
ÁëãïñéèìéêÝò Ôå÷íéêÝò Áíß÷íåõóçò êáé ÊáôÜôáîçò
Êáêüâïõëïõ Ëïãéóìéêïý âáóéóìÝíåò óå ÃñáöÞìáôá

ÊëÞóåùí ÓõíáñôÞóåùí ÓõóôÞìáôïò

Ç ÌÅÔÁÐÔÕ×ÉÁÊÇ ÅÑÃÁÓÉÁ ÅÎÅÉÄÉÊÅÕÓÇÓ

õðïâÜëëåôáé óôçí

ïñéóèåßóá áðü ôçí ÃåíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò

ôïõ ÔìÞìáôïò Ìç÷áíéêþí Ç/Õ & ÐëçñïöïñéêÞò

ÅîåôáóôéêÞ ÅðéôñïðÞ

áðü ôïí

ÉùóÞö ÐïëåíÜêç

ùò ìÝñïò ôùí Õðï÷ñåþóåùí ãéá ôç ëÞøç ôïõ

ÌÅÔÁÐÔÕ×ÉÁÊÏÕ ÄÉÐËÙÌÁÔÏÓ ÓÔÇÍ ÐËÇÑÏÖÏÑÉÊÇ

ÌÅ ÅÎÅÉÄÉÊÅÕÓÇ

ÓÔÇÍ ÈÅÙÑÉÁ ÅÐÉÓÔÇÌÇÓ ÕÐÏËÏÃÉÓÔÙÍ

ÓÅÐÔÅÌÂÑÉÏÓ 2014

Algorithmic Techniques for Malicious Software
Detection and Classi�cation based on
System-Call Dependency Graphs

MSc Thesis

Department of Computer Science and Engineering

University of Ioannina

GREECE

Iosif R. Polenakis

September 2014

AöéÝñùóç

Ç åñãáóßá áõôÞ áöéåñþíåôáé:

óôçí ðïëõáãáðçìÝíç ïéêïãÝíåéÜ ìïõ,

óôïí êáèçãçôÞ ìïõ êáé åðéâëÝðïíôá ôçò åñãáóßáò Óôáýñï Ä. Íéêïëüðïõëï,

êáé óå üëïõò ôïõò óõíáãùíéóôÝò óôçí áñÝíá ôçò äéáíüçóçò ðïõ ðáñÜ ôá åìðüäéá êáé ôéò

üðïéåò äõóêïëßåò óõíå÷ßæïõí ðéóôÜ íá ðáñáìåñßæïõí ôéò åðßãåéåò áðïëáýóåéò ãéá ÷Üñç ôçò

óõíå÷ïýò áíéäéïôåëïýò ðñïóöïñÜò óôçí åðéóôÞìç êáé ôçí êïéíùíßá.

Åõ÷áñéóôßåò

Ðñùôßóôùò èá Þèåëá íá åõ÷áñéóôÞóù ôçí ðïëõáãáðçìÝíç ìïõ ïéêïãÝíåéá, ç ïðïßá

áðü ôá ðñþôá ìïõ âÞìáôá áðïôÝëåóå åóôßá áíèñùðéóìïý, áñåôÞò, ðíåýìáôïò êáé ðáéäåßáò.

Åõ÷áñéóôþ ìÝóá áð ôçí êáñäßá ìïõ ôïõò ãïíåßò ìïõ ÑïõóÜããåëï êáé ÊëåïðÜôñá êáèþò

êáé ôçí áäåëöÞ ìïõ ÅéñÞíç, ãéá ôï öùò ôï ïðïßï ìïõ ìåôáëáìðÜäåõóáí êáé ôçí áäéÜðáõóôç

óõìðáñÜóôáóÞ ôïõò êáè' üëç ôçò äéÜñêåéá ôïõ áãþíá ìïõ. Óôï óçìåßï áõôü, èÝëù íá

åõ÷áñéóôÞóù éäéáßôåñá äõï Üôïìá óôá ïðïßá áäéáìöéóâÞôçôá ïöåßëù ðïëëÜ, êáé ôá ïðïßá

áðïôÝëåóáí ôïõò ðñùôåñãÜôåò - ôçí ðñþôç ãñáììÞ óôïí áãþíá - ãéá ôçí ïéêïäüìçóç ôïõ

üôé êé áí åßìáé - ôïõ üôé êé áí ãßíù, ôïí ðáððïý ìïõ Áðüóôïëï êáé ôçí ãéáãéÜ ìïõ ÅéñÞíç,

ðïõ Üíáøáí êáé êñÜôçóáí ìÝ÷ñé ôï ôÝëïò Üóâåóôç ôç öëüãá ãéá âåëôßùóç êáé áêáôÜðáõóôç

ðñïóðÜèåéá åîýøùóçò ôùí çèþí êáé ôïõ ðíåýìáôïò, êáèþò åðßóçò êáé ôïõò åêëåéðüíôåò

ÉùóÞö êáé Áíáóôáóßá, ôç óïößá ôùí ïðïßùí ãåýôçêá ìïíÜ÷á ãéá ëßãï.

Åðéðñüóèåôá, èÝëù ìÝóá áðï ôçí êáñäéÜ ìïõ íá åõ÷áñéóôÞóù ôïí ðíåõìáôéêü ìïõ

ðáôÝñá, Ýíáí áëçèéíü äÜóêáëï ìå üëç ôçí âáèýôåñç áîßá êáé ïõóéáóôéêüôåñç óçìáóßá ðïõ

êñýâåé áõôÞ ç ëÝîç, ï ïðïßïò äßäáîå óôïí ìáèçôÞ íá ðéóôåýåé óôï üñáìá êáé óôçí éäÝá,

êáé íá ìÜ÷åôáé ìå áõôáðÜñíçóç áðïæçôþíôáò ôï âÝëôéóôï åíÜíôéá óå üóá åìðüäéá êé áí

åìöáíéóôïýí, ÷ùñßò ùóôüóï íá ëçóìïíåß ôï áðü ðïõ îåêßíçóå. ÁíáöÝñïìáé öõóéêÜ óôïí

åðéâëÝðïíôá ôçò åñãáóßáò áõôÞò, ôïí êáèçãçôÞ êýñéï Óôáýñï Ä. Íéêïëüðïõëï, ï ïðïßïò

ìïõ Ýêáíå ôçí ôéìÞ íá ìå åìðéóôåõôåß, óôÝêïíôáò áñùãüò óôçí ðåñÜôùóç ôçò åñãáóßáò

áõôÞò. Áêüìç, èá Þèåëá íá åõ÷áñéóôÞóù ôïí áíáðëçñùôÞ êáèçãçôÞ êýñéï Ëåùíßäá Ðáëçü

êáé ôïí åðßêïõñï êáèçãçôÞ êýñéï ËïõêÜ ÃåùñãéÜäç ãéá ôçí óõììåôï÷Þ ôïõ óôçí ôñéìåëÞ

åðéôñïðÞ êáèþò åðßóçò êáé ãéá ôéò ðïëýôéìåò êáé åýóôï÷åò ðáñáôçñÞóåéò ôïõò ðïõ óõíÝâáëáí

óôçí âåëôßùóç ôçò åñãáóßáò áõôÞò.

ÔÝëïò, áéóèÜíïìáé ôçí áíÜãêç íá åõ÷áñéóôÞóù üëïõò ôïõò ößëïõò êáé óõìöïéôçôÝò ãéá

ôçí ðïëýôéìç óõìðáñÜóôáóÞ ôïõò óå üëåò ôéò óôéãìÝò ðïõ ðåñÜóáìå ìáæß, ìå ôïõò êáñðïýò

ôïõ Nikote êáé ôïõ Runge áíÜ ÷åßñáò, áôåíßæïíôáò ìå èÜññïò êáé åëðßäá ôï áâÝâáéï ìÝëëïí,

óôï ìðáëêüíé ôïõ ôñßôïõ ïñüöïõ, êáèþò åðßóçò êáé ôçí A. ôçò ïðïßáò ç åêïýóéá áðïõóßá ìå

Ýêáíå ðéï äõíáôü. Åõ÷áñéóôþ ôï Èåü, ðïõ Ýöåñå óôï äñüìï ìïõ ôïõò ðáñáðÜíù áíèñþðïõò,

íá ðñïóöÝñïõí ôï öþò êáé íá áðïôåëïýí Ýìðíåõóç ãéá üóïõò Ý÷ïõí ôçí ôý÷ç íá óôáèïýí

äßðëá ôïõò.

Table of Contents

List of Figuresiv List of Tablesv

1 Introduction 1

1.1 What is Malicious Software . 1

1.1.1 Basic Malware Types . 2

1.1.2 Miscellaneous Malware Types . 3

1.2 Defence Against Malicious Software . 4

1.2.1 Malware Analysis . 5

1.2.2 Malware Detection . 6

1.2.3 Malware Classi�cation . 7

1.3 Malware Mutations and Detection Avoidance 7

1.3.1 Code Obfuscation Techniques and Malware Evolution 8

1.3.2 Metamorphic Malware: A Major Threat 10

1.4 Realted Work . 12

1.4.1 Graph-Based Malware Detection 12

1.4.2 Graph-Based Malware Classi�cation 13

1.5 Contribution . 14

1.5.1 Motivation . 14

1.5.2 Proposed Solution . 15

1.6 Structure of the Thesis . 15

2 Malware Analysis 16

2.1 Static Malware Analysis . 16

2.1.1 Static Analysis Techniques . 17

2.1.2 Static Analysis Tools . 19

2.2 Dynamic Malware Analysis . 19

2.2.1 Dynamic Analysis Techniques . 20

2.2.2 Dynamic Analysis Tools . 22

3 Malware Detection 24

3.1 Concept and Implementation . 24

3.1.1 Malware Detection . 25

3.1.2 Malware Detector Design . 26

3.2 Categorizing Detection Methods . 27

i

3.2.1 Signature Based Detection Methods 27

3.2.2 Behavior Based Detection Methods 30

3.3 Graph-Based Detection Methods . 32

3.3.1 Malware Detection using Control Flow Graphs 32

3.3.2 Malware Detection using Function Call Graphs 34

3.3.3 Malware Detection using System-Call Dependency Graphs 35

4 Malware Classification 38

4.1 Philogeny . 38

4.2 Software Similarity . 40

4.3 Classi�cation of Malware into Families . 41

4.4 Graph-Based Classi�cation Methods . 43

4.4.1 Malware Classi�cation using Function Call Graphs 43

4.4.2 Malware Classi�cation using System-Call Dependency Graphs . . . 44

5 Our Model 45

5.1 Graph Representation of Malicious Software 46

5.1.1 System-Call Dependency Graph Construction 46

5.1.2 G∗ an Auxiliary Hyper-Abstraction of SCDG 50

5.2 Graph Similarity . 54

5.2.1 Graph Representation . 54

5.2.2 Malware Families and Sample Structure 55

5.2.3 Graph Similarity Metrics . 56

5.3 Graph Based Malicious Software Detection 58

5.3.1 Detection Based on Family Qualitative Characteristics 58

5.3.2 Malware Detection Formula Components 61

5.3.3 Malware Detection using NP-Similarity 66

5.4 Graph Based Malicious Software Classi�cation 68

5.4.1 Malware Classi�cation Filters . 68

5.4.2 Malware Classi�cation using Mutliple Filters 76

5.5 Other Approaches for Detection And Classi�cation 78

5.5.1 Failed Malware Detection Methods 78

5.5.2 Failed Malware Classi�cation Methods 79

6 Results 80

6.1 Data Set . 80

6.2 Experimental Design . 83

6.3 Result Comparison . 84

6.3.1 Detection and Classi�cation Results 84

6.3.2 Detection Rate Comparison . 85

6.3.3 Classi�cation Rate Comparison . 86

6.4 Advantages and Limitations . 87

ii

7 Conclusions and Future Work 89

7.1 Conclusions . 89

7.2 Future Work . 90

iii

List of Figures

1.1 Interdependence of Analysis, Detection and Classi�cation 5

1.2 Signature-Based Detection Avoidance using Encryption 9

2.1 Dynamic Taint Analysis Procedure . 23

3.1 Malware Detection . 25

3.2 Malware Analysis . 27

3.3 Malware Detection . 28

3.4 Virus Chernobyl/CIH body and corresponding IA-32 instructions [15] . . . 29

3.5 Visualization of Behavior-based Detection 31

3.6 Control Flow Graph Representation [9] . 33

3.7 String signature derived by CFG [11] . 34

3.8 Function Call Graph (local and external functions) [33] 34

3.9 Behavior Graph from malware NetSky [35] 35

4.1 Dendrogram Representing Phylogeny Between Individual Specimens [61] . 39

4.2 Clustering of Malware Samples according to NCD[4] 42

5.1 System Call Dependecy Graph . 49

5.2 Simpli�ed System Call Dependecy Graph 50

5.3 Hyper-Ábstraction G∗ . 52

5.4 Adjacency Matrix from G∗ . 55

5.5 Organization of samples into malware families represented by G∗ sets . . . 56

5.6 Zone Adjacency Matrix Construction . 59

5.7 Accumulative Adjacency Matrix Construction 60

5.8 Kernel Similarity Visualization . 73

5.9 Cover Similarity Visualization . 75

5.10 Visualization of Malware Classi�cation using Multiple Filters 78

6.1 Malware Families Connected by Name Commonalities 82

iv

List of Tables

4.1 Spare Malware Samples [4] . 41

4.2 NCD Computation of Malware Samples [4] 42

5.1 System Call Traces . 47

5.2 System Call Dependencies . 48

5.3 System Call Groups . 53

6.1 Malware Families . 81

6.2 Classi�cation: Matching Process and Results Accuracy 83

6.3 Malware Detection and Classi�cation Results 84

6.4 Malware Detection Results Comparison . 85

6.5 Malware Classi�cation Results Comparison 87

v

Abstract

Author: Joseph R. Polenakis, BSc, Dept. of Computer Science and Engineering, Univer-

sity of Ioannina September 2014,

Thesis Title: Algorithmic Techniques for Malicious Software Detection and Classi�ca-

tion based on System Call Graphs

Supervisor: Stavros D. Nikolopoulos, Professor, Dept. of Computer Science and Engi-

neering, University of Ioannina

One of the most dangerous and detrimental threats in computer security is the ma-

licious software, the so called malware. Malware is a type of software indicated to serve

a malicious purpose in some fashion, consisting a major threat for systems' security by

compromising the integrity, con�dentiality and availability so for the systems as whole

as for the data stored into them. Thus, in order to protect our systems from such a

threat, prevention and detection against malware consists a simplex. The most stable,

e�ective and also e�cient method to protect our systems against malware threats is the

installation of end-point detection systems, the so called antivirus.

In order to achieve real-time protection AVs use a quite naive approach to identify

malware leveraging pattern matching and utilizing a set of byte-level string signatures,

expressing an adequate real-time protection. However, because this method is based on

static data, the credibility of its results can be compromised during the appearance of

a mutated or even more in case of a totally brand-new malware. Since we are not able

to predict any brand-new malware our main target is the armoring against any mutated

malware.

In this thesis we present an algorithmic technique in the area of dynamic malware

analysis, in order to detect if a given specimen is a malware and afterwards to classify

it into one of a set of known malware families. Speci�cally, we propose an elaborated

algorithmic technique for malware detection and classi�cation utilizing the System-Call

Dependency Graphs (SCDG) obtained by capturing traces through tainted analysis and

a set of similarity metrics methods in order to detect and classify a given specimen. More

precisely, in order to achieve higher generalizability and thus higher
exibility we have

made a transformation using the initial SCDG, by creating a hyper-abstraction of it, where

its vertices are consisted by groups of system-calls with similar functionality. After this

transformation, we proceed to the detection phase, where we have developed a formula

vi

that combines so the examination of qualitative, as that quantitative and existential

characteristics, that are spread among the members of a known malware family. Next,

in the classi�cation phase we leverage so the aforementioned characteristics utilized by

various similarity metrics as the correlations between the Maximum Strongly Connected

Component (MSCC) of the test sample's SCDG and each Strongly Connected Component

(SCC) in each malware family member' s SCDG.

Finally, we cite the results produced from experiments when applying our model on

a dataset of 2631 malware samples from 48 malware families and 33 commodity benign

programs when performing 5-fold cross validation achieving a 99.64 % detection rate

with 10% false-positives where our classi�cation accuracy reaches the 82.84 %, and then

evaluate our model comparing the results against those produced by other approaches.

vii

ÅêôåôáìÝíç Ðåñßëçøç óôá ÅëëçíéêÜ

Ìéá áðü ôéò áðåéëÝò ìå ôïí ìåãáëýôåñï âáèìü åðéêéíäõíüôçôáò óôïí ôïìÝáò ôçò áóöÜëåéáò

õðïëïãéóôéêþí óõóôçìÜôùí åßíáé ôï êáêüâïõëï ëïãéóìéêü (malicious software), ôï áðïêáë-

ïýìåíï malware. To êáêüâïõëï ëïãéóìéêü åßíáé Ýíá åßäïò ëïãéóìéêïý ôï ïðïßï åîõðçñåôåß

Ýíáí êáêüâïõëï óêïðü, áðïôåëþíôáò ìåßæïíá áðåéëÞ ãéá ôçí áêåñáéüôçôá, ôç äéáèåóéìüôçôá

êáé ôçí åìðéóôåõôéêüôçôá ôùí óõóôçìÜôùí üóï êáé ôùí äåäïìÝíùí ðïõ âñßóêïíôáé ìÝóá

óå áõôÜ. Ùò åê ôïýôïõ, ãéá íá ðñïóôáôåõèïýí ôá óõóôÞìáôá, êáé êáô' åðÝêôáóç ôá

äåäïìÝíá ðïõ âñßóêïíôáé óå áõôÜ, ç ðñüëçøç êáé ç áíôéìåôþðéóç (áíß÷íåõóç) óõãêñïôïýí

ôç äåóðüæïõóá ôáêôéêÞ. Ç ðéï áîéüðéóôç êáé áðïäïôéêÞ ìÝèïäïò ãéá íá åðéôåõ÷èåß êÜôé

ôÝôïéï, åßíáé ç åãêáôÜóôáóç óõóôçìÜôùí áíß÷íåõóçò óå üóï äõíáôüí ðåñéóó-üôåñá óçìåßá

ôïõ åêÜóôïôå óõóôÞìáôïò, ôá áðïêáëïýìåíá áíôé-ééêÜ (Anti-Virus).

Ôá óõóôÞìáôá áõôÜ ôá ïðïßá åßíáé õðåýèõíá ãéá ôçí áíß÷íåõóç êáêüâïõëïõ ëïãéóìéêïý

÷ñçóéìïðïéïýí Üìåóåò ìåèüäïõò áíß÷íåõóçò, üðùò ãéá ðáñÜäåéãìá ôï ôáßñéáóìá êÜðïéùí

ìïôßâùí (pattern matching) âáóéóìÝíùí óå õðïãñáöÝò ãñáììáôïóåéñþí, åðéôõã÷Üíïíôáò

Ýôóé éêáíïðïéçôéêÜ ðïóïóôÜ áíß÷íåõóçò ôÝôïéùí áðåéëþí óå ðñáãìáôéêü ÷ñüíï. Ùóôüóï,

ç éêáíüôçôÜ ôïõò áõôÞ, ëüãù ôçò óôáôéêüôçôáò ôùí äåäïìÝíùí ôá ïðïßá áîéïðïéåß, äýíáôáé

íá åëá÷éóôïðïéçèåß üôáí ç åí ëüãù áðåéëÞ áðïôåëåßôáé åßôå áðü Ýíá ìåôáëëáãìÝíï åßôå áðü

Ýíá åíôåëþò íÝï êáêüâïõëï ëïãéóìéêü. ÊáôÜ óõíÝðåéá, äåäïìÝíïõ üôé äåí åßíáé äõíáôüí íá

ðñïâëÝøïõìå ôç äçìéïõñãßá ïðïéïõäÞðïôå íÝïõ êáêüâïõ- ëïõ ëïãéóìéêïý, ï âáóéêüò ìáò

óôü÷ïò åßíáé íá áíáðôýîïõìå ìç÷áíéóìïýò ïé ïðïßïé íá åßíáé éêáíïß íá ðáñÝ÷ïõí ðñïóôáóßá

åíÜíôéá óå âåëôéùìÝíåò ìïñöÝò ôçò áðåéëÞò áõôÞò, üðùò ãéá ðáñÜäåéãìá ôï ìåôáëëáãìÝíï

êáêüâïõëï ëïãéóìéêü.

Óôçí åñãáóßá áõôÞ ðñïôåßíïõìå, õëïðïéïýìå êáé ðáñïõóéÜæïõìå, ìéá áëãïñéèìéêÞ ìÝèïäï

óôïí ôïìÝá ôçò äõíáìéêÞò áíÜëõóçò êáêüâïõëïõ ëïãéóìéêïý ç ïðïßá Ý÷åé ôçí éêáíüôçôá,

äïèÝíôïò åíüò áãíþóôïõ ëïãéóìéêïý íá áíé÷íåýåé áí åßíáé êáêüâïõëï Þ ü÷é, êáé åí óõíå÷åßá

íá ôï ôáîéíïìåß óå áðïêëåéóôéêÜ ìéá áðü Ýíá óýíïëï ãíùóôþí ïéêïãåíåéþí êáêüâïõëùí

ëïãéóìéêþí. ÓõãêåêñéìÝíá, ðñïôåßíïõìå ìéá áëãïñéèìéêÞ ôå÷íéêÞ ãéá ôçí áíáãíþñéóç

êáé ôáîéíüìçóç êáêüâïõëùí ëïãéóìéêþí âáóéóìÝíç óå ãñáöÞìáôá êëÞóåùí óõíáñôÞóåùí

óõóôÞìáôïò (System-Call Dependency Graphs) ôá ïðïßá äçìéïõñãÞèçêáí áîéïðïéþíôáò

äåäïìÝíá ôá ïðïßá êáôáãñÜöçêáí êáôÜ ôçí åêôÝëåóç ôùí êáêüâïõëùí ëïãéóìéêþí ìÝóù

ìéáò äéáäéêáóßáò ðïõ ïíïìÜæåôáé åêôåôáìÝíç áíÜëõóç (taint analysis).

Ðéï óõãêåêñéìÝíá, ðñïêåéìÝíïõ íá åðéôý÷ïõìå ìåãáëýôåñç éêáíüôçôá ãåíßêåõóçò åíÜíôéá

óå éó÷õñÝò ìåôáëëÜîåéò äçìéïõñãïýìå Ýíá õðÝñ-ãñÜöçìá ôï ïðïßï äñá ùò õðÝñ-ãåíßêåõóç

ôïõ ãñáöÞìáôïò êëÞóåùí óõíáñôÞóåùí óõóôÞìáôïò üðïõ Ý÷ïõìå áíôéêáôáóôÞóåé êÜèå

viii

êüìâï ôïõ (óõíÜñôçóç óõóôÞìáôïò) ìå ôçí ïìÜäá óôçí ïðïßá áíÞêåé áõôÞ ç óõíÜñôçóç

óõóôÞìáôïò êáé ç ïðïßá óõìðåñéëáìâÜíåé êáé Üëëåò óõíáñôÞóåéò óõóôÞìáôïò ìå üìïéá

ëåéôïõñãéêüôçôá. Åí óõíå÷åßá, ãéá ôçí áíáãíþñéóç ôïõ êáêüâïõëïõ ëïãéóìéêïý ðñïôåßíïõìå

ìéá ìÝèïäï ç ïðïßá óôçñßæåôáé óå ìéá óõó÷Ýôéóç ðïõ óõíäõÜæåé ôçí áîéïðïßçóç ôùí ðïéïôéêþí,

ðïóïôéêþí êáé õðáñîéáêþí (áíáöïñéêÜ ìå ôéò áêìÝò) ÷áñáêôçñéóôéêþí ðïõ õðÜñ÷ïõí óôá

ãñáöÞìáôá êëÞóåùí óõíáñôÞóåùí óõóôÞìáôïò ôùí ìåëþí ìéáò ïéêïãÝíåéáò êáêüâïõëùí

ëïãéóìéêþí ìÝóù äéáöïñåôéêþí ìåôñéêþí ïìïéüôçôáò. ÔÝëïò, ãéá ôçí êáôÜôáîç åíüò

êáêüâïõëïõ ëïãéóìéêïý óå ìßá ïéêïãÝíåéá êáêüâïõëùí ëïãéóìéêþí, áîéïðïéïýìå îáíÜ ôá

ðñïáíáöåñèÝíôá ÷áñáêôçñéóôéêÜ ìÝóù ìåôñéêþí ïìïéüôçôáò êáé åðéðñüóèåôá åêìåôáëëåõüì-

áóôå ôçí óõó÷Ýôéóç óå åðßðåäï Éó÷õñÜ Óõíåêôéêþí Óõíéóôùóþí ðïõ ðáñáôçñåßôáé áíÜìåóá

óôï ãñÜãçìá ôïõ áãíùóôïõ äåßãìáôïò êáé ôï ãñÜöçìá åíüò ìÝëïõò ìéáò ïéêïãÝíåéáò

êáêüâïõëùí ëïãéóìéêþí.

Åðéðñüóèåôá, ðáñáèÝôïõìå ôá áðïôåëÝóìáôá ðïõ åîÞ÷èçóáí ìÝóù áðïôßìçóçò äéáóôáõñ-

ùìÝíçò óå ðÝíôå ôìÞìáôá (5-fold cross validation) åöáñìüæïíôáò ôï ìïíôÝëï ìáò óå 2631

êáêüâïõëá ëïãéóìéêÜ áðü 48 ïéêïãÝíåéåò êáêüâïõëùí ëïãéóìéêþí êáé 33 ìç-êáêüâïõëá

ëïãéóìéêÜ, åðéôõã÷Üíïíôáò 99.64 % ðïóïóôü áíáãíþñéóçò ìå 10 % åóöáëìÝíåò áíé÷íåýóåéò

(false-positives) åíþ ôï ðïóïóôü ïñèÞò êáôÜôáîçò åíüò êáêüâïõëïõ ëïãéóìéêïý óå ìéá

ïéêïãÝíåéá êáêüâïõëùí ëïãéóìéêþí Ýöôáóå ôï 82.84 %. ÔÝëïò ðáñáèÝôïõìå ìéá óýãêñéóç

ôùí áðïôåëåóìÜôùí ôïõ ìïíôÝëïõ ìáò ìå Üëëá ìïíôÝëá âáóéóìÝíá óå ãñáöÞìáôá êáé ìç,

ó÷ïëéÜæïíôáò êáé óõãêñßíïíôÜò ôá ìåôáîý ôïõò.

ix

Chapter 1

Introduction

1.1 What is Malicious Software

1.2 Defence Against Malicious Software

1.3 Malware Mutations and Detection Avoidance

1.4 Realted Work

1.5 Contribution

1.6 Structure of the Thesis

In this chapter we make an introduction to the topic citing the basic de�nitions and

explaining brie
y the basic methods applied for protection against malicious software.

To start with, we de�ne the term of malicious software, and then we proceed with the

de�nition of some of the most common malware categories. Next we present the main

procedures that are applied in order to develop later some defense techniques with strong

theoretical background. We de�ne the procedures of analysis, detection and classi�cation

while we describe their main corpus. Later, we de�ne our main motivation for this re-

search, where we describe the detection evasion practices and speci�cally the mutation

procedures that are applied by malware authors in order to evade detection. Finally, we

make a brief introduction to our proposed model describing in a very abstract level the

method that we have designed and developed in order to detect any mutated malware.

1.1 What is Malicious Software

Malicious Software or malware is any kind of software that its functionality is to cause

harm to a user, computer, or network [56] . Thus, any software with malicious purposes

1

can be considered malware. Malware in most of the cases, exhibits a very typical struc-

ture so in its programming aspect as in its overall organization. Across the literature,

continually we meet the most common description of malware's structure where malware

is presented to dispose a payload that we could envisage it as a kernel and additionally

the reproduction and cloning instructions and in some cases the propagation instructions

that could be envisioned as a cover respectively.

Generally speaking, malware can be considered as the entity in which new features

can be easily added to enhance its dark side e�ects in the form of various attacks [40]. So,

according to this consideration malware has to be treated as an alive harmful organism

with the ability of evolution during time just like the biological bacteria. The addition,

subtraction, modi�cation or any other kind of mutation in a malware, is able to generate

a totaly brand new malware that either serves new purposes, or lacks of bugs or even to

be just a new variation that can not be detected from a malware detection system.

Malware can be utilized for a variety of unethical purposes. Starting from early

nineties, where malware was just a tool for self projection of malware author's pro-

gramming skills, to nowadays, where we are facing a plenty of examples ranging from

economical bene�t from personal information stealing, to cyber warfare, malware remains

an extremely dangerous tool in any wrong hands.

1.1.1 Basic Malware Types

In malware categorization there are several methods that someone can classify a malware.

In example, an observer can classify a malware according to its propagation method,

known as propagation vector, where certain malware have a speci�c method to propagate

them selves in contrast with others that do not have this characteristic. On the other

hand, a second observer could classify a malware based upon its functionality. Thus,

subsequently, we present the most common categorization which is based upon the prop-

agation vector criteria as presented in [28, 59] and later we proceed by presenting a more

elaborated categorization based on malware's functionality [56, 59].

• Virus: In this category we meet the most common and well-known malware type,

the Viruses. A computer virus is a small program with harmful intent that its main

characteristic is that its operational mode is to replicates itself when inserted into

an executable �le (.COM, .EXE or .PE). As we will refer to next chapters, a virus

has the ability to evolve to new variants by modifying itself, a phenomenon called

metamorphism. Just like the biological viruses, a computer virus need an existing

host program in order to cause harm to the infected system. In this manner, a

program that is infected containing the virus consequently infects any system that

executes it. The most common method that a computer virus is implemented, in

order to invade into a computer system, is to be attached to some software utility

such as a word processing application which when launched triggers the virus to

be activated then replicate itself attaching it to other hosts and so on, ending by

executing its payload.

2

• Worm: In the second category we have the computer worms. A worm, unlike

viruses, replicates itself by executing its own code independently of any other pro-

gram without the need of any host program in order to cause harm. The main

di�erences between worms and viruses is �rstly that worms are host independent

and secondly that viruses, in the vast majority of the cases, are spread among the

�les stored in an infected system in contrast with worms that propagate, among

the systems of a network infecting as many computers as possible by sending them

selves via network connection, with both of these two characteristics making worms

more dangerous than viruses.

• Trojan Horse: This category, unlike the previous two, includes a very fuzzy group,
the Trojan Horses. A Trojan Horse is a type of malware that malware author has

embedded it in an application. In most of the cases, trojan horses are associated

with the access and the sending of unauthorized information from the system that

they infect to their malware author or another entity, which is a characteristic that

classi�es trojan horses as spyware. In general cases, its functionality is the emulation

of a legal application in order to gain remote access to a system. However, cases of

system damage such as data loss, are not excluded as in many cases, trojan horses

are employed in Denial Of Service (DOS) attacks.

1.1.2 Miscellaneous Malware Types

To this point we step beyond the basic types of malware, presenting other categories that

are also widespread in the wild, possessing a large portion of the types of malware families.

Next, we list some of the most known malware categories. However, we ought to notice

that a malware many times can belong to more than one categories according to malware

author's intents.

• AdWare: When a malware has infected a computer, advertising-supported software

automatically displays or downloads advertisements.

• Backdoor: A backdoor is a type of self-installed malicious code that allows to

attacker access to an infected system. Backdoors exhibit an auxiliary functionality

since they are utilized by malware authors in order to gain remote access with little

or no authentication and then to execute commands on the infected system.

• Botnet: Generally speaking, botnet is a type of malware that infects a group of

computers and then turns them into zombies under the botmasters possession. A

malware belonging to this category could be a worm or a trojan. Additionally we

ought to refer that a botnet (a network of bots) is acting under the instructions

of one person (botmaster), thus one of the purposes of botnet is to infect as many

computers as possible. The communication with the botmaster can be done via a

central hub, propably an IRC Command and Conquer Server, or in a distributed

manner for better scalability.

3

• Downloader: Downloaders is one more auxilliary category of malware. Download-
ers are maliciou code that downloads other malwares. A typical case of downloader

usage, is when attackers gain access for �rst time in a system, then they install a

downloader in order to help them to download and install other malwares. Next to

downloaders there is one more category of malware used to launch other malicious

programs, the Launchers.

• Information-Stealing Malware: This category of malware is one of the most

widespread categories used in �nancial transaction attacks like web-banking attacks.

An information stealing malware is a type of malware that collects user information

(i.e. sni�ers, keyloggers) in an unauthorized manner from victim's computer and

sends them back to the attacker. in this category are included the spywares, that

gather user's personal information like frequently visited pages, email addresses or

credit card numbers, and in most of the cases can be installed when free or trial

software is downloaded.

• Rootkit: A rootkit is a type of malware designed to hide other malwares. Typically

a rootkit can be utilized combined with a backdoor in order to allow remote access

to a system while making it di�cult to be detected.

• Scareware: Generally speaking, a scareware is a type of malware design to frighten
the user of an infected computer, to pay for something. In most of the cases it

provides to the user a legal an realistic interface, like an organization another appli-

cation or even an antivirus. Actually, it tells to the user that his system is infected

with some kind of malware and then imposes to pay in order to get rid of it while

when paid it does nothing more that to remove the scareware.

• Spam-Sending Malware: This category of malware, infects users machine and

after getting it under its possession, uses this machine in order to send spam. Spam-

sending malware can be utilized for spam-sending services that could be sold to

generate income for the malware authors.

1.2 Defence Against Malicious Software

In this section we present a brief introduction to the fundamental principles for defence

against malware. To start with, we o�er to refer that shield against malware is consisted

solely from prevention. In order to achieve the proper prevention mechanisms we need to

be based upon the triad of analysis, detection and classi�cation.

To this point, we o�er to explain that in the �eld of computer security, the processes

of malware analysis, malware detection and malware classi�cation are in some fashion

interdependent, as depicted in Figure 1.1. What we mean, is that if someone needs to

develop a detection method, �rstly a knowledge base of software tagged as malicious or

benign according to a classifcation process should be available. Additionally, in this base

4

it is needed to perform an analysis on the malicious ones in order to extract a proper

and su�cient set of characteristics that uniquely characterize if a software is benign or

malicious and that will consist the feature set of the classi�cation process. Thus, easily

someone can understand that the process of malware detection has a classi�cation
avor

as the main goal is to classify if a given sample belongs to one of the two classes of

benign and malicious. On the other hand, when someone needs to simply classify a given

malware to one from a known set of malware families, as in the detection process, it is

needed to �rstly perform an analysis on the members of a family in order to extract a

proper and su�cient set of characteristics that uniquely characterizes a family. However,

in order to avoid false matches, a previous detection is needed since if the specimen is a

benign software and the classi�er falsely classify it into one malware family this will lead

to further false positives in the detection process.

Figure 1.1: Interdependence of Analysis, Detection and Classi�cation

1.2.1 Malware Analysis

Malware Analysis [8] is the process of determining the purpose and the functionality,

or in general the behaviour of a given malicious code. Such a process is a necessary

prerequisite in order to develop e�cient and e�ective detection and classi�cation methods.

By its nature, malware analysis is a manual process demanding a lot of time and much

more expertise. Malware analysis can be performed through two fundamental approaches

depending to our goals, the given sample or the circumstances. Thus, malware analysis

is spitted into two categories Static and Dynamic [56].

• Static Analysis: In static analysis the specimen is examined without its execution.
Actually the suspicious sample does not need to be execute and the analysis can be

5

performed on its source code.

• Dynamic Analysis: In dynamic analysis an execution of the malware has to be

performed in order to collect the required data. However this approach needs more

expertise while is extremely dangerous for the host environment. As a result, in

most of times dynamic analysis is performed in a virtual environment

However, a further categorization can be done if we distinct these two approaches to

Basic or Advanced Static Analysis and Basic or Advanced Dynamic Analysis according

to the sophistication level of the techniques utilized in each one. So, according to [56],

next we brie
y describe these four categories of malware analysis, while a more extensive

presentation is cited in the corresponding chapter.

◦ Basic Static Analysis: If we choose to use static analysis utilizing elementary

techniques, actually we examine the executable �le (malware) without viewing the

actual instructions. The result of basic static analysis provides as with the knowledge

about to if the specimen is malicious or not and the specimen's functionality. The

main advantage of basic static analysis is that is straightforward and thus can be

performed quickly. However, its main shortcoming is its ine�ectiveness against

sophisticated or brand new malwares

◦ Advanced Static Analysis: On the other hand, if the circumstances and our

experience permits to use more elaborated techniques such reverse-engineering of

the mawlare's internals by loading the executable �le into a disassembler and con-

sequently look at the program's instructions in order to determine its functionality.

◦ Basic Dynamic Analysis: In the opposite case where the circumstances permit

the execution of the specimen (malware) we can leverage techniques that involve the

execution of the malware. The execution of the malware under inspection can reveal

precious information of its behavior when executed in a given operating system,

while its interaction with it can imprint its behavior.

◦ Advanced Dynamic Analysis: Finally, the choice of advances dynamic analy-

sis techniques invoke the use of a debugger for the examination of the malware's

internal state. Through advanced dynamic analysis, the analyst easily can extract

detailed information from the malware's executable when could me more di�cult

to be gathered when another type of analysis was performed.

1.2.2 Malware Detection

As referred in [40] the process of detection is all about to infer if a program is malicious

or benign. Consequently, a malware detector is the implementation of a series of speci�c

malware detection techniques [28]. Most common detection technique is the so called

signature-based detection. As the name of this technique indicates, this detection method

6

utilized signatures that are byte sequences that uniquely characterizes a speci�c malware

[1]. Thus, formally speaking, a malware detector can be de�ned as a function that takes

input an unde�ned program p and by scanning it for the existence or not of the signature

s, determines if it is malicious or benign respectively.

In malware detection there exist two main approaches, signature-based detection and

behavior or anomaly-based detection. The most common one is the signature-based detec-

tion that is also the more e�ective and su�ciently e�cient to be applied on the commod-

ity end-hosts, and thus is employed from all the anti-virus systems. The signatures, that

consist the knowledge base of these systems, are created by extracting features from the

analysis of disassembled code from malware's binary [40]. To this point, we o�er to notice

that these signatures can address the entire family of malwares that share commonalities.

On the other hand, behavior-based detection has as its main goal to analyze the

behavior of known and unknown malwares [40]. Specifying normal behavior actions, then

is easy to determine the anomalies exhibited by the behavior of a malware. Additionally,

by specifying a rule set of normal behaviors, we conduct a speci�c type of anomaly-based

behavioral detection the so called speci�cation-based detection [28], where any program

that behaviorally violates the rule set is claimed to be malicious.

1.2.3 Malware Classi�cation

As we referred in the previous sub-section, in the process of malware detection the most

e�cient approach is the signature-based malware detection. However the main shortcom-

ing of such an approach is the rate in which malware signatures are produced. What we

mean, is that due to the high rate that malware is produced and, in most of the cases, the

high rate that malware is evolving, lead to the need of acceleration to the malware signa-

ture construction. To address properly this situation, we have to notice that a probable

solution could be the compactness of malware, because as referred in [33], while writing

an individual signature for each distinct malware is a cumbersome and time consuming

process. Thus, a quite convenient solution could be to cluster sets of malware according

to the commonalities that they exhibit and create generic signatures for each group [33].

Through the literature [11, 4, 46, 49, 33, 6, 23], there does not exist a clear de�nition of

malware analysis, where the vast majority of them let to be meant that malware classi�-

cation is the process of classifying an unknown specimen, after its detection as malware,

to one of the prede�ned malware families. However, there exists another approach that

de�nes as malware classi�cation as the process of categorizing a specimen to one of the

malware types (i.e. worm, virus or trojan) as the one referred in [40].

1.3 Malware Mutations and Detection Avoidance

In order to avoid the traditional signature-based detection employed by the vast majority

of Antivirus Software product, malware authors have implemented a series of obfuscation

7

techniques. As referred in the literature, obfuscation techniques are deployed in order

to contribute to malware's evolution. According to [13], the number of unique malware

discovered per day is reaches the 8000 per day. However, to be precise, we should check

the percentage of these specimen that are totally brand-new malware's and that of the

specimens that actually are variants (mutations) of already existed malwares. In this

section we present the categories of malware obfuscation techniques while we cite a more

extended description for a speci�c category of malware obfuscation, the so called meta-

morphism that makes malware analysts' life even harder as consists the most powerful

technique for detection avoidance.

1.3.1 Code Obfuscation Techniques and Malware Evolution

As we mentioned above, a series of code obfuscation techniques [40, 13, 57, 29, 48, 44, 62,

61, 69, 47] have been developed from malware authors in order to avoid the detection from

AVs. Next we present some of the most known obfuscation techniques, as the knowledge

of such techniques is able to help us to develop a deep theoretical background that may

lead to the development of more sophisticated and
exible detection techniques.

• Encryption: The most straightforward technique to hide a malware's functionality
is the encryption of its code. Such malware work by containing an extra module

(encryptor) that is in position, to encrypt malware's body, while there is respectively

another module responsible for the reverse process (decryptor) [57]. Structurally,

an encrypted malware is composed by the decryptor and the encrypted main body.

Thus, the decryptor decrypts the main malwares' body any time an infected object

is run. A simple encryption may use 1-1 mapping, a zero-operand instruction or

reversible instructions as AND or XOR [47]. To this point we have to notice that the

main functionality of encryption lies in the fact that for each infection the encryptor

makes the encrypted part unique by encrypting the main body with a di�erent key

and consecutively by hiding its signature [69]. In Figure 1.2 we cite an indicative

example of the functionality of encryption in signature based detection avoidance.

We use the same example into the following techniques. However, even though the

detection of an encrypted malware (i.e. encrypted virus) seems di�cult, the problem

has been solved with a quite simple approach when a detector just tries to detect

decryptors' code body as it remains constant from generation to generation.

• Oligomorphism: As easily someone would think, based upon the above solution

of decryptors detection the question remains in what could happen if a malware

author use an auxiliary encryptor for the whole malware, encrypting so the already

encrypted virus body as the encryption and decryption modules, passing to a second

layer of encryption (multi-layer encryption). This is the case of semi-polymorphic or

oligomorphic viruses, a speci�c category of obfuscated malware that dispose encryp-

tion/decryption module for multi-layer encryption in order to avoid decryption body

detection. The e�ort was done by malware authors in order to make the decryptor

8

Figure 1.2: Signature-Based Detection Avoidance using Encryption

module to exhibit a di�erent appearance in each new infection [47]. Additionally we

ought to notice that did not missed the alternative approach of the containment of

di�erent decryptors that where randomly chosen. However, an polymorphic malware

in the case of decryptor generation, can produce only a few hundreds of decryptors

that are easily detected [69] in contrast with the polymorphic one that can produce

countless decryptors, while as referred in [57], a draft solution that seems su�ciently

e�ective is the dynamic decryption of the encrypted code instead.

9

• Polymorphism: A polymorphic malware can create an endless number of new

decryptors that use di�erent encryption methods to encrypt the body of the mal-

ware [57]. From this aspect someone could say that polymorphism is an advanced

descendant of encryption an oligomorphism. As referred in [47], the main principal

is to modify the appearance of the code constantly across the copies. However,

we ought to underline that polymorphic obfuscation techniques are even harder to

implement and manage. Some of the code obfuscation techniques [47, 69] used in

order to mutate the decryptor are dead code insertion, junk code insertion, code

transposition, instruction substitution, instruction replacement and variable substi-

tution or register substitution and are executed any time needed by another module

called mutation or obfuscation engine. However, there exist techniques such as code

emulation [47] or manual analysis [57], that are in position to detect polymorphic

malware by simple string matching.

1.3.2 Metamorphic Malware: A Major Threat

In contrast with encrypted, ologomorphic and polymorphic malware the metamorphic

one has no encrypted part. Thus there does not exist any need for encryption module

,however there exist a corresponding mutation module called metamorphic engine, that is

responsible for malware's mutation. Short speaking, a typical metamorphic engine [47],

includes a disassembler, a code analyzer and transformer and an assembler. Consecutively,

the mutation does not applied on the decryptor but on the whole body instead. As we

will discuss next , every new copy has modi�ed structure, code sequence size and syntactic

properties [47], while its behavior remains the same.

Metamorphic malware changes its structure while keeps its functionality each time

it replicate itself [44]. As referred in [13] polymorphic and metamorphic malware is the

hardest type of malware to detect, since are able to mutate in an in�nite number of

functionally equivalent copies of themselves, and thus there is not constant signature

for virus scanning [44]. The most advanced type of mutation malware is polymorphic

malware. This kind of body-polymorphic malware changes its body from one instance

to another, using di�erent obfuscation techniques [40] such as disassembly, permutation,

expansion, shrinking, or other kinds of transformation that we will describe later, to

reprogram themselves in order to create descendants that have transformed code similar

to the ancestor's code.

According to the de�nitions given in [44, 69] metamorphism is the process of trans-

forming a piece of code into copies that are structurally di�erent, however they exhibit

the same functionality, that is a very important clue upon which is based our approach.

Next, we proceed by describing of some code obfuscation techniques used by malware

authors for the development of polymorphic malware. Organized by the object applied

on these techniques are grouped in code-based, instruction-based, register(value)-based

and control
ow-based.

10

(A) Code Level Modi�acations

• Code Insertion - As easily someone can understand the easiest way to morph a

program is to insert dead code. Dead code is a part of code that is never executed.

The insertion of ine�ective instructions can be included within a dead code block

while it can be stealthy as it is non trivial to determine if it is executed or not [44].

Additionally, we ought to notice that such ine�ective instructions change only the

appearance of the program and thus its binary sequence while leave invariable its

behavior and functionality [69, 47, 48]. The code insertion modi�cations are also

called control-
ow preserving transformations [44], since the insertion of instructions

does not change the data-
ow or the control -
ow of the program.

• Code Trasnposition - Code Transposition is a malware mutation technique where
the sequence of the instructions in an original code are reordered either in single

instruction or code block level [47], without any impact to programs behavior by

preserving the execution
ow using conditional jumps or branches[48]. According

to [69] it can be achieved either by shu�ing the instructions and then recover them

utilizing unconditional jumps or by choosing and reordering totally independent

instructions. In the same manner works another variation of this technique, the

subroutine reordering [69], that changes the order of subroutines in a code in random

way generating n! di�erent variants, where n is the number of subroutines.

• Equivalent Code Substitution - As referred in [44] another technique able to

change the structure of the program while keeping its behavior and functionality is

the substitution of a series of instructions with a series of equivalent ones.

• Code Integration -Finally, one of the most elaborated code obfuscation techniques
in metamorphism, is the so called code integration [69], where the malware knits itself

to the code of a victim sane program. Staring with the decompilation of the program

creates manageable objects and then seamlessly adds itself between them. Finally

it assembles again the program with the integrated code creating a new generation.

(B) Assembly Level Modi�acations

• Instruction Permutation - A more complex method for code obfuscation is ap-

plied in the instruction level, where is possible to change the sequence of independent

instructions with no disturbing the execution while byte strings in di�erent versions

of the code will appear unlike [48, 47].

• Instruction Replacement - Another technique that works in a similar manner is

the instruction replacement, as this obfuscation technique substitutes instructions

with their equivalent in the newer copies, thus changing its code appearance since

a task can be executed in di�erent equal coding instruction set [48, 47, 69].

11

• Register-Value Modi�acations - Finally, another transformation method that

mutation engines use to obfuscate malware's code is the register substitution where

is applied the usages of di�erent registers or memory variables [48, 47, 69] as keeps

the malware's behavior the same. This approach leads to the evasion from string

signature-based detection as through this alteration are changed similar bytes in

various generations.

1.4 Realted Work

In this section we present approaches that have been proposed through the literature

and refer either to malware detection or malware classi�cation. Next, we present some

indicative examples of proposed solutions that are not graph-based ones. We ought to

notice that we present to a greater extent only the approaches that utilize a graph theoretic

background while the number of the works in the �eld of malware detection is quite large

to �t for discussion in this sub-section.

• Related Work on Malware Detection

{ In [44] the proposed approach trains a Hidden Markov Model (HMM) using a

sequences of opcodes extracted from the suspicious sample's executable.

{ In [55] API call sequences are used in order to classify if a process is benign or

malicious.

{ In [50] n-grams are extracted from �les and then by utilizing the k-NN the

proposed solution distinguish the malicious from the benign programs.

• Related Work on Malware Classi�cation

{ In [29] the proposed technique uses the n-grams extracted from the bytes or

instructions of the executable as features that then are used to classify malware

samples into malware families.

{ In [36] the proposed technique also uses n-grams as features for naive Bayes,

decision trees, SVMs and boosting in order to detect and classify malware

found in the wild.

Next, we proceed by presenting the related work done in graph-based malware detection

techniques and this done in graph-based malware classi�cation techniques. Some of them

are using dynamic and others static analysis, while is notable that the vast majority of

them are integrated systems incapable of real time appliance in the end-hosts.

1.4.1 Graph-Based Malware Detection

In [1] Alazab et al. propose a fully automated system that e�ectively disassembles and

extracts API call features from executable, and then classi�es an executable as malware

12

or benign by using n− gram statistical analysis of its binary content.

Kolbitsch et al. [35] present the only approach that can be applied in the end-host

in order to run in real-time as a substitute of commodity AVs. Namely, it analyzes a

malware in a controlled environment building a model that describe the information
ows

between system calls and thus characterizes malware's behavior. Finally after extracting

the program slices (training) that are in due for such
ows they execute them to match

their models (test) against the run-time behavior of an unknown malware.

Bonfante and Kaczmarek in [9] propose yet another graph-based malware detection

technique that utilizes the use of Control Flow Graphs (CFGs) as signatures for malware.

There, the nodes of the graph are X86 instructions, as they make a reduction to the graph

by omitting nodes with low information.

In [18] Christodorescu et al. designed a malware detection algorithm that addresses the

de�ciency of mutated malware by incorporating instruction semantics to detect malicious

traits. Speci�cally, they describe malicious behavior by using instruction sequences with

variables and symbolic constants, the so called templates. In this way the algorithm after

the disassembling of the binary program it constructs a CFG and searches for matches

between each template node and a matching node in the program.

Again Christodorescu et al. in [17] propose an algorithm that automatically constructs

speci�cations of malicious behavior needed by AV's in order to detect malware. The

proposed algorithm constructs such speci�cations by comparing the execution behavior

of a known malware against the corresponding behaviors produced by benign programs.

In [52] Sekar et al. present a Finite State Automaton approach is presented, where

a compact FSA is builded forwa program without requiring access to its source code

while requires low space for storage. It is notable to refer that the proposed FSA-based

technique is able to capture short and long term relations between system-calls performing

more accurate detection.

In [39] Luh and Tavolato desing an algorithm that automatically grades an unknown

executable as potentially malware or benign leveraging behavior-based analysis by exe-

cuting the sample and creating reports used to score the sample.

Finally, in [3] Babic et al. propose an approach to learn and generalize from the

observed malware behaviors based on tree automate interference where the proposed

algorithm infers k-testable tree automata from system call data
ow dependency graphs

in order to be utilized in malware detection.

1.4.2 Graph-Based Malware Classi�cation

Park et al. in [46] propose a classi�cation method based on maximal common subgraph

(MCS) detection for the similarity measurement between two behaviour graphs createdby

capturing system-calls during the execution of a program.

In [27] Hu et al. design and implement the Symantec's Malware Indexing Tree (SMIT),

a malware DBMS, that can e�ciently determine if a new malware is similar to a previously

seen one, based on malware's function-call graphs, using k-nn clustering algorithm.

13

Kinable and Kostakis in [33] explore the potentials of call graph based malware de-

tection and classi�cation by de�ning an algorithm that computes the graph similarity

through the edit distance taking into account so the vertex and edge cost as the relabel-

ing cost while uses k-medoids clustering in order to cluster samples to families.

In [6] Bayer et al. propose an approach for scalable clustering in order to identify

and group malware that exhibit similar behavior. By performing dynamic analysis execu-

tion traces of malware programs are obtained and then generalized as behaviour pro�les.

Finally these pro�les are served as input to an algorithm that allows to handle sample

sets.

Fredrikson et al. [23] present a technique that automatically extracts optimally dis-

criminative speci�cations that uniquely identify a classes of programs utilizing graph min-

ing and concept analysis. and thus can be used from behavior-based malware detectors.

Babic et al. in [3] propose an approach to learn and generalize from the observed

malware behaviors based on tree automate interference where the proposed algorithm

infers k-testable tree automata from system call data
ow dependency graphs that, except

from their appliance on malware detection that we referred in the previous sub-section,

they also can be utilized in malware classi�cation.

Finally, in [49] Rieck et. al present a method for malware classi�cation that proceeds

in three stages, �rstly by collecting malwares' behaviors, then using learning techniques

to train a classi�er with labeled specimens obtained from AV's, and �nally by ranking the

discirminative features of behavior models in order to explain classi�cation decisions.

1.5 Contribution

In this section we present the basic incentive behind the start of this work that are about

the di�culties generated in malware detection because of the mutated malware and also

we make a brief description of our proposed model.

1.5.1 Motivation

The main objective of this work is to develop a system that by the implementation of

a sophisticated algorithm will be in able to detect any variation of a mutated malware.

Speci�cally, our main viral is the metamorphic malware. As we described in 1.3.2 meta-

morphic malware can easily avoid the traditional string signature-based detection methods

and thus more elaborate techniques ought to be developed. Such di�cult problems are

triggering us to develop algorithms that leverage abstractions of malware's structure in

order to utilize them in detection and classi�cation. The solution that we present is de-

signed and implemented having as set squares so the generalization in terms of variation-

independent malware detection and classi�cation, as the perspective of the adoption of

an end-point system in terms of real-time protection.

14

1.5.2 Proposed Solution

The solution that we propose is based on System-Call Dependency Graphs (SCDGs)

produced via taint analysis capturing the execution trace of a malware. Having an instance

of such a graph we proceed by the creation of an abstraction of it, by utilizing system call

classi�cation obtained by the con�guration �le of NtTrace, a native API tracing tool for

MS Windows. This graph abstraction merges each node (system-call) of the initial graph

to a node with the name of the system call class and then links the corresponding super-

nodes. Finally, having these graph abstractions, we have designed a series of metrics that

leverage known similarity metrics in a combinatorial manner in order to produce results

about the nature of the examined specimen as to detect if it is malware or not and if so

to classify it to the corresponding malware family. In contrast with other approaches, we

have developed a system that both detects and classi�es a suspicious specimen. Finally,

to this point we ought to refer that this implementation although is experimentally tested

is not yet ready to be applied to end-point computers.

1.6 Structure of the Thesis

The remainder of this thesis is organized as follows. In the second chapter we present one

of the most interesting �elds in computer security, malware analysis. In this chapter we

describe in a greater extent techniques applied in dynamic and static malware analysis

while we suggest some tools that can be utilized for such purposes. In the third chapter

we present the various types of methods applied in malware detection describing their

pros and cons while we present some state of the art graph-based malware detection

techniques proposed through the literature. In the fourth chapter we analyze some of

the similarity metrics used in malware classi�cation and additionally we cite alternative

malware classi�cation techniques that utilize graph representation of malware. To this

point we ought to notice that in the topic of graph-based malware classi�cation there

exists less work done than in graph-based malware detection, which is a hint for farther

research. In the �fth chapter we present and analyze our proposed model for malware

detection and classi�cation based on System Call Dependency Graphs, where we describe

the graph construction procedure and the development of our proposed techniques for

malware detection and classi�cation. In chapter six we analyze our data set, describe

our experimental setup (design) and project the experimental evaluation of our proposed

model's implementation against real malware samples. Finally, we compare our model

against the results produced by other graph-based approaches with no distinction to if

they are designed solely for malware detection or classi�cation.

15

Chapter 2

Malware Analysis

2.1 Static Malware Analysis

2.2 Dynamic Malware Analysis

In this chapter we will present the two main streams in malware analysis, the static and

the dynamic malware analysis. Firstly we will discuss the basic methodologies applied in

the static analysis approach while we will cite a few tools that malware analysts utilize in

order to perform static analysis, and then we will present the basic techniques applied in

dynamic malware analysis and respectively we will cite the corresponding tools utilized

in dynamic malware analysis. This chapter has a somehow smaller extent since, although

malware analysis is a quite interesting technique, there does not exist much work in

literature because of its hands-on-craft nature as it is a more human based method. The

vast majority of the publications present only implementations that automate traditional

made by analysts techniques, while the background of such techniques is out of the scope

of this work.

2.1 Static Malware Analysis

As we mentioned in the introduction, with the term static analysis we refer to the process

of analyzing an unknown program without executing it [22, 56, 32, 15, 8, 43]. Static

malware analysis, since it does not demand the execution of the specimen under inspec-

tion is thus more safer for the testing environment, however demands a higher level of

programming skills and also a deeper knowlegde of object's structure since the available

software can be in di�erent types varying from plain source code to binary �les. Thus

16

static analysis splits, according to the analyst's level and the techniques he utilizes, to

basic and advanced static analysis.

Basic static analysis is straightforward and thus can be performed quickly includin ele-

mentary techniques of a brief examination in the executable �le without viewing the actual

instructions, providing us knowledge about the specimen's type (malicious / benign). As

we referred in the introduction, static malware analysis has a few drawbacks such as its

inability to detect a totally brand-new malware when is performed in its basic approach,

while even in its advanced one, is quite di�cult to be performed when malware's source

code is unavailable as more sophisticated techniques are required. Speci�cally, as men-

tioned in [22], static analysis of binaries may cause some problems to the procedure such

as the disassembling that may cause ambiguous results when performed on self-modifying

malware. However, despite these drawbacks,static analysis has the advantage that it can

cover the complete program's code [8] and in most of the cases is faster that the dynamic

one.

2.1.1 Static Analysis Techniques

In this sub-section we will enumerate some of the most used static analysis techniques

that when applied can reveal valuable information about the testing specimen's structure.

• File Fingerprinting: A typical malware's �ngerprint can be consisted from its �le's

hash value. Hashing is a common method used for identifying malware uniquely.

As refered in [56] the hash value can be computed in a part of the malware and then

can be quite useful especially when used as label or shared with other analysts for

same purposes.

• Anti-virus Scanning: Before someone starts the analysis, is advised to �rstly

scan the testing specimen with at least one or more anti-virus software in order to

detect it. Its is probable that some anti-virus software may have already detect this

specimen [56] if it is malware and thus no further investigation is needed. Addi-

tionally, despite the fact of gaining time from an already done work, the anti-virus

vendors provide with a detailed reports [32] about the specimen where the analyst

can �nd information about malware's capabilities, its signatures and in many cases

instructions for its removal. However, as we mentioned in the introduction malware

authors may have changed the code of malware and consecutively its signature and

hence anti-virus software will not be able of detecting it.

• String Searching: A very naive approach in elementary static analysis is the

string search. There is surprisingly a lot of information in a malware's source code

in strings of readable text. As referred in [32] there exist strings that inform the

user with update status, an error occurrence, a connection to a URL or to copy a

�le to a speci�ed folder. As easily someone can understand, a quick web-search of

these strings can reveal valuable information.

17

• Analyzing Obfuscated Malware: As we described in the introduction malware

authors often use obfuscation techniques in order to evade detection. Except from

obfuscation techniques another technique that malware authors utilize for the same

purpose is packing. Packed malware is somehow a malware that has been com-

pressed and thus it can not be analyzed. As referred in [56], the legitimate software

often includes many strings. This declaration is able to lead us to the conclusion

that if a software includes few line then it probably may be a malware. Consecu-

tively, the elementary techniques mentioned above are not enough to perform the

analysis. The most helpful knowledge in such circumstances is that when a packed

malware is executing then a small wrapper program is running to decompress the

packed malware. Such auxiliary program are called packers and can be detected

using the PEiD program as described in [56].

• PE File Format: One of the most valuable information about a program's func-

tionality can be revealed through PE (stands for Portable Executable) �le format

used by executable �les on Windows systems [32]. The PE �le format is a data

structure that contains necessary information for the Windows OS loader to man-

age wrapped executable code, object code and DLLs [56]. The core segment of PE

appears in its begin where there exist the header that includes information about the

code, the application type, the library functions, space requirements, compilation

date and time, imported and exported functions, version information and strings

embedded in resources [56, 32].

• Linked Libraries - Functions : Additional valuable information can be collected

through the library linking. The imports are functions stored in a program and

used from another one. Thus, code libraries can be connected to an executable by

linking [56].

Next we present three basic linking methods an describe the information retrieval

when they are observed in static analysis.

{ Static Linked Libraries: In static linking the code of the library is copied in-

side the executable growing its size. The main problem in the analysis of static

linked libraries, as described in [56], is that the analyst can not distinguish the

linked from the main executable code.

{ Run-time Linked Libraries: On the other hand, a commonly used library

linking method is the run-time linking, the libraries are linked only when needed

by the executable. To this point it worth to mention that run-time linking is

mainly used by packed or obfuscated malware.

{ Dynamically Linked Libraries: Finally, maybe the most interesting type

of library linking is the dynamic linking, where the host OS searches for the

necessary libraries when the program is loaded. The interesting is that the

18

information relevant to the libraries to be loaded and the functions that will

be used is stored in the PE �le header we mentioned above.

• Imported - Exported Functions: Imported and Exported function can aslo

reveal valuable information about an executable's functionality. Imported Windows

functions can give valuable information to the analyst even by their names revealing

somehow what the executable does. On the other hand, the exported functions

interact wit other programs' code. DLLs in example, provide functionality used

by executables. In contrast, if an analyst discovers exported functions inside an

executable, since is not designed to provide functionality to other executables [56],

is very helpful to claim it as malware.

• Disassembling: Right after the conduction of such elementary static analysis tech-
niques, follow more advances static analysis techniques like the disassembling of the

examined �le and analyzing the assembly code instructions that make up the pro-

gram [32]. Since the description of disassembling techniques are far out of the scope

of this thesis we will mention only that there exist ready-to-use tools like IDA Pro,

that we will suggest in next 2.1.2, that are indicated for use in such techniques.

2.1.2 Static Analysis Tools

According to the techniques we previously enumerated, for the hash value computation the

most used algorithms are the SHA1 and the MD5. On the other hand for the obfuscated

malware in the case of packed one, PEiD is recommended in [56] since it can detect

packed �les by detecting the type of packer or compiler employed to build the application.

For the investigation of PE �les the PEView can browse the analyst through a lot of

valuable information Next, the dynamically linked libraries can be explored with the

Dependency Walker, distributed with MS Visual Studio, that lists only the dynamically

linked functions in an executable. Finally, when advanced static analysis techniques are

deployed, the Interactive DisAssembler Professional is recommended and wide used by

most of virus analysts. IDA Pro is able to disassemble an entire program and perform

function discovery, stack analysis local variable identi�cation and much more are detailed

described in [56].

2.2 Dynamic Malware Analysis

In this section we will present another e�ective technique for analyzing malware, the

dynamic malware analysis. With this term we refer to the usage of dynamic techniques

for analyzing malware during run-time [8]. The main advantage against static analysis is

that in dynamic analysis is immune to obfuscation techniques as the analyzed instructions

are the ones that code actually executes. So, �rstly we will present the basic dynamic

analysis techniques as they are described in the available literature while �nally, as in the

19

previous section, we will enumerate some tools that are utilized in dynamic analysis. As

referred in [22] the analysis of actions performed by a program while it is being executed

is called dynamic analysis. As dynamic malware analysis is performed while actually

executing the malware it has to be done in a fully isolated and thus safe environment

worth to sacri�ce, meaning in example a virtual machine. Dynamic analysis is also called

behavioral analysis since the analyst actually observes the behavior of the malware or

in other owrds the interaction it has with its environment, in our case the operating

system. As mentioned in [32] a fairy good picture of malware's behavior can be developed

by simply monitoring its interaction with the �le system, the registry, other processes

and the network. To this point we ought to underline that even though dynamic analysis

techniques that we present next are extremely powerful and plenty of valuable information,

they should be performed only after the performance of static analysis and much more

the monitoring should be performed very carefully since may put at risk the analyst's

system or its entire network. Finally dynamic analysis has one more limitation, that is

not actually a drawback, is the fact that not all possible execution paths my execute when

a malware runs [42].

2.2.1 Dynamic Analysis Techniques

Through the dynamic malware analysis technique we focus on capturing the behavior of

the testing malware. The term behavior as referred in [63] includes the �les that the

sample tries to create or modify, the changes it attempts to perform in Windows registry,

the loaded DLLs, the accessed virtual memory areas, the creation of processes, the network

connections it opened and other information.

• Function Call Monitoring: As we know, a function consists of code that is re-

sponsible for a speci�c task. However, even it seems to be a trivial notion, the

abstraction of such implementation details can reveal a semantically richer imple-

mentation [22]. In order to analyze a program's behavior it is needed to intercept

in some fashion between function calls, a process called function hooking[63]. Con-

secutively a dummy function that is responsible for that procedure is called hooking

function [22]. Such functions are responsible for recording the hooked function's

invocation to a log �le or analyzing its input parameters, which is information that

later we will leverage in order develop our model (see chapter 6). Next, we cite

some system related functions that can be monitored in order to observe malware's

behavior. When function calls are monitored it results to the function call trace

[22]. Such traces consist by a a sequence of functions with their arguments invoked

by the malware under analysis during its execution.

{ API: These functions form a coherent set of tasks. Usually the operating

systems provide many sets of application program interfacesused by other ap-

plications to perform common tasks [22, 56].

20

{ System Calls: While the common applications are executed in user-mode the

operating system is executed in kernel-mode. Thus, only the kernel-mode exe-

cuted code has direct access to system's state. However a user-mode application

can request from system to perform a limited set of tasks using the system calls,

a speci�c API provided by the system. The interest of such API comes from

the fact that malware actually is an application and since it executes in user

space it needs to invoke a corresponding system call in order to interact with

its environment [22, 56].

{ Windows Native API: Finally, Windows Native API resides between the system

calls and the Windows API. As referred in [22]. the legitimate applications use

the Windows API to interact with the operating system, whereas malware

commonly skips this layer and interact with the Native API to thwart analysis

techniques like function hooking.

• Function Parameter Analysis: Function parameter analysis in dynamic malware
analysis focuses on the actual values passed when a function is invoked [22], as by

tracking parameters and return values leads to the correlation of function calls.

• Information Flow Tracking: Information
ow tracking focuses on how the in-

teresting data are processed by the program. This type of data are marked with

a label in some fashion (so called tainted), and each time they are processed the

propagate their label.

{ Taint Source and Taint Sinks: As referred in [22], the introduction of this

data's label is made by a taint source, while a taint sink is a system component

that reacts when stimulated with tainted input.

{ Directed Data Dependencies: In order to be propagated the tainted data's

labels, a direct assignment of arithmetic operation must be dependent on a

tainted value

{ Address Dependencies: Accordingly, when needed to taint addresses a label

propagation can be achieved when a read or a write operation has target an

address derived from tainted operands.

• Instruction Trace: The sequence of machine instructions that the sample executed
during its analysis consists its instruction trace[22]. Instruction trace contains in-

cludes valuable information that is not contained in form of higher level abstractions

of malware's behavior.

• Auto-start Extensibility Points: The auto-start extensibility points [22], de�ne
system mechanisms that allow programs to be invoked when the system boots. So,

it is of major interest to investigate them since it is probable for malware to try to

add itself to an available auto-start extensibility point.

21

• Taint Analysis Since we have developed a basic background about function call

monitoring we proceed by presenting a speci�c type o dynamic analysis, the so called

Dynamic Taint Analysis. Dynamic Taint Analysis is the monitoring of the data

ows in programs or whole systems during the execution of the sample [3]. Dynamic

Taint Analysis is a very powerful technique to extract data-
ow dependencies among

executed system calls. Additionally, it can be applied in a set of taints as a single

path symbolic execution. As referred in [3, 51], and we explained above, a label

(taint) is introduced by a taint source (system calls) and through program execution

it propagates according to some propagation rules to the taint sink (system call

arguments). In Figure 2.1 we present an analyze to a greater extent the procedure

of Dynamic Taint Analysis of an unknown executable since is the technique that as

we referred we will utilize in our approach.

2.2.2 Dynamic Analysis Tools

In this section we present some tools widely used in dynamic malware analysis as they

described in [56]. In order to monitor registry, �le system, network, processes and thread

activity Process Monitor is an advanced monitoring tool suitable for windows. On the

other hand when performing dynamic analysis centralized in process monitoring, Process

Explorer is referred as displays child-parent relations between the running processes. In

a deeper level, through Process explorer, the analyst can launch the Dependency Walker,

a powerful tool that let provide the analyst with valuable information about handles and

DLLs. Additionally, RegShot is one more powerful tool that can compare two registry

snapshot in order to check the changes happened in registry during malware's execution.

Finally when needed to observe the network activity performed by malwares execution

Netcat can be used in order to capture inbound and outbound connections for port scan-

ning, forwarding and much more.

22

Figure 2.1: Dynamic Taint Analysis Procedure

23

Chapter 3

Malware Detection

3.1 Concept and Implementation

3.2 Categorizing Detection Methods

3.3 Graph-Based Detection Methods

In this chapter we will present the process of malware detection to a greater extent, by

citing �rstly the de�nitions of detection techniques, and then by describing a series of

state of the art approaches presented in the literature while we focus on the graph-based

ones as they are relative to our model composing its background. In order to make the

things crystal-clear from the start and not to confuse the reader, we de�ne the speci�c

term signature as something that an object has while we de�ne the general term behavior

as something that an object does. Thus, the signature depicts the sometimes variant and

others invariant characteristics, that a program has in order to implement some actions,

while its behavior represents the actions performed by a program in order to achieve its

goals, including its interaction with its environment.

3.1 Concept and Implementation

In this section we will present the main concept of mawlre detection providing the basic

de�nition while we will describe what is and how works in general a malware detector.

We cite a typical malware detection system's design compiling information from various

approaches throug the literature.

24

3.1.1 Malware Detection

Malware detection as a general term is the process of determining, if a given program is

malicious or benign [18, 40, 28, 1], according to an a priori knowledge. For this purpose

there have been implemented techniques that leverage a series of distinct characteristics

in order to be able to distinguish malicious from benign programs. The implementation

of malware detection can be treated as a procedure highly intertwined with the process

of classi�cation. Actually one can think that the detection of malware has the sense of

classifying an unknown specimen into exclusively one of the solely two classes malicious

or benign. However, formally speaking, a malware detector can be de�ned as a function

that takes input an unde�ned program p and by scanning it for the existence or not of

the signature s, determines if it is malicious or benign respectively [1].

Malware detection is implemented through the utilization of a series of speci�c mal-

ware detection techniques [28]. In current system,malware detection is implemented with

two approaches, signature-based detection and behaviour or anomaly-based detection. In

fugure 3.1 we cite a brief representation of malware's detection method.

Figure 3.1: Malware Detection

Despite the fact that these techniques are quite e�cient, o�ering relatively high detection

rates whereas provide real-time protection on the end-host, they have a signi�cant draw-

back. That is, the above mentioned techniques, and especially the signature-based one, is

inadequate to detect malware that has been morphed through an obfuscation technique.

As we referred in the introduction, the main prickle in malware detection that is also one

of the most complicated and most researched topics in malware analysis, is the so called

polymorphic malware. Thus, malware analysts in order to be able to detect mutated mal-

ware worked on more sophisticated techniques that utilize more abstract characteristics

of malware such as its behavior. Formally speaking, the problem of obfuscated malware's

detection as described in [16] can be expressed as follows: lets as assume that we have an

25

initial variant (vanilla) of a virus V containing a set or sequence of instructions ó. When

V is obfuscated, let us say O(V), the problem is transformed as to detect the existence

of a sequence ó′ that is semantically equivalent to ó.

3.1.2 Malware Detector Design

As referred in [28], the implementation of techniques for malware detection is called

malware detector. In order to understand how malware detectors work we present a gen-

eralized view of a typical malware detector's design, synthesizing various approaches from

the literature [9, 16, 15, 11, 40, 64, 1, 66, 24]. As we mentioned in the introduction, the

procedures of malware analysis , detection and classi�cation are strongly dependent. Mal-

ware detection needs an a priori knowledge in order to compare characteristics extracted

from a previously analyzed malware and a currently analyzed unknown specimen. Thus,

having already composing the background of malware analysis from chapter 2, before we

proceed with the presentation of detectors design we cite in Figure 3.2 the process of

analysis that can be treated as a training phase in order to create the aforementioned a

priori knowledge, stored into a data base.

Next, in Figure 3.3 we cite a very brief representation of how a malware detector works,

omitting speci�c information about how the similarity measurement is computed. The

feature that we will choose to select may refer to a signature extracted from executable's

binary, or to a sub-graph of the
ow-graph produced from the executable through static

analysis [11], while the similarity measurement may include either a string-signature based

technique or a behavioral one. Additionally as we will refer later it may include a graph

matching process if a graph-based detection technique is employed. In the next sections we

will discuss how these features are created and extracted in order to extract characteristics

able to distinguish malware from benign programs.

Describing the example presented in Figures 3.2 and 3.3 we start with our data base

creation. In order to be able to detect if a suspicious sample is malware or benign we

must have some clues that indicate that a sample is malicious. This way, we start by

performing dynamic or static analysis on a set of known malware samples, one at a time,

extracting speci�c features (Figure 3.2). When we have in our hands either a signature

or a behavior or any other kind of a representation of the aforementioned characteristics

(i.e. a graph) we store it into a data base in order to be able to use it later. When a

new suspicious executable is needed to be categorized as malware or benign, we start by

extracting the same characteristics (Figure 3.3), either proceeding with their comparison

with what we have in the database, in the case of behavior-based detection, or searching

for the existence of a speci�c one from the database into the sample, in case of string

signature-based detection respectively.

26

Figure 3.2: Malware Analysis

3.2 Categorizing Detection Methods

As we referred in the introduction malware detection methods can be categorized into

signature-based detection and anomaly or behavior-based detection, according to the

object the are applied on. In this section we will discuss to a greater extent the categories

of malware detection methods enumerating their pros and cons respectively.

3.2.1 Signature Based Detection Methods

Signature-based detection is the dominant virus-detection method. Implementing this

technique, a malware detector searches in program's under inspection raw content for

the presence of a virus-speci�c sequence of instructions, the so called virus signature [15].

If malware detector �nd such signature then the program under inspection is probably

27

Figure 3.3: Malware Detection

infected. Actually, a string signature represent a pattern in a suspicious program's raw

content and thus is used in order to uniquely identify it. Fast string matching algorithms

are used in signature-based detection, utilizing regular expressions and string alignment

techniques in an e�ort to detect malware variants. The extraction of malware's signature

can be achieved by disassembling the malware's �le and selecting some pieces of unique

code [1].

In Figure 3.4 we cite the IA-32 instructions (right) from a program and its hexadecimal

representation (left), as presented in [15]. Now, let us assume that we have a given

signature S : {E800 0000 005B 8D4B 4251 5050 0F01 4C24 FE5B 83C3 1CFA 8B2B},
stored into our signature database, corresponding to Chernobyl/CIH virus. As easily one

can understand, if the malware detector during the scanning of a suspicious program,

�nds the instructions sequence S, then will determine that the given program is infected

by Chernobyl/CIH virus. Now that we have developed a better knowledge about how

signatures work we can return to Figure 3.3 and explain the case of string signature-based

detection. As referred in [1], the signature of a malware is consisted by a byte sequence

that uniquely identi�es this malware. Once a set of such signatures has been collected

for a series of malware and then been stored in a database, then the malware detector

utilizes this set by looking for code signatures or byte sequences inside the programs of

the system it is installed on. Thus, the malware detector scans speci�c locations in the

system and if in a program is found a signature that matches with one in detector's

database then this program is claimed as malware and its access to the system is blocked

by the detector. Even though this practice seems extremely e�cient for the end-host

considering its accuracy and speed, however its main drawback is its inability to detect

28

Figure 3.4: Virus Chernobyl/CIH body and corresponding IA-32 instructions [15]

brand-new or mutated malware, or in other words its in
exibility to generalization. Thus,

the only solution for such approaches to work properly is to keep updated their signatures

databases in order to be possible to detect at least as many malware variants have been

already detected by the Anti-virus system vendor.

Despite all the theory we cited above, we ought to notice that the term signature is

more generic as it seems. Through the literature, the term signature may also refers to

more abstract objects such as a set of actions and many times it may gets confusing.

We will just mention the example in [18], where malware signatures are represented by

templates that actually are set of actions that compose a pro�le. Similarly, we will refer

the terms host-based signature and network signatures as they discussed in [56]. A host-

based signature is used to detect malicious code on a victim computer by identify �les

created or modi�ed by a malware or by detecting changes made to the registry. These

signatures are also called indicators and focus on what the malware does to a system in a

more behavioral manner in contrast with the traditional string signature that focus on the

characteristics of the malware. Thus, as a result indicators are more resilient to morphed

malware. Finally, there are also exist the network signatures, that detect malicious code

by monitoring the network tra�c.

Additionally we can proceed to a further categorization of signature-based detection

where this hyper-category of detection methods is divided into static and dynamic [28],

just like the analysis. Thus, in Static Signature-based Detection the program under in-

spection is examined for sequences of code and so the signature are representing sequences

of code. On the other hand in Dynamic Signature-based Detection the maliciousness of

the program under inspection results from data gathered during its execution time, such

as patterns of behavior (not to be confused with behavior-based detection).

Finally in order to make the things crystal-clear, we notice that the main di�erence

between Signature-based detection and Behavior-based detection is that the Signature-

29

based one is in some fashion a static detection method, as it relies on something that we

got a priori and it is �xed, demanding consequently update for each new variant. On

the other hand, the Behavior-based Detection is a more dynamic one as it relies on some

global rules that if o�ended then the maliciousness of the subject can be claimed without

the need of updating this a priori knowledge as it can be applied to all. Summing all the

above we can conclude that a signature is something characteristic for an object that its

existence indicates the objects identity while a behavior, as we will see next, is a set of

rules, that when violated then the identity of the object is indicated. Thus, if a malware

detector uses signatures in order to detect if a program is malicious or not, then it is

actually searching for the existence of something (i.e. byte/instruction sequence, set of

actions etc.) existed also to other malwares, while if it uses the behavior then it is actually

searching for a violation of a rule (i.e. resource misuse) that benign programs do not as

we will discuss next.

3.2.2 Behavior Based Detection Methods

As referred in [28] anomaly-based detection depends on the normal behavior of an executed

object. Actually it occurs in two phases which is the training or learning phase and the

detection and monitoring phase. The goal is for the detector actually to learn the behavior

exhibited by a program under inspection. More precisely, anomaly detection systems build

models of expected behavior of applications by analyzing events that are generated during

their normal execution [38]. So, when such a model is developed then spare events can

be analyzed partially in order to observe any deviations. Consequently, such deviations

are adequate to indicate the presence of maliciousness. Next we will present the two

dominant types of behavior-based malware detection the Anomaly-based Detection and

the Speci�cation-Based Detection explaining their functionality and discussing their pros

and cons.

(A) Anomaly Based Detection Methods

Malware detectors that utilize anomaly-based detection techniques, base their method

for detection on models of normal behavior of users and applications, called pro�les [28].

Thus any violations to this kind of rules indicates an attack. Additionally utilizing such

methods a malware detector is not restricted to what is known till now where can be

detect any abnormal behavior whether is aprt of the model or not. However, using this

technique may results in higher false positive rates, as newer benign application may

exhibit a behavior di�erent from the older ones.

As we referred in the previous section, in behavioral detection and more precisely in

the anomaly-based one, there do not exist any a priori assumptions about applications. In

contrast, the behavior pro�les are built analyzing system call invocations during a normal

execution by collecting distinct �xed-length system call sequences [38]. So, as easily on

can understand if during the execution of the program under inspection the produced

30

system call sequences compared to the pre-recorded exhibit a variation then this is an

event that indicates a possible malware existence.

Similarly to signature-based detection we divide the anomaly-based one into static

and dynamic. In Static Anomaly-based Detection the detection of malware relies on

characteristics of suspicious �le's structure, providing thus the ability to not execute

the host program [28]. On the other hand, in Dynamic Anomaly-based Detection, the

detection of malware relies on the gathered information of malware's execution. So, any

pro�le inconsistencies are caught in the detection phase during monitoring and compared

with the learned pro�le conclude to the detection of malware. In Figure 3.5 we cote a

simple example of the behavior-based detection method we discussed above.

Figure 3.5: Visualization of Behavior-based Detection

(B) Speci�cation Based Detection Methods

Malware detectors that utilize misuse-based methods are based upon descriptions of at-

tacks (signatures) while they try to match data logged during the execution of a program

as clues of a modeled attack. As easily one can understand there exist the same drawback

as in traditional signature-based detection where only the satisfaction of a priori speci�ed

models indicates an attack. As we referred above, the main drawback of Anomaly-based

31

Detection techniques is the high false positiv rates exhibited through detection. Thus,

in order to mitigate this limitation there has been proposed a type of Anomaly-based

Detection the Speci�cation-based Detection. Speci�cation-based Detection approximates

the requirements (speci�cations) for a system or an application running on the end-point,

instead of its implementation [28]. In this type of behavioral detection the whole process

relies on, either manually written or through static analysis, application-speci�c models

[38]. So, the main goal is the development of a rule set specifying the valid behavior that

should be exhibited by any running application [28]. Thus, if during the monitoring of an

application a non-conforming system-call is invoked then this is a clue for the existence

of a malware leading to detection. However, in Speci�cation-based Detection there is

exhibited another drawback that is the very limited capability of generalization from the

pre-de�ned speci�cations. As someone could expect, if the approach uses the run-time

behavior then the type of Speci�cation-based Detection is de�ned as Dynamic, whereas

Static Speci�cation-based Detection relies on structural characteristics of the program

respectively.

3.3 Graph-Based Detection Methods

Having already all the necessary information and an adequate background on signature-

based and behavior-based detection techniques, we are able in this section to proceed

to the presentation of one of the most powerful structures used for malware detection,

the graphs. Using graphs the behaviours can be modeled e�ciently and additionally,

because of its structure, a graph can be used as signature of a malware. In this section we

will discuss the graph-based detection methods, presenting indicative examples from the

use of the Control-Flow Graphs (CFGs), the Function Call Graphs (FCGs), and also the

System-call Dependency Graphs that consist the main tool that we utilize in our approach

as we will discuss in the corresponding chapter.

3.3.1 Malware Detection using Control Flow Graphs

Control
ow describes the possible execution paths of a program or a procedure and is

represented as a directed graph the so called Control-Flow Graph (CFG) or simply
ow-

graph . Consequently, when such an abstract representation depicts the internal control

ow of a procedure is generated a
ow-graph, while when depicts the control
ows between

procedures is generated a call graph respectively [11].

As referred in [15, 18], most automatic analysis tools utilize an abstract representation

of malware's structure such as the Control Flow Graphs (CFGs). According to [9], a

Control Flow Graph is composed of linked nodes of one of the following types jmp (non-

conditional jump), jcc (conditional jump), call (function call), ret (function return), inst

and end, constructing the graph as presented in Figure 3.6. More precisely as referred

in [37], each node of the Control-Flow Graph represent a sequence of instructions that

32

are not interrupted from any jump instructions, the so called basic blocks. Accordingly,

an edge from block u to block v represents the
ow of control from block u to block

v. Summing, as de�ned in [15], a basic block B is a maximal sequence of instructions

〈Éi; :::; Im〉 containing at least one control
ow instruction at its end. Let V be the set

of Bs for a program P and E ⊆ V ×V×{T; F} , be the set of control
ow transitions

between basic blocks. then the directed graph CFG(P) =〈V;E〉 is called control
ow

graph. The graph-based representations are of major importance since they are able to

Figure 3.6: Control Flow Graph Representation [9]

capture di�erent execution paths of the program under inspection [24]. Additionally, the

nodes of the graph can store the instructions and values while they can be interpreted

according to more generic semantics [11].

The use of CFGs as signatures for malware detection is based on sub-graph isomor-

phism that is theoretically NP-complete. However its complexity can be reduced in the

detection context. Actually, except the indirect jumps and the returns all the other nodes

of a CFG have a bounded number of typically one or two successors [24]. Additionally,

isomorphism remains sensitive in morph techniques as code permutation or injection (see

1.3.2) that impact the graph, however these limitations can be addressed by compiler

optimizations as referred in [24].

A typical approach for signature creation is presented in [11]. In order to generate a

signature from a CFG, depth �rst order can be utilized, consisting thus a signature by

33

listing the graph edges for the ordered nodes using ordering as node labels and �nally

representing the signature as a string (see Figure 3.7). Additionally approximate matches

of
ow-graph based characteristics can be used in order to detect a broader range of

malware variants. Finally, in order to proceed to malware detection the proposed approach

make use of the malware database that stores the string signature produced as described

above together with a normalized weight computed for each procedure .

Figure 3.7: String signature derived by CFG [11]

3.3.2 Malware Detection using Function Call Graphs

A Function Call Graph (FCG) is a directed graph that its vertices depict the functions

that an executable binary includes and its edges represent the interconnection between

the functions according to their calls (see Figure 3.7). As referred in [33], the call graph

can be gathered from a binary executable through static analysis. Actually, disassembly

tools like the ones we referred in 2.1.2 (i.e. IDA Pro) are utilized after the removal of the

obfuscation layers (i.e. unpacking).

Figure 3.8: Function Call Graph (local and external functions) [33]

To this point we ought to notice that the functions, represented by the vertices may be

either local functions, i.e. functions wrote by the malware author, or external functions

like System or Library calls invoked during the execution of the binary. In Figure 3.8 we

34

cite a representation of a Control Flow Graph produce by an executable as it is depicted

in [33]. The nodes of this graph represent local and external functions. Speci�cally, the

one's whose name starts with the pre�x sub refer to local functions.

3.3.3 Malware Detection using System-Call Dependency Graphs

The behavior of a program can be modeled based upon system-call dependencies as the

capture its interaction with its hosting environment, the operating system. As easily one

can understand, a representation that captures a sequence of system calls would be liable

since any reorder or addition of one or more system calls could change the sequence, so a

more
exible representation that would capture their in between relations , as a graph in

example, would satisfy that demand [35] Thus a program's behavior can be modeled by

a behavior graph. A behavior graph is a directed graph generated from system call traces

collected during the execution of the program under inspection, while their arguments

indicate their relations [46].

To start with, we should de�ne the term behaviour as its e�ect on operating system's

state. As referred in [23] most malware relies on system calls in order to deliver their

payload, and thus system calls are able to representations of malwares intent omitting

useless implementation artifacts. In almost all of the works the program's under inspection

behavior is represented as a graph, the so called behaviour graph.

Figure 3.9: Behavior Graph from malware NetSky [35]

As easily someone can suppose, the nodes of this graph are the system calls captured

by the programs trace during its execution time utilizing taint analysis (see 2.2.2). The

most straightforward approach to de�ne an edge in a behavioral graph is the one discussed

in [35] where an edge introduced from node x to node y when the system call referenced

by y uses as input argument the argument produced as output from system call referenced

35

by x. As a result the existence of an edge in such a graph represents the data dependecy

between two system calls. Such dependecies can be monitored as we mentioned above

through the tainting of data during taint analysis. In Figure 3.9 we cite the behavior graph

depicting the dependeces between system calls captured throug taint analysis dyring the

execution of NetSky malware as presented in [35].

Now, let us proceed with some proper de�nitions about the behavioral graphs as they

are presented in [35, 17, 23, 46]. Compiling the de�nitions of behavioral graph presented

in [35, 17, 23] we concluded at a global structure that we present next. Generally speaking,

the behavioral graph includes, except from its basic components that are its vertex-set

V and its edge-set E, two labeling function that are responsible for the association,

the �rst one of vertices and edges with system-calls and their in between dependencies

respectively, and the second one of vertices and edges with some constraints on operations

and dependencies. Before we start we ought to refer some preliminaries about the vertices

and edges as the fact that such graphs are Directed Acyclic Graphs (DAG) as de�ned a

malicious speci�cation -malspec [35] where the nodes are labeled using system-calls from

an alphabet Ó and edges labeled using logic formulas from a logic LDep. Thus, we proceed

by citing the de�nitions of malicious speci�cation and the corresponding behavior grarph

and as they are presented in [17] and [23] respectively.

De�nition 3.1: A malicious speci�cation is a Directed Acyclic Graphs (DAG), with nodes

labeled using system calls from an alphabet Ó and edges labeled using logic formulas

from a logic Ldep. The malicious speci�cation (malpsec) M is written as M = (V;E; ã; ñ),

where:

• V is the vertex-set and E is the edge-set, Å ⊆ V × V ,

• ã associates vertices with symbolic system calls, ã : V → Ó × 2V ars and

• ñ associates constraints with nodes and edges, ñ : V ∪ E → LDep.

De�nition 3.2: A behavior graph is a data dependence graph G = (V;E; á; â), where:

• the set of vertices V corresponds to operations from Ó,

• the set of edges E ⊆ V × V corresponds to dependencies between operations,

• the labeling function á : V → Ó associates nodes with the name of their corre-

sponding operations and

• the labeling function â : V ∪ E → LDep associates vertices and edges with for-

mulas in some logic LDep capable of expressing constraints on operations and the

dependencies between their arguments.

36

The dependencies we referred above are classi�ed into three categories [23, 17]:

• def-use dependence: A def-use dependence expresses that a value output by one

system call is used as input argument to another system call.

• value dependence: A value dependence is a logic formula that expresses the condi-

tions placed on an argument (values) of one or more system calls, describing any

non trivial data manipulations performed by the program between system-calls.

• ordering dependence: Finally, an ordering dependence between two system calls

expresses that the �rst system call must precede the second system call.

Next, we proceed by presenting a simple detection example that uses behavior graphs

as presented in [17]. The term malspec referred in [17], actually refers to a sub-graph of

the malware's dependence graph that does not appear in any of the benign dependence

graphs. As mentioned in the corresponding work, the simplest solution would be to choose

the whole graph, however the resulting malspec would be too large and too speci�c to the

malware sample. Thus, the minimal contrast subgraph is utilized in order to generalize and

make as small as possible the malspec. A minimal contrast sub-gaph (MCS) is a smallest

sub-graph of a graph that does not exist in another graph. So, a contrast sub-graph of

G1; G2 is a sub-graph of G1 that is not sub-graph isomorphic to G2 and consequently is

minimal i� none of its sub-graph is contrast sub-graph. Thus, a malspec can be thought

as a minimal contrast sub-graph of a malware's dependence graph and a benign program's

dependence graph. The computation of MCS can be done using the Ting-Bailey algorithm

as proposed in [58]. Actually the algorithm works as follows, �rst maximal common edge

sets are computed between two graphs using backtracking tree, next maximal common

edge sets are unioned together and minimal traversals of theri complements are computed

in order to yield minimal contrast edge sets and �nally the minimal contrast edge sets are

unioned with the minimal contrast vertex sets to to produce a complete set of minimal

contrast sub-graphs.

37

Chapter 4

Malware Classification

4.1 Philogeny

4.2 Software Similarity

4.3 Classi�cation of Malware into Families

4.4 Graph-Based Classi�cation Methods

In this chapter we will discuss some major topics concerning malware evolution. Speci�-

cally, we will focus on the evolution of malware according to how malware families share

common characteristics through their commonalities in their specimens' source codes re-

sulting from phylogeny. Additionally we will discuss the importance of malware classi�-

cation into malware families and how this grouping is able to increase the detection rates

through the leverage of signature generalization when a signature can be applied globally

to the members of a malware family decreasing subsequently the need for new signature

production for individual malware.

4.1 Philogeny

One of the most important issues concerning the protection against malware's spread is

how the AV production industries will be able to manage the thousands of suspicious �les

arriving for analysis every and most of the are malware. Obviously, the construction of

individual signature for each malware sample does not consists an e�ective solution. As

referred in the literature, and exists as a general sense, each individual malware is not

developed from scratch, since if so, then there would not appear so many new malware

samples every day to be analyzed. Contrary, malware authors almost always, exception

consist the targeted attacks (i.e. STUXNET), either share their code or use mutation en-

gines in order to develop their malware or to morph them respectively. This work is grown

38

based upon the wider axes of malware analysis including the components of pure analysis,

malware detection in terms of determining if an object is malicious or benign, malware

classi�cation in terms of classifying a malware specimen into one malware family. As we

referred in the introduction, the procedures of malware analysis, detection and classi�ca-

tion are strongly connected, however, malware classi�cation is also connected to another

sense, concerning how malware families are interconnected and how malware is evolved

sharing and distinguishing characteristics between samples, the so called phylogeny.

As referred in [29, 30], various types of malware (i.e. viruses, worms, trojans etc.)

share common characteristics, so between them as to other previously seen malware.

Leveraging this observation, a malware analyst is in position to build a phylogeny model

that capturing this relations to be able to contribute in a proper family naming or to the

development of more
exible detection and classi�cation techniques.

Malware authors have developed a network of code sharing, exchanging code for the

development of their malware. Every day new malware strains are released that in almost

all of the cases are mutations of previously seen malware, either including code through

code reusability in terms of recycling, or by �xing bugs existed in previous versions.

So, easily someone can understand that this e�ort of malware authors to cooperate in

malware development can be leveraged from malware analysts in order to develop more

e�cient detection techniques, as we mentioned above. The information, provided from

the build of a phylogeny network that captures the share of code in malware development,

may be proven quite precious on understanding the relations of malware and how new

strains are actually evolutions of older ones. Thus, these relations can be interpreted

either to mutations caused due to any need for change to malware's functionality, or to

mutations caused as a result of morphing engines used in malware's detection avoidance

i.e polymorphism or metamorphism (see sections 1.3.1-2).

Figure 4.1: Dendrogram Representing Phylogeny Between Individual Specimens [61]

39

So, the main goal in building a phylogeny model is to examine software artifacts in

order to observe where there exist commonalities and di�erences in order to construct an

evolution history [29]. A quite convenient representation of malware's evolution could be

a tree-like one as a dendrogram [61] (see Figure 4.1) where malware samples have been

clustered according to a technique that detects commonalities between specimens.

4.2 Software Similarity

Software as a general term can be classi�ed into two categories, malicious or benign,

according to the existence or not of maliciousness to its functionality. So, if a program

belongs into the class of malicious programs then it has inherited the characteristics of its

mother class, the software. Consequently, malware just like the software has the ability

to evolve. As we referred in the previous section, a family of malware can be evolved as to

ful�ll some new added requirements or simply because of some bug-�xes. So, in order to

be able to determine if a given unknown malware is actually an evolution of a previously

seen one, in other words is member of a speci�c family, we need to de�ne a method that

will be in position to determine according to a given input and a background knowledge

if this specimen is member of a known family. Thus, a rational approach could be to

compare the similarity of the given object against some pre-classi�ed objects.

As we have all ready describe, the traditional signature-based detection techniques are

unable to detect morphed malware, and thus an approach of creating distinct signature

for each individual malware could be ine�ective and for sure counterproductive. So, as

the need of family level signature construction grows we need to develop techniques that

are able to classify with high accuracy rate a given unknown malware, since it is not a

brand-new one, to a malware family. Thus, in order to address these needs, there have

been developed a series of techniques spare in the literature that utilize either data mining

techniques or are graph-based ones with orientation to the behavioral graphs (see sections

3.3.3 and 4.4).

Generally speaking, the software similarity problem focuses on determining the simi-

larity between two programs [11]. Thus, the result of a method that computes metrics for

such purposes result in a value between 0 and 1, where values near 0 indicate low similarity

while values near to 1 indicate high similarity based on a threshold value. An approach

to software similarity problem using known similarity metrics on pro�les produced by

characteristics of two objects (i.e. a recurring pattern existed in a known malware and

its variations) may lead to the immediate detection of new variants straight from their

release, to generic signature construction and in the observation of commonalities and

relationships between di�erent malware families [61].

40

4.3 Classi�cation of Malware into Families

As we referred above the construction of distinct signatures for each individual malware

is ine�cient and counterproductive. Thus, the grouping of each individual malware into

families that exhibit similar characteristics (i.e. similar behavior) is a rational and e�ective

solution. The main requirement for clustering malware into families is for the members in

each family to exhibit the highest similarity with the other members belonging to the same

family and the minimum similarity with members belonging to other families. However,

there exists families of malware that are of the same type (i.e. bots, bankers, downloader

etc.) meaning that in general exhibit the same behavior, resulting to misclassi�cations.

Everyday thousands of �les arriving to AV industries in order to be analyzed. In order

to make analysis more e�cient and to be able to handle large amounts of data, a proper

clustering of malware that exhibit similar behaviors is needed so to not spent time in

analyzing a malware that is a variant of a previously seen one, as to create more generic

signatures that satisfy the detection of any member belonging to a speci�c family [33, 6].

Label McAfee Trend

A Not detected W32/Backdoor.QWO

B Not detected W32/Backdoor.QWO

C W32/Mytob.gr@MM W32/IRCBot-based!Maximus

D W32/Mytob.gr@MM Not detected

E PWS-Banker.gen.i W32/Bancos.IQK

F IRC/Flood.gen.b W32/Backdoor.AHJJ

G W32/Pate.b W32/Parite.B

H Not detected W32/Bancos.IJG

I IRC/Generic Flooder IRC/Zapchast.AK@bd

J Generic BackDoor.f W32/VB-Backdoor!MAximus

Table 4.1: Spare Malware Samples [4]

One of the most applicable approaches in malware classi�cation is to extract invariant

characteristics of each sample in order to construct a pro�le. Then, comparing the pro�les

of given any two samples using a similarity metric is straightforward to determine if two

samples are similar or dissimilar and consequently to classify them into the same class

or not, respectively . So, in Table 4.1 we cite a table from [4] where are presented some

initially uncorrelated malware samples labeled by two AV vendors. In Table 4.2 there

has been computed the Normalized Compression Distance (NCD) of them everyone with

each other.

41

A B C D E F G H I J

A 0,06 0,07 0,84 0,84 0,82 0,73 0,8 0,82 0,68 0,77

B 0,07 0,06 0,84 0,85 0,82 0,73 0,8 0,82 0,68 0,77

C 0,84 0,84 0,04 0,22 0,45 0,77 0,64 0,45 0,84 0,86

D 0,85 0,85 0,23 0,05 0,45 0,76 0,62 0,43 0,83 0,86

E 0,83 0,83 0,48 0,47 0,03 0,72 0,38 0,09 0,8 0,85

F 0,71 0,71 0,77 0,76 0,72 0,05 0,77 0,72 0,37 0,54

G 0,8 0,8 0,65 0,62 0,38 0,78 0,04 0,35 0,78 0,86

H 0,83 0,83 0,48 0,46 0,09 0,73 0,36 0,04 0,8 0,85

I 0,67 0,67 0,83 0,82 0,79 0,38 0,77 0,79 0,05 0,53

J 0,75 0,75 0,86 0,85 0,83 0,52 0,85 0,83 0,52 0,08

Table 4.2: NCD Computation of Malware Samples [4]

Finally in Figure 4.2 according to the aforementioned metric the previously uncorre-

lated malware samples are combined in clusters (c1 : c9) including malwares exhibiting

the minimum NCD between them. As we can observe through this process, �nding some

characteristics among malware samples can a�ord quite valuable information about mal-

ware's behavior and to a greater extent, about the evolution of malware. Such information

then can be leveraged to build detection and classi�cation techniques that will be more

accurate while being more elastic since depend on structure's abstractions.

Figure 4.2: Clustering of Malware Samples according to NCD[4]

42

4.4 Graph-Based Classi�cation Methods

As we referred in previous sections, malwares that belong to the same families tend to

exhibit the same or at least a similar behavior. Consequently, the ability of recognizing

commonalities among samples that belong to the same family leads to the development

of techniques that immediately detect both known and unknown malware based on their

abstract manifestations such as their behavior. Since, as we mentioned in chapter 3,

graphs are from their nature quite adequate to represent such representations we proceed

by presenting the application of graphs in malware's behavior representation and their use

in automated classi�cation of unknown malware samples to malware families. Similarly

to section 3.3, next we will present two indicative examples from the use of Function

Call Graphs (FCGs) and System Call Dependency Graphs for the depiction of malware's

behavior in order to classify a given sample.

4.4.1 Malware Classi�cation using Function Call Graphs

In [33] Function Call graphs (FCGs) are utilized in order to compare and classify malware

samples, according to their structural similarity, to malware families. To this point we

ought to remind that Function Call Graphs Are directed graphs that their vertices rep-

resent the functions of an executable, while their edges represent their calls (see section

3.3.2). Speci�cally, having composed the CFGs from two executables the the computa-

tion of similarity may include the search for graph isomorphism or the maximum common

sug-graph (MCS) or the minimum edit distance (GED). The classi�cation of an unknown

sample can be achieved by computing the distance between the sample and each cluster's

center �Ci
, assigning the sample to the cluster with the minimum distance.

So, in order to compute the similarity between the Function Call Graphs of the mem-

bers in a cluster and hence the distance of an unknown sample's Function Call Graph

from the center of a cluster, they utilize the aforementioned graph edit distance (GED),

that for any given two graphs G;H it is computed as:

��(G;H) = V ertexCost+ EdgeCost+RelabelCost ; (4.1)

where VertexCost and EdgeCost is the number of inserted or deleted vertices or edges

respectively and RelabelCost is the number of mismatched vertices (functions). Thus,

having already computed the graph edit distance, the similarity of the two graphs is

computed as:

�(G;H) =
��(G;H)

|V (G)|+ |V (H)|+ |E(G)|+ |E(H)|
(4.2)

43

Finally, the center of a cluster is selected as the graph that has the more similarity with

all other graphs in the cluster. Then the computation of the distance between a sample

and the cluster's center is the calculation of the Euclidean distance as:

min
k∑
i=1

∑
��Ci

�(�; �Ci
) (4.3)

where k is the number of prede�ned clusters, and � is the unclassi�ed sample.

4.4.2 Malware Classi�cation using System-Call Dependency Graphs

Another graph-based method for classifying malware is that of leveraging execution trace

in order to construct a behavioural graph, actually by representing system call dependen-

cies. In [46] is presented an approach that utilizes behavioral graph matching in order to

classify an unknown malware sample into a malware family.

Speci�cally, the behavior graph, also called Dynamic System Call Dependence Graph

(DSCDG), is extracted during the suspicious program's execution, representing the system

call sequences and their in between dependencies. Individual system calls are captures by

intercepting every SYSENTER instruction while the sequence is obtained by their traces

when matching their arguments comparing both their type and value [46]. The focusing

in arguments is mostly centralized in speci�c ones such as handles. Thus, when a handle

produces as output from one system call (S1) and then is feeded as input to another one

(S2) then an edge is added from node S1 to node S2.

Thus, the behavioral graph (DSCDG) is de�ned as : G = (N;E; �; u), where N is the

vertex set (System Call : Si � N), E is the edge set (dependency: Si → Sj � E), � is

a node labeling function de�ned as � : N −→ LN assigning system calls to nodes and

u is an edge labeling function respectively, that is de�ned as u : E −→ LE. The main

di�erence between � and u is that u also describes the dependence of two system calls

according to their arguments.

Finally, in order to compute the similarity between two behavioral graphs and hence

utilize it to classify an unknown malware sample the maximal common sub-graph hs to

be computed before they proceed with the computation of the similarity formula. So,

assuming that are given two behavioral graphs G1 and G2 as G = (N1; E1; �1; u1) and

G = (N2; E2; �2; u2), then the G′ = (N ′; E ′; �′; u′) is called common sub-graph of G1; G2

i� there exists sub-graph isomorphism from G′ to G1 and from G′ to G2, while is called

maximal common sub-graph (MCS) when there is no other common sub-graph of G1 and

G2 that include more nodes that G′ [46]. Finally the similarity (distance) between two

given behavioral graphs can be computed as :

D(G1; G2) = 1− |GMCS|
max(|G1|; |G2|)

; (4.4)

where |G| is the size of the vertex set.

44

Chapter 5

Our Model

5.1 Graph Representation of Malicious Software

5.2 Computing the Graph Similarity

5.3 A Graph Based Technique for Malicious Software Detection

5.4 A Graph Based Technique for Malicious Software Classi�cation

5.5 Other Approaches for Malware Detection And Classi�cation

In this chapter we will present the model that we have designed in order to detect and

classify malicious software based on their system-call dependency graphs. As referred in

the literature, system-call dependency graphs exhibit a great potential of representing

malware's functionality and behavior. Speci�cally, since in their general form, graphs

constitute a software's abstraction, they have the ability to capture its interaction with

its environment, in this case the operating system. So, to start with, we �rstly discuss the

representation of malware as a graph, and to be precise the system-call dependency graph

produced during its run-time through taint analysis (see chapter 2.2.1). Secondly, we make

an introduction to the techniques (such as: Jaccard Index, Cosine Similarity, Tanimoto

Coe�cient etc.) that we will be based on, concerning those used in computing graph

similarity in most of time on their intermediate auxiliary representations. Then in the

third section we present and discuss our graph-based proposed technique that we utilize in

malware detection and that leverages system-call dependency graphs. Finally in the last

sectino we will present and describe our also graph-based malware classi�cation technique

that leverages system-call dependancy graphs too, and its application on classifying an

unknown malware into one malware family.

45

5.1 Graph Representation of Malicious Software

The core works that we base our intuition in the use of system-call dependency graphs

are [18, 17, 23] and [3]. To this point, we ought to underline that our work is totally

complement to the aforementioned ones, while we have developed a totally novel interme-

diate graph representation that exhibits an auxiliary functionality in our model while it

can capture and represent a much more abstract depiction of malware's behavior. As we

will describe later in this section, we use the well known classi�cation of system-calls into

classes of similar functionality, constructing �nally a graph that its vertices actually are

super-vertices containing the system-calls captured in the system-call dependency graph

and are from the same class. This sophisticated hyper-abstraction of malware's system-

call dependency graph provides us with the ability of a wider generalization depicting

what actually performs in general.

As we referred in previous chapters, the use of traditional string signature-based detec-

tion is inadequate in detecting morphed malware. So, in order to develop more elaborate

techniques for malware detection and also for classi�cation, the use of more abstract

structures need to be utilized. Thus, we leverage the use of graphs, since as referred in

the literature there have been widely used for this purpose. Indicative and also quite suc-

cessful examples constitute the Function Call Graphs (FCGs), the Control Flow Graphs

(CFGs) from the aspect of static malware analysis and also the System-Call Dependency

Graphs (SCDGs) or behavioral graphs from the aspect of dynamic analysis. To this point

we ought to notice that we will utilize the use of System-Call Dependency Graphs since we

want to leverage the depiction of the behavior of a malware concerning its environment.

Additionally, System-Call Dependency Graphs provide us with information about the real

behavior (actions) performed by the testing malware instead of the other kinds of graphs

that provide information about probable actions since in static analysis the sample has

not been executed.

5.1.1 System-Call Dependency Graph Construction

Generally speaking, the actions performed by a program depicting its behavior, rely on

system-calls in order to be executed. So, capturing the system-calls performed during the

execution of a malware we can represent its behavior interpreting this information with

a graph while we are able to determine malware's intent independently of any implemen-

tation artifacts.

In order to result in the construction of a System-Call Dependency Graph primarily

some operation need to be performed. First the suspicious sample needs to be executed

in a contained environment (i.e. a virtual machine). During its execution time taint

analysis is performed in order to capture system-call traces. As we referred in section

3.3.3 three types of dependence are involved in order to connect system calls. Speci�cally

in order to create the edges of a System-Call Dependency Graph, through taint analysis

are captured the system calls and the arguments they exchange as input/output where

46

the output arguments of one system call are used as input arguments to another one.

So, the constructed System-Call Dependency graph has as its vertex set all the system-

calls that took place during the execution of the suspicious sample while its edge set

consists from the pairs of system call that passed argument the one to the other during

the execution.

Next, we proceed by citing a simple example that includes the system-call trace ob-

tained through taint analysis during the execution of a sample from malware family

Hupigon, and we explain how the SCDG is constructed after the whole process. As

we will also refer to chapter 6, the data set we utilize in order to evaluate the implemen-

tation of our proposed model is downloaded from Domagoj Babic's personal web-page

and is the same data set utilized in [3] for the evaluation of the corresponding model. So

next we describe how is constructed a graph according to the description provided in the

data-set. Before we continue we ought to explain the contents of each column in Table

5.1. In the �rst column there is placed the ID of each system-call captured during the

analysis, while in column 2 is placed the name of each system-call. Finally, in column 3

are cited the number (in terms of cardinality) of input arguments for each system-call,

while in column 4 are cited the number of output arguments for each system-call.

ID System-call Name InArgs OutArgs

0 NtOpenSection 2 1

1 ACCESS-MASK 0 1

2 POBJECT-ATTRIBUTES 0 1

3 NtQueryAttributesFile 1 1

4 NtQueryAttributesFile 1 1

5 NtQueryAttributesFile 1 1

6 NtQueryAttributesFile 1 1

7 NtQueryAttributesFile 1 1

8 NtQueryAttributesFile 1 1

9 NtQueryAttributesFile 1 1

10 NtQueryAttributesFile 1 1

11 NtQueryAttributesFile 1 1

12 NtQueryAttributesFile 1 1

13 NtRaiseHardError 5 0

14 NTSTATUS 0 1

15 ULONG 0 1

16 PULONG-PTR 0 1

17 HARDERROR-RESPONSE-OPTION 0 1

Table 5.1: System Call Traces

47

Having already captured the system-calls that took place utilizing taint analysis and

hence having composed the vertex set, the next step is to create the edge set by connecting

each pair of system-calls that exchange arguments. As depicted in the next table a tuple of

type {sc1:I, sc2:III} indicates that the system-call sc2 takes as her fourth input argument
the second output argument of system-call sc1.

Now, let us give an easy and quite simple example. Let us suppose that we have a

system-call with ID =10 and has 3 input arguments and 2 output argument, then when

it appears as 10:1 in the from side of an edge it indicates that the system call 10 passes

as output her second (because this number is a zero-based index) output argument to

another system-call, while when appears 10:1 in the to side of an edge it indicates that

the system call 10 receives as her second input argument the argument produced from

another system-call. In other words if we have two system-calls the previous one and

another one with ID=12 and who has 2 input and 5 output argument then the expression

(10:0, 12:1) is interpreted as the �rst output argument of system call 10 is passed as the

second input argument to system call 12, while the expression (12:4, 10:2) is interpreted

as the �fth output argument from system-call 12 is passed as the third input argument

to system-call 10.

Trace From out.idx To in.idx assign type edge type

1:0,0:0 1 0 0 0 sc0:in(0)←− sc1:out(0) sc1 −→ sc0
2:0,0:0 2 0 0 1 sc0:in(1)←− sc2:out(0) sc2 −→ sc0
2:0,3:0 2 0 3 0 sc3:in(0)←− sc2:out(0) sc2 −→ sc3
2:0,4:0 2 0 4 0 sc4:in(0)←− sc2:out(0) sc2 −→ sc4
2:0,5:0 2 0 5 0 sc5:in(0)←− sc2:out(0) sc2 −→ sc5
2:0,6:0 2 0 6 0 sc6:in(0)←− sc2:out(0) sc2 −→ sc6
2:0,7:0 2 0 7 0 sc7:in(0)←− sc2:out(0) sc2 −→ sc7
2:0,8:0 2 0 8 0 sc8:in(0)←− sc2:out(0) sc2 −→ sc8
2:0,9:0 2 0 9 0 sc9:in(0)←− sc2:out(0) sc2 −→ sc9
2:0,10:0 2 0 10 0 sc10:in(0)←− sc2:out(0) sc2 −→ sc10
2:0,11:0 2 0 11 0 sc11:in(0)←− sc2:out(0) sc2 −→ sc11
2:0,12:0 2 0 12 0 sc12:in(0)←− sc2:out(0) sc2 −→ sc12
14:0,13:0 14 0 13 0 sc13:in(0)←− sc14:out(0) sc14 −→ sc13
15:0,13:1 15 0 13 1 sc13:in(1)←− sc15:out(0) sc15 −→ sc13
15:0,13:2 15 0 13 2 sc13:in(2)←− sc15:out(0) sc15 −→ sc13
16:0,13:3 16 0 13 3 sc13:in(3)←− sc16:out(0) sc16 −→ sc13
17:0,13:4 17 0 13 4 sc13:in(4)←− sc17:out(0) sc17 −→ sc13

Table 5.2: System Call Dependencies

48

In Table 5.2 the �rst column (trace) represents the tuple as captured from the anal-

ysis, next from column 2 to column 5 we analyze to a further extent the column one

disassembling the aforementioned tuple to its components, in column 6 we present the

corresponding tuple as an assignment of the values from the output argument of the one

system call to the input argument of the other one. Finally, in the column 7 we represent

the resulting edges that has been created from this trace. So, in example, observing the

data from the Table 5.2 we can proceed by constructing the System-Call Dependency

Graph that is a directed acyclic graph (DAG) as presented in Figure 5.1. The vertex set

of this graph is consisted from the system-call that took place during the execution of the

sample and we have captured their trace (Table 5.1) and its edge set is consisted by their

in between dependencies (Table 5.2)

Figure 5.1: System Call Dependecy Graph

In Figure 5.1 we observe how the taint data are exchanged through the captured

system calls and actually how the system call dependencies are created. So, in order

to simplify this abstraction and to conclude to a �nal System-Call Dependency Graph,

speci�c information is eliminated from the scheme resulting to the graph presented in

Figure 5.2. In the resulting graph the vertex names are composed by the SC (stands fo

system-call) followed by the corresponding system-call's ID.

To this point we ought to refer that the all the distinct dependencies to system-

call NtQueryAttributesFile have been merged to one edge leading to one single vertex.

However, we need to explain that we represent the graph in this way just for simplicity,

49

because as we will refer next, the information of the number of edges from one system

call to another (independently of if it is repeated) is quite valuable since we will need to

use it for our model in the computation of similarity either for detection or classi�cation.

Figure 5.2: Simpli�ed System Call Dependecy Graph

5.1.2 G
∗ an Auxiliary Hyper-Abstraction of SCDG

Through the literature, all the works that evolve the use of System-Call Dependency

Graphs to perform malware detection and classi�cation are utilizing the graph repre-

sented in Figure 5.2. However, despite the fact that this approach seems to works �ne

because of the abstraction it provides, in this work we decided to depart from the trodden,

demanding even higher levels of abstraction and hence higher generalizability and elastic-

ity. Thus, we decide to leverage the classi�cation of each individual system-call of windows

into classes of similar functionality concerning a speci�c resource. The aforementioned

grouping of system-calls of course was not made randomly, when we used a speci�c tool

for system-call capturing instead. To be more precise we utilized the grouping provided

by the con�guration �le of NtTrace [45] where each system-call has a detailed description

including its type. So, leveraging this quite valuable information we formed these data

in order to have a mapping from each individual-system call to one group. Then having

this mapping we are ready to proceed to the hyper-abstraction of each given System-Call

Dependency Graph. To this point we ought to make clear that in our proposed model

only the aforementioned hyper abstractions are used for both detection and classi�cation.

50

Before we proceed with the de�nition of the Hyper-Abstraction of the System-Call

Dependency Graph we ought to de�ne the mapping function that is responsible for the

mapping of the system calls to their corresponding groups and hence is responsible for

the construction of super vertices.

De�nition 5.1 Let us assume that we are given a System-Call Dependency Graph lets

say G, then a mapping function for the vertices of G is a transition where all vertices

(System-Calls) are replaced by their group C (stands for class) resulting to multiple ap-

pearances of the same vertex.

Having already de�ned how the system-calls are mapped to their group the next step

is to construct the G∗ as a hyper-abstraction of G. In order to construct the G∗ all

the homonym vertices are merged to one super-vertex and any edges incoming or outgo-

ing from or to other vertices are turned to edges between super-vertices with the same

direction. Finally, duplicate edges are kept in order to indicate the importance of the

intercommunication between any pair of system-call groups.

De�nition 5.2 Let us assume that we are given a System-Call Dependency Graph lets

say G, then a hyper-abstraction G∗ is a graph that its vertex set is the number of dis-

tinct groups of system-calls appeared as vertices in G consisted actually by super-vertices

and its edge set is the number of edges appeared in G and hence between the super-

vertices in G*. Thus, formally speaking, a hyper-abstraction of G = (V;E) is a graph

G∗ = (V ′; E ′;m), where:

• the set of vertices V ′ corresponds to system-call groups from C that appeared in G,

• the set of edges E ′ ⊆ V × V and E ′ = E correpsonds to dependencies between

system-calls,

• the mapping function m : V ′ = V → C associates vertices (system-calls) with the

system-call group that they belong to

Next, in Figure 5.3 we use as an example the System-Call Dependency Graph presented

in Figure 5.1. So, given a System-Call Dependency Graph and utilizing a pre-classi�ed

set of system-calls into groups we are able to construct a hyper-abstraction of the given

graph. To start with, we �rst substitute each vertex with his system-call's corresponding

group and then merge all the vertices that are of the same group (homonym). To this

point it is extremely signi�cant to underline and make clear that the produced graph lacks

of one property that traditional System-Call Dependency Graphs have and it is that the

G∗ is not acyclic. As easily one can understand, by merging vertices it is very probable

to create circles because, while the number of edges remains the same, their end-points

are �nally concentrated between less vertices. Indicateve example consists the creation of

a self-loop in Figure 5.3.

51

Figure 5.3: Hyper-Ábstraction G∗

52

Group ID Group Name Group Tag Group Cardinality

1 ACCESS MASK AM 1

2 Atom AT 5

3 BOOLEAN BO 1

4 Debug DB 17

5 Device DE 31

6 Environment EN 12

7 File FI 44

8 HANDLE HD 1

9 Job JB 9

10 LONG LN 1

11 LPC LP 47

12 Memory MM 25

13 NTSTATUS NT 1

14 Object OB 19

15 Other OT 36

16 PHANDLE PH 1

17 PLARGE INTEGER PI 1

18 Process PR 49

19 PULARGE INTEGER PS 1

20 PULONG PU 1

21 PUNICODE STRING UI 1

22 PVOID SIZEAFTER VS 1

23 PWSTR WS 1

24 Registry RG 40

25 Security SC 36

26 Synchronization SN 38

27 Time TM 5

28 Transaction TN 49

29 ULONG UL 1

30 WOW64 WW 19

Table 5.3: System Call Groups

53

In Table 5.3 we present the groups of system calls and the number of system-calls that

each group includes. To this point, we ought to notice that the vertex set of G∗ depends on

the type of distribution followed by the vertices of the primary System-Call Dependency

Graph when they are arranged in groups. What we mean is that, if in example the system-

calls appeared in the vertices of System-Call Dependency Graph are uniformly arranged

in the de�ned groups then we have a larger shrinkage on the size of the produced graph

when we transit form G to G∗, while when a Power-Law or a Gaussian distribution is

followed, then the size of the produced graph will exhibit a lower shrinkage.

5.2 Graph Similarity

In this section we describe the representation of mawlare by its System-Call Depndency

Graph, how malware is organized into malware families and make a brief introduction to

knwon similarity metrics that we will utilize in our model.

5.2.1 Graph Representation

As we referred above the auxiliary graph that consists hyper-abstraction of a given System-

Call Dependency Graph (let us say G), the so called G∗ has as its vertex set the groups

of system calls that appeared in G. Additionally the number of all groups as depicted in

Table 5.3 is 30. So, since the number of appeared vertices is �xed to at most 30 easily one

can conclude that any given graph can be represented with a �xed size adjacency matrix

with dimensions 30× 30. thus next we cite an example of such a representation in Figure

5.4 keeping the paradigm of Figure 5.3.

As easily one can understand, since the graph is directed the resulting adjacency

matrix is non symmetric. Additionally, we ought to notice that in the adjacency matrix

are also included the isolated vertices, meaning the groups of system-calls that do not

appear in the initial System-Call Dependency Graph. Thus, for a cell with coordinates

x; y if it has a zero value it means that there is no edge from a system-call of group x

to a system-call of group y, while if there is a non-zero value in that cell it respectively

means that there are as many edges as the value in the cell from at least one system-call

belonging to group x to at least one system-call belonging to group y.

To this point, we ought to repeat, in order to make clear, that the reason that we need

any non-zero value and not only the ace, is the fact that this information is quite valuable

so for the signi�cance of the intercommunication of any two system-call group as for the

utilization by metrics that take as input continuous values such as Bray-Curtis, Cosine

Similarity and Tanimoto Coe�cient that we use extensively in our formulas and we will

discuss in the next subsection.

54

Figure 5.4: Adjacency Matrix from G∗

5.2.2 Malware Families and Sample Structure

Even though we have dedicated an individual chapter where we describe our experimental

setup and our dataset's structure and indexing into malware families, in this section we

ought to cite a brief description in order to be more easy for the reader to understand

how our technique works. So, as depicted in Figure 5.5, while malware samples are

55

Figure 5.5: Organization of samples into malware families represented by G∗ sets

organized into families and each sample is represented with an abstraction of its System-

Call Dependecy Graph, the so called G∗, each mawlare family is consisted by a set of of

G∗s with cardinality equal to her members.

5.2.3 Graph Similarity Metrics

Having already composed the theoretical background on about how we construct the

hyper-abstraction graph G∗ that we will utilize in our model, now we can proceed by

discussing the similarity metrics that we will use in order to compute the similarity be-

tween any two graphs. In our approach we do not use directly one such metric in order to

determine about the detection and the classi�cation of an unknown sample. Instead, we

combine either multiple metric in one formula or multiple formulas that already combine

multiple metrics in order to provide results concerning the detection and classi�cation, as

we will show in later sections. However, to start with, in this section we make an brief

introduction to the similarity metrics that we apply in order to compute the similarity

between any two graphs and later we discuss how we leverage them by combining multiple

similarity metrics in order to develop formulas that serve our purposes.

(A) Jaccard Index

Also known as Jaccard Similarity Coe�cient. The Jaccard Index is used in order to

compute the similarity between any two �nite sample sets (vectors). However the main

drawback of this similarity metric is the fact the it can be applied only on binary data

(values 1 or 0) indicating respectively the existence or not of the ith term in the two

vectors. The result of the Jaccard similarity metric lies in the range [0; 1]. Jaccard Index

can be computed as the size of the intersection divided by the size of the union of the

56

sample sets. So for two given binary vectors (A;B) of length n both of them, the Jaccard

Index is de�ned as:

J(A;B) =
|A ∩B|
|A ∪B|

=
|(Ai = 1 ∧Bi = 1)|

|n|
∀i ∈ [0; n− 1] (5.1)

So in order to compute the Jaccard index between any two adjacency matrices we sum

every cell that has non-zero values to both matrices, as if a cell with coordinates x; y

is non-zero into both adjacency matrices then the numerator is increased by one, while

the denominator is the sum of all the cells that at least in one of adjacency matrices has

non-zero value. However, to this point we ought to notice that if two corresponding cells

have both zero values it is quite important as the inexistence of an edge may consist a

qualitative characteristic of a family as we will discuss later.

(B) Bray-Curtis Dissimilarity

Bray-Curtis dissimilarity (Bray Curtis 1957) is a metric mostly used to derive relation-

ships in ecology and environmental sciences.Bray-Curtis dissimilarity is de�ned as the sum

of all di�erences of the values in each cell divided by the sum of all sums of the values in

each cell. The result of the Bray-Curtis dissimilarity metric lies in the range [0; 1]. So, the

Bray-Curtis dissimilarity for two bi-dimensional matrices A;B of size (n×n) is computed
as follws:

BCD(A;B) =

n−1∑
i=0

n−1∑
j=0

|Ai;j −Bi;j|

n−1∑
i=0

n−1∑
j=0

|Ai;j +Bi;j|
(5.2)

One main advantage that this metric provides, is the fact that it can be applied on

continuous values, that is quite helpful for our approach since we can leverage the number

of occurrences of each particular edge.

(C) Cosine Similarity

The Cosine similarity is mostly used for checking text document similarity where the

vectors A and B are referred to term/words frequencies and each one is de�ned as the

union of the words of the two texts. The Cosine Similarity measures the cosine of the angle

between two vectors of an inner product space. Of course, like in almost all the similarity

metrics its result lies in the range [0; 1]. The cosine of two vectors A;B (probably of

di�erent size) can be computed via the Euclidean dot product as A ·B = ‖A‖‖B‖cos� as:

similarity = cos(�) =
A ·B
‖A‖‖B‖

=

n∑
i=1

(Ai ×Bi)√
n∑
i=1

(Ai)2 ×
√

n∑
i=1

(Bi)2
(5.3)

57

Thus, easily one can understand that the cosine similarity can be applied by our model

substituting the words and their corresponding frequencies with edges and the times of

their appearance sthat are all stored in the adjacency matrix.

(D) Tanimoto Coe�cient

The Tanimoto Coe�cient is many time confused with Cosine Similarity since the both

have similar algebraic forms. The Tanimoto coe�cient is a mechanism for computing the

Jaccard coe�cient when the set under comparison are represented as bit vectors. Since

the formula can be extended to be applied on vectors in general and since has similar

properties with the Cosine similarity we utilize this metric to our model too. So, the

Tanimoto coe�cient fow two vectors A;B of length n can be computed as:

T (A;B) =
A ·B

‖A‖2 + ‖B‖2 − (A ·B)
=

n∑
i=1

(Ai ×Bi)

n∑
i=1

(Ai)2 +
n∑
i=1

(Bi)2 −
n∑
i=1

(Ai ×Bi)
(5.4)

5.3 Graph Based Malicious Software Detection

In this section we will describe our proposed technique for detecting unknown malware

samples utilizing graph-based techniques that leverage System-Call Dependency Graphs.

We present the development of a formula for calculating a value responsible for the detec-

tion of an unknown malware sample, that combines the information provided by known

malware families according to qualitative characteristics resulting from its one, and simi-

larity metrics such as the Jaccard index and the Bray-Curtis dissimilarity.

5.3.1 Detection Based on Family Qualitative Characteristics

As we referred across chapter 4, malware samples belonging to an individual malware

family tend to share common characteristics. This is a quite valuable information, that

we leveraged in order to develop a technique that will utilize these characteristics in order

to result to if an unknown sample is malare or not.

To this point, we ought to refer a fact that intrigues our interesting and this is that

the method we have developed for detection is family-based meaning that it utilizes infor-

mation gathered across all the members of a family, while, instead, the method we have

developed for classi�cation is member-based since it is utilizing information gathered from

a speci�c member in each family. However, through experiments, we observed that the

family-based similarity metric we developed derived better results for detection while the

member-based one derived better results for classi�cation. As we referred above, mem-

bers who belong to the same malware family tend to share common characteristics. So,

based on this we developed the notion that these characteristics should be mirrored on

the System-Call Dependency Graph and hence to its abstraction G∗.

58

De�ning the term characteristic when working on G∗, we could claim that a charac-

teristic is an edge between two system call classes, since in order for a speci�c task to be

performed, system-calls of speci�c functionality need to be utilized and of course in dif-

ferent malware variants they can be substituted by equivalent ones. Thus we decided on

focusing on edges that the most members in a family have them in their G∗s and hence

they constitute a qualitative characteristic of a family. So, easily one can understand

that if in a family of 100 members the 90 have a speci�c edge then this edge is of major

importance, instead with another one that exists in only 10 members in the same family.

So, in order to append weights to each existed edge in every member of a family we

should check how many times an individual edges appears across the members of a family.

Thus, utilizing the adjacency matrixs that represent the G∗ of each member, we created

an auxiliary adjacency matrix for each family, where its each cell (edge) includes a value

that represents its importance by depicting in how many members' G∗ this speci�c edge

appears, expressed in a percentage ratio.

Figure 5.6: Zone Adjacency Matrix Construction

To this point we ought to underline that the values in each cell of each adjacency

matrix vary in the range from 0 to the number of edges existed in the initial System-

Call Dependency Graph, however we increment the counter only once if and only if there

does exist non-zero value in the cell. So, having collected this valuable information we

can proceed by �ltering it as to decide the important edges that �nally will consist the

characteristics of each family.

59

Having compute the percentage of appearance of each edge in the auxiliary adjacency

matrix we can proceed by assigning weights to each cell (edge) on this matrix. In order

to assign weights we divide the values (ranging from 0 to 100) to three zones. However,

before we assign the importance tags we ought to de�ne the zone ranges. So, we �rst

de�ne a threshold about 95% and the zones are arranged based on this threshold. Thus,

we mark each cell either with important zone tag that covers cells that include values in

the range [0.95 - 1], or with gray zone tag that covers cells that include values in the range

(0.05 - 0.95), or with zone of inexistence tag that covers cells that include values in the

range [0- 0.05]. In Figure 5.6 we cite a simple example of how we assign the importance

tags in the auxiliary family-level zone adjacency matrix.

Figure 5.7: Accumulative Adjacency Matrix Construction

Once we have created our �rst auxiliary adjacency matrices that include the zones

of importance for each family based on their members we can proceed by creating one

more kind of auxiliary matrices that are accumulative concerning the values in each cell,

meaning the mean value of the existed edges in each member's G∗. So, the main target is

to �nd the non-zero values in each cell of each member's G∗, and then �nd the mean of

them. To this point we ought to notice that we do not divide by the total number of cells

(number of members in this family) but instead, we divide by the number of non-zero cell

found during the search. A brief depiction of the whole process for the construction of

the accumulative adjacency matrix is depicted in Figure 5.7.

60

5.3.2 Malware Detection Formula Components

Having already constructed our auxiliary adjacency matrices, we can then proceed by

de�ning the component that compose our formula for malware detection. Next we enu-

merate them and provide a description based on what we have described until now.

(A) Family-side Fitting (4→ 1 matching)

The Family-side �tting is a similarity metric that we have developed and focuses on

compute the similarity between the test sample and any malware family based on the

family's zone adjacency matrix. The main purpose of this metric is to compute the rate

of satis�ability on the qualitative characteristics of any family by a test sample. Next we

enumerate the steps followed for the computation of Family-side Fitting similarity.

1. In order to compare the test sample's adjacency matrix with the zone adjacency

matrix of one family, we �rst need to make a cast on test sample's adjacency matrix.

As we referred above the test sample's adjacency matrix includes cell that either

have zero values or non-zero ones. So, we cast any non-zero values existed in test

sample's adjacency matrix into aces.

2. The next step, that is the main process of this similarity metric is to cover in some

fashion the family's zone adjacency matrix with the test sample's adjacency matrix

and count how many aces (TS[i; j] = 1) of test sample's adjacency matrix �t on cells

of family's zone adjacency matrix that have an important zone tag (FM [i; j] = 4).

3. Next, we count the total number of cells in family's zone adjacency matrix that have

an important zone tag.

4. Finally, all we do is to divide the number of cells with non-zero value in test sam-

ple's adjacency matrix that �t on cells with important zone tag in family's zone

adjacency matrix by the total number of cells with important zone tag in family's

zone adjacency matrix. Thus, the formula for computing the Family-side Fitting

similarity metric is as follows:

Sim4→1(FM; TS) =
|FM ∩4→1 TS|
|FM [i; j] = 4|

; ∀ 0 ≤ i; j < n ; (5.5)

where n is the size of familiy's zone adjacency matrix and test sample's casted

adjacency matrix, FM is the family's zone adjacency matrix, TS is the test sample's

casted adjacency matrix and |FM ∩4→1 TS| = |FM [i; j] = 4 ∧ TS[i; j] = 1|i;j≤ni;j=0

61

(B) Sample-side Fitting (1→ 4 matching)

The Sample-side �tting is also a similarity metric that we have developed and while

it seems quite the same with the Family-side �tting similarity it di�erentiates in the fact

that it focuses on computing the similarity between the test sample and any malware

family based on the test sample's adjacency matrix. The main purpose of this metric is to

compute the rate of satis�ability in terms of edge existence of a test sample's adjacency

matrix by the qualitative characteristics of any family represented by her zone adjacency

matrix. Next we enumerate the steps followed for the computation of Sample-side Fitting

similarity. The steps are almost the same as in the ones followed in the computation of

Family-side �tting similarity.

1. In order to compare the test sample's adjacency matrix with the zone adjacency

matrix of one family, we �rst need to make a cast on test sample's adjacency matrix.

So, we cast any non-zero values existed in test sample's adjacency matrix into aces.

2. The next step, that is the main process of this similarity metric is to cover in some

fashion the test sample's adjacency matrix with the family's zone adjacency matrix

and count how many cells of family's zone adjacency matrix that have an important

zone tags (FM [i; j] = 4) �t on cells having aces (TS[i; j] = 1) on test sample's

adjacency matrix.

3. Next, we count the total number of cells in test sample's adjacency matrix that have

non-zero value (TS[i; j] = 1) .

4. Finally, all we do is to divide the number of cells with important zone tag in family's

zone adjacency matrix that �t on cells with non-zero value in test sample's adjacency

matrix by the total number of cells with non-zero value in test sample's adjacency

matrix. Thus, the formula for computing the Sample-side Fitting similarity metric

is as follows:

Sim1→4(TS; FM) =
|TS ∩1→4 FM |
|TS[i; j] = 1|

; ∀ 0 ≤ i; j < n ; (5.6)

where n is the size of familiy's zone adjacency matrix and test sample's casted

adjacency matrix, FM is the family's zone adjacency matrix, TS is the test sample's

casted adjacency matrix and |TS ∩1→4 FM | = |TS[i; j] = 1 ∧ FM [i; j] = 4|i;j≤ni;j=0

(C) Mean and Max Jaccard Similarity

One more component we utilize to empower our formula for malware detection is the

Jaccard index. The reason that we choose to utilize the Jaccard similarity is the fact that

62

since this similarity metric is mostly applied on binary vector and since an ace or a zero

can indicate the existence or nonexistence respectively of an edge it seemed to work �ne

for the qualitative comparison between two objects in terms of edge existence, while the

quantitative one can be measure using the Bray-Curtis similarity as we will discuss next.

So, we utilize two times the Jaccard index as to compute �rstly the mean similarity

between the sample and all the members of a malware family and then we keep only the

maximum value produced by the most similar member of the family to the sample. Next

we enumerate the steps followed for the computation of Jaccard similarity

1. Before we start with the computation of similarity, we ought to notice that since

working with the Jaccard similarity we need to cast both the adjacency matrices

the one of each member and the one of the test sample to having as values zeros or

aces. So, we �rst cast each value greater than zero to ace, and then we leave as it

has, each value that equals to zero.

2. To this point we can point that the computation of the mean and the max Jaccard

similarity can be performed synchronously. So, we �rst compute the Jaccard simi-

larity between the test sample and each member of a family by counting the number

of cells that in both adjacency matrices have non-zero value (both having aces) and

then dividing by the number of cells that have ace in at least one of the adjacency

matrices (either the one o family member's or the one of test sample's) have aces.

The formula for computing the Jaccard similarity between a test sample and a family

member can be computed as follows:

J(TS;M) =
|TS ∩1→1 M |

|TS ∩1→1 M |+ |TS ∩1→0 M |+ |TS ∩0→1 M |
; (5.7)

where M is the member's casted adjacency matrix, TS is the test sample's casted

adjacency matrix and

|TS ∩1→1 M | = |TS[i; j] = 1 ∧M [i; j] = 1|,
|TS ∩1→0 M | = |TS[i; j] = 1 ∧M [i; j] = 0|,
|TS ∩0→1 M | = |TS[i; j] = 0 ∧M [i; j] = 1|; ∀ 0 ≤ i; j < n.

3. Then, we check the current value of the Jaccard similarity between the test sample

and the current member of a malware family and we store it if it is the maximum

computed until now for this family as:

Jmax(TS; FM) = max[J(TS;Mi)]
n
i=1 ; (5.8)

63

where n is the cardinality of the set (members in this family),Mi is the i
th member's

casted adjacency matrix, FM is the malware family that the member belongs to,

and TS is the test sample's casted adjacency matrix.

4. Finally, having computed the Jaccard similarity between the test sample and each

member of a mawlre family, we sum the values and divide them by the number

of members in this family. Thus, the formula for computing the Mean Jaccard

similarity is as follows:

Jmean(TS; FM) =

n∑
i=0

J(TS;Mi)

n
; (5.9)

where FM is the family set, n is the cardinality of the set (members in this family),

Mi is the i
th member's casted adjacency matrix and TS is the test sample's casted

adjacency matrix.

(D) Mean and Max Bray-Curtis (Dis)Similarity

The last component we utilize to empower our formula for malware detection is the

Bray-Curtis dissimilarity. The reason that we choose to utilize the Bray-Curtis dissimi-

larity is the opposite of that of why we used Jaccard index as Bray-Curtis dissimilarity

metric is mostly applied on continuous data and since any non-zero value in the adjacency

matrices indicate the existence and the cardinality of an edge it seemed to work �ne for

the quantitative characteristic comparison between two objects in terms of edge existence

or nonexistence and in the case of edge existence of edge cardinality respectively.

So, as in the case of Jaccard index, we utilize two times the Bray-Curtis dissimilarity

as to compute �rstly the mean similarity (1-dissimilarity) between the sample and all the

members of a malware family and then we keep only the maximum value produced by the

most similar (least dissimilar) member of the family to the sample. Next we enumerate

the steps followed for the computation of Bray-Curtis Dissimilarity. To this point, it is

notable to refer that for the computation of the mean Bray-Curtis dissimilarity we can

both utilize either each member's initial adjacency matrix or the family-level accumulative

adjacency matrix we describe in the previous section. In the next step we describe both

the computation of Bray-Curtis using either each member's initial adjacency matrix or

the family-level accumulative adjacency matrix. Before we start we can point that the

computation of the mean and the max Jaccard similarity can be performed synchronously.

64

1. So, we �rst compute the Bray-Curtis dissimilarity between the test sample and each

member of a family by summing the di�erences between any pair of respective cells

in both test sample's and member's initial adjacency matrix. Then we sum the sums

of the values in any pair of respective cells in both test sample's and member's initial

adjacency matrix. So,the formula for computing the Jaccard similarity between a

test sample and a family member can be computed as follows:

BCD(TS;M) = 1−

n−1∑
i=0

n−1∑
j=0

(TS[i; j]−M [i; j])

n−1∑
i=0

n−1∑
j=0

(TS[i; j] +M [i; j])

; (5.10)

where n is the size of the adjacency matrix, M is the member's initial adjacency

matrix and TS is the test sample's initial adjacency matrix

2. Then, we check the current value of the Bray-Curtis dissimilarity between the test

sample and the current member of a malware family and we store it if it is the

maximum computed untill now for this family as:

BCDmax(TS; FM) = max[BCD(TS;Mi)]
n
i=1 ; (5.11)

where n is the cardinality of the set (members in this family),Mi is the i
th member's

initial adjacency matrix, FM is the malware family that the member belongs to,

and TS is the test sample's initial adjacency matrix.

3. Finally, having computed the Bray-Curtis dissimilarity between the test sample and

each member of a malware family, we sum the values and divide them by the number

of members in this family. Thus, the formula for computing the Mean Bray-Curtis

dissimilarity is as follows:

BCDmean(TS; FM) =

n∑
i=0

BCD(TS;Mi)

n
; (5.12)

where FM is the family set, n is the cardinality of the set (members in this family),

Mi is the i
th member's initial adjacency matrix and TS is the test sample's initial

adjacency matrix.

65

Alternatively, we can compute the Mean Bray-Curtis dissimilarity by computing

the Bray-Curtis dissimilarity by modifying the equation 5.10 as to compare the test

sample's initial adjacency matrix with the family's accumulative adjacency matrix

as:

BCD(TS; FM) = 1−

n−1∑
i=0

n−1∑
j=0

(TS[i; j]− FM [i; j])

n−1∑
i=0

n−1∑
j=0

(TS[i; j] + FM [i; j])

; (5.13)

where n is the cardinality of the set (members in this family), FM is the family's

accumulative adjacency matrix and TS is the test sample's initial adjacency matrix

5.3.3 Malware Detection using NP-Similarity

The NP-similarity metric is a formula that we have developed in order to be able to

detect if an unknown sample is a malicious or a benign one. The comparison is performed

between an unknown sample and a malware family. So given an unknown sample and a

series of malware families we can decide according to the results of NP-similarity metric if

the given sample is malware or not. Actually we compute the NP-similarity between the

sample and each family and keep the maximum value computed from the sample and each

family. Then if the maximum value is below a pre-speci�ed threshold then the unknown

sample is benign or malware otherwise.

To start with, we ought to remind that the formula is actually a complex type of all

the aforementioned similarity metrics of the previous section. However, we decided to

assign di�erent weights on to each one as they provide information about the similarity

on di�erent areas such as the satis�ability of family or sample qualitative or quantitative

characteristics. So next, we cite the steps for the composition of the formula for the

computation of NP-similarity and �nally we present the computation of the formula,

consisted by three components let us say F1; F2 and F3. To this point we must declare

that we have de�ne four factors: a = 4; b = 2; FA = 1:5 and FB = 1:2.

1. To start with, we compute the �rst component of the formula that describes the

qualitative satis�ability between the sample and a malware family by computing

the Family-side Fitting similarity and the Sample-side Fitting similarity, between

the test sample and the current family as they presented in equations 5.5 amd 5.6

respectively. Then we apply the factors as follows:

66

F1 =


((a× S4→1) + (b× S1→4))× FA , i� S4→1 = S1→4 = 1

((a× S4→1) + (b× S1→4))× FB , otherwise

where S4→1 = Sim4→1(FM; TS) and S1→4 = Sim1→4(TS; FM)

2. Then we proceed by computing the second component of the formula that describes

the existential satis�ability between the sample and a malware family as described

by the Jaccard index. So, we compute and then assign the corresponding weights

on the max Jaccard and mean Jaccard similarities between the test sample and the

current malware family as presented in equations 5.8 and 5.9 respectively, as follows.

F2 = (b× J) + (a× Jmax) ; (5.14)

where J = Jmean(TS; FM) and Jmax = Jmax(TS; FM).

3. Then we proceed by computing the �nal component of the formula that describes

the qualitative satis�ability between the sample and a malware family as described

by the Bray-Curtis dissimilarity. So, we compute and then assign the corresponding

weights on the max Bray-Curtis and mean Bray-Curtis (dis)similarities between the

test sample and the current malware family as presented in equations 5.1 and 5.12

- 5.13 respectively, as follows.

F3 = (b×BCD) + (a×BCDmax) ; (5.15)

where BCD = BCDmean(TS; FM) and BCDmax = BCDmax(TS; FM).

4. Finally we combine the three pre-computed components F1; F2 and F3 in order to

compose the �nal type of the formula by the product of the equations 5.14, 5.15

and 5.16 as:

NP = F1 × F2 × F3 (5.16)

After computations clears that the NPsim is maximized when all the included sim-

ilarities result in ace, while its max value is 324 and so a further normalization can

be performed when dividing by the maximum value as follows:

67

NP =
F1 × F2 × F3

324
(5.17)

So, as we will present in the corresponding chapter of experimental results this technique

can result with extremely high detection rate while exhibiting low false positive rates. To

this point it is worth notable to refer that, as we will discuss later, it is proven through ex-

periments that NP-similarity is in position to perform a crystal clear distinction between

malware and benign programs using a quite low threshold, since of course is leveraging ex-

istential, qualitative and quantitative characteristics expressed through known malwares'

System-Call Dependency Graphs.

5.4 Graph Based Malicious Software Classi�cation

In this chapter we will present a series of approaches we have utilized in order to classify

an unknown test sample to exclusively one of a series of given malware families. We

�rstly present how each technique works and then we discuss how we compose them, and

how we actually use them as a series of �lters, in order to achieve the optimal possible

classi�cation of an unknown sample. To this point we ought to refer that just like in

our proposal for malware detection we are based again on combinatorial approach we

followed in NP-similarity. However, having already tried the NP-similarity in malware

classi�cation experiments we observed that it was not so e�ective as expected, and hence

we should proceed by a more straightforward approach such as performing direct similar-

ity computation on the initial and casted adjacency matrices using only the traditional

similarity metrics.

5.4.1 Malware Classi�cation Filters

In order to perform malware classi�cation, we choose to omit the family's qualitative char-

acteristics and proceed by compare only the test sample with each member inside each

family. Our main target is to keep the highest similarity result exhibited by a member

of a family as representative of this family and then to classify the test sample to the

family in which belongs the representative that is most similar to the sample. In other

words, given f malware families we measure the similarity between the test sample and

each member in each family and keep the top similar result for each family resulting to f

similarity results, one for each family. Then the approach is straightforward as we classify

the test sample to the family that served the top value among f . However, in case of tie we

proceed to next series of corresponding result produce by other similarity metrics (�lters).

So as easily one can understand, since the �lter have di�erent classi�cation ability, the

�nal classi�cation results depend on the �lter sequence. Next we present the components

of our classi�cation method.

68

(A) SaMe: Sample - Member Optimal Fitting

The most straightforward approach for classifying an unknown sample is to measure its

similarity with all the known sample (members in each family) and then to classify it to

the family that belongs the most similar known sample (member of this family). This

approach is based on the intuition that it is probable enough that the unknown sample

is directly correlated through phylogeny with its most similar known sample either as a

descendant or as ancestor.

So, in order to capture so the quantitative as the existential characteristics we pro-

pose a combination of Jaccard index, Bray-Curtis Dissimilarity and Cosine similarity and

Tanimoto coe�cient, that we call SaMe (stands for SAmple-MEmber) similarity. Next,

we cite the steps followed for the construction of the combination of metrics, just like in

NP-similarity and �nally how we compute the similarity between an unknown sample and

each member of each family using the SaMe similarity. The steps presented below are

followed in order to �nally compute the SaMe similarity for each member of a family.

1. First, in order to measure the similarity in edge existence level we compute the Jac-

card index between the test sample and the current member of a family J(TS;M),

utilizing their casted adjacency matrices as we already presented in equation 5.7

2. Next, in order to capture the qualitative characteristics of each member and to

a greater extent of its corresponding family we proceed by computing the Bray-

Curtis dissimilarity between the test sample and the current member of a family

BCD(TS;M), utilizing their initial adjacency matrices as we already as presented

in equation 5.10

3. Emphasizing on capturing the qualitative characteristics we similarly compute the

Cosine similarity between the test sample and the current member of a family uti-

lizing their initial adjacency matrices as presented below:

CS(TS;M) =

n−1∑
i=0

n−1∑
j=0

(TS[i; j]×M [i; j])√
n−1∑
i=0

n−1∑
j=0

TS[i; j]2 ×
√

n−1∑
i=0

n−1∑
j=0

M [i; j]2

(5.18)

4. Insisting on capturing the qualitative characteristics, we additionally compute the

Tanimoto coe�cient between the test sample and the current member of a family

utilizing their initial adjacency matrices as presented below:

69

T (TS;M) =

n−1∑
i=0

n−1∑
j=0

(TS[i; j]×M [i; j])

n−1∑
i=0

n−1∑
j=0

TS[i; j]2 +
n−1∑
i=0

n−1∑
j=0

M [i; j]2 −
n−1∑
i=0

n−1∑
j=0

(TS[i; j]×M [i; j])

(5.19)

5. Having computed all four components J(TS;M); BCD(TS;M); CS(TS;M) and

T (TS;M) in order to compose the �nal type of the formula by the product of the

aforementioned similarity metrics as:

SaMe(TS;M) = J(TS;M)×BCD(TS;M)× CS(TS;M)× T (TS;M) (5.20)

6. Having completed the computation of the SaMe similarity metric between the test

sample and a member of a family we repeat the whole process for all the members

of this family keeping the maximum value that appears in this family as.

SaMemax(TS; FM) = max[SaMe(TS;Mi)]
n
i=1 ; (5.21)

where n is the cardinality of the set (members in this family),Mi is the i
th member's

initial adjacency matrix, FM is the malware family that the member belongs to,

and TS is the test sample's initial adjacency matrix.

7. Then we repeat again for all the members of all the other families as before and

�nally keep as the dominant family the one that includes the member that exhibits

the maximum value of similarity with the test sample according to SaMe similarity.

The typical depiction of the above is the following:

Fdominant = max[SaMemax(TS; FMf)]
N
f=1 ; (5.22)

where N is the number of all families.

70

(B) Conscripting NP-Similarty for Malware Classi�cation

As we referred in the introduction of the section, the NP similarity by itself is not as

e�ective as expected and hence it can not be utilized by itself for malware classi�cation.

However, we observed experimentally that if combined with SaMe similarity it can yield

even more higher classi�cation rates than SaMe by itself. So, since NP similarity enforces

SaMe we decided to combine them in order to construct one more classi�cation �lter.

The most interesting point in the combination is the way it is done. Actually we

measure the similarity between the test sample and a member of a malware family using

SaMe similarity and then we patch in some fashion the di�erence from the perfect matching

using NP similarity. So, in other words, we use for computig the similarity of the two

objects while conscripting NP to recompute it but in the percentage their dissimilarity as

described by the next steps:

1. Firstly we compute the NP similarity between the test sample and an individual

mawlare family as described by the equation 5.16.

2. Next, we proceed by computing the SaMe similarity between the test sample and

the selected malware family as described by the equation 5.21.

3. Having already computed the NP and the SaMe similarity between the test sample

and a malware family, we can proceed by computing their combination as described

by the next equation

SNP
SaMe(TS; FM) = [SaMemax(TS; FM)] + [SaMe

′
max(TS; FM)×NP (TS; FM)] ; (5.23)

where SaMe
′
max(TS; FM) = (1− SaMemax(TS; FM)).

4. Finaly as before, we can keep as the dominant family the one that exhibits the

maximum values in the equation 5.23 as:

Fdominant = max[SNP
SaMe(TS; FMf)]

N
f=1 ; (5.24)

where N is the number of all families.

71

(C) Retrieving Malware's Kernel Computing The MSCC of G∗

In this part we propose a quite alternative approach, where we leverage pure graph-

theoretic background in order to develop an elaborate technique for malware classi�cation.

To be more precise, we take into account the Maximum Strongly Connected Component

(MSCC) of a given graph and also all the Strongly Connected Components that appear in

it and leverage them in order to capture characteristics that consecutively will be utilized

in malware's classi�cation.

Next we present the tow approaches that we follow starting from inside out, present-

ing �rstly the Kernel similarity measuring the percentage in the mapping of vertices in

each strongly connected component of a known samples graph on the test samples maxi-

mum strongly connected component and then the Cover similarity where we measure the

percentage of common vertices that are linked to the common vertices in the maximum

strongly connected components of a known and an unknown sample.

Before we start, we ought to refer that our approach of treating malware's System

Call Dependency Graph as an object that has cover and kernel is de�nitely not random,

as our intuition is based on the real-life biological cells that also have a kernel surrounded

by a semi-permeable cellular membrane that works as a cover and is responsible for its

intercommunication with its environment. Thus, making the parallelism, the kernel is

consisted by the maximum strongly connected component and the cover is consisted by

the rest of the vertices that, while they do not belong to the maximum strongly connected

component, are linked with vertices in it either with incoming or outgoing edges.

(1) Kernel Similarity

Basically our approach for the kernel similarity is somehow test based since we focus of

the mapping of vertices belonging to strongly connected components of a member's G∗

on vertices belonging to the maximum strongly connected component of test sample's G∗

as depicted in Figure 5.8.

Next we enumerate the steps for the computation of Kernel similarity:

1. Firstly we compute the Maximum Strongly Connected Component of test samples

G∗ using the Tarjan's SCC algorithm.

2. Then we compute all the Strongly Connected Components on the G∗ of a family's

member with whom we want to measure the similarity, using again the Tarjan's

SCC algorithm.

3. Having computed all the Strongly Connected Components in the member's G∗ we

proceed by assigning a label on to each vertex in a way that vertices that belong to

the same Strongly Connected Component to have the same label.

4. Next we return to the Maximum Strongly Connected Component of test sample's

G∗ and we match the vertices inside it with the vertices in every Strongly Connected

Component of member's G∗ while we count the occurrences of each group of vertices

from the members' G∗ inside test's Maximum Strongly Connected Component. In

72

Figure 5.8: Kernel Similarity Visualization

other words, if the vertex vi belongs to the Strongly Connected Component with

label l� in the member's G∗, and also exists inside the test's Maximum Strongly

Connected Component, then the occurrences of group � are increased by one.

5. Finally we compute the Kernel similarity as follows:

K(TS;M) =

k∑
g=1

|v : v → `(g)|
|MSCC(TS)|+ |SCCg(M)| − |v : v → `(g)|

k
; (5.25)

where k is the total number of Strongly Connected Components in a malware family

member's G∗, `(g) is the label of the gst Strongly Connected Component of member's

73

G∗, |v : v → `(g)| = |v : v ∈ MSCC(TS) ∧ v ∈ SCCg(M)| refers to the number

of vertices that exist in test's G∗ Maximum Strongly Connected Component and

also exist in the gst Strongly Connected Component of member's G∗ and hence have

the same label with this component's vertices, |MSCC(TS)| is the total number of
vertices in test's G∗ Maximum Strongly Connected Component and |SCCg(M)| is
the number of vertices in the gst Strongly Connected Component of member's G∗.

6. So, in order to compute the Kernel similarity between the unknown test sample and

a mawlare family we compute as presented in previous methods the maximum value

that appears among all the members of the family as follows:

Kmax(TS; FM) = max[K(TS;Mi)]
n
i=1 ; (5.26)

where n is the number of the members in this malware family.

7. And hence, we can keep as the dominant family the one that exhibits the maximum

values in the equation 5.26 as:

Fdominant = max[Kmax(TS; FMf)]
N
f=1 ; (5.27)

where N is the number of all families.

(2) Cover Similarity

Our approach for the cover similarity is somehow inspired from the Jaccard index

since its computation is based on the intersection of the two vertex sets in each Maximum

Strongly Connected Components. Actually, Our main target is to compute the similarity

between the vertices in the test's G∗ and the member's G∗ that while they do not belong

in their corresponding Maximum Strongly Connected Component they have incoming or

outgoing edges with vertices that exist in the Maximum Strongly Connected Component of

test's G∗ and the Maximum Strongly Connected Component of member's G∗. Envisaging

these sets as covers we proceed by measuring the similarity between them based on their

vertex sets as depicted in Figure 5.9, where the vertices that have in/out edge with the

vertices in the two Maximum Strongly Connected Components are the green for the test's

G∗ and the red ones for the member's G∗.

74

Figure 5.9: Cover Similarity Visualization

Next we enumerate the steps for the computation of Cover similarity:

1. Firstly, we compute the Maximum Strongly Connected Component of test samples

G∗ using the Tarjan's SCC algorithm.

2. Next, we compute the Maximum Strongly Connected Component of member's G∗

using once more the Tarjan's SCC algorithm.

3. Having computed both the Maximum Strongly Connected Components in test's

and member's G∗s, we proceed by storing separately the vertices in the test's G∗

and the member's G∗ that, while as we said before they do not belong to their

corresponding Maximum Strongly Connected Component, they have incoming or

outgoing edges with the vertices in test's Maximum Strongly Connected Component

and the member's Maximum Strongly Connected Component (see green/red marks

in Figure 5.9).

4. Having completed all the preparatory computation we can �nally proceed with the

computation of the Cover similarity as follows:

C(TS;M) =
|〈MSCCTS〉cv ∩ 〈MSCCM〉cv|

|〈MSCCTS〉cv|+ |〈MSCCM〉cv| − |〈MSCCTS〉cv ∩ 〈MSCCM〉cv|
; (5.28)

75

where the symbol 〈 〉cv means the cover in terms of a vertex set that do not belong

to any of the two Maximum Strongly Connected Components while it has in/out

edges with vertices that exist in the Maximum Strongly Connected Components, or

formally: |v : (v =∈ {MSCCTS∪MSCCM})∧(v *) {MSCCTS∪MSCCM})| ; where
|〈MSCCTS〉cv| and |〈MSCCM〉cv| are the numbers of vertices that do not belong

to their corresponding Maximum Strongly Connected Components but they have

edges with vertices that exist in them and MSCCTS;MSCCM are the Maximum

Strongly Connected Components of test and member respectively.

5. So, in order to compute the Cover similarity between the unknown test sample and

a mawlare family we compute as presented in previous methods the maximum value

that appears among all the members of the family as follows:

Cmax(TS; FM) = max[C(TS;Mi)]
n
i=1 ; (5.29)

where n is the number of the members in this malware family.

6. Hence, we can keep as the dominant family the one that exhibits the maximum

values in the equation 5.29 as:

Fdominant = max[Cmax(TS; FMf)]
N
f=1 ; (5.30)

where N is the number of all families.

5.4.2 Malware Classi�cation using Mutliple Filters

Having already discussed our proposed methods for classifying an unknown malware sam-

ple into a malware family, we can now proceed by presenting how we can combine all the

aforementioned techniques in order to achieve an optimal malware classi�cation result.

Our proposed method is based upon the serial application (see Figure 5.10) of multiple

classi�cation methods (�lters) in order to achieve results that are �rstly more rational since

the problem is been treated in a multifaceted manner and secondly exhibits an increased

classi�cation accuracy ratio. So, generally speaking, our method is based upon the sorting

of all families according to the value that they exhibit after the application of each �lter,

computed as Fdominant as we have shown in equations (5.22, 5.23, 5.27 and 5.30).

76

However, even though the application of solely one �lter could be quite convenient, we

have faced with cases of tie where multiple families are exposing values that pose them

as dominant according to a speci�c �lter. So, in order to completely eliminate any such

case we chose to apply a serial order of our techniques based on experimental results. To

this point, we ought to refer that the experiments assured one of our intuitions that a

false order of the techniques could results to the exclusion of the correct malware family

and hence to a false classi�cation result.

Additionally one more sophisticated tuning we performed in the serial application of

multiple classi�cation methods is the following. As we referred above the �nal result of a

classi�cation method is the family that includes a member (let us call it representative)

that actually exhibits the highest similarity with the test sample (according to the ap-

plied metric) amongst all of the members in the same family, and additionally among all

the other families' representatives, inorder to make its family dominant. However, if we

change the similarity metric then the same family can be the dominant again but because

of another completely di�erent member of her. This lead us to the guarantee that inde-

pendence of the metrics according to the members should be applied. So, we compute

each dominant family without the notion of the member that produce the result. In other

words we apply the sequence of metrics without concerning about what member produced

the highest result in each family, instead of appliying all the metrics sequentially on each

member demanding to be the most similar one across all the metrics.

So next we enumerate the application of sequential �lters for the classi�cation of

an unknown malware sample into a known malware family, as we ordered them after

eperimental veri�cation :

1. Firstly we compute dominant family using the Cover similarity between the test

sample and each of the known families, as presented in equation 5.30

2. If there exists more than one dominant families then we proceed by computing the

Kernel similarity between the test sample and each of the dominant families left

from the elimination caused by the application of the Cover similarity, as presented

in equation 5.27, but by reducing the range only to the dominant families produced

after the application of the Cover similarity.

3. If still there exists more than one dominant families then we proceed by computing

the SNP
SaMe similarity between the test sample and each of the dominant families left

from the elimination caused by the application of the Kernel similarity, as presented

in equation 5.24, but by reducing the range only to the dominant families produced

after the application of the Kernel similarity.

4. Finally, if still there exists more than one dominant families then we proceed by

computing the SaMe similarity between the test sample and each of the dominant

families left from the elimination caused by the application of the SNP
SaMe similarity,

as presented in equation 5.22, but by reducing the range only to the dominant

families produced after the application of the SNP
SaMe similarity.

77

Figure 5.10: Visualization of Malware Classi�cation using Multiple Filters

5.5 Other Approaches for Detection And Classi�cation

In the last section of this chapter we cite a few techniques for malware detection and

classi�cation that we tried but failed because, with high probability, it caused due to the

phenomenon of phylogeny that takes place across the malware families. However, even

though the techniques where inadequate, we feel the duty to refer them in order to prevent

other researchers from dedicating time to work with them.

5.5.1 Failed Malware Detection Methods

Starting from the development of our whole detection and classi�cation procedure we

began by applying a straightforward approach simply by measuring similarity metric be-

tween the test sample and any member of any malware family. However, measuring

78

directly the Jaccard Coe�cient, Cosine Similarity, Hamming or Canberra distances be-

tween the test sample and any member raised low detection rates and high false positives

that lead us to exclude any such approach. Additionally we applied the in, out or in/out

degree distribution of the vertices in the G∗ graphs in order to observe any similarities

that exist between the malware samples while however lack in any of the known benign

ones. This approach failed too in an e�ort to distinguish malicious from benign samples.

5.5.2 Failed Malware Classi�cation Methods

For malware classi�cation, until we reach our �nal proposed approach, the whole situation

was even harder while the existence of existential, qualitative and quantitative charac-

teristics spread among the members of each family posed valuable information that we

should leverage. So, our �rst failed try was to compute the Jaccard coe�cient between

the test sample and the zone adjacency matrix of a family reducing our range only on

computing one distinct Jaccard between aces in the sample's casted adjacency matrix and

fours in the family's zone adjacency matrix and one distinct Jaccard between zeros in the

sample's casted adjacency matrix and twos in the family's zone adjacency matrix. Finally,

one of our last tries that failed too, was the computation of the topological sorting of the

vertices of the test samples and a member's G∗'s and the comparison of the produced

sequences.

79

Chapter 6

Results

6.1 Data Set

6.2 Experimental Design

6.3 Result Comparison

6.4 Advantages and Limitations

In this chapter we will discuss our results, starting from presenting our data-set that we

used for the evaluation of our proposed model for malware detection and classi�cation.

Additionally in this chapter we present the design of our experiments and the methods

we decided to utilize in order to evaluate our model, and �nally we provide a comparison

with other proposed models either for malware detection or for malware classi�cation or

for both of them. However, even though, as we will refer later, the other approaches

use di�erent evaluation techniques and obviously di�erent data-set we will proceed by

comparing our result with the ones produced by other models in order to accomplish a

properly documented view of our model's e�ectiveness.

6.1 Data Set

For the evaluation of our proposed malware detection method we used a dataset of 2631

malware samples pre-classi�ed into 48 malware families where each family contains from

3 to 317 malware members and a set of 33 benign programs. To this point we ought to

refer that with the term sample we actually refer to the graph representation of it as it

is been achieved by the construction of its System-Call Dependency Graph constructed

by processing traces botained through taint analysis during the 120 min execution of any

sample in a virtual machine running Windows XP sp2 and having 2.66GHz Intel Core i7

CPU and 8GB RAM . So, having this dataset we proceed by transforming all the 2631

80

System-Call Dependency Graphs from malware samples and the 33 from the benign ones

to G∗s in order to feed our method with a proper input.

Family Name Members Family Name Members

ABU,Banload 16 Hupigon,AWQ 219

Agent,Agent 42 IRCBot,Sdbot 66

Agent,Small 15 LdPinch,LdPinch 16

Allaple,RAHack 201 Lmir,LegMir 23

Ardamax,Ardamax 25 Mydoom,Mydoom 15

Bactera,VB 28 Nilage,Lineage 24

Banbra,Banker 52 OnLineGames,Delf 11

Bancos,Banker 46 OnLineGames,LegMir 76

Banker,Banker 317 OnLineGames,Mmorpg 19

Banker,Delf 20 OnLineGames,OnLineGames 23

Banload,Banker 138 Parite,Pate 71

BDH,Small 5 Plemood,Pupil 32

BGM,Delf 17 PolyCrypt,Swizzor 43

Bifrose,CEP 35 Prorat,AVW 40

Bobax,Bobic 15 Rbot,Sdbot 302

DKI,PoisonIvy 15 SdBot,SdBot 75

DNSChanger,DNSChanger 22 Small,Downloader 29

Downloader,Agent 13 Stration,Warezov 19

Downloader,Delf 22 Swizzor,Obfuscated 27

Downloader,VB 17 Viking,HLLP 32

Gaobot,Agobot 20 Virut,Virut 115

Gobot,Gbot 58 VS,INService 17

Horst,CMQ 48 Zhelatin,ASH 53

Hupigon,ARR 33 Zlob,Puper 64

Table 6.1: Malware Families

Additionally it is of major importance to mention that we did not perform any taint

malware analysis on the samples since �rstly the development of such processes is out of

the scope of this thesis and secondly, and much more important, because we lack of the

extremely high levels of expertise demanded when performing procedures like dynamic

malware analysis due to the risk posed to the systems connected to the same network. So,

we downloaded the initial System Call Dependency Graphs produced by taint analysis

from the web-page of Domagoj Babic [2] and proceeded by transforming each sample's

System Call Dependency Graph into its auxiliary hyper-abstraction, the so called G∗,

based on the grouping on system-calls as presented in Table 5.3 of section 5.1.2. In Table

81

6.1 we cite the mawlare families and their corresponding number of members in each one

of them.

Figure 6.1: Malware Families Connected by Name Commonalities

Finally, it is worth to mention the as we can see there exist families that have common

names either appearing in their �rst or in their second half of their names. This happens

because these families are somehow relatives. So, as easily one can understand that this

fact consists an obvious instance of phylogeny exhibited between malware families and

except from the fact in naming (see Figure 6.1), that is depicted also in our results after

the application of the classi�cation method on a test sample from one of the relative

families, this phenomenon is observed to happen even in families that even though having

totally di�erent names their members exhibit similar functionality and hence conclude in

some fashion into a false classi�cation result. However we ought to trust this classi�cation

and not increase our classi�cation rate at will.

82

6.2 Experimental Design

In this section we present our experimental design and discuss the reasons that we choose

to proceed with the proposed setup. Additionally we will discuss how we divided our

dataset into train-set and test-set and how we tuned our threshold parameters according

to feedback produced by sequential experiments.

In order to evaluate our model we performed 5-fold cross validation utilizing the

dataset we described in the previous section. More precisely, we divided each one of

the 48 malware families into 5 segments and each time we iterated our experiment by

using as test-set each distinct ith 20% of the members of each family and the rest 80% as

train-set. So the test-set consists of a compilation of all the 20% of the members of all

malware families where th train-set consisted by compiling all the corresponding 80% of

the members of all the malware families.

In other words we run series of 5-set experiments each time using a train set consisted of

2100 test sample divided into 48 families and around 500 tests samples that we had hidden

their family tag. In each experiment we test both the detection and the classi�cation

procedures, while keeping the total detection and classi�cation ratios for each experiment

with all the 500 samples. Once an experiment is �nished we proceed by checking �rstly

the detection tag assigned by our system (benign or malware) counting the false-positive

and the true-positives and then we checked the classi�cation tag as to compare if the

family that our system has assigned this sample to is the same with its hidden family tag.

To this point, we o�er to underline that we performed three types of correct classi�-

cation counting as we show in the corresponding table in the next section. The �rst one

refers to the exact matching in both parts of the names between the name of the family

that our system assigned the sample to and the name of the family that exists on the

sample's hidden family tag. The second one is the partial matching. In this case we count

as a correct classi�cation the exact matching in any part of the names between the name

of the family that our system assigned the sample to and the name of the family that

exists on the sample's hidden family tag. Finally the third one is the so called directed

matching. In this case we count as a correct classi�cation the exact matching in at least

one part of the names between the name of the family that our system assigned the sample

to and the name of the family that exists on the sample's hidden family tag.

Classi�ed as: Exact Matchig Partial Matchig Directed Matchig

Banker,Delf 0 1 0

Banbra,Banker 0 1 1

Banker,Banker 0 1 1

Bancos,Banker 1 1 1

Table 6.2: Classi�cation: Matching Process and Results Accuracy

83

A more clear representation of these metrics is shown in Table 6.2, where we cite a

simple example explaining how these classi�cation accuracy metrics work. Let as assume

that we have a sample from family Bancos,Banker that has been detected as malware

and we classify it into a malware family that is presented in the �rst column. So, in

columns 2,3 and 4 we can observe what would be the result (1 for correct or 0 for wrong

classi�cation) according to if we demand exact, partial or directed matching.

Finally, we ought to refer that the system we developed and deploys the graph-based

detection and classi�cation methods needs only one tuning, and this is only for the thresh-

old of the detection method (NP-similarity). Actual, threshold resulted after sequential

experiments focusing on maximizing the ratio of the number of true-positives divided

by the number of false-positives. Actually we achieved by slowing the threshold in 0.57

(NP (ts;m) ≥ 0:57 → malware or NP (ts;m) < 0:57 → benign) to minimize the false-

positives and false-negatives while maximizing the true-positives and true-negatives.

6.3 Result Comparison

In this section we present our results after a series of experiments and the compare sepa-

rately our detection rates with the ones achieved by other approaches and our classi�ca-

tion rate with rates achieved by other approaches to. However, we ought to notice that

as far as we know there have not been published results concerning both detection and

classi�cation or the one that have they do not include results comparable to ours.

6.3.1 Detection and Classi�cation Results

Next, we present our results after a series of 5-fold cross validation experiments that we

performed using 2631 malware samples from 48 known malware families and 33 benign

samples from commodity programs. Next, in Table 6.3 we cite our results from on of a

series of 5-fold cross validation experiments. Each line in the table refers to an experiment

while the last one refers to the mean value obtained from all 5 experiments.

Experiment Detection Exact Matchig Partial Matchig Directed Matchig

fold 1 99.70 % 70.10 % 82.40 % 81.20 %

fold 2 99.40 % 69.90 % 83.20 % 82.00 %

fold 3 99.50 % 67.40 % 83.00 % 81.40 %

fold 4 99.90 % 68.20 % 84.50 % 83.00 %

fold 5 99.70 % 66.40 % 81.10 % 80.00 %

total 99.64 % 68.40 % 82.84 % 81.58 %

Table 6.3: Malware Detection and Classi�cation Results

84

The �rst column refers to the detection ratio (true-positives). To this point we ought

to refer that the false positives are computed independently of each experiments solely on

the 33 benign sample and results a 10%. The second column refers to the Classi�cation

ration demanding exact matching, while the third and the fourth ones correspond to the

partial and directed matching respectively.

6.3.2 Detection Rate Comparison

Below in Table 6.4, we compare our detection rates (true-positives) and the fail detec-

tions (false-positives) against those presented in other works independently of if they are

achieved using similar techniques (graph-based) or techniques from other �elds and of

course independently of the fact that they used di�erent data-sets.

in: Technique True Positives False Positives

[1] SVM classi�er 89.74 % 9.74 %

[3] SCDG, Tree Automata Inference 80.00 % 5.00 %

[18] CFG, templates 97.50 % 0.00%

[23] SCDG, graph mining 94.26 % 15.58 %

[35] SCDG, sequence matching 64.00 % 0.00 %

[39] SCDG, grading 80.09 % 11.00%

[66] API-sequences, OOA rules 97.19 % -

this thesis SCDG, NP-similarity 99.64 % 10.00 %

Table 6.4: Malware Detection Results Comparison

So, in Table 6.4 we present an accumulative view of the aforementioned result compar-

ison where the �rst column refers to the work that are published the result the second one

refers to the utilized technique and the third and fourth columns refer to the detection

and false-positive ratios respectively.

In [1], Alazab et al., developed a fully automated system that disassemble and extracts

API-call features from executables and then by using n− gram statistical analysis is able

to distinguish malicious from benign executables. The mean detection rate exhibited was

89.74% with 9.72% false positives when used a Support Vector Machine (SVM) classi�er

by applying n− grams.

Babic et al., in [3] the malware detection is achieved by k-testable tree automata

inference from system call data
ow dependence graphs. To this point we ought to

underline that in this work Babic et al. use the same data-set that we borrow from

Domagoj Babic's o�cial web-page, so, this work consists an optimal instance to compare

our model's results. However, while 2-fold cross validation was performed in [3] using

the �rst half of data as train-set and the second one as test-set at random we exhibited

85

even better detection rates (almost 20% more) while unfortunately our model had double

false-positives (5% more).

Next, Christodorescu et al., in [18] there is presented a malware detection algorith

(AMD) based on instruction semantics in order to detect malicious programs. Actually

templates of Control Flow Graphs are built in order to demand their satis�ability when a

program is malicious. While it seems to exhibit better results than the ones produced by

our model, since it exhibits 0 false-positives, however it is a model based on static analysis

and hence it would not be proper to compare two methods that while look similar they

have a deep edge in their theoretical background.

Fredrikson et al., in [23] is been proposed an automatic technique for extracting op-

timally discriminative speci�cations based on graph mining and concept analysis that

when used by a behavior based malware detector can distinguish malicious from benign

programs. As referred in the corresponding work it can yield an 86% detection rate with

0 false-positives, however we substitutes with the mean of the values as presented in this

work as other experiments exhibits higher detection rates but with higher false positives,

that is a fair substitution.

Kolbitch et al., in [35] there is been proposed an e�ective and e�cient approach for

malware detection based on behavioral graph matching by detecting string matches in

system-call sequences, and that is able to substitute the traditional anti-virus system at

the end hosts. The main drawback of this proposed approach is the fact that even if

no false-positives where exhibited and even if its is
exible to malware obfuscation, their

detection rates are too low in contrast with the those of other approaches.

In [39] Luh and Tavolato, present one more algorithm based on behavioral graphs

that distinguishes malicious from benign programs by grading the sample based on report

generated from monitoring tools when it is executed in a protected environment. While

the produced false-positives are very close to ours, the corresponding detection ration is

even lower ensuring the reliability of our model.

Finally, in [66] Ye et al., have developed an integrated system for malware detection

based on API-sequences. This is an also di�erent model from ours since the detection

process is abased on matching the API-sequences on Objective-Oriented Association rules

in order to decide the maliciousness or not of a test program. However, even if the

detection rates are high enough there are not false-positive rates mentined in this work

6.3.3 Classi�cation Rate Comparison

Below in Table 6.5, we compare our classi�cation rates against those presented in other

works independently of if they are achieved using similar techniques (graph-based) or

techniques from other �elds and of course independently of the fact that they used di�erent

data-sets. So, in Table 6.5 we present an accumulative view of the aforementioned result

comparison where the �rst column refers to the work that are published the result the

second one refers to the utilized technique and the third column refers to classi�cation

rates.

86

To this point we ought to refer that, in contrast with the detection results comparison,

when we tried to compare our results in classi�cation we realised that the whole situation

was even harder because despite the diversity in techniques (they are not many graph-

based ones) in most of the works we observed that the result concerned the classi�cation

into families measuring the per-family classi�cation rate and not the overall one like we

do. However, we proceed in Table 6.5 by citing a few results from other works in order

to compare with them our results.

in: Technique Classi�cation Ratio

[6] SCDG, behavior pro�les, 95.9 %

[27] FCG, Knn 78,78 %

this thesis SCDG, multi-�lters(exact) 68.40 %

this thesis SCDG, multi-�lters(partial) 82.84 %

this thesis SCDG, multi-�lters(directed) 81.58 %

Table 6.5: Malware Classi�cation Results Comparison

In [6] Bayer et al., propose a scalable clustering approach to identify and group malware

samples that exhibit similar behavior, based on pro�les that characterizing programs

activity in a more abstract manner. Since they also use control
ow dependencies between

system-calls, their work is proper to be compared with ours, even if they do not use direct

use of System-Call Dependency Graphs.

Finally, in [27] Hu et al., design implement and evaluate the Symantec's Malware

Indexing Tree, that classi�es malwares based on their function call graphs useing K nearest

neighbor algorithm. Even if their mean classi�cation rates are lower than ours (at least

in cases of partial and directed matching) we suppose that this is caused due to the

limitations posed by the static analysis performed in that model since they use Function

Call Graphs.

6.4 Advantages and Limitations

In this sections we cite our advantages and limitations of our proposed model after having

presented a result comparison in the sections of malware detection and malware classi�-

cation with models from other works that implement either graph-based methods or pure

methods from other �elds such as data mining.

One of the main advantage is the fact that our model provides high generalization abil-

ity since through the hyper-abstraction of System-Call Dependency Graph (G∗)utilized

by our model we are able to detect and classify except from the traditionally mutated mal-

ware those ones that have been mutated by code arrangements that result to equivalent

87

system-call substitutions in the resulting System-Call Dependency Graph. Additionally,

excluding the time demanded during the process of taint analysis our model is claimed

to be even faster than the proposed one (the time comparison is to be examined in the

future) since it operates on hyper-abstraction of graphs that are consisted by less vertices

and less edges.

On the other hand, the main drawback of our proposed model is that the algorithm

of inferring the hyper-abstraction (G∗) can be applied only on labeled graphs such as the

of System-Call Dependency Graphs, thus reducing the range of its application.

88

Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.2 Future Work

7.1 Conclusions

In this thesis we dealt with the topic of detection and classi�cation of mutated malware,

by proposing a sophisticated approach for the use of System-Call Dependency Graphs for

malware detection and classi�cation. Actually, we leveraged the grouping of system-calls

in order to construct a hyper-abstraction of System-Call Dependency Graphs produced

during malware execution through taint analysis by tracing system-call dependencies be-

tween them, the so called G∗. Then, we developed the NP-similarity metric for malware

detection that combines, a relation between an unknown sample System-Call Depen-

dency Graph-hyper abstraction and a combination of System-Call Dependency Graph

hyper-abstractions of known malware samples together with a set of similarity metrics

between them in order to distinguish if the unknown sample is malicious or not based on

a prede�ned threshold. Next, we developed a series of �lter in order to classify any un-

known malware sample into one of a set of known malware families based on graph-based

similarity metrics similar to the aforementioned ones.

We evaluated our model's detection and classi�cation results performing the corre-

sponding processes on a set of 2630 malware samples from 48 malware families and 33

benign commodity programs. The detection process exhibited a 99.64% rate with 10%

false positives while our classi�cation ratio reaches the 82.84% and could be even higher

if our dataset was consisted by strictly distinctive families,in terms of phylogeny lack .

Finally, we compared our proposed model against other models either graph-based or not,

and since there are only slight di�erences we can claim that that our approach can stand

competing against the other approaches.

89

7.2 Future Work

As we referred in section 6.4, the limitation of our model is the fact that the underlying

algorithm for constructing in this case System-Call Dependency Graph hyper-abstraction

(G∗) demands as input a labeled graph, such as a System-Call Dependency Graph which

its vertices are system-call that can be distinguished by their names. Hence, the applica-

tion of this model into other topics demand the object of representation to be a labeled

graph. Initially this seems to reduce the ranges of our further research, however, below

we cite a few paradigms that our model can be applied.

• Text: The �rst application of our algorithm that came to our minds, and consists

the core idea of application, was the one of applying our model into measuring

similarity between texts, which is very close to plagiarism check . The main idea

is that text contains words that can be grouped into classes of synonyms (just like

the system-call groups). Then, linking groups of synonyms of words that coexist in

the same sentence we can construct labeled graphs that are in proper form to be

compared by our model.

• Sound: Similarly to text, the sound contains notes instead of words. So, if we

want to check the similarity between two sound (i.e. songs) we can use our model

to compare the labeled graphs produced when grouping notes that are in the same

position in every scale.

• Image: Similarly to text, images contain colors instead of words. So, if we want to

check the similarity between two images (RGB scale) we can use again our model to

compare the labeled graphs produced when grouping pixels in groups of same hue

and by linking pair of groups if their corresponding pixels co-appear within a range

in an area of the image.

• Chemical unions: As we know, chemical unions are represented as graphs, where

the vertex set consists by chemical elements and edges appear if two elements are

compatible according to the number of electrons in the outer layer. Additionally

since all the elements in a column of the periodic table have the same number of

electrons in the outer layer, then anyone of them can be substituted in a chemical

union by anyone that exists in the same column with it in the periodic table. So

envisaging as element groups the columns of periodic table we can apply our model

to measure the similarity between chemical unions that include di�erent elements

based upon the column grouping. Finally, extending this idea we could extent

further by applying the same strategy to a more complex type, the bio-molecules.

Since bio-molecules are constructed by chemical unions, can be down-casted to

complexes of chemical unions and hance to be measured in a similar manner. Now

as easily one can understand, extending even further this approach can be applied

to biological viruses since they are constructed by biomolecules and so on.

90

Bibliography

[1] M. Alazab, R. Layton, S. Venkataraman and P. Watters, \Malware detection based

on structural and behavioural features of API calls," Proc. Int'l Cyber Resilience

Conference (CR'10), pp. 1{10, 2010.

[2] D. Babic, www.domagoj-babic.com/index.php/ResearchProjects/MalwareAnalysis

[3] D. Babic, D. Reynaud and D. Song, \Malware analysis with tree automata inference,"

Proc. Computer Aided Veri�cation (CAV'11), pp. 116{131, 2011.

[4] M. Bailey, J. Oberheide, J. Andersen, Z.M. Mao, F. Jahanian and J. Nazario, \Au-

tomated classi�cation and analysis of internet malware," Proc. Recent Advances in

Intrusion Detection, Springer Berlin Heidelberg (RAID'11), pp. 78{197, 2007.

[5] H.A. Basit and S. Jarzabek, \Detecting higher-level similarity patterns in programs,"

Proc. ACM SIGSOFT Software Engineering Notes, pp. 156{165, 2005.

[6] U. Bayer, P.M. Comparetti, C. Hlauschek, C. Kruegel and E. Kirda, \Scalable

behavior-based malware clustering," Proc. Network and Distributed System Security

Symposium (NDSS'09), pp. 8{11, 2009.

[7] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda and C. Kruegel, \A view on current mal-

ware behaviors," Proc. 2nd USENIX Workshop on Large-scale Exploits and Emergent

Threats (LEET'09), 2009.

[8] U. Bayer, A. Moser, C. Kruegel and E. Kirda, \Dynamic analysis of malicious code,"

Journal in Computer Virology 2 (2006) 67{77 .

[9] G. Bonfante, M. Kaczmarek and J.Y. Marion, \Control
ow graphs as malware sig-

natures," Int'l Workshop on the Theory of Computer Viruses (TCV'07), 2007.

[10] L. Cavallaro, P. Saxena and R. Sekar, \On the limits of information
ow techniques

for malware analysis and containment," Proc. Detection of Intrusions and Malware

and Vulnerability Assessment (DIMVA'08), pp. 143{163, 2008.

[11] S. Cesare and X. Yang, \A fast
owgraph based classi�cation system for packed

and polymorphic malware on the endhost," Proc. 24th IEEE Int'l Conference on

Advanced Information Networking and Applications (AINA'10), pp. 721{728, 2010.

91

[12] S. Cesare and X. Yang, \Malware variant detection using similarity search over sets

of control
ow graphs," Proc. 10th Int'l Conference on Trust, Security and Privacy

in Computing and Communications (TrustCom'11), pp. 181{189, 2011.

[13] S. Chaumette, O. Ly and R. Tabary, \Automated extraction of polymorphic virus sig-

natures using abstract interpretation," Proc. 4th IEEE Int'l Conference on Network

and System Security (NSS'11), pp. 41{48, 2011.

[14] I. Chionis, S.D. Nikolopoulos and I. Polenakis, \A survey on algorithmic techniques

for malware detection," Proc. 2nd Int'l Symposium on Computing in Informatics and

Mathematics (ISCIM'13), pp. 29{34, 2013.

[15] M. Christodorescu and S.Jha, \Static analysis of executables to detect malicious

patterns," Proc. 12th USENIX Security Symposium, 2006.

[16] M. Christodorescu and S.Jha, \Testing malware detectors," In ACM SIGSOFT Soft-

ware Engineering Notes 29 (2004) 34{44.

[17] M. Christodorescu, S. Jha and C. Kruegel, \Mining speci�cations of malicious be-

havior," Proc. 1st ACM India Software Engineering Conference, pp. 5{14, 2008.

[18] M. Christodorescu, S. Jha, S.A. Seshia, D. Song and R.E. Bryant, \Semantics-aware

malware detection," Proc. 2005 IEEE Symposium on Security and Privacy (SP'05),

pp. 32{46, 2005.

[19] B. Danilo, L. Martignoni and M. Monga, \Using code normalization for �ghting

self-mutating malware," Proc. Int'l Symposium on Secure Software Engineering (ES-

SoS'06), pp. 37{44, 2006.

[20] G. Debin, M.K.Reiter and D.Song, \Behavioral distance for intrusion detection,"

Proc. Recent Advances in Intrusion Detection (RAID'06), pp. 63{81, 2006.

[21] A. Dinaburg, P. Royal, M. Sharif and W. Lee, \Ether: malware analysis via hardware

virtualization extensions," Proc. 15th ACM Conference on Computer and Commu-

nications Security (CCS'08), pp. 51-62, 2008.

[22] M. Egele, T. Scholte, E. Kirda and C. Kruegel, \A survey on automated dynamic

malware-analysis techniques and tools," ACM Computing Surveys 44 (2012), Arti-

cle 6.

[23] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer and X. Yan, \Synthesizing near-

optimal malware speci�cations from suspicious behaviors," Proc. IEEE Symposium

on Security and Privacy (SP'10), pp. 45{60, 2010.

[24] J. Gregoire, H. Debar and E. Filiol, \Behavioral detection of malware: from a survey

towards an established taxonomy," Journal in Computer Virology 4 (2008) 251-266.

92

[25] B. Guillaume, K. Matthieu and J.Y. Marion, \Architecture of a morphological mal-

ware detector," Journal in Computer Virology 5 (2009) 263{270.

[26] S.A. Hofmeyr, S. Forrest and A. Somayaji, \Intrusion detection using sequences of

system calls," Journal of Computer Security 6 (1998) 151{180.

[27] X. Hu, T. Chiueh and K.G. Shin, \Large-scale malware indexing using function-call

graphs," Proc. 16th ACM Conference on Computer and Communications Security

(CCS'09), pp. 611{620, 2009.

[28] N. Idika and A.P. Mathur, \A survey of malware detection techniques," Technical

Report, Department of Computer Science, Purdue University TR-48, 2007.

[29] M.E. Karim, A. Walenstein, A. Lakhotia and L. Parida, \Malware phylogeny gener-

ation using permutations of code," Journal in Computer Virology 1 (2005) 3{23.

[30] M.E. Karim, A. Walenstein, A. Lakhotia and L. Parida, \Malware phylogeny using

maximal pi-patterns," Proc. EICAR Conference (EICAR'05), pp. 156{174, 2005.

[31] K. Keehyung and B.R.Moon, \Malware detection based on dependency graph us-

ing hybrid genetic algorithm," Proc. 12th ACM Annual Conference on Genetic and

Evolutionary Computation (GECCO'10), pp. 1211{1218, 2010.

[32] K. Kendall and C. McMillan, \Practical malware analysis," In Black Hat Conference,

USA, 2007.

[33] J. Kinable and O. Kostakis, \Malware classi�cation based on call graph clustering,"

Journal in Computer Virology 7 (2011) 233{245.

[34] J. Kinder, S. Katzenbeisser, C. Schallhart and H. Veith, \Detecting malicious code

by model checking," Proc. Detection of Intrusions and Malware and Vulnerability

Assessment (DIMVA'05), pp. 174{187, 2005.

[35] C. Kolbitsch, C.P.M. Comparetti, C. Kruegel, E. Kirda, X.Y. Zhou and X. Wang,

\E�ective and e�cient malware detection at the end host," Proc. USENIX Security

Symposium, pp. 351{366, 2009.

[36] J.Z. Kolter and M.A. Maloof, \Learning to detect and classify malicious executables

in the wild," The Journal of Machine Learning Research 7 (2006) 2721{2744.

[37] C. Kruegel, E. Kirda, D. Mutz, W. Robertson and G. Vigna, \Polymorphic worm

detection using structural information of executables," Proc. Recent Advances in

Intrusion Detection (RAID'06), pp. 207{226, 2006.

[38] C. Kruegel, D. Mutz, F. Valeur and G. Vigna, \On the detection of anomalous system

call arguments," Proc. ESORICS Computer Security (ESORICS'03), pp. 326{343,

2003.

93

[39] R. Luh and P. Tavolato, \Behavior-based malware recognition," Fachhochschule St.

Polten University of Applied Sciences TR-79-84, 2012.

[40] K. Mathur and S. Hiranwal, \A survey on techniques in detection and analyzing

malware executables," Int'l Journal of Advanced Research in Computer Science and

Software Engineering 3 (2013) 422{428.

[41] G. McGraw and G. Morrisett, \Attacking malicious code: A report to the infosec

research council," Proc. IEEE Software, pp. 33{41, 2000.

[42] A. Moser, C. Kruegel and E. Kirda, \Exploring multiple execution paths for malware

analysis," Proc. IEEE Symposium in Security and Privacy (SP'07), pp. 231{245,

2007.

[43] A. Moser, C. Kruegel and E. Kirda, \Limits of static analysis for malware detection,"

Proc. 23rd Annual Conference on Computer Security Applications (ACSAC'2007),

pp. 421-430, 2007.

[44] M. Mungale and M. Stamp, \Software similarity and metamorphic detection," Proc.

11th Int'l Conference on Security and Management (SAM'12), 2012.

[45] NtTrace, www.howzatt.demonco.uk/NtTrace/

[46] Y. Park, D. Reeves,V. Mulukutla and B. Sundaravel, \Fast malware classi�cation by

automated behavioral graph matching," Proc. 6th ACM Annual Workshop on Cyber

Security and Information Intelligence Research (CSIIRW'10), pp. 45{49, 2010.

[47] B.B. Rad, M. Maslin and I. Suhaimi, \Camou
age in malware: from encryption to

metamorphism," Int'l Journal of Computer Science and Network Security 12 (2012)

74{83.

[48] B.B. Rad and M. Masrom, \Metamorphic virus variants classi�cation using opcode

frequency histogram," ArXiv preprint ArXiv:1104.3228, 2011.

[49] k. Rieck, H. Thorsten, W. Carsten, D. Patrick and P. Laskov, \Learning and classi-

�cation of malware behavior," Proc. Detection of Intrusions and Malware and Vul-

nerability Assessment (DIMVA'08), pp. 108{125, 2008.

[50] I. Santos, Y.K. Penya, J. Devesa and P.G. Bringas, \N-grams-based �le signatures for

malware detection," Proc. 2nd International Conference on Enterprise Information

Systems (ICEIS'09), pp. 317{320, 2009.

[51] E.J. Schwartz, T. Avgerinos and D. Brumley, \ All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been afraid

to ask)," Proc. IEEE Symposium on Security and Privacy (SP'10), pp. 317{331,

2010.

94

[52] R. Sekar, M. Bendre, D. Dhurjati and P. Bollineni, \A fast automaton-based method

for detecting anomalous program behaviors," Proc. IEEE Symposium in Security and

Privacy (SP'01), pp. 144{155, 2001.

[53] M.K. Shankarapani, S. Ramamoorthy, R.S. Movva and S. Mukkamala, \Malware

detection using assembly and API call sequences," Journal in Computer Virology 7

(2011) 107{119.

[54] M.I. Sharif, A. Lanzi, J.T. Gi�n and W. Lee, \Impeding malware analysis using

conditional code obfuscation," Proc. Symposium in Network and Distributed System

Security (NDSS'08), 2008.

[55] K.A. Al-Sheshtawi, H.M. Abdul-Kader and N.A. Ismail, \Arti�cial immune clonal

selection classi�cation algorithms for classifying malware and benign processes using

API call sequences," Int'l Journal of Computer Science and Network Security 10

(2010) 31{39.

[56] M. Sikorski and A. Honig, \Practical Malware Analysis: The Hands-on Guide to

Dissecting Malicious Software," No Starch Press, 2012.

[57] P. Szor and P. Ferrie, \Hunting for metamorphic," Proc. Virus Bulletin Conference

(VB'01), pp. 123{143, 2001.

[58] R.M.H. Ting and J. Bailey, \Mining minimal contrast subgraph patterns," Proc.

Secure Data Management (SDM'13), pp. 639{643, 2006.

[59] P. Vinod, R. Jaipur, V. Laxmi and M. Gaur, \Survey on malware detection methods,"

Proc. 3d Hackers Workshop on Computer and Internet Security (IITKHACK'09), pp.

74{79, 2009.

[60] C. Warrender, S. Forrest and B. Pearlmutter, \Detecting intrusions using system

calls: Alternative data models," Proc. IEEE Symposium in Security and Privacy

(SP'99), pp. 133{145, 1999.

[61] A. Walenstein and A. Lakhotia, \The software similarity problem in malware analy-

sis," Dagstuhl Seminar 06301: Duplication, Redundancy, and Similarity in Software,

pp. 10{20, 2007.

[62] A. Walenstein, R. Mathur, M.R. Chouchane and A. Lakhotia, \The design space

of metamorphic malware," Proc. 2nd Int'l Conference on i-Warfare and Security

(ICIW'07), pp. 241{248, 2007.

[63] C. Willems, T. Holz and F. Freiling, \Toward automated dynamic malware analysis

using cwsandbox," Proc. IEEE Security and Privacy (SP'07), pp. 32{39, 2007.

95

[64] J.Y. Xu, A.H. Sung, P. Chavez and S. Mukkamala, \Polymorphic malicious exe-

cutable scanner by API sequence analysis," Proc. 4th IEEE Int'l Conference on Hy-

brid Intelligent Systems (HIS'04), pp. 378{383, 2004.

[65] M. Xu, L. Wu, S. Qi, J. Xu, H. Zhang, Y. Ren and N. Zheng, \A similarity met-

ric method of obfuscated malware using function-call graph," Journal of Computer

Virology and Hacking Techniques 9 (2013) 35{47.

[66] Y. Ye, W. Dingding, L. Tao and Y. Dongyi, \IMDS: Intelligent malware detection

system," Proc. 13th ACM Int'l Conference on Knowledge Discovery and Data Mining

(SIGKDD'07), pp. 1043{1047, 2007.

[67] Y. Yi, Y. Lingyun, W. Rui, S. Purui and F. Dengguo, \DepSim: a dependency-based

malware similarity comparison system," Proc. Information Security and Cryptology

(ISC'11), pp. 503{522, 2011.

[68] H. Yin, D. Song, M. Egele, C. Kruegel and E. Kirda, \Panorama: capturing system-

wide information
ow for malware detection and analysis," Proc. 14th ACM confer-

ence on Computer and Communications Security (CCS'07), pp. 116{127, 2007.

[69] I.You and K. Yim, \Malware obfuscation techniques: A brief survey," Proc. Int'l

Conference on Broadband and Wireless Computing, Communication and Applications

(BWCCA'10), pp. 297{300, 2010.

[70] Q. Zhang and D.S. Reeves, \Meta-aware: Identifying metamorphic malware," Proc.

Twenty-Third Annual IEEE Conference on Computer Security Applications (AC-

SAC'07), pp. 411{420, 2007.

96

Appendix

Alphabetically Ordered System-Calls and Corresponding Groups

A. Name Group

1) ACCESS MASK → ACCESS MASK

2) ATOM INFORMATION CLASS → Atom

D. Name Group

1) DEBUG CONTROL CODE → Debug

E. Name Group

1) EVENT INFORMATION CLASS → Synchronization

2) EVENT TYPE → Synchronization

F. Name Group

1) FILE INFORMATION CLASS → File

2) FS INFORMATION CLASS → File

H. Name Group

1) HANDLE → HANDLE

2) HARDERROR RESPONSE OPTION → Process

J. Name Group

1) JOBOBJECTINFOCLASS → Job

97

K. Name Group

1) KEY INFORMATION CLASS → Registry

2) KEY VALUE INFORMATION CLASS → Registry

L. Name Group

1) LONG → LONG

M. Name Group

1) MEMORY INFORMATION CLASS → Memory

N. Name Group

1) NtAcceptConnectPort → LPC

2) NtAccessCheck → Security

3) NtAccessCheckAndAuditAlarm → Security

4) NtAccessCheckByType → Security

5) NtAccessCheckByTypeAndAuditAlarm → Security

6) NtAccessCheckByTypeResultList → Security

7) NtAccessCheckByTypeResultListAndAuditAlarm → Security

8) NtAccessCheckByTypeResultListAndAuditAlarmByHandle → Security

9) NtAcquireCMFViewOwnership → Other

10) NtAddAtom → Atom

11) NtAddBootEntry → Device

12) NtAddDriverEntry → Device

13) NtAdjustGroupsToken → Security

14) NtAdjustPrivilegesToken → Security

15) NtAlertResumeThread → Process

16) NtAlertThread → Process

17) NtAllocateLocallyUniqueId → Other

18) NtAllocateReserveObject → Object

19) NtAllocateUserPhysicalPages → Memory

20) NtAllocateUuids → Other

21) NtAllocateVirtualMemory → Memory

22) NtAlpcAcceptConnectPort → LPC

23) NtAlpcCancelMessage → LPC

24) NtAlpcConnectPort → LPC

25) NtAlpcCreatePort → LPC

98

N. Name Group

26) NtAlpcCreatePortSection → LPC

27) NtAlpcCreateResourceReserve → LPC

28) NtAlpcCreateSectionView → LPC

29) NtAlpcCreateSecurityContext → LPC

30) NtAlpcDeletePortSection → LPC

31) NtAlpcDeleteResourceReserve → LPC

32) NtAlpcDeleteSectionView → LPC

33) NtAlpcDeleteSecurityContext → LPC

34) NtAlpcDisconnectPort → LPC

35) NtAlpcImpersonateClientOfPort → LPC

36) NtAlpcOpenSenderProcess → LPC

37) NtAlpcOpenSenderThread → LPC

38) NtAlpcQueryInformation → LPC

39) NtAlpcQueryInformationMessage → LPC

40) NtAlpcRevokeSecurityContext → LPC

41) NtAlpcSendWaitReceivePort → LPC

42) NtAlpcSetInformation → LPC

43) NtApphelpCacheControl → Process

44) NtAreMappedFilesTheSame → File

45) NtAssignProcessToJobObject → Job

46) NtCallbackReturn → Other

47) NtCancelDeviceWakeupRequest → Device

48) NtCancelIoFile → File

49) NtCancelIoFileEx → File

50) NtCancelSynchronousIoFile → File

51) NtCancelTimer → Other

52) NtClearAllSavepointsTransaction → Transaction

53) NtClearEvent → Synchronization

54) NtClearSavepointTransaction → Transaction

55) NtClose → File

56) NtCloseObjectAuditAlarm → Security

57) NtCommitComplete → Transaction

58) NtCommitEnlistment → Transaction

59) NtCommitTransaction → Transaction

60) NtCompactKeys → Registry

61) NtCompareTokens → Security

62) NtCompleteConnectPort → LPC

63) NtCompressKey → Registry

64) NtConnectPort → LPC

65) NtContinue → Process

66) NtCreateChannel → LPC

99

N (cont). Name Group

67) NtCreateDebugObject → Object

68) NtCreateDirectoryObject → Object

69) NtCreateEnlistment → Transaction

70) NtCreateEvent → Synchronization

71) NtCreateEventPair → Synchronization

72) NtCreateFile → File

73) NtCreateIoCompletion → File

74) NtCreateJobObject → Job

75) NtCreateJobSet → Job

76) NtCreateKey → Registry

77) NtCreateKeyedEvent → Synchronization

78) NtCreateKeyTransacted → Registry

79) NtCreateMailslotFile → File

80) NtCreateMutant → Synchronization

81) NtCreateNamedPipeFile → File

82) NtCreatePagingFile → File

83) NtCreatePort → LPC

84) NtCreatePrivateNamespace → Object

85) NtCreateProcess → Process

86) NtCreateProcessEx → Process

87) NtCreatePro�le → Debug

88) NtCreatePro�leEx → Debug

89) NtCreateResourceManager → Transaction

90) NtCreateSection → Memory

91) NtCreateSemaphore → Synchronization

92) NtCreateSymbolicLinkObject → Object

93) NtCreateThread → Process

94) NtCreateThreadEx → Process

95) NtCreateTimer → Other

96) NtCreateToken → Security

97) NtCreateTransaction → Transaction

98) NtCreateTransactionManager → Transaction

99) NtCreateUserProcess → Process

100) NtCreateWaitablePort → LPC

101) NtCreateWorkerFactory → Process

102) NtCurrentTeb → Other

103) NtDebugActiveProcess → Debug

104) NtDebugContinue → Debug

105) NtDelayExecution → Process

106) NtDeleteAtom → Atom

107) NtDeleteBootEntry → Device

108) NtDeleteDriverEntry → Device

100

N (cont). Name Group

109) NtDeleteFile → File

110) NtDeleteKey → Registry

111) NtDeleteObjectAuditAlarm → Security

112) NtDeletePrivateNamespace → Object

113) NtDeleteValueKey → Registry

114) NtDeviceIoControlFile → File

115) NtDisableLastKnownGood → Device

116) NtDisplayString → Other

117) NtDrawText → Other

118) NtDuplicateObject → Object

119) NtDuplicateToken → Security

120) NtEnableLastKnownGood → Device

121) NtEnumerateBootEntries → Device

122) NtEnumerateDriverEntries → Device

123) NtEnumerateKey → Registry

124) NtEnumerateSystemEnvironmentValuesEx → Environment

125) NtEnumerateTransactionObject → Transaction

126) NtEnumerateValueKey → Registry

127) NtExtendSection → Memory

128) NtFilterToken → Security

129) NtFindAtom → Atom

130) NtFlushBu�ersFile → File

131) NtFlushInstallUILanguage → Other

132) NtFlushInstructionCache → Memory

133) NtFlushKey → Registry

134) NtFlushProcessWriteBu�ers → Memory

135) NtFlushVirtualMemory → Memory

136) NtFlushWriteBu�er → Memory

137) NtFreeUserPhysicalPages → Memory

138) NtFreeVirtualMemory → Memory

139) NtFreezeRegistry → Registry

140) NtFreezeTransactions → Transaction

141) NtFsControlFile → File

142) NtGetContextThread → Process

143) NtGetCurrentProcessorNumber → Environment

144) NtGetDevicePowerState → Device

145) NtGetMUIRegistryInfo → Other

146) NtGetNextProcess → Process

147) NtGetNextThread → Process

148) NtGetNlsSectionPtr → Other

149) NtGetNoti�cationResourceManager → Transaction

150) NtGetPlugPlayEvent → Device

101

N (cont). Name Group

151) NtGetTickCount → Other

152) NtGetWriteWatch → Other

153) NtImpersonateAnonymousToken → Security

154) NtImpersonateClientOfPort → LPC

155) NtImpersonateThread → Security

156) NtInitializeNlsFiles → Other

157) NtInitializeRegistry → Registry

158) NtInitiatePowerAction → Device

159) NtIsProcessInJob → Job

160) NtIsSystemResumeAutomatic → Environment

161) NtIsUILanguageComitted → Other

162) NtListenChannel → LPC

163) NtListenPort → LPC

164) NtListTransactions → Transaction

165) NtLoadDriver → Device

166) NtLoadKey → Registry

167) NtLoadKey2 → Registry

168) NtLoadKeyEx → Registry

169) NtLockFile → File

170) NtLockProductActivationKeys → Other

171) NtLockRegistryKey → Registry

172) NtLockVirtualMemory → Memory

173) NtMakePermanentObject → Object

174) NtMakeTemporaryObject → Object

175) NtMapCMFModule → Other

176) NtMapUserPhysicalPages → Memory

177) NtMapUserPhysicalPagesScatter → Memory

178) NtMapViewOfSection → Memory

179) NtMarshallTransaction → Transaction

180) NtModifyBootEntry → Device

181) NtModifyDriverEntry → Device

182) NtNotifyChangeDirectoryFile → File

183) NtNotifyChangeKey → Registry

184) NtNotifyChangeMultipleKeys → Registry

185) NtNotifyChangeSession → Other

186) NtOpenChannel → LPC

187) NtOpenDirectoryObject → Object

188) NtOpenEnlistment → Transaction

189) NtOpenEvent → Synchronization

190) NtOpenEventPair → Synchronization

191) NtOpenFile → File

192) NtOpenIoCompletion → File

102

N (cont). Name Group

193) NtOpenJobObject → Job

194) NtOpenKey → Registry

195) NtOpenKeyedEvent → Synchronization

196) NtOpenKeyEx → Registry

197) NtOpenKeyTransacted → Registry

198) NtOpenKeyTransactedEx → Registry

199) NtOpenMutant → Synchronization

200) NtOpenObjectAuditAlarm → Object

201) NtOpenPrivateNamespace → Object

202) NtOpenProcess → Process

203) NtOpenProcessToken → Security

204) NtOpenProcessTokenEx → Security

205) NtOpenResourceManager → Transaction

206) NtOpenSection → Memory

207) NtOpenSemaphore → Synchronization

208) NtOpenSession → Other

209) NtOpenSymbolicLinkObject → Object

210) NtOpenThread → Process

211) NtOpenThreadToken → Security

212) NtOpenThreadTokenEx → Security

213) NtOpenTimer → Other

214) NtOpenTransaction → Transaction

215) NtOpenTransactionManager → Transaction

216) NtPlugPlayControl → Device

217) NtPowerInformation → Device

218) NtPrepareComplete → Transaction

219) NtPrepareEnlistment → Transaction

220) NtPrePrepareComplete → Transaction

221) NtPrePrepareEnlistment → Transaction

222) NtPrivilegeCheck → Security

223) NtPrivilegedServiceAuditAlarm → Security

224) NtPrivilegeObjectAuditAlarm → Security

225) NtPropagationComplete → Transaction

226) NtPropagationFailed → Transaction

227) NtProtectVirtualMemory → Memory

228) NtPullTransaction → Transaction

229) NtPulseEvent → Synchronization

230) NtQueryAttributesFile → File

231) NtQueryBootEntryOrder → Device

232) NtQueryBootOptions → Device

233) NtQueryDebugFilterState → Debug

234) NtQueryDefaultLocale → Environment

103

N (cont). Name Group

235) NtQueryDefaultUILanguage → Environment

236) NtQueryDirectoryFile → File

237) NtQueryDirectoryObject → Object

238) NtQueryDriverEntryOrder → Device

239) NtQueryEaFile → File

240) NtQueryEvent → Synchronization

241) NtQueryFullAttributesFile → File

242) NtQueryInformationAtom → Atom

243) NtQueryInformationEnlistment → Transaction

244) NtQueryInformationFile → File

245) NtQueryInformationJobObject → Job

246) NtQueryInformationPort → LPC

247) NtQueryInformationProcess → Process

248) NtQueryInformationResourceManager → Transaction

249) NtQueryInformationThread → Process

250) NtQueryInformationToken → Security

251) NtQueryInformationTransaction → Transaction

252) NtQueryInformationTransactionManager → Transaction

253) NtQueryInformationWorkerFactory → Process

254) NtQueryInstallUILanguage → Environment

255) NtQueryIntervalPro�le → Debug

256) NtQueryIoCompletion → File

257) NtQueryKey → Registry

258) NtQueryLicenseValue → Other

259) NtQueryMultipleValueKey → Registry

260) NtQueryMutant → Synchronization

261) NtQueryObject → Object

262) NtQueryOleDirectoryFile → File

263) NtQueryOpenSubKeys → Registry

264) NtQueryOpenSubKeysEx → Registry

265) NtQueryPerformanceCounter → Debug

266) NtQueryPortInformationProcess → LPC

267) NtQueryQuotaInformationFile → File

268) NtQuerySection → Memory

269) NtQuerySecurityAttributesToken → Security

270) NtQuerySecurityObject → Security

271) NtQuerySemaphore → Synchronization

272) NtQuerySymbolicLinkObject → Object

273) NtQuerySystemEnvironmentValue → Environment

274) NtQuerySystemEnvironmentValueEx → Environment

275) NtQuerySystemInformation → Other

276) NtQuerySystemInformationEx → Other

104

N (cont). Name Group

277) NtQuerySystemTime → Time

278) NtQueryTimer → Time

279) NtQueryTimerResolution → Time

280) NtQueryValueKey → Registry

281) NtQueryVirtualMemory → Memory

282) NtQueryVolumeInformationFile → File

283) NtQueueApcThread → Process

284) NtQueueApcThreadEx → Process

285) NtRaiseException → Process

286) NtRaiseHardError → Process

287) NtReadFile → File

288) NtReadFileScatter → File

289) NtReadOnlyEnlistment → Transaction

290) NtReadRequestData → LPC

291) NtReadVirtualMemory → Memory

292) NtRecoverEnlistment → Transaction

293) NtRecoverResourceManager → Transaction

294) NtRecoverTransactionManager → Transaction

295) NtRegisterProtocolAddressInformation → Transaction

296) NtRegisterThreadTerminatePort → Debug

297) NtReleaseCMFViewOwnership → Other

298) NtReleaseKeyedEvent → Synchronization

299) NtReleaseMutant → Synchronization

300) NtReleaseSemaphore → Synchronization

301) NtReleaseWorkerFactoryWorker → Process

302) NtRemoveIoCompletion → File

303) NtRemoveIoCompletionEx → File

304) NtRemoveProcessDebug → Debug

305) NtRenameKey → Registry

306) NtRenameTransactionManager → Transaction

307) NtReplaceKey → Registry

308) NtReplacePartitionUnit → Device

309) NtReplyPort → LPC

310) NtReplyWaitReceivePort → LPC

311) NtReplyWaitReceivePortEx → LPC

312) NtReplyWaitReplyPort → LPC

313) NtReplyWaitSendChannel → LPC

314) NtRequestDeviceWakeup → Device

315) NtRequestPort → LPC

316) NtRequestWaitReplyPort → LPC

317) NtRequestWakeupLatency → Device

318) NtResetEvent → Synchronization

105

N (cont). Name Group

319) NtResetWriteWatch → Other

320) NtRestoreKey → Registry

321) NtResumeProcess → Process

322) NtResumeThread → Process

323) NtRollbackComplete → Transaction

324) NtRollbackEnlistment → Transaction

325) NtRollbackSavepointTransaction → Transaction

326) NtRollbackTransaction → Transaction

327) NtRollforwardTransactionManager → Transaction

328) NtSaveKey → Registry

329) NtSaveKeyEx → Registry

330) NtSaveMergedKeys → Registry

331) NtSavepointComplete → Transaction

332) NtSavepointTransaction → Transaction

333) NtSecureConnectPort → LPC

334) NtSendWaitReplyChannel → LPC

335) NtSerializeBoot → Device

336) NtSetBootEntryOrder → Device

337) NtSetBootOptions → Device

338) NtSetContextChannel → LPC

339) NtSetContextThread → Process

340) NtSetDebugFilterState → Debug

341) NtSetDefaultHardErrorPort → Process

342) NtSetDefaultLocale → Environment

343) NtSetDefaultUILanguage → Environment

344) NtSetDriverEntryOrder → Device

345) NtSetEaFile → File

346) NtSetEvent → Synchronization

347) NtSetEventBoostPriority → Synchronization

348) NtSetHighEventPair → Synchronization

349) NtSetHighWaitLowEventPair → Synchronization

350) NtSetHighWaitLowThread → Synchronization

351) NtSetInformationDebugObject → Debug

352) NtSetInformationEnlistment → Transaction

353) NtSetInformationFile → File

354) NtSetInformationJobObject → Job

355) NtSetInformationKey → Registry

356) NtSetInformationObject → Object

357) NtSetInformationProcess → Process

358) NtSetInformationResourceManager → Transaction

359) NtSetInformationThread → Process

360) NtSetInformationToken → Security

106

N (cont). Name Group

361) NtSetInformationTransaction → Transaction

362) NtSetInformationTransactionManager → Transaction

363) NtSetInformationWorkerFactory → Process

364) NtSetIntervalPro�le → Debug

365) NtSetIoCompletion → File

366) NtSetIoCompletionEx → File

367) NtSetLdtEntries → Other

368) NtSetLowEventPair → Synchronization

369) NtSetLowWaitHighEventPair → Synchronization

370) NtSetLowWaitHighThread → Synchronization

371) NtSetQuotaInformationFile → File

372) NtSetSecurityObject → Security

373) NtSetSystemEnvironmentValue → Environment

374) NtSetSystemEnvironmentValueEx → Environment

375) NtSetSystemInformation → Other

376) NtSetSystemPowerState → Device

377) NtSetSystemTime → Time

378) NtSetThreadExecutionState → Device

379) NtSetTimer → Other

380) NtSetTimerEx → Other

381) NtSetTimerResolution → Time

382) NtSetUuidSeed → Other

383) NtSetValueKey → Registry

384) NtSetVolumeInformationFile → File

385) NtShutdownSystem → Other

386) NtShutdownWorkerFactory → Process

387) NtSignalAndWaitForSingleObject → Synchronization

388) NtSinglePhaseReject → Transaction

389) NtStartPro�le → Debug

390) NtStartTm → Transaction

391) NTSTATUS → NTSTATUS

392) NtStopPro�le → Debug

393) NtSuspendProcess → Process

394) NtSuspendThread → Process

395) NtSystemDebugControl → Debug

396) NtTerminateJobObject → Job

397) NtTerminateProcess → Process

398) NtTerminateThread → Process

399) NtTestAlert → Process

400) NtThawRegistry → Registry

401) NtThawTransactions → Transaction

402) NtTraceControl → Other

107

N (cont). Name Group

403) NtTraceEvent → Synchronization

404) NtTranslateFilePath → File

405) NtUmsThreadYield → Process

406) NtUnloadDriver → Device

407) NtUnloadKey → Registry

408) NtUnloadKey2 → Registry

409) NtUnloadKeyEx → Registry

410) NtUnlockFile → File

411) NtUnlockVirtualMemory → Memory

412) NtUnmapViewOfSection → Memory

413) NtVdmControl → Device

414) NtWaitForDebugEvent → Debug

415) NtWaitForKeyedEvent → Synchronization

416) NtWaitForMultipleObjects → Synchronization

417) NtWaitForMultipleObjects32 → Synchronization

418) NtWaitForSingleObject → Synchronization

419) NtWaitForWorkViaWorkerFactory → Process

420) NtWaitHighEventPair → Synchronization

421) NtWaitLowEventPair → Synchronization

422) NtWorkerFactoryWorkerReady → Process

423) NtWow64CallFunction64 → WOW64

424) NtWow64CsrAllocateCaptureBu�er → WOW64

425) NtWow64CsrAllocateMessagePointer → WOW64

426) NtWow64CsrCaptureMessageBu�er → WOW64

427) NtWow64CsrCaptureMessageString → WOW64

428) NtWow64CsrClientCallServer → WOW64

429) NtWow64CsrClientConnectToServer → WOW64

430) NtWow64CsrFreeCaptureBu�er → WOW64

431) NtWow64CsrGetProcessId → WOW64

432) NtWow64CsrIdentifyAlertableThread → WOW64

433) NtWow64CsrVerifyRegion → WOW64

434) NtWow64DebuggerCall → WOW64

435) NtWow64GetCurrentProcessorNumberEx → WOW64

436) NtWow64GetNativeSystemInformation → WOW64

437) NtWow64InterlockedPopEntrySList → WOW64

438) NtWow64QueryInformationProcess64 → WOW64

439) NtWow64QueryVirtualMemory64 → WOW64

440) NtWow64ReadVirtualMemory64 → WOW64

441) NtWow64WriteVirtualMemory64 → WOW64

442) NtWriteFile → File

443) NtWriteFileGather → File

444) NtWriteRequestData → LPC

108

N (cont). Name Group

445) NtWriteVirtualMemory → Memory

446) NtYieldExecution → Process

O. Name Group

1) OBJECT INFORMATION CLASS → Object

P. Name Group

1) PCLIENT ID → Process

2) PCONTEXT → Process

3) PEXCEPTION RECORD → Process

4) PGENERIC MAPPING → Security

5) PHANDLE → PHANDLE

6) PIO APC ROUTINE → File

7) PLARGE INTEGER → PLARGE INTEGER

8) POBJECT ATTRIBUTES → Object

9) PPORT MESSAGE → LPC

10) PPORT VIEW → LPC

11) PROCESSINFOCLASS → Process

12) PSECURITY DESCRIPTOR → Security

13) PSECURITY QUALITY OF SERVICE → Security

14) PTIMER APC ROUTINE → Other

15) PTOKEN PRIVILEGES → Security

16) PULARGE INTEGER → PULARGE INTEGER

17) PULONG → PULONG

18) PULONG PTR → Process

19) PUNICODE STRING → PUNICODE STRING

20) PUSER STACK → Process

21) PVOID SIZEAFTER → PVOID SIZEAFTER

22) PWSTR → PWSTR

S. Name Group

1) SECTION INFORMATION CLASS → Memory

2) SECTION INHERIT → Memory

3) SECURITY INFORMATION → Security

4) SYSTEM INFORMATION CLASS → Other

T. Name Group

1) THREADINFOCLASS → Process

2) TIMER TYPE → Other

3) TOKEN INFORMATION CLASS → Security

4) TOKEN TYPE → Security

109

U. Name Group

1) ULONG → ULONG

W. Name Group

1) WAIT TYPE → Synchronization

110

Alphabetically Ordered Groups and Corresponding System-Calls

1. ACCESS MASK

1) ACCESS MASK

2. Atom

1) ATOM INFORMATION CLASS 4) NtFindAtom

2) NtAddAtom 5) NtQueryInformationAtom

3) NtDeleteAtom

3. BOOLEAN

1) BOOLEAN

4. DEBUG

1) DEBUG CONTROL CODE 10) NtRemoveProcessDebug

2) NtCreatePro�le 11) NtSetDebugFilterState

3) NtCreatePro�leEx 12) NtSetInformationDebugObject

4) NtDebugActiveProcess 13) NtSetIntervalPro�le

5) NtDebugContinue 14) NtStartPro�le

6) NtQueryDebugFilterState 15) NtStopPro�le

7) NtQueryIntervalPro�le 16) NtSystemDebugControl

8) NtQueryPerformanceCounter 17) NtWaitForDebugEvent

9) NtRegisterThreadTerminatePort

5. DEVICE

1) NtAddBootEntry 14) NtModifyBootEntry

2) NtAddDriverEntry 15) NtModifyDriverEntry

3) NtCancelDeviceWakeupRequest 16) NtPlugPlayControl

4) NtDeleteBootEntry 17) NtPowerInformation

5) NtDeleteDriverEntry 18) NtQueryBootEntryOrder

6) NtDisableLastKnownGood 19) NtQueryBootOptions

7) NtEnableLastKnownGood 20) NtQueryDriverEntryOrder

8) NtEnumerateBootEntries 21) NtReplacePartitionUnit

9) NtEnumerateDriverEntries 22) NtRequestDeviceWakeup

10) NtGetDevicePowerState 23) NtRequestWakeupLatency

11) NtGetPlugPlayEvent 24) NtSerializeBoot

12) NtInitiatePowerAction 25) NtSetBootEntryOrder

13) NtLoadDriver 26) NtSetBootOptions

111

5. DEVICE (cont.)

27) NtSetDriverEntryOrder 30) NtUnloadDriver

28) NtSetSystemPowerState 31) NtVdmControl

29) NtSetThreadExecutionState

6. ENVIRONMENT

1) NtEnumerateSystemEnvironmentValuesEx 7) NtQuerySystemEnvironmentValue

2) NtGetCurrentProcessorNumber 8) NtQuerySystemEnvironmentValueEx

3) NtIsSystemResumeAutomatic 9) NtSetDefaultLocale

4) NtQueryDefaultLocale 10) NtSetDefaultUILanguage

5) NtQueryDefaultUILanguage 11) NtSetSystemEnvironmentValue

6) NtQueryInstallUILanguage 12) NtSetSystemEnvironmentValueEx

7. FILE

1) FILE INFORMATION CLASS 23) NtQueryEaFile

2) FS INFORMATION CLASS 24) NtQueryFullAttributesFile

3) NtAreMappedFilesTheSame 25) NtQueryInformationFile

4) NtCancelIoFile 26) NtQueryIoCompletion

5) NtCancelIoFileEx 27) NtQueryOleDirectoryFile

6) NtCancelSynchronousIoFile 28) NtQueryQuotaInformationFile

7) NtClose 29) NtQueryVolumeInformationFile

8) NtCreateFile 30) NtReadFile

9) NtCreateIoCompletion 31) NtReadFileScatter

10) NtCreateMailslotFile 32) NtRemoveIoCompletion

11) NtCreateNamedPipeFile 33) NtRemoveIoCompletionEx

12) NtCreatePagingFile 34) NtSetEaFile

13) NtDeleteFile 35) NtSetInformationFile

14) NtDeviceIoControlFile 36) NtSetIoCompletion

15) NtFlushBu�ersFile 37) NtSetIoCompletionEx

16) NtFsControlFile 38) NtSetQuotaInformationFile

17) NtLockFile 39) NtSetVolumeInformationFile

18) NtNotifyChangeDirectoryFile 40) NtTranslateFilePath

19) NtOpenFile 41) NtUnlockFile

20) NtOpenIoCompletion 42) NtWriteFile

21) NtQueryAttributesFile 43) NtWriteFileGather

22) NtQueryDirectoryFile 44) PIO APC ROUTINE

8. HANDLE

1) HANDLE

112

9. JOB

1) JOBOBJECTINFOCLASS 6) NtOpenJobObject

2) NtAssignProcessToJobObject 7) NtQueryInformationJobObject

3) NtCreateJobObject 8) NtSetInformationJobObject

4) NtCreateJobSet 9) NtTerminateJobObject

5) NtIsProcessInJob

10. LONG

1) LONG

11. LPC

1) NtAcceptConnectPort 25) NtCreateChannel

2) NtAlpcAcceptConnectPort 26) NtCreatePort

3) NtAlpcCancelMessage 27) NtCreateWaitablePort

4) NtAlpcConnectPort 28) NtImpersonateClientOfPort

5) NtAlpcCreatePort 29) NtListenChannel

6) NtAlpcCreatePortSection 30) NtListenPort

7) NtAlpcCreateResourceReserve 31) NtOpenChannel

8) NtAlpcCreateSectionView 32) NtQueryInformationPort

9) NtAlpcCreateSecurityContext 33) NtQueryPortInformationProcess

10) NtAlpcDeletePortSection 34) NtReadRequestData

11) NtAlpcDeleteResourceReserve 35) NtReplyPort

12) NtAlpcDeleteSectionView 36) NtReplyWaitReceivePort

13) NtAlpcDeleteSecurityContext 37) NtReplyWaitReceivePortEx

14) NtAlpcDisconnectPort 38) NtReplyWaitReplyPort

15) NtAlpcImpersonateClientOfPort 39) NtReplyWaitSendChannel

16) NtAlpcOpenSenderProcess 40) NtRequestPort

17) NtAlpcOpenSenderThread 41) NtRequestWaitReplyPort

18) NtAlpcQueryInformation 42) NtSecureConnectPort

19) NtAlpcQueryInformationMessage 43) NtSendWaitReplyChannel

20) NtAlpcRevokeSecurityContext 44) NtSetContextChannel

21) NtAlpcSendWaitReceivePort 45) NtWriteRequestData

22) NtAlpcSetInformation 46) PPORT MESSAGE

23) NtCompleteConnectPort 47) PPORT VIEW

24) NtConnectPort

12. MEMORY

1) MEMORY INFORMATION CLASS 6) NtFlushInstructionCache

2) NtAllocateUserPhysicalPages 7) NtFlushProcessWriteBu�ers

3) NtAllocateVirtualMemory 8) NtFlushVirtualMemory

4) NtCreateSection 9) NtFlushWriteBu�er

5) NtExtendSection 10) NtFreeUserPhysicalPages

113

12. MEMORY (cont.)

11) NtFreeVirtualMemory 19) NtQueryVirtualMemory

12) NtMapUserPhysicalPagesScatter 20) NtReadVirtualMemory

13) NtMapViewOfSection 21) NtUnlockVirtualMemory

14) NtOpenSection 22) NtUnmapViewOfSection

15) NtProtectVirtualMemory 23) NtWriteVirtualMemory

16) NtQuerySection 24) SECTION INFORMATION CLASS

17) NtLockVirtualMemory 25) SECTION INHERIT

18) NtMapUserPhysicalPages

13. NTSTATUS

1) NTSTATUS

14. OBJECT

1) NtAllocateReserveObject 11) NtOpenObjectAuditAlarm

2) NtCreateDebugObject 12) NtOpenPrivateNamespace

3) NtCreateDirectoryObject 13) NtOpenSymbolicLinkObject

4) NtCreatePrivateNamespace 14) NtQueryDirectoryObject

5) NtCreateSymbolicLinkObject 15) NtQueryObject

6) NtDeletePrivateNamespace 16) NtQuerySymbolicLinkObject

7) NtDuplicateObject 17) NtSetInformationObject

8) NtMakePermanentObject 18) OBJECT INFORMATION CLASS

9) NtMakeTemporaryObject 19) POBJECT ATTRIBUTES

10) NtOpenDirectoryObject

15. OTHER

1) NtAcquireCMFViewOwnership 14) NtGetWriteWatch

2) NtAllocateLocallyUniqueId 15) NtInitializeNlsFiles

3) NtAllocateUuids 16) NtIsUILanguageComitted

4) NtCallbackReturn 17) NtLockProductActivationKeys

5) NtCancelTimer 18) NtMapCMFModule

6) NtCreateTimer 19) NtNotifyChangeSession

7) NtCurrentTeb 20) NtOpenSession

8) NtDisplayString 21) NtOpenTimer

9) NtDrawText 22) NtQueryLicenseValue

10) NtFlushInstallUILanguage 23) NtQuerySystemInformation

11) NtGetMUIRegistryInfo 24) NtQuerySystemInformationEx

12) NtGetNlsSectionPtr 25) NtReleaseCMFViewOwnership

13) NtGetTickCount 26) NtResetWriteWatch

114

15. OTHER (cont.)

27) NtSetLdtEntries 32) NtShutdownSystem

28) NtSetSystemInformation 33) NtTraceControl

29) NtSetTimer 34) PTIMER APC ROUTINE

30) NtSetTimerEx 35) SYSTEM INFORMATION CLASS

31) NtSetUuidSeed 36) TIMER TYPE

16. PHANDLE

1) PHANDLE

17. LARGE INTEGER

1) PLARGE INTEGER

18. PROCESS

1) HARDERROR RESPONSE OPTION 26) NtResumeProcess

2) NtAlertResumeThread 27) NtResumeThread

3) NtAlertThread 28) NtSetContextThread

4) NtApphelpCacheControl 29) NtSetDefaultHardErrorPort

5) NtContinue 30) NtSetInformationProcess

6) NtCreateProcess 31) NtSetInformationThread

7) NtCreateProcessEx 32) NtSetInformationWorkerFactory

8) NtCreateThread 33) NtShutdownWorkerFactory

9) NtCreateThreadEx 34) NtSuspendProcess

10) NtCreateUserProcess 35) NtSuspendThread

11) NtCreateWorkerFactory 36) NtTerminateProcess

12) NtDelayExecution 37) NtTerminateThread

13) NtGetContextThread 38) NtTestAlert

14) NtGetNextProcess 39) NtUmsThreadYield

15) NtGetNextThread 40) NtWaitForWorkViaWorkerFactory

16) NtOpenProcess 41) NtWorkerFactoryWorkerReady

17) NtOpenThread 42) NtYieldExecution

18) NtQueryInformationProcess 43) PCLIENT ID

19) NtQueryInformationThread 44) PCONTEXT

20) NtQueryInformationWorkerFactory 45) PEXCEPTION RECORD

21) NtQueueApcThread 46) PROCESSINFOCLASS

22) NtQueueApcThreadEx 47) PULONG PTR

23) NtRaiseException 48) PUSER STACK

24) NtRaiseHardError 49) THREADINFOCLASS

25) NtReleaseWorkerFactoryWorker

19. PULARGE INTEGER

1) PULARGE INTEGER

115

20. PULONG

1) PULONG

21. PUNICODE STRING

1) PUNICODE STRING

22. PVOID SIZEAFTER

1) PVOID SIZEAFTER

23. PWSTR

1) PWSTR

24. REGISTRY

1) KEY INFORMATION CLASS 21) NtOpenKeyEx

2) KEY VALUE INFORMATION CLASS 22) NtOpenKeyTransacted

3) NtCompactKeys 23) NtOpenKeyTransactedEx

4) NtCompressKey 24) NtQueryKey

5) NtCreateKey 25) NtQueryMultipleValueKey

6) NtCreateKeyTransacted 26) NtQueryOpenSubKeys

7) NtDeleteKey 27) NtQueryOpenSubKeysEx

8) NtDeleteValueKey 28) NtQueryValueKey

9) NtEnumerateKey 29) NtRenameKey

10) NtEnumerateValueKey 30) NtReplaceKey

11) NtFlushKey 31) NtRestoreKey

12) NtFreezeRegistry 32) NtSaveKey

13) NtInitializeRegistry 33) NtSaveKeyEx

14) NtLoadKey 34) NtSaveMergedKeys

15) NtLoadKey2 35) NtSetInformationKey

16) NtLoadKeyEx 36) NtSetValueKey

17) NtLockRegistryKey 37) NtThawRegistry

18) NtNotifyChangeKey 38) NtUnloadKey

19) NtNotifyChangeMultipleKeys 39) NtUnloadKey2

20) NtOpenKey 40) NtUnloadKeyEx

25. SECURITY

1) NtAccessCheck 7) NtAccessCheckByTypeResultList

2) NtAccessCheckAndAuditAlarm 8) NtAdjustGroupsToken

3) NtAccessCheckByType 9) NtAdjustPrivilegesToken

4) NtAccessCheckByTypeAndAuditAlarm 10) NtDeleteObjectAuditAlarm

5) NtAccessCheckByTypeResultListAndAuditAlarmByHandle 11) NtCompareTokens

6) NtAccessCheckByTypeResultListAndAuditAlarm 12) NtCreateToken

116

25. SECURITY (cont.)

13) PSECURITY QUALITY OF SERVICE 25) NtQueryInformationToken

14) NtDuplicateToken 26) NtQuerySecurityAttributesToken

15) NtFilterToken 27) NtQuerySecurityObject

16) NtImpersonateAnonymousToken 28) NtSetInformationToken

17) NtImpersonateThread 29) NtSetSecurityObject

18) NtOpenProcessToken 30) PGENERIC MAPPING

19) NtOpenProcessTokenEx 31) PSECURITY DESCRIPTOR

20) NtOpenThreadToken 32) NtCloseObjectAuditAlarm

21) NtOpenThreadTokenEx 33) PTOKEN PRIVILEGES

22) NtPrivilegeCheck 34) SECURITY INFORMATION

23) NtPrivilegedServiceAuditAlarm 35) TOKEN INFORMATION CLASS

24) NtPrivilegeObjectAuditAlarm 36) TOKEN TYPE

26. SYNCHRONIZATION

1) EVENT INFORMATION CLASS 20) NtReleaseSemaphore

2) EVENT TYPE 21) NtResetEvent

3) NtClearEvent 22) NtSetEvent

4) NtCreateEvent 23) NtSetEventBoostPriority

5) NtCreateEventPair 24) NtSetHighEventPair

6) NtCreateKeyedEvent 25) NtSetHighWaitLowEventPair

7) NtCreateMutant 26) NtSetHighWaitLowThread

8) NtCreateSemaphore 27) NtSetLowEventPair

9) NtOpenEvent 28) NtSetLowWaitHighEventPair

10) NtOpenEventPair 29) NtSetLowWaitHighThread

11) NtOpenKeyedEvent 30) NtSignalAndWaitForSingleObject

12) NtOpenMutant 31) NtTraceEvent

13) NtOpenSemaphore 32) NtWaitForKeyedEvent

14) NtPulseEvent 33) NtWaitForMultipleObjects

15) NtQueryEvent 34) NtWaitForMultipleObjects32

16) NtQueryMutant 35) NtWaitForSingleObject

17) NtQuerySemaphore 36) NtWaitHighEventPair

18) NtReleaseKeyedEvent 37) NtWaitLowEventPair

19) NtReleaseMutant 38) WAIT TYPE

27. TIME

1) NtQuerySystemTime 4) NtSetSystemTime

2) NtQueryTimer 5) NtSetTimerResolution

3) NtQueryTimerResolution

117

28. TRANSACTION

1) NtClearAllSavepointsTransaction 26) NtQueryInformationEnlistment

2) NtClearSavepointTransaction 27) NtQueryInformationResourceManager

3) NtCommitComplete 28) NtQueryInformationTransaction

4) NtCommitEnlistment 29) NtQueryInformationTransactionManager

5) NtCommitTransaction 30) NtReadOnlyEnlistment

6) NtCreateEnlistment 31) NtRecoverEnlistment

7) NtCreateResourceManager 32) NtRecoverResourceManager

8) NtCreateTransaction 33) NtRecoverTransactionManager

9) NtCreateTransactionManager 34) NtRegisterProtocolAddressInformation

10) NtEnumerateTransactionObject 35) NtRenameTransactionManager

11) NtFreezeTransactions 36) NtRollbackComplete

12) NtGetNoti�cationResourceManager 37) NtRollbackEnlistment

13) NtListTransactions 38) NtRollbackSavepointTransaction

14) NtMarshallTransaction 39) NtRollbackTransaction

15) NtOpenEnlistment 40) NtRollforwardTransactionManager

16) NtOpenResourceManager 41) NtSavepointComplete

17) NtOpenTransaction 42) NtSavepointTransaction

18) NtOpenTransactionManager 43) NtSetInformationEnlistment

19) NtPrepareComplete 44) NtSetInformationResourceManager

20) NtPrepareEnlistment 45) NtSetInformationTransaction

21) NtPrePrepareComplete 46) NtSetInformationTransactionManager

22) NtPrePrepareEnlistment 47) NtSinglePhaseReject

23) NtPropagationComplete 48) NtStartTm

24) NtPropagationFailed 49) NtThawTransactions

25) NtPullTransaction

29. ULONG

1) ULONG

30. WOW64

1) NtWow64CallFunction64 11) NtWow64CsrVerifyRegion

2) NtWow64CsrAllocateCaptureBu�er 12) NtWow64DebuggerCall

3) NtWow64CsrAllocateMessagePointer 13) NtWow64GetCurrentProcessorNumberEx

4) NtWow64CsrCaptureMessageBu�er 14) NtWow64GetNativeSystemInformation

5) NtWow64CsrCaptureMessageString 15) NtWow64InterlockedPopEntrySList

6) NtWow64CsrClientCallServer 16) NtWow64QueryInformationProcess64

7) NtWow64CsrClientConnectToServer 17) NtWow64QueryVirtualMemory64

8) NtWow64CsrFreeCaptureBu�er 18) NtWow64ReadVirtualMemory64

9) NtWow64CsrGetProcessId 19) NtWow64WriteVirtualMemory64

10) NtWow64CsrIdentifyAlertableThread

118

Author's Publications

I. Chionis, S.D. Nikolopoulos and I. Polenakis. A Survey on Algorithmic Techniques for

Malware Detection 2nd International Symposium on Computing in Informatics and Math-

ematics (2013).

Short Vita

Born in Athens in (1990), Iosif Polenakis received his B.Sc. degree in Informatics (2012)

from the Department of Informatics of the Ionian University. His B.Sc. thesis was the

development and experimental evaluation of a simulator for malware spread in wire-

less connected devices. He received his M.Sc. degree from the Department of Computer

Science and Engineering (2014) of the University of Ioannina and his M.Sc. thesis is

on the development of algorithmic techniques for malware detection and classi�cation

based on system-call dependency graphs. During his M.Sc. studies he was member of the

"Algorithms Engineering Lab" doing research on the application of algorithmic theory

on graph-based techniques for malware analysis. His research interests focus mainly on

graph-similarity, data-mining, malware analysis, and cryptography.

