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Personal and enterprise environments store and manage an increasing volume of data as

their storage capacity improves exponentially. This trend drives the demand for full-text

search engines that help to automatically locate relevant information. Privacy refers to

the ability or right of individuals to control what information is collected about them,

who uses it, and for what purpose. In multi-user environments, access control has to be

enforced to protect privacy during search. Accordingly, search engines often build one

index per user, or they create a system-wide index and �lter the results by access rights.

In order to protect privacy at improved e�ciency, the search engine creates one index for

each set of documents accessed by the same set of users. However, this approach lacks

tunable parameters to meet di�erent performance needs.

In this thesis, we investigate how to provide a tunable solution for privacy protection

in search engines over multi-user environments. Thus, we introduce a novel strategy to

organize user documents into indices. The key insight is to cluster documents based on

the similarity of their access permissions using a Similarity parameter, and then map

the documents and users into indices using a Threshold parameter. The experimental

study of our solution shows that a trade-o� arises between the query performance and the

maintenance cost across di�erent similarity and threshold values. Over a prototype imple-

mentation, we experimentally identify those parameter values that achieve a substantial

reduction of query response time, while slightly raising the maintenance cost.
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Ìéá Üëëç ðñïóÝããéóç ðïõ áêïëïõèåßôáé åßíáé ç ÷ñÞóç åíüò åíéáßïõ åõñåôçñßïõ, ôï ïðïßï

ðåñéëáìâÜíåé üëá ôá áñ÷åßá ôùí äéáöïñåôéêþí ÷ñçóôþí. ¸ôóé, áðïöåýãåôáé ç åéóáãùãÞ

åíüò áñ÷åßïõ óå ðïëëáðëÜ åõñåôÞñéá, ìå ôçí ðñïûðüèåóç üìùò üôé êáôÜ ôçí åêôÝëåóç

åíüò åñùôÞìáôïò ôá áðïôåëÝóìáôá öéëôñÜñïíôáé, þóôå ôåëéêÜ ï ÷ñÞóôçò íá ëáìâÜíåé ìüíï

êåßìåíá ôùí ïðïßùí ôï ðåñéå÷üìåíï åßíáé åîïõóéïäïôçìÝíïò íá äåé. Ðáñ' üëï ðïõ ç ëýóç

áõôÞ öáßíåôáé üôé åîáóöáëßæåé ôçí éäéùôéêüôçôá, ôï ôñùôü ôçò óçìåßï âñßóêåôáé óôï ãåãïíüò

üôé, ïðïéïóäÞðïôå ÷ñÞóôçò ìðïñåß Ýììåóá íá åîÜãåé óõìðåñÜóìáôá ãéá ôï ðëÞèïò ôùí

êåéìÝíùí ðïõ ðåñéÝ÷ïõí Ýíáí óõãêåêñéìÝíï üñï, áëëÜ êáé ãéá ôï ðåñéå÷üìåíï ôùí êåéìÝíùí

ãéá ôá ïðïßá äåí Ý÷åé ôá êáôÜëëçëá äéêáéþìáôá ðñüóâáóçò.

Ïé ðáñáðÜíù ðñïóåããßóåéò áðïôåëïýí äýï áêñáßåò ëýóåéò, êÜèå ìéá áðü ôéò ïðïßåò

èõóéÜæåé åßôå ôçí áðïäïôéêüôçôá, åßôå ôçí ðñïóôáóßá ôçò éäéùôéêüôçôáò ôïõ óõóôÞìáôïò

áíáæÞôçóçò. ÕðÜñ÷ïõí íÝåò ëýóåéò ðïõ áêïëïõèïýí äéáöïñåôéêÞ ðñïóÝããéóç ðñïóôáôåýï-

íôáò ôçí éäéùôéêüôçôá ôùí êåéìÝíùí êáé âåëôéþíïíôáò ôçí áðïäïôéêüôçôá ôïõ óõóôÞìáôïò

áíáæÞôçóçò. ¼ìùò, ç áðïäïôéêüôçôÜ ôïõò åßíáé ìç ðáñáìåôñïðïéÞóéìç.

Óôçí ðáñïýóá åñãáóßá, åîåôÜæïõìå ôïí ôñüðï ìå ôïí ïðïßï ìðïñïýìå íá åðéôý÷ïõìå

áðïäïôéêÞ ðñïóôáóßá ôçò éäéùôéêüôçôáò óå óõóôÞìáôá áíáæÞôçóçò ìå ðïëëáðëïýò ÷ñÞóôåò.

Âáóéêüò ìáò óôü÷ïò åßíáé íá äþóïõìå ìéá ëýóç, ç ïðïßá åðéôñÝðåé ôç ñýèìéóç ôïõ ÷ñüíïõ

åêôÝëåóçò ôùí åñùôçìÜôùí êáé ôïõ êüóôïò äéáôÞñçóçò ôùí åõñåôçñßùí ìå ôç ÷ñÞóç ïñéóìÝ-

íùí ðáñáìÝôñùí, åíþ ôáõôü÷ñïíá åîáóöáëßæåé ôçí éäéùôéêüôçôá. Ðñïò ôçí åêðëÞñùóç

ôïõ óôü÷ïõ ìáò åéóÜãïõìå ìéá íÝá óôñáôçãéêÞ ïñãÜíùóçò ôùí áñ÷åßùí ôùí ÷ñçóôþí óå

åõñåôÞñéá ðïõ áîéïðïéåß ôï âáèìü ïìïéüôçôáò, ï ïðïßïò åéóÜãåôáé ùò ðáñÜìåôñïò, ìåôáîý

ôùí ëéóôþí åëÝã÷ïõ ðñüóâáóçò ôùí áñ÷åßùí êáé ôá ïìáäïðïéåß. ¸ðåéôá, äéá÷ùñßæïõìå ôá

áñ÷åßá êÜèå ïìÜäáò êáé êáèïñßæïõìå ôï ðëÞèïò êáé ôï ðåñéå÷üìåíï ôùí åõñåôçñßùí ðïõ

äçìéïõñãïýìå âÜóç ìéáò åðéðëÝïí ðáñáìÝôñïõ. Ïé ðåéñáìáôéêÝò ìåôñÞóåéò öáíåñþíïõí üôé

åðéôõã÷Üíåôáé áýîçóç Þ ìåßùóç ôïõ ÷ñüíïõ åêôÝëåóçò ôùí åñùôçìÜôùí êáé ôïõ êüóôïõò

äéáôÞñçóçò ôùí åõñåôçñßùí, áíÜëïãá ìå ôéò ôéìÝò ôùí ðáñáìÝôñùí ðïõ åéóÜãïõìå. ÔåëéêÜ,

ìå óõãêåêñéìÝíç ðáñáìåôñïðïßçóç åðéôõã÷Üíïõìå ôçí ìåßùóç ôïõ ÷ñüíïõ åêôÝëåóçò ôùí

åñùôçìÜôùí ìå ìéêñÞ áýîçóç ôïõ êüóôïõò äéáôÞñçóçò ôùí åõñåôçñßùí, åíþ ôáõôü÷ñïíá

ðáñÝ÷ïõìå ðáñÝ÷ïõìå ðñïóôáóßá ôçò éäéùôéêüôçôáò.
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Chapter 1

Introduction

1.1 Thesis Scope

1.2 Outline

1.1 Thesis Scope

Over the last years, the improvements in storage capacity enable users to store and manage

a large amount of data. File systems organize �les into a hierarchical namespace and a �le

access requires explicit knowledge of the �le's name and location. Even though hierarchical

namespace is an appropriate way for users to organize their �les, its limitations become

obvious when the number of �les within a system signi�cantly grows. The increasing

amount of data in desktop and enterprise environments complicates the management of

�les as it is not easy to remember where each �le is stored.

In order to e�ectively �nd and manage text �les (documents), a full-text search engine

(or simply search engine) builds indices on a collection of documents and enables users to

search for information within the documents' content. Information search is expressed by

submitting search queries with terms to the search engine. The search engine evaluates a

query and returns a list of the documents whose content is relevant to the query terms.

Each document in this list is associated with a relevance score which indicates how relevant

the document is to the query. The highest the relevance score the more relevant the
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document is. Then, the search engine ranks the document list based on the relevance

scores of the documents and �nally returns it to the user who submitted the query.

Desktop and enterprise environments support multiple users. In multi-user environ-

ments, users usually de�ne through an access control mechanism who can access their �les

and how. A type of access control is the Access Control List (ACL). An ACL contains

users and/or groups along with their respective rights on a particular �le. Each �le or

folder has its own ACL. Hence, a search engine that operates in such an environment

needs to index the documents respecting their access rights, protecting privacy, and en-

suring that each user only obtains information concerning documents that he is allowed

to read.

In order to protect privacy, many search engines create one index per user. The index

of each user contains all documents that he is allowed to read. This approach o�ers high

query performance because each user has his private index and the search engine accesses

only that index to answer his queries. While privacy is provided, it is implied that each

document resides in the indices of all users that can read it. Hence, this approach is too

costly due to the large disk space consumption and the high index maintenance cost.

Instead, search engines can use a system-wide index which contains the documents of

all users. The search engine can then �lter each search result to only include documents

readable by the user who issued the query. This approach eliminates the multiple docu-

ment insertions in indices and limits the disk space consumption, but it does not protect

privacy under some circumstances [6]. In particular, it is possible for an arbitrary user

to infer the number of documents containing a particular term or the entire content of a

document that he is not allowed to read. These privacy threats can be avoided but at the

expense of query performance [6].

The above approaches sacri�ce either the e�ciency or the privacy of the search engine

in order to provide full-text search in multi-user environments. A di�erent approach,

that provides privacy and improves e�ciency, creates one index for each set of documents

accessed by the same set of users [37]. Documents accessed by a single user are indexed

by a private index, while documents shared between the same set of users are indexed by

shared indices. A user's query is answered by combining the results of his private index

with the shared indices that he can access. Even though this approach provides privacy

and is more e�cient than the previous one, it does not provide any tunable parameters
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to trade query performance for index maintenance cost and meet di�erent performance

needs.

Motivated by the privacy threats that arise in full-text search and the lack of a tunable

solution that achieves a trade-o� between query performance and index maintenance

cost, we provide a solution that addresses both of them. Our approach introduces a novel

strategy to organize users' documents into indices. We group documents into clusters, each

containing documents with similar ACLs. The similarity between the ACLs of documents

within a cluster is determined by a Similarity parameter. Then, we map documents and

users to indices based on the common users of the ACLs within a cluster. In addition, we

use a Threshold parameter which determines in which indices the documents and the users

are mapped. We perform several measurements for di�erent Similarity and Threshold

values and show that our solution introduces a trade-o� between query performance and

index maintenance cost. By choosing the appropriate Similarity and Threshold values, we

substantially reduce the query response time in comparison to an approach that creates

one index for each set of documents with the same ACL, while slightly increase the index

maintenance cost. Overall, our approach provides privacy and o�ers a tunable solution

that trades maintenance cost for query performance and vice versa, depending on the

performance needs.

1.2 Outline

The subsequent chapters are organized as follows:

In chapter 2 we present essential background knowledge about text indexing, text

search, and clustering. Then, we describe the basic access control models and discuss

privacy.

In chapter 3 we focus on how an arbitrary user can compromise the search engine

results to obtain information that he is not allowed to access.

In chapter 4 we introduce our design goals. Then, we give an overview of our indexing

workow scheme and analyze its individual components. Furthermore, we explain the

important decisions made before implementation.

In chapter 5 we provide the details of our implementation.
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In chapter 6 we de�ne our experimental environment and methodology, and present

the experimental results. We present results from both our indexing workow scheme and

a full-text search engine.

In chapter 7 we review prior related research that focuses on full-text search and

privacy protection in multi-user desktop and enterprise environments as well as in social

networks. In addition, we review approaches that provide secure data storage.

In chapter 8 we present the conclusions regarding this thesis and discuss possible future

research directions.
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Chapter 2

Background

2.1 Text Indexing

2.2 Clustering

2.3 Access Control

2.4 Search Privacy

2.5 Summary

In this chapter, we briey present essential background knowledge on full-text index-

ing, full-text search, and clustering. Then, we describe the basic access control model and

discuss privacy in full-text search engines.

2.1 Text Indexing

When dealing with a small number of documents, it is possible for the search engine to

directly scan the content of the documents in order to satisfy a search query. However,

when the number of documents is large, the best solution is to divide the search process

into two steps: indexing and search. In the indexing step, the content of all documents

is parsed and one or more indices are built. In the search step, users submit queries

consisting of terms and the search engine returns the documents that are relevant to the

query using the indices built in the previous step.
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Figure 2.1: The lexicon maps each distinct term to the position of its corresponding

posting list on the disk.

2.1.1 Index Structure

In general, several data structures have been proposed for the construction of a full-text

search index, such as signature �les [13], bitmaps [42], and su�x-arrays [29]. However,

the most e�ective and widely used data structure is the inverted index [17], which consists

of an inverted �le and a lexicon.

The inverted �le stores for each term t a list of pointers to all documents that contain

the term. Each pointer in this list is called posting and speci�es the exact position in the

document where the term occurs, while each list of pointers is called posting list. The

lexicon maps each distinct term t that appears in the documents to the position of its

corresponding posting list on the disk (Figure 2.1). It is usually implemented as a hash

table or a sorted structure for e�cient look up.

Although the inverted index is the preferred and most prominent index structure, the

actual choice of an appropriate index construction and maintenance method is important

to the search engine performance.

2.1.2 Inverted Index Construction and Maintenance

The main reason that makes index construction challenging is the fact that the volume of

data involved cannot be held in main memory. The most commonly used index construc-

tion algorithm is the merge-based inversion [42]. In merge-based inversion, documents are

parsed in batches and their postings are accumulated in memory, constructing the corre-

sponding posting lists. When memory is full, the posting lists are ushed to disk creating

a sub-index and then are deleted from memory. Finally, all sub-indices are merged into
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one on-disk index.

While the previous index construction method is useful for static collections, it is

not appropriate for dynamic collections. In dynamic collections, existing documents are

deleted or modi�ed, and new documents are created. Therefore, the search engine needs

to keep the indices in sync with the document collection that constantly changes. This

task is referred to as index maintenance. When a new document is added in the collection,

its postings must be added to the posting lists of the existing index. In case of a document

deletion, all postings referring to the deleted document must be removed from the posting

lists. Document modi�cations usually are handled as a deletion and re-insertion of the

document, ensuring that the search engine returns the new version of the document in

search results.

In principle, inserting a single document into an existing index requires the update

of every posting list corresponding to a term in the document. For fast insertion, it is

necessary to avoid accessing the corresponding disk-resident posting lists every time a

new document is added. Therefore, several index maintenance techniques amortize the

update cost over a sequence of document insertions.

The rebuilding strategy periodically reconstructs the entire index, including the docu-

ments added in the collection since the last rebuild. Although the cost of the rebuilding

method is prohibitive for large collections, its use is appropriate in some cases. Indeed,

many search services use this model, re-crawling documents every day or week and re-

indexing them.

A completely di�erent approach, called Remerge, has been proposed by Lester et al.

[26]. This approach uses one on-disk and one in-memory index which accumulates the

postings of new documents. When there is no available memory, the in-memory index is

merged with the existing on-disk index, creating a new on-disk index. The drawback of

this approach is that it requires the entire on-disk index to be read and written again to

disk every time the system runs out of memory.

On the other hand, the Nomerge strategy does not perform any merge operations.

When memory is full, postings are written to disk, creating a new on-disk sub-index. The

on-disk sub-indices are never merged. Thus, when the posting list for a given term needs

to be retrieved, its sub-lists must be fetched from all sub-indices. Nomerge is known for

its high indexing performance, as each posting is only written once to disk and never
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read during indexing. However, this approach requires many disk seeks in order to fetch

a term's posting list, as each posting list may be split in many sub-indices. Hence, it

is impractical for large document collections because a great number of sub-indices is

created degrading the query performance.

The two strategies mentioned above represent two extreme cases: Remerge always

merges the in-memory index with the on-disk index, while Nomerge never merges two

successive in-memory indices. The LogarithmicMerge strategy [25] is a compromise be-

tween the previous two. Every time memory is full, the in-memory postings are stored

as an on-disk sub-index. When the number of sub-indices with similar sizes reaches a

prede�ned threshold (mergefactor), these sub-indices are merged into a larger one. For

instance, suppose that the mergefactor is 10 and the bu�er size used for the indexing pro-

cess is 32MB. When the tenth sub-index is about to be written to disk, all the sub-indices

are merged into a single index of 320 MB. In the same context, when the number of 320

MB sized indices reaches ten, they are merged into a 3200 MB index. The advantage

of this strategy is that the mergefactor provides a trade-o� between indexing and query

processing performance.

2.1.3 Search Queries

A search engine allows users to submit search queries to �nd the information they need

using the index. Each query consists of terms that describe the information that a user

needs to �nd. A widely used type of queries is the Boolean query. A conventional Boolean

query consists of a list of terms combined using operators, such as AND, OR, and NOT.

The most commonly used Boolean operator is the AND operator. Supposing the

following conjunctive query of r terms:

term1 AND term2 AND ::: AND termr,

all terms must occur somewhere in a document in order to be included in the query

response. The simplest way to answer such a query is to look up each term in the lexicon

and retrieve its corresponding posting lists. Then, the intersection of the posting lists is

calculated. The procedure begins by picking the posting list of the least frequent term.

This list contains a set of candidate documents that might be answers to the query. All

remaining posting lists are processed based on this candidate set, in increasing order of
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term frequency. If a document in the candidate set is not present in any subsequent

posting list, it is discarded. This means that the size of the set of candidate documents

does not increase. At the end, all documents that exist in the candidate list are those

which contain all query terms, and they are returned to the user.

Another commonly used Boolean operator is the OR operator. The documents that

are included in the result of such a query are derived from the union of the posting lists

of the query terms. Thus, these documents may contain one, two, or all the query terms.

2.1.4 Result Ranking

Merely returning the results of a query is not very useful as a search answer. Some of the

documents included in the result are relevant to the query terms, while some others are

less relevant or even irrelevant. Therefore, the user is forced to make an extra e�ort in

order to identify the documents that are most relevant to his query. The more documents

included in the result list, the more di�cult and time-consuming the identi�cation process

becomes.

One way to help users to easily �nd the relevant documents is to rank the documents in

the returned list. The documents that have a higher probability to be considered relevant

by the user are ranked higher. For this purpose, we need a metric that characterizes each

document with a relevance score, and gives a good indication of which documents are

more relevant to a given query. Using such a metric, the full-text search engine can only

return the top-k ranked documents, and the user can restrict the result inspection only

to them.

Usually, web ranking algorithms leverage the links between pages in order to infer the

importance of a page. Google's PageRank [32] is an algorithm that uses this approach

and assigns a numerical value (referred as PageRank) to each page, with the purpose

of measuring its relative importance to the query. The PageRank of a page is de�ned

recursively and depends on the number and PageRank of all pages that link to it. Hence,

a page that is linked to by many pages with high PageRank receives a high rank itself.

This approach is not appropriate for a �le system ranking algorithm as there are no

links between �les. In order to apply this approach on �le systems some approaches

attempt to extract semantic information from �les. Connections [40] extracts temporal
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relationships from �les based on �le usage patterns and builds a graph. Each node of

the graph represents a �le and each edge represents a link. Two �les are linked if they

are opened at the same time window. However, this approach can link two �les that are

opened in the same time window even though they might not be relevant to each other.

In order to improve the ranking results, most relevance ranking functions use a simi-

larity measure to measure the closeness of each document to the query. The underlying

principle is that the higher the similarity score awarded to a document, the greater the

estimated likelihood that a human would judge it to be relevant. Most similarity measures

use some composition of fundamental statistical values:

• fd;t, the frequency of term t in the document d.

• fq;t , the frequency of term t in the query.

• ft , the number of documents containing one or more occurrences of term t.

• Ft, the number of occurrences of term t in the collection.

• N , the number of documents in the collection.

• n, the number of indexed terms in the collection.

These basic values are combined in a way that follows three observations:

1. Less weight is given to terms that appear in many documents.

2. More weight is given to terms that appear many times in a document.

3. Less weight is given to documents that contain many terms.

A typical formulation, which is quite e�ective in practice, calculates the cosine of the

angle in the n-dimensional space between a query term wq;t and a document wd;t:

wq;t = ln(1 +
N

ft
) wd;t = 1 + lnfd;t

Wd =

√∑
t

w2
d;t Wq =

√∑
t

w2
q;t

Sq;d =

∑
twd;twq;t

WdWq

(2.1)
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The similarity between the query q and the document d is expressed by the term Sq;d. In

this equation, the term Wq can be neglected as it is a constant for a given query and does

not a�ect the ordering of documents. The quantity wq;t typically captures the property

often described as the inverse document frequency of the term (IDF ), while wd;t captures

the term frequency (TF ). A greater TF value means that a document is more relevant

if it contains more occurrences of a query term; a greater IDF value means that a query

term is more important if it occurs in fewer documents.

One of the most prominent and most sophisticated TF=IDF scoring functions is Okapi

BM25 [35]:

wq;t = ln(
N − ft + 0:5

ft + 0:5
)
(k3 + 1)fq;t
k3 + fq;t

wd;t =
(k1 + 1)fd;t
Kd + fd;t

Kd = k1((1− b) + b
Wd

WA

) Sq;d =
∑
t∈q

wq;twd;t (2.2)

in which the values k1 and b are parameters, set to 1:2 and 0:75 respectively; k3 is a

parameter that is set to ∞, so that, the expression (k3 + 1) fq;t
k3+fq;t

is assumed to be

equivalent to fq;t. Wd and WA are the document length and average document length,

counted in words or bytes.

In order to evaluate the accuracy of a ranking method, we need some metrics to

calculate the portion of the actual relevant documents included in the result and quality

of ranking. Two basic metrics are the precision and the recall. The precision of a ranking

method is the fraction of the top-k ranked documents that are relevant to the query,

while the recall of a method is the fraction of the total number of relevant documents

included in the top-k documents. More to the point, high recall means that an algorithm

returns most of the relevant results, while high precision means that an algorithm returns

substantially more relevant results than irrelevant.

2.2 Clustering

Clustering is an important and useful technique used in a wide variety of �elds, such as

pattern recognition, information retrieval, and data mining. Clustering methods group a

large number of objects into a small number of meaningful clusters for further processing
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[21]. Objects within a cluster are similar to each other and di�erent from objects in

other clusters. Therefore, a good clustering method is the one that achieves the greater

similarity within a cluster and the greater di�erence between clusters.

Usually, every single object x, which is used as input to a clustering method, consists

of a vector of d dimensions x = (x1; x2; :::xd). The individual components xi are called

features or attributes and describe the objects. Attributes are used by clustering methods

to group the objects.

The basic steps that a typical clustering activity involves are: a) the representation of

the objects; b) the de�nition of an appropriate proximity measure; and c) the clustering

process [22]. Object representation refers to the number of available objects, and the

number and type of the attributes available to the clustering algorithm. Object proximity

is usually measured by a distance or similarity measure de�ned on pairs of objects and is

stored in a matrix whose rows and columns correspond to objects. The clustering process

groups the objects by consulting the proximity matrix. The output can be:

• exclusive, where each object belongs to exactly one cluster,

• overlapping, where an object can simultaneously belong to more than one cluster,

or

• fuzzy, where each object has a certain degree of membership in each of the output

clusters.

Finally, some objects may be considered as outliers or noise and may not be part of any

formed cluster. Outliers are either objects that have di�erent characteristics from most

of the objects in the data set, or values of an attribute that are unusual with respect to

the typical values for that attribute. On the other hand, the concept of noise is slightly

di�erent as it refers to a random component of a measurement error and may involve the

distortion of a value or the addition of spurious objects.

2.2.1 Similarity And Distance Measures

Clustering requires a de�nition of the \closeness" of two objects. Closeness is de�ned in

terms of the similarity measure between two objects. Similarity or Distance measures map

the similarity or distance between two objects into a single numeric value. The similarity
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expresses how similar are two objects. Similarity is higher for pairs of objects that are

more alike and lower for pairs that are less alike. On the other hand, distance expresses

how di�erent are two objects. When similarity values range from zero (no similarity) to

one (complete similarity), then for a given similarity value s, we can compute the distance

d = 1− s and vice verca.

A standard distance measure which is widely used in clustering problems is the

Euclidean Distance. The Euclidean Distance d between two objects x and y in a n-

dimensional space is given by the following equation:

d(x; y) =
n∑

k=1

(xk − yk)
2; (2.3)

where n is the number of dimensions and xk, yk the k
th attributes of x and y respectively.

Jaccard Similarity Coe�cient is a measure which is used to compute the similarity of

objects with asymmetric binary attributes. In this case only ”1” matters. For instance,

suppose two objects x = (1; 0; 0; 0; 0; 0; 0) and y = (0; 0; 0; 0; 0; 1; 1) each one represented

by a binary vector of attributes. The Jaccard Coe�cient is given by the equation:

J =
f11

f01 + f10 + f11
; (2.4)

where:

• f11 is the number of attributes in which both x and y are ”1”,

• f01 is the number of attributes in which x is ”0” and y is ”1”, and

• f10 is the number of attributes in which x is ”1” and y is ”0”.

The number of attributes in which both x and y are ”0” does not contribute to the

estimation of the similarity value as the presence of an attribute is more important than

its absence.

One of the most popular similarity measures is the Cosine Similarity. Assuming two

objects x and y represented as vectors of attributes, the cosine similarity is given by the

following formula:

cos(x; y) =
x · y

‖x‖ ‖y‖
; (2.5)
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where the numerator of the fraction indicates the vector dot product

n∑
k=1

xkyk (2.6)

and ||x|| reects the vector length:

‖x‖ =

√√√√ n∑
k=1

x2k =
√
x · x: (2.7)

Cosine similarity ignores zero matches like the Jaccard Similarity Coe�cient, but it can

also be used to compute the similarity of objects with non-binary attributes. For instance,

it is an appropriate measure for computing the similarity of text documents. In such a

case, documents are represented as vectors of attributes and each attribute corresponds

to the frequency of a term's occurrence in the document.

Finally, not all similarity or distance measures are suitable for a given situation. In

addition, choosing the appropriate measure is crucial for clustering, and hence, it is of

high importance to understand the e�ectiveness of di�erent measures in order to choose

the best for each case.

2.2.2 Clustering Methods

Several clustering algorithms exist but none of them is universally applicable and appro-

priate for each kind of dataset or clustering problem.

Partitional Clustering. The most common type of clustering methods can be char-

acterized as partitional clustering, which is an exclusive division of the set of objects into

clusters.

One of the simplest and most popular clustering algorithms is K-means [28]. K-means

represents a cluster by the mean value of all objects contained in it. Initially, it randomly

selects k cluster centers. Then, in each iteration, K-means assigns each object to its

closest cluster center based on the similarity function and recomputes the center of each

cluster. This process is repeated until a convergence criterion is met, for instance there is

no possible reassignment of any object from one cluster to another. K-means is popular

because it is easy to implement and its time complexity is O(n), where n is the number

of objects. A drawback of this algorithm is its sensitivity to the selection of the initial
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cluster centers and that the number of clusters needs to be de�ned in advance.

A density-based clustering algorithm called DBSCAN [11] is also a partitional clus-

tering algorithm. DBSCAN overcomes the shortcoming of the K-means algorithm, as the

number of clusters is automatically detected, and locates regions of high density that are

separated from each other by regions of low-density. DBSCAN's de�nition of a cluster

is based on the notion of density reachability. Basically, an object q is directly density-

reachable from an object p if it is closer than a given distance Eps (hence part of its

Eps − neighborhood) and if is surrounded by a number of objects such that one may

consider p and q to be part of a cluster. The q is called density-reachable from p if there is

a sequence of p1; :::; pn objects with p1 = p and pn = q where each pi+1 is directly density-

reachable from pi. There is a case where an object q might lie on the edge of a cluster,

having fewer neighbors than a given number to count as dense itself. This would halt the

process of �nding a path ending at the �rst non-dense object. By contrast, starting the

process with p would lead to q. In this case, the process would halt there and q would

be the �rst non-dense object. Due to this asymmetry, the notion of density-connected is

introduced: two objects p and q are density-connected if there is an object o such that

both p and q are density-reachable from o. A cluster satis�es two properties: a) all objects

within the cluster are mutually density-connected, and b) if an object is density-connected

to any object of the cluster, it is part of the cluster as well.

DBSCAN requires two parameters: a) Eps, which is the radius that delimits the

neighborhood area of an object, and b) MinObjs, which is the minimum number of

objects required to form a cluster. It starts with an unvisited object and retrieves its

Eps-neighborhood. If the size of its Eps-neighborhood is larger than MinObjs, then a

cluster is formed. Otherwise, the object is labeled as noise. However, this object might

later be part of another cluster. If an object is found to be a dense part of a cluster,

then its Eps-neighborhood is also part of that cluster. This process is repeated until

the density-connected cluster is completely found and then, a new unvisited object is

processed.

Hierarchical Clustering. Another well-known type of clustering method is charac-

terized as hierarchical clustering and includes two basic approaches [31]:

• The agglomerative approach starts the clustering process with each object as an
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aaaaaaaa
Subject

Object
File1 File2 ... FileN

User1 rwx r rwx

User2 r rw rwx

...

Group1 x rwx

Table 2.1: Access Control Matrix

individual cluster. Each step of this approach merges two clusters that are the most

similar. Thus the total number of clusters decreases after each step. This is repeated

until the desired number of clusters is obtained or only one cluster remains.

• The divisive approach reverses the clustering process and starts with just one cluster

that contains all the objects. Afterwards, the single cluster is split into two or more

clusters until the number of clusters becomes equal to the number of objects, or

equal to a number speci�ed by the user.

Generally, hierarchical clustering is preferred when a hierarchy is required and is displayed

using a tree-like diagram. Although the number of clusters does not need to be speci�ed

in advance, a termination condition has to be de�ned. However, the major drawback of

hierarchical algorithms is the high computational and storage cost they involve.

2.3 Access Control

In multi-user environments many users are allowed to coexist and interact with each

other. Generally, such systems distinguish individual users through authentication at

login time and associate an identity with each �le or folder. One challenge in multi-user

environments stems from the fact that all �les are stored in a shared storage space. With

no measures taken, it is possible for users to have access to any �le. Therefore, there is

an imperative need to use an access control mechanism.

Access control matrices can be used to implement access control mechanisms (Table

2.1). These matrices store for each subject (user or group) its access rights (Read, Write,

eXecute) on distinct objects. An object can be a �le, folder, or another system resource.
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The columns of the matrix refer to objects and the rows refer to subjects. One way to

simplify the management of access rights is to store the access control matrix by columns

along with the object to which the column refers. This is called an Access Control List

(ACL) and contains subjects as well as their access rights on the object to which the ACL

refers. Another way to manage the access control matrix is to store it by rows. Each row

is called capability and refers to the access rights of a subject on each object.

Generally, when a user makes a request to access a �le, a check is made to ensure that

he has the appropriate access rights, otherwise the access is denied. This mechanism is

known as authorization.

2.4 Search Privacy

As full-text search is an indispensable tool for �nding information, search engines need to

protect privacy when operating in a multi-user environment. Privacy protection in search

engines is considered a non trivial problem to solve, especially when there is a need to

retain the search engine's performance.

In order to protect privacy in search engines, the primary goal is to ensure that the

search engine respects the access control restrictions applied on the documents. This

means that whenever a user issues a query, the search engine must only return documents

that the user is allowed to read. However, in some cases this is not enough to preserve

privacy.

In the case where the search engine uses a system-wide index, a user can infer in-

formation about documents that is not allowed to read. When a system-wide index is

used, it is necessary to �lter the results of a query before returning them to the user. In

particular, the search engine computes the list of all documents matching the query, ranks

them depending on their relevance scores, and then it �lters this list. Filtering removes

from the list all documents that the user who issued the query is not allowed to read.

This postprocessing approach along with a TF=IDF ranking algorithm permits a user to

leverage the ranking results in order to infer information about documents that he is not

allowed to read [6].

This is the case where privacy in a search engine is not preserved and the impacts of
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information leakage could become disastrous if sensitive information is disclosed. Under

these considerations, in order to protect privacy, a search engine needs to ensure that a

result list returned to a user only contains documents that he is allowed to read and that

a user cannot infer any information about documents that he is not allowed to read.

2.5 Summary

Full-text search is separated into two stages: the indexing, and the search stage. In

the indexing stage, the search engine parses and indexes the documents in one or more

indices. The most popular index structure is the inverted index and possible techniques

that can be used to keep the indices in sync with the document collection are: a) Rebuild,

b) Remerge, c) Nomerge, and d) LogarithmicMerge. In the search stage, users issue

queries to the search engine. The search engine computes and ranks the list of documents

matching the query, and then returns the ranked list to the user.

Clustering methods are used to group objects into a small number of meaningful

clusters. Clustering is based on the similarity or distance between two objects, and two

basic types of clustering methods can be characterized as partitional and hierarchical.

In multi-user environments, users enforce access control over their �les de�ning who

can access them and how. Hence, search engines that operate in such environments need

to protect privacy ensuring that a result returned to a user only contains documents that

he is allowed to read, and there is no possibility for a user to infer any information about

documents that he is not allowed to read.
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Chapter 3

Privacy Threats in Full-Text Search

3.1 Attacking Through Relevance Scores

3.2 Attacking Through Ranking Results

3.3 Revealing the Content of Files

3.4 Towards a Secure Solution

3.5 Summary

When using a single system-wide index, all existing �les are indexed regardless of

access control privileges. Thus, whenever a search query is issued, the results are �ltered

in order to exclude documents for which the user may not have the appropriate access

privileges. However, the �ltering takes place after ranking all matching documents.

In this chapter, we focus on the methods that an arbitrary user can apply to compro-

mise the search results in a multi-user environment. All of the methods we describe are

discussed in a previous work by B�uttcher and Clarke [6]. The lack of per-user relevance

scores in conjunction with the above post-processing approach and a TF=IDF scoring

function can be exploited by an arbitrary user to calculate the number of documents that

contain a given term T . The calculation includes those documents that the user is not al-

lowed to search. Extracting the exact number of documents or an approximation depends

on whether the full-text search engine returns the document relevance scores or simply

the ranked list of documents. Also, it is possible to reveal the content of a document if the
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full-text search engine supports complex queries. However, TF=IDF scoring functions

are the most prominent scoring functions and should be used in a search engine while

retaining privacy.

3.1 Attacking Privacy Through Relevance Scores

We assume a full-text search engine that uses a system-wide index and a TF=IDF scoring

function (Okapi BM25) to perform relevance ranking on documents matching a search

query. The execution of the following steps lead to the exact calculation of the number

of documents containing a term T .

A possible starting point is the equation that calculates the relevance score of a doc-

ument d:

score(d) =
∑

(T;qT )∈Q

qT · wT · dT · (1 + k1)

dT + k1 · ((1− b) + b · dl
avgdl

)
; (3.1)

where dT is the number of occurrences of the term T within d, qT is the weight of T in

the query count by the number of its occurrences, and wT = log( |D|
|DT |

) is the IDF weight

of the query term T . |D| is the total number of documents and |DT | is the total number

of documents containing T . dl is the length of the document d (number of terms), and

avgdl is the average document length in the system. Parameters k1 and b are usually

chosen as 1:2 and 0:75 respectively.

For the given term T that an arbitrary user UserA is interested in, he needs to obtain

the number of documents that contain it by solving equation (3.1) for |DT |. However, the

value of |D| and avgdl is unknown. UserA creates documents containing speci�ed terms

and issues customized queries to the search engine. By leveraging the relevance scores

of the returned documents and the above equation, he can determine the value of the

unknown parameters, and �nally the value of |DT |.

Initially, UserA generates two random terms T2 and T3 that do not appear in any

document in the collection, and then creates three documents D1, D2 and D3 such that

• D1 contains only the term T2,

• D2 consists of two occurrences of the term T2,
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• D3 contains only the term T3 .

The next step is to issue two queries, one only containing the term T2 and another the

term T3. For the �rst query, D1 and D2 are returned as matching documents, while

document D3 is returned for the second query. Their relevance scores are revealed by the

search engine using the equation (3.1). Note that only the term T2 contributes to the

relevance score of D1 and only the term T3 contributes to the relevance score of D3. Also,

the weight of T2 in the query and its number of occurrences within D1 are equal to 1.

This also holds for the term T3 and the document D3. Hence, the relevance scores of the

documents are:

score(D1) =
log( |D|

2
)(1 + k1)

1 + k1((1− b) + b
avgdl

)
(3.2)

and

score(D3) =
(1 + k1)log(

|D|
1
)

1 + k1((1− b) + b
avgdl

)
: (3.3)

Then, dividing equations (3.2), (3.3) results in

score(D1)

score(D3)
=

log( |D|
2
)

log( |D|
1
)
; (3.4)

and thus

|D| = 2
(

score(D3)
score(D3)−score(D1)

)
: (3.5)

Now, the only unknown value is the average document length (avgdl) in the system, which

can be obtained by using equation (3.3) and solving for avgdl.

Once all parameters of the BM25 scoring function are known, the attacker creates a

new documentD4 which contains the term T , and submits a query including only the term

T . Consequently, the search engine returns the document D4 accompanied by score(D4).

Finally, this information is used to construct the equation:

score(D4) =
(1 + k1)log(

|D|
|DT |

)

1 + k1((1− b) + b
avgdl

)
; (3.6)

where DT is the only unknown value. Hence, solving for DT , the UserA knows the exact

number of documents containing the term T .
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3.2 Attacking Privacy Through Ranking Results

Returning the relevance scores of the matching documents is an essential prerequisite to

achieve the above exploitation. Nonetheless, following a barely di�erent approach, it is

possible to compute an approximation of the number of documents containing a term

T , even if the relevance scores of matching documents are omitted. Indeed, this can be

accomplished by simply leveraging the order in which matching documents are returned

by the full-text search engine and the observation that the most interesting terms are

infrequent.

Suppose that UserA intends to reveal the number of documents containing the term

T (|DT |). UserA creates documents containing speci�ed terms and issues customized

queries to the search engine. Then, he leverages the order in which matching documents

are returned and the equation (3.1).

Initially, he creates a single �le D0 which contains only the term T . Then, he generates

a unique random term T2, and creates 1000 documents D1:::D1000, each of which contains

this term. Afterwards, by submitting a Boolean OR query comprising terms T and

T2, the search engine returns the matching documents ranked by their BM25 relevance

score. If D0 appears before any of the documents D1:::D1000, UserA can deduce that

score(D0) ≥ score(D1000) holds. Hence, solving the inequality for |DT |, he knows that

|DT | ≤ 1000. Instead, if D0 appears after the documents D1:::D1000, then he knows that

|DT | ≥ 1000.

Furthermore, a better approximation of |DT | can be achieved by using the following

strategy. At the beginning, the arbitrary UserA generates a second random term T3 and

creates 1000 documents (D1:::D1000), each containing the two terms T2 and T3. Also, a

third random term T4 is generated and 999 documents (D1001:::D1999) are created, each

of which contains T4. Lastly, one more document D0 which contains the two terms T and

T4 is needed.

After creating all these documents, UserA submits a query consisting of terms T , T2,

T3, and T4. The returning relevance scores for the matching documents D0 and D1:::D1000

are computed using the equation (3.1):

score(D0) = C(log(
|D|
|DT |

) + log(
|D|
|DT4 |

)) (3.7)
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and

score(Di) = C(log(
|D|
|DT2 |

) + log(
|D|
|DT3 |

)); (3.8)

for 1 ≤ i ≤ 1000 respectively. The constant C is the same for all documents and is given

by the equation:

C =
(1 + k1)

1 + k1((1− b) + 2b
avgdl

)
: (3.9)

Then, UserA begins deleting the documents D1001 toD1999, one at a time. In the early

stages, score(D0) is lower than score(D1), but as soon as the number of documents

containing the term T4 is reduced, T4 acquires a greater IDF weight and document D0

acquires a greater score. After d document deletions, UserA knows that:

score(D0) ≥ score(D1) ⇒ C(log
|D|
|DT |

+ log
|D|
|DT4 |

) ≥ C(log
|D|
|DT2 |

+ log
|D|
|DT3 |

)

⇒ log
|D|
|DT |

+ log
|D|

1000− d
≥ 2log

|D|
1000

;

(3.10)

since |DT2 | = |DT3 | = 1000 and |DT4 | = 1000 − d. Right before this point, say at d − 1

deletions, score(D0) is still lower than score(D1), and hence the equation

log
|D|
|DT |

+ log
|D|

1000− (d− 1)
≤ 2log

|D|
1000

(3.11)

holds. Ultimately, combining the inequalities (3.10), (3.11) gives:

−log(|DT |)− log(1000− d+ 1) ≤ 2log(1000) ≤ −log(|DT |)− log(1000− d) (3.12)

which implies

10002

1000− d+ 1
≤ |DT | ≤

10002

1000− d
: (3.13)

Hence, the attacker is capable of obtaining a range of possible values, one of which cor-

responds to the actual number of documents containing the term T . However, if the

approximation gained is not good enough, the process can be repeated by adding more

than two terms per document.
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3.3 Revealing the Content of Documents

The methods described above can be used to obtain the number of documents that contain

a particular term. While this is already harmful, it can be much worse if the full-text

search engine allows queries of arbitrary length. For instance, it is possible to obtain the

entire content of a document by guessing its words. In particular, knowing that a certain

document contains the phrase \A B C", an arbitrary user can try all possible terms D

and calculate the number of documents which contain \A B C D" until he �nds a D that

gives a non-zero result. Afterwards, he can continue with the next term E and so on.

3.4 Towards a Secure and E�cient Search System

It is shown that a post-processing approach combined with an TF=IDF scoring function

permits to an arbitrary user to infer �le contents without actually reading any �les.

However, TF=IDF scoring functions are the most popular and the most prominent scoring

functions. A search engine that uses a TF=IDF scoring function can achieve accurate

query results, and hence, we could bene�t from using a TF=IDF scoring function in such

a way that privacy is retained. Nevertheless, there is a need of approaches that combine

privacy and accurate results with search performance and reasonable index maintenance

cost, leading to a secure and e�cient search engine.

3.5 Summary

Search engines that use a single system-wide index along with the post-processing ranking

approach and a TF=IDF scoring function can pose a severe privacy threat. More pre-

cisely, an arbitrary user can compromise the search results in a multi-user environment.

He can calculate the number of documents that contain a given term T by leveraging

either the relevance scores or the position of the documents in the ranking list. Further-

more, it is possible to reveal the content of documents that he is not authorized to access

when the search engine supports Boolean queries and phrases. However, TF=IDF scor-

ing functions are widely used as they are the most prominent scoring functions. A search
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engine needs them in order to provide accurate query results, and hence they should be

used in such a way that also retains the privacy.
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Chapter 4

Design

4.1 Goals

4.2 Overview of Indexing Workow

4.3 Crawler

4.4 Planner

4.5 Indexer

4.6 Incremental Indexing

4.7 Summary

This chapter is devoted to the design goals and the overview of our work. Furthermore,

we describe its major components in more detail and explain any decisions made before

proceeding with the implementation.

4.1 Goals

Much of the research work on preserving privacy in desktop and enterprise multi-user

environments follows two basic approaches. These approaches maintain either one index

per user or a single system-wide index.
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Retaining one index per user ensures privacy and achieves high query performance,

as each user only accesses his private index and the query processing is restricted to that

index. Unfortunately, these signi�cant bene�ts come with great disk space consumption

and increased maintenance cost because each document is indexed by every index whose

owner has access to it. Hence, multiple copies of the same document exist in several

indices at any given time. Furthermore, the problem gets worse when many users share

many documents.

On the contrary, retaining a system-wide index means that all existing documents are

indexed regardless of access control restrictions [6]. This approach provides e�cient index

updates and low storage usage because each document is indexed only once. However, it

poses severe privacy issues which can be eliminated in the expense of query performance

due to the need of result �ltering in order to ensure that each search result only contains

documents that the respective user is allowed to search.

A di�erent approach that improves e�ciency while ensuring privacy creates one index

for each set of documents with the same ACL [37]. In particular, documents accessed by

a single user are indexed by his private index. Instead, shared documents with identical

ACLs are indexed by a single index, which is accessed by the users of the speci�ed ACL.

Even though this approach o�ers privacy and lower maintenance cost, it does not provide

any parameters to tune the query performance and the maintenance cost.

The main purpose of our solution is to protect privacy in multi-user environments

and provide a more exible solution. We introduce a novel strategy to organize users'

documents into indices by leveraging the similarity of their ACLs. We group documents

into clusters, each containing documents with similar ACLs to some extent. The similarity

between the ACLs of documents within a cluster is determined by a Similarity parameter.

Then, we map the documents and the users to indices based on the intersection and

di�erences of the ACLs within a cluster. In addition, we use a Threshold parameter

which determines how a di�erence is treated, and limits or raises the duplicate documents.

Therefore, we provide a trade-o� between query performance and maintenance cost and

ensure that the indices accessed by a user only contain documents that the user is allowed

to search.
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Figure 4.1: Overview of our indexing workow.

4.2 Overview of Indexing Workow

Our design is based on a planning scheme that groups users' documents before the indexing

process. Figure 4.1 gives an overview of our indexing workow:

• A Crawler gathers the access control information of the documents in the system.

• The Planner utilizes this information to separate the documents. The Planner

consists of two components: a) the Clusterer, which clusters the documents based

on the similarity of their ACLs; and b) the Mapper, which maps documents and

users within a cluster to indices. Note that each document may be indexed by more

than one index.

• The Indexer indexes the documents in the full-text search engine based on informa-

tion obtained from the Planner.

The details about the distinct components and the algorithms used to implement our

solution are given in the following subsections.

4.3 Crawler

Crawling is an important and essential part of a search engine and typically refers to the

process of discovering the content to index. However, its operation is more general as it

is used to express the process of collecting information within a system.

In our case, crawling refers to the discovery of new or updated documents, the extrac-

tion of the document ACLs, and the extraction of the information about their location

on disk. The content of the documents is not used in the next phase, so there is no

need to get it in such an early stage: the Planner only needs the ACL and the path of
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the documents. Therefore, the crawler is used to extract only this information from the

documents and fuel the Planner with them.

4.4 Planner

The Planner executes the main bulk of the work, and receives a pair of path and ACL

for each document in the system. Then, the Clusterer uses this information to group the

documents into clusters, and the Mapper maps the documents and the allowed users to

indices.

4.4.1 Clusterer

The Clusterer is responsible to cluster the documents based on the similarity between their

ACLs. Before starting the clustering process, a number of important decisions should be

made in order to cluster the documents in an e�cient way.

Object Representation. Once the Clusterer obtains the document paths along with

their ACL, the clustering process starts by representing the objects. The next step is to

construct the similarity matrix by computing the similarity of each pair of objects and

storing it in the appropriate matrix slot. Normally, each object would be represented as

a pair of a document path and its corresponding ACL. However, in the case where the

number N of documents is high, the similarity matrix would considerably grow in size

with N × N slots. For instance, assuming N = 50000 is the number of documents and

b = 4Bytes is the size of each matrix slot, then the total memory consumption becomes

C = N × N × b = 9GB. Even when using only half of the similarity matrix, it still

occupies a lot of memory.

In order to avoid this cost, we represent the objects in a more suitable way. To achieve

this, we add an extra document-grouping step before the actual clustering process. In

particular, we gather in the same group all documents with identical ACLs, and this group

represents the actual object for the clustering process.

We denote each object as a Document Family. Each Document Family consists of a

set of document paths (rather than a single document path) and a binary ACL bitmap

generated by the ACL of the corresponding document set (Figure 4.2(a)). The dimensions
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(b) ACL bitmap.

Figure 4.2: Document Families include a set of document paths and their corresponding

ACL bitmap. ACL bitmaps are created from the ACLs and represent whether each user

is included in a document's ACL or not.

of the ACL bitmap are equal to the number of the users in the system and its components

are either one or zero depending on whether the corresponding user appears in the ACL

of the Document Family or not (Figure 4.2(b)).

The importance of such an object representation is demonstrated by the dramatic

reduction of memory consumption. The size of the similarity matrix depends on the

number of di�erent ACLs in the system rather than the total number of documents.

Moreover, the number of di�erent ACLs is expected to be small compared to the total

number of documents as many documents have common sharing attributes [23].

Choosing the Clustering Algorithm. Several clustering algorithms exist in order

to meet di�erent needs as none of them is universally applicable and appropriate for every

kind of dataset and clustering problem. However, two of them captured our interest.

One algorithm that we initially considered was K-means. After examining its prop-

erties and prerequisites, we realized that it eventually might not be such a good choice.

The main reason that made us disregard K-Means is the demand to specify in advance

the number of clusters to which the clustering method will end up. In our approach, this

is an obstacle because we do not know the number of the �nal clusters. Moreover, the dis-

tance measure used by default to compute the distance from a data object to each cluster

center is the Euclidean distance. As highlighted previously [10], Euclidean distance does

not work well in high dimensions and its performance may not be optimal when dealing

with binary data.

Taking into account these considerations, we decided to use another algorithm: the
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DBSCAN algorithm. Unlike K-means, DBSCAN does not require to prede�ne the number

of the clusters. Instead, the �nal number of clusters is revealed after the algorithm has

been executed. Furthermore, one can choose an arbitrary distance function rather than

the Euclidean distance.

Choosing the Similarity Measure. Given the number and diversity of similarity

and distance measures that are available, choosing one is also a challenging process.

Taking into account that each Document Family is represented by an ACL bitmap and

that the presence of an attribute is more important than its absence, we decided to use

the Jaccard Coe�cient. Although DBSCAN works with distance functions, we prefer to

use the notion of similarity because we want to focus on the similarity between the ACLs

rather than their dissimilarity.

Choosing the Algorithm Parameters. As already discussed in subsection 2.2.1,

the DBSCAN algorithm requires two parameters: a) the Eps radius, which de�nes the

maximum distance between two objects in order to be considered as neighbors and is

computed by the Similarity parameter; and b) the MinObjs value, which de�nes the

minimum size of the neighborhood that a particular object must have in order to be

included in a cluster.

Our goal is to cluster all the Document Families and avoid characterizing any of them

as noise. Thus, we permit the creation of clusters that contain a single Document Family.

For this reason, we set the MinObjs value to one. We do not set the radius to a �xed

value as our target is to monitor the behavior of our solution under di�erent values of

similarity. Hence, the tunable Similarity parameter de�nes its value.

The Clustering Process. So far, we explained several important decisions concern-

ing the algorithms of our solution; now we move to the description of the actual clustering

process.

The algorithm starts with an arbitrary Document Family F which is not yet member

of any cluster. It marks F as visited and retrieves its Neighborhood which is the Document

Families whose similarity to F is equal or greater than the Similarity value. The Document

Families belonging to the Neighborhood are added in the Neighbors List. If the size of

this list is equal or greater than one, a new cluster is formed containing F . Then, the

algorithm examines every Document Family F ' in this list. If F ' is not visited, it is �rst

marked as visited and its Neighborhood is retrieved. If the Neighborhood size is ≥ 1,
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Figure 4.3: We illustrate an example of Document Family clustering. We assume a

similarity value higher than 0 and smaller than 100. The formated clusters contain either

one or more Document Families. In particular, a cluster with more than one Document

Families includes multiple sets of document paths, and each set has a single ACL bitmap.

then the neighbor Document Families are added in a temporary list which is joined with

the Neighbors List. This process is repeated until no more Document Families are left in

the Neighbors List. Subsequently, another Document Family of the dataset is visited.

After all Document Families have been visited and assigned to a cluster, each cluster

ends up with one or more Document Families. The number of documents included in

clusters with more than one Document Families is at least equal to the number of di�erent

Document Families in the cluster. Some of these documents have di�erent ACLs but

similar to some extent. This similarity refers to the common users between their ACLs

and depends on the Similarity value. Note that even clusters with a single Document

Family contain more than one documents, but these documents have exactly the same

ACL.

Figure 4.3 depicts an example of clustering output. Each cluster contains either one or

more Document Families, and each Document Family represents a set of documents with

identical ACL. Clusters with more than one Document Families include multiple sets of

documents each of which has its own ACL bitmap. The ACL bitmaps of the Document

Families included in the same cluster are similar to each other.

At this point, the Clusterer job is done and the generated clusters are given as input

to the Mapper.

32



Cluster ACL

i dd

d

Document Family

i: intersection             d: difference         

Figure 4.4: Clusters with more than one Document Families contain documents with

di�erent ACLs. For these clusters, we �nd the intersection and the di�erences between

the ACLs they contain. The intersection is the set of users included in every Document

Family in the cluster, while each di�erence is the set of users of each ACL in the cluster

that is not included in the intersection.

4.4.2 Mapper

Mapping is a stage of high importance because it determines how the indices are formed.

The output of this step is the number of indices and a description for each index. The

information that describes each index is: a) its name; b) the set of users that have access

to it; and c) the paths of documents that are going to be indexed by it. This information

will be later used by the Indexer, which performs the actual indexing process.

The underlying idea of our Mapper is based on the observation that a cluster may

contain documents with similar ACLs to some extent. For each cluster, the Mapper creates

an intersection and multiple di�erence ACL parts (Figure 4.4). The intersection ACL part

is formed by the intersection of the ACLs (ACL intersection or simply intersection) in a

cluster. An intersection contains the set of users that are included in the ACL of every

Document Family in a cluster. Each di�erence ACL part is formed by the remaining

portion of each ACL (ACL di�erence or simply di�erence) in a cluster and contains the

set of users of this ACL that are not included in the intersection. The users and the

documents that correspond to these ACL parts are then mapped to indices.

Algorithm 1 provides a high-level description of how the Mapper works. For each

cluster, it performs three major tasks: 1) it �nds the intersection between its ACLs; 2)

for the ACL of each Document Family, it computes the set of users that do not belong

to the intersection; and 3) decides whether a di�erence part maps to one or more indices

according to a threshold. The inputs to the algorithm are the created clusters and the
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Algorithm 1: Index Mapping
Input: Clusters of Document Families and Threshold value

Output: Information about each index (name, user IDs, and documents IDs)

for each c ∈ Clusters do1

// Compute the intersection in cluster c2

�ndIntersetion(c)3

if (!intersection.empty() AND4

∃DocumentFamily1; DocumentFamily2 ∈ c : DocumentFamily1 6= DocumentFamily2) then

// Map one index to the users of the intersection and all documents of cluster c5

mapIndex(intersection[c].users, c.Documents)6

// Compute the di�erences and map to indices based on the Threashold7

for each DocumentFamily ∈ c do8

�ndDi�erence(DocumentFamily.users, intersection[c])9

indexWithTreshold(di�erence.users, DocumentFamily.Documents)10

end11

else12

// Map the indices based on the Threshold value13

for each DocumentFamily ∈ c do14

indexWithTreshold(DocumentFamily.users, DocumentFamily.Documents)15

end16

end17

end18

value of the threshold.

Initially, for each cluster c, we check whether a non-empty intersection exists. If a non-

empty intersection exists, the Mapper maps a single index to the users of the intersection

and indexes all documents of the cluster in that index (line 6). Then, we compute the

di�erence with the intersection for each individual Document Family in the cluster c

and map one or more indices depending on the threshold value (lines 8 − 11). When

intra-cluster intersection is empty, it means that either the cluster has a single Document

Family or the cluster has more than one Document Families but there are no common

users between their ACLs. In both cases, each Document Family is mapped to indices

based on the threshold value (lines 14−16). In particular, if the product of the number of

users that belong to a di�erence part with the number of its corresponding documents is

higher than the threshold value, then one index is mapped to these users and documents.

Otherwise, the documents are duplicated to the private index of each user in the di�erence

part (Algorithm 2).

Intra-Cluster Intersection and Di�erences. The fact that the ACLs within a

cluster may share common users is leveraged to create an index. This index contains
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Algorithm 2: Procedure indexWithTreshold(users, documents)

if (users:size()× documents ≥ Threshold) then1

mapIndex(users, documents)2

else3

cpInPrivateIndexes(users, documents)4

end5

all documents included in the cluster (regardless of their ACL) and is accessed only by

users that belong to the intra-cluster intersection. Non-empty intersections only exist in

clusters that have more than one Document Families. In order to �nd an intersection, we

retrieve the ACLs by using the corresponding ACL bitmaps. We are certain that each

intersection is mapped to a single index either by using an existing index with the same

set of users accessing it, or by creating a new one. However, if an empty intersection

exists, then each ACL is treated as a di�erence.

Except for the intersections, we also have to take care of the di�erences. The default

case maps each di�erence and its corresponding documents to a single index. This index

is only accessed by the users that belong to the di�erence. The index of a di�erence only

includes documents that correspond to the speci�ed ACL rather than the total documents

held by the cluster. Unavoidably, this leads to document duplication as these documents

are indexed both in the index mapped to the intersection of the cluster and in the index

mapped to the di�erence. In addition, we observe that there might be common users

between two or more di�erences, but we do not consider them for the moment because

the solution would become more complicated.

Privacy, our most important goal, is achieved as each mapped index is only accessed

by users that are allowed to search the indexed documents. While this is a good solution

and keeps the number of document duplicates at low levels, it does not bring the best

search performance. Even though the number of indices that a user needs to search is

reduced, especially for the users that belong to intersections, a more intuitive mapping

can further improve the query performance.

Map to One or Multiple Indices. To further improve the query performance while

still meeting the privacy, we introduce a threshold denoted as Threshold. Threshold limits

or raises the document duplicates and this translates to the increase or the decrease of

the indices that each user has access to.
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Figure 4.5: Users U1:::U4 belong to the ACL intersection, while users U12, U15 and U10

belong to the ACL di�erences. The Mapper maps three indices. The �rst index corre-

sponds to the users of the ACL intersection and includes all documents in the cluster.

Each of the remaining indices corresponds to the users of each ACL di�erence. Also, the

set of documents that correspond to each ACL di�erence is duplicated in each mapped

index (di�erence and private index).

Using this threshold, the Mapper decides whether to map a di�erence to a single or

multiple indices. Therefore, every time a di�erence is computed, the algorithm checks

whether the number of the corresponding documents multiplied with the number of users

in the di�erence is lower than the prede�ned Threshold or not. If this product is lower

than Threshold, then each of these documents is indexed by the private index of each user

that is included in the di�erence. Otherwise, we treat the di�erence as in the default case

by mapping it to a single index.

Figure 4.5 illustrates an example of the mapping process. Considering the cluster of

Figure 4.3, we show the ACLs and the documents corresponding to each ACL bitmap. The

Mapper computes the intersection and maps it to an intersection index. The intersection

index contains all the documents included in the cluster. Moreover, only users U1; :::; U4

that belong to the intersection have access to it. Also, the Mapper maps each di�erence to

a di�erence index where the corresponding documents are duplicated. Thus, a di�erence

index is mapped for users U12 and U15, while a private index is mapped for user U10 as he

is the only user that belongs to the third di�erence.

Mapping the users and documents of each di�erence to a single index is not always

appropriate. In the case where di�erences include few users and documents, we need to
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maintain many indices that include a small number of documents and each is accessed by

a small number of users. Moreover, if a user belongs to many such di�erences, then the

number of indices that he accesses is large. On the other hand, mapping the documents of

each di�erence in the private index of each user would lead to many document duplicates

in the case where the number of users and/or documents in the di�erence is high. Thus, we

decide whether to map a di�erence to a single or multiple indices by checking the product

of the number of documents and users in the di�erence. This product shows the number

of document duplicates that are going to be created per ACL. We can limit the number

of document duplicates by creating a single index for a di�erence if the above product

is higher than the prede�ned Threshold, or raise it by duplicating the corresponding

documents in the private index of each user in the di�erence if the product is lower than

the Threshold.

Indeed, this approach tends to further reduce the number of indices in which a user

has to search when some of the shared documents are duplicated in his private index.

However, the higher the Threshold value, the fewer the indices that a user has access to

and the more documents are duplicated into multiple indices.

4.5 Indexer

The last remaining phase is to index the documents by leveraging the information gen-

erated by the Mapper. To that end, the Indexer gets one by one the index names and

their corresponding document paths. The documents are indexed by the speci�ed index

in bulks of 500 documents or less if not enough. Through bulk indexing the time spent

in indexing phase can be substantially reduced.

The Indexer gets the document paths that belong to each index rather than the indices

in which each document is indexed. We choose this approach because it incurs less

overhead compared to the second one. This happens due to the fact that in the �rst case,

the writes included in the bulk index request occur in the same �le (corresponding to a

single index). On the contrary, in the second case, each bulk consists of requests, each

of which involves the same document but corresponds to di�erent index. Therefore, this

translates into many small writes in multiple indices (each corresponding to at least one
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on-disk �le) and degrades the indexing performance.

4.6 Incremental Indexing

The procedure described above deals with the construction of the indices. However, in

general we want the indices to handle incoming updates and queries in such a way that

the privacy level already achieved remains intact.

4.6.1 Updates

When new documents are added into a document collection, the search engine needs to

update the existing index data-structure. Existing index-maintenance strategies accumu-

late postings from incoming documents in main memory and add them to the existing

on-disk inverted lists when a pre-de�ned memory utilization threshold is exceeded.

In our solution, things are slightly di�erent as we maintain more than one indices.

Hence, we have to �nd the appropriate index to insert a new document with respect to

its corresponding ACL. Therefore, each new document is indexed by the index which is

accessed by the same set of users that are included in the document's ACL. In the case

where such an index does not exist, we create a new one.

This approach raises two issues: a) the number of the total indices might be increased

if documents, whose ACLs does not match to any of the existing indices, appear very

often; and b) the new indices may retain a small number of documents. However, a

possible solution is to periodically re-cluster the documents and re-create the indices.

Apart from the forthcoming documents, one such system needs to deal with changes

made to the ACLs of already indexed documents. This implies that these documents are

deleted and reinserted in accordance with the preceding procedure.

4.6.2 Search

A user should be informed of the indices in which he has access to before he starts submit-

ting search queries. Thus, we assume that each user is authenticated to an authentication

server in order to ensure that a user is the person he claims to be. Then, he receives the
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corresponding list of the indices and he is able to search the indexed document collection.

Consequently, his queries are only directed to the indices included in that list.

In order to achieve this, the authentication server needs to maintain information re-

garding the users and the indices that each user has access to. In addition, the authenti-

cation server needs to be aware of any changes concerning this information and constantly

being kept up with them.

4.7 Summary

Much of the previous research on full-text search in multi-user environments presents

solutions that o�er either high query performance but increased maintenance cost, or

low maintenance cost at the expense of slow queries and privacy issues. New approaches

protect privacy and improve e�ciency, but lack a tunable solution that trades the cost of

index maintenance and query performance while ensuring privacy.

With this in mind, we propose an indexing workow scheme that organizes documents

into indices by leveraging the similarity of their ACLs. Our main idea is to create clusters

of documents with similar ACLs to some extent and then create indices based on the

intersections and di�erences of the ACLs of each cluster. We ensure privacy in multi-user

environments while introducing a trade-o� between index maintenance cost and query

performance.
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Chapter 5

Implementation

5.1 Planner

5.2 Indexer

5.3 Search Engine

5.4 Discussion

5.5 Summary

In this chapter we provide details of our implementation, which involves the Indexer

and the Planner with its two main components: a) the Clusterer; and b) the Mapper.

The Planner implementation involves the C/C++ programming language and the STL

library as well. The Indexer is implemented in Perl v5.10.1. Additionally, we present a

brief discussion of why we use document IDs and not document paths in each Document

Family.

5.1 Planner

The Planner uses two parameters, the Similarity and the Threshold used by the Clusterer

and the Mapper respectively (Table 5.1). The Clusterer uses the Similarity parameter

to cluster documents with similar ACLs to some extent and de�nes how similar are the
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Planner Parameter Description

Similarity De�nes how similar are the ACLs of the Doc-

ument Families within a cluster. It is used by

the Clusterer.

Threshold De�nes how each Document Family di�er-

ence within a cluster is treated. It is used by

the Mapper.

Table 5.1: Planner Parameters.

ACLs within a cluster. The Mapper computes the intersection and the di�erences of

the ACLs within a cluster and then uses the Threshold parameter to map the users and

the documents of each cluster to one or more indices. The Threshold de�nes how each

di�erence is treated.

5.1.1 Clusterer

Figure 5.1 illustrates the Clusterer operation. The Clusterer operates in two steps: the

document-grouping and the clustering step. It receives pairs of document IDs and ACLs,

which are inserted in a hash table creating the Document Families. Then, it groups the

Document Families into clusters and gives them as input to the Mapper.

Document-Grouping Step. Before proceeding to the clustering process, we create

the Document Families. As each Document Family contains a set of documents with

identical ACLs, is described by: 1) a set of the unique identi�cation number (ID) of each

document that belongs to the speci�ed Document Family; and 2) a binary ACL bitmap.

In order to build the Document Families, we use a chained hash table. The hash table

entries consist of three �elds, each of which is used to store: 1) a set of document IDs,

2) the documents' ACL, which consists of a set of user IDs, and 3) the pointer to the

next entry. The ACL of a document is used as key to the hash function. Every time a

new document is encountered, we check whether a document with an identical ACL has

already been inserted in the hash table or not. If yes, then we simply add the ID of the

new document in the document IDs set of the corresponding entry. Otherwise the ID and

its ACL are inserted in a new entry according to the hash function. Therefore, each hash
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Figure 5.1: We illustrate how the Clusterer operates. It receives pairs of document IDs

and ACLs and then creates the Document Families using a hash table (document-grouping

step). Then, it clusters the Document Families (clustering step) and the created clusters

are given as input to the Mapper.

table entry contains all document IDs with the same ACL.

Once all documents with identical ACLs are in the same entry, a further step is needed

to obtain the Document Families: the construction of each ACL bitmap. Each ACL

bitmap is constructed by using the ACL of the corresponding hash table entry. Finally,

each set of document IDs along with their ACL bitmap form a Document Family.

Clustering Step. As the clustering process proceeds, it forms clusters of Document

Families. Each cluster is represented as a vector of Document Family IDs and is stored in

the Cluster Vector. Thus, at the end of the clustering process, the Cluster Vector contains

all the formatted clusters.

Finally, after the clustering process �nishes, the Cluster Vector is given as input to

the Mapper.

5.1.2 Mapper

The Mapper receives the created clusters from the Clusterer and maps their Document

Families to indices (Figure 5.2). For each index the Mapper creates a description, which

is �nally stored in a �le. This �le is then used by the Indexer for the indexing process.

During the mapping phase, the ACLs of the Document Families included in each clus-

ter are split in ACL parts. The basic ACL part consists of the intra cluster intersections,
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Figure 5.2: We depict how the Mapper operates. It receives the clusters from the Clusterer

and then maps the Document Families within each cluster to one or more indices. Also,

the Mapper creates a description for each index and stores it in the index container �le.

This �le is then given as input to the Indexer.

while the other parts arise from each di�erence. As the ACLs are represented as sets of

user IDs, both the intersections and the di�erences are found by using the corresponding

functions provided by the STL library.

Once the intersection of each cluster is found, the Mapper maps the users that belong

to the intersection along with all documents in the cluster to a single intersection index.

On the contrary, each di�erence along with its corresponding documents is mapped to

a single di�erence index or many private indices depending on the Threshold value. All

index descriptions are stored in an Index Vector and each of them is described by: 1) the

index name; 2) the set of users that have access to it; and 3) the document IDs that are

included in it.

Finally, two �les are created that store information about the indices. The �rst �le,

denoted as access control �le, contains one entry for each index. This entry includes the

set of the users that have access to the speci�ed index. It is used before a user starts

submitting queries in order to acquire the list of indices in which he can search. The

second �le, denoted as index container �le, also contains one entry for each index, and

each entry includes the document IDs that are going to be indexed by that index.
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Figure 5.3: We depict how the Indexer operates. It parses each line of the index container

�le and gets the content of each document from the collection �le by using the o�set

array. For each document, the Indexer creates one index request and stores it in the bulk

request array. When a prede�ned number of request are accumulated, the Indexer sends

a bulk index request to the search engine.

5.2 Indexer

The Indexer leverages the information stored in the index container �le and creates the

indices by indexing its corresponding documents.

Figure 5.3 depicts how the Indexer combines the information generated by the Mapper

with the real documents, each stored in a single line of the collection �le. The Indexer

parses each line of the index container �le and obtains an index name along with its

corresponding document IDs. Each document ID denotes the line at which each real

document is stored in the collection �le. Then, for each document ID, the Indexer gets

the corresponding real document using an o�set array.

The o�set array contains, for each document ID, the o�set at which the corresponding

real document begins. Consequently, the Indexer creates an index request that includes

the index name along with the document content and stores it in the bulk request array.

Every time either this array containsMaxBulk requests (MaxBulk = 500) or there are

no more documents left for a speci�ed index, the Indexer sends a bulk request containing

these documents to the search engine. Then, the Indexer processes the next line of the
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Figure 5.4: We depict an example of a four node Elasticsearch cluster. One index with

four primary shards and one replica per shard is stored across the multiple nodes.

index container �le. Once all index lines have been processed, the indexing process �nishes

and the search engine is ready to handle incoming queries.

5.3 Search Engine

The search engine we use is the Elasticsearch [16]. Elasticsearch is a distributed, free/open

source search server written in java and based on the Apache Lucene library [14]. It runs

on a single search server or on multiple cooperating servers when dealing with large data

sets or needing fault tolerance. These multiple servers are called cluster and each of them

is called node.

The nodes are used to store the indexes and serve the incoming queries. When the

indexes contain a large amount of documents, each index may be split into smaller indi-

vidual parts called shards. Each shard is a separate index and can be placed on a di�erent

node in order to achieve better performance. When a query is addressed to an index that

is built from multiple shards, Elasticsearch sends the query to each relevant shard and

merges the individual results.

In order to achieve higher query performance and availability, each shard (primary

shard) may have one or more replicas. The primary shard is the place where the index

update operations are initially applied. The primary shard, as well as the replicas, are

used to answer the queries. When the primary shard is lost, the Elasticsearch cluster

chooses a replica to be the new primary shard.

Figure 5.4 depicts an example of a four node Elasticsearch cluster. One index with
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four shards and one replica per shard is stored in the cluster. Primary shards 1 to 4 are

each stored in Nodes 1 to 4 respectively. Each replica is stored in a di�erent node from

the one that holds its corresponding primary shard.

5.4 Discussion

The implementation details refer to document IDs rather than document paths as de-

scribed in the design description. In a real system, documents can be identi�ed by their

paths. However, in our case, each document exists through a document ID and it is not

mapped to a real document until the indexing phase. This is a conscious choice consid-

ering that we do not use documents that exist on a real system but we build our own

synthetic system (including users, groups and document ACL) based on observations of

a real system. Moreover, this option gives us the ability to capture the behavior of our

solution under di�erent scenarios.

5.5 Summary

The implementation of our solution includes the Indexer and the two components of

the Planner: the Clusterer and the Mapper. In order to build the Document Families

before the clustering process, we use a chained hash table whose entries contain: a set

of document IDs and the set of users that have access to them. We use vectors to store

the Document Families of the created clusters. Also, the Mapper uses a vector to store

the mapped indexes. Each index contains its name, the IDs of the users that have access

to the index, and the IDs of the documents to be indexed. The Indexer then leverages

the information about each index, gets the content of the real documents, creates index

requests, and sends them in bulk to the search engine.
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Chapter 6

Experimental Results

6.1 Experimental Methodology

6.2 Experimental Setup

6.3 Planner Results

6.4 Search Engine Results

6.5 Exploring Di�erent ACL Synthetic Datasets

6.6 Summary

In this chapter we present an extensive study of the behavior of our solution under

di�erent scenarios. Initially, we describe the methodology of our evaluation and the

experimental setup. Next, we focus on the results retrieved by the Planner and a search

engine.

6.1 Experimental Methodology

Due to the lack of a real-world document ACL dataset, we implemented an ACL Gener-

ator. The ACL generator creates a synthetic ACL dataset based on observations from a

real one. We veri�ed that the generated data comply with the statistics of the real-world
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dataset and performed several measurements to study and evaluate the behavior of our

solution.

ACL Generator. In order to implement the ACL Generator, we use the observations

on the access control usage presented in [38]. The authors collected a snapshot of available

documents, along with their access control lists, from a corporation 's Docushare server

[20]. The documents were either publicly available or an ACL was speci�ed for them. For

the later case, we use the distribution of the sizes of user groups, as well as the distribution

of the ACL entries (number of users and groups that are included in each ACL). However,

we have no information about which users and groups belong to a speci�ed ACL, or how

many documents share a common ACL.

Based on the above observations, the ACL Generator works in two steps:

• The �rst step refers to the creation of the user groups. We assume a prede�ned

number of users and groups, each of which is represented by an ID. For each group,

we pick the number of its members (maximum 50) following the distribution acquired

from the above study. Also, we uniformly choose a set of user IDs as members of

the speci�ed group.

• The second step refers to the creation of the ACLs and their mapping to document

IDs. We assign a number of individual users and groups to each ACL according to

the corresponding distribution of the survey. Since users organize and store their

documents under directories, documents under the same directory tend to inherit

the same ACL [38]. Thus, we map each ACL to a random number of documents

(maximum 50) rather than to a single document.

After completing the steps above, each document ID has been associated with an ACL.

Although the entries of each Generated ACL are both individual user and group IDs, we

end up with each ACL being a set of user IDs because we replace each group ID with its

members' IDs. Moreover, we can change the group size distribution in order to study the

behavior of our solution on di�erent ACL datasets beyond those that are found in the

above study.

ACL Generator Con�guration. The basic parameters of the ACL Generator are

the number of users, the number of groups, and the number of documents in the system
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Parameter Default Value

Users 200

Groups 131

Documents 50000

Table 6.1: Basic con�guration parameters of the ACL Generator. We create 200 user IDs,

131 group IDs, and 50000 document IDs.

(Table 6.1). Moreover, the documents are separated in three categories: a) private, when

only accessed by their owner; b) shared, when a set of users and groups have access to

them; and c) public, when all the users of the system can access them. In particular,

22:7% of the documents are public, 0:56% are private, and 76:74% are shared. These

values were selected based on the observations from the previous study.

Examined Cases. We use three di�erent ACL Generator cases to study the behavior

of our solution. In each case, we keep the basic con�guration parameters as shown in Table

6.1 and use di�erent distributions for the group sizes. In particular, we examine: a) the

Doc Server case, where we use the distribution of the survey; b) the Zip�an case, where we

use the zip�an distribution with a parameter set to 0:7, 1:7, and 2:2; and c) the Uniform

case, where the uniform distribution is used.

Experiment Parameters. First, we study the results retrieved by the Planner. The

MinObjs parameter of the clustering algorithm is �xed at 1 during all experiments, while

Similarity and Threshold parameters are tunable. Therefore, we examine our solution for

varying values of Similarity and Threshold in order to capture their e�ect on performance.

Then, we study the behavior of our solution in a search engine.

6.2 Experimental Setup

For the overall evaluation of our solution we use a search engine, three nodes of a cluster

of servers, and a standard collection of documents.

Search engine. Our search engine consists of a two-node Elasticsearch (ES) cluster.

Moreover, we used a separate node to issue the search queries to the ES servers using
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up to 8 ES clients. One node is enough to accommodate 8 clients because each client

just issues queries sequentially and waits for each query response before sending the next

query.

Node Con�guration. The experiments are conducted on three nodes of a cluster

running Debian GNU-Linux v6:0 squeeze, with the Linux kernel 2:6:32. Two of them

are used as ES servers; Each server is equipped with two quad-core 2:33 GHz Intel Xeon

E5345 processors, 4 GB RAM, an active gigabit Ethernet port, and two 7200 RPM SATA

disks (one 500 GB and the other 1 TB). In each ES server node, the 2 GB of RAM are

pinned to the ES server, while the other 2 GB are left for the system. Also, each ES server

uses the 1 TB disk to store the indices. The third node includes one quad-core 2:33 GHz

Intel Xeon E5345 processor, 2 GB RAM, an active gigabit Ethernet port, and two 250

GB 7200 RPM SATA disks. This node is initially used to index the documents and then

acts as the ES client.

Dataset. In order to evaluate our solution in a real search engine we use the GOV2

dataset from the TREC Terabyte track [19], but we only index a part of it. Speci�cally,

we use the �rst 50000 documents which are approximately 820MB. We choose to index

50000 documents because we want our dataset to be in compliance with the observations

of the study. Our query set consists of 5000 standard queries [19] and the average number

of terms per query is 2:8.

6.3 Planner Results

The main goal of this section is to �nd the range for Similarity and Threshold parameters

that strike a good balance between query performance and update cost. We also analyze

and explain the behavior of our solution across di�erent Similarity and Threshold values.

In particular, we focus on the following di�erent combinations of Similarity and Threshold

values (Table 6.2):

• Similarity at 100% and Threshold set to 0, means that a large number of clusters is

created each containing a single Document Family. For each Document Family, we

create a single index.
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Similarity Threshold E�ect

100% 0 each cluster contains one Document Family

⇒ 1 index per Document Family

60% 0 some clusters contain multiple Document Families

⇒ 1 index for non-empty intersections

⇒ di�erence documents in a single index

60% > 0 some clusters contain multiple Document Families

⇒ 1 index for non-empty intersections

⇒ di�erence documents in a single index or private indices

0% ∞ 1 cluster includes all Document Families

⇒ di�erence documents in private indices

Table 6.2: E�ect of di�erent combinations of Similarity and Threshold values.

• Similarity at 60% and Threshold set to 0, means that fewer clusters are created

and some of them include multiple Document Families. These clusters may have a

non-empty intersection. Hence, we create one intersection index for all Document

Families in the cluster and one di�erence index for each Document Family di�erence.

• Similarity at 60% and non-zero Threshold, means that clusters may have a non-

empty intersection as in the previous case. However, the documents of each Docu-

ment Family di�erence may be duplicated to one or more indices.

• Similarity at 0% and in�nite Threshold, means that a single cluster is created includ-

ing all Document Families. The documents of each Document Family are indexed

by the private indices of each user that belongs to the particular Document Family.

The basic information obtained from the Mapper refers to the average number of

indices that a user has access to, the average number of indices in which a document is

indexed, and the total number of indices. In order to explain these results, we leverage

the information about the number and the size (measured by count of documents) of the

clusters.

The results of the Clusterer are a�ected by the chosen Similarity value, while the

results of the Mapper are a�ected by both the Similarity and the Threshold value. Also,
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Figure 6.1: Average number of indices that a user needs to search every time he issues a

query for varying values of Threshold and Similarity.

three di�erent types of indices are created: a) private, which is only accessed by one user;

b) shared, which is accessed by a speci�c set of users; and c) public, which is accessed by

all users.

6.3.1 Indices Per User

First, we examine the average number of indices that a user needs to access when he

issues a query. The average number of indices per user a�ects the query response time

and gives an explanation for the results obtained from a search engine in the following

section. In general, the lower the number of indices accessed, the better query response

time we expect on the search engine.

In Figure 6.1, we depict how this number changes across di�erent values of Threshold

and Similarity. The �rst observation is that for non-zero Threshold the average number of

indices accessed per user drastically decreases. In particular, increasing Threshold from

0 to 500 almost halves the average number of indices accessed per user. This is because

higher values of Threshold lead to the duplication of more and more documents in the

private index of each user. Hence, each user tends to only access his private index as

Threshold increases.

Another observation is that the average number of indices accessed per user is mini-

mized for the same Similarity value across several Threshold values (0; 500; and 1500).

The question that arises is why we observe this decrease for Similarity values close to 60%,

and why the average number of indices accessed per user increases again when moving to
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lower Similarity values.

To answer the initial question, it is necessary to examine how the Clusterer and the

Mapper work under di�erent Similarity values (focusing on 100% and 0%). Figure 6.2

depicts the Clusterer results across di�erent Similarity values: a) the number of created

clusters, and b) the average number of documents included in each cluster. As Similarity

decreases from 100% to 0%, the Clusterer creates fewer and fewer clusters, while the

average number of documents included in each cluster increases. Similarity at 100%means

that all documents in a cluster have the same ACL. Hence, each cluster only contains one

Document Family and has an empty intersection. On the other hand, a Similarity value

close to 0% means that documents with dissimilar ACLs can be part of the same cluster,

and hence, only one cluster containing all the documents is created. Thus, with a high

probability, this cluster has an empty intersection.

The absence of intra-cluster intersection for 0% and 100% Similarity leads the Mapper

to treat each Document Family as a di�erence. This means that we index the documents

of each Document Family based on the Threshold value. Therefore, for Threshold set

to 0, we create a single index for the documents of each Document Family in a cluster.

For in�nite Threshold, the same documents of each Document Family in a cluster are

indexed by the private index of each user in the ACL of the Document Family. For

intermediate Threshold values, the Mapper indexes the same documents of each Document

Family either in a single index, or in the private indices of each user in the ACL of the

Document Family. This depends on whether the number of documents in a Document

Family multiplied with the number of users in its ACL is higher than the Threshold value

or not.

Despite the di�erent clustering output, the Mapper gives the same results for the

two extreme Similarity values (0% and 100%) across di�erent Threshold values. This

is because each Document Family is treated as di�erence for both Similarity values and

produces the same index mapping results. However, both the Clusterer and the Mapper

results di�er for Similarity values between 0% and 100% leading to the reduction of the

average number of indices per user.

Consequently, in order to answer the �rst part of our initial question, which is why we

observe the average decrease for Similarity close to 60%, we compare the content of the

clusters between the 100% and 60% Similarity. When Similarity is 100% and Threshold
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Figure 6.2: We examine the total number of clusters and the number of documents per

cluster across di�erent Similarity values. The total number of clusters decreases and the

total number of documents per cluster increases as the Similarity drops from 100% to 0%.

The results are the same across di�erent Threshold values as Threshold only a�ects the

partitioning and not the clustering phase.

is 0, the number of clusters is large and each cluster contains a single Document Family.

As we create one index for each Document Family, the number of indices is equal to the

number of clusters. For this reason, each user needs to access a large number of indices as

the documents are spread in many indices. On the contrary, as Similarity gets values lower

than 100%, the Clusterer creates fewer and fewer clusters, while more and more Document

Families (and documents) are included in each cluster (Figure 6.2). Also, many clusters

contain Document Families whose ACLs have a non-empty intersection. As the Mapper

creates a single index for each intersection, all the documents of a cluster are indexed by

that index. Hence, the users that belong to intersections only access one index in order

to �nd the documents included in a cluster and the average number of indices per user

decreases. Also, the intersections are responsible for the decrease of the average number

of indices per user at 60% Similarity for Threshold at 500 and 1500.

However, the average decrease at 60% Similarity does not hold for Threshold values

close to in�nity. For these values, the average number of indices per user is higher for 60%

Similarity than for 100%. An 100% Similarity value combined with an in�nite Threshold

means that each each cluster contains a single Document Family. Due to the in�nite

Threshold value, each document is duplicated to the private index of each user in the

ACL of the Document Family. Therefore, the total number of indices is limited to the
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number of the users in the system and each user only accesses his private index (Figure

6.5(d)). On the contrary, when the Similarity value is 60%, some of the clusters have a

non-empty intersection. Moreover, each document of each di�erence is indexed by the

private index of each user in that di�erence. Hence, the total number of indices is the

sum of the private indices plus the indices that are created due to the intersections, and

each user accesses not only his private index but also some of the intersection indices.

The second part of our question, which is why the average number of indices per user

increases for Similarity values lower than 60%, is answered if we understand how the

Similarity value a�ects the homogeneity of the ACLs within each cluster. Low Similarity

values mean that the likelihood of a non-empty intersection in a cluster is small. Hence,

the users cannot bene�t from the indices of intersections and the average number of indices

per user increases again.

In general, as we decrease Similarity from 100% to 60%, the average number of in-

dices per user decreases for Threshold in range 0-1500. This holds because documents

of di�erent Document Families are indexed by a single index due to the intra-cluster in-

tersections. Hence, the users that belong to the intersections access fewer indices than

in the case where Similarity is 100% and one index is created for the documents of each

Document Family. Moreover, when the Threshold value increases, the users that belong

to the di�erences or to Document Families that are treated as di�erences access fewer

indices because many documents are indexed by the private index of each user. Thus, for

Threshold in range 0-1500, the average number of indices per user decreases as Similarity

drops from 100% to 60%.

6.3.2 Indices Per Document

In Figure 6.3, we depict how the various Threshold values a�ect the average number of

indices in which a document is indexed (document duplication). We observe that when

the Threshold is set to 0, the document duplication is limited as each document is indexed

by at most two indices. For a cluster with a non-empty intersection, each document is

indexed by the intersection index and in the index of the di�erence. For a cluster with

an empty intersection, each document of the cluster is indexed by a single index. On the

contrary, for in�nite Threshold value, the document duplication signi�cantly increases as
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Figure 6.3: Average number of indices that each document is indexed for varying values

of Threshold and Similarity.

the documents of each Document Family are indexed by the private index of each user in

its corresponding ACL. However, for low Threshold values, the average number of indices

containing a document does not exceed the 15 indices.

Another observation is that the document duplication decreases as Similarity decreases

from 100% to 60%, where it gets its minimum value. Then, the average starts increasing

again for Similarity values lower than 60%. For high Threshold values (1500 and in�nite)

and Similarity value at 60%, the majority of the clusters have a non-empty intersection.

The number of users in each intersection is large and the number of users in each di�er-

ence is small. Thus, each document appears in a small number of private indices, each

corresponding to a user of the di�erence. This means that the number of duplicates is

limited. On the contrary, the number of indices in which each document is indexed is

higher when the Similarity value is di�erent from 60%. In these cases, either all or the

most of the documents of a cluster are indexed by private indices. Hence, the document

duplication decreases for Similarity values close to 60%.

For low Threshold values (0 and 500), the results are di�erent from those described

above. More precisely, the average number of indices per document slightly increases as

Similarity drops from 100 down to 60%. In case where Similarity is 100% and Threshold

is set to 0, the documents of each Document Family are indexed by a single index. Thus,

we have no duplicates. On the contrary, the number of duplicates raises when Similarity

reaches 60%, as each document of each Document Family is indexed by at least two

indices. In particular, it is indexed by the index of the intersection and by the index of
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the di�erence. In the case where Threshold is set to 500 the average number of indices per

document does not signi�cantly change across di�erent Similarity values. Nevertheless,

the increase of the duplicate documents is insigni�cant for these low Threshold values.

In general, the average number of indices per document increases as the Threshold

value increases. For in�nite Threshold, we get the highest average number of indices per

document because each document is indexed by the private index of each user that is

allowed to read it. On the contrary, for Threshold set to 0, we get the lowest average

number of indices per document because each document is indexed by at most two indices

(di�erence index and/or intersection index). For the other Threshold values, the aver-

age number of indices per document increases insigni�cantly in comparison to the latter

case. Also, as Similarity decreases from 100% to 60% the average number of indices per

document decreases for Threshold values over 500, while for lower Threshold values it

insigni�cantly increases.

6.3.3 Query/Update Trade-o�

So far, we studied the average number of indices per user and per document, each of

which is related to the query performance and the update cost respectively.

The previous �gures indicate that a 60% Similarity value approximately gives the best

results regarding the average number of indices per user and per document. Whenever

this is not the case, the increase in the average number of indices per user and the average

number of indices per document is insigni�cant. Hence, we keep the Similarity �xed at

60% and change the Threshold.

Figure 6.4 depicts the trade-o� between query performance and update cost across

di�erent Threshold values. While the Threshold value grows, we observe that the average

number of indices per user decreases and the average number of indices in which each

document is indexed increases. For Threshold set to 0, we get the highest average number

of indices per user, as each user has access in many indices, and the lowest average number

of indices per document, as each document is indexed by a single index. On the contrary,

for Threshold set to ∞, we get the lowest average number of indices per user because

each user only accesses his private index. However, in this case we get the highest average

number of indices per document because each document is indexed by the private index
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Figure 6.4: We depict the trade-o� between the query performance and the update cost

for a given Similarity value and across di�erent Threshold values.

of each user that has access to it. Hence, in the �rst case (Threshold is 0), we expect to

get the worst search performance and the lowest maintenance cost, while in the second

case (in�nite Threshold), we expect to get the best search performance and the highest

maintenance cost.

It is worthwhile to note that there is a point between 1500 and in�nite Threshold value

where even though we increase the Threshold value, the average number of indices per

user and per document does not change. At this point, every shared document (except

the public ones) is indexed by the private index of each user that can read it. Hence, each

user only accesses his private and the public index. Public documents are only indexed by

the private index of each user after the Threshold value becomes higher than the product

users× number of public documents.

Overall, Threshold values in the range between 500 and 1500 seem to strike a good

balance between the number of indices per user and the number of indices per document.

6.3.4 Total Number of Indices

Figure 6.5 illustrates the total number of indices, which is a�ected by the way we treat

each di�erence, for various Threshold values. As Threshold increases, the total number

of indices decreases because the documents of the most di�erences are indexed by private

indices, and hence, fewer and fewer indices are created due to the di�erences indexed

by a separate single index. Moreover, we observe that the number of indices due to the

intra-cluster intersections increases for a given Threshold and Similarity values around
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Figure 6.5: We examine the total number of indices across di�erent Similarity and Thresh-

old values. The total number of indices created decreases as Threshold value increases.

The total indices is the sum of the indices due to the intra-cluster ACLs intersections (in-

ter indices), the single indices that are created from each di�erence of each intra-cluster

intersection (di� indices), and the private indices plus the indices which are created from

Document Families that are treated as di�erences (other indices).

60% because many clusters contain Document Families with similar ACLs.
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Figure 6.6: We measure the indexing time for di�erent Similarity and Threshold values.

As Threshold increases, each document is indexed to more and more indices, and hence,

the total indexing time increases.

6.4 Search Engine Results

In this section, we compare the overall search engine performance for di�erent Planner

con�gurations from three di�erent perspectives: a) indexing time; b) disk space overhead;

and c) query response time. Our measurements show that di�erent Planner con�gurations

lead the search engine to di�erent levels of query performance and update cost. Therefore,

di�erent performance needs are met by using the appropriate Similarity and Threshold

values.

6.4.1 Indexing Time

Indexing time refers to the total delay to index the documents. Although our document

set is composed of a standard number of documents (50000), the total indexing time di�ers

across the various Planner con�gurations. Di�erent Planner con�gurations indicate that

some documents are indexed by more than one index, depending on the Similarity and

the Threshold value. Thus, the more documents indexed multiple times, the more time

is needed to complete the indexing process.

In Figure 6.6, we depict how the various Planner con�gurations a�ect indexing time.

As we move towards higher Threshold values, the indexing time increases. However, for

Threshold set to 0, the indexing time is comparable between 100% and 60% Similarity

due to the limited document duplication across di�erent indices (13:36 min and 16:2 min
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Figure 6.7: We compare the disk space overhead across di�erent Similarity and Threshold

values.

respectively). On the contrary, for in�nite Threshold, we observe a remarkable increase

in the indexing time at 305:75 min. In this case, each document is indexed by the private

index of each user that has access to it, and hence, the indexing time signi�cantly increases

due to the large number of duplicate documents.

Consequently, the value of Threshold is an important factor that a�ects the indexing

time: higher values mean more duplicates across multiple indices, and hence higher in-

dexing time. However, the Threshold value not only a�ects the indexing time but the

disk space overhead as well.

6.4.2 Disk Space Overhead

In general, it is important to keep the disk space consumption as low as possible. The

disk space consumption is related to the number of indices in which each document is

indexed, and hence, it grows as the Threshold value increases.

In Figure 6.7, we present the disk space consumption across di�erent Planner con�g-

urations. As expected, for higher Threshold values the disk consumption grows, as the

same document is indexed by more than one index. The in�nite Threshold value leads

to the highest disk space consumption, as each document is indexed by the private index

of each user that can read it. However, setting the Threshold to a non-in�nite value

does not considerably a�ect the disk space consumption in comparison to a value of 0.

In particular, when the Threshold is set to 0, the disk space consumption is comparable

between the cases where Similarity is 100% and 60%. It is close to the size of the original
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size of documents, which is 820 MB. When Threshold is 500 and 1500, the disk space

consumption grows by a factor of 2:5 and 4:2 respectively. Finally, for in�nite Threshold,

the disk space consumption increases by a factor of 29:2.

The disk space consumption can also a�ect query performance, as the size of the

indices is closely related to the resident set during query execution. For instance, if the

total size of indices is small enough to �t in memory, then the search engine serves queries

without performing costly disk accesses. On the contrary, if the total size of indices is

larger than available memory, then only a part of it is kept in memory. Hence, the search

engine will access the disk with high probability in order to retrieve all the indices that

are needed to serve a query.

6.4.3 Search Performance

After examining the indexing time and the disk space consumption, we investigate the

search performance across di�erent Planner con�gurations and number of clients. The

search performance is evaluated by measuring the query latency at the search engine,

from the time it receives a query to the time it sends the answer to the client.

Initially, we present the median of query response times. We prefer the median and not

the average because the median more accurately reects the most representative value of a

set of observations (query response times in our case). In general, the average is computed

by adding all the observations and dividing by the number of the observations. On the

contrary, the median is computed by arranging all the observations from lowest to highest

value and picking the middle one. This means that the median is the value for which 50%

of the observation are higher, and 50% smaller than this value. Hence, in cases where the

set of observations contains an extreme value that di�ers greatly from the other values,

the median is a better indicator of the most representative value of the set of observations.

When evaluating the search performance, we also present the 90th percentile of query

response times, which reects the value for which 90% of the observation are smaller and

10% are higher than this value. Moreover, we present both the median and the 90th

percentile response times across di�erent number of clients for two di�erent cases. In the

�rst case, ES servers use the cache when serving the incoming queries, while in the second

case, they do not use the cache.
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Figure 6.8: We depict the median query response times across di�erent Planner con�gu-

rations and number of clients.

The rationale of this strategy becomes clear by examining the size of the working set

(Figure 6.7). In most Planner con�gurations, the largest part of the working set �ts in

memory. Thus, we experimented with both cases (with and without cache) in order to give

a clearer view of the search performance. In addition, when the indexing process �nishes

and before the search engine starts serving queries, we optimize the indices in such a way

that each index is stored in a single �le on disk (Lucene uses Logarithmic-Merge [25] and

a single index may be more than one �le on the disk).

The �rst observation from the experiments is that the median query response time,

across di�erent Planner con�guration parameters, is as one might expected: the query

response time increases in the cases where a large number of indices is accessed per

user, and hence per query (Figure 6.8(a)). For instance, for 100% Similarity and in�nite

Threshold, we get the lowest query response time because only one index is accessed

per user. According to Planner results, as Threshold decreases each user accesses more

indices. Thus, we observe that query response time increases for low Threshold values.

Not using the cache implies that a query is served from the disk. After the execution

of each query, we ush the cache. Hence, the query performance degrades due to the

large number of disk seeks that is needed in order to fetch the corresponding indices. For

Threshold set to 0 and 100% Similarity, the number of indices per user is high enough
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to substantially increase the query response time over 700 ms. For higher Threshold

values and 60% Similarity, the query response time is reduced because the number of

indices per user decreases. In particular, the query response time is about 200 ms for

60% Similarity and Threshold 500. However, the best search performance is achieved for

in�nite Threshold as each user needs only to access his private index.

On the other side, using the cache implies that there is a possibility to serve a query

from the cache rather than the disk. This is the case where the indices required to serve

the query are already in memory because the search engine used them to serve a previous

query. However, this possibility depends on the size of the working set. In Figure 6.8(b),

we present the corresponding response times in the case we use the cache. As expected,

the search engine performs better than the case without the cache. In particular, the

response time decreases from hundreds to tens of milliseconds. However, for non in�nite

Threshold, the trend between di�erent Planner con�guration remains almost the same as

in the case without the cache.

Contrary to what one might expect, we observe that the median response time for

in�nite Threshold value is higher than that of lower Threshold values when we use the

cache. A reasonable explanation is that the working set does not �t in memory and the

search engine satis�es the majority of the queries from the disk. Even though the number

of indices is limited to the number of users and each query involves a single index, the

working set size is signi�cantly higher than that of lower Threshold values. Hence, the

query response times are similar to those without the cache (Figure 6.8(a), 6.8(b)).

Figure 6.8 also visualizes the sensitivity of various number of clients to the median

query response time. The median response time is comparable across di�erent number of

clients (1 to 8). When we use the cache, the median response time ranges between 18 ms

and 82 ms and without cache it ranges between 95 ms and 800 ms.

The 90th percentile of query response times are also comparable across di�erent num-

ber of clients (Figure 6.9(a), 6.9(b)). In particular, when we activate cache, the 90th

percentile ranges between 50 ms and 120 ms while without the cache it ranges between

100 ms and 1400 ms.

Figure 6.10(a) illustrates the histogram of the query response times without the cache.

More precisely, we observe that Similarity values set to 60% or 100% combined with

Threshold set to 0, the response times for the majority of the queries exceed 300 ms.
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Figure 6.9: We depict the 90th percentile query response times across di�erent Planner

con�gurations and number of clients.
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Figure 6.10: Histogram of query response times across di�erent Planner con�gurations.

However, for higher Threshold values, the response time for the majority of the queries

ranges between 50 ms and 300 ms. When we use the cache, the results show that most

queries have a response time around 25 ms (Figure 6.10(b)). However, for in�nite Thresh-

old, the response time for the majority of the queries ranges between 75 ms and 125 ms.

An alternative view of the above information is depicted in Figure 6.11. A cumulative

distribution function of query response times gives an estimation of the fraction of queries
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Figure 6.11: CDF of query response times.

executed in less than a certain amount of time. If we use the cache, the 89% of the queries

take less than 50 ms when the Similarity and the Threshold value is set to 60% and 500 (or

1500) respectively (Figure 6.11(b)). For Threshold set to 0 and 60% Similarity, we observe

that 74% of queries take less than 50 ms. For Threshold set to 0 and 100% Similarity, the

63% of queries take less than 50 ms. On the contrary, for in�nite Threshold, this fraction

hardly reaches the 16% as most of the queries are satis�ed from the disk rather than the

cache.

Figure 6.11(a), illustrates the fraction of queries executed in less than a certain amount

of time without the cache. The fraction of the queries that take less than 200 ms is 42:6%

when the Threshold is 500 and the Similarity is 60%. For higher Threshold values, the

96% of queries is completed in less than 200 ms, while for Threshold set to 0 combined

with 60% or 100% Similarity, the fraction of queries that take less than 200 ms is barely

1:96% and 0:3% respectively. These queries take longer because the average number of

indices per user is high, and hence more indices are fetched from the disk.

Finally, we examine the search engine throughput for di�erent Planner con�gurations.

Rather than measuring throughput for both cases (with and without cache), we focus on

the case with cache. We assume that in general, the search engine makes extensive use of

the cache and uses the disk when needed.

Figure 6.12 shows the e�ect on throughput of various Similarity and Threshold values
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Figure 6.12: We compare the search throughput across di�erent Planner con�gurations

and number of clients.

across di�erent number of clients. In each case, we observe that increasing the number

of clients from 1 to 8 leads to higher throughput. For in�nite Threshold, the sequential

throughput is 11 q/s but it increases by a factor of 7:5 for up to 8 clients. When Threshold

is either 500 or 1500, the throughput is 30 q/s and increases by about a factor of 6, as we

increase the number of clients from 1 to 8. When the Threshold is set to 0 and Similarity

is 100%, the throughput is 15 q/s and increases by about a factor of 5:5. At last, when

the Threshold is set to 0 and Similarity is 60%, the throughput is 18 q/s and increases

by about a factor of 5:7.

In general, the throughput increases linearly as the number of clients increases. How-

ever, the highest throughput is achieved for Threshold values around 500 and 1500 and

the lowest for in�nite Threshold.

6.5 Exploring Di�erent ACL Synthetic Datasets

The ACL Generator uses the observations on access control usage presented in a study

to create the synthetic ACLs. Given a number of users, groups and document IDs, it

creates user groups by picking the number of their members (maximum 50) following

the distribution acquired from the study (Doc Server distribution). Then, the Generator

uniformly chooses a set of user IDs as members of a speci�ed group. Finally, it assigns

a number of individual user and group IDs to each ACL according to the corresponding
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Figure 6.13: We depict the distribution of members per group when using di�erent probal-

itity distributions for the size of each group. When using the Uniform distribution, the

groups tend to have many members. For the Zip�an distribution, only a small fraction

of the groups has a large number of members, and this fraction decreases as the value of

parameter a increases.

distribution of the survey.

To experiment with di�erent synthetic ACL datasets, we repeat the same procedure,

but this time we use di�erent probability distributions for the size of each group. In

particular, we use the Zip�an distribution for di�erent values of parameter a (0:7, 1:7,

and 2:2) as well as the Uniform distribution. The maximum size of a group is 50 members,

and the basic ACL Generator parameters are 200 users, 131 groups, and 50000 documents.

Both the maximum size of a group and the basic ACL Generator parameters are the same

during the experiments with di�erent probability distributions.

Group Membership and ACLs. Figure 6.13 depicts the distribution of members

per group across the usage of di�erent probability distributions for the size of each group.

When using the Uniform distribution, groups contain more members than in the case we

use the Zip�an or the distribution of the study (Doc Server). For the Zip�an distribution

as the value of parameter a increases, groups tend to contain fewer members and only

a small fraction of groups contains a large number of users. In comparison to the Doc

Server case, the Zip�an distribution with parameter a set to 1:7 and 2:2 decreases group

sizes, while group sizes increase with parameter a set to 0:7.

Using di�erent probability distributions for the group sizes, we indirectly change the

size of the ACLs (count by number of users included). Figure 6.14 depicts how the average
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Figure 6.14: We depict how the size of the ACLs is a�ected by the di�erent probalitity

distributions used for the size of each user group in two di�erent cases. The ACLs of the

public documents are not a�ected by the group sizes. Thus, we present the results for

two di�erent cases to give a clearer view of how the ACL sizes change. In the �rst case,

we take into account the ACLs of the public documents (a), while in the second we omit

them.

number of users included in ACLs changes across di�erent probability distributions in two

di�erent cases. In the �rst case, we take into account the ACLs of the public documents

even though they are not a�ected by the group sizes (Figure 6.14(a)). The size of the

ACLs of the public documents is �xed to 200 users, which is the number of all users. In

the second case, we exclude the ACLs of the public documents and only keep those that

are a�ected by the group size in order to give a clearer estimation of how the ACL sizes

change (Figure 6.14(b)). The results in both cases follow the same trend: a) Uniform

distribution creates ACLs that include many users because in this case groups included in

ACLs also have many members, b) when using the Zip�an distribution, the ACLs include

fewer users as parameter a increases from 0:7 to 2:2, and c) in comparison to the Doc

Server distribution, the Zip�an distribution with parameter a set to 1:7 and 2:2 decreases

the average number of users in the ACLs, while the Zip�an distribution with parameter

a set to 0:7 increases the average.

Average Number of Indices Per User. As already explained, the di�erent proba-
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Figure 6.15: We depict how the average number of indices per user is a�ected by the

di�erent probalitity distributions used for the group sizes. The average number of indices

per user is higher for the Uniform distribution. As the value of parameter a of the Zip�an

distribution increases, the average number of indices per user decreases.

bility distributions a�ect the group sizes. Group sizes in their turn a�ect the probability

for a user to belong in multiple ACLs, and hence the average number of indices that a

user needs to access when he issues a query.

In Figure 6.15, we examine the average number of indices per user across di�erent

values of Similarity and Threshold when using di�erent probability distributions for the

group sizes. The �rst observation is that the results follow the same trend as in the case
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we use the distribution of the survey for the group sizes (subsection 6.3.1):

• Similarity 0% and 100% give the same results across di�erent Threshold values

despite the di�erent clustering output. Similarity 100% creates many clusters each of

which contains a single Document Family, while Similarity 0% creates a single cluster

which contains all Document Families. However, in both cases each Document

Family is treated with the same way (as di�erence) and the Mapper produces the

same results.

• The average number of indices per user is minimized for a Similarity value lower

than 100% across several Threshold values (0; 500; and 1500). For Similarity values

lower than 100%, clusters may contain Document Families whose ACLs have a non-

empty intersection. As the Mapper creates a single index for each intersection, all

the documents of a cluster are indexed by that index. Hence, the users that belong

to intersections only access one index in order to �nd the documents included in a

cluster and the average number of indices per user decreases.

• As Threshold value increases, the average number of indices per user decreases

because many documents are indexed by the private index of each user. Hence the

users that belong to the di�erences or to Document Families that are treated as

di�erences access their private index and fewer shared indices.

However, the average number of indices per user is higher for the Uniform and the Zip�an

distribution with parameter a at 0:7 than for the distribution of the survey. On the

contrary, for the Zip�an distribution with parameter a at 1:7 and 2:2, the average number

of indices per user is lower than that of the distribution of the survey, which reaches the

148 indices for 100% Similarity and zero Threshold.

We observe that the Uniform distribution achieves the highest average number of

indices per user, which reaches the 334 indices for 100% Similarity and zero Threshold,

while the Zip�an with a parameter set to 2:2 achieves the lowest, which reaches the 34

indices. When we increase the value of parameter a, the average number of indices per

user decreases because the probability of a user to belong in many groups, and hence in

many ACLs, is lower . This is because most groups have a small number of members and

the members are chosen uniformly.

71



Another important observation is that the Similarity value which minimizes the aver-

age number of indices per user decreases from 60% to 40% as the value of parameter a

increases. Moreover, the higher the value of parameter a, the lower the contribution of

the Similarity parameter to the decrease of the average number of indices per user, for a

given Threshold value.

Average Number of Indices Per Document. In Figure 6.16, we examine the

average number of indices per document. The results follow the same trend as in the case

we use the distribution of the survey for the group sizes (subsection 6.3.2):

• The average number of indices per document increases as the Threshold value in-

creases. For in�nite Threshold, we get the highest average number of indices per

document because each document is indexed by the private index of each user that

he is allowed to read it. On the contrary, for Threshold set to 0, we get the lowest

average number of indices per document because each document is indexed by at

most two indices (di�erence index and/or intersection index). For the other Thresh-

old values, the average number of indices per document increases insigni�cantly in

comparison to the latter case.

• At the Similarity value which minimizes the average number of indices per user, the

average number of indices per document decreases for Threshold values over 500,

while for lower Threshold values it insigni�cantly increases.

However, we observe that the average number of indices per document is higher for the

Uniform and the Zip�an distribution with parameter a at 0:7 than for the distribution

of the survey. This is because each document can be read by large number of users (as

we have large ACLs), and hence for a high Threshold value each document is indexed

by a large number of private indices. On the contrary, for the Zip�an distribution with

parameter a at 1:7 and 2:2, the average number of indices per document is lower than

that of the distribution of the survey, which reaches the 60:04 indices for 100% Similarity

and in�nite Threshold. In this case, the ACLs are smaller and fewer document duplicates

are created.

We observe that the Uniform distribution achieves the highest average number of

indices per document, which reaches the 78:94 indices for 100% Similarity and in�nite

Threshold, while the Zip�an with a parameter set to 2:2 achieves the lowest, which reaches
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Figure 6.16: We depict how the average number of indices per document is a�ected by the

di�erent probalitity distributions used for the group sizes. The average number of indices

per document is higher for the Uniform distribution. As the value of parameter a of the

Zip�an distribution increases, the average number of indices per document decreases.

the 51:78 indices. Also, as the value of parameter a increases, the average number of

indices per document decreases for high Threshold values because the ACLs include fewer

number of users, and hence each document is indexed by fewer private indices.

Another important observation is that the reduction of the average number of indices

per document is more acute for the Uniform and Zip�an distribution with low values of

parameter a. This holds for the Similarity value that minimizes the average number of
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indices per user and in�nite Threshold. A reasonable explanation is that at this Simi-

larity value, the di�erences in each cluster contain few users, and hence the documents

corresponding to di�erences are indexed by few private indices. On the contrary, for

Similarity 100% and in�nite Threshold, each document is indexed by a large number of

private indices as each ACL in the cluster includes many users.

6.6 Summary

In order to evaluate our solution, we implemented an ACL Generator that creates syn-

thetic ACLs taking into account the observations on the access control usage presented in

a previous study. The experimental results show the trade-o� arising between the query

performance and the maintenance cost across di�erent Similarity and Threshold values.

For Threshold set to 0 and 100% Similarity, we get the highest query response time

because in this case the number of indices accessed per user is high. However, the indexing

time and the disk space consumption are the lowest of all other cases. When Similarity

is 60% and Threshold is set to 0 or higher, we get better query response time because

the number of indices per user decreases due to the intersection of the ACLs within the

clusters. On the contrary, the indexing time and the disk space consumption slightly

increase because documents are duplicated across a small number of indices. For in�nite

Threshold, one might expect to get the lowest query response time, as each user only

accesses one index. However, the query response time is higher than in the other cases

when we leverage the cache. In this case, the working set is larger than in the other cases

and does not �t in memory. Hence, the search engine satis�es the majority of the queries

from the disk. Moreover, for in�nite Threshold we get the highest indexing time and disk

space consumption due to the high number of duplicates across multiple indexes.

To examine more synthetic ACL datasets, we conducted additional measurements

using di�erent distributions for the size of user groups in the ACL Generator. The Planner

results follow the same trend as in the case we use the distribution from the previous study.

However, the average number of indices per user and per document is higher or lower than

that of the distribution from the study for the di�erent examined distributions.

Taking into account the presented results, this chapter gives many insights on how to
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tune such an indexing workow scheme depending on the performance needs and keep a

balance between maintenance cost and query performance.
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Chapter 7

Related Work

7.1 Desktop and Enterprise Search

7.2 Metadata Search

7.3 Full-Text Search in Social Networks

7.4 Secure Data Storage

7.5 Summary

Full-text search has been a topic of great interest for the last few years. However,

researchers turned their attention to the privacy issues arising when the full-text search

engine operates in a multi-user environment. Therefore, a notable amount of research has

been devoted also in this area.

This chapter revisits prior research focused primarily on desktop and enterprise search

engines by capturing their bene�ts as well as their limitations. Furthermore, we present

existing research on secure full-text search in social networks as they support multiple

users and the privacy issues referred in the previous chapter still hold. Finally, we review

approaches that provide secure data storage.
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7.1 Desktop and Enterprise Search

Much of the focus of recent research at the concern of full-text search has been on providing

privacy, keeping low the maintenance cost and increasing the query performance. While

privacy protection is necessary, the performance of a full-text search engine is also very

important. However, these are two opposing principles, and it is di�cult to achieve both.

7.1.1 Per User Indices

Google 's Desktop Search tool [1] is one of the most popular desktop search engines. It

was designed in order to bridge the gap between the increasing amount of stored data

and real-time searching on a single-user machine. When used in multi-user environments

it creates either one index per user or a system-wide index. In the �rst case, each index

includes all the documents that a particular user is allowed to read. Hence, when a user

submits a query, it is addressed to his private index. In the later case, all users' documents

are indexed by a system-wide index taking no account of their owner. However, this index

needs to be created and accessed only by users with administrative rights, posing severe

privacy threats. Therefore, the above limitation makes this case unsuitable for multi-user

environments [41].

Soon after Google Desktop Search, other desktop search tools appeared as well, such

as Yahoo! Desktop Search [9] and Copernic [8]. Both of them bear a strong resemblance

to Google Desktop Search in the way they operate in multi-user environments. More

particularly, they integrate access control during indexing time by ensuring that each

user has a distinct index. Thus, in each user's index are only indexed documents that he

is allowed to read.

Creating one index per user implies that we have a completely safe way of organizing

the user's documents into indices. Since each user only searches among documents that

he is allowed to read, each query result is restricted to those documents. Hence, users

cannot infer the content of documents that they are not allowed to read. In this approach,

the query performance is high as only one index has to be searched per query and there

is no additional cost to apply any access control.

Despite the privacy protection provided by the above approach, some performance

issues arise. The fact that a single document can be readable by multiple users and
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all documents readable by a user are indexed by his private index leads to document

duplication across two or more indices. Document duplication makes the full-text search

engine su�er not only from disk consumption, but also from costly maintenance. The

number of indices for a document is equal to the number of users that are allowed to

read it. This also holds for updates. Whenever a document is updated, the changes are

also applied to all indices in which this document has been indexed. Furthermore, this

issue becomes more acute as the rate of documents that are readable by many or all users

increases.

7.1.2 Shared Index

The need for overcoming the limitations derived from the one index per user approach led

to the use of a single system-wide index. In this approach, all documents are indexed by

the same index and the access control information is taken into account before handing

in the results of a query. Hence, the extra indexing and updating cost are avoided since

each document is indexed only once.

Apple's Spotlight [2, 39], the Mac OS indexing and retrieval facility, uses such an ap-

proach. It provides full-text search for separate user accounts by extracting and indexing

metadata in a single system-wide index, while respecting the ownership of the documents.

Whenever a search query arrives, Spotlight computes the list of documents matching the

query and then it �lters this list. Filtering is performed by checking the document per-

missions and removing from the result any documents that the user is not allowed to

read. A possible drawback of Spotlight is that it returns results in lexicographic order

and does not employ any relevance ranking algorithm. This, eliminates privacy threats

based on TF=IDF ranking algorithms, but also hampers users to �nd fast the most rel-

evant matching documents. Indeed, a non ranking approach is not always appropriate,

especially when the number of documents is large [6].

A similar approach is implemented by Microsoft [7]. In particular, the search engine

identi�es users and groups that are granted or denied access to each document by adding

authorization information (Access Control List) to each document. Thus, whenever a user

submits a query, the list of matching documents is computed and �ltered by taking into

account the documents' Access Control Lists. Accordingly, the query results are restricted
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to the documents that a user is allowed to read. In addition, regarding its ranking model,

the Microsoft's search engine o�ers several ranking models. However, the default model

is based on a TF=IDF scoring function.

Google supports enterprise search with the Google Search Appliance [12]. Its main

purpose is to provide fast, relevant search results. Google Search Appliance creates access

credentials provided by the system administrator in order to index users' documents. At

query execution time the index is searched and a list of all matching results is retrieved.

Prior to returning the �nal result list to the user it removes the documents that do not

comply with the corresponding credentials. The result ranking is based on a TF=IDF

style ranking algorithm [30]. However, it can be inuenced by some features provided,

such as self-learning scorer1.

While a single system-wide index reduces the disk space consumption and the update

cost, it adds an extra cost at query execution in order to satisfy the access control re-

strictions. In addition, it can pose serious privacy threats; Ranking algorithms, based on

TF=IDF scoring function in conjunction with result �ltering after computing the rele-

vance score of matching documents, permit to a user to infer information about documents

that he is not allowed to read [6]. However, following di�erent approaches is possible to

eliminate privacy threats.

7.1.3 Secure Approaches

In an e�ort to eliminate privacy threats in full-text search engines when operating in

a multi-user environment, B�uttcher and Clarke [6] designed the Wumpus search engine.

Although Wumpus uses a system-wide index, the result ranking is only performed on

documents that a user is allowed to read. Whenever a query is received, the posting lists

of its terms are computed. Then, the access control restrictions are applied by removing

any occurrences of the query term within documents that are not readable by the user

who submitted the query. Finally, the ranking step follows based on the �nal form of the

posting lists. Since the ranking step is only applied on documents readable by a user,

the user cannot infer any information about documents that he is not allowed to read.

1This feature automatically analyzes user behavior and the speci�c links that users click on for speci�c

queries in order to �ne tune relevance and scoring
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However, a possible drawback of this approach is that it requires the information (e.g.

owner, permissions) about every indexed i-node to be kept in memory. This could become

a problem when the indexed documents reach the limit of a few million.

Singh et al. [37] proposed a distributed approach that couples search and access-control

into a uni�ed framework, while protecting privacy in multi-user environments. The main

idea is to build indices, each of which maintains documents that have exactly the same

access control privileges. Towards that direction, they build a graph whose edges reect

the documents that a user or a user group has access to and then they divide documents

into independent access-privileges based chunks, which they call access-control barrels

(ACB). However, documents readable by a user may be spread in many ACBs. Thus,

in a user's subsequent search the results are derived from all the ACBs which contain

documents that the user is allowed to read. Unfortunately, there is no upper bound for

the number of di�erent ACBs that potentially can be created and for the number of

ACBs that a user has access to. Moreover, it is shown that it is impossible to reduce the

number of ACBs without either duplicating documents in barrels or violating the security

restrictions. Hence, in order to reduce the number of ACBs, all ACBs in which few users

have access are removed and the documents contained in them are moved to each user's

private ACB.

LI et al. [15] present a di�erent approach to protect privacy in search engines when

operating in multi-user environments. The core idea is to assign multiple IDF values

(one for each user) to each term. In addition, these term IDF values are computed by

only taking into account documents that the speci�ed user is allowed to read. In order

to do this, a personalized index is build for each user in an early stage and then these

indices are merged into a global index. Thus, when a user submits a query, the relevance

scores of the matching documents are calculated by the user's personalized information

of the previous step. Hence, a user cannot infer any information about documents that

he is not allowed to read. However, while this approach protects privacy, nothing is said

about the index maintenance cost and how e�ciently the privacy protection lines with

incoming document updates.
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7.2 Metadata Search

Beyond the research on full-text search, some remarkable approaches that deal with meta-

data search have been presented. Leung et al. [27] designed Spyglass, a metadata search

engine which is focused on how to exploit metadata properties in order to improve search

performance and scalability in large-scale storage systems. This is possible through hi-

erarchical partitioning which partitions the �le system based on the namespace. Each

partition corresponds to a separate index. Hence, each index contains documents that

belong to a unique partition of the namespace. In addition, each partition is stored se-

quentially on disk; Bloom Filters [5] are used to restrict the search only to partitions that

may contain documents relative to a query. However, this solution only refers to metadata

search and without reference to privacy protection in multi-user environments.

Parker-Wood et al. [33] introduced a security aware index partitioning algorithm and

a series of metrics which can be used to evaluate the expected performance of di�erent

partitioning algorithms. Security-aware partitioning partitions the �le system according

to group and user security permissions while walking over it in a breadth �rst search. The

access permissions of a document or directory are determined by examining all permissions

in the directories above. If the permissions on the current document or directory are more

restrictive than that of the current partition, then a new partition is created. Then, all

documents in each partition are accessed by the same set of users, and each user can

only search in partitions that include documents that he is allowed to read. Even though

security is ensured, this solution generates many small partitions. However, one possible

way to reduce the number of created partitions, is to merge those that are accessed by

the same set of users.

7.3 Full-Text Search in Social Networks

Social networks, such as Facebook2, Twitter3, and Google+4, are popular online commu-

nities that provide interaction, communication and information sharing between users by

2https://www.facebook.com/
3https://twitter.com/
4https://plus.google.com/
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using the notion of friendship. As the functionality of social networks is primarily based

on data generated by users, data handling and privacy are important issues to them.

Thus, in order to keep data away from undesirable viewers, social networks introduce

some access control mechanisms that enable users to restrict their data visibility to a

desirable subset of users.

Although these data may be of di�erent types, we focus on the text content exchanged

between users. Usually, this text context is referred to as post. As the social network

population grows, the amount of shared data among users also grows. This mandates the

use of full-text search engines in order to help users to easily �nd the content they are

looking for. However, while not all data is accessible to everyone, the search engine must

adhere to the privacy settings enforced on each users' content.

As a matter of fact, the problem of enforcing access control at desktop and enterprise

search is also inherited in social networks. Bj�rklund et al. [3], �rst integrated access

control of social network content in a full-text search engine. More particular, they

investigated several ways of index designs, but they concluded to the use of a single index

containing all users' documents along with user or friend lists. In the case of user lists,

each user has his author list which contains the document IDs posted by him. In the case

of friend lists , each user also has an author list, but this list contains all documents posted

by him and all of his friends as well. Therefore, in order to enforce access control, the

results from the index are intersected with the set of author lists that correspond to the

user and all his friends. In the case of friend lists, the set of the author lists is calculated

by the users' single author list, as it contains the document IDs posted by him and his

friends. In the case of user lists, the set of the author lists is calculated by the union

of the author lists for each individual friend of the particular user. However, the friend

lists approach introduces an update cost as each document posted by a user is inserted

in the author lists of all of his friends, while the user lists approach degrades the search

performance as multiple author lists must be processed to answer a single query.

In [4], Bj�rklund et al. extended their previous work by introducing a new hybrid

approach. Initially, each user has one author list that contains the document IDs only

posted by him. Also, each user has an additional author list that contains all documents

authored by a selected set of users Lu which is a subset of the corresponding user's friends.

Thus, there is no need to access the speci�c author lists for users in Lu whenever a user
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u issues a query. The search engine computes the intersection of a query term posting

list with the union of author lists; then it returns the query result. As more and more

users are represented in Lu, queries become more e�cient at the expense of update cost.

Hence, the workload characteristics and the use of cost models in optimization algorithms

contribute to the selection of an appropriate content for each Lu.

Finally, Facebook o�ers Inbox Search which is a feature that enables users to search

through their Facebook Inbox. Inbox messages also have restrictive visibility, and thus

their access control restrains must be retained through the search process. For this pur-

pose, Facebook maintains a per-user index of all messages that have been exchanged

between the sender and the recipients of the message. Also, it uses Cassandra as its back-

end storage system [24]. When messages are exchanged between a small set of users, the

per-user index is an a�ordable solution. However, when talking about posts, which are

visible from an extensively larger user set, issues arise from the content redundancy. This

is caused due to the duplication of a single post to the index of each user that is allowed

to read it. Furthermore, this can be worse, as generally in social networks, the number of

a users' posts tends to increases as the number of his friends grows [18].

7.4 Secure Data Storage

Data handling to protect privacy is a more general problem and also concerns many online

applications and storage systems. Online applications are vulnerable to the disclosure of

private information due to software bugs that permit arbitrary users to gain access to

private data.

Popa et al. [34] introduced a new system called CryptDB for securing database-backed

applications. They address two basic threats: a) a user that gains complete control of

application and database management system (DBMS) server including the CryptDB

proxy server, and b) a database administrator (DBA) that has the ability to capture and

leak private data by snooping the DBMS sever. The main idea is to encrypt all data

stored in the database and execute queries over the encrypted data. CryptDB works as

a middle layer, that receives all queries (including search on encrypted text), encrypts

data and sends it to the DBMS server. Then, it receives the encrypted data from the
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database, decrypts and sends it to the authorized user. Di�erent keys are used to encrypt

di�erent columns and users' data. Also, data may be encrypted in one or more onions of

encryption (di�erent encryption types) depending on the queries applied over them. All

keys are stored in the CryptDB proxy server and keys that decrypt the data accessible

to a single user are chained to his password. CryptDB allows only authorized users to

gain access to encrypted data and minimizes the amount of revealed private data. In

particular, it restricts the leakage to the data of currently active users for the duration of

the compromise. In addition, the DBMS server never receives decryption keys needed to

decrypt data, ensuring that a DBA cannot gain access to private data.

Schultz et al. [36] secure databases that handle data of multiple users through a

decentralized information ow control system called IFDB. The system tracks information

as it ows in the database and controls what can be revealed. To achieve this, it is based on

three basic concepts: principals, tags, and labels. Principals are entities in the system such

as users that are interested in controlling the sensitivity of their data. Tags are identi�ers

attached to data to denote their sensitivity, and labels are sets of tags summarizing the

sensitivity of all data contained in a data object. Each process that runs with the authority

of a particular principal has a label, which reects the tags of all the data this process

reads. The basic rule is that information can ow from a source S to a destination D

if the labels of S are a subset of the labels of D. However, in some cases tags can be

removed from labels in order to send sensitive information to an authorized user. Overall,

IFDB controls the information ow and enforces a security policy preventing sensitive

information leakage.

Cryptographic storage systems that store and manage �les of multiple users also pro-

vide mechanisms that enable �le sharing and encryption of the stored �les. In order to

share encrypted �les in such systems one has to manage and share keys among users

sharing a �le with an e�cient and scalable manner.

Plutus [23] is a cryptographic storage system that provides secure �le sharing over an

untrusted �le server by encrypting �les. Its main idea is to group all �les with identical

sharing attributes into the same group called �le group and protect them with the same

key. This reduces the number of keys that users need to manage and exchange because the

number of keys is detached from the growth of the number of �les and is restricted to the

number of groups of �les with di�erent sharing attributes. Every �le group is associated
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with a symmetric key called �le-lockbox key and is the same for all �les within that �le

group. Hence, whenever a user wants to share a number of �les with other users, he

creates a �le group and generates a �le-lockbox key. Then, he distributes the �le-lockbox

key to the users with whom he shares the �les of the particular �le group, enabling them

to access these �les. The way that Plutus operates makes it a secure storage system that

protects and shares data over an untrusted server, while enables individual data owners

to control who gets access to their �les.

7.5 Summary

In this chapter, we presented prior research in the area of full-text search in multi-user

environments. Initially, we presented the two basic approaches. The �rst approach builds

one index per user in order to protect privacy and high query performance. However, it

is characterized by great disk space consumption and update cost. The second approach

indexes all users' documents in a single system-wide index, and uses �ltering algorithms

before returning the query results. Despite the low disk space consumption and update

cost o�ered by this approach, the result �ltering impacts the query performance and poses

privacy threats in some cases. Then, we presented some di�erent solutions that eliminate

the privacy threats, and outlined some remarkable approaches on metadata search and

social network full-text search. Finally, we presented approaches that provide secure data

storage.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

8.2 Future Work

8.1 Conclusions

Privacy protection in full-text search engines over multi-user environments is an important

issue. In order to protect privacy, existing solutions utilize di�erent approaches to organize

users' documents into indices. A simple approach is to create one index per user. This

approach o�ers high query performance, but at the cost of great space consumption as

each document is indexed by the private index of each user that he is allowed to read

it. On the contrary, when retaining a system-wide index, all existing documents are

indexed regardless of access control restrictions. This approach provides e�cient index

updates and low storage usage because each document is indexed only once. Moreover,

this approach poses severe privacy issues, which can be eliminated in the expense of

query performance. A di�erent approach that improves e�ciency while protecting privacy

creates one index for each set of documents that have the same ACL. Even though this

approach protects privacy and has lower maintenance cost than the previous one, it does

not provide any parameters to tune the query performance and the maintenance cost.
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Motivated from the need to protect privacy and the lack of a tunable solution that

trades query performance and maintenance cost, we introduced a novel strategy to orga-

nize users' documents in indices. We group documents into clusters based on the similarity

of their ACLs. The similarity between the ACL of documents within a cluster is deter-

mined by a Similarity parameter. Then, we map documents and users to indices based

on the intersection and di�erences of the ACLs within a cluster. In addition, we use a

Threshold parameter which determines in which indices the documents and the users are

mapped. Performing several measurements across di�erent Similarity and Threshold val-

ues, we show that our strategy introduces a trade-o� between the query performance and

the maintenance cost. By choosing the appropriate Similarity and Threshold values, we

substantially reduce the query response time, while slightly raising the maintenance cost.

For a given threshold value, the query response time decreases when Similarity is 60%.

Moreover, high Threshold values can further achieve better query performance. Overall,

our strategy protects privacy and provides a tunable solution that trades maintenance

cost and query performance depending on the needs.

8.2 Future Work

The main direction of our future work is to further investigate the behavior of our solution

in the context of a real ACL dataset. Even though the evaluation of our solution is

based on observations retrieved from a real ACL dataset, it is of primary importance

to experiment with a real ACL dataset in order to further validate the bene�ts of our

strategy.

Moreover, we target to support full-text search over content generated in social net-

works. Privacy protection is of major importance in such environments, as users enforce

access control in the generated content. Hence, we need to examine how our approach

performs in a social network dataset and validate its applicability in social networks.

Further exploration of other types of clustering algorithms and similarity measures is

also worthwhile.

Another interesting direction for future work is to integrate our solution into a full-text

search engine. Furthermore, we intend to investigate the potential of tuning the Similarity
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and Threshold parameters by inspecting the ACLs as well as the number of documents

associated with each of them.
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