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ABSTRACT

Author: Joseph R. Polenakis, BSc, Dept. of Computer Science and Engineering, Univer-
sity of Ioannina September 2014,

Thesis Title: Algorithmic Techniques for Malicious Software Detection and Classifica-
tion based on System Call Graphs

Supervisor: Stavros D. Nikolopoulos, Professor, Dept. of Computer Science and Engi-

neering, University of loannina

One of the most dangerous and detrimental threats in computer security is the ma-
licious software, the so called malware. Malware is a type of software indicated to serve
a malicious purpose in some fashion, consisting a major threat for systems’ security by
compromising the integrity, confidentiality and availability so for the systems as whole
as for the data stored into them. Thus, in order to protect our systems from such a
threat, prevention and detection against malware consists a simplex. The most stable,
effective and also efficient method to protect our systems against malware threats is the
installation of end-point detection systems, the so called antivirus.

In order to achieve real-time protection AVs use a quite naive approach to identify
malware leveraging pattern matching and utilizing a set of byte-level string signatures,
expressing an adequate real-time protection. However, because this method is based on
static data, the credibility of its results can be compromised during the appearance of
a mutated or even more in case of a totally brand-new malware. Since we are not able
to predict any brand-new malware our main target is the armoring against any mutated
malware.

In this thesis we present an algorithmic technique in the area of dynamic malware
analysis, in order to detect if a given specimen is a malware and afterwards to classify
it into one of a set of known malware families. Specifically, we propose an elaborated
algorithmic technique for malware detection and classification utilizing the System-Call
Dependency Graphs (SCDG) obtained by capturing traces through tainted analysis and
a set of similarity metrics methods in order to detect and classify a given specimen. More
precisely, in order to achieve higher generalizability and thus higher flexibility we have
made a transformation using the initial SCDG, by creating a hyper-abstraction of it, where
its vertices are consisted by groups of system-calls with similar functionality. After this
transformation, we proceed to the detection phase, where we have developed a formula

vi



that combines so the examination of qualitative, as that quantitative and existential
characteristics, that are spread among the members of a known malware family. Next,
in the classification phase we leverage so the aforementioned characteristics utilized by
various similarity metrics as the correlations between the Maximum Strongly Connected
Component (MSCC) of the test sample’s SCDG and each Strongly Connected Component
(SCC) in each malware family member’ s SCDG.

Finally, we cite the results produced from experiments when applying our model on
a dataset of 2631 malware samples from 48 malware families and 33 commodity benign
programs when performing 5-fold cross validation achieving a 99.64 % detection rate
with 10% false-positives where our classification accuracy reaches the 82.84 %, and then
evaluate our model comparing the results against those produced by other approaches.

vil



EKTETAMENH IIEPIAHUH STA EAAHNIKA

Mo and tic anethéc ue Tov ueyahitepo Bubud emxivduvOTNTIC GTOV TOULNS TN ACPAAELAC
UTOAOYLOTIXGY UOTUATLY elvat To xaxdBoulo hoylouxd (malicious software), to anoxoh-
oUuevo malware. To xax6Bouho hoyiouxd elvan éva eldog hoyiouixol to onolo e€unnpetel
Evay Xax6BouAo oxond, anoTeAGdVTAC Uellova amelhy) yia TV axepaldTnTa, 1) StabectudtnTa
XAl TNV EUTLOTEVTLXOTNTA TV GUCTAUATOY 660 %ol TV SedoUEvwY Tou [Bploxovtal Ugoa
oe autd. ¢ ex toltou, Y va Teootateufoly T cucTAUATA, oL XoT EMEXTUCT, TA
dedouéva mou Beloxovtor oe autd, 1 tpdhndn xal n aviuetdron (aviyveuon) ocuyxpotoly
1 deondlovoa Taxtixr. H mo alidmotn xar amodotixy) uéfodoc yio va emteuybel xdtu
TETOLO, ElVAL 1) EYXATAOTAOY) CLUOTNUATWY aviyveuonc oe 660 BUVAUTOV TEPLOC-OTEPA OTuEla
TOU EX4OTOTE GUOTAUATOC, Ta amoxalovueve avti-uxd (Anti-Virus).

To cuothuata autd Ta omola elval utedBuva Yo Ty aviyveuor xax6BoUAoU AoYLoULXOY
yenotdonololy dueceg uebddoug aviyvevone, 6nwe yia Topddelyud To Talplaoud XAToLwY
uotiBwy (pattern matching) Baclouévonv o UTOYPUYES YPUUUATOGELRGDY, ETLTUYYAVOVTAC
£T0L LXOVOTIOLNTIXE TOGOGTY avlyVEUONC TETOLWY ATELNDY OF TpayUaTixd ypdvo. 261600,
N WAVOTNTE TOUS AUTH, AOY® TNS OTATIXOTNTAS TV Sedouévwy Ta onola allomolel, Svvatal
va ehayiotonolnlel 6tay 1 ev Aoyw anelhr) anoteieltal elte amd €va yetallayuévo elte and
EvaL eVTEADCS VEO xaxdPBoulo hoyiouxd. Katd ouvénela, dedouévou 6tL dev elvat Suvatdy va
mpoPBiédouue 0 dnutoupylo omoloudimote VEou xuxdBou- Aou Aoylouixoy, o Bacixdg pag
016y 0¢ elvar vo avanTiEouue unyaviolols ol omtolol va elval txavol va napéyouy npootacia
evévtiol oe BEATLOUEVES LOPQES TNG ATELANG AUTAHS, OTWS YL TUEdSELYUR TO UETAANAYUEVO
%Ax6BOVAO hoYLOULXO.

Y1y epyaoio auth tpotelvouue, uhoroloUue xat topouctdlovue, uta ahyoptbuxy uéfodo
oToY ToUgd TG SuvaULXNS avIAUGTS Xax6Boviou Aoylouxoy 1 onola €yeL TNV XAVOTNTA,
dofévtoc evdg ayvidoTou Aoyiouxod va aviyvedel av elvor xaxdBoulo # oL, xaL v cuveyela
vo. 10 Tolvouel o AmOXAELOTIXG ULol A6 €V GUVOAD YVOOTOV OLXOYEVELDY XAXOBOUAWY
hoyloux@yv.  Xuyxexpluéva, mpotelvoude Wi ohyoplOuixy) TeXVIX Yid TNV avayvoeLon
Xl TaELvoOUNnon xaxOBoVA®Y AOYLOUXOY Baolouévr ot YRupRUuaTa XANCEWY CUVIPTHOEWY
ovotiuatog (System-Call Dependency Graphs) ta onola dnutoupyhfnxay alomoldvtag
dedouéva Ta omola XATAYEAPNHAY XATA THY EXTEAECT) TOV XAXOBOUAWY AOYLOUIXOY UEGHK
uLac dtaduxaatog mou ovoudletal extetauévn avdhuon (taint analysis).

ITio cuyxeEXELUEVAL, TROXEWEVOU VOl ETLTUYOUUE UEYAADTERT) LXAVOTNTA YEVIXEUOTC EVAVTLAL
o€ Loy UPEC UETAMELELS SuloupyoUue éva uép-yedgpnua To onolo Spa we utép-yevixeuon
TOU YPUPHUATOS XANOEDY CUVAPTACE®Y CUCTAUATOS OTOU €YOLUE avVTIXATAOTACEL Xdbe
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%x6uPo tou (ouVdpTnon cuCTAUNTOS) UE TNV ouddo oTny omola avixeL auTH 1 cuvdpeTtnon
OUGTAUATOS %ol 1) oTtolol GLUUTESLAAUBAVEL XL GAAES CUVIQTHOEL GUOTAUATOS UE OUOLA
AertoupyotnTa. Ev ouveyela, Yo Tny avay vodplon Tou xoxdBoukou hoylouixol teotelvouue
uta u€fodo 1 omola otneiletal oe pLo ouoyETLon Tou UVSUALEL TNV alLlOTOINGCY) TWV TOLOTLXGY,
TOGOTIXOY XL UToRELOXGY (aVapopXd UE TLC OXUES) YOPUXTNELOTIXGOVY TOU UTAEYOUY 0T
YEAPHUATH XAACEWDY GUVIPTACE®Y GUGTAUATOC TOV UEADY ULAS OXOYEVELIS XAXOBOUAWY
AovLoUX @V UEsK BLaQopeTiXdY UeTpx®dy ouotdtnrag. Téhog, v tny xatdtadn evidg
%xax6BovAou hoYLoulxoU oe ula oxoyYEvelo xaxOBouAwyY hoyYLowx®y, afloTolovue Cavd Ta
TEOAVUPERHEYTA YALAXTNELOTING UECW UETPLXGY OUOLOTNTAC XAl ETLTPOCHETA EXUETAAAEVOU-
aoTE TNY OLOYETLOT o€ eninedo Loyupd LuvexTixdyv LuvloTwohY Tou TapaTnEelTaL aviuesa
OTO YPAYNUO TOU aYVWOTOU OelyUoTOC oL TO YRAQTUO €VOC UEANOUC ULIC OLXOYEVELS
AAAXOPOVADY AOYLOUXDY.

Ennpdobeta, napabétovue ta anoteréopata mou ehiylnoay uéow arotiunong dluctaug-
wuévne oe mévte tuhuata (5-fold cross validation) egapudlovtac to yovtého uog oe 2631
xax6Bouvio hoyrouxd and 48 owxoyeveleg xaxoBouhwy hoyiouxdv xat 33 un-xoxoBouia
hoytouxd, enttuyydvovtog 99.64 % nocootd avayvdplone ue 10 % ecgaduévec aviyveloelg
(false-positives) evd 10 m0600T6 0phhc xatdtalne evéc xaxdBoulou hoyiouxol oe uia
0O YEVELXL XAXGBOVALY hoyiouxdy égtace to 82.84 %. Téhoc mapabétouue ua alyxpion
TOVY ATOTEAECUATWY TOU UOVTEAOU UAC UE GAAA LOVTEL BAOLOUEVO GE YRAPHOTO XAl UT),
oy oMalovtog xaL oLYXELVOVTAS Ta UeTaly Toug.
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CHAPTER 1

INTRODUCTION

1.1 What is Malicious Software

1.2 Defence Against Malicious Software

1.3 Malware Mutations and Detection Avoidance
1.4 Realted Work

1.5 Contribution

1.6 Structure of the Thesis

In this chapter we make an introduction to the topic citing the basic definitions and
explaining briefly the basic methods applied for protection against malicious software.
To start with, we define the term of malicious software, and then we proceed with the
definition of some of the most common malware categories. Next we present the main
procedures that are applied in order to develop later some defense techniques with strong
theoretical background. We define the procedures of analysis, detection and classification
while we describe their main corpus. Later, we define our main motivation for this re-
search, where we describe the detection evasion practices and specifically the mutation
procedures that are applied by malware authors in order to evade detection. Finally, we
make a brief introduction to our proposed model describing in a very abstract level the
method that we have designed and developed in order to detect any mutated malware.

1.1 What is Malicious Software

Malicious Software or malware is any kind of software that its functionality is to cause

harm to a user, computer, or network [56] . Thus, any software with malicious purposes



can be considered malware. Malware in most of the cases, exhibits a very typical struc-
ture so in its programming aspect as in its overall organization. Across the literature,
continually we meet the most common description of malware’s structure where malware
is presented to dispose a payload that we could envisage it as a kernel and additionally
the reproduction and cloning instructions and in some cases the propagation instructions
that could be envisioned as a cover respectively.

Generally speaking, malware can be considered as the entity in which new features
can be easily added to enhance its dark side effects in the form of various attacks [40]. So,
according to this consideration malware has to be treated as an alive harmful organism
with the ability of evolution during time just like the biological bacteria. The addition,
subtraction, modification or any other kind of mutation in a malware, is able to generate
a totaly brand new malware that either serves new purposes, or lacks of bugs or even to
be just a new variation that can not be detected from a malware detection system.

Malware can be utilized for a variety of unethical purposes. Starting from early
nineties, where malware was just a tool for self projection of malware author’s pro-
gramming skills, to nowadays, where we are facing a plenty of examples ranging from
economical benefit from personal information stealing, to cyber warfare, malware remains

an extremely dangerous tool in any wrong hands.

1.1.1 Basic Malware Types

In malware categorization there are several methods that someone can classify a malware.
In example, an observer can classify a malware according to its propagation method,
known as propagation vector, where certain malware have a specific method to propagate
them selves in contrast with others that do not have this characteristic. On the other
hand, a second observer could classify a malware based upon its functionality. Thus,
subsequently, we present the most common categorization which is based upon the prop-
agation vector criteria as presented in [28, 59] and later we proceed by presenting a more
elaborated categorization based on malware’s functionality [56, 59].

e Virus: In this category we meet the most common and well-known malware type,
the Viruses. A computer virus is a small program with harmful intent that its main
characteristic is that its operational mode is to replicates itself when inserted into
an executable file ((COM, .EXE or .PE). As we will refer to next chapters, a virus
has the ability to evolve to new variants by modifying itself, a phenomenon called
metamorphism. Just like the biological viruses, a computer virus need an existing
host program in order to cause harm to the infected system. In this manner, a
program that is infected containing the virus consequently infects any system that
executes it. The most common method that a computer virus is implemented, in
order to invade into a computer system, is to be attached to some software utility
such as a word processing application which when launched triggers the virus to
be activated then replicate itself attaching it to other hosts and so on, ending by
executing its payload.



e Worm: In the second category we have the computer worms. A worm, unlike
viruses, replicates itself by executing its own code independently of any other pro-
gram without the need of any host program in order to cause harm. The main
differences between worms and viruses is firstly that worms are host independent
and secondly that viruses, in the vast majority of the cases, are spread among the
files stored in an infected system in contrast with worms that propagate, among
the systems of a network infecting as many computers as possible by sending them
selves via network connection, with both of these two characteristics making worms

more dangerous than viruses.

e Trojan Horse: This category, unlike the previous two, includes a very fuzzy group,
the Trojan Horses. A Trojan Horse is a type of malware that malware author has
embedded it in an application. In most of the cases, trojan horses are associated
with the access and the sending of unauthorized information from the system that
they infect to their malware author or another entity, which is a characteristic that
classifies trojan horses as spyware. In general cases, its functionality is the emulation
of a legal application in order to gain remote access to a system. However, cases of
system damage such as data loss, are not excluded as in many cases, trojan horses
are employed in Denial Of Service (DOS) attacks.

1.1.2 Miscellaneous Malware Types

To this point we step beyond the basic types of malware, presenting other categories that
are also widespread in the wild, possessing a large portion of the types of malware families.
Next, we list some of the most known malware categories. However, we ought to notice
that a malware many times can belong to more than one categories according to malware
author’s intents.

e AdWare: When a malware has infected a computer, advertising-supported software
automatically displays or downloads advertisements.

e Backdoor: A backdoor is a type of self-installed malicious code that allows to
attacker access to an infected system. Backdoors exhibit an auxiliary functionality
since they are utilized by malware authors in order to gain remote access with little
or no authentication and then to execute commands on the infected system.

e Botnet: Generally speaking, botnet is a type of malware that infects a group of
computers and then turns them into zombies under the botmasters possession. A
malware belonging to this category could be a worm or a trojan. Additionally we
ought to refer that a botnet (a network of bots) is acting under the instructions
of one person (botmaster), thus one of the purposes of botnet is to infect as many
computers as possible. The communication with the botmaster can be done via a
central hub, propably an IRC Command and Conquer Server, or in a distributed
manner for better scalability.



e Downloader: Downloaders is one more auxilliary category of malware. Download-
ers are maliciou code that downloads other malwares. A typical case of downloader
usage, is when attackers gain access for first time in a system, then they install a
downloader in order to help them to download and install other malwares. Next to
downloaders there is one more category of malware used to launch other malicious
programs, the Launchers.

e Information-Stealing Malware: This category of malware is one of the most
widespread categories used in financial transaction attacks like web-banking attacks.
An information stealing malware is a type of malware that collects user information
(i.e. sniffers, keyloggers) in an unauthorized manner from victim’s computer and
sends them back to the attacker. in this category are included the spywares, that
gather user’s personal information like frequently visited pages, email addresses or
credit card numbers, and in most of the cases can be installed when free or trial
software is downloaded.

e Rootkit: A rootkitis a type of malware designed to hide other malwares. Typically
a rootkit can be utilized combined with a backdoor in order to allow remote access
to a system while making it difficult to be detected.

e Scareware: Generally speaking, a scareware is a type of malware design to frighten
the user of an infected computer, to pay for something. In most of the cases it
provides to the user a legal an realistic interface, like an organization another appli-
cation or even an antivirus. Actually, it tells to the user that his system is infected
with some kind of malware and then imposes to pay in order to get rid of it while
when paid it does nothing more that to remove the scareware.

e Spam-Sending Malware: This category of malware, infects users machine and
after getting it under its possession, uses this machine in order to send spam. Spam-
sending malware can be utilized for spam-sending services that could be sold to
generate income for the malware authors.

1.2 Defence Against Malicious Software

In this section we present a brief introduction to the fundamental principles for defence
against malware. To start with, we offer to refer that shield against malware is consisted
solely from prevention. In order to achieve the proper prevention mechanisms we need to
be based upon the triad of analysis, detection and classification.

To this point, we offer to explain that in the field of computer security, the processes
of malware analysis, malware detection and malware classification are in some fashion
interdependent, as depicted in Figure 1.1. What we mean, is that if someone needs to
develop a detection method, firstly a knowledge base of software tagged as malicious or
benign according to a classifcation process should be available. Additionally, in this base
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it is needed to perform an analysis on the malicious ones in order to extract a proper
and sufficient set of characteristics that uniquely characterize if a software is benign or
malicious and that will consist the feature set of the classification process. Thus, easily
someone can understand that the process of malware detection has a classification flavor
as the main goal is to classify if a given sample belongs to one of the two classes of
benign and malicious. On the other hand, when someone needs to simply classify a given
malware to one from a known set of malware families, as in the detection process, it is
needed to firstly perform an analysis on the members of a family in order to extract a
proper and sufficient set of characteristics that uniquely characterizes a family. However,
in order to avoid false matches, a previous detection is needed since if the specimen is a
benign software and the classifier falsely classify it into one malware family this will lead
to further false positives in the detection process.
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Figure 1.1: Interdependence of Analysis, Detection and Classification

1.2.1 Malware Analysis

Malware Analysis [8] is the process of determining the purpose and the functionality,
or in general the behaviour of a given malicious code. Such a process is a necessary
prerequisite in order to develop efficient and effective detection and classification methods.
By its nature, malware analysis is a manual process demanding a lot of time and much
more expertise. Malware analysis can be performed through two fundamental approaches
depending to our goals, the given sample or the circumstances. Thus, malware analysis
is spitted into two categories Static and Dynamic [56].

e Static Analysis: In static analysis the specimen is examined without its execution.
Actually the suspicious sample does not need to be execute and the analysis can be



performed on its source code.

e Dynamic Analysis: In dynamic analysis an execution of the malware has to be
performed in order to collect the required data. However this approach needs more
expertise while is extremely dangerous for the host environment. As a result, in

most of times dynamic analysis is performed in a virtual environment

However, a further categorization can be done if we distinct these two approaches to
Basic or Advanced Static Analysis and Basic or Advanced Dynamic Analysis according
to the sophistication level of the techniques utilized in each one. So, according to [56],
next we briefly describe these four categories of malware analysis, while a more extensive
presentation is cited in the corresponding chapter.

o Basic Static Analysis: If we choose to use static analysis utilizing elementary
techniques, actually we examine the executable file (malware) without viewing the
actual instructions. The result of basic static analysis provides as with the knowledge
about to if the specimen is malicious or not and the specimen’s functionality. The
main advantage of basic static analysis is that is straightforward and thus can be
performed quickly. However, its main shortcoming is its ineffectiveness against
sophisticated or brand new malwares

o Advanced Static Analysis: On the other hand, if the circumstances and our
experience permits to use more elaborated techniques such reverse-engineering of
the mawlare’s internals by loading the executable file into a disassembler and con-
sequently look at the program’s instructions in order to determine its functionality.

o Basic Dynamic Analysis: In the opposite case where the circumstances permit
the execution of the specimen (malware) we can leverage techniques that involve the
execution of the malware. The execution of the malware under inspection can reveal
precious information of its behavior when executed in a given operating system,

while its interaction with it can imprint its behavior.

o Advanced Dynamic Analysis: Finally, the choice of advances dynamic analy-
sis techniques invoke the use of a debugger for the examination of the malware’s
internal state. Through advanced dynamic analysis, the analyst easily can extract
detailed information from the malware’s executable when could me more difficult
to be gathered when another type of analysis was performed.

1.2.2 Malware Detection

As referred in [40] the process of detection is all about to infer if a program is malicious
or benign. Consequently, a malware detector is the implementation of a series of specific
malware detection techniques [28]. Most common detection technique is the so called
signature-based detection. As the name of this technique indicates, this detection method



utilized signatures that are byte sequences that uniquely characterizes a specific malware
[1]. Thus, formally speaking, a malware detector can be defined as a function that takes
input an undefined program p and by scanning it for the existence or not of the signature
s, determines if it is malicious or benign respectively.

In malware detection there exist two main approaches, signature-based detection and
behavior or anomaly-based detection. The most common one is the signature-based detec-
tion that is also the more effective and sufficiently efficient to be applied on the commod-
ity end-hosts, and thus is employed from all the anti-virus systems. The signatures, that
consist the knowledge base of these systems, are created by extracting features from the
analysis of disassembled code from malware’s binary [40]. To this point, we offer to notice
that these signatures can address the entire family of malwares that share commonalities.

On the other hand, behavior-based detection has as its main goal to analyze the
behavior of known and unknown malwares [40]. Specifying normal behavior actions, then
is easy to determine the anomalies exhibited by the behavior of a malware. Additionally,
by specifying a rule set of normal behaviors, we conduct a specific type of anomaly-based
behavioral detection the so called specification-based detection 28], where any program
that behaviorally violates the rule set is claimed to be malicious.

1.2.3 Malware Classification

As we referred in the previous sub-section, in the process of malware detection the most
efficient approach is the signature-based malware detection. However the main shortcom-
ing of such an approach is the rate in which malware signatures are produced. What we
mean, is that due to the high rate that malware is produced and, in most of the cases, the
high rate that malware is evolving, lead to the need of acceleration to the malware signa-
ture construction. To address properly this situation, we have to notice that a probable
solution could be the compactness of malware, because as referred in [33], while writing
an individual signature for each distinct malware is a cumbersome and time consuming
process. Thus, a quite convenient solution could be to cluster sets of malware according
to the commonalities that they exhibit and create generic signatures for each group [33].
Through the literature [11, 4, 46, 49, 33, 6, 23], there does not exist a clear definition of
malware analysis, where the vast majority of them let to be meant that malware classifi-
cation is the process of classifying an unknown specimen, after its detection as malware,
to one of the predefined malware families. However, there exists another approach that
defines as malware classification as the process of categorizing a specimen to one of the

malware types (i.e. worm, virus or trojan) as the one referred in [40].

1.3 Malware Mutations and Detection Avoidance

In order to avoid the traditional signature-based detection employed by the vast majority
of Antivirus Software product, malware authors have implemented a series of obfuscation



techniques. As referred in the literature, obfuscation techniques are deployed in order
to contribute to malware’s evolution. According to [13], the number of unique malware
discovered per day is reaches the 8000 per day. However, to be precise, we should check
the percentage of these specimen that are totally brand-new malware’s and that of the
specimens that actually are variants (mutations) of already existed malwares. In this
section we present the categories of malware obfuscation techniques while we cite a more
extended description for a specific category of malware obfuscation, the so called meta-
morphism that makes malware analysts’ life even harder as consists the most powerful
technique for detection avoidance.

1.3.1 Code Obfuscation Techniques and Malware Evolution

As we mentioned above, a series of code obfuscation techniques [40, 13, 57, 29, 48, 44, 62,
61, 69, 47] have been developed from malware authors in order to avoid the detection from
AVs. Next we present some of the most known obfuscation techniques, as the knowledge
of such techniques is able to help us to develop a deep theoretical background that may
lead to the development of more sophisticated and flexible detection techniques.

e Encryption: The most straightforward technique to hide a malware’s functionality
is the encryption of its code. Such malware work by containing an extra module
(encryptor) that is in position, to encrypt malware’s body, while there is respectively
another module responsible for the reverse process (decryptor) [57]. Structurally,
an encrypted malware is composed by the decryptor and the encrypted main body.
Thus, the decryptor decrypts the main malwares’ body any time an infected object
is run. A simple encryption may use 1-1 mapping, a zero-operand instruction or
reversible instructions as AND or XOR [47]. To this point we have to notice that the
main functionality of encryption lies in the fact that for each infection the encryptor
makes the encrypted part unique by encrypting the main body with a different key
and consecutively by hiding its signature [69]. In Figure 1.2 we cite an indicative
example of the functionality of encryption in signature based detection avoidance.
We use the same example into the following techniques. However, even though the
detection of an encrypted malware (i.e. encrypted virus) seems difficult, the problem
has been solved with a quite simple approach when a detector just tries to detect
decryptors’ code body as it remains constant from generation to generation.

e Oligomorphism: As easily someone would think, based upon the above solution
of decryptors detection the question remains in what could happen if a malware
author use an auxiliary encryptor for the whole malware, encrypting so the already
encrypted virus body as the encryption and decryption modules, passing to a second
layer of encryption (multi-layer encryption). This is the case of semi-polymorphic or
oligomorphic viruses, a specific category of obfuscated malware that dispose encryp-
tion/decryption module for multi-layer encryption in order to avoid decryption body
detection. The effort was done by malware authors in order to make the decryptor



Figure 1.2: Signature-Based Detection Avoidance using Encryption

module to exhibit a different appearance in each new infection [47]. Additionally we
ought to notice that did not missed the alternative approach of the containment of
different decryptors that where randomly chosen. However, an polymorphic malware
in the case of decryptor generation, can produce only a few hundreds of decryptors
that are easily detected [69] in contrast with the polymorphic one that can produce
countless decryptors, while as referred in [57], a draft solution that seems sufficiently
effective is the dynamic decryption of the encrypted code instead.



e Polymorphism: A polymorphic malware can create an endless number of new
decryptors that use different encryption methods to encrypt the body of the mal-
ware [57]. From this aspect someone could say that polymorphism is an advanced
descendant of encryption an oligomorphism. As referred in [47], the main principal
is to modify the appearance of the code constantly across the copies. However,
we ought to underline that polymorphic obfuscation techniques are even harder to
implement and manage. Some of the code obfuscation techniques [47, 69] used in
order to mutate the decryptor are dead code insertion, junk code insertion, code
transposition, instruction substitution, instruction replacement and variable substi-
tution or register substitution and are executed any time needed by another module
called mutation or obfuscation engine. However, there exist techniques such as code
emulation [47] or manual analysis [57], that are in position to detect polymorphic
malware by simple string matching.

1.3.2 Metamorphic Malware: A Major Threat

In contrast with encrypted, ologomorphic and polymorphic malware the metamorphic
one has no encrypted part. Thus there does not exist any need for encryption module
,Jhowever there exist a corresponding mutation module called metamorphic engine, that is
responsible for malware’s mutation. Short speaking, a typical metamorphic engine [47],
includes a disassembler, a code analyzer and transformer and an assembler. Consecutively,
the mutation does not applied on the decryptor but on the whole body instead. As we
will discuss next , every new copy has modified structure, code sequence size and syntactic
properties [47], while its behavior remains the same.

Metamorphic malware changes its structure while keeps its functionality each time
it replicate itself [44]. As referred in [13] polymorphic and metamorphic malware is the
hardest type of malware to detect, since are able to mutate in an infinite number of
functionally equivalent copies of themselves, and thus there is not constant signature
for virus scanning [44]. The most advanced type of mutation malware is polymorphic
malware. This kind of body-polymorphic malware changes its body from one instance
to another, using different obfuscation techniques [40] such as disassembly, permutation,
expansion, shrinking, or other kinds of transformation that we will describe later, to
reprogram themselves in order to create descendants that have transformed code similar
to the ancestor’s code.

According to the definitions given in [44, 69] metamorphism is the process of trans-
forming a piece of code into copies that are structurally different, however they exhibit
the same functionality, that is a very important clue upon which is based our approach.
Next, we proceed by describing of some code obfuscation techniques used by malware
authors for the development of polymorphic malware. Organized by the object applied
on these techniques are grouped in code-based, instruction-based, register(value)-based
and control flow-based.
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(A) Code Level Modifiacations

e Code Insertion - As easily someone can understand the easiest way to morph a
program is to insert dead code. Dead code is a part of code that is never executed.
The insertion of ineffective instructions can be included within a dead code block
while it can be stealthy as it is non trivial to determine if it is executed or not [44].
Additionally, we ought to notice that such ineffective instructions change only the
appearance of the program and thus its binary sequence while leave invariable its
behavior and functionality [69, 47, 48]. The code insertion modifications are also
called control-flow preserving transformations [44], since the insertion of instructions
does not change the data-flow or the control -flow of the program.

e Code Trasnposition - Code Transposition is a malware mutation technique where
the sequence of the instructions in an original code are reordered either in single
instruction or code block level [47], without any impact to programs behavior by
preserving the execution flow using conditional jumps or branches[48]. According
to [69] it can be achieved either by shuffling the instructions and then recover them
utilizing unconditional jumps or by choosing and reordering totally independent
instructions. In the same manner works another variation of this technique, the
subroutine reordering [69], that changes the order of subroutines in a code in random

way generating n! different variants, where n is the number of subroutines.

e Equivalent Code Substitution - As referred in [44] another technique able to
change the structure of the program while keeping its behavior and functionality is
the substitution of a series of instructions with a series of equivalent ones.

e Code Integration -Finally, one of the most elaborated code obfuscation techniques
in metamorphism, is the so called code integration [69], where the malware knits itself
to the code of a victim sane program. Staring with the decompilation of the program
creates manageable objects and then seamlessly adds itself between them. Finally
it assembles again the program with the integrated code creating a new generation.

(B) Assembly Level Modifiacations

e Instruction Permutation - A more complex method for code obfuscation is ap-
plied in the instruction level, where is possible to change the sequence of independent
instructions with no disturbing the execution while byte strings in different versions
of the code will appear unlike [48, 47].

e Instruction Replacement - Another technique that works in a similar manner is
the instruction replacement, as this obfuscation technique substitutes instructions
with their equivalent in the newer copies, thus changing its code appearance since
a task can be executed in different equal coding instruction set [48, 47, 69].
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e Register-Value Modifiacations - Finally, another transformation method that
mutation engines use to obfuscate malware’s code is the register substitution where
is applied the usages of different registers or memory variables [48, 47, 69] as keeps
the malware’s behavior the same. This approach leads to the evasion from string
signature-based detection as through this alteration are changed similar bytes in

various generations.

1.4 Realted Work

In this section we present approaches that have been proposed through the literature
and refer either to malware detection or malware classification. Next, we present some
indicative examples of proposed solutions that are not graph-based ones. We ought to
notice that we present to a greater extent only the approaches that utilize a graph theoretic
background while the number of the works in the field of malware detection is quite large
to fit for discussion in this sub-section.

e Related Work on Malware Detection

— In [44] the proposed approach trains a Hidden Markov Model (HMM) using a
sequences of opcodes extracted from the suspicious sample’s executable.

— In [55] API call sequences are used in order to classify if a process is benign or

malicious.

— In [50] n-grams are extracted from files and then by utilizing the k-NN the
proposed solution distinguish the malicious from the benign programs.

e Related Work on Malware Classification

— In [29] the proposed technique uses the n-grams extracted from the bytes or
instructions of the executable as features that then are used to classify malware

samples into malware families.

— In [36] the proposed technique also uses n-grams as features for naive Bayes,
decision trees, SVMs and boosting in order to detect and classify malware
found in the wild.

Next, we proceed by presenting the related work done in graph-based malware detection
techniques and this done in graph-based malware classification techniques. Some of them
are using dynamic and others static analysis, while is notable that the vast majority of
them are integrated systems incapable of real time appliance in the end-hosts.

1.4.1 Graph-Based Malware Detection

In [1] Alazab et al. propose a fully automated system that effectively disassembles and
extracts API call features from executable, and then classifies an executable as malware
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or benign by using n — gram statistical analysis of its binary content.

Kolbitsch et al. [35] present the only approach that can be applied in the end-host
in order to run in real-time as a substitute of commodity AVs. Namely, it analyzes a
malware in a controlled environment building a model that describe the information flows
between system calls and thus characterizes malware’s behavior. Finally after extracting
the program slices (fraining) that are in due for such flows they execute them to match
their models (test) against the run-time behavior of an unknown malware.

Bonfante and Kaczmarek in [9] propose yet another graph-based malware detection
technique that utilizes the use of Control Flow Graphs (CFGs) as signatures for malware.
There, the nodes of the graph are X86 instructions, as they make a reduction to the graph
by omitting nodes with low information.

In [18] Christodorescu et al. designed a malware detection algorithm that addresses the
deficiency of mutated malware by incorporating instruction semantics to detect malicious
traits. Specifically, they describe malicious behavior by using instruction sequences with
variables and symbolic constants, the so called templates. In this way the algorithm after
the disassembling of the binary program it constructs a CFG and searches for matches
between each template node and a matching node in the program.

Again Christodorescu et al. in [17] propose an algorithm that automatically constructs
specifications of malicious behavior needed by AV’s in order to detect malware. The
proposed algorithm constructs such specifications by comparing the execution behavior
of a known malware against the corresponding behaviors produced by benign programs.

In [52] Sekar et al. present a Finite State Automaton approach is presented, where
a compact FSA is builded forwa program without requiring access to its source code
while requires low space for storage. It is notable to refer that the proposed FSA-based
technique is able to capture short and long term relations between system-calls performing
more accurate detection.

In [39] Luh and Tavolato desing an algorithm that automatically grades an unknown
executable as potentially malware or benign leveraging behavior-based analysis by exe-
cuting the sample and creating reports used to score the sample.

Finally, in [3] Babic et al. propose an approach to learn and generalize from the
observed malware behaviors based on tree automate interference where the proposed
algorithm infers k-testable tree automata from system call data flow dependency graphs
in order to be utilized in malware detection.

1.4.2 Graph-Based Malware Classification

Park et al. in [46] propose a classification method based on maximal common subgraph
(MCS) detection for the similarity measurement between two behaviour graphs createdby
capturing system-calls during the execution of a program.

In [27] Hu ef al. design and implement the Symantec’s Malware Indexing Tree (SMIT),
a malware DBMS, that can efficiently determine if a new malware is similar to a previously
seen one, based on malware’s function-call graphs, using k-nn clustering algorithm.
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Kinable and Kostakis in [33] explore the potentials of call graph based malware de-
tection and classification by defining an algorithm that computes the graph similarity
through the edit distance taking into account so the vertex and edge cost as the relabel-
ing cost while uses k-medoids clustering in order to cluster samples to families.

In [6] Bayer et al. propose an approach for scalable clustering in order to identify
and group malware that exhibit similar behavior. By performing dynamic analysis execu-
tion traces of malware programs are obtained and then generalized as behaviour profiles.
Finally these profiles are served as input to an algorithm that allows to handle sample
sets.

Fredrikson et al. [23] present a technique that automatically extracts optimally dis-
criminative specifications that uniquely identify a classes of programs utilizing graph min-
ing and concept analysis. and thus can be used from behavior-based malware detectors.

Babic et al. in [3] propose an approach to learn and generalize from the observed
malware behaviors based on tree automate interference where the proposed algorithm
infers k-testable tree automata from system call data flow dependency graphs that, except
from their appliance on malware detection that we referred in the previous sub-section,
they also can be utilized in malware classification.

Finally, in [49] Rieck et. al present a method for malware classification that proceeds
in three stages, firstly by collecting malwares” behaviors, then using learning techniques
to train a classifier with labeled specimens obtained from AV’s, and finally by ranking the
discirminative features of behavior models in order to explain classification decisions.

1.5 Contribution

In this section we present the basic incentive behind the start of this work that are about
the difficulties generated in malware detection because of the mutated malware and also
we make a brief description of our proposed model.

1.5.1 Motivation

The main objective of this work is to develop a system that by the implementation of
a sophisticated algorithm will be in able to detect any variation of a mutated malware.
Specifically, our main viral is the metamorphic malware. As we described in 1.3.2 meta-
morphic malware can easily avoid the traditional string signature-based detection methods
and thus more elaborate techniques ought to be developed. Such difficult problems are
triggering us to develop algorithms that leverage abstractions of malware’s structure in
order to utilize them in detection and classification. The solution that we present is de-
signed and implemented having as set squares so the generalization in terms of variation-
independent malware detection and classification, as the perspective of the adoption of
an end-point system in terms of real-time protection.
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1.5.2 Proposed Solution

The solution that we propose is based on System-Call Dependency Graphs (SCDGs)
produced via taint analysis capturing the execution trace of a malware. Having an instance
of such a graph we proceed by the creation of an abstraction of it, by utilizing system call
classification obtained by the configuration file of NtTrace, a native API tracing tool for
MS Windows. This graph abstraction merges each node (system-call) of the initial graph
to a node with the name of the system call class and then links the corresponding super-
nodes. Finally, having these graph abstractions, we have designed a series of metrics that
leverage known similarity metrics in a combinatorial manner in order to produce results
about the nature of the examined specimen as to detect if it is malware or not and if so
to classify it to the corresponding malware family. In contrast with other approaches, we
have developed a system that both detects and classifies a suspicious specimen. Finally,
to this point we ought to refer that this implementation although is experimentally tested
is not yet ready to be applied to end-point computers.

1.6 Structure of the Thesis

The remainder of this thesis is organized as follows. In the second chapter we present one
of the most interesting fields in computer security, malware analysis. In this chapter we
describe in a greater extent techniques applied in dynamic and static malware analysis
while we suggest some tools that can be utilized for such purposes. In the third chapter
we present the various types of methods applied in malware detection describing their
pros and cons while we present some state of the art graph-based malware detection
techniques proposed through the literature. In the fourth chapter we analyze some of
the similarity metrics used in malware classification and additionally we cite alternative
malware classification techniques that utilize graph representation of malware. To this
point we ought to notice that in the topic of graph-based malware classification there
exists less work done than in graph-based malware detection, which is a hint for farther
research. In the fifth chapter we present and analyze our proposed model for malware
detection and classification based on System Call Dependency Graphs, where we describe
the graph construction procedure and the development of our proposed techniques for
malware detection and classification. In chapter six we analyze our data set, describe
our experimental setup (design) and project the experimental evaluation of our proposed
model’s implementation against real malware samples. Finally, we compare our model
against the results produced by other graph-based approaches with no distinction to if
they are designed solely for malware detection or classification.
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CHAPTER 2

MALWARE ANALYSIS

2.1 Static Malware Analysis

2.2 Dynamic Malware Analysis

In this chapter we will present the two main streams in malware analysis, the static and
the dynamic malware analysis. Firstly we will discuss the basic methodologies applied in
the static analysis approach while we will cite a few tools that malware analysts utilize in
order to perform static analysis, and then we will present the basic techniques applied in
dynamic malware analysis and respectively we will cite the corresponding tools utilized
in dynamic malware analysis. This chapter has a somehow smaller extent since, although
malware analysis is a quite interesting technique, there does not exist much work in
literature because of its hands-on-craft nature as it is a more human based method. The
vast majority of the publications present only implementations that automate traditional
made by analysts techniques, while the background of such techniques is out of the scope
of this work.

2.1 Static Malware Analysis

As we mentioned in the introduction, with the term static analysis we refer to the process
of analyzing an unknown program without executing it [22, 56, 32, 15, 8,6 43]. Static
malware analysis, since it does not demand the execution of the specimen under inspec-
tion is thus more safer for the testing environment, however demands a higher level of
programming skills and also a deeper knowlegde of object’s structure since the available
software can be in different types varying from plain source code to binary files. Thus
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static analysis splits, according to the analyst’s level and the techniques he utilizes, to
basic and advanced static analysis.

Basic static analysis is straightforward and thus can be performed quickly includin ele-
mentary techniques of a brief examination in the executable file without viewing the actual
instructions, providing us knowledge about the specimen’s type (malicious / benign). As
we referred in the introduction, static malware analysis has a few drawbacks such as its
inability to detect a totally brand-new malware when is performed in its basic approach,
while even in its advanced one, is quite difficult to be performed when malware’s source
code is unavailable as more sophisticated techniques are required. Specifically, as men-
tioned in [22], static analysis of binaries may cause some problems to the procedure such
as the disassembling that may cause ambiguous results when performed on self-modifying
malware. However, despite these drawbacks,static analysis has the advantage that it can
cover the complete program’s code [8] and in most of the cases is faster that the dynamic
one.

2.1.1 Static Analysis Techniques

In this sub-section we will enumerate some of the most used static analysis techniques
that when applied can reveal valuable information about the testing specimen’s structure.

e File Fingerprinting: A typical malware’s fingerprint can be consisted from its file’s
hash value. Hashing is a common method used for identifying malware uniquely.
As refered in [56] the hash value can be computed in a part of the malware and then
can be quite useful especially when used as label or shared with other analysts for
same purposes.

e Anti-virus Scanning: Before someone starts the analysis, is advised to firstly
scan the testing specimen with at least one or more anti-virus software in order to
detect it. Its is probable that some anti-virus software may have already detect this
specimen [56] if it is malware and thus no further investigation is needed. Addi-
tionally, despite the fact of gaining time from an already done work, the anti-virus
vendors provide with a detailed reports [32] about the specimen where the analyst
can find information about malware’s capabilities, its signatures and in many cases
instructions for its removal. However, as we mentioned in the introduction malware
authors may have changed the code of malware and consecutively its signature and
hence anti-virus software will not be able of detecting it.

e String Searching: A very naive approach in elementary static analysis is the
string search. There is surprisingly a lot of information in a malware’s source code
in strings of readable text. As referred in [32] there exist strings that inform the
user with update status, an error occurrence, a connection to a URL or to copy a
file to a specified folder. As easily someone can understand, a quick web-search of
these strings can reveal valuable information.

17



e Analyzing Obfuscated Malware: As we described in the introduction malware
authors often use obfuscation techniques in order to evade detection. Except from
obfuscation techniques another technique that malware authors utilize for the same
purpose is packing. Packed malware is somehow a malware that has been com-
pressed and thus it can not be analyzed. As referred in [56], the legitimate software
often includes many strings. This declaration is able to lead us to the conclusion
that if a software includes few line then it probably may be a malware. Consecu-
tively, the elementary techniques mentioned above are not enough to perform the
analysis. The most helpful knowledge in such circumstances is that when a packed
malware is executing then a small wrapper program is running to decompress the
packed malware. Such auxiliary program are called packers and can be detected
using the PEiD program as described in [56].

e PE File Format: One of the most valuable information about a program’s func-
tionality can be revealed through PE (stands for Portable Executable) file format
used by executable files on Windows systems [32]. The PE file format is a data
structure that contains necessary information for the Windows OS loader to man-
age wrapped executable code, object code and DLLs [56]. The core segment of PE
appears in its begin where there exist the header that includes information about the
code, the application type, the library functions, space requirements, compilation
date and time, imported and exported functions, version information and strings
embedded in resources [56, 32].

e Linked Libraries - Functions : Additional valuable information can be collected
through the library linking. The imports are functions stored in a program and
used from another one. Thus, code libraries can be connected to an executable by
linking [56).

Next we present three basic linking methods an describe the information retrieval
when they are observed in static analysis.

— Static Linked Libraries: In static linking the code of the library is copied in-
side the executable growing its size. The main problem in the analysis of static
linked libraries, as described in [56], is that the analyst can not distinguish the
linked from the main executable code.

— Run-time Linked Libraries: On the other hand, a commonly used library
linking method is the run-time linking, the libraries are linked only when needed
by the executable. To this point it worth to mention that run-time linking is
mainly used by packed or obfuscated malware.

— Dynamically Linked Libraries: Finally, maybe the most interesting type
of library linking is the dynamic linking, where the host OS searches for the
necessary libraries when the program is loaded. The interesting is that the
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information relevant to the libraries to be loaded and the functions that will
be used is stored in the PE file header we mentioned above.

e Imported - Exported Functions: Imported and Exported function can aslo
reveal valuable information about an executable’s functionality. Imported Windows
functions can give valuable information to the analyst even by their names revealing
somehow what the executable does. On the other hand, the exported functions
interact wit other programs’ code. DLLs in example, provide functionality used
by executables. In contrast, if an analyst discovers exported functions inside an
executable, since is not designed to provide functionality to other executables [56],
is very helpful to claim it as malware.

e Disassembling: Right after the conduction of such elementary static analysis tech-
niques, follow more advances static analysis techniques like the disassembling of the
examined file and analyzing the assembly code instructions that make up the pro-
gram [32]. Since the description of disassembling techniques are far out of the scope
of this thesis we will mention only that there exist ready-to-use tools like IDA Pro,
that we will suggest in next 2.1.2, that are indicated for use in such techniques.

2.1.2 Static Analysis Tools

According to the techniques we previously enumerated, for the hash value computation the
most used algorithms are the SHA1 and the MD5. On the other hand for the obfuscated
malware in the case of packed one, PEiD is recommended in [56] since it can detect
packed files by detecting the type of packer or compiler employed to build the application.
For the investigation of PE files the PEView can browse the analyst through a lot of
valuable information Next, the dynamically linked libraries can be explored with the
Dependency Walker, distributed with MS Visual Studio, that lists only the dynamically
linked functions in an executable. Finally, when advanced static analysis techniques are
deployed, the Interactive DisAssembler Professional is recommended and wide used by
most of virus analysts. IDA Pro is able to disassemble an entire program and perform
function discovery, stack analysis local variable identification and much more are detailed
described in [56].

2.2 Dynamic Malware Analysis

In this section we will present another effective technique for analyzing malware, the
dynamic malware analysis. With this term we refer to the usage of dynamic techniques
for analyzing malware during run-time [8]. The main advantage against static analysis is
that in dynamic analysis is immune to obfuscation techniques as the analyzed instructions
are the ones that code actually executes. So, firstly we will present the basic dynamic
analysis techniques as they are described in the available literature while finally, as in the
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previous section, we will enumerate some tools that are utilized in dynamic analysis. As
referred in [22] the analysis of actions performed by a program while it is being executed
is called dynamic analysis. As dynamic malware analysis is performed while actually
executing the malware it has to be done in a fully isolated and thus safe environment
worth to sacrifice, meaning in example a virtual machine. Dynamic analysis is also called
behavioral analysis since the analyst actually observes the behavior of the malware or
in other owrds the interaction it has with its environment, in our case the operating
system. As mentioned in [32] a fairy good picture of malware’s behavior can be developed
by simply monitoring its interaction with the file system, the registry, other processes
and the network. To this point we ought to underline that even though dynamic analysis
techniques that we present next are extremely powerful and plenty of valuable information,
they should be performed only after the performance of static analysis and much more
the monitoring should be performed very carefully since may put at risk the analyst’s
system or its entire network. Finally dynamic analysis has one more limitation, that is
not actually a drawback, is the fact that not all possible execution paths my execute when

a malware runs [42].

2.2.1 Dynamic Analysis Techniques

Through the dynamic malware analysis technique we focus on capturing the behavior of
the testing malware. The term behavior as referred in [63] includes the files that the
sample tries to create or modify, the changes it attempts to perform in Windows registry,
the loaded DLLs, the accessed virtual memory areas, the creation of processes, the network

connections it opened and other information.

e Function Call Monitoring: As we know, a function consists of code that is re-
sponsible for a specific task. However, even it seems to be a trivial notion, the
abstraction of such implementation details can reveal a semantically richer imple-
mentation [22]. In order to analyze a program’s behavior it is needed to intercept
in some fashion between function calls, a process called function hooking[63]. Con-
secutively a dummy function that is responsible for that procedure is called hooking
function [22]. Such functions are responsible for recording the hooked function’s
invocation to a log file or analyzing its input parameters, which is information that
later we will leverage in order develop our model (see chapter 6). Next, we cite
some system related functions that can be monitored in order to observe malware’s
behavior. When function calls are monitored it results to the function call trace
[22]. Such traces consist by a a sequence of functions with their arguments invoked
by the malware under analysis during its execution.

— API: These functions form a coherent set of tasks. Usually the operating
systems provide many sets of application program interfacesused by other ap-
plications to perform common tasks [22, 56].
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— System Calls: While the common applications are executed in user-mode the
operating system is executed in kernel-mode. Thus, only the kernel-mode exe-
cuted code has direct access to system’s state. However a user-mode application
can request from system to perform a limited set of tasks using the system calls,
a specific API provided by the system. The interest of such API comes from
the fact that malware actually is an application and since it executes in user
space it needs to invoke a corresponding system call in order to interact with
its environment [22, 56.

— Windows Native API: Finally, Windows Native API resides between the system
calls and the Windows API. As referred in [22]. the legitimate applications use
the Windows API to interact with the operating system, whereas malware
commonly skips this layer and interact with the Native API to thwart analysis
techniques like function hooking.

e Function Parameter Analysis: Function parameter analysis in dynamic malware
analysis focuses on the actual values passed when a function is invoked [22], as by
tracking parameters and return values leads to the correlation of function calls.

e Information Flow Tracking: Information flow tracking focuses on how the in-
teresting data are processed by the program. This type of data are marked with
a label in some fashion (so called tainted), and each time they are processed the
propagate their label.

— Taint Source and Taint Sinks: As referred in [22], the introduction of this
data’s label is made by a taint source, while a taint sink is a system component
that reacts when stimulated with tainted input.

— Directed Data Dependencies: In order to be propagated the tainted data’s
labels, a direct assignment of arithmetic operation must be dependent on a
tainted value

— Address Dependencies: Accordingly, when needed to taint addresses a label
propagation can be achieved when a read or a write operation has target an
address derived from tainted operands.

e Instruction Trace: The sequence of machine instructions that the sample executed
during its analysis consists its instruction trace[22]. Instruction trace contains in-
cludes valuable information that is not contained in form of higher level abstractions
of malware’s behavior.

e Auto-start Extensibility Points: The auto-start extensibility points [22], define
system mechanisms that allow programs to be invoked when the system boots. So,
it is of major interest to investigate them since it is probable for malware to try to
add itself to an available auto-start extensibility point.
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e Taint Analysis Since we have developed a basic background about function call
monitoring we proceed by presenting a specific type o dynamic analysis, the so called
Dynamic Taint Analysis. Dynamic Taint Analysis is the monitoring of the data
flows in programs or whole systems during the execution of the sample [3]. Dynamic
Taint Analysis is a very powerful technique to extract data-flow dependencies among
executed system calls. Additionally, it can be applied in a set of taints as a single
path symbolic execution. As referred in [3, 51], and we explained above, a label
(taint) is introduced by a taint source (system calls) and through program execution
it propagates according to some propagation rules to the taint sink (system call
arguments). In Figure 2.1 we present an analyze to a greater extent the procedure
of Dynamic Taint Analysis of an unknown executable since is the technique that as

we referred we will utilize in our approach.

2.2.2 Dynamic Analysis Tools

In this section we present some tools widely used in dynamic malware analysis as they
described in [56]. In order to monitor registry, file system, network, processes and thread
activity Process Monitor is an advanced monitoring tool suitable for windows. On the
other hand when performing dynamic analysis centralized in process monitoring, Process
Explorer is referred as displays child-parent relations between the running processes. In
a deeper level, through Process explorer, the analyst can launch the Dependency Walker,
a powerful tool that let provide the analyst with valuable information about handles and
DLLs. Additionally, RegShot is one more powerful tool that can compare two registry
snapshot in order to check the changes happened in registry during malware’s execution.
Finally when needed to observe the network activity performed by malwares execution
Netcat can be used in order to capture inbound and outbound connections for port scan-

ning, forwarding and much more.
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CHAPTER 3

MALWARE DETECTION

3.1 Concept and Implementation
3.2 Categorizing Detection Methods

3.3 Graph-Based Detection Methods

In this chapter we will present the process of malware detection to a greater extent, by
citing firstly the definitions of detection techniques, and then by describing a series of
state of the art approaches presented in the literature while we focus on the graph-based
ones as they are relative to our model composing its background. In order to make the
things crystal-clear from the start and not to confuse the reader, we define the specific
term signature as something that an object has while we define the general term behavior
as something that an object does. Thus, the signature depicts the sometimes variant and
others invariant characteristics, that a program has in order to implement some actions,
while its behavior represents the actions performed by a program in order to achieve its

goals, including its interaction with its environment.

3.1 Concept and Implementation

In this section we will present the main concept of mawlre detection providing the basic
definition while we will describe what is and how works in general a malware detector.
We cite a typical malware detection system’s design compiling information from various
approaches throug the literature.
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3.1.1 Malware Detection

Malware detection as a general term is the process of determining, if a given program is
malicious or benign [18, 40, 28, 1], according to an a priori knowledge. For this purpose
there have been implemented techniques that leverage a series of distinct characteristics
in order to be able to distinguish malicious from benign programs. The implementation
of malware detection can be treated as a procedure highly intertwined with the process
of classification. Actually one can think that the detection of malware has the sense of
classifying an unknown specimen into exclusively one of the solely two classes malicious
or benign. However, formally speaking, a malware detector can be defined as a function
that takes input an undefined program p and by scanning it for the existence or not of
the signature s, determines if it is malicious or benign respectively [1].

Malware detection is implemented through the utilization of a series of specific mal-
ware detection techniques [28]. In current system,malware detection is implemented with
two approaches, signature-based detection and behaviour or anomaly-based detection. In
fugure 3.1 we cite a brief representation of malware’s detection method.

A Priori Knowledge
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Figure 3.1: Malware Detection

Despite the fact that these techniques are quite efficient, offering relatively high detection
rates whereas provide real-time protection on the end-host, they have a significant draw-
back. That is, the above mentioned techniques, and especially the signature-based one, is
inadequate to detect malware that has been morphed through an obfuscation technique.
As we referred in the introduction, the main prickle in malware detection that is also one
of the most complicated and most researched topics in malware analysis, is the so called
polymorphic malware. Thus, malware analysts in order to be able to detect mutated mal-
ware worked on more sophisticated techniques that utilize more abstract characteristics
of malware such as its behavior. Formally speaking, the problem of obfuscated malware’s
detection as described in [16] can be expressed as follows: lets as assume that we have an
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initial variant (vanilla) of a virus V' containing a set or sequence of instructions o. When
V' is obfuscated, let us say O(V), the problem is transformed as to detect the existence
of a sequence ¢’ that is semantically equivalent to o.

3.1.2 Malware Detector Design

As referred in [28], the implementation of techniques for malware detection is called
malware detector. In order to understand how malware detectors work we present a gen-
eralized view of a typical malware detector’s design, synthesizing various approaches from
the literature [9, 16, 15, 11, 40, 64, 1, 66, 24]. As we mentioned in the introduction, the
procedures of malware analysis , detection and classification are strongly dependent. Mal-
ware detection needs an a priori knowledge in order to compare characteristics extracted
from a previously analyzed malware and a currently analyzed unknown specimen. Thus,
having already composing the background of malware analysis from chapter 2, before we
proceed with the presentation of detectors design we cite in Figure 3.2 the process of
analysis that can be treated as a training phase in order to create the aforementioned a
priori knowledge, stored into a data base.

Next, in Figure 3.3 we cite a very brief representation of how a malware detector works,
omitting specific information about how the similarity measurement is computed. The
feature that we will choose to select may refer to a signature extracted from executable’s
binary, or to a sub-graph of the flow-graph produced from the executable through static
analysis [11], while the similarity measurement may include either a string-signature based
technique or a behavioral one. Additionally as we will refer later it may include a graph
matching process if a graph-based detection technique is employed. In the next sections we
will discuss how these features are created and extracted in order to extract characteristics
able to distinguish malware from benign programs.

Describing the example presented in Figures 3.2 and 3.3 we start with our data base
creation. In order to be able to detect if a suspicious sample is malware or benign we
must have some clues that indicate that a sample is malicious. This way, we start by
performing dynamic or static analysis on a set of known malware samples, one at a time,
extracting specific features (Figure 3.2). When we have in our hands either a signature
or a behavior or any other kind of a representation of the aforementioned characteristics
(i.e. a graph) we store it into a data base in order to be able to use it later. When a
new suspicious executable is needed to be categorized as malware or benign, we start by
extracting the same characteristics (Figure 3.3), either proceeding with their comparison
with what we have in the database, in the case of behavior-based detection, or searching
for the existence of a specific one from the database into the sample, in case of string
signature-based detection respectively.
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3.2 Categorizing Detection Methods

As we referred in the introduction malware detection methods can be categorized into
signature-based detection and anomaly or behavior-based detection, according to the
object the are applied on. In this section we will discuss to a greater extent the categories
of malware detection methods enumerating their pros and cons respectively.

3.2.1 Signature Based Detection Methods

Signature-based detection is the dominant virus-detection method. Implementing this
technique, a malware detector searches in program’s under inspection raw content for
the presence of a virus-specific sequence of instructions, the so called virus signature [15].
If malware detector find such signature then the program under inspection is probably
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infected. Actually, a string signature represent a pattern in a suspicious program’s raw
content and thus is used in order to uniquely identify it. Fast string matching algorithms
are used in signature-based detection, utilizing regular expressions and string alignment
techniques in an effort to detect malware variants. The extraction of malware’s signature
can be achieved by disassembling the malware’s file and selecting some pieces of unique
code [1].

In Figure 3.4 we cite the IA-32 instructions (right) from a program and its hexadecimal
representation (left), as presented in [15]. Now, let us assume that we have a given
signature S : {800 0000 005B 8D4B 4251 5050 0F01 4C24 FE5B 83C3 1CF A 8B2B},
stored into our signature database, corresponding to Chernobyl/CIH virus. As easily one
can understand, if the malware detector during the scanning of a suspicious program,
finds the instructions sequence S, then will determine that the given program is infected
by Chernobyl/CIH virus. Now that we have developed a better knowledge about how
signatures work we can return to Figure 3.3 and explain the case of string signature-based
detection. As referred in [1], the signature of a malware is consisted by a byte sequence
that uniquely identifies this malware. Once a set of such signatures has been collected
for a series of malware and then been stored in a database, then the malware detector
utilizes this set by looking for code signatures or byte sequences inside the programs of
the system it is installed on. Thus, the malware detector scans specific locations in the
system and if in a program is found a signature that matches with one in detector’s
database then this program is claimed as malware and its access to the system is blocked
by the detector. Even though this practice seems extremely efficient for the end-host
considering its accuracy and speed, however its main drawback is its inability to detect
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Figure 3.4: Virus Chernobyl/CIH body and corresponding TA-32 instructions [15]

brand-new or mutated malware, or in other words its inflexibility to generalization. Thus,
the only solution for such approaches to work properly is to keep updated their signatures
databases in order to be possible to detect at least as many malware variants have been
already detected by the Anti-virus system vendor.

Despite all the theory we cited above, we ought to notice that the term signature is
more generic as it seems. Through the literature, the term signature may also refers to
more abstract objects such as a set of actions and many times it may gets confusing.
We will just mention the example in [18], where malware signatures are represented by
templates that actually are set of actions that compose a profile. Similarly, we will refer
the terms host-based signature and network signatures as they discussed in [56]. A host-
based signature is used to detect malicious code on a victim computer by identify files
created or modified by a malware or by detecting changes made to the registry. These
signatures are also called indicators and focus on what the malware does to a system in a
more behavioral manner in contrast with the traditional string signature that focus on the
characteristics of the malware. Thus, as a result indicators are more resilient to morphed
malware. Finally, there are also exist the network signatures, that detect malicious code
by monitoring the network traffic.

Additionally we can proceed to a further categorization of signature-based detection
where this hyper-category of detection methods is divided into static and dynamic [28],
just like the analysis. Thus, in Static Signature-based Detection the program under in-
spection is examined for sequences of code and so the signature are representing sequences
of code. On the other hand in Dynamic Signature-based Detection the maliciousness of
the program under inspection results from data gathered during its execution time, such
as patterns of behavior (not to be confused with behavior-based detection).

Finally in order to make the things crystal-clear, we notice that the main difference
between Signature-based detection and Behavior-based detection is that the Signature-
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based one is in some fashion a static detection method, as it relies on something that we
got a priori and it is fixed, demanding consequently update for each new variant. On
the other hand, the Behavior-based Detection is a more dynamic one as it relies on some
global rules that if offended then the maliciousness of the subject can be claimed without
the need of updating this a priori knowledge as it can be applied to all. Summing all the
above we can conclude that a signature is something characteristic for an object that its
existence indicates the objects identity while a behavior, as we will see next, is a set of
rules, that when violated then the identity of the object is indicated. Thus, if a malware
detector uses signatures in order to detect if a program is malicious or not, then it is
actually searching for the existence of something (i.e. byte/instruction sequence, set of
actions etc.) existed also to other malwares, while if it uses the behavior then it is actually
searching for a violation of a rule (i.e. resource misuse) that benign programs do not as
we will discuss next.

3.2.2 Behavior Based Detection Methods

As referred in [28] anomaly-based detection depends on the normal behavior of an executed
object. Actually it occurs in two phases which is the training or learning phase and the
detection and monitoring phase. The goal is for the detector actually to learn the behavior
exhibited by a program under inspection. More precisely, anomaly detection systems build
models of expected behavior of applications by analyzing events that are generated during
their normal execution [38]. So, when such a model is developed then spare events can
be analyzed partially in order to observe any deviations. Consequently, such deviations
are adequate to indicate the presence of maliciousness. Next we will present the two
dominant types of behavior-based malware detection the Anomaly-based Detection and
the Specification-Based Detection explaining their functionality and discussing their pros
and cons.

(A) Anomaly Based Detection Methods

Malware detectors that utilize anomaly-based detection techniques, base their method
for detection on models of normal behavior of users and applications, called profiles [28].
Thus any violations to this kind of rules indicates an attack. Additionally utilizing such
methods a malware detector is not restricted to what is known till now where can be
detect any abnormal behavior whether is aprt of the model or not. However, using this
technique may results in higher false positive rates, as newer benign application may
exhibit a behavior different from the older ones.

As we referred in the previous section, in behavioral detection and more precisely in
the anomaly-based one, there do not exist any a prior: assumptions about applications. In
contrast, the behavior profiles are built analyzing system call invocations during a normal
execution by collecting distinct fixed-length system call sequences [38]. So, as easily on
can understand if during the execution of the program under inspection the produced
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system call sequences compared to the pre-recorded exhibit a variation then this is an
event that indicates a possible malware existence.

Similarly to signature-based detection we divide the anomaly-based one into static
and dynamic. In Static Anomaly-based Detection the detection of malware relies on
characteristics of suspicious file’s structure, providing thus the ability to not execute
the host program [28]. On the other hand, in Dynamic Anomaly-based Detection, the
detection of malware relies on the gathered information of malware’s execution. So, any
profile inconsistencies are caught in the detection phase during monitoring and compared
with the learned profile conclude to the detection of malware. In Figure 3.5 we cote a
simple example of the behavior-based detection method we discussed above.
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Figure 3.5: Visualization of Behavior-based Detection

(B) Specification Based Detection Methods

Malware detectors that utilize misuse-based methods are based upon descriptions of at-
tacks (signatures) while they try to match data logged during the execution of a program
as clues of a modeled attack. As easily one can understand there exist the same drawback
as in traditional signature-based detection where only the satisfaction of a prior: specified
models indicates an attack. As we referred above, the main drawback of Anomaly-based
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Detection techniques is the high false positiv rates exhibited through detection. Thus,
in order to mitigate this limitation there has been proposed a type of Anomaly-based
Detection the Specification-based Detection. Specification-based Detection approximates
the requirements (specifications) for a system or an application running on the end-point,
instead of its implementation [28]. In this type of behavioral detection the whole process
relies on, either manually written or through static analysis, application-specific models
[38]. So, the main goal is the development of a rule set specifying the valid behavior that
should be exhibited by any running application [28]. Thus, if during the monitoring of an
application a non-conforming system-call is invoked then this is a clue for the existence
of a malware leading to detection. However, in Specification-based Detection there is
exhibited another drawback that is the very limited capability of generalization from the
pre-defined specifications. As someone could expect, if the approach uses the run-time
behavior then the type of Specification-based Detection is defined as Dynamic, whereas
Static Specification-based Detection relies on structural characteristics of the program
respectively.

3.3 Graph-Based Detection Methods

Having already all the necessary information and an adequate background on signature-
based and behavior-based detection techniques, we are able in this section to proceed
to the presentation of one of the most powerful structures used for malware detection,
the graphs. Using graphs the behaviours can be modeled efficiently and additionally,
because of its structure, a graph can be used as signature of a malware. In this section we
will discuss the graph-based detection methods, presenting indicative examples from the
use of the Control-Flow Graphs (CFGs), the Function Call Graphs (FCGs), and also the
System-call Dependency Graphs that consist the main tool that we utilize in our approach
as we will discuss in the corresponding chapter.

3.3.1 Malware Detection using Control Flow Graphs

Control flow describes the possible execution paths of a program or a procedure and is
represented as a directed graph the so called Control-Flow Graph (CFG) or simply flow-
graph . Consequently, when such an abstract representation depicts the internal control
flow of a procedure is generated a flow-graph, while when depicts the control flows between
procedures is generated a call graph respectively [11].

As referred in [15, 18], most automatic analysis tools utilize an abstract representation
of malware’s structure such as the Control Flow Graphs (CFGs). According to [9], a
Control Flow Graph is composed of linked nodes of one of the following types jmp (non-
conditional jump), jee (conditional jump), call (function call), ret (function return), inst
and end, constructing the graph as presented in Figure 3.6. More precisely as referred
in [37], each node of the Control-Flow Graph represent a sequence of instructions that
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are not interrupted from any jump instructions, the so called basic blocks. Accordingly,
an edge from block u to block v represents the flow of control from block u to block
v. Summing, as defined in [15], a basic block B is a maximal sequence of instructions
(L, ..., I,) containing at least one control flow instruction at its end. Let V' be the set
of Bs for a program P and E C V xVx{T,F} , be the set of control flow transitions
between basic blocks. then the directed graph CFG(P) =(V, E) is called control flow
graph. The graph-based representations are of major importance since they are able to
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Figure 3.6: Control Flow Graph Representation [9]
capture different execution paths of the program under inspection [24]. Additionally, the
nodes of the graph can store the instructions and values while they can be interpreted
according to more generic semantics [11].

The use of CFGs as signatures for malware detection is based on sub-graph isomor-
phism that is theoretically NP-complete. However its complexity can be reduced in the
detection context. Actually, except the indirect jumps and the returns all the other nodes
of a CFG have a bounded number of typically one or two successors [24]. Additionally,
isomorphism remains sensitive in morph techniques as code permutation or injection (see
1.3.2) that impact the graph, however these limitations can be addressed by compiler
optimizations as referred in [24].

A typical approach for signature creation is presented in [11]. In order to generate a
signature from a CFG, depth first order can be utilized, consisting thus a signature by
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listing the graph edges for the ordered nodes using ordering as node labels and finally
representing the signature as a string (see Figure 3.7). Additionally approximate matches
of flow-graph based characteristics can be used in order to detect a broader range of
malware variants. Finally, in order to proceed to malware detection the proposed approach
make use of the malware database that stores the string signature produced as described
above together with a normalized weight computed for each procedure .

‘T/\p‘ 8 -> g; 8 ->4)
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Figure 3.7: String signature derived by CFG [11]

3.3.2 Malware Detection using Function Call Graphs

A Function Call Graph (FCG) is a directed graph that its vertices depict the functions
that an executable binary includes and its edges represent the interconnection between
the functions according to their calls (see Figure 3.7). As referred in [33], the call graph
can be gathered from a binary executable through static analysis. Actually, disassembly
tools like the ones we referred in 2.1.2 (i.e. IDA Pro) are utilized after the removal of the
obfuscation layers (i.e. unpacking).

Figure 3.8: Function Call Graph (local and external functions) [33]

To this point we ought to notice that the functions, represented by the vertices may be
either local functions, i.e. functions wrote by the malware author, or external functions
like System or Library calls invoked during the execution of the binary. In Figure 3.8 we
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cite a representation of a Control Flow Graph produce by an executable as it is depicted
in [33]. The nodes of this graph represent local and external functions. Specifically, the
one’s whose name starts with the prefix sub refer to local functions.

3.3.3 Malware Detection using System-Call Dependency Graphs

The behavior of a program can be modeled based upon system-call dependencies as the
capture its interaction with its hosting environment, the operating system. As easily one
can understand, a representation that captures a sequence of system calls would be liable
since any reorder or addition of one or more system calls could change the sequence, so a
more flexible representation that would capture their in between relations , as a graph in
example, would satisfy that demand [35] Thus a program’s behavior can be modeled by
a behavior graph. A behavior graph is a directed graph generated from system call traces
collected during the execution of the program under inspection, while their arguments
indicate their relations [46].

To start with, we should define the term behaviour as its effect on operating system’s
state. As referred in [23] most malware relies on system calls in order to deliver their
payload, and thus system calls are able to representations of malwares intent omitting
useless implementation artifacts. In almost all of the works the program’s under inspection
behavior is represented as a graph, the so called behaviour graph.
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Figure 3.9: Behavior Graph from malware NetSky [35]
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As easily someone can suppose, the nodes of this graph are the system calls captured
by the programs trace during its execution time utilizing taint analysis (see 2.2.2). The
most straightforward approach to define an edge in a behavioral graph is the one discussed
in [35] where an edge introduced from node z to node y when the system call referenced
by y uses as input argument the argument produced as output from system call referenced
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by x. As a result the existence of an edge in such a graph represents the data dependecy
between two system calls. Such dependecies can be monitored as we mentioned above
through the tainting of data during taint analysis. In Figure 3.9 we cite the behavior graph
depicting the dependeces between system calls captured throug taint analysis dyring the
execution of NetSky malware as presented in [35].

Now, let us proceed with some proper definitions about the behavioral graphs as they
are presented in [35, 17, 23, 46]. Compiling the definitions of behavioral graph presented
in [35, 17, 23] we concluded at a global structure that we present next. Generally speaking,
the behavioral graph includes, except from its basic components that are its vertex-set
V and its edge-set E, two labeling function that are responsible for the association,
the first one of vertices and edges with system-calls and their in between dependencies
respectively, and the second one of vertices and edges with some constraints on operations
and dependencies. Before we start we ought to refer some preliminaries about the vertices
and edges as the fact that such graphs are Directed Acyclic Graphs (DAG) as defined a
malicious specification -malspec [35] where the nodes are labeled using system-calls from
an alphabet X' and edges labeled using logic formulas from a logic Lp,. Thus, we proceed
by citing the definitions of malicious specification and the corresponding behavior grarph
and as they are presented in [17] and [23] respectively.

Definition 3.1: A malicious specification is a Directed Acyclic Graphs (DAG), with nodes
labeled using system calls from an alphabet Y and edges labeled using logic formulas
from a logic Lg.,. The malicious specification (malpsec) M is written as M = (V, E, v, p),

where:
e 1 is the vertex-set and E is the edge-set, E CV x V,
e y associates vertices with symbolic system calls, y : V — X x 2V and

e o associates constraints with nodes and edges, o : VU E — Lpe,.

Definition 3.2: A behavior graph is a data dependence graph G = (V, E, «,3), where:
e the set of vertices V' corresponds to operations from X,
e the set of edges F C V x V corresponds to dependencies between operations,

e the labeling function o« : V' — Y associates nodes with the name of their corre-
sponding operations and

e the labeling function  : VU E — Lp,, associates vertices and edges with for-
mulas in some logic Lp,, capable of expressing constraints on operations and the
dependencies between their arguments.
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The dependencies we referred above are classified into three categories [23, 17]:

o def-use dependence: A def-use dependence expresses that a value output by one
system call is used as input argument to another system call.

e value dependence: A value dependence is a logic formula that expresses the condi-
tions placed on an argument (values) of one or more system calls, describing any
non trivial data manipulations performed by the program between system-calls.

e ordering dependence: Finally, an ordering dependence between two system calls
expresses that the first system call must precede the second system call.

Next, we proceed by presenting a simple detection example that uses behavior graphs
as presented in [17]. The term malspec referred in [17], actually refers to a sub-graph of
the malware’s dependence graph that does not appear in any of the benign dependence
graphs. As mentioned in the corresponding work, the simplest solution would be to choose
the whole graph, however the resulting malspec would be too large and too specific to the
malware sample. Thus, the minimal contrast subgraph is utilized in order to generalize and
make as small as possible the malspec. A minimal contrast sub-gaph (MCS) is a smallest
sub-graph of a graph that does not exist in another graph. So, a contrast sub-graph of
G1,G5 is a sub-graph of G that is not sub-graph isomorphic to Gy and consequently is
minimal iff none of its sub-graph is contrast sub-graph. Thus, a malspec can be thought
as a minimal contrast sub-graph of a malware’s dependence graph and a benign program’s
dependence graph. The computation of MCS can be done using the Ting-Bailey algorithm
as proposed in [58]. Actually the algorithm works as follows, first mazimal common edge
sets are computed between two graphs using backtracking tree, next maximal common
edge sets are unioned together and minimal traversals of theri complements are computed
in order to yield minimal contrast edge sets and finally the minimal contrast edge sets are
unioned with the minimal contrast vertex sets to to produce a complete set of minimal

contrast sub-graphs.
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CHAPTER 4

MAIWARE CLASSIFICATION

4.1 Philogeny
4.2 Software Similarity

4.3 Classification of Malware into Families

4.4 Graph-Based Classification Methods

In this chapter we will discuss some major topics concerning malware evolution. Specifi-
cally, we will focus on the evolution of malware according to how malware families share
common characteristics through their commonalities in their specimens’ source codes re-
sulting from phylogeny. Additionally we will discuss the importance of malware classifi-
cation into malware families and how this grouping is able to increase the detection rates
through the leverage of signature generalization when a signature can be applied globally
to the members of a malware family decreasing subsequently the need for new signature
production for individual malware.

4.1 Philogeny

One of the most important issues concerning the protection against malware’s spread is
how the AV production industries will be able to manage the thousands of suspicious files
arriving for analysis every and most of the are malware. Obviously, the construction of
individual signature for each malware sample does not consists an effective solution. As
referred in the literature, and exists as a general sense, each individual malware is not
developed from scratch, since if so, then there would not appear so many new malware
samples every day to be analyzed. Contrary, malware authors almost always, exception
consist the targeted attacks (i.e. STUXNET), either share their code or use mutation en-
gines in order to develop their malware or to morph them respectively. This work is grown
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based upon the wider axes of malware analysis including the components of pure analysis,
malware detection in terms of determining if an object is malicious or benign, malware
classification in terms of classifying a malware specimen into one malware family. As we
referred in the introduction, the procedures of malware analysis, detection and classifica-
tion are strongly connected, however, malware classification is also connected to another
sense, concerning how malware families are interconnected and how malware is evolved
sharing and distinguishing characteristics between samples, the so called phylogeny.

As referred in [29, 30], various types of malware (i.e. viruses, worms, trojans etc.)
share common characteristics, so between them as to other previously seen malware.
Leveraging this observation, a malware analyst is in position to build a phylogeny model
that capturing this relations to be able to contribute in a proper family naming or to the
development of more flexible detection and classification techniques.

Malware authors have developed a network of code sharing, exchanging code for the
development of their malware. Every day new malware strains are released that in almost
all of the cases are mutations of previously seen malware, either including code through
code reusability in terms of recycling, or by fixing bugs existed in previous versions.
So, easily someone can understand that this effort of malware authors to cooperate in
malware development can be leveraged from malware analysts in order to develop more
efficient detection techniques, as we mentioned above. The information, provided from
the build of a phylogeny network that captures the share of code in malware development,
may be proven quite precious on understanding the relations of malware and how new
strains are actually evolutions of older ones. Thus, these relations can be interpreted
either to mutations caused due to any need for change to malware’s functionality, or to
mutations caused as a result of morphing engines used in malware’s detection avoidance
i.e polymorphism or metamorphism (see sections 1.3.1-2 ).
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Figure 4.1: Dendrogram Representing Phylogeny Between Individual Specimens [61]
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So, the main goal in building a phylogeny model is to examine software artifacts in
order to observe where there exist commonalities and differences in order to construct an
evolution history [29]. A quite convenient representation of malware’s evolution could be
a tree-like one as a dendrogram [61] (see Figure 4.1) where malware samples have been
clustered according to a technique that detects commonalities between specimens.

4.2 Software Similarity

Software as a general term can be classified into two categories, malicious or benign,
according to the existence or not of maliciousness to its functionality. So, if a program
belongs into the class of malicious programs then it has inherited the characteristics of its
mother class, the software. Consequently, malware just like the software has the ability
to evolve. As we referred in the previous section, a family of malware can be evolved as to
fulfill some new added requirements or simply because of some bug-fixes. So, in order to
be able to determine if a given unknown malware is actually an evolution of a previously
seen one, in other words is member of a specific family, we need to define a method that
will be in position to determine according to a given input and a background knowledge
if this specimen is member of a known family. Thus, a rational approach could be to
compare the similarity of the given object against some pre-classified objects.

As we have all ready describe, the traditional signature-based detection techniques are
unable to detect morphed malware, and thus an approach of creating distinct signature
for each individual malware could be ineffective and for sure counterproductive. So, as
the need of family level signature construction grows we need to develop techniques that
are able to classify with high accuracy rate a given unknown malware, since it is not a
brand-new one, to a malware family. Thus, in order to address these needs, there have
been developed a series of techniques spare in the literature that utilize either data mining
techniques or are graph-based ones with orientation to the behavioral graphs (see sections
3.3.3 and 4.4).

Generally speaking, the software similarity problem focuses on determining the simi-
larity between two programs [11]. Thus, the result of a method that computes metrics for
such purposes result in a value between 0 and 1, where values near 0 indicate low similarity
while values near to 1 indicate high similarity based on a threshold value. An approach
to software similarity problem using known similarity metrics on profiles produced by
characteristics of two objects (i.e. a recurring pattern existed in a known malware and
its variations ) may lead to the immediate detection of new variants straight from their
release, to generic signature construction and in the observation of commonalities and
relationships between different malware families [61].
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4.3 Classification of Malware into Families

As we referred above the construction of distinct signatures for each individual malware
is inefficient and counterproductive. Thus, the grouping of each individual malware into
families that exhibit similar characteristics (i.e. similar behavior) is a rational and effective
solution. The main requirement for clustering malware into families is for the members in
each family to exhibit the highest similarity with the other members belonging to the same
family and the minimum similarity with members belonging to other families. However,
there exists families of malware that are of the same type (i.e. bots, bankers, downloader
etc.) meaning that in general exhibit the same behavior, resulting to misclassifications.
Everyday thousands of files arriving to AV industries in order to be analyzed. In order
to make analysis more efficient and to be able to handle large amounts of data, a proper
clustering of malware that exhibit similar behaviors is needed so to not spent time in
analyzing a malware that is a variant of a previously seen one, as to create more generic
signatures that satisfy the detection of any member belonging to a specific family [33, 6].

Label McAfee Trend
A Not detected W32/Backdoor. QWO
B Not detected W32/Backdoor. QWO
C W32/Mytob.graMM | W32/TRCBot-based!Maximus
D W32/Mytob.gr@MM Not detected
E PWS-Banker.gen.i W32/Bancos.IQK
F IRC/Flood.gen.b W32/Backdoor.AHJJ
G W32/Pate.b W32/Parite.B
H Not detected W32/Bancos.1JG
I IRC/Generic Flooder IRC/Zapchast. AK@bd
J Generic BackDoor.f | W32/VB-Backdoor!MAximus

Table 4.1: Spare Malware Samples [4]

One of the most applicable approaches in malware classification is to extract invariant
characteristics of each sample in order to construct a profile. Then, comparing the profiles
of given any two samples using a similarity metric is straightforward to determine if two
samples are similar or dissimilar and consequently to classify them into the same class
or not, respectively . So, in Table 4.1 we cite a table from [4] where are presented some
initially uncorrelated malware samples labeled by two AV vendors. In Table 4.2 there
has been computed the Normalized Compression Distance (NCD) of them everyone with
each other.
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Table 4.2:

Finally in Figure 4.2 according to the aforementioned metric the previously uncorre-
lated malware samples are combined in clusters (¢
the minimum NCD between them. As we can observe through this process, finding some
characteristics among malware samples can afford quite valuable information about mal-
ware’s behavior and to a greater extent, about the evolution of malware. Such information
then can be leveraged to build detection and classification techniques that will be more

NCD Computation of Malware Samples [4]

: ¢g) including malwares exhibiting

accurate while being more elastic since depend on structure’s abstractions.

Figure 4.2: Clustering of Malware Samples according to NCDI4]
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4.4 Graph-Based Classification Methods

As we referred in previous sections, malwares that belong to the same families tend to
exhibit the same or at least a similar behavior. Consequently, the ability of recognizing
commonalities among samples that belong to the same family leads to the development
of techniques that immediately detect both known and unknown malware based on their
abstract manifestations such as their behavior. Since, as we mentioned in chapter 3,
graphs are from their nature quite adequate to represent such representations we proceed
by presenting the application of graphs in malware’s behavior representation and their use
in automated classification of unknown malware samples to malware families. Similarly
to section 3.3, next we will present two indicative examples from the use of Function
Call Graphs (FCGs) and System Call Dependency Graphs for the depiction of malware’s
behavior in order to classify a given sample.

4.4.1 Malware Classification using Function Call Graphs

In [33] Function Call graphs (FCGs) are utilized in order to compare and classify malware
samples, according to their structural similarity, to malware families. To this point we
ought to remind that Function Call Graphs Are directed graphs that their vertices rep-
resent the functions of an executable, while their edges represent their calls (see section
3.3.2). Specifically, having composed the CFGs from two executables the the computa-
tion of similarity may include the search for graph isomorphism or the maximum common
sug-graph (MCS) or the minimum edit distance (GED). The classification of an unknown
sample can be achieved by computing the distance between the sample and each cluster’s
center jic;, assigning the sample to the cluster with the minimum distance.

So, in order to compute the similarity between the Function Call Graphs of the mem-
bers in a cluster and hence the distance of an unknown sample’s Function Call Graph
from the center of a cluster, they utilize the aforementioned graph edit distance (GED),
that for any given two graphs G, H it is computed as:

Mo (G, H) = VertexCost + EdgeCost + RelabelCost , (4.1)

where VertexCost and EdgeCost is the number of inserted or deleted vertices or edges
respectively and RelabelCost is the number of mismatched vertices (functions). Thus,
having already computed the graph edit distance, the similarity of the two graphs is
computed as:

Mo (GLH)

o(G,H) = V(G)|+ [V(H)| +|E(G)| + |[E(H)]

(4.2)

43



Finally, the center of a cluster is selected as the graph that has the more similarity with
all other graphs in the cluster. Then the computation of the distance between a sample
and the cluster’s center is the calculation of the Fuclidean distance as:

miny> S o(x. ) (43)

=1 yeC;

where k is the number of predefined clusters, and x is the unclassified sample.

4.4.2 Malware Classification using System-Call Dependency Graphs

Another graph-based method for classifying malware is that of leveraging execution trace
in order to construct a behavioural graph, actually by representing system call dependen-
cies. In [46] is presented an approach that utilizes behavioral graph matching in order to
classify an unknown malware sample into a malware family.

Specifically, the behavior graph, also called Dynamic System Call Dependence Graph
(DSCDG), is extracted during the suspicious program’s execution, representing the system
call sequences and their in between dependencies. Individual system calls are captures by
intercepting every SYSENTER instruction while the sequence is obtained by their traces
when matching their arguments comparing both their type and value [46]. The focusing
in arguments is mostly centralized in specific ones such as handles. Thus, when a handle
produces as output from one system call (S1) and then is feeded as input to another one
(S2) then an edge is added from node S} to node Ss.

Thus, the behavioral graph (DSCDGQG) is defined as : G = (N, E, p, u), where N is the
vertex set (System Call : S; € N), E is the edge set (dependency: S; — S; € E), p is
a node labeling function defined as ¢ : N — Ly assigning system calls to nodes and
u is an edge labeling function respectively, that is defined as v : £ — Lg. The main
difference between p and wu is that u also describes the dependence of two system calls
according to their arguments.

Finally, in order to compute the similarity between two behavioral graphs and hence
utilize it to classify an unknown malware sample the mazimal common sub-graph hs to
be computed before they proceed with the computation of the similarity formula. So,
assuming that are given two behavioral graphs G; and Gy as G = (Ny, Eq, 1, uq) and
G = (N, Es, 1o, uz), then the G' = (N', E', i/, ) is called common sub-graph of G, G5
iff there exists sub-graph isomorphism from G’ to GG; and from G’ to G5, while is called
mazximal common sub-graph (MCS) when there is no other common sub-graph of G and
G5 that include more nodes that G’ [46]. Finally the similarity (distance) between two
given behavioral graphs can be computed as :

’GMCS‘
D(Gy,Go) =1 — , 44
(G, Go) = 1 = (G 1ol (44)

where |G| is the size of the vertex set.
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CHAPTER 5

OUR MODEL

5.1 Graph Representation of Malicious Software

5.2 Computing the Graph Similarity

5.3 A Graph Based Technique for Malicious Software Detection
5.4 A Graph Based Technique for Malicious Software Classification

5.5 Other Approaches for Malware Detection And Classification

In this chapter we will present the model that we have designed in order to detect and
classify malicious software based on their system-call dependency graphs. As referred in
the literature, system-call dependency graphs exhibit a great potential of representing
malware’s functionality and behavior. Specifically, since in their general form, graphs
constitute a software’s abstraction, they have the ability to capture its interaction with
its environment, in this case the operating system. So, to start with, we firstly discuss the
representation of malware as a graph, and to be precise the system-call dependency graph
produced during its run-time through taint analysis (see chapter 2.2.1). Secondly, we make
an introduction to the techniques (such as: Jaccard Indez, Cosine Similarity, Tanimoto
Coefficient etc.) that we will be based on, concerning those used in computing graph
similarity in most of time on their intermediate auxiliary representations. Then in the
third section we present and discuss our graph-based proposed technique that we utilize in
malware detection and that leverages system-call dependency graphs. Finally in the last
sectino we will present and describe our also graph-based malware classification technique
that leverages system-call dependancy graphs too, and its application on classifying an
unknown malware into one malware family.
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5.1 Graph Representation of Malicious Software

The core works that we base our intuition in the use of system-call dependency graphs
are [18, 17, 23] and [3]. To this point, we ought to underline that our work is totally
complement to the aforementioned ones, while we have developed a totally novel interme-
diate graph representation that exhibits an auxiliary functionality in our model while it
can capture and represent a much more abstract depiction of malware’s behavior. As we
will describe later in this section, we use the well known classification of system-calls into
classes of similar functionality, constructing finally a graph that its vertices actually are
super-vertices containing the system-calls captured in the system-call dependency graph
and are from the same class. This sophisticated hyper-abstraction of malware’s system-
call dependency graph provides us with the ability of a wider generalization depicting
what actually performs in general.

As we referred in previous chapters, the use of traditional string signature-based detec-
tion is inadequate in detecting morphed malware. So, in order to develop more elaborate
techniques for malware detection and also for classification, the use of more abstract
structures need to be utilized. Thus, we leverage the use of graphs, since as referred in
the literature there have been widely used for this purpose. Indicative and also quite suc-
cessful examples constitute the Function Call Graphs (FCGs), the Control Flow Graphs
(CFGs) from the aspect of static malware analysis and also the System-Call Dependency
Graphs (SCDGs) or behavioral graphs from the aspect of dynamic analysis. To this point
we ought to notice that we will utilize the use of System-Call Dependency Graphs since we
want to leverage the depiction of the behavior of a malware concerning its environment.
Additionally, System-Call Dependency Graphs provide us with information about the real
behavior (actions) performed by the testing malware instead of the other kinds of graphs
that provide information about probable actions since in static analysis the sample has
not been executed.

5.1.1 System-Call Dependency Graph Construction

Generally speaking, the actions performed by a program depicting its behavior, rely on
system-calls in order to be executed. So, capturing the system-calls performed during the
execution of a malware we can represent its behavior interpreting this information with
a graph while we are able to determine malware’s intent independently of any implemen-
tation artifacts.

In order to result in the construction of a System-Call Dependency Graph primarily
some operation need to be performed. First the suspicious sample needs to be executed
in a contained environment (i.e. a virtual machine). During its execution time taint
analysis is performed in order to capture system-call traces. As we referred in section
3.3.3 three types of dependence are involved in order to connect system calls. Specifically
in order to create the edges of a System-Call Dependency Graph, through taint analysis
are captured the system calls and the arguments they exchange as input/output where
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the output arguments of one system call are used as input arguments to another one.

So, the constructed System-Call Dependency graph has as its vertex set all the system-
calls that took place during the execution of the suspicious sample while its edge set
consists from the pairs of system call that passed argument the one to the other during
the execution.

Next, we proceed by citing a simple example that includes the system-call trace ob-
tained through taint analysis during the execution of a sample from malware family
Hupigon, and we explain how the SCDG is constructed after the whole process. As
we will also refer to chapter 6, the data set we utilize in order to evaluate the implemen-
tation of our proposed model is downloaded from Domagoj Babic’s personal web-page
and is the same data set utilized in [3] for the evaluation of the corresponding model. So
next we describe how is constructed a graph according to the description provided in the
data-set. Before we continue we ought to explain the contents of each column in Table
5.1. In the first column there is placed the ID of each system-call captured during the
analysis, while in column 2 is placed the name of each system-call. Finally, in column 3
are cited the number (in terms of cardinality) of input arguments for each system-call,
while in column 4 are cited the number of output arguments for each system-call.

1D System-call Name InArgs | OutArgs
0 NtOpenSection 2 1
1 ACCESS-MASK 0 1
2 POBJECT-ATTRIBUTES 0 1
3 NtQueryAttributesFile 1 1
4 NtQueryAttributesFile 1 1
5 NtQueryAttributesFile 1 1
6 NtQueryAttributesFile 1 1
7 NtQueryAttributesFile 1 1
8 NtQueryAttributesFile 1 1
9 NtQueryAttributesFile 1 1
10 NtQueryAttributesFile 1 1
11 NtQueryAttributesFile 1 1
12 NtQueryAttributesFile 1 1
13 NtRaiseHardError 5 0
14 NTSTATUS 0 1
15 ULONG 0 1
16 PULONG-PTR 0 1
17 | HARDERROR-RESPONSE-OPTION 0 1

Table 5.1: System Call Traces
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Having already captured the system-calls that took place utilizing taint analysis and
hence having composed the vertex set, the next step is to create the edge set by connecting
each pair of system-calls that exchange arguments. As depicted in the next table a tuple of
type {sci:1, sco: 111} indicates that the system-call scy takes as her fourth input argument
the second output argument of system-call sc;.

Now, let us give an easy and quite simple example. Let us suppose that we have a
system-call with ID =10 and has 3 input arguments and 2 output argument, then when
it appears as 10:1 in the from side of an edge it indicates that the system call 10 passes
as output her second (because this number is a zero-based index) output argument to
another system-call, while when appears 10:1 in the to side of an edge it indicates that
the system call 10 receives as her second input argument the argument produced from
another system-call. In other words if we have two system-calls the previous one and
another one with ID=12 and who has 2 input and 5 output argument then the expression
(10:0, 12:1) is interpreted as the first output argument of system call 10 is passed as the
second input argument to system call 12, while the expression (12:4, 10:2) is interpreted
as the fifth output argument from system-call 12 is passed as the third input argument
to system-call 10.

Trace | From | out.idx | To | in.idx assign type edge type
1:0,0:0 1 0 0 0 sco.in(0) <— scr.out(0) | sc; — sco
2:0,0:0 2 0 0 1 sco.in(1) «— scq.out(0) | sca — sco
2:0,3:0 2 0 3 0 scs3.in(0) <— sco.0ut(0) | sco — sy
2:0,4:0 2 0 4 0 5¢4.in(0) — sca.out(0) | sca —> sey
2:0,5:0 2 0 5 0 sc5.in(0) «— scq.out(0) $Cy — ScC
2:0,6:0 2 0 6 0 s¢6.1n(0) <— sco.0ut(0) | sca — scg
2:0,7:0 2 0 7 0 sc7.in(0) «— sco.out(0) | sco —> ser
2:0,8:0 2 0 8 0 scg.in(0) «— sco.out(0) | sco —> scg
2:0,9:0 2 0 9 0 5€9.in(0) — scg.out(0) | sca — sco
2:0,10:0 2 0 10 0 s¢10.in(0) <— sca.out(0) | sca — scyg
2:0,11:0 2 0 11 0 sc11.in(0) <— sco.0ut(0) | sco — sepy
2:0,12:0 2 0 12 0 5€12.1n(0) <— sca.0ut(0) | sea — scn
14:0,13:0 14 0 13 0 s¢13.1n(0) <— sciq.0ut(0) | sc1y — Sci3
15:0,13:1 | 15 0 13 1 sc13.1n(1) «— sci5.0ut(0) | sc15 —> scis
15:0,13:2 15 0 13 2 sc13.in(2) <— scys.0ut(0) | sc15 —> scy3
16:0,13:3 16 0 13 3 5€13.1n(3) <— scig.0ut(0) | sc16 —> Sci3
17:0,13:4 17 0 13 4 sc13.in(4) <— scyr.0ut(0) | sc17 — sci3

Table 5.2: System Call Dependencies
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In Table 5.2 the first column (¢race) represents the tuple as captured from the anal-
ysis, next from column 2 to column 5 we analyze to a further extent the column one
disassembling the aforementioned tuple to its components, in column 6 we present the
corresponding tuple as an assignment of the values from the output argument of the one
system call to the input argument of the other one. Finally, in the column 7 we represent
the resulting edges that has been created from this trace. So, in example, observing the
data from the Table 5.2 we can proceed by constructing the System-Call Dependency
Graph that is a directed acyclic graph (DAG) as presented in Figure 5.1. The vertex set
of this graph is consisted from the system-call that took place during the execution of the
sample and we have captured their trace (Table 5.1) and its edge set is consisted by their
in between dependencies (Table 5.2)
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Figure 5.1: System Call Dependecy Graph

In Figure 5.1 we observe how the taint data are exchanged through the captured
system calls and actually how the system call dependencies are created. So, in order
to simplify this abstraction and to conclude to a final System-Call Dependency Graph,
specific information is eliminated from the scheme resulting to the graph presented in
Figure 5.2. In the resulting graph the vertex names are composed by the SC (stands fo
system-call) followed by the corresponding system-call’s ID.

To this point we ought to refer that the all the distinct dependencies to system-
call NtQueryAttributesFile have been merged to one edge leading to one single vertex.
However, we need to explain that we represent the graph in this way just for simplicity,
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because as we will refer next, the information of the number of edges from one system
call to another (independently of if it is repeated) is quite valuable since we will need to
use it for our model in the computation of similarity either for detection or classification.

SC

k.
sC,, —gcm -
&/
SC, )= sc,

Figure 5.2: Simplified System Call Dependecy Graph

5.1.2 G* an Auxiliary Hyper-Abstraction of SCDG

Through the literature, all the works that evolve the use of System-Call Dependency
Graphs to perform malware detection and classification are utilizing the graph repre-
sented in Figure 5.2. However, despite the fact that this approach seems to works fine
because of the abstraction it provides, in this work we decided to depart from the trodden,
demanding even higher levels of abstraction and hence higher generalizability and elastic-
ity. Thus, we decide to leverage the classification of each individual system-call of windows
into classes of similar functionality concerning a specific resource. The aforementioned
grouping of system-calls of course was not made randomly, when we used a specific tool
for system-call capturing instead. To be more precise we utilized the grouping provided
by the configuration file of NtTrace [45] where each system-call has a detailed description
including its type. So, leveraging this quite valuable information we formed these data
in order to have a mapping from each individual-system call to one group. Then having
this mapping we are ready to proceed to the hyper-abstraction of each given System-Call
Dependency Graph. To this point we ought to make clear that in our proposed model
only the aforementioned hyper abstractions are used for both detection and classification.
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Before we proceed with the definition of the Hyper-Abstraction of the System-Call
Dependency Graph we ought to define the mapping function that is responsible for the
mapping of the system calls to their corresponding groups and hence is responsible for

the construction of super vertices.

Definition 5.1 Let us assume that we are given a System-Call Dependency Graph lets
say G, then a mapping function for the vertices of GG is a transition where all vertices
(System-Calls) are replaced by their group C' (stands for class) resulting to multiple ap-
pearances of the same vertex.

Having already defined how the system-calls are mapped to their group the next step
is to construct the G* as a hyper-abstraction of G. In order to construct the G* all
the homonym vertices are merged to one super-vertex and any edges incoming or outgo-
ing from or to other vertices are turned to edges between super-vertices with the same
direction. Finally, duplicate edges are kept in order to indicate the importance of the
intercommunication between any pair of system-call groups.

Definition 5.2 Let us assume that we are given a System-Call Dependency Graph lets
say G, then a hyper-abstraction G* is a graph that its vertex set is the number of dis-
tinct groups of system-calls appeared as vertices in G consisted actually by super-vertices
and its edge set is the number of edges appeared in G and hence between the super-
vertices in G*. Thus, formally speaking, a hyper-abstraction of G = (V, E) is a graph
G* = (V',E',m), where:

e the set of vertices V' corresponds to system-call groups from C that appeared in G,

e the set of edges F/ C V x V and F' = FE correpsonds to dependencies between
system-calls,

e the mapping function m : V! =V — C associates vertices (system-calls) with the
system-call group that they belong to

Next, in Figure 5.3 we use as an example the System-Call Dependency Graph presented
in Figure 5.1. So, given a System-Call Dependency Graph and utilizing a pre-classified
set of system-calls into groups we are able to construct a hyper-abstraction of the given
graph. To start with, we first substitute each vertex with his system-call’s corresponding
group and then merge all the vertices that are of the same group (homonym). To this
point it is extremely significant to underline and make clear that the produced graph lacks
of one property that traditional System-Call Dependency Graphs have and it is that the
G* is not acyclic. As easily one can understand, by merging vertices it is very probable
to create circles because, while the number of edges remains the same, their end-points
are finally concentrated between less vertices. Indicateve example consists the creation of
a self-loop in Figure 5.3.
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Figure 5.3: Hyper-Abstraction G*
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Group ID Group Name Group Tag | Group Cardinality
1 ACCESS_MASK AM 1
2 Atom AT 5
3 BOOLEAN BO 1
4 Debug DB 17
5) Device DE 31
6 Environment EN 12
7 File FI 44
8 HANDLE HD 1
9 Job JB 9
10 LONG LN 1
11 LPC LP 47
12 Memory MM 25
13 NTSTATUS NT 1
14 Object OB 19
15 Other oT 36
16 PHANDLE PH 1
17 PLARGE_INTEGER PI 1
18 Process PR 49
19 PULARGE_INTEGER PS 1
20 PULONG PU 1
21 PUNICODE_STRING Ul 1
22 PVOID_SIZEAFTER VS 1
23 PWSTR WS 1
24 Registry RG 40
25 Security SC 36
26 Synchronization SN 38
27 Time ™ 5)
28 Transaction TN 49
29 ULONG UL 1
30 WOW64 WW 19

Table 5.3: System Call Groups
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In Table 5.3 we present the groups of system calls and the number of system-calls that
each group includes. To this point, we ought to notice that the vertex set of G* depends on
the type of distribution followed by the vertices of the primary System-Call Dependency
Graph when they are arranged in groups. What we mean is that, if in example the system-
calls appeared in the vertices of System-Call Dependency Graph are uniformly arranged
in the defined groups then we have a larger shrinkage on the size of the produced graph
when we transit form G to G*, while when a Power-Law or a Gaussian distribution is
followed, then the size of the produced graph will exhibit a lower shrinkage.

5.2 Graph Similarity

In this section we describe the representation of mawlare by its System-Call Depndency
Graph, how malware is organized into malware families and make a brief introduction to

knwon similarity metrics that we will utilize in our model.

5.2.1 Graph Representation

As we referred above the auxiliary graph that consists hyper-abstraction of a given System-
Call Dependency Graph (let us say G), the so called G* has as its vertex set the groups
of system calls that appeared in G. Additionally the number of all groups as depicted in
Table 5.3 is 30. So, since the number of appeared vertices is fixed to at most 30 easily one
can conclude that any given graph can be represented with a fixed size adjacency matrix
with dimensions 30 x 30. thus next we cite an example of such a representation in Figure
5.4 keeping the paradigm of Figure 5.3.

As easily one can understand, since the graph is directed the resulting adjacency
matrix is non symmetric. Additionally, we ought to notice that in the adjacency matrix
are also included the isolated vertices, meaning the groups of system-calls that do not
appear in the initial System-Call Dependency Graph. Thus, for a cell with coordinates
x,y if it has a zero value it means that there is no edge from a system-call of group x
to a system-call of group y, while if there is a non-zero value in that cell it respectively
means that there are as many edges as the value in the cell from at least one system-call
belonging to group x to at least one system-call belonging to group y.

To this point, we ought to repeat, in order to make clear, that the reason that we need
any non-zero value and not only the ace, is the fact that this information is quite valuable
so for the significance of the intercommunication of any two system-call group as for the
utilization by metrics that take as input continuous values such as Bray-Curtis, Cosine
Similarity and Tanimoto Coefficient that we use extensively in our formulas and we will
discuss in the next subsection.
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Figure 5.4: Adjacency Matrix from G*

Even though we have dedicated an individual chapter where we describe our experimental
setup and our dataset’s structure and indexing into malware families, in this section we
ought to cite a brief description in order to be more easy for the reader to understand

5.2.2 Malware Families and Sample Structure

So, as depicted in Figure 5.5, while malware samples are

how our technique works.
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Figure 5.5: Organization of samples into malware families represented by G* sets

organized into families and each sample is represented with an abstraction of its System-
Call Dependecy Graph, the so called G*, each mawlare family is consisted by a set of of
G*s with cardinality equal to her members.

5.2.3 Graph Similarity Metrics

Having already composed the theoretical background on about how we construct the
hyper-abstraction graph G* that we will utilize in our model, now we can proceed by
discussing the similarity metrics that we will use in order to compute the similarity be-
tween any two graphs. In our approach we do not use directly one such metric in order to
determine about the detection and the classification of an unknown sample. Instead, we
combine either multiple metric in one formula or multiple formulas that already combine
multiple metrics in order to provide results concerning the detection and classification, as
we will show in later sections. However, to start with, in this section we make an brief
introduction to the similarity metrics that we apply in order to compute the similarity
between any two graphs and later we discuss how we leverage them by combining multiple
similarity metrics in order to develop formulas that serve our purposes.

(A) Jaccard Index

Also known as Jaccard Similarity Coefficient. The Jaccard Index is used in order to
compute the similarity between any two finite sample sets (vectors). However the main
drawback of this similarity metric is the fact the it can be applied only on binary data
(values 1 or 0) indicating respectively the existence or not of the i term in the two
vectors. The result of the Jaccard similarity metric lies in the range [0, 1]. Jaccard Index
can be computed as the size of the intersection divided by the size of the union of the
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sample sets. So for two given binary vectors (A, B) of length n both of them, the Jaccard
Index is defined as:

ANB A,=1ANB; =1
B~ ANEl_[(A=1nB=1)

= 08| = o Vi€ [0,n — 1] (5.1)

So in order to compute the Jaccard index between any two adjacency matrices we sum
every cell that has non-zero values to both matrices, as if a cell with coordinates x,y
is non-zero into both adjacency matrices then the numerator is increased by one, while
the denominator is the sum of all the cells that at least in one of adjacency matrices has
non-zero value. However, to this point we ought to notice that if two corresponding cells
have both zero values it is quite important as the inexistence of an edge may consist a
qualitative characteristic of a family as we will discuss later.

(B) Bray-Curtis Dissimilarity

Bray-Curtis dissimilarity (Bray Curtis 1957) is a metric mostly used to derive relation-
ships in ecology and environmental sciences.Bray-Curtis dissimilarity is defined as the sum
of all differences of the values in each cell divided by the sum of all sums of the values in
each cell. The result of the Bray-Curtis dissimilarity metric lies in the range [0, 1]. So, the
Bray-Curtis dissimilarity for two bi-dimensional matrices A, B of size (n x n) is computed

as follws:
n—1n—1
;) ZO |Aij — Bij
BCD(A,B) = —— (5.2)
> 2 |Aij + Bijl
=0 j=0

One main advantage that this metric provides, is the fact that it can be applied on
continuous values, that is quite helpful for our approach since we can leverage the number
of occurrences of each particular edge.

(C) Cosine Similarity

The Cosine similarity is mostly used for checking text document similarity where the
vectors A and B are referred to term/words frequencies and each one is defined as the
union of the words of the two texts. The Cosine Similarity measures the cosine of the angle
between two vectors of an inner product space. Of course, like in almost all the similarity
metrics its result lies in the range [0,1]. The cosine of two vectors A, B (probably of
different size) can be computed via the Euclidean dot product as A- B = || Al||| B||cosf as:

n

A.-B 2;(AiX<BJ
(5.3)

REIE \/( A %il(Bi)Q

)

similarity = cos(0)
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Thus, easily one can understand that the cosine similarity can be applied by our model
substituting the words and their corresponding frequencies with edges and the times of
their appearance sthat are all stored in the adjacency matrix.

(D) Tanimoto Coefficient

The Tanimoto Coefficient is many time confused with Cosine Similarity since the both
have similar algebraic forms. The Tanimoto coefficient is a mechanism for computing the
Jaccard coefficient when the set under comparison are represented as bit vectors. Since
the formula can be extended to be applied on vectors in general and since has similar
properties with the Cosine similarity we utilize this metric to our model too. So, the
Tanimoto coefficient fow two vectors A, B of length n can be computed as:

O R ) T S G S ey

5.3 Graph Based Malicious Software Detection

In this section we will describe our proposed technique for detecting unknown malware
samples utilizing graph-based techniques that leverage System-Call Dependency Graphs.
We present the development of a formula for calculating a value responsible for the detec-
tion of an unknown malware sample, that combines the information provided by known
malware families according to qualitative characteristics resulting from its one, and simi-

larity metrics such as the Jaccard index and the Bray-Curtis dissimilarity.

5.3.1 Detection Based on Family Qualitative Characteristics

As we referred across chapter 4, malware samples belonging to an individual malware
family tend to share common characteristics. This is a quite valuable information, that
we leveraged in order to develop a technique that will utilize these characteristics in order
to result to if an unknown sample is malare or not.

To this point, we ought to refer a fact that intrigues our interesting and this is that
the method we have developed for detection is family-based meaning that it utilizes infor-
mation gathered across all the members of a family, while, instead, the method we have
developed for classification is member-based since it is utilizing information gathered from
a specific member in each family. However, through experiments, we observed that the
family-based similarity metric we developed derived better results for detection while the
member-based one derived better results for classification. As we referred above, mem-
bers who belong to the same malware family tend to share common characteristics. So,
based on this we developed the notion that these characteristics should be mirrored on
the System-Call Dependency Graph and hence to its abstraction G*.
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Defining the term characteristic when working on G*, we could claim that a charac-
teristic is an edge between two system call classes, since in order for a specific task to be
performed, system-calls of specific functionality need to be utilized and of course in dif-
ferent malware variants they can be substituted by equivalent ones. Thus we decided on
focusing on edges that the most members in a family have them in their G*s and hence
they constitute a qualitative characteristic of a family. So, easily one can understand
that if in a family of 100 members the 90 have a specific edge then this edge is of major
importance, instead with another one that exists in only 10 members in the same family.

So, in order to append weights to each existed edge in every member of a family we
should check how many times an individual edges appears across the members of a family.
Thus, utilizing the adjacency matrixs that represent the G* of each member, we created
an auxiliary adjacency matrix for each family, where its each cell (edge) includes a value
that represents its importance by depicting in how many members’ G* this specific edge

appears, expressed in a percentage ratio.

100% of the 0 % of the
members have members have
non-zero value non-zero value

in cell {p,q} i

95%<100% 0%em0%A<3ts
MEMBER 1.1 {p.q} =87 MEMBER 1.1 {kl} =0
MEMBER 1.2 {p.q} =90 MEMBER 1.2 {kl} =0
MEMBER 14 (o) 1 MEMBER 14 1) =0
MENBER 15 g} 9 MEMBER 15 1110
M;;.:‘:f;:;‘,:x’;:)tgz MEMBER 1.6 {k1} =0

50% of the EMBER 1.8 {pa} =90 ?Zfﬂﬁﬂf .'Q :::: :g

members have

non-zero value
in cell {i,j}

6%<50%<94%

Family 1

MEMBER 1.1 {ij} =57
MEMBER 1.2 {ij} =0
MEMBER 1.3 {ij} =48
MEMBER 1.4 {ij} =60
MEMBER 1.5 {ij} =62
MEMBER 1.6 {ij} =60
MEMBER 1.7 {ij} =0
MEMBER 1.8 {ij} =0

Family 47 Family 48

Cell F1{p,q} =4

Figure 5.6: Zone Adjacency Matrix Construction

To this point we ought to underline that the values in each cell of each adjacency
matrix vary in the range from 0 to the number of edges existed in the initial System-
Call Dependency Graph, however we increment the counter only once if and only if there
does exist non-zero value in the cell. So, having collected this valuable information we
can proceed by filtering it as to decide the important edges that finally will consist the

characteristics of each family.
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Having compute the percentage of appearance of each edge in the auxiliary adjacency
matrix we can proceed by assigning weights to each cell (edge) on this matrix. In order
to assign weights we divide the values (ranging from 0 to 100) to three zones. However,
before we assign the importance tags we ought to define the zone ranges. So, we first
define a threshold about 95% and the zones are arranged based on this threshold. Thus,
we mark each cell either with smportant zone tag that covers cells that include values in
the range [0.95 - 1], or with gray zone tag that covers cells that include values in the range
(0.05 - 0.95), or with zone of inexistence tag that covers cells that include values in the
range [0- 0.05]. In Figure 5.6 we cite a simple example of how we assign the importance

tags in the auxiliary family-level zone adjacency matrix.
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Figure 5.7: Accumulative Adjacency Matrix Construction

Once we have created our first auxiliary adjacency matrices that include the zones
of importance for each family based on their members we can proceed by creating one
more kind of auxiliary matrices that are accumulative concerning the values in each cell,
meaning the mean value of the existed edges in each member’s G*. So, the main target is
to find the non-zero values in each cell of each member’s G*, and then find the mean of
them. To this point we ought to notice that we do not divide by the total number of cells
(number of members in this family) but instead, we divide by the number of non-zero cell
found during the search. A brief depiction of the whole process for the construction of

the accumulative adjacency matrix is depicted in Figure 5.7.
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5.3.2 Malware Detection Formula Components

Having already constructed our auxiliary adjacency matrices, we can then proceed by
defining the component that compose our formula for malware detection. Next we enu-
merate them and provide a description based on what we have described until now.

(A) Family-side Fitting (4 — 1 matching)

The Family-side fitting is a similarity metric that we have developed and focuses on
compute the similarity between the test sample and any malware family based on the
family’s zone adjacency matriz. The main purpose of this metric is to compute the rate
of satisfiability on the qualitative characteristics of any family by a test sample. Next we
enumerate the steps followed for the computation of Family-side Fitting similarity.

1. In order to compare the test sample’s adjacency matrix with the zone adjacency
matrix of one family, we first need to make a cast on test sample’s adjacency matrix.
As we referred above the test sample’s adjacency matrix includes cell that either
have zero values or non-zero ones. So, we cast any non-zero values existed in test
sample’s adjacency matrix into aces.

2. The next step, that is the main process of this similarity metric is to cover in some
fashion the family’s zone adjacency matrix with the test sample’s adjacency matrix
and count how many aces (7'S[i, j] = 1) of test sample’s adjacency matrix fit on cells
of family’s zone adjacency matrix that have an important zone tag (FM[i, j| = 4).

3. Next, we count the total number of cells in family’s zone adjacency matrix that have

an important zone tag.

4. Finally, all we do is to divide the number of cells with non-zero value in test sam-
ple’s adjacency matrix that fit on cells with important zone tag in family’s zone
adjacency matrix by the total number of cells with important zone tag in family’s
zone adjacency matrix. Thus, the formula for computing the Family-side Fitting

similarity metric is as follows:

|\FM Ny TS|

VO0<ij<n, (5.5)

where n is the size of familiy’s zone adjacency matrix and test sample’s casted
adjacency matrix, F'M is the family’s zone adjacency matrix, 7S is the test sample’s

casted adjacency matrix and |FM Ny TS| = |FMi,j] =4ANTS[i,j] =1 zgig

61



(B) Sample-side Fitting (1 — 4 matching)

The Sample-side fitting is also a similarity metric that we have developed and while
it seems quite the same with the Family-side fitting similarity it differentiates in the fact
that it focuses on computing the similarity between the test sample and any malware
family based on the test sample’s adjacency matriz. The main purpose of this metric is to
compute the rate of satisfiability in terms of edge existence of a test sample’s adjacency
matrix by the qualitative characteristics of any family represented by her zone adjacency
matrix. Next we enumerate the steps followed for the computation of Sample-side Fitting
similarity. The steps are almost the same as in the ones followed in the computation of
Family-side fitting similarity.

1. In order to compare the test sample’s adjacency matrix with the zone adjacency
matrix of one family, we first need to make a cast on test sample’s adjacency matrix.

So, we cast any non-zero values existed in test sample’s adjacency matrix into aces.

2. The next step, that is the main process of this similarity metric is to cover in some
fashion the test sample’s adjacency matrix with the family’s zone adjacency matrix
and count how many cells of family’s zone adjacency matrix that have an important
zone tags (F'MJi,j| = 4) fit on cells having aces (7'S[i,j] = 1) on test sample’s
adjacency matrix.

3. Next, we count the total number of cells in test sample’s adjacency matrix that have
non-zero value (7'S[i,j] =1) .

4. Finally, all we do is to divide the number of cells with important zone tag in family’s
zone adjacency matrix that fit on cells with non-zero value in test sample’s adjacency
matrix by the total number of cells with non-zero value in test sample’s adjacency
matrix. Thus, the formula for computing the Sample-side Fitting similarity metric
is as follows:

TS[i, 5] =1| ’

Simy_a(TS, FM) = VO0<ij<n, (5.6)

where n is the size of familiy’s zone adjacency matrix and test sample’s casted
adjacency matrix, F'M is the family’s zone adjacency matrix, 7S is the test sample’s

casted adjacency matrix and |T'S Ny FM| = |TS[i,j]=1ANFM]i, j| =4 2;28

(C) Mean and Max Jaccard Similarity

One more component we utilize to empower our formula for malware detection is the
Jaccard index. The reason that we choose to utilize the Jaccard similarity is the fact that
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since this similarity metric is mostly applied on binary vector and since an ace or a zero
can indicate the existence or nonexistence respectively of an edge it seemed to work fine
for the qualitative comparison between two objects in terms of edge existence, while the
quantitative one can be measure using the Bray-Curtis similarity as we will discuss next.

So, we utilize two times the Jaccard index as to compute firstly the mean similarity
between the sample and all the members of a malware family and then we keep only the
maximum value produced by the most similar member of the family to the sample. Next
we enumerate the steps followed for the computation of Jaccard similarity

1. Before we start with the computation of similarity, we ought to notice that since
working with the Jaccard similarity we need to cast both the adjacency matrices
the one of each member and the one of the test sample to having as values zeros or
aces. So, we first cast each value greater than zero to ace, and then we leave as it
has, each value that equals to zero.

2. To this point we can point that the computation of the mean and the max Jaccard
similarity can be performed synchronously. So, we first compute the Jaccard simi-
larity between the test sample and each member of a family by counting the number
of cells that in both adjacency matrices have non-zero value (both having aces) and
then dividing by the number of cells that have ace in at least one of the adjacency
matrices (either the one o family member’s or the one of test sample’s) have aces.

The formula for computing the Jaccard similarity between a test sample and a family
member can be computed as follows:

J(T'S,M) = 5.7
( ’ ) |TS MN151 M’ + |TS MN1—0 M| + ‘TS MNo—1 M| ’ ( )

where M is the member’s casted adjacency matrix, 7'S is the test sample’s casted
adjacency matrix and

TS Ny M| =|TS[i,j] =1NA M, j| =1|,

TS Mo M| = |T'S[i, j] = 1 A M3, j] = 0],

TS No1 M| =|TS[i,j]=0AM[i,jl=1], V 0<i,j<n.

3. Then, we check the current value of the Jaccard similarity between the test sample
and the current member of a malware family and we store it if it is the maximum

computed until now for this family as:

Jmaz (TS, FM) = max[J(TS, M;)]* (5.8)

i=1 >
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where n is the cardinality of the set (members in this family), M; is the i member’s
casted adjacency matrix, F'M is the malware family that the member belongs to,
and T'S is the test sample’s casted adjacency matrix.

4. Finally, having computed the Jaccard similarity between the test sample and each
member of a mawlre family, we sum the values and divide them by the number
of members in this family. Thus, the formula for computing the Mean Jaccard
similarity is as follows:

n

> J(TS, M;)
Jmean(TS, FM) == (5.9)

n

where F'M is the family set, n is the cardinality of the set (members in this family),
M, is the i** member’s casted adjacency matrix and T'S is the test sample’s casted

adjacency matrix.

(D) Mean and Max Bray-Curtis (Dis)Similarity

The last component we utilize to empower our formula for malware detection is the
Bray-Curtis dissimilarity. The reason that we choose to utilize the Bray-Curtis dissimi-
larity is the opposite of that of why we used Jaccard index as Bray-Curtis dissimilarity
metric is mostly applied on continuous data and since any non-zero value in the adjacency
matrices indicate the existence and the cardinality of an edge it seemed to work fine for
the quantitative characteristic comparison between two objects in terms of edge existence
or nonexistence and in the case of edge existence of edge cardinality respectively.

So, as in the case of Jaccard index, we utilize two times the Bray-Curtis dissimilarity
as to compute firstly the mean similarity (1-dissimilarity) between the sample and all the
members of a malware family and then we keep only the maximum value produced by the
most similar (least dissimilar) member of the family to the sample. Next we enumerate
the steps followed for the computation of Bray-Curtis Dissimilarity. To this point, it is
notable to refer that for the computation of the mean Bray-Curtis dissimilarity we can
both utilize either each member’s initial adjacency matrix or the family-level accumulative
adjacency matrix we describe in the previous section. In the next step we describe both
the computation of Bray-Curtis using either each member’s initial adjacency matrix or
the family-level accumulative adjacency matrix. Before we start we can point that the
computation of the mean and the max Jaccard similarity can be performed synchronously.
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1. So, we first compute the Bray-Curtis dissimilarity between the test sample and each
member of a family by summing the differences between any pair of respective cells
in both test sample’s and member’s initial adjacency matrix. Then we sum the sums
of the values in any pair of respective cells in both test sample’s and member’s initial
adjacency matrix. So,the formula for computing the Jaccard similarity between a
test sample and a family member can be computed as follows:

|
—

ML

n n

BOD(TS,M) =1~ : (5.10)

Nl
- S
S|~
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—| o

(T'S[i, j1+ M, j1)

-
I
=

<
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where n is the size of the adjacency matrix, M is the member’s initial adjacency
matrix and 7'S is the test sample’s initial adjacency matrix

2. Then, we check the current value of the Bray-Curtis dissimilarity between the test
sample and the current member of a malware family and we store it if it is the
maximum computed untill now for this family as:

BC Dipan (TS, FM) = maz[BCD(TS, M), |, (5.11)

where n is the cardinality of the set (members in this family), M; is the i member’s
initial adjacency matrix, F'M is the malware family that the member belongs to,
and TS is the test sample’s initial adjacency matrix.

3. Finally, having computed the Bray-Curtis dissimilarity between the test sample and
each member of a malware family, we sum the values and divide them by the number
of members in this family. Thus, the formula for computing the Mean Bray-Curtis
dissimilarity is as follows:

S BCD(TS, M)
BCDopean (TS, FM) = =2 : (5.12)

n

where F'M is the family set, n is the cardinality of the set (members in this family),
M; is the i member’s initial adjacency matrix and 7°S is the test sample’s initial

adjacency matrix.
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Alternatively, we can compute the Mean Bray-Curtis dissimilarity by computing
the Bray-Curtis dissimilarity by modifying the equation 5.10 as to compare the test
sample’s initial adjacency matrix with the family’s accumulative adjacency matrix
as:

—_

1

3

n

(]

> (TS, ] — FMIi. )

J
n

[en]

=

BOD(TS,FM) =1~

, (5.13)
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where n is the cardinality of the set (members in this family), FM is the family’s
accumulative adjacency matrix and T'S is the test sample’s initial adjacency matrix

5.3.3 Malware Detection using NP-Similarity

The NP-similarity metric is a formula that we have developed in order to be able to
detect if an unknown sample is a malicious or a benign one. The comparison is performed
between an unknown sample and a malware family. So given an unknown sample and a
series of malware families we can decide according to the results of NP-similarity metric if
the given sample is malware or not. Actually we compute the NP-similarity between the
sample and each family and keep the maximum value computed from the sample and each
family. Then if the maximum value is below a pre-specified threshold then the unknown
sample is benign or malware otherwise.

To start with, we ought to remind that the formula is actually a complex type of all
the aforementioned similarity metrics of the previous section. However, we decided to
assign different weights on to each one as they provide information about the similarity
on different areas such as the satisfiability of family or sample qualitative or quantitative
characteristics. So next, we cite the steps for the composition of the formula for the
computation of NP-similarity and finally we present the computation of the formula,
consisted by three components let us say F}, F5 and F3. To this point we must declare
that we have define four factors: a = 4,0 =2, F4 = 1.5 and Fg = 1.2.

1. To start with, we compute the first component of the formula that describes the
qualitative satisfiability between the sample and a malware family by computing
the Family-side Fitting similarity and the Sample-side Fitting similarity, between
the test sample and the current family as they presented in equations 5.5 amd 5.6
respectively. Then we apply the factors as follows:
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((@x Sys1) +(bX Sisa)) X Fa ,iff Sy =814 =1

((a x Sg1) 4+ (b x S154)) X Fp , otherwise

where Sy_,1 = Simy_,1(FM,TS) and S1_4 = Simq_4(TS, FM)

. Then we proceed by computing the second component of the formula that describes
the existential satisfiability between the sample and a malware family as described
by the Jaccard index. So, we compute and then assign the corresponding weights
on the max Jaccard and mean Jaccard similarities between the test sample and the
current malware family as presented in equations 5.8 and 5.9 respectively, as follows.

Fo=(bxJ)+ (ax Jnaw) (5.14)

where J = Jean(T'S, FM) and Jyew = Jimaz (TS, FM).

. Then we proceed by computing the final component of the formula that describes
the qualitative satisfiability between the sample and a malware family as described
by the Bray-Curtis dissimilarity. So, we compute and then assign the corresponding
weights on the max Bray-Curtis and mean Bray-Curtis (dis)similarities between the
test sample and the current malware family as presented in equations 5.1 and 5.12
- 5.13 respectively, as follows.

Fy= (b x BCD) + (a X BCDpag) (5.15)

where BCOD = BCDppoan(T'S, FM) and BCDypay = BCD oy (TS, FM).

. Finally we combine the three pre-computed components F, Fy and F3 in order to
compose the final type of the formula by the product of the equations 5.14, 5.15
and 5.16 as:

NP:F1XF2XF3 (516)

After computations clears that the N P,;,, is maximized when all the included sim-
ilarities result in ace, while its max value is 324 and so a further normalization can

be performed when dividing by the maximum value as follows:
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_F1><F2><F3

NP
324

(5.17)

So, as we will present in the corresponding chapter of experimental results this technique
can result with extremely high detection rate while exhibiting low false positive rates. To
this point it is worth notable to refer that, as we will discuss later, it is proven through ex-
periments that NP-similarity is in position to perform a crystal clear distinction between
malware and benign programs using a quite low threshold, since of course is leveraging ex-
istential, qualitative and quantitative characteristics expressed through known malwares’
System-Call Dependency Graphs.

5.4 Graph Based Malicious Software Classification

In this chapter we will present a series of approaches we have utilized in order to classify
an unknown test sample to exclusively one of a series of given malware families. We
firstly present how each technique works and then we discuss how we compose them, and
how we actually use them as a series of filters, in order to achieve the optimal possible
classification of an unknown sample. To this point we ought to refer that just like in
our proposal for malware detection we are based again on combinatorial approach we
followed in NP-similarity. However, having already tried the NP-similarity in malware
classification experiments we observed that it was not so effective as expected, and hence
we should proceed by a more straightforward approach such as performing direct similar-
ity computation on the initial and casted adjacency matrices using only the traditional

similarity metrics.

5.4.1 Malware Classification Filters

In order to perform malware classification, we choose to omit the family’s qualitative char-
acteristics and proceed by compare only the test sample with each member inside each
family. Our main target is to keep the highest similarity result exhibited by a member
of a family as representative of this family and then to classify the test sample to the
family in which belongs the representative that is most similar to the sample. In other
words, given f malware families we measure the similarity between the test sample and
each member in each family and keep the top similar result for each family resulting to f
similarity results, one for each family. Then the approach is straightforward as we classify
the test sample to the family that served the top value among f. However, in case of tie we
proceed to next series of corresponding result produce by other similarity metrics (filters).
So as easily one can understand, since the filter have different classification ability, the
final classification results depend on the filter sequence. Next we present the components
of our classification method.
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(A) SaMe: Sample - Member Optimal Fitting

The most straightforward approach for classifying an unknown sample is to measure its
similarity with all the known sample (members in each family) and then to classify it to
the family that belongs the most similar known sample (member of this family). This
approach is based on the intuition that it is probable enough that the unknown sample
is directly correlated through phylogeny with its most similar known sample either as a
descendant or as ancestor.

So, in order to capture so the quantitative as the existential characteristics we pro-
pose a combination of Jaccard index, Bray-Curtis Dissimilarity and Cosine similarity and
Tanimoto coefficient, that we call SaMe (stands for SAmple-MEmber) similarity. Next,
we cite the steps followed for the construction of the combination of metrics, just like in
NP-similarity and finally how we compute the similarity between an unknown sample and
each member of each family using the SaMe similarity. The steps presented below are
followed in order to finally compute the SaMe similarity for each member of a family.

1. First, in order to measure the similarity in edge existence level we compute the Jac-
card index between the test sample and the current member of a family J(T'S, M),
utilizing their casted adjacency matrices as we already presented in equation 5.7

2. Next, in order to capture the qualitative characteristics of each member and to
a greater extent of its corresponding family we proceed by computing the Bray-
Curtis dissimilarity between the test sample and the current member of a family
BCD(TS, M), utilizing their initial adjacency matrices as we already as presented
in equation 5.10

3. Emphasizing on capturing the qualitative characteristics we similarly compute the
Cosine similarity between the test sample and the current member of a family uti-
lizing their initial adjacency matrices as presented below:

n—1n—1
> (T'Si, j] x M[i, j])
CS(TS, M) = 00 (5.18)
n—1n—1 n—1n—1
22 2 TS g x| 22 X Mli, j?
1=0 j=0 1=0 7=0

4. Insisting on capturing the qualitative characteristics, we additionally compute the
Tanimoto coefficient between the test sample and the current member of a family
utilizing their initial adjacency matrices as presented below:
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n—1n—1

(T'S[i, j] x M[i, j])

1=0 7=0
T(TS’ M) - n—1n—1 n—ljn—l n—1n—1 (519)
i=0 j=0 i=0 j=0 i=0 j=0

5. Having computed all four components J(1'S, M), BCD(T'S,M),CS(T'S, M) and
T(T'S, M) in order to compose the final type of the formula by the product of the
aforementioned similarity metrics as:

SaMe(TS, M) = J(TS, M) x BCD(TS, M) x CS(TS, M) x T(TS, M) (5.20)

6. Having completed the computation of the SaMe similarity metric between the test
sample and a member of a family we repeat the whole process for all the members
of this family keeping the maximum value that appears in this family as.

SaMe (TS, FM) = maz[SaMe(TS, M;)|* (5.21)

=1 >

where n is the cardinality of the set (members in this family), M; is the i member’s
initial adjacency matrix, F'M is the malware family that the member belongs to,
and TS is the test sample’s initial adjacency matrix.

7. Then we repeat again for all the members of all the other families as before and
finally keep as the dominant family the one that includes the member that exhibits
the maximum value of similarity with the test sample according to SaM e similarity.
The typical depiction of the above is the following:

Fominant = maz[SaM epar (TS, FMy)]Y, (5.22)

where N is the number of all families.
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(B) Conscripting NP-Similarty for Malware Classification
As we referred in the introduction of the section, the NP similarity by itself is not as
effective as expected and hence it can not be utilized by itself for malware classification.
However, we observed experimentally that if combined with SaMe similarity it can yield
even more higher classification rates than SaMe by itself. So, since NP similarity enforces
SaMe we decided to combine them in order to construct one more classification filter.
The most interesting point in the combination is the way it is done. Actually we
measure the similarity between the test sample and a member of a malware family using
SaMe similarity and then we patch in some fashion the difference from the perfect matching
using NP similarity. So, in other words, we use for computig the similarity of the two
objects while conscripting NP to recompute it but in the percentage their dissimilarity as
described by the next steps:

1. Firstly we compute the NP similarity between the test sample and an individual
mawlare family as described by the equation 5.16.

2. Next, we proceed by computing the SaMe similarity between the test sample and
the selected malware family as described by the equation 5.21.

3. Having already computed the NP and the SaM e similarity between the test sample
and a malware family, we can proceed by computing their combination as described
by the next equation

SNE (TS, FM) = [SaMepa(TS, FM)] + [SaMe,,, (TS, FM) x NP(TS,FM)] , (5.23)

max

where SaMe,

max

(TS, FM) = (1 — SaMea0(TS, FM)).

4. Finaly as before, we can keep as the dominant family the one that exhibits the

maximum values in the equation 5.23 as:

Fdominant = max[S%ﬂe(TS, FMf)]ﬁfvzl ’ (524)

where NN is the number of all families.

71



(C) Retrieving Malware’s Kernel Computing The MSCC of G*

In this part we propose a quite alternative approach, where we leverage pure graph-
theoretic background in order to develop an elaborate technique for malware classification.
To be more precise, we take into account the Maximum Strongly Connected Component
(MSCC) of a given graph and also all the Strongly Connected Components that appear in
it and leverage them in order to capture characteristics that consecutively will be utilized
in malware’s classification.

Next we present the tow approaches that we follow starting from inside out, present-
ing firstly the Kernel similarity measuring the percentage in the mapping of vertices in
each strongly connected component of a known samples graph on the test samples maxi-
mum strongly connected component and then the Cover similarity where we measure the
percentage of common vertices that are linked to the common vertices in the maximum
strongly connected components of a known and an unknown sample.

Before we start, we ought to refer that our approach of treating malware’s System
Call Dependency Graph as an object that has cover and kernel is definitely not random,
as our intuition is based on the real-life biological cells that also have a kernel surrounded
by a semi-permeable cellular membrane that works as a cover and is responsible for its
intercommunication with its environment. Thus, making the parallelism, the kernel is
consisted by the maximum strongly connected component and the cover is consisted by
the rest of the vertices that, while they do not belong to the maximum strongly connected
component, are linked with vertices in it either with incoming or outgoing edges.

(1) Kernel Similarity
Basically our approach for the kernel similarity is somehow test based since we focus of
the mapping of vertices belonging to strongly connected components of a member’s G*
on vertices belonging to the maximum strongly connected component of test sample’s G*
as depicted in Figure 5.8.

Next we enumerate the steps for the computation of Kernel similarity:

1. Firstly we compute the Maximum Strongly Connected Component of test samples
G* using the Tarjan’s SCC algorithm.

2. Then we compute all the Strongly Connected Components on the G* of a family’s
member with whom we want to measure the similarity, using again the Tarjan’s
SCC algorithm.

3. Having computed all the Strongly Connected Components in the member’s G* we
proceed by assigning a label on to each vertex in a way that vertices that belong to
the same Strongly Connected Component to have the same label.

4. Next we return to the Maximum Strongly Connected Component of test sample’s
G™ and we match the vertices inside it with the vertices in every Strongly Connected
Component of member’s G* while we count the occurrences of each group of vertices
from the members’ G* inside test’s Maximum Strongly Connected Component. In

72



Test Sample’s G* A Malware Family’s Member G* Abstract

Abstract Visualization Visualization
N = R
i - / \
e \
A / N\
[ - N
© e o)
/ \ y /
// |
, J o
/

N C/ D/ \_/
A
A node from the first
SCC of members
graph (label: A) \ Y J

Find how the nodes in each Strongly
Connected Component of member’s
graph are distributed in the Maximum
Strongly Connected Components of test
sample’s graph

A node from the

second SCC of

members graph
(label: B)

Figure 5.8: Kernel Similarity Visualization

other words, if the vertex v; belongs to the Strongly Connected Component with
label [, in the member’s G*, and also exists inside the test’s Maximum Strongly
Connected Component, then the occurrences of group « are increased by one.

5. Finally we compute the Kernel similarity as follows:

zk: lv:v— l(g)]
f(rs, ) - £ PISCOTS SO " v ST o

where £ is the total number of Strongly Connected Components in a malware family
member’s G*, (g) is the label of the g% Strongly Connected Component of member’s
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G*, lv:v—=Lg)|=|v:ive MSCC(TS)ANv € SCCy(M)| refers to the number
of vertices that exist in test’s G* Maximum Strongly Connected Component and
also exist in the ¢** Strongly Connected Component of member’s G* and hence have
the same label with this component’s vertices, |M SCC(T'S)]| is the total number of
vertices in test’s G* Maximum Strongly Connected Component and [SCC,(M)] is
the number of vertices in the ¢* Strongly Connected Component of member’s G*.

6. So, in order to compute the Kernel similarity between the unknown test sample and
a mawlare family we compute as presented in previous methods the maximum value
that appears among all the members of the family as follows:

Kpao(TS, FM) = maz|[K (TS, M), |, (5.26)

where n is the number of the members in this malware family.

7. And hence, we can keep as the dominant family the one that exhibits the maximum
values in the equation 5.26 as:

Fdomimmt = max[Kmam<TS> FMf)]}Vzl ; (527)

where N is the number of all families.

(2) Cover Similarity

Our approach for the cover similarity is somehow inspired from the Jaccard index
since its computation is based on the intersection of the two vertex sets in each Maximum
Strongly Connected Components. Actually, Our main target is to compute the similarity
between the vertices in the test’s G* and the member’s G* that while they do not belong
in their corresponding Maximum Strongly Connected Component they have incoming or
outgoing edges with vertices that exist in the Maximum Strongly Connected Component of
test’s G* and the Maximum Strongly Connected Component of member’s G*. Envisaging
these sets as covers we proceed by measuring the similarity between them based on their
vertex sets as depicted in Figure 5.9, where the vertices that have in/out edge with the
vertices in the two Maximum Strongly Connected Components are the green for the test’s
G™ and the red ones for the member’s G*.
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Figure 5.9: Cover Similarity Visualization

Next we enumerate the steps for the computation of Cover similarity:

1. Firstly, we compute the Maximum Strongly Connected Component of test samples
G* using the Tarjan’s SCC algorithm.

2. Next, we compute the Maximum Strongly Connected Component of member’s G*
using once more the Tarjan’s SCC algorithm.

3. Having computed both the Maximum Strongly Connected Components in test’s
and member’s G*s, we proceed by storing separately the vertices in the test’s G*
and the member’s G* that, while as we said before they do not belong to their
corresponding Maximum Strongly Connected Component, they have incoming or
outgoing edges with the vertices in test’s Maximum Strongly Connected Component
and the member’s Maximum Strongly Connected Component (see green/red marks
in Figure 5.9).

4. Having completed all the preparatory computation we can finally proceed with the
computation of the C'over similarity as follows:

| <MSCCT5>CU N <MSCCM>CU|
(MSCCrg)e| + [(MSCCh)es| — [(MSCCrs)ey N (MSCChr)e]

C(TS, M) = , (5.28)
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where the symbol ( )., means the cover in terms of a vertex set that do not belong
to any of the two Maximum Strongly Connected Components while it has in/out
edges with vertices that exist in the Maximum Strongly Connected Components, or
formally: |v: (v ¢ {MSCCrsUMSCCy})A (v = {MSCCrsUMSCCy})|, where
[(MSCCrg)e| and [(MSCCy)e| are the numbers of vertices that do not belong
to their corresponding Maximum Strongly Connected Components but they have
edges with vertices that exist in them and M SCCrg, MSCC), are the Maximum
Strongly Connected Components of test and member respectively.

. S0, in order to compute the Cover similarity between the unknown test sample and
a mawlare family we compute as presented in previous methods the maximum value

that appears among all the members of the family as follows:

Conas (TS, FM) = maz[C(TS, M), , (5.29)

where n is the number of the members in this malware family.

. Hence, we can keep as the dominant family the one that exhibits the maximum
values in the equation 5.29 as:

Fdominant = ma:L"[C'mM(TS, FMf)]ﬁfvzl ; (530)

where NN is the number of all families.

5.4.2 Malware Classification using Mutliple Filters

Having already discussed our proposed methods for classifying an unknown malware sam-

ple into a malware family, we can now proceed by presenting how we can combine all the

aforementioned techniques in order to achieve an optimal malware classification result.

Our proposed method is based upon the serial application (see Figure 5.10) of multiple

classification methods (filters) in order to achieve results that are firstly more rational since

the problem is been treated in a multifaceted manner and secondly exhibits an increased

classification accuracy ratio. So, generally speaking, our method is based upon the sorting

of all families according to the value that they exhibit after the application of each filter,

computed as Fyominane a8 we have shown in equations (5.22, 5.23, 5.27 and 5.30).
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However, even though the application of solely one filter could be quite convenient, we
have faced with cases of tie where multiple families are exposing values that pose them
as dominant according to a specific filter. So, in order to completely eliminate any such
case we chose to apply a serial order of our techniques based on experimental results. To
this point, we ought to refer that the experiments assured one of our intuitions that a
false order of the techniques could results to the exclusion of the correct malware family
and hence to a false classification result.

Additionally one more sophisticated tuning we performed in the serial application of
multiple classification methods is the following. As we referred above the final result of a
classification method is the family that includes a member (let us call it representative)
that actually exhibits the highest similarity with the test sample (according to the ap-
plied metric) amongst all of the members in the same family, and additionally among all
the other families’ representatives, inorder to make its family dominant. However, if we
change the similarity metric then the same family can be the dominant again but because
of another completely different member of her. This lead us to the guarantee that inde-
pendence of the metrics according to the members should be applied. So, we compute
each dominant family without the notion of the member that produce the result. In other
words we apply the sequence of metrics without concerning about what member produced
the highest result in each family, instead of appliying all the metrics sequentially on each
member demanding to be the most similar one across all the metrics.

So next we enumerate the application of sequential filters for the classification of
an unknown malware sample into a known malware family, as we ordered them after

eperimental verification :

1. Firstly we compute dominant family using the Cover similarity between the test
sample and each of the known families, as presented in equation 5.30

2. If there exists more than one dominant families then we proceed by computing the
Kernel similarity between the test sample and each of the dominant families left
from the elimination caused by the application of the Cover similarity, as presented
in equation 5.27, but by reducing the range only to the dominant families produced
after the application of the Cover similarity.

3. If still there exists more than one dominant families then we proceed by computing
the S§%,, similarity between the test sample and each of the dominant families left
from the elimination caused by the application of the Kernel similarity, as presented
in equation 5.24, but by reducing the range only to the dominant families produced
after the application of the Kernel similarity.

4. Finally, if still there exists more than one dominant families then we proceed by
computing the SaMe similarity between the test sample and each of the dominant
families left from the elimination caused by the application of the SYX  similarity,
as presented in equation 5.22, but by reducing the range only to the dominant
families produced after the application of the S§7,. similarity.
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Figure 5.10: Visualization of Malware Classification using Multiple Filters

5.5 Other Approaches for Detection And Classification

In the last section of this chapter we cite a few techniques for malware detection and
classification that we tried but failed because, with high probability, it caused due to the
phenomenon of phylogeny that takes place across the malware families. However, even
though the techniques where inadequate, we feel the duty to refer them in order to prevent
other researchers from dedicating time to work with them.

5.5.1 Failed Malware Detection Methods

Starting from the development of our whole detection and classification procedure we
began by applying a straightforward approach simply by measuring similarity metric be-
tween the test sample and any member of any malware family. However, measuring
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directly the Jaccard Coefficient, Cosine Similarity, Hamming or Canberra distances be-
tween the test sample and any member raised low detection rates and high false positives
that lead us to exclude any such approach. Additionally we applied the in, out or in/out
degree distribution of the vertices in the G* graphs in order to observe any similarities
that exist between the malware samples while however lack in any of the known benign
ones. This approach failed too in an effort to distinguish malicious from benign samples.

5.5.2 Failed Malware Classification Methods

For malware classification, until we reach our final proposed approach, the whole situation
was even harder while the existence of existential, qualitative and quantitative charac-
teristics spread among the members of each family posed valuable information that we
should leverage. So, our first failed try was to compute the Jaccard coefficient between
the test sample and the zone adjacency matrix of a family reducing our range only on
computing one distinct Jaccard between aces in the sample’s casted adjacency matrix and
fours in the family’s zone adjacency matrix and one distinct Jaccard between zeros in the
sample’s casted adjacency matrix and twos in the family’s zone adjacency matrix. Finally,
one of our last tries that failed too, was the computation of the topological sorting of the
vertices of the test samples and a member’s G*’s and the comparison of the produced
sequences.
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CHAPTER 6

RESULTS

6.1 Data Set
6.2 Experimental Design
6.3 Result Comparison

6.4 Advantages and Limitations

In this chapter we will discuss our results, starting from presenting our data-set that we
used for the evaluation of our proposed model for malware detection and classification.
Additionally in this chapter we present the design of our experiments and the methods
we decided to utilize in order to evaluate our model, and finally we provide a comparison
with other proposed models either for malware detection or for malware classification or
for both of them. However, even though, as we will refer later, the other approaches
use different evaluation techniques and obviously different data-set we will proceed by
comparing our result with the ones produced by other models in order to accomplish a
properly documented view of our model’s effectiveness.

6.1 Data Set

For the evaluation of our proposed malware detection method we used a dataset of 2631
malware samples pre-classified into 48 malware families where each family contains from
3 to 317 malware members and a set of 33 benign programs. To this point we ought to
refer that with the term sample we actually refer to the graph representation of it as it
is been achieved by the construction of its System-Call Dependency Graph constructed
by processing traces botained through taint analysis during the 120 min execution of any
sample in a virtual machine running Windows XP sp2 and having 2.66GHz Intel Core i7
CPU and 8GB RAM . So, having this dataset we proceed by transforming all the 2631
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System-Call Dependency Graphs from malware samples and the 33 from the benign ones

to G*s in order to feed our method with a proper input.

Family Name Members | Family Name Members

ABU,Banload 16 Hupigon, AWQ 219
Agent,Agent 42 IRCBot,Sdbot 66
Agent,Small 15 LdPinch,LdPinch 16
Allaple,RAHack 201 Lmir,LegMir 23
Ardamax,Ardamax 25 Mydoom,Mydoom 15
Bactera,VB 28 Nilage,Lineage 24
Banbra,Banker 52 OnLineGames,Delf 11
Bancos,Banker 46 OnLineGames,LegMir 76
Banker,Banker 317 OnLineGames,Mmorpg 19
Banker,Delf 20 OnLineGames,OnLineGames | 23
Banload,Banker 138 Parite,Pate 71
BDH,Small 5 Plemood,Pupil 32
BGM,Delf 17 PolyCrypt,Swizzor 43
Bifrose, CEP 35 Prorat, AVW 40

Bobax,Bobic 15 Rbot,Sdbot 302
DKI,Poisonlvy 15 SdBot,SdBot 75
DNSChanger,DNSChanger 22 Small,Downloader 29
Downloader,Agent 13 Stration, Warezov 19
Downloader,Delf 22 Swizzor,Obfuscated 27
Downloader,VB 17 Viking, HLLP 32

Gaobot,Agobot 20 Virut,Virut 115
Gobot,Gbot 58 VS,INService 17
Horst,CMQ 48 Zhelatin,ASH 53
Hupigon,ARR 33 Zlob,Puper 64

Table 6.1: Malware Families

Additionally it is of major importance to mention that we did not perform any taint
malware analysis on the samples since firstly the development of such processes is out of
the scope of this thesis and secondly, and much more important, because we lack of the
extremely high levels of expertise demanded when performing procedures like dynamic
malware analysis due to the risk posed to the systems connected to the same network. So,
we downloaded the initial System Call Dependency Graphs produced by taint analysis
from the web-page of Domagoj Babic [2] and proceeded by transforming each sample’s
System Call Dependency Graph into its auxiliary hyper-abstraction, the so called G*,
based on the grouping on system-calls as presented in Table 5.3 of section 5.1.2. In Table
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6.1 we cite the mawlare families and their corresponding number of members in each one
of them.
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Figure 6.1: Malware Families Connected by Name Commonalities

Finally, it is worth to mention the as we can see there exist families that have common
names either appearing in their first or in their second half of their names. This happens
because these families are somehow relatives. So, as easily one can understand that this
fact consists an obvious instance of phylogeny exhibited between malware families and
except from the fact in naming (see Figure 6.1), that is depicted also in our results after
the application of the classification method on a test sample from one of the relative
families, this phenomenon is observed to happen even in families that even though having
totally different names their members exhibit similar functionality and hence conclude in
some fashion into a false classification result. However we ought to trust this classification
and not increase our classification rate at will.
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6.2 Experimental Design

In this section we present our experimental design and discuss the reasons that we choose
to proceed with the proposed setup. Additionally we will discuss how we divided our
dataset into train-set and test-set and how we tuned our threshold parameters according
to feedback produced by sequential experiments.

In order to evaluate our model we performed &-fold cross wvalidation utilizing the
dataset we described in the previous section. More precisely, we divided each one of
the 48 malware families into 5 segments and each time we iterated our experiment by
using as test-set each distinct i 20% of the members of each family and the rest 80% as
train-set. So the test-set consists of a compilation of all the 20% of the members of all
malware families where th train-set consisted by compiling all the corresponding 80% of
the members of all the malware families.

In other words we run series of 5-set experiments each time using a train set consisted of
2100 test sample divided into 48 families and around 500 tests samples that we had hidden
their family tag. In each experiment we test both the detection and the classification
procedures, while keeping the total detection and classification ratios for each experiment
with all the 500 samples. Once an experiment is finished we proceed by checking firstly
the detection tag assigned by our system (benign or malware) counting the false-positive
and the true-positives and then we checked the classification tag as to compare if the
family that our system has assigned this sample to is the same with its hidden family tag.

To this point, we offer to underline that we performed three types of correct classifi-
cation counting as we show in the corresponding table in the next section. The first one
refers to the exact matching in both parts of the names between the name of the family
that our system assigned the sample to and the name of the family that exists on the
sample’s hidden family tag. The second one is the partial matching. In this case we count
as a correct classification the exact matching in any part of the names between the name
of the family that our system assigned the sample to and the name of the family that
exists on the sample’s hidden family tag. Finally the third one is the so called directed
matching. In this case we count as a correct classification the exact matching in at least
one part of the names between the name of the family that our system assigned the sample
to and the name of the family that exists on the sample’s hidden family tag.

Classified as: | Exact Matchig | Partial Matchig | Directed Matchig
Banker,Delf 0 1 0
Banbra,Banker 0 1 1
Banker,Banker 0 1 1
Bancos,Banker 1 1 1

Table 6.2: Classification: Matching Process and Results Accuracy
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A more clear representation of these metrics is shown in Table 6.2, where we cite a
simple example explaining how these classification accuracy metrics work. Let as assume
that we have a sample from family Bancos, Banker that has been detected as malware
and we classify it into a malware family that is presented in the first column. So, in
columns 2,3 and 4 we can observe what would be the result (1 for correct or 0 for wrong
classification) according to if we demand ezact, partial or directed matching.

Finally, we ought to refer that the system we developed and deploys the graph-based
detection and classification methods needs only one tuning, and this is only for the thresh-
old of the detection method (NP-similarity). Actual, threshold resulted after sequential
experiments focusing on maximizing the ratio of the number of true-positives divided
by the number of false-positives. Actually we achieved by slowing the threshold in 0.57
(NP(ts,m) > 0.57 — malware or NP(ts,m) < 0.57 — benign) to minimize the false-
positives and false-negatives while maximizing the true-positives and true-negatives.

6.3 Result Comparison

In this section we present our results after a series of experiments and the compare sepa-
rately our detection rates with the ones achieved by other approaches and our classifica-
tion rate with rates achieved by other approaches to. However, we ought to notice that
as far as we know there have not been published results concerning both detection and
classification or the one that have they do not include results comparable to ours.

6.3.1 Detection and Classification Results

Next, we present our results after a series of 5-fold cross validation experiments that we
performed using 2631 malware samples from 48 known malware families and 33 benign
samples from commodity programs. Next, in Table 6.3 we cite our results from on of a
series of 5-fold cross validation experiments. Each line in the table refers to an experiment
while the last one refers to the mean value obtained from all 5 experiments.

Experiment | Detection | Exact Matchig | Partial Matchig | Directed Matchig
fold 1 99.70 % 70.10 % 82.40 % 81.20 %
fold 2 99.40 % 69.90 % 83.20 % 82.00 %
fold 3 99.50 % 67.40 % 83.00 % 81.40 %
fold 4 99.90 % 68.20 % 84.50 % 83.00 %
fold 5 99.70 % 66.40 % 81.10 % 80.00 %
| total | 99.64% | 68.40 % | 82.84 % | 81.58 %

Table 6.3: Malware Detection and Classification Results
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The first column refers to the detection ratio (true-positives). To this point we ought
to refer that the false positives are computed independently of each experiments solely on
the 33 benign sample and results a 10%. The second column refers to the Classification
ration demanding exact matching, while the third and the fourth ones correspond to the
partial and directed matching respectively.

6.3.2 Detection Rate Comparison

Below in Table 6.4, we compare our detection rates (true-positives) and the fail detec-
tions (false-positives) against those presented in other works independently of if they are
achieved using similar techniques (graph-based) or techniques from other fields and of
course independently of the fact that they used different data-sets.

in: Technique True Positives | False Positives
[1] SVM classifier 89.74 % 9.74 %

3] SCDG, Tree Automata Inference 80.00 % 5.00 %

[18] CFG, templates 97.50 % 0.00%

[23] SCDG, graph mining 94.26 % 15.58 %

[35] SCDG, sequence matching 64.00 % 0.00 %

[39] SCDG, grading 80.09 % 11.00%

[66] API-sequences, OOA rules 97.19 % -

| this thesis | SCDG, NP-similarity 9964 % | 1000% |

Table 6.4: Malware Detection Results Comparison

So, in Table 6.4 we present an accumulative view of the aforementioned result compar-
ison where the first column refers to the work that are published the result the second one
refers to the utilized technique and the third and fourth columns refer to the detection
and false-positive ratios respectively.

In [1], Alazab et al., developed a fully automated system that disassemble and extracts
API-call features from executables and then by using n — gram statistical analysis is able
to distinguish malicious from benign executables. The mean detection rate exhibited was
89.74% with 9.72% false positives when used a Support Vector Machine (SVM) classifier
by applying n — grams.

Babic et al., in [3] the malware detection is achieved by k-testable tree automata
inference from system call data flow dependence graphs. To this point we ought to
underline that in this work Babic et al. use the same data-set that we borrow from
Domagoj Babic’s official web-page, so, this work consists an optimal instance to compare
our model’s results. However, while 2-fold cross validation was performed in [3] using
the first half of data as train-set and the second one as test-set at random we exhibited
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even better detection rates (almost 20% more) while unfortunately our model had double
false-positives (5% more).

Next, Christodorescu et al., in [18] there is presented a malware detection algorith
(Anp) based on instruction semantics in order to detect malicious programs. Actually
templates of Control Flow Graphs are built in order to demand their satisfiability when a
program is malicious. While it seems to exhibit better results than the ones produced by
our model, since it exhibits 0 false-positives, however it is a model based on static analysis
and hence it would not be proper to compare two methods that while look similar they
have a deep edge in their theoretical background.

Fredrikson et al., in [23] is been proposed an automatic technique for extracting op-
timally discriminative specifications based on graph mining and concept analysis that
when used by a behavior based malware detector can distinguish malicious from benign
programs. As referred in the corresponding work it can yield an 86% detection rate with
0 false-positives, however we substitutes with the mean of the values as presented in this
work as other experiments exhibits higher detection rates but with higher false positives,
that is a fair substitution.

Kolbitch et al., in [35] there is been proposed an effective and efficient approach for
malware detection based on behavioral graph matching by detecting string matches in
system-call sequences, and that is able to substitute the traditional anti-virus system at
the end hosts. The main drawback of this proposed approach is the fact that even if
no false-positives where exhibited and even if its is flexible to malware obfuscation, their
detection rates are too low in contrast with the those of other approaches.

In [39] Luh and Tavolato, present one more algorithm based on behavioral graphs
that distinguishes malicious from benign programs by grading the sample based on report
generated from monitoring tools when it is executed in a protected environment. While
the produced false-positives are very close to ours, the corresponding detection ration is
even lower ensuring the reliability of our model.

Finally, in [66] Ye et al., have developed an integrated system for malware detection
based on API-sequences. This is an also different model from ours since the detection
process is abased on matching the API-sequences on Objective-Oriented Association rules
in order to decide the maliciousness or not of a test program. However, even if the
detection rates are high enough there are not false-positive rates mentined in this work

6.3.3 Classification Rate Comparison

Below in Table 6.5, we compare our classification rates against those presented in other
works independently of if they are achieved using similar techniques (graph-based) or
techniques from other fields and of course independently of the fact that they used different
data-sets. So, in Table 6.5 we present an accumulative view of the aforementioned result
comparison where the first column refers to the work that are published the result the
second one refers to the utilized technique and the third column refers to classification
rates.
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To this point we ought to refer that, in contrast with the detection results comparison,
when we tried to compare our results in classification we realised that the whole situation
was even harder because despite the diversity in techniques (they are not many graph-
based ones) in most of the works we observed that the result concerned the classification
into families measuring the per-family classification rate and not the overall one like we
do. However, we proceed in Table 6.5 by citing a few results from other works in order
to compare with them our results.

in: Technique Classification Ratio
6] SCDG, behavior profiles, 95.9 %
27] FCG, Knn 78.78 %

this thesis | SCDG, multi-filters(ezact) 68.40 %

this thesis | SCDG, multi-filters(partial) 82.84 %

this thesis | SCDG, multi-filters(directed) 81.58 %

Table 6.5: Malware Classification Results Comparison

In [6] Bayer et al., propose a scalable clustering approach to identify and group malware
samples that exhibit similar behavior, based on profiles that characterizing programs
activity in a more abstract manner. Since they also use control flow dependencies between
system-calls, their work is proper to be compared with ours, even if they do not use direct
use of System-Call Dependency Graphs.

Finally, in [27] Hu et al., design implement and evaluate the Symantec’s Malware
Indexing Tree, that classifies malwares based on their function call graphs useing K nearest
neighbor algorithm. Even if their mean classification rates are lower than ours (at least
in cases of partial and directed matching) we suppose that this is caused due to the
limitations posed by the static analysis performed in that model since they use Function
Call Graphs.

6.4 Advantages and Limitations

In this sections we cite our advantages and limitations of our proposed model after having
presented a result comparison in the sections of malware detection and malware classifi-
cation with models from other works that implement either graph-based methods or pure
methods from other fields such as data mining.

One of the main advantage is the fact that our model provides high generalization abil-
ity since through the hyper-abstraction of System-Call Dependency Graph (G*)utilized
by our model we are able to detect and classify except from the traditionally mutated mal-
ware those ones that have been mutated by code arrangements that result to equivalent
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system-call substitutions in the resulting System-Call Dependency Graph. Additionally,
excluding the time demanded during the process of taint analysis our model is claimed
to be even faster than the proposed one (the time comparison is to be examined in the
future) since it operates on hyper-abstraction of graphs that are consisted by less vertices
and less edges.

On the other hand, the main drawback of our proposed model is that the algorithm
of inferring the hyper-abstraction (G*) can be applied only on labeled graphs such as the
of System-Call Dependency Graphs, thus reducing the range of its application.
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CHAPTER 7

(CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

7.2 Future Work

7.1 Conclusions

In this thesis we dealt with the topic of detection and classification of mutated malware,
by proposing a sophisticated approach for the use of System-Call Dependency Graphs for
malware detection and classification. Actually, we leveraged the grouping of system-calls
in order to construct a hyper-abstraction of System-Call Dependency Graphs produced
during malware execution through taint analysis by tracing system-call dependencies be-
tween them, the so called G*. Then, we developed the NP-similarity metric for malware
detection that combines, a relation between an unknown sample System-Call Depen-
dency Graph-hyper abstraction and a combination of System-Call Dependency Graph
hyper-abstractions of known malware samples together with a set of similarity metrics
between them in order to distinguish if the unknown sample is malicious or not based on
a predefined threshold. Next, we developed a series of filter in order to classify any un-
known malware sample into one of a set of known malware families based on graph-based
similarity metrics similar to the aforementioned ones.

We evaluated our model’s detection and classification results performing the corre-
sponding processes on a set of 2630 malware samples from 48 malware families and 33
benign commodity programs. The detection process exhibited a 99.64% rate with 10%
false positives while our classification ratio reaches the 82.84% and could be even higher
if our dataset was consisted by strictly distinctive families,in terms of phylogeny lack .
Finally, we compared our proposed model against other models either graph-based or not,
and since there are only slight differences we can claim that that our approach can stand
competing against the other approaches.
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7.2 Future Work

As we referred in section 6.4, the limitation of our model is the fact that the underlying
algorithm for constructing in this case System-Call Dependency Graph hyper-abstraction
(G*) demands as input a labeled graph, such as a System-Call Dependency Graph which
its vertices are system-call that can be distinguished by their names. Hence, the applica-
tion of this model into other topics demand the object of representation to be a labeled
graph. Initially this seems to reduce the ranges of our further research, however, below
we cite a few paradigms that our model can be applied.

e Text: The first application of our algorithm that came to our minds, and consists
the core idea of application, was the one of applying our model into measuring
similarity between texts, which is very close to plagiarism check . The main idea
is that text contains words that can be grouped into classes of synonyms (just like
the system-call groups). Then, linking groups of synonyms of words that coexist in
the same sentence we can construct labeled graphs that are in proper form to be
compared by our model.

e Sound: Similarly to text, the sound contains notes instead of words. So, if we
want to check the similarity between two sound (i.e. songs) we can use our model
to compare the labeled graphs produced when grouping notes that are in the same
position in every scale.

e Image: Similarly to text, images contain colors instead of words. So, if we want to
check the similarity between two images (RGB scale) we can use again our model to
compare the labeled graphs produced when grouping pixels in groups of same hue
and by linking pair of groups if their corresponding pixels co-appear within a range
in an area of the image.

e Chemical unions: As we know, chemical unions are represented as graphs, where
the vertex set consists by chemical elements and edges appear if two elements are
compatible according to the number of electrons in the outer layer. Additionally
since all the elements in a column of the periodic table have the same number of
electrons in the outer layer, then anyone of them can be substituted in a chemical
union by anyone that exists in the same column with it in the periodic table. So
envisaging as element groups the columns of periodic table we can apply our model
to measure the similarity between chemical unions that include different elements
based upon the column grouping. Finally, extending this idea we could extent
further by applying the same strategy to a more complex type, the bio-molecules.
Since bio-molecules are constructed by chemical unions, can be down-casted to
complexes of chemical unions and hance to be measured in a similar manner. Now
as easily one can understand, extending even further this approach can be applied
to biological viruses since they are constructed by biomolecules and so on.
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APPENDIX

Alphabetically Ordered System-Calls and Corresponding Groups

’ A. Name Group

1) ACCESS_-MASK — ACCESS_-MASK
2) ATOM_INFORMATION_CLASS — Atom

’ D. Name Group ‘
| 1) DEBUG_.CONTROL.CODE — Debug |

’ E. Name Group
1) EVENT_INFORMATION_CLASS — Synchronization
2) EVENT_TYPE —  Synchronization
’ F. Name Group

1) FILE_INFORMATION_CLASS — File
2) FS_INFORMATION_CLASS —  File

’ H. Name Group

1) HANDLE — HANDLE
2) HARDERROR _RESPONSE_OPTION —  Process

’ J. Name Group ‘
| 1) JOBOBJECTINFOCLASS — Job |
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’ K. Name Group

1) KEY_INFORMATION_CLASS —  Registry
2) KEY_VALUE_INFORMATION_CLASS — Registry

’ L. Name Group ‘
| 1) LONG — LONG |

’ M. Name Group ‘
| 1) MEMORY INFORMATION_CLASS — Memory |

’ N. Name Group
1) NtAcceptConnectPort — LPC
2) NtAccessCheck —  Security
3) NtAccessCheckAndAuditAlarm —  Security
4) NtAccessCheckByType —  Security
5) NtAccessCheckByTypeAndAuditAlarm —  Security
6) NtAccessCheckByTypeResultList —  Security
7) NtAccessCheckByTypeResultList AndAuditAlarm —  Security
8) NtAccessCheckByTypeResultList AndAuditAlarmByHandle —  Security
9) NtAcquireCMFViewOwnership —  Other
10) NtAddAtom —  Atom
11) NtAddBootEntry —  Device
12) NtAddDriverEntry —  Device
13) NtAdjustGroupsToken —  Security
14) NtAdjustPrivilegesToken —  Security
15) NtAlertResumeThread —  Process
16) NtAlertThread —  Process
17) NtAllocateLocallyUniqueld —  Other
18) NtAllocateReserveObject —  Object
19) NtAllocateUserPhysicalPages —  Memory
20) NtAllocateUuids —  Other
21) NtAllocateVirtualMemory —  Memory
22) NtAlpcAcceptConnectPort — LPC
23) NtAlpcCancelMessage — LPC
24) NtAlpcConnectPort — LPC
25) NtAlpcCreatePort — LPC
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’ N. Name

Group

26) NtAlpcCreatePortSection

27) NtAlpcCreateResourceReserve

28) NtAlpcCreateSectionView

29) NtAlpcCreateSecurityContext

30) NtAlpcDeletePortSection

31) NtAlpcDeleteResourceReserve

32) NtAlpcDeleteSectionView

33) NtAlpcDeleteSecurityContext

34) NtAlpcDisconnectPort

35) NtAlpcImpersonateClientOfPort

36) NtAlpcOpenSenderProcess

37) NtAlpcOpenSenderThread

38) NtAlpcQueryInformation

39) NtAlpcQueryInformationMessage

40) NtAlpcRevokeSecurityContext

41) NtAlpcSendWaitReceivePort

42) NtAlpcSetInformation

3) NtApphelpCacheControl

44) NtAreMappedFilesTheSame

45) NtAssignProcessToJobObject

46) NtCallbackReturn
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

W

47) NtCancelDeviceWakeupRequest
48) NtCancelloFile

49) NtCancelloFileEx

50) NtCancelSynchronousloFile

51) NtCancelTimer

52) NtClearAllSavepointsTransaction
53) NtClearEvent

54) NtClearSavepointTransaction

55) NtClose

56) NtCloseObjectAuditAlarm

57) NtCommitComplete

58) NtCommitEnlistment

59) NtCommitTransaction

60) NtCompactKeys

61) NtCompareTokens

62) NtCompleteConnectPort

63) NtCompressKey

64
65
66

NtConnectPort
NtContinue
NtCreateChannel

N A A A e

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC
Process

File

Job

Other
Device

File

File

File

Other
Transaction
Synchronization
Transaction
File
Security
Transaction
Transaction
Transaction
Registry
Security
LPC
Registry
LPC
Process
LPC
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’ N (cont). Name Group
67) NtCreateDebugObject —  Object
68) NtCreateDirectoryObject —  Object
69) NtCreateEnlistment —  Transaction
70) NtCreateEvent —  Synchronization
71) NtCreateEventPair —  Synchronization
72) NtCreateFile — File
73) NtCreateloCompletion — File
74) NtCreateJobObject — Job
75) NtCreateJobSet — Job
76) NtCreateKey —  Registry
77) NtCreateKeyedEvent —  Synchronization
78) NtCreateKeyTransacted —  Registry
79) NtCreateMailslotFile — File
80) NtCreateMutant —  Synchronization
81) NtCreateNamedPipeFile — File
82) NtCreatePagingFile —  File
83) NtCreatePort — LPC
84) NtCreatePrivateNamespace —  Object
85) NtCreateProcess —  Process
86) NtCreateProcessEx —  Process
87) NtCreateProfile —  Debug
88) NtCreateProfileEx —  Debug
89) NtCreateResourceManager —  Transaction
90) NtCreateSection —  Memory
91) NtCreateSemaphore —  Synchronization
92) NtCreateSymbolicLinkObject —  Object
93) NtCreateThread —  Process
94) NtCreateThreadEx —  Process
95) NtCreateTimer —  Other
96) NtCreateToken —  Security
97) NtCreateTransaction — Transaction
98) NtCreateTransactionManager —  Transaction
99) NtCreateUserProcess —  Process
100) NtCreateWaitablePort — LPC
101) NtCreateWorkerFactory —  Process
102) NtCurrentTeb —  Other
103) NtDebugActiveProcess —  Debug
104) NtDebugContinue —  Debug
105) NtDelayExecution —  Process
106) NtDeleteAtom —  Atom
107) NtDeleteBootEntry —  Device
108) NtDeleteDriverEntry —  Device
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’ N (cont). Name Group
109) NtDeleteFile — File
110) NtDeleteKey —  Registry
111) NtDeleteObject AuditAlarm —  Security
112) NtDeletePrivateNamespace —  Object
113) NtDeleteValueKey —  Registry
114) NtDeviceloControlFile — File
115) NtDisableLastKnownGood —  Device
116) NtDisplayString —  Other
117) NtDrawText —  Other
118) NtDuplicateObject —  Object
119) NtDuplicateToken —  Security
120) NtEnableLastKnownGood —  Device
121) NtEnumerateBootEntries —  Device
122) NtEnumerateDriverEntries —  Device
123) NtEnumerateKey —  Registry
124) NtEnumerateSystemEnvironmentValuesEx —  Environment
125) NtEnumerateTransactionObject —  Transaction
126) NtEnumerateValueKey —  Registry
127) NtExtendSection —  Memory
128) NtFilterToken —  Security
129) NtFindAtom —  Atom
130) NtFlushBuffersFile — File
131) NtFlushInstallUILanguage —  Other
132) NtFlushlnstructionCache —  Memory
133) NtFlushKey —  Registry
134) NtFlushProcessWriteBuffers —  Memory
135) NtFlushVirtualMemory —  Memory
136) NtFlushWriteBuffer —  Memory
137) NtFreeUserPhysicalPages —  Memory
138) NtFreeVirtualMemory —  Memory
139) NtFreezeRegistry —  Registry
140) NtFreezeTransactions —  Transaction
141) NtFsControlFile — File
142) NtGetContextThread —  Process
143) NtGetCurrentProcessorNumber —  Environment
144) NtGetDevicePowerState —  Device
145) NtGetMUIRegistryInfo —  Other
146) NtGetNextProcess —  Process
147) NtGetNextThread —  Process
148) NtGetNlsSectionPtr —  Other
149) NtGetNotificationResourceManager —  Transaction
150) NtGetPlugPlayEvent —  Device

101




’ N (cont). Name Group
151) NtGetTickCount —  Other
152) NtGetWriteWatch —  Other
153) NtImpersonateAnonymousToken —  Security
154) NtImpersonateClientOfPort — LPC
155) NtImpersonateThread —  Security
156) NtlInitializeNlsFiles —  Other
157) NtlnitializeRegistry —  Registry
158) NtlInitiatePowerAction —  Device
159) NtIsProcessInJob — Job
160) NtIsSystemResumeAutomatic —  Environment
161) NtIsUILanguageComitted —  Other
162) NtListenChannel — LPC
163) NtListenPort — LPC
164) NtList Transactions —  Transaction
165) NtLoadDriver —  Device
166) NtLoadKey —  Registry
167) NtLoadKey2 —  Registry
168) NtLoadKeyEx —  Registry
169) NtLockFile — File
170) NtLockProductActivationKeys —  Other
171) NtLockRegistryKey —  Registry
172) NtLockVirtualMemory —  Memory
173) NtMakePermanentObject —  Object
174) NtMakeTemporaryObject —  Object
175) NtMapCMFModule —  Other
176) NtMapUserPhysicalPages —  Memory
177) NtMapUserPhysicalPagesScatter —  Memory
178) NtMapViewOfSection —  Memory
179) NtMarshall Transaction —  Transaction
180) NtModifyBootEntry —  Device
181) NtModifyDriverEntry —  Device
182) NtNotifyChangeDirectoryFile — File
183) NtNotifyChangeKey —  Registry
184) NtNotifyChangeMultipleKeys —  Registry
185) NtNotifyChangeSession —  Other
186) NtOpenChannel — LPC
187) NtOpenDirectoryObject —  Object
188) NtOpenEnlistment —  Transaction
189) NtOpenEvent —  Synchronization
190) NtOpenEventPair —  Synchronization
191) NtOpenFile — File
192) NtOpenloCompletion —  File

102




’ N (cont). Name Group
193) NtOpenJobObject — Job
194) NtOpenKey —  Registry
195) NtOpenKeyedEvent —  Synchronization
196) NtOpenKeyEx —  Registry
197) NtOpenKeyTransacted —  Registry
198) NtOpenKeyTransactedEx —  Registry
199) NtOpenMutant —  Synchronization
200) NtOpenObjectAuditAlarm —  Object
201) NtOpenPrivateNamespace —  Object
202) NtOpenProcess —  Process
203) NtOpenProcessToken —  Security
204) NtOpenProcessTokenEx —  Security
205) NtOpenResourceManager —  Transaction
206) NtOpenSection —  Memory
207) NtOpenSemaphore —  Synchronization
208) NtOpenSession —  Other
209) NtOpenSymbolicLinkObject —  Object
210) NtOpenThread —  Process
211) NtOpenThread Token —  Security
212) NtOpenThread TokenEx —  Security
213) NtOpenTimer —  Other
214) NtOpenTransaction —  Transaction
215) NtOpenTransactionManager —  Transaction
216) NtPlugPlayControl —  Device
217) NtPowerInformation —  Device
218) NtPrepareComplete —  Transaction
219) NtPrepareEnlistment —  Transaction
220) NtPrePrepareComplete —  Transaction
221) NtPrePrepareEnlistment —  Transaction
222) NtPrivilegeCheck —  Security
223) NtPrivilegedServiceAuditAlarm —  Security
224) NtPrivilegeObjectAuditAlarm  —  Security
225) NtPropagationComplete —  Transaction
226) NtPropagationFailed —  Transaction
227) NtProtectVirtualMemory —  Memory
228) NtPullTransaction —  Transaction
229) NtPulseEvent —  Synchronization
230) NtQueryAttributesFile —  File
231) NtQueryBootEntryOrder —  Device
232) NtQueryBootOptions —  Device
233) NtQueryDebugFilterState —  Debug
234) NtQueryDefaultLocale —  Environment
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’ N (cont). Name Group
235) NtQueryDefaultUILanguage —  Environment
236) NtQueryDirectoryFile —  File
237) NtQueryDirectoryObject —  Object
238) NtQueryDriverEntryOrder —  Device
239) NtQueryEaFile —  File
240) NtQueryEvent —  Synchronization
241) NtQueryFullAttributesFile — File
242) NtQueryInformationAtom —  Atom
243) NtQueryInformationEnlistment —  Transaction
244) NtQuerylInformationFile —  File
245) NtQueryInformationJobObject — Job
246) NtQueryInformationPort — LPC
247) NtQuerylInformationProcess —  Process
248) NtQueryInformationResourceManager —  Transaction
249) NtQueryInformationThread —  Process
250) NtQueryInformationToken —  Security
251) NtQueryInformationTransaction —  Transaction
252) NtQueryInformationTransactionManager —  Transaction
253) NtQueryInformation WorkerFactory —  Process
254) NtQuerylnstallUILanguage —  Environment
255) NtQuerylIntervalProfile —  Debug
256) NtQueryloCompletion —  File
257) NtQueryKey —  Registry
258) NtQueryLicenseValue —  Other
259) NtQueryMultipleValueKey —  Registry
260) NtQueryMutant —  Synchronization
261) NtQueryObject —  Object
262) NtQueryOleDirectoryFile —  File
263) NtQueryOpenSubKeys —  Registry
264) NtQueryOpenSubKeysEx —  Registry
265) NtQueryPerformanceCounter —  Debug
266) NtQueryPortInformationProcess — LPC
267) NtQueryQuotalnformationFile —  File
268) NtQuerySection —  Memory
269) NtQuerySecurity AttributesToken —  Security
270) NtQuerySecurityObject —  Security
271) NtQuerySemaphore —  Synchronization
272) NtQuerySymbolicLinkObject —  Object
273) NtQuerySystemEnvironment Value —  Environment
274) NtQuerySystemEnvironmentValueEx —  Environment
275) NtQuerySystemInformation —  Other
276) NtQuerySystemInformationEx —  Other
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’ N (cont). Name Group
277) NtQuerySystemTime —  Time
278) NtQueryTimer —  Time
279) NtQueryTimerResolution —  Time
280) NtQueryValueKey —  Registry
281) NtQueryVirtualMemory —  Memory
282) NtQueryVolumelnformationFile — File
283) NtQueueApcThread —  Process
284) NtQueueApcThreadEx —  Process
285) NtRaiseException —  Process
286) NtRaiseHardError —  Process
287) NtReadFile — File
288) NtReadFileScatter — File
289) NtReadOnlyEnlistment —  Transaction
290) NtReadRequestData — LPC
291) NtReadVirtualMemory —  Memory
292) NtRecoverEnlistment —  Transaction
293) NtRecoverResourceManager —  Transaction
294) NtRecoverTransactionManager — Transaction
295) NtRegisterProtocolAddressInformation —  Transaction
296) NtRegisterThread TerminatePort — Debug
297) NtReleaseCMFViewOwnership —  Other
298) NtReleaseKeyedEvent —  Synchronization
299) NtReleaseMutant —  Synchronization
300) NtReleaseSemaphore —  Synchronization
301) NtReleaseWorkerFactory Worker —  Process
302) NtRemoveloCompletion — File
303) NtRemoveloCompletionEx — File
304) NtRemoveProcessDebug — Debug
305) NtRenameKey —  Registry
306) NtRenameTransactionManager — Transaction
307) NtReplaceKey —  Registry
308) NtReplacePartitionUnit —  Device
309) NtReplyPort ~ LPC
310) NtReplyWaitReceivePort — LPC
311) NtReplyWaitReceivePortEx — LPC
312) NtReplyWaitReplyPort — LPC
313) NtReplyWaitSendChannel — LPC
314) NtRequestDeviceWakeup —  Device
315) NtRequestPort — LPC
316) NtRequest WaitReplyPort — LPC
317) NtRequest WakeupLatency —  Device
318) NtResetEvent —  Synchronization
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’ N (cont). Name Group
319) NtReset WriteWatch —  Other
320) NtRestoreKey —  Registry
321) NtResumeProcess —  Process
322) NtResumeThread —  Process
323) NtRollbackComplete —  Transaction
324) NtRollbackEnlistment —  Transaction
325) NtRollbackSavepointTransaction —  Transaction
326) NtRollbackTransaction —  Transaction
327) NtRollforwardTransactionManager ~—  Transaction
328) NtSaveKey —  Registry
329) NtSaveKeyEx —  Registry
330) NtSaveMergedKeys —  Registry
331) NtSavepointComplete —  Transaction
332) NtSavepointTransaction —  Transaction
333) NtSecureConnectPort — LPC
334) NtSendWaitReplyChannel — LPC
335) NtSerializeBoot —  Device
336) NtSetBootEntryOrder —  Device
337) NtSetBootOptions —  Device
338) NtSetContextChannel — LPC
339) NtSetContextThread —  Process
340) NtSetDebugFilterState —  Debug
341) NtSetDefaultHardErrorPort —  Process
342) NtSetDefaultLocale —  Environment
343) NtSetDefaultUILanguage —  Environment
344) NtSetDriverEntryOrder —  Device
345) NtSetEaFile — File
346) NtSetEvent —  Synchronization
347) NtSetEventBoostPriority —  Synchronization
348) NtSetHighEventPair —  Synchronization
349) NtSetHighWaitLowEventPair —  Synchronization
350) NtSetHighWaitLowThread —  Synchronization
351) NtSetInformationDebugObject —  Debug
352) NtSetInformationEnlistment —  Transaction
353) NtSetInformationFile — File
354) NtSetInformationJobObject — Job
355) NtSetInformationKey —  Registry
356) NtSetInformationObject —  Object
357) NtSetInformationProcess —  Process
358) NtSetInformationResourceManager —  Transaction
359) NtSetInformationThread —  Process
360) NtSetInformationToken —  Security
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’ N (cont). Name Group
361) NtSetInformationTransaction —  Transaction
362) NtSetInformationTransactionManager — Transaction
363) NtSetInformationWorkerFactory —  Process
364) NtSetIntervalProfile —  Debug
365) NtSetloCompletion — File
366) NtSetloCompletionEx — File
367) NtSetLdtEntries —  Other
368) NtSetLowEventPair —  Synchronization
369) NtSetLowWaitHighEventPair —  Synchronization
370) NtSetLowWaitHighThread —  Synchronization
371) NtSetQuotalnformationFile — File
372) NtSetSecurityObject —  Security
373) NtSetSystemEnvironment Value —  Environment
374) NtSetSystemEnvironmentValueEx —  Environment
375) NtSetSystemInformation —  Other
376) NtSetSystemPowerState —  Device
377) NtSetSystemTime —  Time
378) NtSetThreadExecutionState —  Device
379) NtSetTimer —  Other
380) NtSetTimerEx —  Other
381) NtSetTimerResolution —  Time
382) NtSetUuidSeed —  Other
383) NtSetValueKey —  Registry
384) NtSetVolumelnformationFile — File
385) NtShutdownSystem —  Other
386) NtShutdownWorkerFactory —  Process
387) NtSignal AndWaitForSingleObject —  Synchronization
388) NtSinglePhaseReject —  Transaction
389) NtStartProfile —  Debug
390) NtStartTm —  Transaction
391) NTSTATUS — NTSTATUS
392) NtStopProfile —  Debug
393) NtSuspendProcess —  Process
394) NtSuspendThread —  Process
395) NtSystemDebugControl —  Debug
396) NtTerminateJobObject — Job
397) NtTerminateProcess —  Process
398) NtTerminateThread —  Process
399) NtTestAlert —  Process
400) NtThawRegistry —  Registry
401) NtThawTransactions —  Transaction
402) NtTraceControl —  Other
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’ N (cont). Name Group

403) NtTraceEvent —  Synchronization
404) NtTranslateFilePath — File

405) NtUmsThreadYield —  Process

406) NtUnloadDriver —  Device

407) NtUnloadKey —  Registry

408) NtUnloadKey?2 —  Registry

409) NtUnloadKeyEx —  Registry

410) NtUnlockFile — File

411) NtUnlockVirtualMemory —  Memory

412) NtUnmapViewOfSection —  Memory

413) NtVdmControl —  Device

414) NtWaitForDebugEvent —  Debug

415) NtWaitForKeyedEvent —  Synchronization
416) NtWaitForMultipleObjects —  Synchronization
417) NtWaitForMultipleObjects32 —  Synchronization
418) NtWaitForSingleObject —  Synchronization
419) NtWaitForWorkViaWorkerFactory —  Process

420) NtWaitHighEventPair —  Synchronization
421) NtWaitLowEventPair —  Synchronization
422) NtWorkerFactory WorkerReady —  Process

423) NtWow64CallFunction64 —  WOW64

424) NtWow64CsrAllocateCaptureBuffer — WOW64

425) NtWow64CsrAllocateMessagePointer —- WOW64

426) NtWow64CsrCaptureMessageBuffer — WOW64

427) NtWow64CsrCaptureMessageString - WOW64

428) NtWow64CsrClientCallServer —  WOW64

429) NtWow64CsrClientConnectToServer — WOW64

430) NtWow64CsrFreeCaptureBuffer — WOW64

431) NtWow64CsrGetProcessId — WOW64

432) NtWow64Csrldentify AlertableThread — WOW64

433) NtWow64CsrVerifyRegion —  WOW64

434) NtWow64DebuggerCall — WOW64

435) NtWow64GetCurrentProcessorNumberEx —  WOWG64

436) NtWow64GetNativeSystemInformation — WOWe64

437) NtWow64InterlockedPopEntrySList — WOW64

438) NtWow64QueryInformationProcess64 — WOW64

439) NtWow64QueryVirtualMemory64 — WOW64

440) NtWow64Read VirtualMemory64 — WOW64

441) NtWow64WriteVirtualMemory64 — WOW64

442) NtWriteFile — File

443) NtWriteFileGather — File

444) NtWriteRequestData — LPC
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’ N (cont). Name Group

445) NtWriteVirtualMemory —  Memory

446) NtYieldExecution —  Process
’ O. Name Group ‘
| 1) OBJECT_INFORMATION_CLASS —  Object |
’ P. Name Group
1) PCLIENT_ID —  Process
2) PCONTEXT —  Process
3) PEXCEPTION_RECORD —  Process
4) PGENERIC_MAPPING —  Security
5) PHANDLE — PHANDLE
6) PIO_APC_ROUTINE — File
7) PLARGE_INTEGER — PLARGE_INTEGER
8) POBJECT_ATTRIBUTES —  Object
9) PPORT_MESSAGE — LPC
10) PPORT_VIEW — LPC
11) PROCESSINFOCLASS —  Process
12) PSECURITY _DESCRIPTOR —  Security
13) PSECURITY_QUALITY OF SERVICE —  Security
14) PTIMER_APC_ROUTINE —  Other
15) PTOKEN _PRIVILEGES —  Security
16) PULARGE_INTEGER — PULARGE_INTEGER
17) PULONG — PULONG
18) PULONG_PTR —  Process
19) PUNICODE_STRING — PUNICODE_STRING
20) PUSER_STACK —  Process
21) PVOID _SIZEAFTER — PVOID_SIZEAFTER
22) PWSTR — PWSTR
’ S. Name Group
1) SECTION_INFORMATION_CLASS — Memory
2) SECTION_INHERIT —  Memory
3) SECURITY_INFORMATION —  Security
4) SYSTEM_INFORMATION_CLASS — Other
’ T. Name Group
1) THREADINFOCLASS —  Process
2) TIMER_TYPE —  Other
3) TOKEN_INFORMATION_CLASS —  Security
4) TOKEN_TYPE —  Security
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’ U. Name Group ‘
| 1) ULONG — ULONG |

’ W. Name Group ‘
| 1) WAIT.TYPE —  Synchronization |
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Alphabetically Ordered Groups and Corresponding System-Calls

] 1. ACCESS_MASK \
| 1) ACCESS MASK |

’ 2. Atom
1) ATOM_INFORMATION_CLASS 4) NtFindAtom
2) NtAddAtom 5) NtQueryInformationAtom
3) NtDeleteAtom

| 3. BOOLEAN |
| 1) BOOLEAN |
| 4. DEBUG
1) DEBUG_.CONTROL_CODE 10) NtRemoveProcessDebug
2) NtCreateProfile 11) NtSetDebugFilterState
3) NtCreateProfileEx 12) NtSetInformationDebugObject
4) NtDebugActiveProcess 13) NtSetIntervalProfile
5) NtDebugContinue 14) NtStartProfile
6) NtQueryDebugFilterState 15) NtStopProfile
7) NtQueryIntervalProfile 16) NtSystemDebugControl
8) NtQueryPerformanceCounter 17) NtWaitForDebugEvent
9) NtRegisterThread TerminatePort
| 5. DEVICE
1) NtAddBootEntry 14) NtModifyBootEntry
2) NtAddDriverEntry 15) NtModifyDriverEntry
3) NtCancelDeviceWakeupRequest — 16) NtPlugPlayControl
4) NtDeleteBootEntry 17) NtPowerInformation
5) NtDeleteDriverEntry 18) NtQueryBootEntryOrder
6) NtDisableLastKnownGood 19) NtQueryBootOptions
7) NtEnableLastKnownGood 20) NtQueryDriverEntryOrder
8) NtEnumerateBootEntries 21) NtReplacePartitionUnit
9) NtEnumerateDriverEntries 22) NtRequestDeviceWakeup
10) NtGetDevicePowerState 23) NtRequestWakeupLatency
11) NtGetPlugPlayEvent 24) NtSerializeBoot
12) NtlInitiatePowerAction 25) NtSetBootEntryOrder
13) NtLoadDriver 26) NtSetBootOptions
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| 5. DEVICE (cont.)

27) NtSetDriverEntryOrder
28) NtSetSystemPowerState
29) NtSetThreadExecutionState

30) NtUnloadDriver
31) NtVdmControl

6. ENVIRONMENT

1) NtEnumerateSystemEnvironmentValuesEx  7) NtQuerySystemEnvironmentValue
2
3

NtGetCurrentProcessorNumber 8) NtQuerySystemEnvironment ValueEx

5) NtQueryDefaultUlLanguage

)

)
NtIsSystemResumeAutomatic 9) NtSetDefaultLocale

0

10) NtSetDefaultUILanguage
11) NtSetSystemEnvironmentValue

)
)
)
4) NtQueryDefaultLocale
)
)

6) NtQuerylInstallUILanguage 12) NtSetSystemEnvironmentValueEx

| 7. FILE
1) FILEINFORMATION_CLASS  23) NtQueryEaFile
2) FSJINFORMATION_CLASS 24) NtQueryFullAttributesFile
3) NtAreMappedFilesTheSame 25) NtQueryInformationFile
4) NtCancelloFile 26) NtQueryloCompletion
5) NtCancelloFileEx 27) NtQueryOleDirectoryFile
6) NtCancelSynchronousloFile 28) NtQueryQuotalnformationFile
7) NtClose 29) NtQueryVolumeInformationFile
8) NtCreateFile 30) NtReadFile
9) NtCreateloCompletion 31) NtReadFileScatter
10) NtCreateMailslotFile 32) NtRemoveloCompletion
11) NtCreateNamedPipeFile 33) NtRemoveloCompletionEx
12) NtCreatePagingFile 34) NtSetEaFile
13) NtDeleteFile 35) NtSetInformationFile
14) NtDeviceloControlFile 36) NtSetloCompletion
15) NtFlushBuffersFile 37) NtSetIoCompletionEx
16) NtFsControlFile 38) NtSetQuotalnformationFile
17) NtLockFile 39) NtSetVolumelnformationFile
18) NtNotifyChangeDirectoryFile  40) NtTranslateFilePath
19) NtOpenFile 41) NtUnlockFile
20) NtOpenloCompletion 42) NtWriteFile
21) NtQueryAttributesFile 43) NtWriteFileGather
92) NtQueryDirectoryFile 44) PIO_APC_ROUTINE
| 8. HANDLE |
| 1) HANDLE |
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|

9. JOB

1) JOBOBJECTINFOCLASS 6) NtOpenJobObject
2) NtAssignProcessToJobObject  7) NtQueryInformationJobObject
3) NtCreateJobObject 8) NtSetInformationJobObject
4) NtCreateJobSet 9) NtTerminateJobObject
5) NtIsProcessInJob
| 10. LONG |
| 1) LONG |
| 11. LPC

1) NtAcceptConnectPort

2) NtAlpcAcceptConnectPort

3) NtAlpcCancelMessage

4) NtAlpcConnectPort

5) NtAlpcCreatePort

6) NtAlpcCreatePortSection

7) NtAlpcCreateResourceReserve
8) NtAlpcCreateSectionView

9) NtAlpcCreateSecurityContext
10) NtAlpcDeletePortSection

11) NtAlpcDeleteResourceReserve
12) NtAlpcDeleteSectionView

13) NtAlpcDeleteSecurity Context
14) NtAlpcDisconnectPort

15) NtAlpclmpersonateClientOfPort
16) NtAlpcOpenSenderProcess
17) NtAlpcOpenSenderThread
18) NtAlpcQueryInformation

19) NtAlpcQueryInformationMessage
20) NtAlpcRevokeSecurityContext
21) NtAlpcSendWaitReceivePort
22) NtAlpcSetInformation

23) NtCompleteConnectPort

24) NtConnectPort

25) NtCreateChannel

26) NtCreatePort

27) NtCreateWaitablePort

28) NtlmpersonateClient OfPort
29) NtListenChannel

30) NtListenPort

31) NtOpenChannel

w

)
)
)
)
)
)
)
2) NtQueryInformationPort
33) NtQueryPortInformationProcess
34) NtReadRequestData
35) NtReplyPort
36) NtReplyWaitReceivePort
37) NtReplyWaitReceivePortEx
38) NtReplyWaitReplyPort
39) NtReplyWaitSendChannel
40) NtRequestPort
41) NtRequest WaitReplyPort
42) NtSecureConnectPort
43) NtSendWaitReplyChannel
44) NtSetContextChannel
45) NtWriteRequestData

) PPORT_MESSAGE

) PPORT_VIEW

46
47

12. MEMORY

1) MEMORY INFORMATION_CLASS
2) NtAllocateUserPhysicalPages

3) NtAllocateVirtualMemory

4) NtCreateSection

5) NtExtendSection

6) NtFlushInstructionCache

7) NtFlushProcessWriteBuffers
8) NtFlushVirtualMemory

9) NtFlushWriteBuffer

0

10) NtFreeUserPhysicalPages
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12. MEMORY (cont.)

11) NtFreeVirtualMemory

12) NtMapUserPhysicalPagesScatter
13) NtMap ViewOfSection

14) NtOpenSection

15) NtProtectVirtualMemory

16) NtQuerySection

17) NtLockVirtualMemory

18) NtMapUserPhysicalPages

19) NtQueryVirtualMemory

20) NtReadVirtualMemory

21) NtUnlockVirtualMemory

22) NtUnmapViewOfSection

23) NtWriteVirtualMemory
) SECTION_INFORMATION_CLASS
) SECTION_INHERIT

24
25

|

13. NTSTATUS |

|

1) NTSTATUS |

14. OBJECT

1) NtAllocateReserveObject

2) NtCreateDebugObject

3) NtCreateDirectoryObject
4) NtCreatePrivateNamespace

5) NtCreateSymbolicLinkObject 15

7) NtDuplicateObject

8) NtMakePermanentObject 18
9) NtMakeTemporaryObject 19

)
)
)
)
6) NtDeletePrivateNamespace
)
)
)
0

10) NtOpenDirectoryObject

11) NtOpenObjectAuditAlarm

12) NtOpenPrivateNamespace

13) NtOpenSymbolicLinkObject

14) NtQueryDirectoryObject
NtQueryObject

16) NtQuerySymbolicLinkObject

17) NtSetInformationObject
OBJECT_INFORMATION_CLASS
POBJECT_ATTRIBUTES

15. OTHER

1) NtAcquireCMF ViewOwnership
2) NtAllocateLocallyUniqueld
3) NtAllocateUuids

4) NtCallbackReturn

5) NtCancelTimer

6) NtCreateTimer

7) NtCurrentTeb

8) NtDisplayString

9)
10
11
12
13

NtDrawText
NtFlushlnstallUILanguage
NtGetMUIRegistryInfo
NtGetNlIsSectionPtr
NtGetTickCount

~— — ~— ~—

16) NtIsUILanguageComitted

17) NtLockProductActivationKeys
18) NtMapCMFModule

19) NtNotifyChangeSession

21) NtOpenTimer
2) NtQueryLicenseValue
3) NtQuerySystemInformation

]

4) NtQuerySystemInformationkEx
25) NtReleaseCMFViewOwnership

NtGetWriteWatch
NtlInitializeNlsFiles

NtResetWriteWatch

)
)
)
)
)
)
) NtOpenSession
)
)
)
)
)
)
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|

15. OTHER (cont.)

27) NtSetLdtEntries 32) NtShutdownSystem

28) NtSetSystemInformation  33) NtTraceControl

29) NtSetTimer 34) PTIMER_APC _ROUTINE

30) NtSetTimerEx 35) SYSTEM_INFORMATION_CLASS
31) NtSetUuidSeed 36) TIMER_TYPE

|

16. PHANDLE \

|

1) PHANDLE |

|

17. LARGE_ INTEGER |

|

1) PLARGE INTEGER |

18. PROCESS

1) HARDERROR_RESPONSE_OPTION

2
3
4) NtApphelpCacheControl
5) NtContinue

) NtAlertResumeThread
)
)
)
6) NtCreateProcess
)
)
)
0

NtAlertThread

7) NtCreateProcesskEx

8) NtCreateThread

9) NtCreateThreadFx

10) NtCreateUserProcess

11) NtCreate WorkerFactory

12) NtDelayExecution

13) NtGetContextThread

14) NtGetNextProcess

15) NtGetNextThread

16) NtOpenProcess

17) NtOpenThread
NtQueryInformationProcess
NtQueryInformationThread
NtQueryInformation WorkerFactory
NtQueueApcThread
NtQueueApcThreadEx
NtRaiseException
NtRaiseHardError
NtReleaseWorkerFactory Worker

21
2
23
24
25

v T e . . e

26
27
28
29

NtResumeProcess
NtResumeThread
NtSetContextThread
NtSetDefaultHardErrorPort

30) NtSetInformationProcess

31) NtSetInformationThread

32) NtSetInformation WorkerFactory
33) NtShutdownWorkerFactory

34) NtSuspendProcess

35) NtSuspendThread

36
37

NtTerminateProcess
NtTerminateThread

38) NtTestAlert

39) NtUmsThreadYield

40) NtWaitForWorkViaWorkerFactory
41) NtWorkerFactory WorkerReady
42) NtYieldExecution

43) PCLIENT_ID

44) PCONTEXT

45) PEXCEPTION_RECORD

46) PROCESSINFOCLASS

47) PULONG_PTR

48) PUSER_STACK

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
49) THREADINFOCLASS

|

19. PULARGE_INTEGER \

|

1) PULARGE_INTEGER |
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| 20. PULONG |
| 1) PULONG |

| 21. PUNICODE STRING |
| 1) PUNICODE STRING |

| 22. PVOID SIZEAFTER |
| 1) PVOID SIZEAFTER |

| 23. PWSTR |
| 1) PWSTR |

24. REGISTRY

1) KEY_INFORMATION_CLASS
2
3) NtCompactKeys

e

)

)

) NtCompressKey

5) NtCreateKey

6) NtCreateKeyTransacted
7) NtDeleteKey

8) NtDeleteValueKey

9)

10

NtEnumerateKey
) NtEnumerateValueKey

11) NtFlushKey

12) NtFreezeRegistry

13) NtlnitializeRegistry

14) NtLoadKey

15) NtLoadKey2

16) NtLoadKeyEx

17) NtLockRegistryKey

18) NtNotifyChangeKey

19) NtNotifyChangeMultipleKeys

20) NtOpenKey

KEY_VALUE_INFORMATION_CLASS

21) NtOpenKeyEx

22) NtOpenKeyTransacted

23) NtOpenKeyTransactedEx

4) NtQueryKey

5) NtQueryMultipleValueKey

6) NtQueryOpenSubKeys

7) NtQueryOpenSubKeysEx

28) NtQueryValueKey

29) NtRenameKey

30) NtReplaceKey
)
)
)
)
)
)
)
)
)
)

N DN N DN

31) NtRestoreKey

32) NtSaveKey

33) NtSaveKeyEx

34) NtSaveMergedKeys
35) NtSetInformationKey
36) NtSetValueKey

37) NtThawRegistry

38) NtUnloadKey

39) NtUnloadKey2

40) NtUnloadKeyEx

25. SECURITY

1) NtAccessCheck

2) NtAccessCheckAndAuditAlarm

3) NtAccessCheckByType

4) NtAccessCheckByTypeAndAuditAlarm
)
)

5) NtAccessCheckByTypeResultList AndAuditAlarmByHandle
6) NtAccessCheckByTypeResultListAndAuditAlarm

7) NtAccessCheckByTypeResultList
8) NtAdjustGroupsToken

)
)

9) NtAdjustPrivilegesToken
0

10) NtDeleteObjectAuditAlarm

11) NtCompareTokens
12) NtCreateToken
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25. SECURITY (cont.)

13) PSECURITY_QUALITY_OF_SERVICE 25) NtQueryInformationToken

14) NtDuplicateToken 26) NtQuerySecurityAttributesToken
15) NtFilterToken 27) NtQuerySecurityObject

16) NtImpersonateAnonymousToken 28) NtSetInformationToken

17) NtImpersonateThread 29) NtSetSecurityObject

18) NtOpenProcessToken 30) PGENERIC_MAPPING

19) NtOpenProcessTokenEx 31) PSECURITY_DESCRIPTOR
20) NtOpenThread Token 32) NtCloseObjectAuditAlarm

21) NtOpenThreadTokenEx 33) PTOKEN_PRIVILEGES

22) NtPrivilegeCheck 34) SECURITY_INFORMATION
23) NtPrivilegedServiceAuditAlarm 35) TOKEN_INFORMATION_CLASS
24) NtPrivilegeObject AuditAlarm 36) TOKEN_TYPE

26. SYNCHRONIZATION

1) EVENT_INFORMATION_CLASS

20) NtReleaseSemaphore

)

2) EVENT_TYPE 21) NtResetEvent
3) NtClearEvent 22) NtSetEvent
4) NtCreateEvent 23) NtSetEventBoostPriority
5) NtCreateEventPair 24) NtSetHighEventPair
6) NtCreateKeyedEvent 25) NtSetHighWaitLowEventPair
7) NtCreateMutant 26) NtSetHighWaitLowThread
8) NtCreateSemaphore 27) NtSetLowEventPair
9) NtOpenEvent 28) NtSetLowWaitHighEventPair
10) NtOpenEventPair 29) NtSetLowWaitHighThread
11) NtOpenKeyedEvent 30) NtSignal AndWaitForSingleObject
12) NtOpenMutant 31) NtTraceEvent
13) NtOpenSemaphore 32) NtWaitForKeyedEvent
14) NtPulseEvent 33) NtWaitForMultipleObjects
15) NtQueryEvent 34) NtWaitForMultipleObjects32
16) NtQueryMutant 35) NtWaitForSingleObject
17) NtQuerySemaphore 36) NtWaitHighEventPair
18) NtReleaseKeyedEvent 37) NtWaitLowEventPair
19) NtReleaseMutant 38) WAIT_-TYPE

| 27. TIME

1) NtQuerySystemTime
2) NtQueryTimer
3) NtQueryTimerResolution

4) NtSetSystemTime
5) NtSetTimerResolution
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28. TRANSACTION

1) NtClearAllSavepointsTransaction

)
=~
Z
t+
)—U
=
=}
ko)
&
o
2]
=
O
=
&.
o
(oW

26) NtQuerylnformationEnlistment
27) NtQueryInformationResourceManager

[\

8) NtQueryInformationTransaction

[\V)

9) NtQueryInformationTransactionManager
30) NtReadOnlyEnlistment
31
32) NtRecoverResourceManager

NtRecoverEnlistment

)
)
)
)
)
)
)
33) NtRecoverTransactionManager
34) NtRegisterProtocolAddressInformation
35) NtRenameTransactionManager
36) NtRollbackComplete
37) NtRollbackEnlistment
38) NtRollbackSavepointTransaction
39) NtRollbackTransaction
40) NtRollforward TransactionManager
41) NtSavepointComplete

42) NtSavepointTransaction

43)
44) NtSetInformationResourceManager
45)
46) NtSetInformationTransactionManager
47) NtSinglePhaseReject

48) NtStartTm

49) NtThawTransactions

NtSetInformationEnlistment

NtSetInformationTransaction

|

29. ULONG \

|

1) ULONG |

30. WOW64

1) NtWow64CallFunction64

2) NtWow64CsrAllocateCaptureBuffer
3) NtWow64CsrAllocateMessagePointer
4) NtWow64CsrCaptureMessageBuffer
5) NtWow64CsrCaptureMessageString

6) NtWow64CsrClientCallServer

7) NtWow64CsrClientConnect ToServer
8) NtWow64CsrFreeCaptureBuffer

9) NtWow64CsrGetProcessld

10) NtWow64Csrldentify AlertableThread

11) NtWow64Csr VerifyRegion
12) NtWow64DebuggerCall

13)
14) NtWow64GetNativeSystemInformation
15) NtWow64InterlockedPopEntrySList

16) NtWow64QueryInformationProcess64
17) NtWow64QueryVirtualMemory64
18) NtWow64Read VirtualMemory64
19) NtWow64WriteVirtualMemory64
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