1%"
that achieved slightly less NMT, but better F1 score. On the other, the XB-SIMX 5%
representation, gave the highest average measurements.

Table 4.8: Term-Similarity matrices results on the D4 using spherical K-means

avg. avg. avg. best best best
Purity F1 NMI Purity F1 NMI
X 0,56383  0,51125  0,58706 0,61826  0,5767  0,62348
XB 0,61354  0,55601  0,6412 0,66895  0,63935  0,6714
X-SIMgvsm 0,67542  0,62208  0,68046 0,73994  0,68698  0,71128
XB-SIMgysar | 0,71793  0,64839  0,72391 0,76126  0,71067 0,75881
X~SIMZL"}‘°‘;§(4 0,69997  0,63661  0,69935 0,73632  0,69522  0,72526

XB-SIM?&?% 0,72068 0,65254 0,72698 0,75201  0,69625  0,75144
X-SIM1g" 0,68054  0,62268  0,68317 0,70374  0,66334  0,70293
XB-SIM1g" 0,70582  0,63788  0,71551 0,76287 0,72038 0,75339
X-SIM2g" 0,67924  0,62238 0,68213 0,70716  0,67449  0,70543
XB-SIM2g" 0,70594  0,63856  0,71516 0,75905 0,7156 0,74873
X-SIM1p 0,61754  0,55369  0,63469 0,64642  0,57477  0,65389
XB-SIM1p 0,62709  0,55621  0,65211 0,64019  0,55793  0,66445
X-SIM2p 0,61749  0,55452  0,63513 0,65648  0,58328  0,65463
XB-SIM2p 0,62808  0,55715  0,65311 0,63717  0,55614  0,66371
Reuters

In the Ezperiment B (T=90), where the text stream is created from the D3 dataset,
the XB representation was the best. But things were little different in Experiment
A, where the stories are published in narrower time period (T=30). The reported
best solution, with max Purity and F1, was derived from the same method as before
(XB), while the maximum NMI from X-SIM1%" similarity matrix. In addition, the
X-SIM2%" produced the highest average measurements for all three metrics.
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Table 4.9: Term-Similarity matrices results on the D3 using spherical K-means

T=30
avg. avg. avg. best best best
Purity F1 NMI Purity F1 NMI

X 0,77058  0,77449  0,74477 0,8711  0,86384  0,82431
XB 0,79441  0,80148  0,75424 0,89648 0,89537 0,82597
X-SIMgvsm 0,75265  0,76099  0,72799 0,83887  0,82763  0,78172
XB-SIMgysar | 0,77239  0,78397  0,73725 0,8433  0,83686  0,78152
X-SIM?&?% 0,785 0,80196  0,77217 0,86485  0,86639  0,82157
XB-SIM%}?]Z{J 0,78437  0,80077  0,75364 0,8719  0,87698  0,80743
X-SIM1%" 0,79639  0,80745  0,77461 0,88419 0,88724 0,83861
XB-SIM1g" 0,79047  0,80189  0,74171 0,88218 0,88126  0,80103
X-SIM2%" 0,7969 0,80795 0,77549 0,87029  0,87261  0,83362
XB-SIM2g" 0,79158  0,80287  0,7441 0,88379  0,88239  0,80426
X-SIM1p 0,70368  0,72187  0,66663 0,76918  0,78179  0,71477
XB-SIM1g 0,66448  0,67963  0,59367 0,69144  0,69447  0,6092

X-SIM2p 0,70989  0,72733  0,67194 0,78691  0,7974  0,72769
XB-SIM2pg 0,66713  0,68125  0,59614 0,6856  0,69201  0,60591

T=90

X 0,77058  0,77449  0,74477 0,8711  0,86384  0,82431
XB 0,82896 0,8411 0,82602 0,92991 0,92993 0,88855
X-SIMgvsam 0,75265  0,76099  0,72799 0,83887  0,82763  0,78172
XB-SIMgysar | 0,79833  0,81848  0,79222 0,8709  0,88096  0,84261
X~SIM§L"}‘Q‘;§(4 0,80139  0,82038  0,7921 0,86244  0,86954  0,83152
XB-SIMZ?}?]Z(/[ 0,7888 0,8126  0,79615 0,89063 0,89701  0,86274
X-SIM1g" 0,79728  0,81459  0,78368 0,87372  0,87071  0,82908
XB-SIM1g" 0,78709  0,8057  0,78939 0,90413  0,90213  0,85801
X-SIM2g" 0,79871  0,81489  0,78453 0,87412  0,87104  0,82917
XB-SIM2%" 0,78924  0,80719  0,79124 0,89486  0,89214  0,85318
X-SIM1p 0,75918  0,79097  0,74672 0,85801  0,85578  0,80142
XB-SIM1p 0,76785  0,7996  0,77028 0,87009  0,88456  0,83716
X-SIM2p 0,76537  0,7954  0,75129 0,86606  0,86156  0,80812
XB-SIM2pg 0,77027  0,80119  0,7715 0,87996  0,88731  0,83933

20-Newsgroups

The D1 dataset consists of documents that originated from classes with concep-
tual similar content. In both experiments (A-B) the best NMI achieved from the
ST Mg%gt]\y/‘, matrix. In the first case, where topic bursts are placed in 30 windows
(Experiment B), the best solution of spk-means, with the maximum Purity and F1
score, attained by STM2%" matrix. In the second case, the same term-term matrix
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with the representation XB-SIM2%" worked well too. According to the run that
maximized the cohesion of the clusters, the XB-SIM1 g representation was that with
the the values for Purity and NMI.

Table 4.10: Term-Similarity matrices results on the D1 using spherical K-means

T=30
avg. avg. avg. best best best

Purity F1 NMI Purity F1 NMI
X 0,51049  0,52423  0,45747 0,593  0,59331  0,51949
XB 0,56356 0,711  0,49279 0,6304  0,61925  0,5422
X-SIMaysm 0,54 0,57378  0,53851 0,585 0,5834  0,55855
XB-SIMgvsn | 0,57524  0,59583  0,54924 0,6108 0,60108  0,56421
X-SIMZ‘&S;]Z{J 0,60046 0,61152 0,55873 0,6334 0,61883  0,57131
XB~SIM2“’}§]‘1{4 0,60052 0,6113 0,5544 0,6366  0,63224 0,57827
X-SIM1g" 0,5618  0,57371  0,51602 0,6292  0,62051  0,56491
XB-SIM1%" 0,59568  0,60199  0,52376 0,6416 0,62912  0,55398
X-SIM2g" 0,55679  0,56885  0,51165 0,6336  0,62469  0,56566
XB-SIM2%" 0,59568  0,60156  0,52319 0,6538 0,64227 0,56037
X-SIM1p 0,50416  0,51563  0,41663 0,5618  0,56348  0,46306
XB-SIM1p 0,47065  0,4771  0,36805 0,5036  0,5013  0,39098
X-SIM2g 0,50999  0,52051  0,42155 0,5638  0,56659  0,46509
XB-SIM2p 0,47407  0,48012  0,37182 0,5048  0,50504  0,39342

T=90

X 0,51049  0,52423  0,45747 0,593  0,59331  0,51949
XB 0,656452  0,6588  0,59367 0,7482  0,75071  0,65354
X-SIMevsm 0,54 0,57378  0,53851 0,585 0,5834  0,55855
XB-SIMgvsn | 0,62389  0,6498  0,61264 0,6718  0,68874  0,64655
X-SIM?&?% 0,63971  0,64973  0,58802 0,705  0,70356  0,62124
XB-SIM%‘(}?% 0,69174  0,70394  0,6545 0,7808  0,78423 0,70592
X-SIM1g" 0,60687  0,62007  0,55751 0,6674  0,66506  0,60209
X-SIM1g" 0,70382  0,71608  0,64943 0,7922  0,79322  0,70249
X-SIM2ET 0,60721  0,6194  0,55597 0,6518  0,64495  0,59265
XB-SIM2%" 0,70721 0,71783 0,65111 0,793  0,79409  0,70438
X-SIM1g 0,60367  0,6331  0,53627 0,6998  0,70581  0,59384
XB-SIM1p 0,68303  0,7137  0,63211 0,8048 0,80336 0,69592
X-SIM2p 0,60865  0,63656  0,53845 0,7222  0,72293  0,6049
XB-SIM2p 0,68389  0,71484  0,63255 0,7908  0,79362  0,6881

The D2 dataset was selected on purpose, as opposed to D1. In the extended ver-
sion of the stream (Ezperiment B), the XB-SIM2%" and XB-SIM1y representations
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dominated on the best and average runs respectively, with much better results than
X-SIM2%" and X-SIM1p. In comparison with the classical VSM (tfidf) the repre-
sentation with bursty information (XB) in the short version of the stream (T=30)
produced slightly better results than the previous case (T=90).

Table 4.11: Term-Similarity matrices results on the D2 using spherical K-means

T=30

avg. avg. avg. best best best

Purity F1 NMI Purity F1 NMI
X 0,57099  0,58035  0,49093 0,686  0,67073  0,56485
XB 0,59983  0,60353  0,51628 0,6876  0,6806  0,58481
X-SIMgvsm 0,60616  0,62771  0,55516 0,652 0,6777  0,58435
XB-SIMgysa | 0,63691  0,65713 0,58709 0,66 0,68877  0,60598
X-SIMZ“’}S;%Z, 0,63297  0,6446  0,56822 0,6588  0,66877  0,58325
XB-SIM?&?% 0,64419 0,65414  0,5761 0,6806  0,68242  0,59549
X-SIM1g" 0,62474  0,63165  0,55026 0,7076 0,70546 0,6075
XB-SIM1%" 0,64196  0,64793  0,55513 0,6916  0,6856  0,58247
X-SIM2g" 0,62178  0,62906  0,54796 0,6986  0,69727  0,59996
XB-SIM2%" 0,64223  0,6479  0,55593 0,7096 0,70136  0,60215
X-SIM1g 0,51282  0,53095  0,43706 0,572  0,57295  0,47098
XB-SIM1p 0,49357  0,51196  0,40729 0,5524  0,55505  0,43814
X-SIM2p 0,51912  0,563693  0,44164 0,584  0,58396  0,48088
XB-SIM2p 0,49595  0,51328  0,40817 0,5518  0,5518  0,44174

T=90

X 0,57099  0,58035  0,49093 0,686  0,67073  0,56485
XB 0,66339  0,66576  0,60469 0,7424  0,73902  0,66036
X-SIMavsm 0,60616  0,62771  0,55516 0,652 0,6777  0,58435
XB-SIMgysa | 0,67288  0,69339 00,6483 0,726  0,75616  0,68227
X-SIMZ‘{}?%J 0,65327  0,66459  0,59129 0,6956  0,68812  0,60852
XB~SIM2“’}§]‘1{4 0,69089  0,70393  0,65602 0,7582  0,75575  0,69054
X-SIM1g" 0,66211  0,67312  0,59251 0,733  0,71921  0,63036
XB-SIM1%" 0,71492  0,72561  0,66898 0,781  0,77358  0,70545
X-SIM2g" 0,66068  0,6713 0,5904 0,7332  0,7182  0,63024
XB-SIM2%" 0,71563 0,72611 0,66904 0,781  0,77322  0,70519
X-SIM1g 0,64078  0,67199  0,57726 0,7358  0,73954  0,63166
XB-SIM1p 0,69354  0,72217  0,6511 0,7988 0,79643 0,70785

X-SIM2g 0,64269  0,67262  0,57738 0,7348  0,73653 0,63
XB-SIM2p 0,69311  0,72112  0,65084 0,7972  0,79387 0,70792

Maybe this is an explanation why the XB-SIMgysa representation achieved the
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highest average F1/NMI and the XB-SIM%L‘%% the highest Purity score. Finally as
reported by the best solution, only the SIMZ%;% (F1,NMI) kept performing well
again, while the max purity owned to the STM2%".

We conclude that STM1%" and STM2%" generally, perform better than STM1p
and SIM2p matrices. The latter are not appropriate solutions because in many
cases they failed to gain even the initial representation. All the proposed matrices
depend on the burst detection step. Thus, in the matrices there are noisy co-bursty
relations, proportional to the number of false detected bursty terms. We believe,
that this noise is eliminated enough due to the correlation matrix COR. A more
effective burst detection method would probably boost more the performance of all
aforementioned matrices.

Shading more light to the second experiment of D3 dataset, it is noticeable that
the X-SIMgy sy is the worst representation. Any additional weight that refers to
terms co-occurrence wasn’t not able to beat the XB representation. However, from
the experiment-B in D4 and D5 datasets, as well as from results in D1 collection,
where the stream entropy is low enough, the proposed similarity matrices seem to
perform pretty well.

Our initial argument that the co-bursty terms could enhance text clustering perfor-
mance is verified not only from the experiments on streams with low stream entropy,
but also from the stable performance of XB-SIM(’;&%J, which in most cases achieved

better results than the XB representation.

Correlated Bursty Term Clustering

The execution of the spherical K-means algorithm with initial centers the synthetic
prototypes produced by our method in section 3.3.3 is compared with the average
and best solution of 100 runs of spk-means with random initialization. In the first
row of X and XB representations the average value of each metric is displayed, while
in the second row the value of the best solution.

Our method depends on four parameters : Pdocs, Pterms, A\, 3, K, K’. The first
four are important for the synthetic prototype (ConstructSP) method. The A and
[ were set to 0, while the Pdocs and Pterms to 0.5 and 0.4 respectively. We chose
these values so that half documents of each cluster and less than 50 percentage of
the words to be taken into consideration for the creation of the representatives. The
K parameter was set to the numbers of the the underlying classes. Finally, K’ was
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set to 2K and 3SK.

At this point, we should notice that for the evaluation of CBTC algorithm in D4
data set, we regarded all the bursty information that has been extracted from the
Kleinberg’s two-state automaton. Because the rest text streams (D1,D2,D3,D5)
spanned only 30-31 time units, we observed after extensive experimental tests, that
our method performed better when we adopted the period with the largest bursty
weight of a feature as its bursty period over the whole duration T. Probably, this
happens because we deal with more complicated streams (Figures 4.1, 4.2) contrary
to the D5 dataset (Figure 4.3).

Table 4.12: Random Initializationation vs CBTC - results on the D5, D4 using spherical
K-means

Purity F1 NMI Purity F1 NMI
D5
X 0,55694  0,56595  0,47404 XB 0,79388 0,79319 0,77183
0,56343 0,5928 0,5156 0,89552 0,89624 0,84097
X-2K 0,78358 0,81382 0,73753 XB-2K  0,89179  0,89504  0,83692
X-3K  0,66791  0,69642  0,64545 X-3K  0,82463  0,80893  0,80116
D4
X 0,56383 0,51125  0,58706 XB 061354 0,55601 0,6412
0,61826 0,5767  0,62348 0,66895  0,63935 0,6714
X-2K  0,68866  0,62495 0,71205 XB-2K 0,70555 0,64479 0,72803
X-3K 0,69308 0,63978 0,70533 X-3K  0,70032 0,65636  0,71984

From Table 4.12 we could see that in the D4 dataset our method gave much better
results than the randomly initialized spk-means for both representations. In D5
dataset, things are a little different. First of all, we should remind that it is a small
text collection, less imbalanced and with the lowest stream entropy. Moreover it is
known that K-Means works better in datasets that have equally sized clusters. For
these reasons, especially the first two, the clustering problem in the D5 dataset is
much easier. For the X representation, the initialization with CBTC performs the
best, contrary to the XB representation where the random initialization that maxi-
mizes the cohesion of the clusters is dominating. On the other the D3 (Table 4.13)
was the only dataset, that our method didn’t achieve better results than the best
solution of X and XB representation. However, we observe that CBTC algorithm
performs much better for all three metrics than the average of 100 spk-means runs.
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Table 4.13: Random Initializationation vs CBTC - results on the D3 using spherical
K-means

Purity F1 NMI

X 0,77058  0,77449  0,74477
0,8711 0,86384 0,82431

X-2K  0,83787 0,85119  0,81308
X-3K  0,86103  0,85392  0,81263
XB  0,77915 0,78156  0,72218
0,87412 0,87378 0,78662
XB-2K  0,81873 0,81737  0,75674
XB-3K  0,81693  0,8362  0,77201

The superiority of our method in all metrics against the average value after running
the spherical K-means 100 times, was expected as the representatives of the clusters
are produced from the combination of documents that are close to the medoid of
each class. The crucial point in our method is that the most important documents
for an event are published when this event is bursty.

Table 4.14: Random Initializationation vs CBTC - results on the D1,D2 using spherical
K-means

Purity F1 NMI Purity F1 NMI
D1
Purity F1 NMI Purity F1 NMI
X 0,51049 0,52423  0,45747 XB 0,58167 0,5905  0,53521
0,593  0,59331  0,51949 0,639 0,64696 0,5645
X-2K 0,587  0,59707  0,55897 XB-2K 0,623 0,63372 0,60387
XB-3K 0,649 0,6629 0,61582 XB-3K 0,631  0,64531  0,59339
D2
X 0,07099  0,58035  0,49093 XB 0,59065 0,60314  0,50202
0,686 0,67073  0,56485 0,653 0,66345  0,54625
X-2K 0,694 0,72323 0,62019 XB-2K 0,679 0,70549 0,58885
X-3K 0,598  0,60933  0,55441 XB-3K 0,587  0,60784  0,53174

As it is observed from the results presented in Table 4.14 for the D2 data collec-
tion, the superiority of our method is clearly. Moreover it performs better for the
X representation for data set D1. Regarding the XB representation, the CBTC
initialization method gave the highest NMI measure.
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Figure 4.1: Text stream distribution of D1 and D2.

45 a5-

40 -

35}
) ol Uy 5r
9 25} Q 20
) RS
= of T s
o 1
3% 15F g5l

il

l'\. 5.0 &
& B oLk

20

30 batches

Figure 4.2: Text stream distribution of D3.
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Figure 4.3: Text Stream distribution of D5.
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CHAPTER 5

(CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

5.2 Future Work

5.1 Conclusions

In this thesis, we studied the problem of text stream clustering, exploiting the bursty
information. In order to discover the busty features we used the Kleineberg’s two-
state automaton. We have, also, presented several term-similarity matrices, that
are constructed from bursty features and were evaluated against a bursty-feature
and GVSM representations using the spherical K-means algorithm.

Furthermore, we introduced the CBTC approach, which is used for the initialization
of spherical K-means when this is applied to text stream collections where the notion
of burst is crucial. In order to find the initial representatives, we construct a graph
using the bursty terms and then we partition the graph using Spectral Clustering.
In the next step, we assign documents to each cluster of terms and we compute
representatives of each cluster using the synthetic prototype method. At the end

we merge the most similar clusters.

The experiments were conducted on several benchmark datasets. From the cluster-
ing results, we observed that in most cases the CBTC method performs much better
than random initialization. Moreover, because of the lack of timestamps for 20NGs
and Reuters-21578 datasets we used an artificial method to create topic bursts.
Moreover, the STM{ur$%  term similarity matrix seems to be superior in most cases
to the GVSM and B-VSM representations. Finally, in text streams where events
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overlap in few time slots, the XB-SIM2%" tends to perform better than GVSM and
SIMZS

5.2 Future Work

Our plans for future work are to test the CBTC algorithm against other methods
that are used for the initialization of the spherical K-means like K-means++ [3].
We could also investigate further ways to improve our algorithm by building a graph
with bursty and non-bursty features or testing other methods in order to partition
the graph into groups of features. It is also interesting to assess the behavior of our

algorithm on short and long-running events.

Regarding the term correlation matrices, we could study ways to calculate the cor-
responding semantic kernels. Moreover, the proposed methods should be evaluated
in the future using other clustering algorithms. We have, also, the intuition, that
if graph clustering is successfully we could extract groups of terms from the bursty
keywords graph, that would be able to construct several term similarity matrices
corresponding to different topics of a text stream. Finally, it would also be interest-
ing to check the performance of our method on data derived from social platforms
like Twitter.
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