
ÊËÉÌÁÊÙÓÉÌÏÓ ÅËÅÃ×ÏÓ ÐÑÏÓÂÁÓÇÓ ÃÉÁ
ÁÓÖÁËÇ ÐÏËÕÌÉÓÈÙÔÉÊÁ ÓÕÓÔÇÌÁÔÁ

ÁÑ×ÅÉÙÍ

Ç ÌÅÔÁÐÔÕ×ÉÁÊÇ ÅÑÃÁÓÉÁ ÅÎÅÉÄÉÊÅÕÓÇÓ

õðïâÜëëåôáé óôçí

ïñéóèåßóá áðü ôçí ÃåíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò

ôïõ ÔìÞìáôïò Ìç÷áíéêþí Ç/Õ êáé ÐëçñïöïñéêÞò

ÅîåôáóôéêÞ ÅðéôñïðÞ

áðü ôïí

Ãåþñãéï ÊáððÝ

ùò ìÝñïò ôùí Õðï÷ñåþóåùí ãéá ôç ëÞøç ôïõ

ÌÅÔÁÐÔÕ×ÉÁÊÏÕ ÄÉÐËÙÌÁÔÏÓ ÓÔÇÍ ÐËÇÑÏÖÏÑÉÊÇ

ÌÅ ÅÎÅÉÄÉÊÅÕÓÇ

ÓÔÁ ÕÐËÏÃÉÓÔÉÊÁ ÓÕÓÔÇÌÁÔÁ

Ïêôþâñéïò 2013

Dedication

To my parents Lefteris and Areti,

and my beloved sister Antonia.

Acknowledgements

I would like to express my deepest gratitude to all those people that I have been fortunate

to be with, and o�ered me advice, support, encouragement, and friendship.

First and foremost, I would like to express my sincere gratitude to my advisor Prof.

Stergios Anastasiadis for his invaluable assistance and guidance at every stage of my

graduate career. From the early stages of this thesis to the last ones, he was always

willing to help with any problem I was facing. With his deep knowledge on the �eld

of computer systems, he not only guided me through this project, but taught me the

invaluable process of conducting computer systems research.

I am also grateful to all my friends who each in his way helped me to complete this

thesis. Especially, Andromachi Hatzieleftheriou, through endless hours of brainstorming

sessions, provided me with precious feedback at several points of my thesis. Not to

mention the delicious meals she o�ered us. Giorgos Margaritis provided tea, bread-sticks,

and jokes. The multiple laps we had together around the Zosimades stadium helped me

to mentally relax after a full day of work. Nikolaos Papanikos was always coming at the

o�ce on the right moment to break the routine. Finally, Eirini Micheli suggested me

the \LyX" text-editor in which I wrote this thesis. But more importantly, she provided

me with warmness, help, and encouragement throughout my studies at the University of

Ioannina. She was listening with patience every kind of problem I was facing, and it was

her who encouraged me to begin my graduate studies. Eirini was always there for me.

Above all, however, I would like to express my deepest love and gratitude to my family

for the support they provided me through my entire life. Their love and warmness give

me courage to pursue my interests and satisfy my curiosities.

Finally, it should be noted that this work was in part supported by an \AWS in

Education Research grant" award.

Table of Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Research objectives . 3

1.3 Contributions . 4

1.4 Roadmap . 5

2 Background 6

2.1 Cloud environments . 7

2.2 Virtualization . 8

2.3 Core security mechanisms . 10

2.4 Storage management . 11

2.4.1 Object-based distributed �lesystems 12

2.4.2 An outline of Ceph . 13

2.5 Storage interfaces . 14

2.5.1 Sharing and manageability . 15

2.5.2 Performance . 16

2.6 Secure storage multitenancy . 17

2.7 Access control on multitenant storage systems 18

2.7.1 Access control on block-level storage systems 18

2.7.2 Multitenancy challenges of a �le-level storage interface 19

2.8 Summary . 20

3 Design requirements 22

3.1 Security requirements of multitenant storage systems 22

3.2 Architectural goals . 24

i

3.2.1 Isolation . 24

3.2.2 Sharing . 25

3.2.3 E�ciency . 25

3.2.4 Compatibility . 26

3.2.5 Manageability . 26

3.3 Trust and threat model . 27

3.4 Summary . 27

4 System design 29

4.1 Secure multitenancy . 29

4.1.1 Tenant isolation with centralized identi�cation 30

4.1.2 Tenant isolation with public-key identi�cation 31

4.1.3 Tenant isolation with identity mapping techniques 32

4.1.4 An outline of our approach . 34

4.2 Architectural overview . 34

4.2.1 Tenant Authentication Server . 35

4.2.2 Client . 36

4.2.3 Object Storage Server . 36

4.2.4 Metadata Server . 37

4.2.5 Filesystem Authentication Server 37

4.3 Authentication . 38

4.4 Authorization . 39

4.5 Optimizations . 41

4.6 Security analysis . 43

4.7 Summary . 45

5 Implementation details 47

5.1 Implementation overview . 47

5.2 Key structures of Ceph . 48

5.3 Multitenant access control . 50

5.4 Optimizations . 52

5.5 Summary . 53

ii

6 Experimental evaluation 54

6.1 Experimentation environment . 54

6.1.1 Local testbed . 55

6.1.2 Cloud computing platform . 56

6.2 Methodology . 57

6.3 Microbenchmarks . 58

6.3.1 Optimal number of processes per client 58

6.3.2 Scalability with number of �les . 60

6.3.3 Scalability with number of clients 61

6.3.4 Comparison with other multitenancy solutions 63

6.4 Application-oriented benchmarks . 68

6.4.1 MapReduce application . 68

6.4.2 Comparison of Ceph and Dike with MapReduce 68

6.4.3 Impact of ACL size . 69

6.4.4 Comparison with other multitenancy solutions 74

6.4.5 Linux compilation . 76

6.5 Summary . 77

7 Related research 79

7.1 Multitenancy in �lesystem storage clouds 79

7.1.1 Hypervisor-level multitenancy . 79

7.1.2 Operating system-level multitenancy 81

7.1.3 Trusted multitenant storage . 81

7.2 Access control in multitenant �lesystems 82

7.2.1 Access control in �lesystems for cloud and grid environments 82

7.2.2 Access control in �lesystems for virtualization environments 83

7.2.3 Cloud collaboration and data sharing 85

7.3 Access control in distributed �lesystems 86

7.3.1 Centralized access control . 86

7.3.2 Decentralized access control . 87

7.4 Summary . 89

iii

8 Conclusions and future work 91

8.1 Conclusions . 91

8.2 Future work . 92

iv

List of Figures

2.1 The ID collision problem when a single namesapace is shared between dif-

ferent tenants and the provider. 20

3.1 Attributes of a shared multitenant �lesystem. 23

3.2 The architecture of an object-based, distributed �lesystem and its access

control mechanism. 25

4.1 The centralized approach: All principals are registered to a central directory. 30

4.2 Decentralized authentication with local authentication servers (LAS). . . . 31

4.3 The identity mapping technique: The local identity space of each tenant is

mapped to a di�erent range of the provider's identity space. 33

4.4 An architectural overview of our proposed system. 35

4.5 The authentication architecture. 39

4.6 The authorization architecture. 40

4.7 Namespace �tlering: admin and tenant view of the �lesystem metadata. . . 41

4.8 ACL sharing with tree ACLs. 42

5.1 Key structures of Ceph that are used to process data in memory. 49

5.2 Prototype implementation of the proposed multitenant access control ar-

chitecture. 52

6.1 Finding the optimal number of processes per client for the mdtest mi-

crobenchmark on the local tesdbed. 59

6.2 Finding the optimal number of processes per client for the mdtest mi-

crobenchmark on AWS. 60

6.3 Ceph vs Dike with di�erent number of total �les and folders. Dike supports

36 tenants. 61

v

6.4 Performance comparison of Ceph and Dike across di�erent number of clients.

Dike supports 36 tenants. 62

6.5 Performance comparison of Dike and HekaFS across di�erent number of

clients and supported tenants with mdtest. 64

6.6 Multitenancy overhead comparison between HekaFS and Dike. 67

6.7 Comparison of Ceph and Dike with MapReduce across di�erent number of

clients. Dike supports 36 tenants. 69

6.8 Impact of long ACLs on the overall system performance. Dike supports

100 tenants. 70

6.9 The bene�ts of ACL sharing when ACLs tend to become very long. Dike

supports 100 tenants. 72

6.10 CPU and disk utilization of �leserver nodes. 73

6.11 Performance comparison of Dike and HekaFS across di�erent number of

supported tenants with MapReduce. We use a single client (c1.medium

EC2 instance). 75

6.12 Linux compilation. Dike supports 100 tenants. 77

vi

List of Tables

5.1 Number of added and modi�ed lines of source code in di�erent parts of Ceph. 48

5.2 The methods that we added into the class CInode to manage the tenant

permissions of an Inode. 51

6.1 Local experimentation environment. 55

6.2 Cloud computing environment (Amazon Web Services). 56

6.3 Di�erent �lesystem con�gurations on AWS. 57

vii

Abstract

Georgios E. Kappes, MSc, Computer Science and Engineering Department, University

of Ioannina, Greece. October, 2013. Scalable Access Control for Secure Multi-Tenant

Filesystems.

Thesis Supervisor: Stergios V. Anastasiadis.

In a virtualization environment that serves multiple customers (or tenants), storage con-

solidation at the �lesystem level is desirable because it enables data sharing, adminis-

tration e�ciency, and performance improvements. However, accessing storage at the �le

level leads to a reconsideration of the access control techniques used to isolate di�erent

tenants. Existing solutions require intermediate translation layers for purposes of net-

worked �le access or identity management. Nevertheless, such translations hinder the �le

sharing between di�erent tenants, complicate manageability, and degrade performance.

In the present study we emphasize the need for a new access control architecture

in collaborative multitenant virtualization environments to achieve (i) �ne-granularity

access control, (ii) storage e�ciency, (iii) data sharing, and (iv) administration
exibility.

In this context, we analyze the security requirements of multitenant �lesystems. Then we

introduce a system architecture that is backwards compatible to object-based �lesystems,

and combines native access control with namespace isolation. Our architecture securely

isolates di�erent tenants, and enables
exible �le sharing both within and among tenants.

It also o�ers more manageability opportunities with respect to the existing solutions.

Based on our design, we developed a system prototype over a mature distributed

�lesystem. We experimentally evaluate our software implementation with synthetic bench-

marks and application-level workloads using a local cluster and the Amazon public cloud.

Thus, we show that our approach incurs limited performance overhead in comparison to

traditional single-tenant �lesystems, achieves better performance than existing solutions

viii

based on intermediate translation layers, and also we provide better scalability for a large

number of tenants.

ix

ÅêôåôáìÝíç Ðåñßëçøç óôá ÅëëçíéêÜ

Ãåþñãéïò ÊáððÝò ôïõ Åëåõèåñßïõ êáé ôçò ÁñåôÞò. MSc, ÔìÞìá Ìç÷áíéêþí Ç/Õ êáé

ÐëçñïöïñéêÞò, ÐáíåðéóôÞìéï Éùáííßíùí, Ïêôþâñéïò, 2013. Êëéìáêþóéìïò Ýëåã÷ïò ðñüóâá-

óçò ãéá áóöáëÞ ðïëõìéóèùôéêÜ óõóôÞìáôá áñ÷åßùí.

ÅðéâëÝðïíôáò: ÓôÝñãéïò Â. ÁíáóôáóéÜäçò.

Óå Ýíá ðåñéâÜëëïí åéêïíéêïðïßçóçò ðïõ åîõðçñåôåß ðïëëáðëïýò ðåëÜôåò (Þ ìéóèùôÝò), ç

åíïðïßçóç ôùí áðïèçêåõôéêþí ðüñùí áíåîÜñôçôùí ìéóèùôþí óôï åðßðåäï ôïõ óõóôÞìáôïò

áñ÷åßùí ìðïñåß íá áðïôåëÝóåé ôç âÜóç ãéá ôçí áíÜðôõîç åíüò áðïäïôéêïý êáé áóöáëïýò

ðåñéâÜëëïíôïò óõíåñãáóßáò. Ìéá ôÝôïéá åíïðïßçóç ðñïûðïèÝôåé ôç ÷ñÞóç ìéáò äéåðáöÞò

ðñüóâáóçò óå åðßðåäï áñ÷åßùí, ç ïðïßá êáèéóôÜ åöéêôÞ ôçí êïéíÞ ÷ñÞóç áñ÷åßùí, åðéôñÝðåé

ôçí áðïôåëåóìáôéêüôåñç äéá÷åßñéóç ôïõ óõíïëéêïý óõóôÞìáôïò êáé âåëôéþíåé ôçí áðüäïóç.

Ùóôüóï, ç ðñüóâáóç óôïõò áðïèçêåõôéêïýò ðüñïõò ìå ÷ñÞóç ìéáò äéåðáöÞò åðéðÝäïõ

áñ÷åßùí êáèéóôÜ áíáãêáßá ôçí åðáíåîÝôáóç ôùí ôå÷íéêþí åëÝã÷ïõ ðñüóâáóçò ðïõ ÷ñçóéìï-

ðïéïýíôáé áðü ôï óýóôçìá áðïèÞêåõóçò þóôå íá ðáñÝ÷åé áóöÜëåéá êáé áðïìüíùóç óôïõò

ìéóèùôÝò. Ïé õðÜñ÷ïõóåò ëýóåéò áðáéôïýí åíäéÜìåóá åðßðåäá ìåôÜöñáóçò ãéá íá ðáñÝ÷ïõí

áóöáëÞ ðñüóâáóç óå Ýíá äéêôõáêü óýóôçìá áñ÷åßùí êáé íá äéá÷åéñßæïíôáé ôéò ôáõôüôçôåò

ôùí ÷ñçóôþí ðïõ Ý÷ïõí ðñüóâáóç óôï óýóôçìá. Åíôïýôïéò, ç ÷ñÞóç ðïëëáðëþí åðéðÝäùí

ìåôÜöñáóçò äõó÷åñáßíåé ôçí êïéíÞ ÷ñÞóç áñ÷åßùí ìåôáîý ÷ñçóôþí ðïõ áíÞêïõí óå äéáöïñå-

ôéêïýò ìéóèùôÝò, äõóêïëåýåé ôç äéá÷åßñéóç ôïõ óõóôÞìáôïò êáé ìåéþíåé ôç óõíïëéêÞ ôïõ

áðüäïóç.

Óôçí ðáñïýóá åñãáóßá ôïíßæïõìå ôçí áíÜãêç ãéá ìéá íÝá áñ÷éôåêôïíéêÞ åëÝã÷ïõ ðñüóâá-

óçò óå óõíåñãáôéêÜ ðïëõìéóèùôéêÜ ðåñéâÜëëïíôá ãéá ëüãïõò (1) åëÝã÷ïõ ðñüóâáóçò ìå

õøçëüôåñï âáèìü áíäñïìÝñåéáò, (2) áðïäïôéêüôåñçò áðïèÞêåõóçò, (3) êïéíÞò ÷ñÞóçò áñ÷åß-

ùí, (4) êáëýôåñçò êáé åõêïëüôåñçò äéá÷åßñéóçò. Óôï ðëáßóéï áõôü, áíáëýïõìå ôéò áðáéôÞóåéò

óå áóöÜëåéá ôùí ðïëõìéóèùôéêþí óõóôçìÜôùí áñ÷åßùí êáé åéóÜãïõìå ìéá íÝá áñ÷éôåêôïíéêÞ

x

åëÝã÷ïõ ðñüóâáóçò. Ç áñ÷éôåêôïíéêÞ ðïõ ðñïôåßíïõìå óõíäõÜæåé ôïí åããåíÞ Ýëåã÷ï

ðñüóâáóçò ìå ôçí áóöáëÞ áðïìüíùóç ôïõ ÷þñïõ ïíïìÜôùí êÜèå ìéóèùôÞ êáé åßíáé óõìâáôÞ

ìå ïðïéïäÞðïôå óýóôçìá áñ÷åßùí ðïõ âáóßæåôáé óôá áíôéêåßìåíá. ÅðéðëÝïí, äéá÷ùñßæåé

áðïôåëåóìáôéêÜ ôïõò ÷þñïõò ïíïìÜôùí äéáöïñåôéêþí ìéóèùôþí, êáé ôáõôü÷ñïíá êáèéóôÜ

åöéêôÞ ôçí êïéíÞ ÷ñÞóç áñ÷åßùí ìåôáîý ÷ñçóôþí ðïõ áíÞêïõí óôïí ßäéï Þ óå äéáöïñåôéêïýò

ìéóèùôÝò. ÔÝëïò, ðáñÝ÷åé åõêïëüôåñç êáé áðïôåëåóìáôéêüôåñç äéá÷åßñéóç ôïõ óõóôÞìáôïò.

Ìå áíáëõôéêÜ áðïôåëÝóìáôá êáé ðåéñÜìáôá óå ðñùôüôõðç õëïðïßçóç äåß÷íïõìå üôé ç

ëýóç ìáò åéóÜãåé ðåñéïñéóìÝíç åðéâÜñõíóç óå ó÷Ýóç ìå ðáñáäïóéáêÜ óõóôÞìáôá áðïèÞêåõ-

óçò åíüò ìéóèùôÞ. ÅðéðëÝïí, äåß÷íïõìå üôé ç ëýóç ìáò åéóÜãåé ÷áìçëüôåñç åðéâÜñõíóç óå

ó÷Ýóç ìå õðÜñ÷ïõóåò ëýóåéò ðïõ áðáéôïýí åíäéÜìåóá åðßðåäá ìåôÜöñáóçò, êáé ðáñÝ÷åé

êáëýôåñç êëéìáêùóéìüôçôá ãéá ìåãÜëï áñéèìü áðü ìéóèùôÝò.

xi

Chapter 1

Introduction

1.1 Motivation

1.2 Research objectives

1.3 Contributions

1.4 Roadmap

In recent years, the cloud computing paradigm has enabled enterprises to dramatically

improve how they organize their infrastructure and operate their business, taking advan-

tage of the scalability and
exibility of a cloud environment. The increasing popularity

of cloud environments poses ever greater demands on the scalability, and security of the

underlying storage systems.

Whether providing services to the public or serving internal customers, cloud plat-

forms typically allow multiple customers to share the same physical server and network

infrastructure, as well as to use common platform services. Cloud customers could be

independent organizations or business groups and they are known as tenants [6, 9]. The

consolidation of resources into a shared resource pool is a prominent feature of cloud

computing in order to improve e�ciency, scalability, and reduce costs.

While multitenancy on cloud environments provides seemingly limitless scalability, it

raises new security and privacy issues, because it hands the processing and storage tasks

over to third parties and involves an enormous number of tenants that share the same

resources. In fact, access control over the resources of a multitenant environment is a

1

challenging problem due to the enormous number of end users involved and the required

isolation of the security administration across di�erent organizations. Distributed autho-

rization has already been extensively studied in the context of networked services, e.g.,

distributed �lesystems [40]. However, a cloud environment introduces unique character-

istics that warrant reconsideration of the assumptions and solution properties.

1.1 Motivation

In the present study we are particularly interested to take advantage of service co-location

in the datacenter to better consolidate the storage infrastructure used by common data

�les at the application (e.g. collaboration documents) or system level (e.g. root im-

ages). Secure storage consolidation at the �lesystem level is increasingly advocated as the

preferred multitenancy paradigm for cloud environments [43, 36, 21, 11, 64]. Although

virtual disks are attractive for their versioning, isolation, and migration properties, a

�le-based interface can additionally support �ne-grained controlled sharing, easy resource

administration, and �le-level performance optimizations. Below, we examine scenaria of

virtualization environments in which �le based storage consolidation makes sense for rea-

sons of (i) �ne-granularity access control, (ii) storage e�ciency, (iii) data sharing, and (iv)

administration
exibility.

Scienti�c data: Collaborative research groups require to share scienti�c data across

teams that span multiple institutions. Data owners should be able to easily share their

data with users that belong to di�erent institutions without requiring them to have ac-

counts on the storage servers where the data resides. In addition, a tenant's identity

should be veri�ed before making shared data available and only users that belong to this

tenant should be able to access the data. Data providers must have full control over both

the data that may be shared and the permissions that may be granted to external users.

Virtual Desktops: An enterprise stores the desktop �lesystems of personal thin

clients. Each desktop root �lesystem is stored as a separate folder with access limited

to a single client. As an optimization, there is a shared folder that is branched into the

private folder of each client. Hence, clients can use the shared folder to collaborate on a

project. A similar approach can also be applied to manage the home folders of users. In

2

this scenario, the root folder of each client is branched into a shared but read-only folder.

In addition, each user is given its own private home folder, where she can store private

�les.

Software-as-a-service: A software-as-a-service provider supports di�erent business

customers with separate end users. The �lesystem treats each business customer as a

tenant with separate application �les in writable mode (e.g. databases), but possibly

shared system �les in read-only mode (e.g. con�guration scripts).

Software Repository: A public provider o�ers a shared software repository that

di�erent groups of developers can fork into separate branches. The members of a group

obtain writable access to their own branch, and read-only access to the branches of other

groups. A simpler scheme without branches could be used for sharing scienti�c datasets.

1.2 Research objectives

Accessing shared storage through a block-level interface completely hides �le-level access

control. Read from or writing to storage devices happens at the granularity of blocks

and hence �le semantics are completely hidden. On the other hand, when a �le-level

interface is employed to access shared storage, the �leserver is ultimately in charge of

access control. The adoption of a �le-based solution in a multitenant environment, where

multiple customers share a single �lesystem namespace, raises the need to reconsider the

access control techniques used in order to e�ectively isolate the principals of di�erent

tenants.

Existing �le-based solutions face scalability limitations because they either lack sup-

port for multiple guest tenants, rely on global-to-local identity mapping to manage the

users of di�erent tenants [11], or have the guests and a centralized �lesystem (or proxy)

running at the same host [43, 21, 12]. In addition, they hinder support for �le sharing

among principals that belong to di�erent tenants and complicate administrative tasks.

In the present study we set as our primary goal to securely manage the shared �lesys-

tem namespace, in order to provide each tenant with an isolated private view. However,

in contrast to previous approaches, our solution should permit principals of the same or

di�erent tenants to share �les and collaborate on a shared project. In addition, it shall

3

provide system administrators with more manageability opportunities, and �nally, it shall

maintain high performance and scalability by natively supporting multitenancy.

1.3 Contributions

Secure access control is a challenging problem that organizations face in collaborative

virtual environments, which has prevented many of them from migrating critical data or

applications into such environments. In our research we examine approaches for e�cient

and e�ective support of multitenancy in �lesystems used by virtual machines. We require

that each client directly mounts the �lesystem instead of having the �lesystem mounted

by an intermediate proxy. Trusted computing techniques are used to certify the integrity

of tenants that wish to access the shared �lesystem. Tenants are then responsible for

authenticating and authorizing principals operating on their behalf to provide access to

the �lesystem. The �lesystem natively manages the access control metadata of each

tenant, and ensures that each tenant can only access its own namespace. Controlled

�le sharing is relatively straightforward as a result of the �le-level access to a common

�lesystem with �le-granularity access control.

We provide prototype implementation of the above approach in the Ceph production-

grade, distributed �lesystem. With microbenchmarks and application-level experiments

we quantitatively demonstrate the limited performance overhead of our design.

We can summarize our contributions as follows:

• Analysis of access control requirements in �le-level consolidated storage for virtual-

ization.

• Architectural design of native access control in a multitenant �lesystem with back-

wards compatibility to object-based storage.

• Prototype implementation over a production-grade distributed �lesystem.

• Experimental performance evaluation of multitenancy overheads.

4

1.4 Roadmap

In chapter 2 initially we present the basic features of cloud environments and virtualiza-

tion, and the core security primitives for securing data in large-scale distributed storage

systems. Then, we delve deeper into storage management in virtualized environments

and we summarize the di�erent multitenancy architectures for �lesystem storage clouds

that have been proposed until now. Finally, we discuss why a �le-level storage interface

makes multitenancy challenging.

In chapter 3 we �rst analyze the security requirements in multitenant �lesystems.

Then, we list the goals that we have set for our proposed access control architecture.

Furthermore, we provide details about our trust and threat model.

In chapter 4 we introduce a new access control architecture for multitenant shared

storage at the �le level. Our architecture combines tenant isolation with native access

control and is backwards compatible to object-based �lesystems.

In chapter 5 we describe our implementation of the proposed multitenant access control

over a distributed, object-based �lesystem. In addition, we explain important implemen-

tation decisions.

In chapter 6 we experimentally evaluate our prototype implementation and give rea-

sons for the limited added performance overhead of our solution. Furthermore, we compare

it with existing techniques that aim to enable multitenancy.

In chapter 7 we review the state-of-the-art multitenancy architectures for �lesystem

storage clouds, and we outline recent works that aim to provide trusted cloud storage.

Furthermore, we present an overview of the related literature in the �eld of access control

in distributed �lesystems.

Finally, in chapter 8 we summarize the conclusions of our work and highlight oppor-

tunities for future research.

5

Chapter 2

Background

2.1 Cloud environments

2.2 Virtualization

2.3 Core security mechanisms

2.4 Storage management

2.5 Storage interfaces

2.6 Secure storage multitenancy

2.7 Access control on multitenant storage systems

2.8 Summary

In this chapter we �rst present an introduction to the basic concepts of cloud environ-

ments and virtualization. We also present the core security primitives for securing data

in large-scale distributed storage systems. Then, we concentrate on storage management

and we brie
y introduce the architecture of object-based distributed �lesystems and its

advantages over traditional distributed �lesystems. Furthermore, we compare the block-

level interface with the �le-level interface in terms of sharing and manageability e�ciency,

as well as performance. Finally, we summarize the di�erent multitenancy architectures

for �lesystem storage clouds that have been proposed until now and we highlight why a

�le-level storage interface makes multitenancy challenging.

6

2.1 Cloud environments

Cloud infrastructures are increasingly used for a broad range of computational needs

in private and public organizations. Cloud computing aims at allowing access to large

amounts of computing power in a fully virtualized manner, by aggregating resources and

o�ering a single system view. The deployment of cloud infrastructures can be performed

in di�erent ways, depending on the organizational structure and the provisioning location

[35].

Four deployment models are usually distinguished, public, private, community, and

hybrid. The deployment of a public cloud infrastructure is characterized by the public

availability of the cloud service o�ering. It may be owned, managed, and operated by

a business, academic, or government organization, or some combination of them and is

o�ered to the public through a public network. On the other hand, in a private cloud de-

ployment, the cloud infrastructure is provisioned for exclusive use by a single organization

comprising of multiple customers. It is owned, managed, and operated by the organiza-

tion, a trusted third party, or a combination of them. The main advantage of this kind

of deployment is that the organization retains full control over corporate data, security

guidelines and system performance. While a private cloud is only accessible by a single

organization, a variant of this deployment, which is known as a community cloud, enables

organizations with similar requirements (projects, security requirements, policies) to share

a cloud infrastructure in order to collaborate. The infrastructure could be managed and

hosted by one or more of the organizations in the community, or by a third-party. Finally,

in a hybrid cloud deployment the cloud infrastructure is a composition of two or more

distinct cloud infrastructures (public, private, or community) that remain unique entities.

A hybrid deployment allows an organization to maintain sensitive data behind its �rewall,

while taking advantage of the lower cost and
exibility of a public cloud.

The main idea behind cloud computing is to deliver a huge amount of computing re-

sources as services through a public network such as the Internet. Cloud services can be

divided into three categories according to the abstraction level of the resource provided,

namely: (1) Software as a Service, (2) Platform as a Service, and (3) Infrastructure as

a Service. In the �rst model, Software as a Service, one or more applications and the

computational resources to run them are provided for use on demand as a service. On

7

the other hand, Platform as a Service is a model of service delivery whereby the com-

puting platform (typically including operating system, programming language, execution

environment, database, and web server) is provided as a service to software developers.

Finally, Infrastructure as a Service is a service model where the cloud provider o�ers

virtualized resources (computation, storage, and network) on demand. To deploy their

applications and services, customers install operating system images and their applications

on the cloud infrastructure. The focus of this study lies in this �nal model.

Cloud computing services are usually backed by large-scale datacenters. Modern dat-

acenters are heavily virtualized, thereby, computing, storage, and network resources of

each physical server are multiplexed across a large number of di�erent applications and

tenants. Thus, cloud platforms allow multiple tenants to share the same resources. This

leads to multiple bene�ts. On the one hand, higher resource utilizations are achieved and

on the other, resource sharing can lead to a great reduction of energy consumption and

cut costs. In fact, most datacenters often utilize virtualization and distributed services to

manage resources and provide a scalable computing platform [31], making virtualization

a fundamental component of cloud computing.

2.2 Virtualization

Virtualization is a broad term of computer systems that refers to an abstraction mecha-

nism which hides the physical characteristics of certain computational resources in order

to simplify the way in which other systems, applications or end users interact with them.

Thus, virtualization enables sharing the resources of a computer system in multiple exe-

cution environments.

The concept of virtualization has its roots in the mid 1960's, when it was used by

IBM as a method for logical partitioning of large centralized systems (mainframes) into

separate virtual machines. The virtual computers were distributed to users of the system,

allowing each user to work in an isolated environment without a�ecting other users. To

make this sharing possible, IBM introduced a new feature called Virtual Machine Monitor

(VMM).

The Virtual Machine Monitor [46] is a software layer that is placed on top of the hard-

8

ware layer and has direct access to hardware resources. Its main objective is to manage

and allocate system resources to one or more virtual machines in order to make virtu-

alization possible. Virtualization follows various approaches that are directly related to

the architecture of the Virtual Machine Monitor. In the hosted architecture the VMM

runs as an application on the host operating system and relies on it for resource manage-

ment, system memory, and device drivers. In the autonomous architecture the VMM is

placed directly above the hardware. Thus, it is responsible for managing system resources

and their allocation to di�erent virtual machines. This last architecture is more e�cient

because the VMM has direct access to system resources.

Guest operating systems run with limited privileges and they don't have direct access

to hardware. Thus, it is di�cult to virtualize some critical operating system instructions

because their implementation requires higher privileges. Two approaches were followed

to solve this problem: full virtualization and paravirtualization.

Full virtualization provides a virtual environment that simulates the real hardware.

Speci�cally, each virtual machine is provided with all the services of the real system,

such as full command set of the real processor, virtual appliances, and virtual memory

management. The major di�erence from other virtualization techniques lies in operating

system's awareness that it runs under a virtualized environment. Thus, any software that

is capable to run in the real system can run without changes in the virtualized environ-

ment. In order to make the execution of critical instructions possible, a technique known

as binary translation was introduced. According to this approach, the software is patched

at runtime. The critical instructions that cannot run in the virtual environment are re-

placed by di�erent instructions that can run safely. However, the continuous scanning

and emulation of critical instructions reduces performance. VMware's Workstation [63]

follows the above approach.

On the other hand, paravirtualization provides to the virtual machines a software

interface that is similar but not identical to that of the real system. The main purpose of

paravirtualization is to reduce the proportion of time spent in performing critical patches

on the guest's unsafe instructions. Instead of using the binary translation technique, the

client software is modi�ed and communicates directly with the VMM, when it needs to

execute a critical instruction. Then, the VMM undertakes responsibility to execute the

instruction. As a consequence, the guest operating system must be altered slightly in order

9

to run in a paravirtualized environment. A system that follows the paravirtualization

approach is Xen [7].

As the bene�ts of virtualization are tremendous, manufacturers of processors have

reviewed the instruction set of their products by making them virtualization-friendly.

Thus, virtualization of critical operating system instructions can be solved directly using

the new instruction set.

2.3 Core security mechanisms

In a distributed �lesystem, client is typically a process that provides local �lesystem access

to a node and servers the processes that implement �lesystem action across the network.

Principal is an entity that accesses the �lesystem through the client. This entity can be

a process, a person, or a role. A principal can also be a compound of other principals, for

example a group of users [40].

Reliability and security in a large-scale storage system can be enforced with a combi-

nation of four di�erent techniques, including Encryption, Identi�cation, Authentication,

and Authorization.

Encryption is the process of encoding information in such a way that eavesdroppers

cannot read it, while authorized parties can. A secure cloud storage system requires two

kinds of encryption: For data that is being transferred over the network and for data \at

rest" on disk. Usually, when cloud tenants don't entrust the cloud provider with their

data, they can provide con�dentiality to themselves by encrypting the data they store on

the cloud.

Identi�cation is the process in which an entity supplies information to identify itself

to an authentication service. Some examples of identi�cation mechanisms are usernames,

memory cards, and public keys.

Authentication is the activity of veri�cation of an entity's identity. It can be performed

using passphrases, passwords, cryptographic keys, and tokens. It con�rms the identity

of an individual, but says nothing about its access rights. Authentication often involves

verifying the validity of at least one form of identi�cation.

Authorization is the process of determining access rights: What an identi�ed entity

10

can actually access and what operations it can carry on this information. Authorization

is normally preceded by authentication for user identity veri�cation.

Most access control systems need also to limit the actions of application processes.

In particular, they must prevent a process from reading or overwriting memory that it

may not access. One solution to this problem is to use sandboxing techniques. A sandbox

is a security mechanism for separating running programs (e.g. SELinux [30]). However,

sandboxing techniques are often too restrictive for general computing environments. An-

other solution to the above problem is to use mechanisms like segment addressing, which

integrate hardware access control with the memory management functions [5].

A secure environment must also ensure the integrity of computing platforms. In fact,

users must be sure that a given program runs on a machine with a given speci�cation;

that is, the software has not been modi�ed and the hardware con�guration has not been

changed. A typical mechanism that provides such assurances is the Trusted Platform

Module or TPM. The TPM is actually a secure co-processor which monitors a system at

boot time and reports its state to the operating system. In fact, it generates a crypto-

graphic key that depends on the current system's state, as well as a �ngerprint (hash) of

the software stack that booted on the system and provides them to the operating system.

Thus, if a modi�cation is made to the system's con�guration, the TPM chip will generate

a di�erent cryptographic key and the previously encrypted material will not be made

available. A system can also use the TPM to certify the identity of a remote system.

This process is called remote attestation. Furthermore, TPM can also be used for disk

encryption. It o�ers two primitives, seal and unseal to encrypt and decrypt information

respectively. Seal encrypts data and speci�es a state in which the TPM must be in order

for the data to be decrypted (unsealed) [5, 52].

2.4 Storage management

File and storage systems used in virtualization environments have proved critical to the

overall performance of an exceedingly broad class of applications. Storage systems can be

distinguished in three di�erent categories depending on how data is stored on the underly-

ing system: block-based storage, �le-based storage, and object-based storage. The storage

11

in the block-based approach is conceptually modeled as a long stream of bytes divided

into equally sized blocks. All accesses to the storage devices are performed by reading

or writing blocks. Examples of this type of storage include Amazon Elastic Block Store

(EBS) [1], Ceph RBD [20], and iSCSI [53]. In the second form of storage a �lesystem is

layered on top of a block storage device. The �lesystem is a a higher-level logical structure

that maps higher-level objects, which are typically called �les (such as documents, pic-

tures, and videos), onto disk blocks. Some examples of �le-based storage systems include

NFS [55] and CIFS [38]. In the latter form of storage, which is known as object storage,

the storage system uses objects to store information. Object-based distributed storage

systems emphasize the scalability of secure data and metadata management. Some typ-

ical examples of object-based storage systems include Amazon S3 [3], Rackspace Cloud

�les [49], and Ceph Storage [67].

2.4.1 Object-based distributed �lesystems

An object-based distributed �le system separates the management of �le metadata1 from

�le data. File metadata is managed by metadata servers, while a di�erent form of servers,

which are known as object storage servers, manage �le data. Both data and metadata

are split into objects which are stored on object storage servers. The �lesystem client

employs metadata and object storage servers to present a full �lesystem abstraction to

the users [67].

A signi�cant advantage of the object-based �le system architecture is the elimination

of the potential bottleneck of the metadata server and the parallelization of all �le I/O. In

fact, a client needs to contact the metadata server only once, for example when it opens a

new �le. Another bene�t of this architecture is that by grouping data into objects allows

the object storage server to optimize access to related blocks, because data that resides

in the same object is related and potentially di�erent from data in a di�erent object.

What is more, data can be split to multiple objects in order to keep the size of an object

under a speci�c limit. These objects are then stored to di�erent object storage servers

(data striping). This allows the stripe width to be adapted to the access properties of an

individual �le.

1Such as the �lename, the �le size, and access control information.

12

2.4.2 An outline of Ceph

Ceph is a distributed object-based �lesystem developed by Weil et al [67]. It consists

of four components: The clients provide access to the �lesystem, the metadata servers

(MDSs) manage the namespace hierarchy, the object-storage devices (OSDs) reliably store

data in the form of objects, and the monitors (MONs) manage the server cluster map.

Both data and metadata are stored on OSDs, but they are separately managed for greater

scalability. The metadata is dynamically partitioned across the MDSs to preserve locality

and achieve load balancing.

Metadata management

The MDS is responsible to manage metadata for �les and folders. A Ceph folder is stored

as a single object, or as a collection of fragments, with each fragment on a di�erent

object. When a folder is divided into multiple fragments, the Ceph client is responsible

to request the correct fragments from the MDS. If the client needs the whole folder, it

iteratively requests the next folder fragment from the MDS, until it forms up the whole

folder. A folder entry includes the name, the inode, and the extended attributes of a �le.

Every MDS maintains a journal [47] of recently-updated metadata. Incoming metadata

updates are labeled as projected while written to the journal but not yet to the in-memory

cache, committing while queued to disk, and committed when written in stable storage.

Metadata journaling allows the MDS to serve recent metadata back to clients. In addition,

the journal is also useful for failure recovery.

Data and metadata storage

Ceph stores �le data and metadata as objects. Each object is stored as a �le in the

underlying �lesystem of an OSD. An object has an identi�er, binary data, and object

metadata consisting of a set of key/value pairs. Note that the actual �le metadata (the

�le inode) is stored in a di�erent object.

Objects are mapped into Placement Groups (PGs). Grouping objects to PGs helps

ensure performance and scalability, as tracking metadata for each individual object would

be too costly. The PGs are then mapped to one or more OSDs. Replication is done at the

PG layer. However, the degree of replication is speci�ed higher, at the pool level, and all

13

PGs in a pool will replicate stored objects into multiple OSDs. A pool is a collection of

PGs and thus a collection of objects. Objects are mapped to PGs and PGs to OSDs with

the help of a pseudo-random data distribution function [68]. This function allows Ceph to

re-balance dynamically when the OSD map changes. Furthermore, it ensures that object

replicas do not end up on the same disk or host.

2.5 Storage interfaces

Storage systems can be accessed through di�erent types of storage interfaces which can be

distinguished in three di�erent categories: a block-level interface, an object-level interface

and a �le-level interface. A block-level interfaces exposes a block device to the user and

allows the writing and reading of �xed-size blocks. On the other hand, with an object-

level interface users can access objects typically through a REST API [13]. Finally, a

�le-level interface exposes the �le and folder structure to clients. Then, clients ask the

server to read or write a consecutive range of bytes within a particular �le in each request

and the server maps this request to the storage devices.

Existing virtualization environments primarily apply storage consolidation at the block

level [37, 18, 54, 62]. Guests access virtual disk images which are typically stored in a

central location. They are o�ered to guests as direct attached disks through a block I/O

interface, or as volumes through a storage area network mounted by the host. This ap-

proach incurs important bene�ts, such as high availability of data, easier administration,

and optimal usage of storage capacity. The block-level interface provides a narrow inter-

face to storage and yields an agnostic and simple implementation. Furthermore, it o�ers

the system compatibility of a standalone machine. Moreover, a block-level interface is

useful for supporting heterogeneous clients and client applications.

An alternative approach is the design of a virtualization-aware distributed �lesystem

[43, 21, 12]. This architectural design goes one step further beyond virtual disks and

attempts to provide storage virtualization at the �le level. In fact, it combines the sharing

opportunities o�ered from distributed systems with the intrinsic features of virtual disks

such as isolation, versioning, and mobility.

14

2.5.1 Sharing and manageability

The semantic gap introduced by virtualizing the system at a low level obscures higher-level

information that could aid in identifying opportunities for sharing among di�erent VMs,

complicating the e�ciency of storage management, and making collaboration tasks im-

possible. Furthermore, it hides the storage structure and thus complicates administrative

tasks.

File level access of consolidated storage o�ers more manageability opportunities than

block level access. Stored data is directly accessible through a standard �le-level interface

at the server without requiring shutting down the virtual machines which access the

storage.

A block-level interface o�ers no opportunities to share read and write access between

multiple parties, which complicates virtual machine management. Concurrent access can

only be enabled with the help of a secondary protocol, or the usage of a traditional

network or distributed �lesystem to export speci�c parts of the �lesystem. However, such

solutions incur extra manageability e�ort because they involve either the design of extra

protocols, or the maintenance of multiple administrative domains.

In addition, �lesystem administrative tasks, such as data searching and software in-

stallations or updates, can be performed more e�ciently and globally through a �le-level

interface. With a block-level interface instead, the administrator would be forced to shut-

down all the a�ected virtual machines in order to mount their images and perform the

required task in one image at a time. In fact, a �le-level interface increases administration

exibility and e�ciency because it enforces a granularity of individual �les rather than

entire disk or blocks.

Another potential manageability bene�t from using a �le-level interface lies to its

ability to provide an ephemeral and highly composable storage. A �lesystem can be

synthesized from a set of �le trees, each of which contains related �les. In addition,

a �le tree can be shared among multiple users or can be private. For example, there

might be a collection of �le trees, each of which may contain the root �lesystem of a

di�erent operating system. Another collection may contain �le trees that hold each user's

home folder. A last one would have �le trees that have specialized applications installed.

Let's suppose that Alice is a developer who uses the Eclipse Integrated Development

15

Environment (IDE) and prefers the Debian Linux distribution. With composable storage

enabled she has the
exibility to synthesize her �lesystem by choosing the Debian �le tree

from the operating systems collection and combine it with probably a shared �le tree that

contains the Eclipse IDE and a private �le tree for storing personal �les.

The above discussion makes it clear that a �le-level interface o�ers signi�cant manage-

ability bene�ts in comparison to a block-level interface. A recent study [4] tries to mitigate

these limitations of block-level storage by storing images in a format that indexes their

storage structure, instead of as opaque disk images. Thus, by providing a �le-aware for-

mat this approach allows administrative operations such as searching, patching, and virus

scanning to execute online.

2.5.2 Performance

File-level access of consolidated storage may improve performance because of its potential

to reduce the number of levels to a storage stack traversed by an I/O request. On the

other hand, when a VM guest operating system accesses storage through a virtualized

block device, �le access traverses the guest operating system's �lesystem and its block

device stack, and then it traverses a similar block device stack in the VMM. Even if the

guest operating system accesses storage through a pass-through block device, the �le I/O

request needs to be translated to a block request and then back to a �le request. However,

such translations can reduce performance [21].

Hildebrand et al. [19] study the e�ects of having multiple layers in the storage stack

of a virtualization environment. They are particularly interested to investigate the e�ects

of layering a virtual disk on top of a NAS store. In this scenario, a VM's �le request is

translated to a block request by the hypervisor's storage controller emulator, which in

turn translates the block request back to a �le request and sends it to the disk image via

the NAS client. This large number of layers in the storage stack increases the amount

of processing that each request needs and hence increases the I/O latency. In addition,

the caching of entire blocks by the block-layer causes read-modify-write operations over

the NAS protocol which degrades performance. Having these observations in mind and

conducting several experiments the authors state that the layering of the guest block-layer

on top of a �le-level layer can dramatically reduce performance. As a possible solution,

16

they suggest the guest VMs to consolidate storage directly at the �le level by mounting

a network-based �lesystem.

The performance implications of nested �lesystems in a virtualized environment are

investigated by Le et al. [27]. They focus on the scenario in which a guest VM accesses a

local virtual disk image. Their main observation is that the choice of nested �lesystems

on both hypervisor and guest levels has a signi�cant performance impact on guest's I/O

performance. In addition, they realize that system administrators should carefully choose

a combination of guest-hypervisor �lesystems according to the type of the anticipated

workload. What is more, they demonstrate that there are cases where nested �lesystems

should be completely avoided.

2.6 Secure storage multitenancy

Secure multitenancy in cloud storage supports multiple customers at low cost [25]. How-

ever, maintaining security and access control in cloud environments is a challenging prob-

lem and has prevented many organizations from moving critical data or applications to

such environments.

Cloud storage systems must address challenges that are not addressed by traditional

distributed �lesystems. These challenges mostly revolve around isolation, identity man-

agement, and privacy. Cloud tenants do not trust each other, and in the case of a public

cloud they even do not trust the cloud provider. A cloud storage system must ensure

that tenants are isolated from each other, while it o�ers them opportunities for a secure

and collaborative �le sharing. Tenant isolation in a �lesystem storage cloud can generally

be performed in four di�erent levels: hardware level, hypervisor level, operating-system

level, and application level.

Tenant isolation can be performed at the hardware level by using a dedicated server

per tenant. However, this solution does not scale well, wastes hardware resources, and

dramatically increases operating costs.

A second approach is to isolate a tenant at the hypervisor level by using a shared

hypervisor and separate virtual machines to host each tenant's �leservers [41, 44, 25]. In

this case, the hypervisor enforces isolation by ensuring that the data from one tenant is not

17

propagated to untrusted locations outside the tenant. Although this architecture securely

isolates tenants, it hinders the bene�ts of a shared �lesystem, such as data sharing, group

collaboration, and data processing scalability.

In contrast to the above approach, the operating-system multitenancy architecture

uses shared server hardware and operating system, and relies on the �leserver kernel to

isolate the resources of di�erent tenants leading to lower execution overhead [48, 25].

However, this architecture shares the same disadvantages with the previous one regarding

the inability for �le sharing and collaboration, as well as the poor scalability, because each

client has its own dedicated �le-service.

Finally, tenant isolation can be performed at the application level, by using shared

server hardware, operating system, and �leserver among tenants. This form of multite-

nancy is also referred as native multitenancy and is considered as the cleanest way to

isolate multiple tenants [25]. Despite the fact that achieving multitenancy at this level is

a challenging task, this architecture enables all the bene�ts of the deployment of a shared

�lesystem, including data sharing, group collaboration, and high scalability.

2.7 Access control on multitenant storage systems

When a storage system is shared across multiple customers, it is critical to control how

the access is di�erentiated so that only the permitted principals to be able to access the

data of each tenant. Below, we initially discuss how access control is handled in block-

level multitenant storage systems. Then, we highlight the multitenancy challenges that

are introduced by storage consolidation at the �le level.

2.7.1 Access control on block-level storage systems

Existing cloud environments primarily apply storage consolidation at the block level.

Guests access virtual disk images either directly as volumes of a storage-area network

(SAN), or indirectly as �les of network-attached storage (NAS) mounted by the host. In

fact, virtual disk images provide the same block-level interface as physical disks and they

have no access control responsibility. Therefore, if a tenant accesses its own collection

of virtual disk images, its namespace is strongly isolated from others. While �le-level

18

access control is completely hidden by the block-level interface, tenants instead of sharing

individual �les with each other can share the whole virtual disk image.

The secure sharing of virtual machine images in a cloud environment has been re-

searched by Wei et al. [66]. They propose a virtual disk image management system that

controls secure access to images by di�erent tenants, tracks the provenance of images, and

provides tenants and administrators with e�cient image management tools that detect

and prevent security violations. However, a �ner-grained sharing at the level of �les is

more desirable, but a block-level interface can not support it.

2.7.2 Multitenancy challenges of a �le-level storage interface

File-based access of consolidated storage has been advocated to improve data sharing,

manageability, and performance. Unfortunately, the access control model that is used

when a virtual machine accesses storage through a block-level interface cannot be used

when the �lesystem must be deployed as a shared service and tenants access it through a

�le-level interface. The main problem in such a shared deployment is that the namespaces

of di�erent tenants are no longer isolated from each other. Thus, the �lesystem needs to

securely support and isolate di�erent administrative domains.

An interesting example is how the isolation of principals is a�ected in such a deploy-

ment. In fact, each tenant contains its own pool of users (see Figure 2.1). Each user is

represented by an identity which is called the User ID (UID). The UID is a projection

of an actual individual or service into the system. Establishing a unique UID for each

individual who will access resources in a shared deployment is critical for security. How-

ever, the use of a shared �lesystem introduces a possibility of con
ict involving the use

of the same UID by users belonging to di�erent tenants. As a result, a user who belongs

to a particular tenant can access the �les of a user with the same UID who belongs to a

di�erent tenant. To make the situation worse, the storage server contains its own identity

space. As a consequence, a tenant user can gain extra privileges on the �leserver with

catastrophic results.

At the same time, other problems related to �le permissions and special �les are

arising when a shared �lesystem deployment is used. File permissions assigned to a �le

by a tenant's user not only a�ect other users of the same tenant, but they also mistakenly

19

FS NATIVE USERS

UID: 1000
GID: 1000

UID: 2000

Shared File System

TENANT1

UID: 1000
GID: 1000

UID: 1100

UID: 1000
GID: 1000

UID: 1050
...

TENANTN

Figure 2.1: The ID collision problem when a single namesapace is shared between di�erent

tenants and the provider.

a�ect the users of di�erent tenants. This situation is unacceptable and is driven by the

fact that the di�erent namespaces are not properly isolated from each other. A similar

situation arises when a user creates a new special �le (e.g. symlink or device �le). This

�le is also presented as a special �le on the �leserver. However, a special �le has a speci�c

meaning only in the space where it is created. When such �les are presented as special

�les on outer spaces, they may impose a serious impact on system's security. For example,

an intruder can use them as backdoor to read or even modify kernel memory, �les, disk

drives, and other critical devices. Thus, it is critical for a multitenant �lesystem to prevent

identity collisions and isolate the di�erent tenant namespaces.

2.8 Summary

Cloud computing is a new computing paradigm that provides software, platform, and

infrastructure services on demand to customers around the world. A cloud environment

may be public, private, community, or hybrid, each with its own distinct constraints. In

order to e�ciently support an enormous number of customers at low cost, cloud environ-

20

ments rely on sharing of computing resources. A key technology that enables resource

sharing is virtualization. The Virtual Machine Monitor is a critical component of virtu-

alization. It may run directly as an application on the host, or it may be placed directly

above hardware. A challenge that virtualization faces is how to virtualize critical oper-

ating system instructions. This challenge can be solved either with full virtualization or

with paravirtualization.

File and storage systems used in virtualization environments are a critical component

for the overall performance of hosted applications. Storage systems are distinguished into

di�erent categories depending on how data is stored and accessed. Existing virtualization

environments apply storage consolidation at the block level. Although the block-level

access provides many bene�ts, such as support for versioning, isolation, and migration,

it precludes �le sharing, hinders manageability, complicates resource administration, and

reduces performance. For these reasons, a �le-level interface is more desirable in envi-

ronments that target collaboration, easy resource administration, and high performance.

However, a �le-level interface leads to a reconsideration of the access control mechanisms

used to securely isolate di�erent customers.

21

Chapter 3

Design requirements

3.1 Security requirements of multitenant storage systems

3.2 Architectural goals

3.3 Trust and threat model

3.4 Summary

In this chapter we explain the security requirements in multitenant storage systems

and we list the goals that we have set for our proposed access control architecture. We

also give details about our trust and threat model. In the next chapter, we propose a

design to meet the speci�ed requirements and goals.

3.1 Security requirements of multitenant storage systems

The idea of multitenancy is fundamental to cloud computing. Especially in a storage

cloud, service providers are able to build storage architectures that are very e�cient and

highly scalable to serve the needs of the large numbers of customers that share them.

However, in a multitenant storage system, data of di�erent tenants is stored in the same

underlying storage devices. Thus, the primary requirement for multitenant storage is to

ensure the security of tenant data.

22

Shared File System

TENANT1

VM

Unique Tenant ID

Local

Users

TENANT2

VM

Unique Tenant ID

Local

Users

Tenant1 ID space Tenant2 ID space

Identity space

Tenant1 names Tenant2 names

File name space
Data

TENANT1 TENANT2

Figure 3.1: Attributes of a shared multitenant �lesystem.

When the storage system o�ers a block-level interface, each tenant accesses its own

virtual disks and hence it is hard for a particular tenant to access the data of another

tenant. On the other hand, when tenants access the shared storage with a �le-level

interface, they share a single �lesystem namespace. In this case, the risks of multitenancy

become more severe.

As shown in Figure 3.1, the �lesystem itself must securely separate, protect, and

isolate a tenant's data from other tenants. This separation must be complete and secure.

However, it must not a�ect the management, sharing, and
exibility bene�ts of a shared

�lesystem. As we have explained earlier in subsection 2.7.2, the access control mechanism

must take into account the fact that a single namespace is shared between multiple parties

and properly prevent namespace collisions. All in all, if an attacker manage to gain access

to a tenant's local account, then his attack must be con�ned within that tenant and he

should be unable to access data of another tenant.

In a multitenant storage system, the tenant ID is what distinguishes one tenant from

the others. Authentication mechanisms must ensure that no other tenant can assume a

tenant's identity to gain data access. Furthermore, the �lesystem must take into account

how the access is authorized and di�erentiated, so that only the right principals can view

and manage a tenant's data.

In addition, care must be taken to protect tenant data at rest and obstruct deletion or

corruption (accidental or malicious) of it. In the present work we assume that the storage

23

provider and the �lesystem servers are trusted. However, there are known techniques, like

encryption of data at rest, that can provide an option to meet the security concerns of

the most sensitive tenants.

Finally, tenant data access must not be disrupted by denial of service attacks against

the �lesystem servers and by the normal or abnormal activities of other tenants. However,

in this thesis we do not attempt to provide solutions for these kinds of attacks.

3.2 Architectural goals

The following goals guided the design of the proposed scheme of �lesystem access control:

• Isolation: Securely isolate di�erent tenants and prevent namespace collisions.

• Sharing: Enable collaboration by providing
exible �le sharing among the princi-

pals of the same and di�erent tenants.

• E�ciency: Provide fast data access with native support of multitenant access

control for �lesystem performance and scalability.

• Compatibility: Ensure architectural compatibility with existing scalable and re-

liable �lesystems.

• Manageability: Provide more manageability opportunities to facilitate adminis-

trative tasks.

3.2.1 Isolation

We assume that each tenant has its own identity space and operates a group of virtual

machines with an identical pool of principals and with identical access rights to a set of

�les. We further assume that two identity spaces of di�erent tenants can collide. In fact,

a tenant should not be aware of how other tenants manage their identities. The �lesystem

should properly isolate the identity space and access control of principals from di�erent

tenants.

24

Client

OSD
OSDMDS MON

A
u

th

AuthAuth

(a) Architecture

Client MDS

OSD OSD

(1) Authorization

Request

(2) Capability

(b) Access control

Figure 3.2: The architecture of an object-based, distributed �lesystem and its access

control mechanism.

3.2.2 Sharing

In addition to tenant isolation, our architecture must provide opportunities for �ne granu-

larity intra-tenant and inter-tenant �le sharing. For this reason, we use a �le-level storage

interface that enables sharing, in contrast to a block-level interface. Furthermore, we

rely on access control lists and tenant-issued credentials in order to natively authorize �le

access and we avoid techniques that complicate �le sharing.

3.2.3 E�ciency

Our architecture must also be scalable and maintain high performance standards. Thus,

we rely on an object-based distributed �lesystem to handle the storage requirements of

clients (e.g. virtual machines) belonging to di�erent tenants.

As shown in Figure 3.2(a), a collection of object storage servers (OSDs) are respon-

sible to redundantly store the data and metadata in object form. In order to provide

scalability to metadata operations, metadata management is separated from the storage

of data. Multiple metadata servers (MDSs) manage metadata, and achieve locality and

load balancing by partitioning over the object servers the name, data index, and access

permissions of di�erent �les. Each metadata server can manage a di�erent portion of the

namespace for better scalability. Namespace portions can also overlap to the same MDS

for better redundancy. Finally, multiple monitors (MONs) are used to manage the whole

25

system, identify component failures, and authenticate the di�erent system components.

The system can
exible manage secure access to stored objects with help of the operating

system at each object server [67, 70].

Access control decisions happen at the MDS. Object storage servers have no implicit

knowledge of access privileges or authorizations. Thus, the MDS authorizes a client

request and provides the client with a capability [29]. A capability is a token of authority

that speci�es the access rights that a particular principal has over a particular system

resource (e.g. a �le). The client presents the capability to the OSD, which according

to the policy that is speci�ed on the received capability replies to the client with the

appropriate data (see Figure 3.2(b)).

Existing security solutions that rely on capabilities for access control have been crit-

icized for their limited scalability: the number of security operations is strongly tied to

the number of users, �les, and requests. However, a recent work from Leung et al. [28]

solves this problem with the Maat protocol. More speci�cally, for a single tenant, the

extended capability of the Maat protocol authorizes I/O for any number of users and �les

in petabyte �lesystems, is cryptographically secure, and maintains �xed size capabilities

through Merkle hash trees. Our proposed architecture is compatible with such extended

capabilities.

3.2.4 Compatibility

Our architecture must be compatible with existing scalable and reliable �lesystems. For

this reason, we use traditional structures and mechanisms that are made available in the

most of the current widely used distributed �lesystems.

3.2.5 Manageability

Finally, our architecture should permit system administrators to e�ciently manage the

�lesystem in terms of performing administrative tasks, managing tenants, and specifying

access control policies for di�erent tenants. Thus, we rely on a �le-level interface, which

provides more manageability opportunities in comparison to a block-level interface. In

addition, we avoid techniques that complicate manageability tasks.

26

3.3 Trust and threat model

The clients and servers of the �lesystem all run in one datacenter that is physically

protected and operated by an independent provider. A secure co-processor certi�es the

software stack on each physical host1. A central monitor establishes the trust of the in-

frastructure from the integrity of the participating nodes. Public keys (or hashes thereof)

uniquely identify tenants, principals, and services. The nodes securely communicate over

temporary symmetric keys dynamically agreed upon via public-key cryptography. The

private keys of principals and services are permanently stored in encrypted form and only

appear in clear-text form at the volatile memory of authorized nodes. Before the realloca-

tion of host memory across di�erent nodes, the memory contents are scrubbed to prevent

information leakage.

The �lesystem protects the con�dentiality and integrity of stored data and metadata by

restricting access to authorized principals. We assume that the provider has no malicious

intent to compromise the system security. However, there may be other reasons (e.g. poor

security practices) for which the provider is not trusted for particular applications. In

that case, the tenant may externally apply known techniques of encryption, hashing, and

auditing to achieve end-to-end con�dentiality, integrity, and freshness [42]. Our present

study targets �lesystem access control without any explicit attempt to provide solutions

for public-key distribution, denial of service, and tra�c analysis. Finally, we do not

address general distributed processing, which involves multitenant sharing of resources

other than storage (e.g. computation).

3.4 Summary

In the present study we are particularly interested to design a more e�cient access control

architecture for multitenant shared storage at the �le level. On the one hand, our proposed

architecture must securely isolate the identity space and access control of principals from

di�erent tenants, while on the other should provide opportunities for
exible �le sharing,

more e�cient manageability, and high scalability. In addition, our proposed architecture

1For example, hash chain generated by a Trusted Platform Module [42].

27

must be compatible with existing scalable �lesystems. For performance reasons we rely

on an object-based distributed �lesystem. In the next chapter we introduce an access

control architecture for multitenant �lesystems that meets the speci�ed criteria.

28

Chapter 4

System design

4.1 Secure multitenancy

4.2 Architectural overview

4.3 Authentication

4.4 Authorization

4.5 Optimizations

4.6 Security analysis

4.7 Summary

In this chapter we introduce a more e�cient architecture for multitenant shared storage

at the �le level that combines tenant isolation with native access control. Our architecture

is backwards compatible to object-based �lesystems and meets the goals that we set in

the previous chapter.

4.1 Secure multitenancy

A primary objective in a multitenant environment is to securely isolate the namespaces

of di�erent tenants. Tenant isolation is explicitly associated with the mechanisms used to

29

Servers

CASClients

TENANT1

Clients

TENANTN

CLOUD PROVIDER

Figure 4.1: The centralized approach: All principals are registered to a central directory.

identify tenants and principals. Identi�cation is the process in which an entity establishes

its identity and is securely identi�ed by an authentication server. Identi�cation names-

paces can be local or global in scope and each identity has a valid meaning only in the

namespace where it is de�ned. In addition, depending on their scope, identities must be

locally or globally unique. In traditional decentralized, distributed �lesystems principals

are identi�ed by their corresponding public keys. However, a principal's public key needs

to be certi�ed1. A common approach to certifying a principal's public key is for a certi�-

cation authority (CA) to issue a certi�cate that contains the principal's name, its public

key, and other attributes, such as the certi�cate's starting date and time, a signature

veri�cation key, and the issuer. The CA might be run by a local system administrator;

or it might be a remote trusted service.

First, in the following three subsections, we describe possible approaches to add sup-

port for secure multitenancy in a �le-level storage system. Then, in subsection 4.1.4 we

present an outline of our approach.

4.1.1 Tenant isolation with centralized identi�cation

Identity collisions that described in subsection 2.7.2 can be prevented by delegating the

identity management to a shared service like Kerberos [59], establishing a new centrally

administered ID space which can be shared between clients and services. Thus, instead of

relying to their local identi�cation services, tenants are required to register their principals

to the provider's identity service, as shown in Figure 4.1.

Inter-tenant �le sharing is straightforward when a central directory is used. The

1That is a key must be securely binded to a particular principal.

30

Clients

TENANT1

LAS

Clients

TENANTN

LAS

Servers

CLOUD

PROVIDER

Figure 4.2: Decentralized authentication with local authentication servers (LAS).

central directory is trusted by all the involved parties, while the user and group identi�er

assignments are kept consistent, because the task of identity management is outsourced

to the central directory. Thus, a tenant's principal could use existing techniques to share

�les with principals of di�erent tenants.

However, such an approach is unrealistic for the tenants of a cloud provider due to

scalability and security challenges incurred by the enormous number of users involved.

Furthermore, tenants may prefer to run their own identity management systems and

would thus be forced to support two such systems simultaneously. What is more, this

solution is unrealistic for a cloud environment, where tenants do not trust the cloud

provider and other tenants.

4.1.2 Tenant isolation with public-key identi�cation

Another possible approach to prevent identity collisions is to rely on a Public Key Infras-

tructure (PKI) for principal identi�cation and authentication [40, 24]. In this approach

principals could be identi�ed directly by their public keys and a trusted authority can

associate a public key with a particular principal.

As shown in Figure 4.2, each administrative domain could operate a local authenti-

cation server and trust remote authentication servers of di�erent domains [40, 22]. Each

local authentication server may establish a list of identities for local users and groups, and

upon request, might return them to the �leserver as credentials. Then, the �leserver can

issue these credentials for access control decisions. Inter-tenant �le sharing is straight-

forward. Users can directly list remote users on each �le in order to grant them access

31

permissions. The user's local authentication server might prefetch and cache users and

group de�nitions of remote authentication servers belonging to di�erent domains. Thus,

during �le access, the authentication server can establish identities for principals based

on local information.

The above approach enables data sharing across organizational boundaries. However,

a cloud environment introduces unique characteristics that make this solution inapplicable

to such an environment. First, in order to properly isolate each tenant, there must be

a second mechanism that associates each principal's public key with a speci�c tenant.

Second, for manageability reasons, tenants might prefer to use their own identity schemes.

Third, this approach alone does not take into account that a single namespace is shared

between di�erent tenants. Hence, it does not deal with namespace limitation. Fourth,

a tenant's local authentication server needs to trust the remote authentication servers of

other tenants. This is unrealistic for an environment such as the cloud where tenants

possibly don't trust each other.

4.1.3 Tenant isolation with identity mapping techniques

Identity mapping, a well-known technique from the area of grid computing [14, 58, 65]

can be used to solve the identity collision problem that arises when a namespace is shared

between multiple parties. Identity mapping allows a �leserver to map incoming UIDs or

GIDs from any tenant to the server's own known UIDs and GIDs. In addition, di�erent

ranges of server IDs can be assigned to di�erent tenants, in order to provide tenant

isolation.

Figure 4.3 shows an example of several local-to-global mappings. First, tenant's A

UIDs 100{500 are mapped to �leserver UIDs 2000{2500. Second, tenant's B UIDs 100{

200 are mapped to �leserver UIDs 5000{5100 preventing a possible collision with tenant's

A identities. Third, tenant's C UIDs 0{100 are mapped to �leserver UIDs 6000{6100.

Note that identity mapping enables root-squashing: Any incoming UID (or GID) 0 is

mapped to another number that does not have superuser privileges. In our example, the

UID 0 of tenant C is mapped to the �leserver UID 6000.

Identity mapping is performed bidirectionally. Forward mapping is performed when

a client sends a request to the �leserver. In this case, the �leserver maps the user's local

32

TENANTA

UID

100 - 500

UID

100 - 200

TENANTB

PROVIDER

UID

2000 - 2500

UID

5000 - 5100

TENANTC

UID

0 - 100
UID

6000 - 6100

Figure 4.3: The identity mapping technique: The local identity space of each tenant is

mapped to a di�erent range of the provider's identity space.

UID and GID to the assigned global UID and GID. Reverse mapping is performed when

the �leserver replies to the client. The server maps the user's global UID and GID to the

corresponding local UID and GID.

Identity mapping solutions successfully isolate the identity spaces of di�erent tenants

and thus they have been recently applied to cloud �lesystems [11]. However, such identity

mapping techniques have been recently criticized as cause for limited scalability [32, 16].

In addition, the mapping of remote users to existing local user classes also poses the

threat of implicit rights ampli�cation, where users requiring only limited rights are given

stronger than necessary. Moreover, the speci�cation and the enforcement of the access

control policies could become a cumbersome task, because each server maintains its own

separate mappings. Even if the mappings are coordinated across di�erent servers, access

control policies could not be speci�ed in the granularity of users, because each tenant

maintains a variable list of users. In fact, users can not express access control policies

that refer to identities that the �leservers have not yet encountered [60]. Thus, identity

mapping techniques complicate or disable inter-tenant �le sharing completely.

Furthermore, the common practice of mapping remote users to existing local user ac-

counts in order to isolate di�erent namespaces poses extra manageability di�culties. The

global-to-local mappings are either created manually by administrators [65], or the admin-

33

istrators only specify the remote lower and higher bounds of ID values. In this case, the

mappings themselves are updated at runtime [11]. In the �rst approach, when thousands

of tenant users must be mapped, manually creating the mappings can be a daunting task.

In the latter, users can not express access control that refers to identities that the �leserver

has not yet encountered and as a result the global-to-local mappings for these identities

do not exist. In both of the above approaches it is not possible to maintain automatically

common user accounts and global-to-local mappings between multiple �leservers. This

leaves maintenance and synchronization of global-to-local mappings as a manual process,

or leads to the development of new tools to automate this task. Finally, the UID space

of the �leservers can possibly run out of numbers, because a cloud �lesystem involves an

enormous number of end users.

4.1.4 An outline of our approach

Instead of registering tenant principals into a centralized directory service, or using iden-

tity mapping, which faces scalability issues and complicates �le sharing as well as man-

ageability tasks, we rely on local authentication servers where each tenant certi�es local

clients and principals. The local authentication server of each tenant in turn is certi�ed

by a global authentication service. Tenants can use their own identity mechanism to

name principals locally. However, local identities can be associated with global identities

in order to permit inter-tenant �le sharing. In addition, we di�erentiate our solution

from previous approaches in that we combine local authentication servers with native ac-

cess control by carefully storing identities and access control information directly on the

�lesystem. In order to preserve tenant isolation, identities that refer to principals that

belong to di�erent tenants are stored on separate places. Then, each of these places is

pinned to a distinct tenant and thus the namespace of each tenant is properly isolated.

4.2 Architectural overview

Our proposed architecture consists of �ve core components, as shown in Figure 4.4: the

Clients, the Tenant Authentication Servers (TAS), the Metadata Servers (MDS), the

Object Storage Servers (OSD), and the Filesystem Authentication Servers (FAS). Next,

34

...

TENANTN

UsersN

Clients

Tenant

Authentication

Server

TENANT1

Users1

Clients

Tenant

Authentication

Server

FILESYSTEM

SERVERS

OSD

MDS

OSD

Filesystem

Authentication

Service

Filesystem

Authentication

Server

Figure 4.4: An architectural overview of our proposed system.

we provide details for each of the above components.

4.2.1 Tenant Authentication Server

Every tenant certi�es the identity of local clients and principals with its own authentica-

tion server, that is securely registered to the �lesystem authentication servers. Tenants,

as well as principals and groups maintain their own public/private key pairs. The tenant

authentication server securely maintains the tenant's private key, as well as the private

keys of each principal. Tenants, as well as clients and principals are uniquely identi�ed

by their public ID. This public ID might be a hash of their public key.

Tenant administrators, for reasons of privacy or administration complexity, have the

exibility to use their own identi�cation mechanism to locally identify principals. How-

ever, in order for cross-domain �le sharing to be possible, there must be a mechanism

which certi�es that a particular principal belongs to a particular tenant. For this reason,

the tenant authentication server issues a credential to prove that a public principal ID

belongs to a particular tenant. Speci�cally, this credential binds the principal's public ID

with the tenant's ID and other local identity attributes, such as the principal's local ID.

Credentials contain only signed identity attributes of the principals rather than policy

statements with permitted actions over the requested �le resources.

The TAS is a critical component of the overall system to maintain security, operation,

35

and scalability. Hence, it needs to be distributed and replicated. Having multiple authen-

tication servers per tenant, not only guarantees redundancy of the stored information in

case one of them su�ers an outage, but also guarantees availability and scalability to a

large number of users.

For the above reasons, it is possible to build the TAS on top of a distributed key-value-

store (e.g. Cassandra), which supports replication for fault-tolerance, is decentralized (no

single point of failure), and scalable. Each stored entry is a key/value pair and corresponds

to a tenant, client, principal, or group. The key is the public ID of the particular entry,

while the value is the quintet:

< type; publickey; privatekey; localidentity;metadata >

The \type" element speci�es the type of the entity and can be one of: tenant, client, user,

or group. The \publickey" and the \privatekey" elements correspond to the public and

the private keys of the entity respectively. The \localidentity" entry is used only for user

and group entities, and corresponds to a local identity that is assigned to that entity by

the tenant's local identi�cation mechanism. Finally, the \metadata" entry can be used

by the tenant to store additional information for an entity.

4.2.2 Client

The client component represents the interface between user processes and the �lesystem,

and provides a POSIX-like interface to the users. In addition to the POSIX-like interface,

the client provides tools for managing the tenant's namespace and granting or revoking

access to other tenants. Each client has a public/private key pair and is registered to

a tenant authentication server of a single tenant. A trusted monitor at the datacenter

certi�es the integrity of the software stack running at the client, in order to harden a

potential compromise of the client component.

4.2.3 Object Storage Server

Object storage servers (OSDs) are responsible for storing �le data and metadata. The

content of a single �le is represented by one or more objects. Object storage servers are

responsible to perform the mapping of these objects to blocks on their local �lesytems.

36

For security reasons, each OSD maintains its own public/private key pair and is identi�ed

by a hash of its public key. In addition, object storage servers are securely registered to

the �lesystem authentication servers.

Object storage servers are also responsible for data migration, replication, failure de-

tection, and failure recovery. Every object is written to the primary OSD �rst, and then

the primary replicates it to one or several replicas to ensure redundancy. This replication

can be synchronous in order to guarantee the availability of a new or updated object, be-

fore the client is noti�ed that a write operation has completed. An object storage server

writes the new or updated object to its local journal before replicating it to a replica

object storage server.

4.2.4 Metadata Server

The Metadata server (MDS) is responsible to manage the �lesystem namespace and pro-

vide POSIX semantics to clients. For availability and performance reasons, there may

be multiple metadata servers running on di�erent hosts. Each MDS stores metadata on

object storage servers in the form of objects. In fact, the MDS itself does not provide

metadata storage, but works as an intelligent metadata cache.

Each MDS maintains its own public/private key pair and is identi�ed by a hash of its

public key. In addition, it is securely registered to the �lesystem authentication servers.

Metadata servers manage the location of metadata and also decide where to store new

data. Furthermore, the �lesystem namespace is split into di�erent portions. For scalability

reasons it is possible to assign each portion to a di�erent MDS. Namespace portions can

also overlap for redundancy reasons. This mapping of namespace portions to metadata

servers can be performed using dynamic subtree partitioning algorithms [69].

4.2.5 Filesystem Authentication Server

The Filesystem Authentication Server (FAS) certi�es the identity of metadata servers,

object storage servers, and tenant authentication servers. It is also responsible to manage

the operation of the whole system and identify component failures. For this task, the

FAS keeps information in the form of maps. For instance, to manage the cluster of object

storage servers it maintains an OSD map that stores information about the location of

37

the object storage servers and their current state.

Having multiple �lesystem authentication servers is essential to guarantee redundancy

of the stored information and high availability. However, this means that the stored

information must be kept consistent across all of them. For this reason, it is possible

for each server to use a distributed consensus algorithm, like Paxos [26], in combination

with a local key-value-store (like the architecture of Ceph's monitor2). Each time a map

is modi�ed, a new version is created and run through a quorum of servers. Only when

a majority acknowledge the change, the primary server will store the new version to its

local key-value-store and the new version will be considered committed.

4.3 Authentication

Authentication is the process of veri�cation that an individual or an entity is who it

claims to be. In a traditional distributed �lesystem, all principals are registered to a

central directory service by utilizing an existing security infrastructure, such as Kerberos

[59]. If a principal is securely identi�ed by the directory, it receives a ticket to contact the

�lesystem. A ticket is a cryptographically secure, time stamped data structure that con-

tains authentication and other information about a speci�c proposed interaction between

a client and a server. On the other hand, decentralized distributed �lesystems avoid the

requirement of a central directory that knows all principals and group de�nitions. Di�er-

ent administrative domains maintain their own principals and policies in a local directory.

Hence, local directories issue credentials for registered principals.

As mentioned in subsection 4.2.1, tenants certify the identity of local clients and prin-

cipals with their own authentication servers, which are securely registered to the �lesystem

authentication servers. When a TAS authenticates to the �lesystem authentication server,

it receives a ticket that grants access to the metadata servers.

A client talks with the TAS and receives a secret key to decrypt its private key. Then,

it uses public-key cryptography to establish secure connection with the TAS. A principal

connects to a particular client and provides a secret password for authentication by a

tenant authentication server that also stores the password in encrypted form. After the

2http://ceph.com/docs/master/rados/con�guration/mon-con�g-ref/. Accessed: 2013-08-19.

38

PROVIDERTENANT

Users1

Tenant

Authentication

Server
(1

)
A

u
th

e
n
tic

a
te

Filesystem
Authentication

Service

Filesystem

Authentication

Server

MDS OSD OSD

Authenticate

Ticket for
 MDS

(2
)

M
D

S
 T

ic
ke

t

Authenticate
(3)

Metadata ops

(4)
OSD Ticket

(5)
Data ops

Clients

Figure 4.5: The authentication architecture.

successful authentication, the principal receives a secret key to decrypt a respective private

key that is made accessible at the client.

Upon authentication, the TAS delegates to the principal the ticket that grants access

to the metadata servers (steps 1 and 2 in Figure 4.5). Then, the principal has everything

it needs to perform metadata operations. For example, lets assume that a principal needs

to access a particular �le. Using the client, the principal issues a metadata request to a

metadata server (step 3 in Figure 4.5). The request carries the MDS ticket, as well as a

credential that proves the identity of the principal. The MDS veri�es the ticket and the

principal's credential and upon correct veri�cation responds with a map that contains the

object storage servers and the speci�c locations of the �le's fragments. In addition, the

MDS embeds to its reply the necessary OSD tickets. Finally, the principal receives the

metadata server's reply and issues �le operations to the OSDs using the received OSD

tickets (steps 4 and 5 in Figure 4.5). Request freshness is ensured with a client-provided

nonce that the server returns modi�ed according to a known function (e.g. increment by

one).

4.4 Authorization

Authorization is a security mechanism used to determine principal's access rights related

to system resources. Access rights are organized as a large matrix called Access Control

Matrix. Each row of the matrix refers to a subject (e.g. a user or a group) and each column

39

Client

TENANT1

MDS

Authorization

Request

... ...

Capability
Policy Tenant1

...

Policy

...

TenantN

Credential

Figure 4.6: The authorization architecture.

refers to an object (a resource, e.g. a �le). Each cell lists the rights that a particular

subject has over a particular object. A column of this matrix is a list containing all the

subjects that can access the object, and how. This list is called the Access Control List

or ACL. In fact, an ACL is associated with each �le and lists all principals authorized to

access it along with their permissions. A principal's identity must be known before access

rights can be looked up in the ACL. Thus, authorization depends on prior authentication.

On the other hand, a row of this matrix is a list that associates with each subject a list

of objects that may be accessed, along with the permitted permissions on each object.

This list is called a capability. In contrast to ACLs, capabilities do not require explicit

authentication.

The �lesystem grants to a principal a permitted �le access according to the tenant-

issued credential. The authorization policy is speci�ed in ACLs maintained by the �lesys-

tem. The rules of principals that belong to di�erent tenants and the provider are respec-

tively maintained across separate ACLs (Figure 4.6). Thus, our architecture successfully

isolates the namespaces of di�erent tenants and the provider's without the need of identity

mapping tables. Each �le is associated with a list of ACLs, one for each tenant that can

access the �le. The ACL of a tenant for a particular �le is a list of entries; each entry

consists of a principal's identity and a representation of the permitted actions. There is a

separate ACL where the �lesystem maintains the permissions of its native principals (the

provider's principals). A �le can be con�gured as private or shared across the principals

of a single or multiple tenants.

For administration purposes the system provides selective access to metadata in the

form of views. We call this technique namespace �ltering. Namespace �ltering allows each

tenant to access a �ltered view of the shared namespace. The �lesystem administrator

40

Figure 4.7: Namespace �tlering: admin and tenant view of the �lesystem metadata.

has access to the admin view, which allows speci�cation of permissions at the granularity

of entire tenants or principals. In fact, the administrator can use policies to provide

namespace limits to tenants. Instead, the tenant view allows a tenant administrator

to con�gure metadata made accessible to the tenant by the provider's administrator.

Depending on whether it belongs to the provider or tenant, respectively, a principal can

only access a subset of the admin or tenant view �ltered according to the applicable

permissions. Thus, by preventing a principal to name an object through namespace

�ltering, the system can prevent access to the object (Figure 4.7).

4.5 Optimizations

The number of �les that large-scale storage systems need to store is increasing rapidly

due to the growing number of end-users involved. Associating an ACL to each �le leads

to an enormous number of ACLs that the system needs to store and manage, and can

cost considerable storage space and performance overheads.

According to a recent study from Smetters et al. [57] users rarely change the access

rights of single �les. They prefer to add new �les to an existing folder with its permis-

sions already set. Hence, new added �les inherit the permissions of the parent folder.

The authors also state that permission inheritance is consistent with \best practice" rec-

ommendations for using access control settings, which recommends setting permissions

rarely and rely on inheritance to manage most controls. We exploit this observation in

41

Folder

Tenanti Tenanti

Folder

ACLs

Tree

ACLs

Tenanti

Private ACLs

File

Figure 4.8: ACL sharing with tree ACLs.

order to reduce the size of each �le's metadata stored on the object storage servers and

managed by metadata servers.

More speci�cally, we associate with each folder two ACLs per tenant, a folder ACL

and a tree ACL. The folder ACL controls access to the folder as before. On the other

hand, the tree ACL controls access to the folder's contents. Newly created �les share

their parent's tree ACL, as shown in Figure 4.8. However, when a user explicitly sets

permissions on a particular �le, then a new private ACL is created for this �le, and the

�le no longer shares the tree ACL with its parent folder (for example see the last �le in

Figure 4.8). A child folder inherits its parent's tree ACL.

The tree ACLs can be set by users with the help of a special tool, or they can be set

automatically. In the second case, they can be updated either statically or dynamically.

In the static updating scheme, when a new �le is created in an empty folder its private

ACL is promoted to a tree ACL. From that point, the tree ACL does not change, unless

a user explicitly change it. However, if the majority of �les in the same folder contain

private ACLs, then the bene�ts of ACL sharing are being lost. To mitigate this problem,

in the dynamic updating scheme it is possible to update the tree ACL taking into account

the majority of private ACLs. In this manner, the most frequent occurring private ACL

is �rst promoted to a tree ACL and then is removed from all the �les that contain it. Our

current prototype implementation only supports the static updating scheme, however, it

is straightforward to implement the dynamic scheme in a future version.

Associating a tree ACL with each folder allows us to take advantage of the collocation

42

of �le metadata from a range of �les that reside under the same folder. When the MDS

needs to authorize access to a given �le, it fetches the whole object that contains the

metadata of all the parent folder's contents (if there isn't already in its cache). This

object also contains the tree ACL that controls access to the �le. Thus, the MDS does

not need to fetch extra objects from the object storage servers.

4.6 Security analysis

In this section we review the security model presented in this work. Below, we list the

security players of our architecture along with their permitted actions:

a) Principals. They can be distinguished to native �lesystem principals or tenant prin-

cipals. We consider native principals as trusted administrators who can create and

destroy data, and specify access policies by delegating read and write access to other

principals, or revoke another principal's privilege to access data. On the other hand,

tenant principals are untrusted users (or groups of them therefore) who belong to

a particular tenant. They can read and write data once they have the appropriate

permissions. They can also delegate access to other users of the same tenant.

b) Clients. They are trusted entities used by principals to access the �lesystem.

c) Storage servers. They are trusted storage devices which store and return data and

metadata upon request.

d) Metadata servers. They are trusted servers which manage �lesystem metadata and

access control policies. They also allow traversal of the �lesystem namespace. Meta-

data servers are responsible to securely separate the namespaces of di�erent tenants

from each other, as well as from the native �lesystem namespace.

e) Authentication servers. They are trusted servers which certify other players. There

are two kinds of authentication servers: Tenant authentication servers which certify

local clients and principals and a global �lesystem authentication service which certi�es

tenant authentication servers, as well as the �lesystem's storage and metadata servers.

f) Wire. It transfers data between players.

43

We de�ne an attacker to be an entity who tries to perform operations other than those

that is authorized to. The security model presented in this work considers two types of

attacks: intra-tenant and cross-tenant attacks. Below, we name a number of possible

attacks that may be mounted on the data or the metadata:

Attack on the wire. An attacker may manage to intercept a ticket that allows

access to a metadata or storage server. However, tickets are encrypted and therefore

cannot be forged. An attacker may also manage to capture an authorization credential.

Credentials are signed bindings of public keys with speci�c identity attributes. If such a

credential is intercepted, the only information that may be obtained is that a particular

principal with public key A belongs to the tenant with public key B. In addition, the

attacker can not forge the credential because it is signed. Thus, the speci�cation of

the authorized tenant and principal in a signed credential along with a secure exchange

among nodes prevent an attacker principal from getting unapproved access to the data and

metadata of other principals from the same or di�erent tenant. The attacker might also

tamper with network tra�c and launch a denial-of-service attack. Freshness of network

communications to protect against replay attacks or injection of non-authentic data is

achieved through message nonces and timestamps.

Attack on a client or tenant principal. An attacker may manage to penetrate

a client and guess the password of a tenant's principal. He may also mount a man-in-

the-middle attack against a principal in order to learn her password. In both cases, the

attacker can access the principal's data. Yet, the attack is either limited to the principal's

data, or if the principal's account has local administrative rights, it will a�ect all principals

of the victim's tenant. However, the attack is con�ned within the tenant. In fact, the

attacker is still unable to modify the system wide access policy, which a�ects the native

principals of the �lesystem or the principals of other tenants.

Attack by a revoked tenant. When a �lesystem administrator revokes access of

a tenant to a collection of �les, the tenant's principals are not able to access these �les

anymore. In fact, the �lesystem keeps a separate ACL for each tenant, and when a

tenant's access to a particular �le is revoked, the corresponding ACL is removed from this

�le. Hence, future access to this �le by principals belonging to the revoked tenant can

not be authorized.

44

Attack on a native �lesystem principal. While native �lesystem principals are

considered trusted, an attacker may manage to gain access to a native principal's ac-

count. In this case, the attacker will be able to gain complete access to the data of all

tenants. Special protection measures make harder to forge the identity of administrators,

for example by disabling access to the respective accounts from outside the datacenter.

Attack on tenants' data. Data is stored as cleartext on the storage servers, which

implies that tenants trust the servers and their administrators. However, there may be

reasons, such as poor administration practices or poor disposal policies of defective storage

devices, for which the provider is not trusted for critical data. In this case, a tenant

may externally apply data-protection techniques, such as encryption, to strengthen the

con�dentiality of their data.

4.7 Summary

In the present study we design a more e�cient access control architecture for multitenant

shared storage at the �le level. On the one hand, our proposed architecture must securely

isolate the identity space and access control of principals from di�erent tenants, while

on the other should provide opportunities for
exible �le sharing, more e�cient man-

ageability, and high performance. For performance reasons we rely on an object-based

distributed �lesystem.

Instead of relying on a centralized authentication service where each tenant user is

registered, or using mapping techniques for identity translation which face scalability

issues, in the proposed architecture each tenant has a local tenant authentication server

which certi�es local clients and principals. The tenant authentication server in turn

is certi�ed by the global �lesystem authentication service. For authorization purposes

each �le maintains di�erent ACLs for each tenant. By combining per-tenant ACLs and

namespace management, we avoid extensive explicit access control infrastructure and

mapping layers, because each tenant sees a masked view of the shared namespace through

namespace �ltering.

Finally, as an optimization instead of assigning a separate ACL to each �le, we assign

a tree ACL to the parent folder which controls access to all the folder's contents. However,

45

it is still possible to explicitly set permissions on a particular �le. In this case, the �le's

private ACL controls access to this �le which in turn is di�erent from the tree ACL.

46

Chapter 5

Implementation details

5.1 Implementation overview

5.2 Key structures of Ceph

5.3 Multitenant access control

5.4 Optimizations

5.5 Summary

In the present chapter we describe our implementation of the proposed multitenant

access control architecture over a distributed, object-based �lesystem. The prototype im-

plementation is based on Ceph, a
exible prototyping platform with scalable management

of metadata and extended attributes.

5.1 Implementation overview

We base our implementation on Ceph, an open source distributed object-based �lesystem

written in C++ and C. We call our prototype Dike1. We developed two versions of

Dike: One that does not support ACL sharing and another one that supports it. For

1In ancient Greek culture, Dike was the spirit of moral order and fair judgment based on immemorial

custom, in the sense of socially enforced norms and conventional rules [72].

47

MDS Client Messages Other

Dike without ACL sharing

Comments 191 128 0 139

Code 534 274 24 415

Total 725 402 24 554

Dike with ACL sharing

Comments 239 128 0 139

Code 803 274 24 416

Total 1402 402 24 555

Table 5.1: Number of added and modi�ed lines of source code in di�erent parts of Ceph.

the needs of our implementation, we mainly modi�ed the MDS component, as well as

the user space client which utilizes Filesystems in User SpacE (FUSE) [15] in order to

provide �lesystem access to users. We also modi�ed some additional parts of Ceph like

the message structures. Finally, we developed administrative tools for creating tenants

and assigning tenant permissions.

As the Table 5.1 shows, the source code size of the Dike prototype without ACL sharing

is roughly 1705 lines (C++ code and comments), from which the added or modi�ed lines

in the MDS component are 725, in the client component are 402, in the message structures

are 24, and in other parts of Ceph, including newly developed administrative tools, are

554. On the other hand, the source code size of the Dike prototype with ACL sharing is

roughly 2023 lines, from which the added or modi�ed lines in the MDS component are

1042, in the client component are 402, and in the message structures are 24. Finally,

we added or modi�ed 555 lines of code in other parts of Ceph, including newly created

administrative tools.

5.2 Key structures of Ceph

A key structure of Ceph is called bu�er and is used to process data in memory. The actual

data is stored in buffer::raw opaque objects. They are allocated with malloc, new, or

reusing a pointer provided by the caller. A variant of the malloc constructor provides an

48

offset

length

raw

buffer::ptr

raw

raw

le
n

g
th

(a) bu�er::ptr

raw

raw

_
le

n

buffer::list

append_buffer

_len

_buffers

last_p

list

ptr

ptr

(b) bu�er::list

Figure 5.1: Key structures of Ceph that are used to process data in memory.

area that is page aligned on CEPH_PAGE_SIZE, which is equal to the system's page size.

The buffer::raw area can only be accessed through a buffer::ptr pointer. As the

Figure 5.1(a) shows, it addresses the buffer::raw bytes in the range [offset; offset +

length]. Bytes can be copied in or out within the [offset; offset + length] range. In

case the underlying buffer::raw extends beyond offset + length, more bytes can be

appended.

The buffer::ptr methods are very
exible and can be used to implement more com-

plex data structures such as lists (see Figure 5.1(b)). In particular, the buffer::list

structure that Ceph provides is a list of buffer::ptr pointers.

The extended attributes are managed as key/value pairs stored in a C++ map struc-

ture (red-black tree). Each entry of the map corresponds to a key/value pair, where the

key is a name and the value is a buffer::ptr data structure which keeps the data.

Another important structure of Ceph is the map structure (implemented as a C++

STL map) that is used to maintain information about the fragments of each cached folder

inode. Each entry of the map is a set of key/value pairs, where the key corresponds to

the fragment ID and the value corresponds to the actual fragment data. In addition, the

folder inode contains a folder fragment tree which is always consistent with the folder

fragment map. This tree represents an entire namespace and its partitions. It essentially

informs the MDS where fragments are split into other fragments and by how much. The

goal is to use a binary split strategy to partition the namespace. The MDS caches a

pre-con�gured number of inodes. This cache size provides a limit on how many �les can

be in use simultaneously with good performance, but not on total number of �les in the

system. Furthermore, whenever a folder is read o� disk, the MDS needs to be able to

49

hold the whole folder in memory, and if the folder holds more entries than the MDS cache

can hold, then the overall performance degrades.

5.3 Multitenant access control

Into Ceph we added native support for multitenant access control according to the pro-

posed design. We deliberately avoid global-to-local identity translations because they

introduce performance bottlenecks, replica inconsistencies, and impersonation risks.

A registered client shares a secret key with the monitor. When a user requests from the

client to mount a �lesystem, the client authenticates to the monitor and receives a session

key encrypted with the secret key. The session key is used by the client to securely request

from the monitor a ticket that authenticates the client to the MDSs and OSDs. The ticket

is encrypted with a secret key that the monitor shares with the MDSs and OSDs. The

client uses this ticket to initiate a new session with the MDS. The MDS receives from

the client a message of type MClientSession and sends back the capability (i.e. ticket)

that enables access to the root folder at the OSDs. The returned capability contains the

inode number, the permitted operations, the replication factor, and the striping method

of a �le. From the capability the client derives an object identi�er, which is hashed to

the placement group of OSDs that contain the object replicas.

The session between a client and the �lesystem is limited to only serve the permitted

actions of the requesting principal. In a �lesystem mount request to an MDS, a client has

to securely identify the respective tenant. We derive a unique tenant identi�er (TID) by

applying the RIPEMD-160 cryptographic hash function on the public key of the tenant.

Then, we include the TID into an expanded MClientSession request and send it to the

MDS over a secure session. For authorization purposes the request should additionally

carry a tenant-issued credential that we do not yet support in our prototype.

The MDS extracts the TID from the MClientSession message and stores it as a �eld

of the session state. Our current implementation only supports Unix-like permissions of

individual users and groups, but makes it straightforward to add access-control lists in

a future version. We facilitate the system administration with the support of multiple

�lesystem views. Based on the supplied TID, a client obtains tenant view of the �lesystem

50

Method Description

bool check_tenant_perm() Check tenant permission

void grant_tenant_perm() Grant tenant permission

void set_unix_uid() Set user ID

void set_unix_gid() Set group ID

void set_unix_mode() Set �le permissions

uid_t get_unix_uid() Return user ID

gid_t get_unix_gid() Return group ID

mode_t get_unix_mode() Return �le permissions

Table 5.2: The methods that we added into the class CInode to manage the tenant

permissions of an Inode.

for access by a principal of the tenant.

For global con�guration needs, we also provide the admin view that enables full access

permissions to the �lesystem. We extended the CInode class of Ceph with eight new

operations to set and retrieve the permissions of tenants and individual principals as

shown in Table 5.2. When the tenant view is used, the permission attributes are stored

in the extended attributes of the �lesystem; otherwise the regular �elds of the inode are

used (see Figure 5.2). We use as key the string “TID‖permtype” where TID is the tenant

identi�er and permtype is set to "UNIX" for Unix permissions or "ACL" for the ACL model.

In the Unix model the value of the pair can be set to "UID:GID:mode": UID and GID refer

to the user and group ID, while mode represents the Unix �le permissions. We modi�ed

all the �lesystem functions of the original Ceph related to permissions handling, including

the constructor of a new inode. If the client uses the admin view, then we directly update

the regular inode of the �lesystem. Otherwise we save the user/group IDs and the �le

permissions into extended attributes keyed under TID; we also update the regular inode

of the �lesystem according to the user/group IDs and �le mode of the parent inode. Thus,

special �les (e.g. block device �les) are stored as regular �les at the �lesever and they are

presented as special �les only in the particular tenant view.

A capability is only sent to a client whose tenant has access to the �le. In order to

allow or deny a �le access to a client, we modi�ed the returned capability to include

51

EXTENDED ATTRIBUTES

MAP

INODES

UID

GID

MODE

...

XATTRS

...

Native User Permissions

ClientClientClient

ClientClientMDS

ClientClientMON

ClientClientOSD

OBJECT

POOLS

...

Permissions

Permissions

Permissions

TID1

TID2

...

TIDN

Auth

Figure 5.2: Prototype implementation of the proposed multitenant access control archi-

tecture.

the tenant identi�er and the respective �le ownership metadata. A client cannot directly

access the extended attributes that contain access control information; instead only the

�lesystem is allowed to read and update extended attributes on behalf of authorized client

requests.

5.4 Optimizations

Instead of assigning tenant permissions to each �le separately we permit a collection of

�les to inherit the access control information stored in their parent folder. As we explained

in section 4.5, we store a tree ACL to each folder which controls access to the folder's

contents, in order to reduce the number of ACLs that the system needs to store and

manage.

Hence, a folder's extended attributes contain two types of permission attributes for

each tenant: (a) the folder permission attributes which control access to the folder, and

(b) the tree permission attributes which control access to the folder's contents. We dif-

ferentiate between folder and tree permissions by extending the value of each attribute

in order to contain the attribute type. For example, in the Unix model the value of an

attribute can be set to "TYPE:UID:GID:mode", where TYPE can be either "folder" or

"tree".

52

Access to every newly created �le is controlled by the tree permissions stored in its

parent folder. However, if a user explicitly set permissions on a particular �le, then a new

entry will be stored in the �le's extended attributes for the user's tenant.

In order to authorize a request to a particular �le, the MDS initially checks the �le's

local extended attributes to �nd a permission attribute. If a private permission attribute

exists, then the MDS authorizes the request according to this attribute. Otherwise, it

checks the tree permissions stored in its parent folder's extended attributes.

5.5 Summary

We base our prototype of the proposed architecture on Ceph, an open source, object-

based, distributed �lesystem. For the needs of our prototype we mainly modify the client

and the MDS components of Ceph.

The MDS stores per tenant ACLs in the extended attributes of each �le and folder. In

a �lesystem mount request to an MDS, a client securely identi�es the respective tenant.

Then, every time that the MDS needs to authorize access to �les or folders, it checks

the permission attributes of the given tenant. The �lesystem's native users, however,

are handled separately. For these users, the user/group IDs and the access permissions

are stored directly in the regular inode �elds. Thus, the �lesystem's native users have a

complete view of the shared namespace (i.e. the admin view), in contrast to tenant users

who have a �ltered view (i.e. the tenant view).

As an optimization, we permit �les to share a single ACL per tenant which is stored

in their parent's extended attributes. This optimization decreases the number of ACLs

that the system needs to store and manage.

53

Chapter 6

Experimental evaluation

6.1 Experimentation environment

6.2 Methology

6.3 Microbenchmarks

6.4 Application-oriented benchmarks

6.5 Summary

We experimentally evaluate our prototype implementation with microbenchmarks and

application-level benchmarks to answer the following questions: (a) how much overhead

does our multitenant prototype introduce to a single-tenant �lesystem, (b) how well does

our prototype compare with a cloud �lesystem which uses identity mapping techniques,

and (c) how much do long ACLs a�ect system performance and how ACL sharing comes

up with this problem.

6.1 Experimentation environment

We developed a prototype of the proposed architecture (which we call Dike) over Ceph

version 0.61.4 (Cuttle�sh) and we evaluated it on two environments: (a) a local cluster

and (b) a cloud computing platform. In each �gure we state whether we use the local or

the cloud environment for experimentation.

54

CPU RAM Disk Kernel NET VMM

MDS

1 Intel E5345 6 GB 2x250 GB, 7200 RPM Linux 3.9.3 1 Gbps -

OSD

3 Intel E5345 3 GB 2x250 GB, 7200 RPM Linux 3.9.3 1 Gbps -

MON

1 Intel E5345 3 GB 2x250 GB, 7200 RPM Linux 3.9.3 1 Gbps -

HOST DOM0

6 Intel E5345 4 GB 2x500 GB, 7200 RPM Linux 3.5.5 1 Gbps Xen 4.2.1

CLIENT DOMU

36 1 VCPU 512 MB 15 GB root, 2 GB swap Linux 3.9.3 bridged -

Table 6.1: Local experimentation environment.

6.1.1 Local testbed

Table 6.1 summarizes the local experimentation environment. It consists of HP ProLiant

DL140 G3 server nodes running Debian 6.0 GNU-Linux. We used up to �ve nodes as

�lesystem servers and up to six nodes as client hosts. Each �lesystem server node is

equipped with one quad-core 64-bit Intel Xeon E5345 processor at 2.33 GHz, 3-6 GB

RAM, two SATA 250 GB 7.2 KRPM HDs, and runs Linux kernel 3.9.3. The server with

the 6 GB of RAM is used as MDS, while the other three are used as OSDs with 2-way

replication, and the last one as the cluster monitor. The OSD nodes have their second

hard disk formatted with the XFS �lesystem and use it to store objects. For journaling

purposes they have a 1 GB journal �le stored on the �rst hard disk. On the other hand,

client host nodes are equipped with two quad-core 64-bit Intel Xeon E5345 processors

at 2.33 GHz, 4 GB RAM, two SATA 500 GB 7.2 KRPM HDs, and run Xen hypervisor

(version 4.2.1) and Linux kernel 3.5.5. Each node has one activated gigabit network link.

We use paravirtualized VMs as clients each one set up with a single dedicated CPU

core and 512 MB of RAM. The guest OS is Debian 6.0 GNU-Linux with Linux kernel

3.9.3. Each VM has two virtual disks connected to the host through a blktap-2 device:

one with a root �lesystem (15 GB) and another used as swap space (2 GB). The machines

are connected using bridged networking on each host.

55

Type CPU RAM Disk Kernel NET

FILESYSTEM SERVERS

m1.xlarge 4 VCPU 15 GB 4x420 GB, Root on EBS Linux 3.9.3 high

MICROBENCHMARK CLIENTS

t1.micro 1 VCPU 615 MB Root on EBS Linux 3.9.3 Very low

APPLICATION LEVEL CLIENTS

c1.medium 2 VCPU 1.7 GB 1 x 350 GB, Root on EBS Linux 3.9.3 Moderate

Table 6.2: Cloud computing environment (Amazon Web Services).

6.1.2 Cloud computing platform

We used resources from Amazon EC2 [2] in order to compare our prototype with existing

solutions. Our EC2 experiments use \m1.xlarge" virtual machine instances for �leservers

(having four 64-bit cores, 15 GB of memory, 4x420 GB ephemeral storage, and high

network performance). For clients, we use two types of instances. For microbenchmarks,

we use \t1.micro" virtual machine instances with one 64-bit core and 615 MB of memory.

On the other hand, for application-level benchmarks, which are more computationally

intensive, we use \c1.medium" instances (having two 64-bit cores, 1.7 GB of memory, and

moderate network performance). All instances run the Red Hat Enterprise Linux Server

release 6.4 (Santiago) with the Linux kernel 3.9.3. In addition, all instances run in the

US East region (Table 6.2).

Each time, we have one of GlusterFS1 (version 3.2.7), HekaFS2 (version 0.7), Ceph

(version 0.61.4), or Dike installed on three �leserver VMs. As the Table 6.3 shows, in

the case of Ceph (or Dike) all VMs are OSDs, however, one of the VMs is also the MDS,

while another one is both an OSD and the cluster monitor. In the case of GlusterFS (or

HekaFS) all VMs are �leservers who manage both data and metadata. At this point, it

should be noted that a more fair con�guration for Ceph and Dike would be to use three

active MDSs, one per VM, because the �leservers of GlusterFS manage both data and

metadata. However, the feature of having multiple active MDSs in Ceph is considered

1GlusterFS is an open source, distributed �le system developed by RedHat. It consists of layers, where

features (also known as translators) can be added or removed as per the requirement [10].
2HekaFS provides a set of translators to make GlusterFS more suitable as a cloud �lesystem. It uses

identity mapping techniques to isolate the namespaces of di�erent tenants [11].

56

Filesystem Server # Type

Ceph/Dike

OSD+MDS 1 m1.xlarge

OSD+MON 1 m1.xlarge

OSD 1 m1.xlarge

GlusterFS/HekaFS File server 3 m1.xlarge

Table 6.3: Di�erent �lesystem con�gurations on AWS.

unstable3 in the version we are using. Hence, we use only one active MDS in the cases of

Ceph and Dike. Finally, all VMs have their �rst local disk (ephemeral) formatted with the

XFS �lesystem and use it to store �les or objects. In the case of Ceph, the OSD journal

is stored on the second local disk of each VM. In all con�gurations we use a replication

factor of three.

6.2 Methodology

Here we explain the experimental methodology used to evaluate Dike. Our analysis con-

centrates on metadata performance and is performed in three steps. First, we evaluate

the overhead imposed by the Dike prototype of multitenant access control in comparison

to the single-tenant Ceph. Second, we analyze both the overhead of Dike in comparison

to Ceph, as well as the overhead of HekaFS in comparison to GlusterFS on which it is

based. Then, we compare these overheads with each other in order to understand which

multitenant access control architecture introduces the lowest performance overhead. Fi-

nally, in the last step, we measure the impact of long ACLs. For this reason, we use an

administrative tool that we developed in order to assign permissions for multiple tenants

in a collection of �les and folders. We also evaluate the performance improvements of

ACL sharing.

We �rst conduct microbenchmark experiments to measure the performance of basic

metadata operations. In a next step, we experiment with application-oriented benchmarks

for applications in distributed environments in order to explore the performance of the

proposed architecture in real world applications.

3As discussed here: http://ceph.com/dev-notes/cephfs-mds-status-discussion/. Accessed: 2013-09-10.

57

We repeat each experiment to constrain the 95% con�dence-interval half-length within

5% of a selected parameter. Before each repetition of every experiment we
ush the bu�er

cache of all clients and servers. We also format the storage device used for experimentation

of every �leserver. Furthermore, we set the size of the internal MDS cache to a large

enough value in order to make sure that entries were not
ushed from the caches by the

time they were needed again.

6.3 Microbenchmarks

First, we measure the system performance with the mdtest v1.9.1 [34] from LLNL. This

is a microbenchmark running in the MPI environment over a parallel �lesystem. Each

spawned MPI task iteratively creates, stats, and removes a speci�ed number of �les and

folders. We repeat each experiment to constrain the 95% con�dence-interval half-length

within 5% of the average �le-stat throughput.

6.3.1 Optimal number of processes per client

Theoretically, with the given hardware resources we could launch a large number of client

processes to emulate the behavior of a medium size supercomputing environment, but

the excessive loading of local client resources could result in much lower than expected

performance. In this manner, we measure the performance of a single client while we

change the number of client processes. The goal of this experiment is to �nd the optimal

number of processes for forthcoming experiments. We have Dike installed on the �leservers

of the local testbed. Dike is con�gured to support a single tenant. A total number of

31104 created �les/folders are equally divided among the tasks of the experiment. We

notice that 12 processes per client give the highest throughput for the majority of the

examined operations. For example, increasing the number of processes from 1 to 12 leads

to higher throughput for �le create by about a factor of 4. The only exception is the

folder stat operation, where a single client process gives 1237 ops/s and lies 0.9% higher

that 12 client processes. Finally, as shown in Figure 6.1 the overall throughput of all the

examined operations drops slightly, when we increase the number of processes to 24.

Thus, with our existing setup, experiments with 12 processes per client yield the

58

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 6 12 24

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Number of processes

mdtest - Dike / Local

1 Client, 1 Tenant

dir-stat

file-stat

dir-create

file-create

Figure 6.1: Finding the optimal number of processes per client for the mdtest microbench-

mark on the local tesdbed.

optimal client side IOPS rate. Therefore, in the subsequent experiments with the mdtest

microbenchmark on the local testbed all results are presented with 12 client processes.

In addition, we conduct the same type of experiment on the cloud testbed (see Figure

6.2). Again, we measure the performance of a single client while we change the number

of processes. We repeat the experiment for two cases: Firstly, we have Ceph installed

on the �leservers, while secondly we have GlusterFS installed. We would like to �nd the

optimal number of client processes for both baseline �lesystems. A total number of 1000

created �les/folders are equally divided among the tasks of the experiment.

In the case of Ceph (Figure 6.2(a)) we notice that 5 processes per client give the

highest throughput for the majority of the examined operations. For example, increasing

the number of processes from 1 to 5 leads to 38% higher throughput for the �le create

operation. However, when we further increase the number of processes from 5 to 10, the

throughput of �le create drops nearly 4.5%. The only exception is the �le stat operation,

where 1 client process gives 1332 ops/s and lies 6% higher than the throughput of 1257

ops/s which is achieved with 5 client processes.

In the case of GlusterFS (Figure 6.2(b)) we reach the same conclusion: 5 processes per

client give the highest throughput for all the examined operations. However, this time the

bene�ts of 5 client processes are more clear. When we increase the number of processes

from 1 to 5, the throughput of the folder stat operation increases by about a factor of 5

and reaches 3115 ops/s. However, when we further increase the number of processes from

5 to 10, it drops to 104 ops/s.

59

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 5 10

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Number of processes

mdtest - Ceph / AWS

1 Client

dir-stat

file-stat

dir-create

file-create

(a) Ceph.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 5 10

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Number of processes

mdtest - GlusterFS / AWS

1 Client

dir-stat

file-stat

dir-create

file-create

(b) Gluster.

Figure 6.2: Finding the optimal number of processes per client for the mdtest microbench-

mark on AWS.

In conclusion, with 5 processes per client we get the best client side IOPS rate for both

Ceph and GlusterFS. Thus, in the subsequent experiments with the mdtest microbench-

mark on the cloud testbed all results are presented with 5 client processes.

6.3.2 Scalability with number of �les

In Figures 6.3(a) and 6.3(b) we measure the metadata performance of Ceph and Dike

for di�erent numbers of total �les and folders on the local testbed. We create a �le tree

with depth 1 and 10 folder leafs. In each case, we equally divide the total number of

�les/folders to leafs. We use one client with 12 client processes. Dike is con�gured to

support 36 tenants.

The measured performance is comparable between Ceph and Dike. The overhead

of Dike on all the examined operations lies between 0.4-11%. The �le and folder stat

operations seem to be less a�ected by Dike in comparison to the respective creations.

For example, the throughput of �le stat with 30000 �les reaches 1683 ops/s when Dike

is used. It lies only 2.2% lower than the maximum throughput of 1721 ops/s which is

reached when Ceph is used. On the other hand, the throughput of �le create, when 30000

�les are created, reaches 250 ops/s with Dike and lies 11% lower than Ceph with 282

60

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 File ops & number of files

mdtest / Local

1 Client

Ceph
Dike

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 File ops & number of files

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 File ops & number of files

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 File ops & number of files

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 File ops & number of files

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 File ops & number of files

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 File ops & number of files

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 File ops & number of files

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 File ops & number of files

mdtest / Local

1 Client

(a) File operations performance with

Ceph and Dike.

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 Folder ops & number of folders

mdtest / Local

1 Client

Ceph
Dike

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 Folder ops & number of folders

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 Folder ops & number of folders

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 Folder ops & number of folders

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 Folder ops & number of folders

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 Folder ops & number of folders

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 Folder ops & number of folders

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 Folder ops & number of folders

mdtest / Local

1 Client

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 30k 120k 300k

 Folder ops & number of folders

mdtest / Local

1 Client

(b) Folder operations performance

with Ceph and Dike.

Figure 6.3: Ceph vs Dike with di�erent number of total �les and folders. Dike supports

36 tenants.

ops/s. We also notice that in both Ceph and Dike the throughput of �le/folder stat and

folder create operations drops as the number of total �les and folders increases. However,

the throughput of the �le create operation increases slightly as the total number of �les

increases from 30000 to 120000 and �nally drops when the total number of �les reaches

300000.

6.3.3 Scalability with number of clients

In Figure 6.4 we measure the scaling of metadata operations with the number of MPI

processes that are launched on available clients. We use the local testbed for experimen-

tation. We examine the cases that either every client creates �les in a private folder of the

�lesystem or all clients use a shared folder. Each time, a total number of 31104 created

�les and folders are equally divided among the tasks of the experiment. Dike supports 36

tenants and has each client accessing the �lesystem through a dedicated tenant.

Figure 6.4(a) shows the performance scaling of Dike with number of clients. In the

case of the private folder tests, the throughput of the majority of the examined operations

continues to increase as we increase the number of clients from 1 to 36. In particular,

61

 10

 100

 1000

 10000

 100000

cre
a
te

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

1 client

12 clients

24 clients

36 clients

 10

 100

 1000

 10000

 100000

sta
t

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

 10

 100

 1000

 10000

 100000

re
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

 10

 100

 1000

 10000

 100000

cre
a
te

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

 10

 100

 1000

 10000

 100000

sta
t

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

 10

 100

 1000

 10000

 100000

re
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

(a) Scalability of Dike.

 10

 100

 1000

 10000

 100000

create

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

Ceph
Dike

 10

 100

 1000

 10000

 100000

stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

 10

 100

 1000

 10000

 100000

rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

 10

 100

 1000

 10000

 100000

create

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

 10

 100

 1000

 10000

 100000

stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

 10

 100

 1000

 10000

 100000

rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

(b) Ceph vs Dike.

Figure 6.4: Performance comparison of Ceph and Dike across di�erent number of clients.

Dike supports 36 tenants.

the throughput of the create operation increases by a factor of 5.5, while the throughput

of stat increases by a factor of 37. However, the throughput of remove drops beyond 24

clients. This behavior is reasonable given the di�erent intensity of contention caused by

shared (e.g. stat) or exclusive (e.g. remove) locks respectively involved in the operations.

On the other hand, in the case of the shared folder tests, only the throughput of stat

increases from 1134 ops/s to 4948 ops/s, as we increase the number of clients from 1 to

36. The throughput of create remains stable at around 40 ops/s, while the throughput

of remove drops from 59 ops/s to 43 ops/s. Again, this behavior is reasonable because

the stat operation involves shared read locks, while the create and remove operations

need exclusive write locks. Overall, the throughput of all the examined operations on

the shared folder tests is lower than the respective throughput on the private folder tests

because of higher lock contention.

In Figure 6.4(b) we compare the throughput of mdtest running on 36 clients. The

measured performance is comparable between Ceph and Dike. The overhead of Dike lies

between 0-20%. Dike has no negative e�ect on �le stat operation. Instead, �le stat is

improved by 1% when Dike is used. The operation that is mostly a�ected by Dike is �le

create over a private folder, where Dike with 1022 ops/s lies 20% lower than Ceph with

62

1287 ops/s. This is likely the result of the added code within the inode creation process,

which updates both the inode and its extended attributes.

6.3.4 Comparison with other multitenancy solutions

In Figure 6.5 we measure the multitenancy overheads incurred by Dike and HekaFS over

their baseline equivalents. The goal of this experiment is to understand how existing

solutions that use identity mapping techniques to support multitenancy scale to a large

number of tenants, and how they compare with our prototype of the proposed access

control architecture. This time we use the Amazon Web Services for experimentation.

Before presenting the results, we mention some of the key features of HekaFS. HekaFS

is a translation layer that adds multitenancy functionality to GlusterFS. In order to

isolate the identity space of each tenant it uses identity mapping to map local tenant IDs

to globally-unique IDs. It stores these mappings in a map �le. During the initialization

phase, the translator reads the ID mappings from the map �le and loads them into an

in-memory table structure. Each time that the translator needs to perform a mapping

from a local tenant ID to a global ID or the opposite, it locks the whole in-memory

mapping table, and then performs a linear search to �nd the requested entry on the table.

When the translator encounters a new local tenant ID, it �rst adds a new mapping to the

in-memory table, and in a next step it writes the whole table to the mapping �le in order

to make the change persistent.

In Figures 6.5(a) and 6.5(b) we compare Ceph and Dike with mdtest across di�erent

number of clients4. In the case of Dike, a client accesses the �lesystem through a dedicated

tenant. Each time, a total number of 48000 created �les and folders are equally divided

among the tasks of the experiment. We con�gure Dike to support either 1000 tenants

(denoted as Dike-1k) or 5000 tenants (denoted as Dike-5k). The scalability of both �le

and folder metadata operations is comparable between Ceph and Dike. The throughput

of all the examined operations continues to increase as we increase the number of clients

from 1 to 32. With 32 clients we get the best IOPS rate. The only exception is the remove

operation whose maximum throughput drops slightly beyond 16 clients. However, this is

reasonable due to lock contention, since the remove operation involves exclusive locks.

4We use t1.micro EC2 instances for clients.

63

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

(a) File operations performance with

Ceph and Dike.

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

Ceph vs Dike

(b) Folder operations performance

with Ceph and Dike.

 1

 10

 100

 1000

 10000

 100000

C
re

a
te

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

GlusterFS

HekaFS-1k

HekaFS-5k

 1

 10

 100

 1000

 10000

 100000

R
e
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

S
ta

t

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

C
re

a
te

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

R
e
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

S
ta

t

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

C
re

a
te

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

R
e
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

S
ta

t

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

(c) File operations performance with

GlsuterFS and HekaFS.

 1

 10

 100

 1000

 10000

 100000

C
re

a
te

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

GlusterFS vs HekaFS

GlusterFS

HekaFS-1k

HekaFS-5k

 1

 10

 100

 1000

 10000

 100000

R
e
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

S
ta

t

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

C
re

a
te

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

R
e
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

S
ta

t

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

C
re

a
te

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

R
e
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

GlusterFS vs HekaFS

 1

 10

 100

 1000

 10000

 100000

S
ta

t

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 1 Client 16 Clients 32 Clients

 Folder operations

mdtest / AWS

GlusterFS vs HekaFS

(d) Folder operations performance

with GlsuterFS and HekaFS.

Figure 6.5: Performance comparison of Dike and HekaFS across di�erent number of clients

and supported tenants with mdtest.

Figure 6.5(a) compares the performance of di�erent �le metadata operations between

Ceph and Dike. With 1 client, the throughput of the �le create operation is 81 ops/s with

Ceph, while it reaches 78 ops/sec with Dike and 1000 supported tenants. Increasing the

number of supported tenants to 5000 seems not to a�ect throughput, which reaches 80

ops/s and remains slightly below 81 ops/s. Similarly, Dike incurs a limited overhead on

64

the �le remove and �le stat operations. The overhead of Dike on �le remove lies between

4-5%, while its overhead on �le stat lies between 0-2%. With 16 clients, the throughput

is nearly identical between Ceph and Dike. Only a limited overhead of 1% on the �le stat

operation is incurred by Dike when it supports 5000 tenants. The most interesting case,

however, is when 32 clients run the mdtest microbenchmark in parallel. In this case we

get the best client-side IOPS rate for both Ceph and Dike. The overhead incurred by Dike

when it is con�gured to support 1000 tenants lies between 0-12%. When we increase the

number of supported tenants to 5000, the performance is comparable with the previous

case with only a 2% overhead on the �le create operation.

Figure 6.5(b) compares the performance of di�erent folder metadata operations be-

tween Ceph and Dike. When 1 client runs the mdtest microbenchmark, Dike does not

a�ect the throughput of folder create operation. In addition, the throughput of folder

remove is only reduced by 4%, when Dike with 5000 tenants is used. Finally, Dike incurs

an overhead of 11% on the �le stat operation when it either supports 1000 or 5000 ten-

ants. With 16 clients, we observe a noticeable decrease of 50% in throughput of the folder

create operation when we use Dike with either 1000 or 5000 tenants. On the other hand,

the throughput of folder remove decreases slightly by 5% with Dike, while the throughput

of folder stat is nearly identical between Ceph and Dike. As in the case of �le metadata

operations, the best client-side IOPS rate is achieved with 32 clients for both Ceph and

Dike. The overhead incurred by Dike when it is con�gured to support 1000 tenants, lies

between 0-16%. The folder create is the only operation that is a�ected by Dike. In partic-

ular, its throughput reaches 1655 ops/s when we use Ceph. However, when we use Dike

with 1000 tenants, it reaches 1390 ops/s, which implies a reduction of 16%. Increasing

the number of supported tenants on Dike to 5000 seems not to a�ect throughput which

reaches 1401 ops/s. This indicates that Dike scales well to a large number of tenants.

In Figures 6.5(c) and 6.5(d) we compare HekaFS and GlusterFS with mdtest across

di�erent number of clients. In the case of HekaFS, a client accesses the �lesystem through

a dedicated tenant. Again, a total number of 48000 created �les and folders are equally

divided among the tasks of the experiment. We con�gure HekaFS to support either 1000

tenants (denoted as HekaFS-1k) or 5000 tenants (denoted as HekaFS-5k). When we use

GlusterFS, the throughput of all the examined operations continues to increase as we

increase the number of clients from 1 to 32. With 32 clients we get the best IOPS rate.

65

In HekaFS with 1000 tenants the throughput of all the examined operations, except the

folder stat, continues to increase as we increase the number of clients from 1 to 32, but

with a lower rate in comparison to GlusterFS. However, the scalability of HekaFS is

dramatically a�ected when the number of supported tenants reaches 5000. For example,

the throughput of the �le stat operation reaches 2576 ops/s when 16 clients run the

mdtest microbenchmark. Nevertheless, when we increase the number of clients to 32, the

throughput of �le stat drops to 2290 ops/s.

Figure 6.5(c) compares the performance of di�erent �le metadata operations between

GlusterFS and HekaFS. With 1 client, the throughput of the �le create and �le remove

operations is not a�ected by HekaFS. However, the throughput of �le stat is reduced by

15% when we use HekaFS with 5000 tenants. Similarly, when 16 clients run the mdtest

microbenchmark, the performance of all the examined operations is nearly identical be-

tween GlusterFS and HekaFS. Only the throughput of �le stat is reduced by 3% when we

use HekaFS with 5000 tenants. However, in the case of 32 clients, the overhead incurred

by HekaFS when it is con�gured to support 1000 tenants is considerable and lies between

10-49%. The most a�ected operation is the �le stat whose throughput is reduced by 49%

when we use HekaFS. Additionally, the throughput of �le create reaches 1690 ops/s with

GlusterFS, but with HekaFS it only reaches 1158 ops/s. This implies a 31% reduction

of its throughput. On the other hand, �le remove is less a�ected and its throughput is

reduced by nearly 10% with HekaFS. When we increase the number of supported ten-

ants to 5000, the system performance degrades even further and the incurred overhead

of HekaFS over GlusterFS lies between 38-83%. Again, the �le stat is the operation that

is mostly a�ected by HekaFS. Its throughput reaches 689 ops/s and lies 83% below its

corresponding throughput when GlusterFS is used. The other two examined metadata

operations are also a�ected by HekaFS. In particular, the throughput of �le create is

reduced by 59%, while the throughput of �le remove is reduced by 38%.

Figure 6.5(d) compares the performance of di�erent folder metadata operations be-

tween GlusterFS and HekaFS. When 1 client runs the mdtest microbenchmark, the perfor-

mance of all the examined operations is nearly identical between GlusterFS and HekaFS.

However, with 16 clients HekaFS begins to adversely a�ect their throughput. In partic-

ular, the throughput of folder create is reduced by 24% when HekaFS with 1000 tenants

is used, and when HekaFS supports 5000 tenants, it is reduced by 47%. The throughput

66

 0

 20

 40

 60

 80

 100

create

O
v
e

rh
e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

 0

 20

 40

 60

 80

 100

stat

O
v
e

rh
e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

 0

 20

 40

 60

 80

 100

rem
ove

O
v
e

rh
e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

 0

 20

 40

 60

 80

 100

create

O
v
e

rh
e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

 0

 20

 40

 60

 80

 100

stat

O
v
e

rh
e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

 0

 20

 40

 60

 80

 100

rem
ove

O
v
e

rh
e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

Figure 6.6: Multitenancy overhead comparison between HekaFS and Dike.

of folder stat, however, is more seriously a�ected by HekaFS. When 1000 tenants are

supported, its throughput reaches 3224 ops/s and is 56% below the throughput of 7428

ops/s, which is achieved with GlusterFS. Adding 5000 tenants to HekaFS impacts the

performance of folder stat further. In this case, its throughput only reaches 2574 ops/s

and lies 65% below the baseline throughput performance. With 32 clients, the overhead

incurred by HekaFS is more considerable. As in the previous case of 16 clients, the folder

stat is the operation that is mostly a�ected by HekaFS. Its throughput reaches 7114 ops/s

when HekaFS with 1000 tenants is used, and lies 49% below 13858 ops/s which is achieved

with GlusterFS. Increasing the number of tenants to 5000 in HekaFS leads to a further

reduction of the folder stat throughput. In this case, its throughput only reaches 2245

ops/s and is 84% below the baseline throughput performance.

Finally, in Figure 6.6 we summarize the overheads incurred by Dike and HekaFS over

the �lesystems that they are based in the case of 32 clients. As the �gure shows, Dike with

1000 supported tenants incurs an overhead of up to 12% to the �le metadata operations.

This overhead is comparable with the maximum incurred overhead of 14% when the

system supports 5000 tenants. In addition, Dike with 1000 tenants incurs a maximum

overhead of 16% to the folder metadata operations, while with 5000 tenants the overhead

is up to 15%. On the other hand, HekaFS with 1000 supported tenants incurs an overhead

of up to 49% to the �le and folder metadata operations. However, the maximum incurred

overhead reaches 84% when the number of supported tenants is further increased to 5000.

In conclusion, Dike incurs a limited overhead and scales well to a large number of

67

tenants. The operation that is mostly a�ected by Dike is �le/folder create. This is in

par with the experiments conducted in the local cluster (see subsection 6.3.3). On the

other hand, the mapping layer of HekaFS can be a performance bottleneck for scalability

when the number of tenants increases. The operation that is mostly a�ected by HekaFS

is �le and folder stat. This is reasonable because on each stat operation HekaFS needs

to perform a reverse identity mapping in order to map a global ID to the corresponding

tenant local ID. Thus, when the mapping table gets too large, the time needed to search

the table or to write the table to disk increases, and as a consequence the overall system

performance is being reduced.

6.4 Application-oriented benchmarks

We conduct application-level experiments in order to evaluate the performance of Dike in

real life collaborative use cases.

6.4.1 MapReduce application

The �rst application that we use is Stanford's Phoenix version 2 [50] shared-memory

implementation of Google's MapReduce. Our MapReduce application is called reverse

index: it receives a collection of HTML �les and generates the text index with links to

the �les. Our dataset5 contains 78,355 �les in 14,025 folders and occupies 1.01 GB. We

measure the total running time, as well as the latency breakdown of several metadata

operations during the index building. We repeated each experiment to constrain the 95%

con�dence-interval half-length within 5% of the average total running time.

6.4.2 Comparison of Ceph and Dike with MapReduce

In Figure 6.7 we compare Ceph and Dike with MapReduce across di�erent number of

clients on the local testbed. Dike is con�gured with 36 tenants. Each client on Dike

accesses the �lesystem through a dedicated tenant. The total running time (Figure 6.7(a))

5Stanford's reverse index dataset: http://mapreduce.stanford.edu/data�les/reverse index.tar.gz. Ac-

cessed: 2013-08-19.

68

 0

 500

 1000

 1500

 2000

 1 12 24 36

In
d

e
x
 b

u
il

d
 t

im
e

 (
s

)

 Number of clients

MapReduce / Local

Ceph vs Dike

Ceph
Dike

(a) Total time to build the index.

 0

 1

 2

 3

 4

 5

 6

C
eph

D
ike

O
p

e
ra

ti
o

n
 l

a
te

n
c
y

 (
m

s
)

 1 Client 24 Clients 36 Clients

 Number of clients

MapReduce / Local

Ceph vs Dike

read-dir file-open file-stat

 0

 1

 2

 3

 4

 5

 6

C
eph

D
ike

O
p

e
ra

ti
o

n
 l

a
te

n
c
y

 (
m

s
)

 1 Client 24 Clients 36 Clients

 Number of clients

MapReduce / Local

Ceph vs Dike

 0

 1

 2

 3

 4

 5

 6

C
eph

D
ike

O
p

e
ra

ti
o

n
 l

a
te

n
c
y

 (
m

s
)

 1 Client 24 Clients 36 Clients

 Number of clients

MapReduce / Local

Ceph vs Dike

(b) Latency of metadata operations.

Figure 6.7: Comparison of Ceph and Dike with MapReduce across di�erent number of

clients. Dike supports 36 tenants.

increases as we increase the number of clients that run the reverse index in parallel.

However, it is comparable between Ceph and Dike. The overhead imposed by Dike is

negligible and it lies between 0-3.8%. The 3.8% overhead occurs when a single client runs

the reverse index application. In this case, when we use the original Ceph, the total time

spent to build the index reaches 423.61 seconds, which is the lowest measured time, while

it reaches 439.75 seconds when we use Dike.

Figure 6.7(b) shows the latency breakdown of metadata operations. In the case of

Dike, the most of them are completed in latency comparable to that of the original Ceph.

One exception is readdir whose latency lies 7% higher when Dike is used in comparison to

Ceph. This is due to the extra access control information that is stored in the extended

attributes of each �le/folder.

6.4.3 Impact of ACL size

In real-life collaborative environments where an enormous number of end users is involved,

situations where �les are shared by a large number of users are common. For this reason,

we emulate a real-life �le sharing scenario in order to understand how �le sharing and in

particular the size of ACLs impacts the overall system performance.

69

 0

 500

 1000

 1500

 2000

 1 12 24 36

In
d

e
x
 b

u
il

d
 t

im
e

 (
s

)

 Total clients

MapReduce / Local

Dike - no ACL sharing

1 Tenant/File

10 Tenants/File

100 Tenants/File

(a) Total time to build the index.

 0

 10

 20

 30

 40

 50

1 10 100

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s
)

 1 Client 24 Clients 36 Clients

 Number of tenants/file and clients

MapReduce / Local

Dike - no ACL sharing

read-dir file-open file-stat

 0

 10

 20

 30

 40

 50

1 10 100

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s
)

 1 Client 24 Clients 36 Clients

 Number of tenants/file and clients

MapReduce / Local

Dike - no ACL sharing

 0

 10

 20

 30

 40

 50

1 10 100

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s
)

 1 Client 24 Clients 36 Clients

 Number of tenants/file and clients

MapReduce / Local

Dike - no ACL sharing

(b) Latency of metadata operations.

Figure 6.8: Impact of long ACLs on the overall system performance. Dike supports 100

tenants.

In Figure 6.8 we measure the system performance impact when the size of the �le and

folder ACLs increases. In order to increase the size of ACLs, we permit multiple tenants to

access the dataset. To accomplish this we developed a tool which grants a speci�c tenant

access to �les and folders. Thus, the size of the extended attributes of each �le and folder

is being increased, because an extra entry is being added for each tenant. We consider

three di�erent sharing scenarios: (a) only 1 tenant can access the dataset, (b) 10 tenants

have read access to the shared dataset, and (c) 100 tenants have read access to the shared

dataset. We use the local testbed for experimentation. Each time, Dike is con�gured with

100 tenants and a client on Dike accesses the �lesystem through a dedicated tenant.

In all the examined cases, the total running time (Figure 6.8(a)) increases as we

increase the number of clients that run the reverse index application. The running time

of the application is comparable in both cases where the dataset is shared by 1 and 10

tenants. Only a slight 2.6% increase of the application's total running time is observed

when 36 clients run the reverse index in parallel. However, long ACLs (100 tenants/�le)

impose a signi�cant increase on the total time spent to build the index. When a single

client runs the reverse index application and the dataset is shared by 100 tenants, the

total running time reaches 1437 seconds. This implies an increase of about a factor of 3

70

when compared to the scenario where only one tenant has access to the dataset.

In Figure 6.8(b) we measure the latency breakdown of di�erent metadata operations

in order to better understand which operation is mostly a�ected by long ACLs and is

responsible for the largest proportion of time spent to build the index. We observe that

the latency of the majority of operations is comparable. However, when ACLs become too

long (100 tenants/�le), then the latency of the readdir operation increases by a factor of

10. In particular, when a single client runs the reverse index application, the latency of the

readdir operation reaches 4 ms in the case where the index is shared by only one tenant.

Instead, when the index is shared by 100 tenants, the measured latency of the readdir

operation reaches 40 ms. This latency increase is high because in a readdir operation the

MDS fetches the entire directory from the OSDs (if it isn't already in its cache), including

inode contents. As we explained in subsection 2.4.2, Ceph (and Dike therefore) stores

the contents of a folder (including the extended attributes of each �le) in a single object.

If this object exceeds an upper limit, it is also possible to split the folder contents into

multiple objects. However, in the conducted experiments we have disabled fragmentation,

because it is still considered an unstable feature6 of the Ceph version we are using. Hence,

when the size of extended attributes of each �le gets large, the MDS has to fetch a lot of

information from the OSDs which leads to higher latencies.

When ACLs tend to become too long, associating an ACL to each �le leads to an

enormous number of long ACLs that the system needs to store and manage, and can

cost considerable performance overheads. As we discussed in section 4.5, users prefer to

add new �les to an existing folder with its permissions already set instead of setting the

access rights on newly created �les. Thus, it is common for �les under the same folder to

have identical access rights. Hence, we permit �les with identical access rights to share

their folder's global ACL, which we call tree ACL, in order to improve scalability and

performance in the cases where ACLs tend to increase in number and size.

In Figure 6.9 we measure the system performance impact of Dike with ACL sharing

(denoted as Dike-S) in the local testbed and compare it with the case where we have

ACL sharing turned o�. Again, the total running time (Figure 6.9(a)) increases as we

increase the number of clients that run the reverse index. However, when ACLs are long

(100 tenants/�le) and a single client runs the reverse index application, we notice a 91%

6As discussed here: http://ceph.com/dev-notes/cephfs-mds-status-discussion/. Accessed: 2013-09-10.

71

 0

 500

 1000

 1500

 2000

 1 12 24 36

In
d

e
x
 b

u
il

d
 t

im
e

 (
s

)

 Total clients

MapReduce / Local

Dike with ACL sharing

1 Tenant/File

10 Tenants/File

100 Tenants/File

(a) Total time to build the index.

 0

 10

 20

 30

 40

 50

1 10 100

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s
)

 1 Client 24 Clients 36 Clients

 Number of tenants/file and clients

MapReduce / Local

Dike with ACL sharing

read-dir file-open file-stat

 0

 10

 20

 30

 40

 50

1 10 100

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s
)

 1 Client 24 Clients 36 Clients

 Number of tenants/file and clients

MapReduce / Local

Dike with ACL sharing

 0

 10

 20

 30

 40

 50

1 10 100

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s
)

 1 Client 24 Clients 36 Clients

 Number of tenants/file and clients

MapReduce / Local

Dike with ACL sharing

(b) Latency of metadata operations.

 0

 500

 1000

 1500

 2000

 1 10 100

In
d

e
x
 b

u
il

d
 t

im
e
 (

s
)

 Tenants/file

MapReduce / Local

36 Clients

Dike

Dike-S

(c) Total time to build the index.

 0

 10

 20

 30

 40

 50

D
ike

D
ike-S

O
p

e
ra

ti
o

n
 l
a

te
n

c
y

 (
m

s
)

 1 Client 24 Clients 36 Clients

 Filesystem and number of clients

MapReduce / Local

Scalability (100 tenants/file)

readdir file-open file-stat

 0

 10

 20

 30

 40

 50

D
ike

D
ike-S

O
p

e
ra

ti
o

n
 l
a

te
n

c
y

 (
m

s
)

 1 Client 24 Clients 36 Clients

 Filesystem and number of clients

MapReduce / Local

Scalability (100 tenants/file)

 0

 10

 20

 30

 40

 50

D
ike

D
ike-S

O
p

e
ra

ti
o

n
 l
a

te
n

c
y

 (
m

s
)

 1 Client 24 Clients 36 Clients

 Filesystem and number of clients

MapReduce / Local

Scalability (100 tenants/file)

(d) Latency of metadata operations.

Figure 6.9: The bene�ts of ACL sharing when ACLs tend to become very long. Dike

supports 100 tenants.

increase to the total running time of the application which implies an improvement of

39% when compared with the case where ACL sharing is disabled (see Figure 6.9(c)).

In Figure 6.9(b) we measure the latency breakdown of metadata operations during

the experiment. Again, the latency of the majority of operations is comparable. Only

when ACLs become long, the latency of readdir increases by a factor of 3, when a single

client runs the application. In particular, when the index is shared by only one tenant,

the latency of the readdir operation reaches 4 ms. Instead, when the index is shared by

72

 0

 20

 40

 60

 80

 100

1 10 100

U
ti

li
z
a
ti

o
n

 (
%

)

 Dike Dike-S

 Tenants/file

MapReduce / Local

MDS - Total CPU

User
System

I/O-Wait
Idle

 0

 20

 40

 60

 80

 100

1 10 100

U
ti

li
z
a
ti

o
n

 (
%

)

 Dike Dike-S

 Tenants/file

MapReduce / Local

MDS - Total CPU

User
System

I/O-Wait
Idle

(a) MDS CPU utilization.

 0

 20

 40

 60

 80

 100

1 10 100

U
ti

li
z
a
ti

o
n

 (
%

)

 Dike Dike-S

 Tenants/file

MapReduce / Local

OSD - Total CPU

User
System

I/O-Wait
Idle

 0

 20

 40

 60

 80

 100

1 10 100

U
ti

li
z
a
ti

o
n

 (
%

)

 Dike Dike-S

 Tenants/file

MapReduce / Local

OSD - Total CPU

User
System

I/O-Wait
Idle

(b) OSD CPU utilization.

 0

 20

 40

 60

 80

 100

1 10 100

U
ti

li
z
a
ti

o
n

 (
%

)

 Dike Dike-S

 Tenants/file

MapReduce / Local

OSD - Total Disk

Busy Idle

 0

 20

 40

 60

 80

 100

1 10 100

U
ti

li
z
a
ti

o
n

 (
%

)

 Dike Dike-S

 Tenants/file

MapReduce / Local

OSD - Total Disk

Busy Idle

(c) OSD Disk utilization.

Figure 6.10: CPU and disk utilization of �leserver nodes.

100 tenants, the measured latency of the readdir operation reaches 13 ms. However, it is

3 times lower than the measured readdir latency of 40 ms when ACL sharing is turned

o� and the dataset is shared by 100 tenants (see Figure 6.9(d)).

A possible overhead of multiple long ACLs is the CPU cost that is needed so that the

MDS to be able to manage them in order to enforce access control. In addition, multiple

long ACLs may impose high I/O loads on the OSDs.

In Figure 6.10 we evaluate the impact of multiple long ACLs to the total CPU utiliza-

tion of the MDS and OSDs, as well as its impact to the disk utilization of the OSDs. In

73

the case where ACL sharing is disabled, we observe that the total CPU utilization of the

MDS remains below 6%, when the ACLs are small. However, it reaches 23%, when the

ACLs become long. Instead, as Figure 6.10(a) shows, when we enable ACL sharing, the

average CPU utilization only reaches 11%.

In addition, Figure 6.10(b) shows that in both cases where ACL sharing is turned o�

or on, the CPU of the OSDs remains idle, whether doing nothing or waiting for the I/O

operations to �nish. However, when ACLs are long and the ACL sharing mechanism is

disabled, the disk utilization reaches 67% in comparison to the 9% average utilization

when the ACLs are small. Instead, as Figure 6.10(c) shows, ACL sharing reduces disk

utilization in the case of long ACLs to 28%.

6.4.4 Comparison with other multitenancy solutions

In this subsection we study the comparative multitenancy overhead incurred by Dike

over Ceph with the corresponding overhead incurred by HekaFS over GlusterFS using an

application-oriented experiment (Figure 6.11). For this purpose we use the reverse index

application on AWS with one client7.

In Figure 6.11(a) we compare Ceph and Dike with the reverse index application. We

con�gure Dike to support either 100 tenants (denoted as Dike-100) or 1000 tenants (de-

noted as Dike-1k). We notice that the total running time of the reverse index application

is 328 seconds when we use Ceph. On the other hand, it reaches 346 seconds when we use

Dike with 100 tenants. Thus, Dike with 100 tenants adds an extra latency of 5% to the

total application's running time. Then, we increase the number of supported tenants on

Dike to 1000 and repeat the same experiment. This time, the application's total running

time reaches 394 seconds, which implies a 20% of extra latency.

In Figure 6.11(b) we repeat the same experiments as above, but this time we compare

GlusterFS and HekaFS. We con�gure HekaFS to support either 100 tenants (denoted

as HekaFS-100) or 1000 tenants (denoted as HekaFS-1k). The total running time of the

reverse index is 375 seconds when we use GlusterFS. However, it reaches 545 seconds when

we use HekaFS with 100 tenants, which implies an increase of 31%. Increasing the number

of supported tenants in HekaFS leads to a higher added latency. In particular, when we

7We use a c1.medium instance for the client.

74

 0

 100

 200

 300

 400

 500

 600

 700

Ceph Dike-100 Dike-1k

In
d

e
x
 b

u
il

d
 t

im
e

 (
s

)

Filesystem

MapReduce / AWS

Ceph vs Dike

(a) Comparison of Ceph and Dike

across di�erent number of supported

tenants.

 0

 100

 200

 300

 400

 500

 600

 700

GlusterFS HekaFS-100 HekaFS-1k

In
d

e
x
 b

u
il

d
 t

im
e

 (
s

)

Filesystem

MapReduce / AWS

GlusterFS vs HekaFS

(b) Comparison of GlusterFS and

HekaFS across di�erent number of

supported tenants.

 0

 20

 40

 60

 80

 100

100 1000

O
v
e
rh

e
a
d

 (
%

)

Tenants

MapReduce / AWS

Multitenancy overhead

HekaFS

Dike

(c) Multitenancy overhead compari-

son between HekaFS and Dike.

Figure 6.11: Performance comparison of Dike and HekaFS across di�erent number of

supported tenants with MapReduce. We use a single client (c1.medium EC2 instance).

use HekaFS with 1000 tenants, the total running time of the reverse index reaches 656

seconds. This implies a 75% of extra latency.

In Figure 6.11(c) we can see the added overheads of HekaFS and Dike. The overhead

incurred by Dike lies between 5-20% and is lower than the corresponding overhead of

75

HekaFS, which lies between 31-75%. These results verify our previous conclusion that

multitenancy solutions which perform identity mappings can adversely a�ect the overall

system performance when the number of tenants increases.

6.4.5 Linux compilation

In a di�erent application-oriented experiment we store the source of the Linux kernel

(version 3.5.5) in a shared folder of the �lesystem. Then we make the code accessible to

private folders of the tenants through soft links. We measure the average times to create

the soft links and to build the system image. We repeated the experiment to constrain

the 95% con�dence-interval half-length within 5% of the average time to build the system

image.

In Figure 6.12 we compare Ceph and Dike with Linux compilation across di�erent

number of clients on the local testbed. We have ACL sharing disabled on Dike. We

measure the average time to create soft links on the shared Linux tree and the average

time to build the system image by up to 12 clients assuming dedicated tenant per client

in the Dike case. The extra latency added by Dike to soft link creation time is 4.5% with

one client and 2% with 12 clients. In addition, the image building times are comparable

between Ceph and Dike. The overhead imposed by Dike is negligible and it lies between

0-0.7%. The 0.7% overhead occurs when a single client runs the experiment. In this case,

the image building time is 983 seconds in the case of Dike, where in the case of Ceph it

lies 0.7% lower at 976 seconds.

Figure 6.12(b) evaluates the impact of long ACLs on the Linux kernel compilation

experiment. For this experiment we have turned o� ACL sharing. The extra latency

added to soft link creation time when ACLs are long (100 tenants/�le) is 14.5% with 1

client and 1.7% with 12 clients. In addition, the image building time for a single client

lies 13% higher when ACLs are long, and for 12 clients lies 9% higher.

We also repeat the same experiment with ACL sharing turned on. Figure 6.12(c)

shows the results. For long ACLs (100 tenants/�le), the link creation time is nearly

similar to the respective time when only a single tenant has access to the Linux kernel

source. Regarding the image building time, with a single client the results are comparative

with the case in which ACL sharing is turned o�. However, with 12 clients, ACL sharing

76

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

C
eph

D
ike

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Filesystem and number of clients

Linux Build / Local

Ceph vs Dike

Create-tree Build

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

C
eph

D
ike

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Filesystem and number of clients

Linux Build / Local

Ceph vs Dike

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

C
eph

D
ike

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Filesystem and number of clients

Linux Build / Local

Ceph vs Dike

(a) Ceph vs Dike.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 1
0

1
0
0

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Number of tenants/file and clients

Linux Build / Local

Dike - no ACL sharing

Create-tree Build

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 1
0

1
0
0

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Number of tenants/file and clients

Linux Build / Local

Dike - no ACL sharing

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 1
0

1
0
0

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Number of tenants/file and clients

Linux Build / Local

Dike - no ACL sharing

(b) Dike with ACL sharing turned o�.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 1
0

1
0
0

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Number of tenants/file and clients

Linux Build / Local

Dike with ACL sharing

Create-tree Build

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 1
0

1
0
0

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Number of tenants/file and clients

Linux Build / Local

Dike with ACL sharing

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 1
0

1
0
0

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Number of tenants/file and clients

Linux Build / Local

Dike with ACL sharing

(c) Dike with ACL sharing turned on.

Figure 6.12: Linux compilation. Dike supports 100 tenants.

improves the total time by 5% in comparison to the case where Dike does not use ACL

sharing.

6.5 Summary

We experimentally evaluate a prototype implementation of the proposed architecture us-

ing microbenchmarks and application-level benchmarks. For experimentation we use two

77

environments: (a) a local cluster and (b) a cloud platform. In summary, we demon-

strate that our prototype adds a limited performance overhead, while it enables secure

multitenancy. Additionally, our prototype scales well to a large number of tenants with-

out a�ecting the overall system performance. Furthermore, we notice that long ACLs,

which are common in real life collaborative environments can adversely a�ect system

performance. However, the technique of ACL sharing that we introduced mitigates this

problem.

In conclusion, our prototype adds a limited performance overhead and scales well to a

large number of clients and tenants, in contrast to existing solutions that require an extra

layer to map a local tenant ID to a globally-unique ID. This identity mapping layer can

be a performance bottleneck for scalability and the proposed architecture eliminates it.

78

Chapter 7

Related research

7.1 Multitenancy in �lesystem storage clouds

7.2 Access control in multitenant �lesystems

7.3 Access control in distributed �lesystems

7.4 Summary

In this chapter we review comparative studies that attempt to enable secure multite-

nancy in �lesystem storage clouds. We also outline the most important studies that aim

to provide trusted cloud storage. Finally, we survey previous works for access control in

distributed �lesystems.

7.1 Multitenancy in �lesystem storage clouds

In this section we present recent studies that attempt to provide secure multitenancy in

�lesystem storage clouds.

7.1.1 Hypervisor-level multitenancy

In hypervisor-level multitenancy, the hypervisor itself is responsible to track information

ow between virtual machines and enforce access control. A system that follows this

79

approach is presented by Mundata et al. [41]. Their system, which is called SilverLine,

implements two types of isolation at the hypervisor level: (1) data isolation and (2)

network isolation. To enforce data isolation, SilverLine uses labels to control information

ow between �les and processes within a single machine or across the network. In fact,

tenants are allowed to label data with security labels; trusted enforcers at the hypervisor

level then use these labels to ensure that data from one tenant is not propagated to

untrusted server instances belonging to other tenants, or to locations outside the cloud.

A similar study is presented by Popa et al. [44]. CloudPolice implements access con-

trol at the end-hosts within hypervisors. It provides various access control policies, such

as complete tenant isolation, selective inter-tenant communication, fair-sharing among

tenants, rate-limiting tenants, and allowance of locally initiated connections. Hypervisors

know the policies of their hosted virtual machines and communicate with other hypervi-

sors at runtime in order to learn external policies and control information
ows. When

a new information
ow is being initiated by a virtual machine, the source hypervisor

communicates with the destination hypervisor and the latter checks the policy for the

destination virtual machine. If the policy forbids the tra�c, then the destination hyper-

visor blocks it and appropriately informs the source hypervisor. Otherwise, if the tra�c

is allowed, the destination hypervisor initiates the state for this
ow.

Kurmus et al. [25] implement a virtualization-based multitenancy architecture using

KVM by running multiple virtual interface nodes as guests on the same physical node.

Virtual machine guests that belong to the same tenant maintain a distributed �lesystem

with the tenant's data. Each virtual machine runs one instance of the �le-service and

exports the �lesystem through a network �lesystem protocol such as NFS. Tenant isola-

tion is generally applied at the hypervisor who is in charge to block inter-tenant tra�c

according to tenant-speci�c policies.

All the above studies successfully isolate tenants at the hypervisor level. However, this

approach is not suitable for a collaborative �lesystem storage cloud because it hinders

group collaboration and leads to performance scalability problems. The main reason

behind this, is the fact that the �lesystem is not deployed as a shared service but a

separate �le-service instance runs for each tenant in a tenant-dedicated virtual machine.

Furthermore, it is observed [25] that the addition of multiple isolation layers and policy

enforcers at the hypervisors incurs a signi�cant performance overhead.

80

7.1.2 Operating system-level multitenancy

Isolating tenants at the operating system-level can lead to lower execution overheads.

Tenant isolation is performed by mechanisms which are called containers [23, 48]. Con-

tainers create isolated namespaces for resources such as �lesystems, network interfaces,

and processes inside the same operating system. Each tenant gets its own namespace

which is isolated from namespaces of di�erent tenants.

Kurmus et al. [25] present an implementation of this approach. Their implementation

uses SELinux multi-category-security (MCS) policies for isolating the �leserver processes

that serve a particular tenant. Fileserver processes belong to di�erent categories according

to tenant-speci�c policies. This ensures that a tenant can not access the resources of a

di�erent tenant because they belong to a di�erent category. In fact, multiple domains

(or containers) exist on the same operating system and each domain consists of a chroot

folder in the root �lesystem of the physical host.

This approach leads to lower execution overhead in comparison with the hypervisor-

level access control approach. However, both approaches share the same disadvantages

regarding the inability for �le sharing and collaboration. This is due to the fact that

each tenant runs its own �le service which is completely isolated from the �le services of

di�erent tenants.

7.1.3 Trusted multitenant storage

The two biggest concerns about storage systems used in virtualization and cloud environ-

ments, beyond high performance and scalability, are reliability and security. Secure cloud

storage involves four desirable properties, including data and metadata con�dentiality, in-

tegrity, write-serializability, and read freshness [45]. Organizations will not entrust their

data to an external storage system without a guarantee that they'll be able to access the

latest version of their data whenever they want and no one else will be able to access or

modify it without their permission.

In recent years, there has been considerable work on trusted cloud storage. Popa et al.

introduce CloudProof, a system that allows customers of cloud storage to securely detect

and prove violations of integrity, write-serializability, and freshness [45]. Assuming that

the cloud infrastructure is entirely untrusted, access control over read and write requests is

81

enforced through data encryption with secret keys and update veri�cation with public-key

signatures.

The work of Santos et al. [52] is motivated by the observation that current trusted

computer technology can not be used on the cloud as it exposes internal details of the

cloud infrastructure, hinders performance and scalability, and has several manageability

limitations. Their system, which is called Excalibur uses a trusted computing abstraction

(policy-sealead data) to encrypt and decrypt data according to a speci�ed node policy.

Excalibur combines current trusted computing technology, such as TPMs, with a set of as-

sociated protocols and attribute-based encryption to o�er developers two new primitives,

seal and unseal, for constructing more trusted cloud services.

In contrast to the above works, in the current study we target secure storage access

within the datacenter and aim to provide native multitenancy support at the �le level by

directly storing access control metadata in trusted object-based �leservers.

7.2 Access control in multitenant �lesystems

Next, we review comparative studies for secure access control in �lesystems that need to

support multiple tenants, such as cloud, grid, and virtualization-aware �lesystems.

7.2.1 Access control in �lesystems for cloud and grid environments

HekaFS [11] enables a tenant to assign identities to local principals through hierarchical

delegation. A user's identity consists of the user ID plus the ID of the tenant, to which

the user belongs. Tenants have complete freedom to manage their own identity space

on their own machines. However, a tenant user identity needs to be mapped to a global

server identity. This mapping is done by the cloud translator which sits at the top of

each per-tenant translator stack on the server. In fact, each server keeps a mapping table

which maps a tenant ID plus a user ID to a unique server ID. The server adds a new

mapping to the mapping table every time it encounters a unique combination of a tenant

ID plus a user ID. Fortunately, this mapping is not coordinated across servers. Each

server uses its own separate mapping table. However, �le sharing between users that

belong to di�erent tenants becomes a cumbersome task because each server maintains

82

its own separate mapping [60]. What is more, users may wish to express access control

that refers to identities that a given system has not yet encountered [61]. Finally, as

discussed in subsection 4.1.3, such identity translations may lead to scalability limitations

and introduce security risks.

Support of storage access from di�erent institutions requires consistent ownership

and permission data across multiple client mounts [65]. Lustre, a parallel distributed

�lesystem designed to provide storage to high performance computing systems uses a

similar approach based on credential mapping to solve the identity collision problem.

Because each Lustre client contains its own UID space, it is necessary that the Lustre

metadata server be given the ability to map from client UIDs and GIDs to an authoritative

list of server UIDs and GIDs. Furthermore, Lustre can organize client sets as clusters in

order to make mapping of nodes that share the same UID/ GID namespace easier. In

this manner, the UID maps that are maintained by the MDS are indexed by ranges.

When a client connects to a server, part of the process categorizes her into a cluster, and

hence gives her a pointer into the maps for forward and reverse UID/ GID mapping. To

facilitate fast lookups, the mapping module is implemented as a forest of binary trees.

The UID map itself can be created either manually or with the help of a map creation

tool. The approach of Lustre for solving the identity collision problem shares the same

drawbacks with HekaFS. In the present work, we aim to natively support multitenancy

by directly storing access-control metadata at the �leserver without the need for identity

translations from one tenant to another.

7.2.2 Access control in �lesystems for virtualization environments

Pfa� et al. [43] propose and design a virtualization-aware �lesystem. Their system, which

is called Ventana, resembles a conventional distributed �lesystem in that it provides cen-

tralized storage for a collection of �le trees, allowing transparency and collaborative shar-

ing among users. Ventana's distinction from other distributed �lesystems is its versioning,

isolation, and mobility features to support virtualization. Ventana [43] o�ers a secure ac-

cess control across multiple client guests through a combination of multiple ACLs and

branching. More speci�cally, client guests can use private branches to isolate their �les,

or shared branches to share their �les with other clients. Furthermore, they can use

83

branch ACLs to control access to all of the �les in a particular branch. In addition, some

other types of ACLs are provided, such as �le ACLs which control access to particular

�les, or version ACLs which control access to a particular version of a �le. However, deep

chains of branches along with multiple ACLs can adversely a�ect system performance.

A slightly di�erent proposal is presented by Jujjury et al. [21]. VirtFS introduces a

paravirtualized �lesystem driver based on the VirtI/O framework. Their paravirtualized

�lesystem can be used to connect a host-based �leserver to multiple guests. Furthermore,

it can also be used to provide guest-to-guest �lesystem access. The mixing of di�erent

namespaces in VirtFS triggers some serious security issues that need to be resolved. To

resolve these issues it o�ers two types of security models: the mapped security model

and the passthrough security model. The mapped security completely isolates the guest

user domain from that of the host's. In particular, the VirtFS server intercepts and maps

the �le create operations and all the get/set attribute requests. Files on the �leserver

are created with VirtFS server's credentials, while the guests' user credentials are stored

in extended attributes. When a guest performs a �le or folder stat operation, the server

extracts the guest's user credentials from extended attributes and sends them to the client.

In contrast, the passthrough security model shares the host's and guest's user domains.

In this model, the VirtFS server passes down all requests to the underlying �lesystem.

Files on the �leserver are created with guests' user credentials. Both security models have

some limitations. Speci�cally, the mapped security model successfully isolates the guests'

principals from the host's, however, it fails to isolate the principals from di�erent guests.

On the other hand, the passthrough security model passes all the requests to the �leserver

and does not guarantee any isolation.

HumFS [12] is a similar approach to VirtFS in that it provides access to �lesystems

on the host for UML guests. However, it is a virtual �lesystem, in the sense that it is not

stored within the UML block device. In many cases, the data is simply stored in kernel

structures. HumFS is conceptually similar to a network �lesystem such as NFS. HumFS

separates the guest's identity space from that of the host's by associating a metadata

�le to each �le and folder. The metadata �le keeps identity and permissions related

information and lies in a parallel folder hierarchy with the exported hierarchy. The main

issue with this approach is that it induces additional disk seeks during �le stat and create

operations. These additional seeks can severely hurt system performance. In addition,

84

although HumFS successfully separates the guest's namespace from the host's namespace,

no measure is taken in order to isolate the namespaces of di�erent guests.

7.2.3 Cloud collaboration and data sharing

Storage consolidation o�ers new opportunities for data sharing and collaboration in the

cloud. Geambasu et al. present CloudViews [17], a system that attempts to enable

data sharing among di�erent services in a single cloud. CloudViews attempts to enable

exible sharing between di�erent services at any granularity and to design an e�cient and

scalable access control mechanism that protects private data. To achieve its �rst goal,

the system allows di�erent services that run in the same cloud to create and share shared

and restrictive views of their data with other co-located services. To come up with its

second goal, CloudViews uses cryptographic signatures to sign the di�erent o�ered views.

It combines the signed views with resource allocation and update noti�cation mechanisms

to enable high performance data sharing.

The S4 framework presented by Wal�eld et al. extends Amazon's S3 cloud storage to

provide data sharing across di�erent web services [64]. It supports access delegation over

the objects of di�erent users via hierarchical, �ltered views of the applicable policy. The

S4 framework is similar with CloudViews in the sense that both of them are distributed

�lesystems that use the view-based access control technique to enable data sharing among

services. However, it extends CloudViews by enabling interaction-free modi�cation of

existing views and by considering cross-cloud sharing scenarios. The S4 framework allows

users to create new principals and to associate views with each of them. A view is a

subset of the namespace and consists of access rights and a set of �lters (e.g. regular

expressions, UNIX permissions). Access control is based on hierarchical evaluation of

each view's access rights.

Both solutions presented above target scenarios where a user authorizes di�erent Web

services to access their data which is centralized with a storage provider. Instead, we

target secure collocation of multiple tenants and their data on a shared �lesystem and

aim to isolate each tenant from other tenants, while permitting their users to collaborate

by sharing �les.

85

7.3 Access control in distributed �lesystems

Access control has been comprehensively examined across known distributed �lesystems.

Next, we highlight some of the previous work on this area.

7.3.1 Centralized access control

Steiner et al. present Kerberos [59], a centralized authentication system based on symmet-

ric key cryptography which allows for strong authentication in distributed environments.

An administrative domain in Kerberos is known as a realm. A realm contains nodes

that use tickets to communicate over a non-secure network and to prove their identity

to one another in a secure manner. A main service of Kerberos is the Key Distribution

Center (KDC). The KDC maintains a database of local principals and their secret keys.

When a user logins to the system the KDC issues a time stamped Ticket Granting Ticket

(TGT), encrypts it using the user's password, and returns the encrypted result to the

user's workstation. When the user wishes to communicate with another node, he sends

the TGT to the Ticket Granting Service (TGS). The TGS veri�es the validity of the re-

ceived TGT. If the user is permitted to access the requested service, the TGS grants him

a ticket encrypted with the TGS's secret key and a session key encrypted with the user's

secret key. The ticket enables access to speci�c services on speci�c nodes in the realm.

Thus, the user can present the ticket to the desired service along with its service request.

The communication with the service is secured with the obtained session key. Cross-

realm authentication is not straightforward, because Kerberos relies on symmetric key

cryptography. Realm administrators have to set up trust relationships and exchange keys

for principals to access services in a di�erent realm. E�orts have been made to extend

the Kerberos protocol with public-key cryptography support [56] and with cross-realm

authentication [71].

Centralized access control solutions that have the users registered on a central location

are inapplicable to a cloud environment. A centralized solution can not adapt and scale

to a large number of users. What is more, tenant administrators prefer to manage their

users locally.

86

7.3.2 Decentralized access control

The work of Reiher et al. [51] is one of the �rst studies that recognize the need for

cross-domain authorization and secure �le sharing. Their system, which is called Tru�es,

is build on the replication services provided by the Ficus �lesystem and adds a mecha-

nism for secure �le sharing between di�erent administrative domains. Sharing in Tru�es

happens at the granularity of volumes. User authentication in Tru�es relies on a hier-

archy of certi�cation authorities and users are identi�ed by public keys bound to X.500

distinguished names in X.509 certi�cates. Authorization in Tru�es is based on standard

UNIX and Ficus access control mechanisms. The authors recognize the problem of iden-

tity collisions between principals of di�erent administrative domains. Their solution is to

map a principal's ID to a globally unique identi�er and to store this global identi�er as

one of the �le's attributes. Furthermore, Tru�es does not permit a local root user to be

mapped to the root user on a remote domain. However, as discussed in subsection 4.1.3,

identity mapping techniques can be the source of scalability problems and can complicate

�le sharing and manageability.

Belani et al. introduce CRISIS [8] as a wide-area authentication and access control

system which forms the security subsystem of WebOS. Authentication in CRISIS is based

on X.509 certi�cates which are signed by a trusted CA. CAs are organized hierarchically,

thus principals in di�erent administrative domains need to have a common root CA to

securely share �les. Authorization in CRISIS uses a hybrid model of ACLs and capa-

bilities and relies on certi�cates to specify group memberships. However, the reliance to

certi�cates for cross-domain access control has been criticized for high complexity [22].

Miltchev et al. [39] follow a di�erent approach and present the Distributed Credential

FileSystem (DisCFS) which uses trust management credentials to identify �les, principals,

and access rights. Principals in DisCFS are identi�ed by public keys. These public keys are

directly binded to any set of authorizations. When a principal wishes to access a remote

�le, a trust-management credential is being generated which contains the principal's public

key, as well as the authorizer's public key which is trusted by the remote domain. Access

control policies are speci�ed by the administrators and either accept or reject actions.

Actions are also speci�ed by the administrators as a set of name-value pairs. Polices can

be distributed to principals as credentials. It is clear that this credential-based design

87

incurs a high performance overhead when the chains of credentials get very long, or when

the number of active users is high. This is because credentials can become long as they

contain both signed identity attributes and the policy statements. Credential caching and

hardware acceleration for cryptographic operations in conjunction with data replication

across servers mitigate this problem. However, this solution is unrealistic for a cloud

environment, where an enormous number of users is involved.

Secure �le sharing between principals in di�erent administrative domains is enabled

by GSFS [22], a further development of SFS [33]. Authentication in GSFS is based on

public keys. Each principal and server have a public/private key pair. The administration

server of an administrative domain prefetches and caches users and group de�nitions of

remote authentication servers belonging to di�erent domains. Thus, during �le access, the

authentication server can establish identities for users based on local information. Users

name remote authentication servers, users, and groups using self-certifying hostnames.

Authorization in GSFS relies on access control lists (ACLs) that contain local and remote

users. Remote users can only be listed on the ACL with their public keys. However

remote groups can not be listed directly on the ACL, but they can be listed indirectly

as members of local groups. GSFS has been recently criticized for limited autonomous

delegation support [40]. Moreover, a GSFS authentication server needs to trust the remote

authentication servers of any remote domains. This is unrealistic for an environment such

as the cloud where tenants don't trust each other.

Margaritis et al. propose Nephele, an architecture for hierarchical access control in

federated �le services across di�erent administrative domains [32]. Their goal is to im-

prove application portability and identity management, and to reduce transfer costs in

collaborative environments that require data sharing among principals of di�erent do-

mains. In such a large federated environment there are several large groups consisting of

multiple subgroup layers across the di�erent domains. The authors introduce the hyper-

group as an heterogeneous two-layer construct. The upper layer contains administrative

domains of a federation and the lower layer contains user groups from each participating

domain. Domains and principals are both identi�ed by public keys and they are binded

to hypergroups with credentials. Access control is applied without central management

of the principals or their access rights. Each domain manages its users, groups, and their

access rights locally. Access rights over local storage resources are speci�ed using access

88

control lists. As a result, the network tra�c that is needed to propagate group mem-

berships speci�ed in terms of users is avoided. However, Nephele does not deal with the

namespace collision problem that arises in a multitenant environment.

The above discussion makes it clear that existing access control solutions can not

be used in a cloud environment without a reconsideration of their security model and

mechanisms. In contrast to the above works, in the present work we study the problem of

storage multitenancy over virtualization environments, which introduces new challenges

as a result of the system consolidation involved in the same datacenter.

7.4 Summary

Secure multitenancy in cloud storage supports multiple customers at low cost. The

hypervisor-level multitenancy architecture runs separate virtual machines for each cus-

tomer over a distributed �lesystem. Instead, the OS-level multitenancy architecture relies

on the �leserver kernel to isolate the resources of di�erent customers leading to lower

execution overhead. Considerable work has also been done on the �eld of trusted cloud

storage in order for the cloud providers to be able to provide security guarantees to their

customers about their data.

Several works in the �eld of cloud and virtualization-aware �lesystems have identi-

�ed the namespace collision problem, however they focus on the separation of the host's

namespace from that of the guests', without isolating the principals of di�erent guests.

Other works depend on identity mapping techniques to solve the identity collision prob-

lem that stems from the �le-based access. However, the addition of layers that perform

identity mappings introduce manageability ine�ciencies, performance degradation, and

complicate �le sharing.

Traditional �le-based access presumes that principals are registered into a central au-

thentication service. Due to identity management challenges from the large number of

the involved users, this is unrealistic for the tenants of a cloud provider. Other solutions

rely on trust management certi�cates for direct authorization, or presume that each ad-

ministrative domain has its principals registered to a local authentication server. Then,

the local authentication server trusts remote authentication servers in order to support

89

cross-domain �le sharing. In a cloud environment, however, it is unrealistic for a tenant

to trust other tenants.

90

Chapter 8

Conclusions and future work

8.1 Conclusions

8.2 Future work

In this chapter we conclude this work by summarizing our contributions and discussing

opportunities for future research.

8.1 Conclusions

Cloud collaboration is a newly emerging way of �le sharing and coworking on shared

projects, whereby collaboration documents, shared source code, or scienti�c data are up-

loaded to a central shared storage, and can be accessed by multiple parties. Consolidating

storage at the �lesystem level enables such sharing scenarios. Furthermore, it o�ers signif-

icant manageability bene�ts to system administrators. The �le-level interface exposes the

�le structure of a �lesystem, while it enables shared read/write access. Furthermore, it

can provide an ephemeral and highly composable storage. However, it does not properly

isolate the namespaces of di�erent customers who access the shared storage. Thus, it is

important to reconsider the access control techniques used in order to e�ectively isolate

the principals of di�erent tenants.

We have pointed out that a solution which depends on an identity mapping mechanism

should be avoided because it complicates �le sharing and manageability, and reduces

91

performance. Furthermore, traditional solutions that have the principals registered on

a centralized directory face scalability limitations, because they are not designed for an

environment with an enormous number of end users. Moreover, their trust assumptions

do not apply to a cloud environment.

Accordingly, we have proposed an architecture that eliminates the need of a global

directory service which maintains all �lesystem principals, by allowing tenants to operate

their own tenant authentication servers. Tenant authentication servers are securely regis-

tered to a globally trusted �lesystem authentication server and certify local principals. In

addition, our architecture natively supports multitenancy in virtualization environments

that use �le-based storage consolidation. We have achieved this by carefully storing access

control metadata directly at the �leservers without the need for identity translations. In

fact, the �lesystem maintains per-tenant dedicated ACLs, where it stores tenants' local

principals and access control policies. Thus, it successfully isolates each tenant's names-

pace. Furthermore, we permit �les with identical access rights to share their parent's

global ACL in order to keep the number and size of ACLs small.

With a prototype implementation of the proposed access control architecture over a

production-grade �lesystem we have experimentally demonstrated a limited performance

overhead using microbenchmarks and application-level benchmarks. Furthermore, we

have compared our solution with existing approaches that use the identity mapping tech-

nique and shown that our prototype scales well to a large number of tenants without

a�ecting the overall system performance. In contrast, multitenancy solutions that per-

form identity mappings can adversely a�ect performance when the number of tenants

tends to be high. Also, by emulating situations of real collaborative environments where

long ACLs are common, we have demonstrated that numerous of long ACLs can adversely

a�ect system performance. However, the ACL sharing technique that we introduced can

mitigate this problem.

8.2 Future work

There are several directions of future work related to this thesis. In this section we list a

number of interesting topics that need further research.

92

In this thesis we have proposed an access control architecture to enable secure mul-

titenancy in a private cloud environment. However, the consideration of weaker trust

assumptions would be an interesting future research topic which could provide a way for

strengthen the security of the proposed solution in order to make it applicable to a public

cloud.

Our experimental results indicated that multiple long ACLs can adversely a�ect sys-

tem performance and the ACL sharing technique could be an initial solution to this

problem. However, this area needs further research in order to improve the structure and

the scalability of ACLs. Direct authorization through trust management certi�cates [39]

has been suggested to better meet the requirements for autonomous delegation across

organization boundaries. Furthermore, a method was proposed recently for hierarchical

access control in federated �le services across di�erent administrative domains [32].

An implementation of the complete proposed architecture is also a plan for future

work, as well as its integration into a trusted virtualization platform in the datacenter.

Finally, it is necessary for further experimentation with I/O-intensive applications at

large scale over di�erent object-based �lesystems.

93

Bibliography

[1] Amazon. Amazon Elastic Block Store (EBS). http://aws.amazon.com/ebs/. Ac-

cessed: 2013-07-23.

[2] Amazon. Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/. Ac-

cessed: 2013-08-19.

[3] Amazon. Amazon Simple Storage Service (Amazon S3). http://aws.amazon.com/

s3/. Accessed: 2013-07-23.

[4] Glenn Ammons, Vasanth Bala, Todd Mummert, Darrell Reimer, and Xiaolan Zhang.

Virtual machine images as structured data: the mirage image library. In Hot Cloud

'11: Proceedings of the 3rd USENIX Workshop on Hot Topics in Cloud Computing,

Portland, OR, June 2011.

[5] Ross J. Anderson. Security Engineering: A Guide to Building Dependable Distributed

Systems. Wiley, second edition, 2008.

[6] Lee Badger, Timothy Grance, Robert Patt-Corner, and Je� Voas. Cloud comput-

ing synopsis and recommendations. Technical Report NIST SP - 800-146, National

Institute of Standards and Technology, May 2012.

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew War�eld. Xen and the art of virtualization.

In SOSP '03: Proceedings of the nineteenth ACM symposium on Operating systems

principles, pages 164{177, Bolton Landing, NY, USA, October 2003.

[8] Eshwar Belani, Amin Vahdat, Thomas Anderson, and Michael Dahlin. The CRISIS

wide area security architecture. In SSYM '98: Proceedings of the 7th conference on

USENIX Security Symposium, pages 15{30, January 1998.

94

[9] Sudip Chahal, Jay Hahn-Steichen, Das Kamhout, Rick Kraemer, Hong Li, and Chris

Peters. An enterprise private cloud architecture and implementation roadmap. Tech-

nical Report IT@Intel White Paper, Intel Information Technology, June 2010.

[10] Gluster Community. GlusterFS Documentation. http://www.gluster.org/

community/documentation/index.php/Main_Page. Accessed: 2013-09-10.

[11] Je� Darcy. Building a cloud �le system. USENIX ;login:, 36(3):14{21, June 2011.

[12] Je� Dike. User Mode Linux. Prentice Hall Computer, 2006.

[13] Roy T. Fielding and Richard N. Taylor. Principled design of the modern Web ar-

chitecture. ACM Transactions on Internet Technology (TOIT), 2(2):115{150, May

2002.

[14] Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security architec-

ture for computational grids. In CCS '98: Proceedings of the 5th ACM conference

on Computer and communications security, pages 83{92, San Francisco, CA, USA,

November 1998.

[15] FUSE. Filesystem in Userspace. http://fuse.sourceforge.net/. Accessed: 2013-

09-04.

[16] Vasile Gaburici, Pete Keleher, and Bobby Bhattacharjee. File system support for

collaboration in the wide area. In ICDCS '06: Proceedings of the 26th IEEE In-

ternational Conference on Distributed Computing Systems, Lisboa, Portugal, July

2006.

[17] Roxana Geambasu, Steven D. Gribble, and Henry M. Levy. CloudViews: Communal

Data Sharing in Public Clouds. In HotCloud'09: Proceedings of the 2009 conference

on Hot topics in cloud computing, San Diego, CA, USA, June 2009.

[18] Jacob G. Hansen and Eric Jul. Lithium: Virtual machine storage for the cloud. In

SoCC '10: Proceedings of the 1st ACM symposium on Cloud computing, pages 15{26,

Indianapolis, IN, USA, June 2008.

95

[19] Dean Hildebrand, Anna Povzner, Renu Tewari, and Vasily Tarasov. Revisiting the

storage stack in virtualized NAS environments. In WIOV '11: Proceedings of the 3rd

conference on I/O virtualization, Portland, OR, USA, June 2011.

[20] Inktank. Ceph Block Device. http://ceph.com/docs/next/rbd/rbd/. Accessed:

2013-07-23.

[21] Venkateswararao Jujjuri, Eric V. Hensbergen, Anthony Liguori, and Badari

Pulavarty. VirtFS { a virtualization aware �le system pass-through. In OLS '10:

Proceedings of the 2010 Ottawa Linux Symposium, pages 109{120, Ottawa, Canada,

May 2010.

[22] Michael Kaminsky, George Savvides, David Mazi�eres, and M. Frans Kaashoek. De-

centralized user authentication in a global �le system. In SOSP '03: Proceedings of

the 19th ACM symposium on Operating systems principles, pages 60{73, New York,

NY, USA, October 2003.

[23] Poul-Henning Kamp and Robert N. M. Watson. Jails: Con�ning the omnipotent

root. In SANE '00: Proceedings of the 2nd International System Administration and

Network Engineering conference, Maastricht, The Netherlands, May 2000.

[24] Angelos D. Keromytis and Jonathan M. Smith. Requirements for scalable access

control and security management architectures. Communications of the ACM, 7(2),

May 2007.

[25] Anil Kurmus, Moitrayee Gupta, Roman Pletka, and Christian Cachin. A compari-

son of secure multi-tenancy architectures for �lesystem storage clouds. InMiddleware

'11: Proceedings of the 12th ACM/IFIP/USENIX international conference on Mid-

dleware, pages 471{490, Lisboa, Portugal, December 2012.

[26] Leslie Lamport. Paxos made simple. SIGACT News, 32(4), Decemper 2001.

[27] Duy Le, Hai Huang, and Haining Wang. Understanding performance implications of

nested �le systems in a virtualized environment. In FAST '12: Proceedings of the 10th

USENIX conference on File and Storage Technologies, San Jose, CA, USA, February

2012.

96

[28] Andrew W. Leung, Ethan L. Miller, and Stephanie Jones. Scalable security for petas-

cale parallel �le systems. In SC '07: Proceedings of the 2007 ACM/IEEE conference

on Supercomputing, pages 16:1{16:12, Reno, NV, USA, November 2007.

[29] Henry M. Levy. Capability-Based Computer Systems. Butterworth-Heinemann New-

ton, MA, USA, 1984.

[30] Peter A. Loscocco and Stephen D. Smalley. Meeting critical security objectives with

security-enhanced linux. In OLS '01: Proceedings of the 2001 Ottawa Linux Sympo-

sium, Ottawa, Canada, July 2001.

[31] Zhiqiang Ma, Zhonghua Sheng, Gu Lin, Liufei Wen, and Gong Zhang. DVM: to-

wards a datacenter-scale virtual machine. In VEE '12: Proceedings of the 8th ACM

SIGPLAN/SIGOPS conference on Virtual Execution Environments, pages 105{120,

London, UK, March 2005.

[32] Giorgos Margaritis, Andromachi Hatzieleftheriou, and Stergios Anastasiadis.

Nephele: Scalable access control for federated �le services. Journal of Grid Com-

puting, 1(1):83{102, March 2013.

[33] David Mazi�eres, Michael Kaminsky, M. Frans Kaashoek, and Emmett Witchel. Sep-

arating key management from �le system security. In SOSP '99: Proceedings of the

17th ACM symposium on Operating systems principles, pages 124{139, Kiawah Island

Resort, SC, USA, December 1999.

[34] MDTEST. mdtest: HPC benchmark for metadata performance. http://

sourceforge.net/projects/mdtest/. Accessed: 2013-08-21.

[35] Peter Mell and Timothy Grance. The NIST de�nition of cloud computing. Tech-

nical Report NIST SP - 800-145, National Institute of Standards and Technology,

September 2011.

[36] Dutch Meyer, Jake Wires, Norman Hutchinson, and Andrew War�eld. Namespace

management in virtual desktops. USENIX ;login:, 36(1):6{11, February 2011.

[37] Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geo�rey Lefebvre, Mike J. Feeley,

Norman C. Hutchinson, and Andrew War�eld. Parallax: Virtual disks for virtual

97

machines. In Eurosys '08: Proceedings of the 3rd ACM SIGOPS/EuroSys European

Conference on Computer Systems, pages 41{54, Glasgow, Scotland, March 2008.

[38] Microsoft. Common Internet File System (CIFS) Protocol. http://msdn.

microsoft.com/en-us/library/ee442092.aspx. Accessed: 2013-07-30.

[39] Stefan Miltchev, Vassilis Prevelakis, Sotiris Ioannidis, John Ioannidis, Angelos D.

Keromytis, and Jonathan M. Smith. Secure and
exible global �le sharing. In ATC

'03: Proceedings of the USENIX 2003 Annual Technical Conference, Freenix Track,

pages 165{178, San Antonio, Texas, USA, June 2003.

[40] Stefan Miltchev, Jonathan M. Smith, Vassilis Prevelakis, Angelos Keromytis, and

Sotiris Ioannidis. Decentralized access control in distributed �le systems. ACM

Computing Surveys, 40(3):1{30, August 2008.

[41] Yogesh Mundada, Anirudh Ramachandran, and Nick Feamster. SilverLine: Data

and network isolation for cloud services. In HotCloud '11: Proceedings of the 2011

USENIX HotCloud Workshop, Portland, OR, USA, June 2011.

[42] Bryan Parno, Jonathan M. McCune, and Adrian Perrig. Bootstrapping trust in

commodity computers. In SP '10: Proceedings of the 2010 IEEE Symposium on

Security and Privacy, pages 414{429, Oakland, CA, USA, May 2010.

[43] Ben Pfa�, Tal Gar�nkel, and Mendel Rosenblum. Virtualization aware �le systems:

Getting beyond the limitations of virtual disks. In NSDI '06: Proceedings of the

3rd conference on Networked Systems Design & Implementation, pages 353{366, San

Jose, CA, USA, May 2006.

[44] Lucian Popa, Yu Minlan, Steven Y. Ko, Sylvia Ratnasamy, and Ion Stoica. Cloud-

Police: Taking access control out of the network. In Hotnets-IX: Proceedings of the

9th ACM SIGCOMM Workshop on Hot Topics in Networks, Monterey, CA, USA,

October 2010.

[45] Raluca A. Popa, Jacob R. Lorch, David Molnar, Helen J. Wang, and Li Zhuang.

Enabling security in cloud storage SLAs with CloudProof. In ATC '11: Proceedings

of the 2011 USENIX conference on USENIX annual technical conference, Portland,

OR, USA, June 2011.

98

[46] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third

generation architectures. Communications of the ACM, 17(7):412{421, July 1974.

[47] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Analysis and evolution of journaling �le systems. In ATEC '05: Proceedings of the

annual conference on USENIX Annual Technical Conferenc, Anaheim, CA, USA,

April 2005.

[48] Daniel Price and Andrew Tucker. Solaris Zones: Operating system support for con-

solidating commercial workloads. In LISA '04: Proceedings of the 18th Conference

on Systems Administration, pages 241{254, Atlanta, USA, November 2004.

[49] Rackspace. Rackspace Cloud Files. http://www.rackspace.com/cloud/files/.

Accessed: 2013-07-23.

[50] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos

Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In

HPCA '07: Proceedings of the 2007 IEEE 13th International Symposium on High

Performance Computer Architecture, pages 13{24, Phoenix, AZ, USA, February 2007.

[51] Peter Reiher, Thomas Page, Je� Cook, Stephen Crocker, and Gerald Popek. Tru�es

- a secure service for widespread �le sharing. In Proceedings of the Privacy and

Security Research Group Workshop on Network and Distributed Systems Security,

San Diego, CA, USA, February 1993.

[52] Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Stefan Saroiu. Policy-

sealed data: A new abstraction for building trusted cloud services. In Security '12:

Proceedings of the 21st USENIX conference on Security symposium, pages 175{188,

Bellevue, WA, USA, August 2012.

[53] Julian Satran, Kalman Meth, Constantine Sapuntzakis, Mallikarjun Chadalapaka,

and Efri Zeidner. Internet small computer systems interface (iSCSI). IETF Request

for Comments (RFC), RFC 3720, April 2004.

[54] Mohammad Shamma, Dutch T. Meyer, Jake Wires, Maria Ivanova, Norman C.

Hutchinson, and Andrew War�eld. Capo: Recapitulating storage for virtual desk-

99

tops. In FAST '11: Proceedings of the 9th USENIX conference on File and stroage

technologies, pages 31{45, San Jose, CA, USA, February 2011.

[55] Spencer Shepler, Brent Callagan, David Robinson, Robert Thurlow, Carl Beame,

Mike Eisler, and Dave Noveck. Network �le system (NFS) version 4 protocol. IETF

Request for Comments (RFC), RFC 3530, April 2003.

[56] Marvin A. Sirbu and John Chung-I Chuang. Distributed authentication in Kerberos

using public key cryptography. In SNDSS '97: Proceedings of the 1997 Symposium

on Network and Distributed System Security, pages 134{141, San Diego, CA, USA,

February 1997.

[57] Diana K. Smetters and Nathan Good. How users use access control. In SOUPS '09:

Proceedings of the 5th Symposium on Usable Privacy and Security, Mount View, CA,

USA, July 2009.

[58] Joseph Spadavecchia and Erez Zadok. Enhancing NFS cross-administrative domain

access. In Proceedings of the FREENIX Track: 2002 USENIX Annual Technical

Conference, pages 181{194, Monterey, CA, USA, June 2002.

[59] Jennifer G. Steiner, Cli�ord B. Neuman, and Je�rey I. Schiller. Kerberos: An au-

thentication service for open network systems. In Proceedings of the USENIX Winter

1988 Technical Conference, pages 191{202, Dallas, TX, USA, January 1988.

[60] Douglas Thain. Identity boxing: A new technique for consistent global identity. In

SC '05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, Seattle,

WA, USA, November 2005.

[61] Douglas Thain, Christopher Moretti, Paul Madrid, Philip Snowberger, and Je�rey

Hemmes. The consequences of decentralized security in a cooperative storage sys-

tem. In SISW '05: Proceedings of the Third IEEE International Security in Storage

Workshop, pages 71{82, San Francisco, CA, USA, December 2005.

[62] Satyam B. Vaghani. Virtual machine �le system. ACM SIGOPS: Operating Systems

Review, 44(4):57{70, December 2010.

100

[63] VMWare. VMWare Workstation. http://www.vmware.com/products/

workstation/. Accessed: 2013-07-23.

[64] Neal H. Wal�eld, Paul T. Stanton, John L. Gri�n, and Randal Burns. Practical

protection for personal storage in the cloud. In EUROSEC '10: Proceedings of the

Third European Workshop on System Security, pages 8{14, Paris, France, April 2010.

[65] Joshua Walgenbach, Stephen C. Simms, Justin P. Miller, and Kit Westneat. Enabling

Lustre WAN for production use on the TeraGrid: A lightweight UID mapping scheme.

In OTG '10: Proceedings of the 2010 TeraGrid Conference, pages 1{6, Pittsburgh,

PA, USA, August 2010.

[66] Jinpeng Wei, Xiaolan Zhang, Glenn Ammons, Vasanth Bala, and Peng Ning. Man-

aging security of virtual machine images in a cloud environment. In CCSW '09:

Proceedings of the 2009 ACM workshop on Cloud computing security, pages 91{96,

Chicago, IL, USA, November 2009.

[67] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos

Maltzahn. Ceph: A scalable, high-performance distributed �le system. In FAST '08:

Proceedings of the 6th USENIX Conference on File and Storage Technologies, pages

307{320, Seattle, WA, USA, November 2006.

[68] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. CRUSH: con-

trolled, scalable, decentralized placement of replicated data. In SC '06: Proceedings

of the 2006 ACM/IEEE conference on Supercomputing, Tampa, FL, USA, November

2006.

[69] Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, and Ethan L. Miller. Dynamic

metadata management for petabyte-scale �le systems. In SC '04: Proceedings of the

2004 ACM/IEEE conference on Supercomputingy, Pittsburgh, PA, USA, November

2004.

[70] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason

Small, Jim Zelenka, and Bin Zhou. Scalable performance of the panasas parallel

�le system. In FAST '08: Proceedings of the 6th USENIX Conference on File and

Storage Technologies, San Jose, CA, USA, February 2008.

101

[71] Assar Westerlund and Johan Danielsson. Heimdal and Windows 2000 Kerberos -

How to Get Them to Play Together. In Proceedings of the FREENIX Track: 2001

USENIX Annual Technical Conference, pages 267{272, Boston, MA, USA, June 2001.

[72] Wikipedia. Dike (mythology), 2013. Accessed: 2013-09-10.

102

Author's Publications

Giorgos Kappes, Andromachi Hatzieleftherou, Stergios V. Anastasiadis, Dike: Virtualization-

aware Access Control for Multitenant Filesystems, Technical Report DCS2013-1, Depart-

ment of Computer Science, University of Ioannina, February 2013.

Short Vita

Georgios E. Kappes was born in Ioannina, Greece in 1987. He graduated the 2nd High

School of Ioannina in 2004 and obtained his B.Sc degree from the Department of Computer

Science, of the University of Ioannina in 2011. His B.Sc. thesis was entitled \Logging

�le access patterns for a more e�cient �le search on �le systems". Currently, he is a

postgraduate student at the same department and a member of Systems Research Group

(SRG) of the University of Ioannina. His research interests lie in the �elds of virtualization,

�le and storage systems, as well as security and privacy.

