
 

 

ΥΠΕΡΑΝΑΛΥΣΗ ΕΙΚΟΝΩΝ ΜΕΣΩ ΑΡΑΙΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ 

 

 

 

 

 

Η  

 ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ 

 

Υποβάλλεται στην  

 

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης  

του Τμήματος Πληροφορικής 

Εξεταστική Επιτροπή 

 

 

από την 

 

 

Αικατερίνη Χατζή 

 

 

 

 

 

ως μέρος των Υποχρεώσεων  

 

για τη λήψη 

 

του 

 

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ 

 

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ-ΕΦΑΡΜΟΓΕΣ 

 

 

 

 

Ιανουάριος 2013 



ii 

 

 

CONTENTS 

 

CONTENTS  ii 

 

TABLES iv 

 

FIGURES  v 

 

EXTENDED ABSTRACT IN ENGLISH vi 

 

CHAPTER 1. INTRODUCTION  vi 

 

CHAPTER 2. DICTIONARIES AND SPARSE REPRESENTATIONS   9 

2.1. Sparse Representation: A Closer Look 10 

2.1.1. Matching Pursuit 11 

2.1.2. Orthogonal Matching Pursuit 12 

2.1.3. Basis Pursuit 13 

2.1.4. Focal Underdetermined System Solver 14 

2.2. Dictionaries 14 

2.2.1. Probabilistic Methods 15 

2.2.2. The Method of Optimal Directions (MOD) 16 

2.2.3. The K-SVD Algorithm 17 

2.2.4. Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA) 17 

2.2.5. Simultaneous Codeword Optimization (SimCO) 19 

2.2.6. Greedy Adaptive Dictionary Algorithm (GAD) 20 

2.2.7. Efficient Sparse Coding Algorithms 21 

2.3. Learning the Dictionary 23 

2.3.1. Single Dictionary Training 23 

2.3.2. Joint Dictionary Training 24 

 

CHAPTER 3. Image Super-resolution 27 

3.1. Mathematical Description 28 

3.1.1. Basic Model 28 

3.1.2. Basic Model by Sparse Representation 28 

3.2. Description of Image Super-resolution via Sparsity 29 

3.2.1. The Problem of the Sparsest Representation 30 

3.2.2. The Algorithm 32 



iii 

 

 

3.3. From Local Optimization to Global Optimization 33 

 

Chapter 4. Experimental Results 37 

4.1. Image Quality Evaluation Methods 41 

4.1.1. RMSE 41 

4.1.2. PSNR 42 

4.1.3. SSIM 42 

4.1.4. Evaluation of the Evaluation Techniques! 44 

4.2. Results 47 

 

Chapter 5. Conclusions 58 

 

BIBLIOGRAFY 62 

 

 

 



iv 

 

 

TABLES 

Table 4.1 RMSE, PSNR and MSSIM values of the reconstructed image in 48  

fig. 4.5.  

Table 4.2 RMSE, PSNR and MSSIM values of the reconstructed image in  48 

fig. 4.6.  

Table 4.3 RMSEs of the images in fig. 4.7 54 

Table 4.4 PSNRs of the images in fig. 4.7      54 

Table 4.5 MSSIM values of the images in fig. 4.7     54 

Table 4.6 RMSEs of the images in fig. 4.8      56 

Table 4.7 PSNRs of the images in fig. 4.8      56 

Table 4.8 MSSIM values of the images in fig. 4.8     56 

 

 

 



v 

 

 

FIGURES 

Fig. 1.1 Multi-image Super-resolution   7  

Fig. 1.2 Single-image super-resolution   7 

Fig. 1.3 Face hallucination   8 

Fig. 4.1 Some of the images included in the CMU MultiePIE database 38 

Fig. 4.2 Original high-resolution image and the corresponding low-resolution one 39 

Fig. 4.3 Comparison of different types of distortion of the same reference image 45 

Fig. 4.4 Comparison of two images with the same MSSIM 46 

Fig. 4.5 Comparison of the reconstructed image with the low-resolution input 49 

and the original high-resolution one  

Fig. 4.6 Comparison of another reconstructed image with the low-resolution input 50  

and the original high-resolution one  

Fig. 4.7 Results of a test image magnified by a factor of 2 52 

Fig. 4.8 Results of another test image magnified by a factor of 2 55 

Fig. 4.9 The super-resolved image given by the upsampled low-resolution input 57 

and the super-resolved given by the initial low-resolution input  

 

 

 



vi 

 

 

ABSTRACT 

 

 

Chatzi, Aikaterini, C. E. MSc, Computer Science Department, University of Ioannina, 

Greece. January, 2013. Image Super-resolution via Sparse Representation.  Thesis 

Supervisor:  Lysimachos Paul Kondi. 

 

 

 

Super-resolution is a mathematical term used to describe the process of enhancing the 

resolution of an imaging system. In the super-resolution process, the details of an 

image are recovered from several low-resolution images or one single low-resolution 

image generating high-resolution images of great quality. This technique is of great 

importance in applications that require zooming in a specific area of an image, such as 

image processing, medical imaging devices, satellite imaging devices, surveillance 

cameras, forensic image analysis, visual electronics and document analysis. However, 

what is that makes super-resolution techniques so popular and important? The answer 

is simple. The asset of super-resolution is that the transition from low- to high-

resolution is achieved by software, using algorithms, rather than expensive hardware. 

The super-resolution algorithms exceed the limitations introduced by the sensors and 

the lens of every digital imaging system leading to remarkable high-resolution 

images.    

 

This thesis focuses on exampled-based super-resolution where the goal is to learn 

correspondences between low- and high-resolution image patch pairs sampled from a 

database of low- and high-resolution images (training data), and then apply them to a 

new low-resolution image (test data) to recover its most likely high-resolution 

version. Recent results in sparse signal representation suggest that linear relationships 

among high-resolution signals can be precisely recovered from their low-dimensional 

projections. This observation has led to a new approach to single-image super-

resolution, where sparse representation is used in order to generate the high-resolution 

outputs. The problem of single image super-resolution based upon sparse 

representation is examined in the present thesis and a method that reconstructs high-

resolution images using sparse representation is presented. This method relies on 

upsampled low-resolution images to infer the high-resolution output. We propose the 

direct use of the low-resolution image in order to obtain high-resolution outputs and 

the results indicate that such a strategy provides appealing results both quantitatively 

and qualitatively. Furthermore, the process of obtaining the appropriate dictionaries 

and thus sparse representations is examined thoroughly. 
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CHAPTER 1. INTRODUCTION 

 

Super-resolution is a mathematical term used to describe the process of enhancing the 

resolution of an imaging system. This increase of resolution in either image 

processing or video editing is described by many terms such as "upscale", "upsize", 

"up-convert" and "uprez". The basic idea of super-resolution is obtaining higher-

resolution images using information from several lower-resolution ones, i.e. 

resolution enhancement. The use of multiple low-resolution images of the same scene 

in order to generate an upsized image is called multi-frame or multi-image super-

resolution. There is also single-frame or single-image super-resolution which uses 

information drawn from other parts of the low-resolution images or other unrelated 

images, in order to guess what the high-resolution image should look like. Resolution 

means pixel density, thus it is a measure of frequency content in an image. High-

resolution images offer more information/details than low-resolution ones because 

they have more pixels in the same area. However, even with today's progress in 

technology, the hardware for high-resolution images is expensive and in many cases 

hard to obtain (e.g. cell phones, surveillance cameras). Therefore, the answer to this 

problem should be software rather than hardware, and this answer is super-resolution, 

which is important in applications such as medical imaging, satellite imaging and 

computer vision. 

 

In the classical multi-image super-resolution the subpixel misalignments between 

several low-resolution images of the same scene are used in order to infer the high-

resolution image. This technique is of great importance in applications that require 

zooming in a specific area of an image such as surveillance cameras and more 

specifically for forensic image analysis where multiple frames of video of a suspect or 

a car are available and more details need to be extracted by enhancing the resolution 
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of these images. Multi-frame super-resolution is effective only when the low-

resolution images are slightly different from each other, meaning that they include 

some kind of motion or different viewing angles. In this way, the entire information 

about the scene exceeds the information from any single image. If all the images are 

exactly the same then no extra information can be collected and thus, the output is just 

an image with less noise than the input images and without any enhancement of the 

resolution. Fig. 1.1 shows an example of multi-frame super-resolution. A set of 

similar low-resolution images of the same object (left) is used to generate the high-

resolution image (right). One of the low-resolution images is zoomed (center) to be 

comparable with the high-resolution output.     

 

In the classical single-image super-resolution the goal is to recover the high-resolution 

version of one given low-resolution image without introducing blur. In exampled-

based super-resolution, also known as image hallucination, the goal is to learn 

correspondences between low- and high-resolution image patch pairs sampled from a 

database of low- and high-resolution images, and then apply them to a new low-

resolution image to recover its most likely high-resolution version. Recent results in 

sparse signal representation suggest that linear relationships among high-resolution 

signals can be precisely recovered from their low-dimensional projections. This 

observation has led to a new approach to single-image super-resolution, where a 

sparse representation is found for each patch of the low-resolution input and then used 

to generate the high-resolution output. Fig. 1.2 shows an example of single-image 

super-resolution.  

 

Face hallucination is a special case of super-resolution where the super-resolution 

techniques are applied on human face images in order to recover a high-resolution 

face image from a low-resolution image. Face hallucination is widely used in image 

enhancement, image compression and face recognition, and became a very popular 

area of research the past few years because of the advances in technology and the 

necessity for finding the details of facial features from low-resolution images or 

videos captured by surveillance cameras. The face hallucination techniques have 

shown remarkable results at full frontal faces and some degrees off, however at 

profile images they still perform poorly or badly. Fig. 1.3 shows an example of face 
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hallucination used for face recognition. Details of the facial characteristics of the 

individual are recovered (right) by a low-resolution image captured by a surveillance 

camera (left).   

 

The super-resolution problem is generally treated as an inverse problem of recovering 

the original high-resolution image by the low-resolution ones, assuming that the low-

resolution images are downsampled versions of the high-resolution image and that 

prior knowledge about the generation model that leads from the high-resolution image 

to the low-resolution ones exists. Then, the same generation model should lead to the 

initial low-resolution images after applying it to the recovered image. The drawback 

is that the reconstruction problem is generally an ill-posed problem because a lot of 

information is lost during the transition from high-resolution to low-resolution, the 

number of low-resolution images may be insufficient, the blur operators are ill-

conditioned and the reconstruction solution is not unique.    

 

Before the demonstration of image super-resolution by sparse representation, it is 

important to briefly present some of the main developments on the field of super-

resolution. The first who considered the problem of generating a high-resolution 

image from several downsampled and translationally displaced images were Tsai and 

Huang in 1984 [1]. They formulated a set of equations in the frequency domain by 

using the shift property of the Fourier transform and the aliasing relationship between 

the continuous Fourier transform of the original high-resolution image and the 

discrete Fourier transform of the observed images, without considering optical blur or 

noise. They also assumed that the original high-resolution image is band-limited. 

Noise is taken into account by [2] which improves [1] by including the linear shift 

invariant blur point spread function. Noise and blur are also taken into account by [3] 

where a recursive least-squares technique is used in order to solve the same model as 

[1] in the presence of noise. The advantage of these frequency domain methods is that 

they are computationally efficient. However, super-resolution uses mostly spatial 

domain methods (rather than frequency domain ones), because of the advantages they 

provide, including flexibility in the choice of motion model, motion blur, optical blur, 

the sampling process and the ease in formulating the constraints (e.g. Markov random 

fields, projection onto convex sets) [4].  
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There are super-resolution techniques which are based upon interpolation. The results 

of some interpolation techniques, such as nearest-neighbor, least-squares plane fitting 

(LSP), normalized convolution (NC), exact image reconstruction (ER), iterative 

reconstruction (IT), can be found in [5]. These methods generate more favorable 

results than simple interpolation methods, such as Bilinear and Bicubic interpolation, 

which produce overly smooth images with notched artifacts. Another interpolation 

technique is presented in [6] where the background and foreground descriptors are 

used in order to represent the local image patches and then reconstruct the sharp 

discontinuity between the two. Images, can also be modeled as probability 

distribution, because in super-resolution data or parameters which are unknown need 

to be estimated. [7] uses Maximum a posteriori (MAP) estimation and produces 

accurate motion estimates assuming rigid-body motion. However, a more important 

progress is done in [8], where the authors estimate the high-resolution image and the 

motion parameters simultaneously. Since image super-resolution reconstruction is a 

severely underdetermined problem, regularization has been widely used to avoid this 

ill-posed problem [9].   

 

Other methods used in super-resolution are the iterative methods. In [10], recursive 

least squares, least mean squares and steepest descent are used to approximate the 

Kalman filter. The performance of these techniques is also analyzed. Back-projection 

kernel both for image registration and restoration is used in [11], but the authors later 

modified their method [12] in order to deal with more complicated motion types (e.g. 

partial occlusion, transparency). Another category of super-resolution methods are the 

Projection Onto Convex Sets (POCS) where sets, which represent certain 

characteristics of the image, are determined in order to limit the solution space for the 

high-resolution reconstruction stage. In this way, the goal is to find the intersection of 

the convex sets. Such work is [13] where noise is not considered, however, the 

solution is not unique and depends on the initial guess. These constitute the most 

significant disadvantages of POCS along with slow convergence. On the other hand, 

the advantages include simplicity, generality in the choice of the observation model 

and convenient inclusion of prior knowledge. 
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Since most quadratic minimization techniques generate overly smooth images, Farsiu 

et al. [14] use the L1 norm both for regularization and data fusion in order to achieve 

better edge preservation. Furthermore, they demonstrate that L1 norm minimization 

can be implemented as median estimation, while proposing the total variation method 

both for deblurring and denoising. In [15] the gradient constraint method which is 

based on Taylor series expansion is used, to achieve computational effectiveness. 

Whereas, the authors of [16] present an innovative idea, the subpixel shifts, which are 

used extensively in multi-image super-resolution. Other works which aim to deal with 

the computational problems that appear in super-resolution are [17], where the 

Tikhonov-regularized problem is solved by the conjugate gradient method, and [18] 

which presents a very significant theoretical result. The authors find the theoretical 

and practical performance bounds of super-resolution algorithms under various 

assumptions. The results indicate that, reconstruction-based algorithms are not 

favorable when the magnification factors are large or the number of the input images 

is not enough to constrain the solution. Thus, the reconstructed high-resolution image 

may lack important high-frequency details [19].  

 

This problem led to the development of example-based super-resolution, which was 

introduced by [20, 21, 22]. As mentioned above, example-based super-resolution 

learns correspondences between low- and high-resolution image patches. [20] 

captures this cooccurence (between low- and high-resolution image patches) with the 

use of a Markov random field solved by belief propagation. [21] introduced the face 

hallucination problem. All the previously mentioned methods are dealing with generic 

image super-resolution, whereas [21] deals with human faces. [22] introduces a fast 

and simple one-pass algorithm which results in resolution independence in image-

based representations. [23] proposes a method which is based on the observation that 

in a natural image, patches tend to redundantly recur within and across different scales 

of the given low-resolution image. In [24] the authors use the locally linear 

embedding technique from manifold learning to map the local geometry of the low-

resolution patch space to the high-resolution patch space, in order to generate a high-

resolution patch as a linear combination of neighbors. Thus, they assume similarity 

between the two manifolds in the high-resolution patch space and the low-resolution 

patch space. The disadvantage of this method is that in reconstruction problems a 
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fixed number of neighbors often leads to blurring results because of overfitting or 

underfitting.      

 

In this thesis, the problem of super-resolution by sparse representation is 

demonstrated. Sparse representation is used successfully in many problems of image 

processing and the results indicate that it provides effectiveness and robustness to 

noise. Such method is the method of Yang, Wright, Huang and Ma [25] which seeks a 

sparse representation for each patch of the low-resolution input, and then uses the 

coefficients of this representation to generate the high-resolution output. This method 

uses two dictionaries, one for the low- and one for the high-resolution patches, which 

are trained simultaneously in order to ensure the similarity of the sparse 

representations between the low- and high-resolution patch pairs. The low-resolution 

input is upsampled before the training of the dictionaries and during the 

reconstruction process. A different approach was adopted in the frame of this thesis. 

The low-resolution image patches are directly used to obtain the two coupled 

dictionaries and then the original low- resolution patches are used in order to generate 

the high-resolution image. The method was applied and tested on frontal views of 

human faces. Furthermore, the training of the two dictionaries is discussed 

extensively. 

 

In the next chapter, the problem of learning the dictionary pair in order to maintain the 

correspondence between the low-resolution and high-resolution patches is discussed. 

Chapter 3 presents the quantitative description of the formulation and reconstruction 

model. In chapter 4 the results obtained by the image super-resolution based upon 

sparse representation new approach are demonstrated in comparison with other 

methods. Finally, in chapter 5 the conclusions that emerged from the study of the 

image super-resolution problem are discussed and suggestions for future research are 

made.   
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Fig. 1.1:  Multi-image super-resolution. Multiple slightly different low-resolution 

images of the same object (left), one of the low-resolution images zoomed (center) in 

order to be compared with the resulting high-resolution image (right). 

 

 

 

 

 

Fig. 1.2:  Single-image super-resolution. The low-resolution input (left) and the high-

resolution output (right). 
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Fig. 1.3:  Face hallucination. A low-resolution image captured by a surveillance 

camera (left) and its super-resolved version (right). 
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CHAPTER 2. DICTIONARIES AND SPARSE 

REPRESENTATIONS 

2.1 Sparse Representation: A Closer Look 

2.2 Dictionaries 

2.3 Learning the Dictionary 

 

Sparse representation or sparse approximation or sparse decomposition is the problem 

of estimating a sparse vector which satisfies a linear system of equations given the 

observed data and a basis matrix, the so-called dictionary. Sparse representation 

methods are used in various applications such as image processing, audio processing, 

medical imaging devices, satellite imaging, visual electronics and document analysis. 

The sparse representation of signals has gained a lot of interest in recent years because 

of the observation that time signals can be well-represented by a small number of non-

zero coefficients with respect to a suitable dictionary. Therefore, the defining 

characteristics of the sparse representation problem are an input signal, which is 

approximated by a linear combination of elementary signals called atoms or 

codewords, and a preference for sparse linear combinations which is imposed by 

penalizing non-zero coefficients. A set of atoms composes an overcomplete dictionary 

which is formed so that the number of atoms exceeds the dimension of the signal, in 

order to make feasible the representation of any signal by more than one combination 

of different atoms.   

 

Given a signal and an overcomplete dictionary the goal of the sparse approximation 

problem is to find the smallest set of atoms from the dictionary to represent the signal. 

This problem, leads to an additive problem which is obtaining the appropriate 
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dictionary. In this chapter the construction of dictionaries which is of great 

importance in image processing and consequently in super-resolution problems will 

be discussed thoroughly. Furthermore, the dictionary learning technique which was 

used in the frame of this thesis in order to generate two coupled dictionaries Dl and Dh 

for the low- and high- resolution patches respectively is also analyzed.     

 

2.1.  Sparse Representation: A Closer Look 

Let’s consider the basic model for sparse representation which is defines as: 

 

                                                    x = Dα                                                        (2.1) 

 

where D    nxK
 is an overcomplete dictionary of K atoms (K > n) and x    n

 is a 

signal represented as a sparse linear combination with respect to D. α    K
 is the 

signal which needs to be estimated subject to the constraint that it is sparse, which 

means that it has very few non-zero entries. It is remarkable that such problems start 

with observed data in high-dimensional space (n) and find signals which are 

organized in a lower-dimensional subspace (<<n). The solution to the above problem 

is the one with the fewest number of non-zero coefficients. Mathematically expressed 

as: 

 

                                       min ||α||0  s.t.  x = Dα                                               (2.2) 
                                         α 

or 

 

                                   min ||α||0  s.t.  ||x – Dα||2 ≤ ϵ                                        (2.3) 
                                     α 

 

where ||α||0 is the l0 pseudo-norm which counts the number of non-zero components of 

α. Although this optimization problem is NP-hard in general, a lot of methods have 

been proposed for finding approximating solutions. Some of these solve the sparse 

approximation problem iteratively by processing one coefficient at a time, such as 

Matching Pursuit (MP) and Orthogonal Matching Pursuit (OMP), and some process 

all the coefficients simultaneously, such as Basis Pursuit (BP) and Focal 
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Underdetermined System Solver family of algorithms (FOCUSS).    

 

A first observation, for the previously presented basic model for spare representation, 

is that any atoms in the dictionary can be picked and secondly, the problem is defined 

for only a single point x and its noisy observation. In the structured sparsity model 

groups of atoms are picked, instead of picking atoms individually, and these groups 

can be overlapping and of varying size. In this case, the objective is to represent x so 

that it is sparse in the number of groups selected. In the collaborative sparse coding 

model, more than one observation of the same point is available and the data fitting 

error is defined as the sum of the l2-norm for all points.     

 

2.1.1.  Matching Pursuit 

Matching Pursuit is a greedy algorithm which processes one coefficient at a time in 

order to find the best sparse representation of a signal with respect to an overcomplete 

dictionary D. The algorithm, at each iteration, finds a basis vector in the dictionary D 

that maximizes the correlation with the residual signal or else that has the maximal 

projection onto the residual signal. Then the residual signal and the coefficients are 

recomputed by using the existing coefficients to project the residual onto the 

dictionary D. For a given signal x   n
 and a dictionary D of K atoms, {dk} = 

{d1,d2,…,dK}, if Rn is the residual signal and αn the coefficients then the algorithm can 

be summarized as: 

 

1. Initialize R and the index n:  

 

R1=x, n=1. 

 

2. Repeat: 

a) find the index of the atom which maximizes the inner product of the 

dictionary atoms with the signal by: 

 

 

in = arg max |       | 
                  w 
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b) Update the residual and the coefficients by: 

 

αn =        ; 

      Rn+1 = Rn - αndw; 

         n = n+1; 

 

3. Until stop condition. 

 

The stop condition can be a predetermined number of iterations, a predetermined 

number of selected atoms or a constraint on the residual signal, such as ||Rn|| < 

threshold. The main problem of the Matching Pursuit algorithm is the computational 

cost and the fact that an atom can be selected multiple times.  

 

2.1.2.  Orthogonal Matching Pursuit 

Orthogonal Matching Pursuit is also a greedy algorithm which is very similar to the 

aforementioned Matching Pursuit algorithm. The difference is that OMP deals with 

the problem of MP by avoiding picking an atom which has already been picked in a 

previous iteration. This is done by updating, at each iteration, an active set of atoms 

which have already been picked. The residual signal is recomputed by projecting it 

onto a linear combination of the atoms in the active set. The algorithm can be 

summarized as: 

 

1. Initialize R and the index n:  

 

R0=x, n=1. 

 

2. Repeat: 

1. select the index of the next atom which maximizes the inner product of 

the dictionary atoms with the signal by: 

 

in = arg max |         | 
                w 

 

2. Update the current approximation by: 
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xn = arg min ||x – xn||2
2
 

           xn 

 

such that xn   span{d  ,d  ,…,d  } 

3. Update the residual signal by: 

 

      Rn = x - xn; 

 

3. Until stop condition. 

   

The stop condition can be the same as in Matching Pursuit, a predetermined number 

of iterations, a predetermined number of selected atoms or a constraint on the residual 

signal, such as ||Rn|| < threshold. The Orthogonal Matching Pursuit algorithm leads to 

better results than MP, because each atom is picked only once but the disadvantage is 

that this requires more computation.  

 

2.1.3.  Basis Pursuit 

Both Orthogonal Matching Pursuit and Matching Pursuit algorithms solve the l0-norm 

version of the sparse representation problem as it is described in (2.2) and (2.3), 

whereas, Basis Pursuit solves the l1-norm version of the problem, which means that 

(2.2) and (2.3) are reformulated as: 

 

                                        min ||α||1  s.t.  x = Dα                                              (2.4) 
                                          α 

or 

 

                                   min ||α||1  s.t.  ||x – Dα||2 ≤ ϵ                                        (2.5) 
                                     α 

 

The problem of (2.4) can be solved efficiently through linear programming while the 

problem of (2.5) is a Quadratically Constrained Quadratic Programming which is 

ready to be solved in many optimization packages. Furthermore, Basis Pursuit 

processes all the coefficients simultaneously unlike Orthogonal Matching Pursuit and 

Matching Pursuit.  
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2.1.4.  Focal Underdetermined System Solver 

Focal Underdetermined System Solver (FOCUSS) is an algorithm that solves the 

sparse representation problem presented in (2.2) and (2.3) by using the lp-norm 

instead of the l0-norm. Thus, the problem of (2.2) and (2.3) can be rewritten as: 

 

                                       min ||α||p  s.t.  x = Dα                                               (2.6) 
                                         α 

or 

 

                                   min ||α||p  s.t.  ||x – Dα||2 ≤ ϵ                                        (2.7) 
                                     α 

 

where p ≤ 1. 

 

2.2.  Dictionaries 

In image processing the main problem is to find the sparsest representation of a 

signal. This sparse representation problem assumes that the dictionary is known; this 

assumption leads to another problem, which is obtaining the appropriate dictionary. 

Therefore, given a set of signals which have a sparse representation over an unknown 

dictionary the goal of the dictionary learning problem is to find the dictionary. In 

other words, the goal is to obtain the dictionary that generates sparse representations 

for the training signals.  

 

Although pre-defined dictionaries have been widely used in many applications, such 

as discrete cosine transform (DCT), discrete Fourier transform (DFT) and wavelets 

dictionaries (which are used in image compression), the dictionaries which are learned 

directly from the data have been successfully used in applications where the pre-

defined dictionaries are not applicable, and provided a better adaptation of the 

dictionaries. A great variety of dictionary learning algorithms have been proposed, 

with most of them having a common characteristic. The optimization process iterates 
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between two steps, the sparse approximation and the dictionary update. More 

specifically, starting with an initial dictionary the algorithms find sparse 

approximations of the set of training signals while keeping the dictionary fixed in step 

one, and in step two the sparse coefficients are kept fixed while the dictionary is 

optimized. Some of these algorithms are presented in the following lines. 

 

2.2.1.  Probabilistic Methods 

Given independently and identically distributed (i.i.d.) data X = {x1,x2,…,xn  

assumed to be generated b  the general model (11), a maximum li elihood estimate 

D ML of the unknown dictionary D can be determined as [26, 27]: 

 

                                        D ML = arg max P(X;D).                                         (2.8) 
                                                            D 

 

This optimization problem requires the integration of the hidden, unobservable i.i.d 

source vectors A = {α1,α2,…,αn  for the computation of P(X;D). The prior P(α), 

which is assumed to be known, is generally taken to be supergaussian thus, the 

integration is computationally unreasonable and approximations to this integration are 

performed, leading to an approximation of P(X;D) which is maximized with respect 

to X. Then, a better approximation to the integration is made and this process is 

iterated until the convergence of the estimate of the dictionary D [26]. Therefore, the 

method of [26] can be summarized as the iteration between the two following steps: 

 

 Step 1: calculate the coefficients αi using a simple gradient descent procedure. 

 Step 2: update the dictionary D by using:  

                                                                     N 

                              D
(n+1)

 = D
(n)

 – η ∑ (D
(n)
αi - xi)αi

T
 .                                   (2.9) 

                                                                                  
i=1  

 

The authors of [27] handle the integration problem by using a gaussian function in 

order to approximate the integration. On the other hand, the authors of [26] also 

propose the maximum a posteriori (MAP) dictionary learning algorithm which 

maximizes the posterior probability that a given signal can be represented by a 
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dictionary and the sparse coefficients P(D;X), instead of maximizing the likelihood 

function P(X;D) [28]. 

 

2.2.2.  The Method of Optimal Directions (MOD) 

The method of optimal directions (MOD) was proposed by [29] for dictionary 

training. This method defines the errors as:  

 

                                                  ei = xi - Dαi                                                 (2.10) 

 

assuming that the sparse representation of the data is known. The overall 

representation mean square error can be calculated by: 

 

                            ||E||F
2
 = || [e1,e2,…,eN] ||F

2
 = || X – DZ ||F

2
                         (2.11) 

 

where the matrix X includes all the training vectors xi as columns, the matrix Z 

includes the representation coefficients αi and ||E||F is the Frobenius norm, which is 

defined as ||E||F = √∑i∑jE(i,j)
2
. 

 

The MOD algorithm, at the first step finds a sparse representation using OMP or 

FOCUSS and then at the second step, assuming that Z is fixed, updates the dictionary 

D so that the error in (2.11) is minimized. The update of the dictionary D is done by 

using: 

 

                                           D
(n+1)

 = XZ
T .

 (ZZ
T
)
-1

 .                                       (2.12) 

 

The MOD method is an improvement of [26] which is more efficient and generates 

better dictionaries D, due to the fact that MOD assumes that the coefficients are 

known at each iteration and generates the best possible dictionary, whereas the 

maximum likelihood method of [26] only gets closer to the best current solution and 

then calculates the coefficients.  
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2.2.3.  The K-SVD Algorithm 

The K-SVD algorithm which is a direct generalization of the K-Means was proposed 

by [30]. When this algorithm is forced to work with one atom per signal, it trains a 

dictionary for the Gain-Shape VQ, and when it is forced to have a unit coefficient for 

this atom it exactly reproduces the K-Means algorithm.  

 

At the first step of the algorithm, the sparse representation step, the best possible 

dictionary for the sparse representation of the example set X is found by solving the 

minimization problem: 

 

                                 min (||X – DZ||F
2
)  s.t.  ||αi||0 ≤ T0.                                (2.13) 

                                              Z 

 

In this step, the dictionary D is fixed while the coefficient matrix Z is updated. Any of 

the sparse approximation algorithms can be used for the solution of (2.13). 

 

At the second step, the dictionary update step, the K-SVD algorithm updates one 

column at a time, fixing all columns in D except one, dk, and finding a new column d k 

and new values for its coefficients that best minimize the mean square error as defined 

in (2.11):  

 

                            ||E||F
2
 = || [e1,e2,…,eN] ||F

2
 = || X – DZ ||F

2
. 

 

This is the main difference of the K-SVD algorithm from the previously described 

methods, which keep Z fixed while finding a better dictionary D. In K-SVD while the 

columns of D are changing sequentially, the corresponding coefficients are changing 

as well. In this way, the convergence of the algorithm accelerates.   

 

2.2.4.  Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA) 

The recursive least squares dictionary learning method was proposed by [31]. The 

goal is to find a sparse representation of the training set which minimizes the total 

error as much as possible, that is minimizes the sum of squared errors. Thus, the 
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minimization problem is the same as in K-SVD and MOD method described earlier 

with the error given by the equation (2.11): 

 

                             ||E||F
2
 = || [e1,e2,…,eN] ||F

2
 = || X – DZ ||F

2
 . 

 

As previously mentioned, the most dictionary learning algorithms iterate between two 

steps, the sparse approximation step and the update of the dictionary step. In the first 

step, the algorithm finds Z while keeping D fixed, and in the second step the 

dictionary D is found while keeping Z fixed. The strategy of RLS-DLA is different. 

 

In the first step, a sparseness constraint is employed in order to compute the sparse 

coefficients α. Thus, the sparse approximation problem can be formulated as: 

 

                               α = arg min ||x – Dα||2
2
  s.t.  ||α||0 ≤ s                             (2.14) 

                                             α 

 

where s is the number of the non-zero elements in each column. This optimization 

problem can be solved by using MP, OMP, BP or FOCUSS. 

 

In the second step, the goal is to update the dictionary D. This is done by minimizing 

(2.11) and the optimization problem can be written as: 

 

                                      D = arg min (||X – DZ||F
2
)                                      (2.15) 

                                                     D 

 

while the Least Squares solution is the same as in the MOD method and is given by 

the equation (2.12): 

 

                                        D
(n+1)

 = XZ
T .

 (ZZ
T
)
-1

 . 

 

The authors of the RLS-DLA method assume that the solution for the first i training 

vectors is known and they try to find the new solution when the next training vector is 

included. Therefore, the Least Squares solution for the dictionary for these i training 

vectors can be formulated as: 
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                                           Di = XiZi
T .

 (ZiZi
T
)
-1

 .                                         (2.16) 

 

The RLS-DLA algorithm updates the dictionary continuously as each new training 

vector is processed, whereas the previously mentioned dictionary learning algorithms 

update the dictionary after a batch of training vectors has been processed, usually 

using the whole set of training vectors as one batch. The results indicate that this 

algorithm has very good convergence properties and the ability to use very large 

training sets, which results in a general dictionary for the used signal class instead of a 

specialized dictionary for the particular training set used. Furthermore, the RLS-DLA 

algorithm is superior to the above mentioned methods both in representation ability of 

the training set and in the ability of reconstruction of a true underlying dictionary 

[31].  

 

2.2.5.  Simultaneous Codeword Optimization (SimCO) 

At the aforementioned K-SVD algorithm the main idea is that in the dictionary update 

step one column (that is atom) of the dictionary D is updated at a time while the 

corresponding row of the sparse coefficient matrix Z is also updated. In the 

Simultaneous codeword optimization (SimCO) method proposed by [32], all the 

atoms of the dictionary D and the corresponding non-zero coefficients in Z are 

updated simultaneously.  

 

In the first step of the algorithm, the sparse approximation step, the optimization 

problem is the same as in the most dictionary learning algorithms, that is the 

minimization of (2.11): 

 

|| X – DZ ||F
2
. 

 

In the second step, the dictionary update step, the authors of the SimCO algorithm in 

order to update all the atoms of the dictionary D and the corresponding coefficients 

simultaneously, employ l2-norm constraints on the columns of D: 
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                              D = {D    nxK
 : ||Di||2 = 1,  i   K},                              (2.17) 

 

and the optimization problem can be written as: 

 

                                                      min   (||X – DZ||F
2
)                                            (2.18) 

                                       D,ZϵZ(Ω) 

 

where Z(Ω) are the locations of the non-zero coefficients in Z. What is remarkable 

about this optimization problem is that the Z that minimizes (2.18) changes as D 

changes. An update in D is followed by an update of the corresponding optimal Z. 

The authors also propose a generalization of SimCO in order to update an arbitrary 

subset of atoms and the corresponding coefficients, instead of updating all the atoms 

of D simultaneously. The bottom line is that SimCo is different from other dictionary 

learning methods only as far as the dictionary update step is concerned. When the 

sparse coefficient matrix Z is fixed, the optimization problem is similar to the MOD 

method, and when only one column of the dictionary D is selected for update, the 

optimization is similar to the K-SVD algorithm. However, the main difference is the 

l2-norm constraints on the columns of D.    

 

2.2.6.  Greedy Adaptive Dictionary Algorithm (GAD) 

The greedy adaptive dictionary algorithm (GAD) divides the input data into blocks 

[33]. Thus, if the input signal is denoted as x(n) = [x(1), x(2),…,x(N)] and the blocks 

are denoted as xm(n) = [xm(1), xm(2),…, xm(K)], where K are the atoms of the 

dictionary, then the blocks construct a new matrix X  defined as: 

 

                                  X(n) = [x1(n), x2(n),…, xM(n)]                                   (2.19) 

 

where the m-th column is represented by the block xm(n) and the columns are l1-

normalized. The GAD algorithm adaptively learns a dictionary by sequentially 

extracting the columns of the matrix X. 
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 If R
j
 = [  

 
,   

 
,…,   

 
] is the residual matrix with   

 
 being a M-dimensional residual 

column vector, then the initial residual matrix for the algorithm is: 

 

                                                     R
0

 = X.                                                     (2.20) 

 

The GAD algorithm at each iteration j   {1, 2,…, K  finds the bloc  with the highest 

l2-norm,   
 
, which becomes a dictionary element and iteratively defines a residual 

matrix. Therefore, the iterative steps of the algorithm can be summarized as: 

 

1. Find the index m of the next block:   

 

            m = arg maxm ||   
 
||2.                                     (2.21) 

 

2. Include this block in the dictionary as the j-th dictionary element d
j
. 

3. Evaluate the coefficients by computing the inner product between the residual 

vector    
 
 and the dictionary atom d

j
 of the previous step: 

 

        
 

 =    
 
    .                                           (2.22) 

 

4. Compute the new residual, by removing the component along the chosen 

atom, for each element m in   
 
(n): 

 

                
   

 =   
 
 –   

 
  .                                       (2.23) 

  

Then the corresponding column of the residual matrix R
j
 is set to zero because the 

whole atom is removed. In this way, it is ensured that the transform is orthogonal. 

 

2.2.7.  Efficient Sparse Coding Algorithms 

The authors of [34] propose efficient sparse coding algorithms which iterate between 
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the two regular sparse representation steps, sparse approximation step and dictionary 

update step, and alternatively solve two convex optimization problems. The first is a 

L1-regularized least squares problem and the second is an L2-constrained least squares 

problem.   

 

In the first step, the sparse approximation step, the optimization is the same as in the 

most dictionary learning algorithms with an l1 penalt  added over the coefficients Ζ. 

Thus, the optimization problem can be written as: 

 

                                         min ||X – DZ||
2
 + λ||Z||1                                        (2.24) 

                                             Z 

 

where λ is a constant. The authors propose solving this problem b  optimizing over 

each coefficient α of the coefficient matrix Z individuall  while  eeping the 

dictionary D fixed. The algorithm tries to find the signs of the coefficients by 

maintaining an active set of potentially nonzero coefficients and their corresponding 

signs, all the other coefficients must be zero, and systematically searches for the 

optimal active set and coefficient signs. Each time, a current guess for the active set 

and the signs is available and the anal tical solution αnew to the resulting problem is 

computed. Then, the active set and the signs are updated using an efficient discrete 

line search between the current solution and αnew. The authors named the algorithm 

which solves the first step of the dictionary learning problem, the feature-sign search 

algorithm. 

 

In the second step, the dictionary update step, the goal is to update D while keeping 

the coefficient matrix Z fixed. The optimization problem is the same as it was defined 

in (2.15): 

 

                                      D = arg min (||X – DZ||F
2
)         

                                                     D 

 

with l2-norm constraints employed on the columns of the dictionary D. Therefore, the 

problem is formulated as: 
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                  D = arg min (||X – DZ||F
2
)   s.t.   ||Di||

2 
≤ c, i=1, 2,…, K            (2.25) 

                                 D 

 

where c is a constant. This quadratically constrained least squares problem can be 

solved using the Lagrange dual. If D(λ) denotes the Lagrange dual with λ representing 

the dual variables, then the optimization of D(λ) can be achieved b  using Newton’s 

method or conjugate gradient. After the maximization of the Lagrange dual the 

optimal dictionary D can be obtained by computing: 

 

                                         D
T
 = (ZZ

T
 + Λ)

-1
(ΧΖ

Τ
)
Τ
                                      (2.26) 

 

where Λ = diag(λ).  

 

2.3.  Learning the Dictionary 

2.3.1.  Single Dictionary Training 

The dictionary learning process starts with a given set of signals which have a sparse 

representation over an unknown dictionary and tries to find the dictionary. In other 

words, the goal of the dictionary learning process is to obtain the dictionary that 

generates sparse representations for the training signals. The optimization problem 

which was used for the experiments presented in the next chapter is formulated as 

[34]: 

 

             D = arg min ||X – DZ||2
2
 + λ||Z||1  s.t.  ||Di||2

2
 ≤ 1, i=1,2,…,K       (2.27) 

                                D,Z 

 

where the matrix X is the set of training vectors, the matrix D is the dictionary and 

matrix Z includes the sparse representation coefficients. The l1-norm, ||Z||1, enforces 

the sparsity, whereas the l2-norm constraints on the columns of D remove the scaling 

ambiguity. The equation (2.27) is not convex in both D and Z, but it is convex in one 

of them with the other fixed. This is known as a biconvex optimization problem and 

can be solved by iterating between the two convex optimization problems contained 
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in it. Therefore, the dictionary learning process iterates between the two regular steps, 

the sparse approximation step and the dictionary update step. In the first step, starting 

with an initial dictionary the algorithm finds sparse approximations of the set of 

training signals while keeping the dictionary fixed, while in the second step the sparse 

coefficients are kept fixed while the dictionary is optimized. The algorithm of [34] 

can be summarized as: 

 

1. Initialize the dictionary D with a Gaussian random matrix, with each column 

unit normalized.  

2. Keep the dictionary D fixed, and update Z by 

 

                                   Z = arg min ||X – DZ||2
2
 + λ||Z||1                               (2.28) 

                                                  Z 

 

which is a linear programming problem and can be solved efficiently by 

 existing solvers. 

3. Keep the sparse coefficient matrix Z fixed, and update the dictionary D by 

 

                     D = arg min ||X – DZ||2
2
  s.t.  || Di||2

2
 ≤ 1, i=1,2,…,K              (2.29) 

                                               D 

 

which is a Quadratically Constrained Quadratic Programming that can be 

solved efficiently by existing solvers. Such is the package developed by [34], 

and also many other optimization packages. 

4. Iterate between 2 and 3 until convergence. 

 

2.3.2.  Joint Dictionary Training 

The joint dictionary learning strategy is almost the same with the single dictionary 

learning strategy. As it is mentioned in the previous chapter and as it will be 

mentioned throughout the next chapter, the goal of the learning-based super-



25 

 

 

resolution methods is to learn two coupled dictionaries, one for the low-resolution 

image patches (Dl) and one for the high-resolution ones (Dh). The two dictionaries are 

trained simultaneously in order to ensure that the sparse representations between the 

low-resolution and high-resolution image patch pairs are similar, with respect to Dl 

and Dh. The learning process starts with a given set of image patch pairs, P = {X
h
, 

Y
l
}, which are sampled from the training images. With X

h
 = {x1,x2,…,xn} the set of 

the sampled high-resolution image patches is represented and with Y
l
 = {y1,y2,…, n} 

the set of the corresponding low-resolution image patches is represented.  

 

The optimization problems for the high-resolution image patches and the low-

resolution ones can be respectively written as: 

 

                                Dh = arg min ||X
h
 – DhZ||2

2
 + λ||Z||1                              (2.30) 

                                              Dh,Z 

and 

 

                                Dl = arg min ||Y
l
 – DlZ||2

2
 + λ||Z||1 .                              (2.31) 

                                              Dl,Z 

 

These two objectives are combined, according to [25], forcing the high- and low-

resolution representations to share the same codes. Thus, the optimization problem is 

formulated as: 

 

                           min   
 

 
 ||X

h
 – DhZ||2

2
 +  

 

 
 ||Y

l
 – DlZ||2

2
 + λ   

 

 
  +  

 

 
  ||Z||1           (2.32) 

             Dh,Dl,Z 

 

where N is the dimension of the high-resolution image patches in vector form and M 

is the dimension of the corresponding low-resolution image patches in vector form. 

The two cost terms of (2.30) and (2.31) are balanced by the use of 1/N and 1/M. The 

optimization problem in (2.32) can be written as:  

 

                                      min   ||Xc – DcZ||2
2
 + λ ||Z||1                                     (2.33) 

                                    Dh,Dl,Z 

where    
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             Xc =     
 

  
 X

h
      ,       Dc =     

 

  
 Dh     ,        λ  = λ    

 

 
  + 

 

 
   .       (2.34) 

                         
 

   
 Yl

  
 

  
 Dl  

 

The optimization problem in (2.33) is now the same with the one in (2.27). This 

means that the two coupled dictionaries can be trained with the single dictionary 

method described in the previous section. More specifically, the steps of the algorithm 

are: 

 

1 Initialize the two dictionaries Dh and Dl with a Gaussian random matrix, with 

each column unit normalized. Combine the two dictionaries to form Dc.  

2 Keep the dictionary Dc fixed, and update Z by 

 

                                    Z = arg min ||Xc – DcZ||2
2
 + λ ||Z||1                           (2.35) 

                                                   Z 

 

which is a linear programming problem and can be solved efficiently by 

 existing solvers. 

3 Keep the sparse coefficient matrix Z fixed, and update the dictionary Dc by 

 

                    Dc = arg min ||Xc – DcZ||2
2
  s.t.  || Di||2

2
 ≤ 1, i=1,2,…,K          (2.36) 

                                    Dc 

 

which is a Quadratically Constrained Quadratic Programming that can be 

solved efficiently by existing solvers. Such is the package developed by [34], 

and also many other optimization packages. 

4 Iterate between 2 and 3 until convergence. 
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CHAPTER 3. IMAGE SUPER-RESOLUTION 

3.1 Mathematical Description 

3.2 Description of Image Super-resolution via Sparsity 

3.3 From Local Optimization to Global Optimization 

 

Super-resolution means resolution enhancement of an imaging system. The sensor 

and the lens in every digital imaging system result in optical blur and limitations on 

the highest spatial frequency the given sensor can record. Although it should be easy 

to “cure” optical blur by simply applying an inverse sharpening, yet, this leads to 

degradations (caused by the sensor). Other reasons that explain why the 

reconstruction of a perfect high-resolution image is impossible are: (i) the sensor 

noise which degrades the image quality and reduces the ability to recover the details 

which are lost by noise, (ii) uncertainty about the real offsets of the images, which 

means that the precise camera position and orientation in space are not known during 

the super-resolution process and thus, need to be estimated by the low-resolution 

images (introducing errors), and (iii) the diffraction limit because optical systems 

have fundamental limits on resolution where two close subjects cannot be resolved 

one from another.    

 

Super-resolution tries to overcome these problems via various methods. The super-

resolution methods proposed in literature are of great variety and they can be broadly 

divided into two categories. The first category includes the classical multi-image 

super-resolution techniques, which use the subpixel misalignments between several 

low-resolution images of the same scene in order to infer the high-resolution image. 

The second category is composed of the learning-based super-resolution techniques. 
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The learning-based methods learn the correspondences between low- and high-

resolution image patch pairs and then apply them to the given low-resolution image to 

recover its most likely high-resolution version. This section focuses on a learning-

based method which tries to recover the high-resolution version of a given low-

resolution image by using sparse representation. Furthermore, a global reconstruction 

constraint is employed in order to ensure that the recovered high-resolution image is 

consistent with its low-resolution counterpart. The mathematical description of this 

problem is presented in the following lines.   

 

3.1.  Mathematical Description 

3.1.1.  Basic Model 

A great variety of super-resolution methods can be found in literature. However, there 

is a standard underlying model that relates the high-resolution and the low-resolution 

image. If Y is the given low resolution image and X the original high-resolution 

image, then the observation model is: 

 

                                                Y = SHX + η                                                  (3.1) 

 

where the matrix S is the downsampling operator, matrix H is the blurring operator, 

and η is the noise in the generation of Y from X. 

 

3.1.2.  Basic Model by Sparse Representation 

As mentioned above, a compact representation is learned in order to capture the 

cooccurrence prior between the low- and high-resolution image patch pairs. Let 

D   nxK 
be an overcomplete dictionary of K atoms (K > n), and suppose a signal x 

  n
 can be represented as a sparse linear combination with respect to D: 
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                                                   x = Dα0                                                        (3.2) 

 

where α0    K
 is a vector with very few (<< n) nonzero entries, and signal x is a high-

resolution image patch. 

 

If y is the low-resolution counterpart of x then: 

 

                                               = Lx = LDα0                                                   (3.3) 

 

where L    kxn 
with k < n is a projection matrix. 

 

The dictionary D is overcomplete, as mentioned above, this means that the equations 

(3.2) and (3.3) are underdetermined for the un nown coefficients α. However, the 

sparsest solution α0 to these equations will be unique, under mild condition. 

 

In this thesis, instead of learning a single dictionary D, two coupled dictionaries are 

learned, one for the low-resolution image patches (Dl) and one for the high-resolution 

ones (Dh). To ensure that the sparse representations between the low-resolution and 

high-resolution image patch pairs are similar, with respect to Dl and Dh, the two 

dictionaries are trained simultaneously. This leads to the idea that, the sparse 

representation for each low-resolution image patch can be applied with the high-

resolution image patch dictionary to generate the corresponding high-resolution image 

patch [25].   

 

3.2.  Description of Image Super-resolution via Sparsity 

In this section, the reconstruction method of a high-resolution image which was 

proposed by Yang, Wright, Huang and Ma [25] is presented. Their approach is a 

learning-based technique. Such techniques, attempt to capture the relationship 

between the low-resolution patches and their corresponding high-resolution versions 

from the training data. This relationship is learned by jointly training two dictionaries, 

Dl and Dh, so as to have the same sparse representations for each high-resolution and 
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low-resolution image patch pairs. Therefore, if a low-resolution patch has a 

representation in Dl, its high-resolution version can be recovered by the same 

representation in Dh. In practice, there are many high-resolution patches that result in 

the same low-resolution patch after blurring and downsampling. Thus, the solution 

space needs to be restricted by regularizing the super-resolution problem. This can be 

efficiently achieved by the l
1
-norm, as long as it is highly likely that any given low-

resolution patch has a sparse representation in Dl.  

 

The basic idea proposed by [25] can be summarized in the following equation: 

 

                               x ≈ Dhα,   α    K
 with ||α||0 << Κ                                   (3.4) 

 

which indicates that the high-resolution patches x of the original image X can be 

represented as a sparse linear combination in a high-res dictionary Dh trained from 

high-resolution patches sampled from training images. The sparse representation α is 

found by representing the low-resolution patches y of the given image Y with respect 

to a low-resolution dictionary Dl, which is jointly trained with Dh. In simple words, 

the basic idea is to find a sparse representation for each low-resolution patch y of the 

input image Y, and then appl  the coefficients α of this representation with the high-

resolution dictionary Dh to generate the high-resolution patch x of the output X. 

 

3.2.1.  The Problem of the Sparsest Representation 

The Dl dictionary is formed by low-resolution patches and the Dh dictionary is formed 

by the corresponding high-resolution patches. As mentioned above, for each low-

resolution patch y of the input Y a sparse representation with respect to Dl is found. 

The corresponding high-resolution patch x of the output image X can be recovered by 

the same representation in the high-resolution dictionary Dh. The mathematical 

expression of this problem is: 

 

                              min ||α||0  s.t.  Dlα ≈     with ||α||0 << Κ                            (3.5) 
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This optimization problem (3.5) is general because it contains a rough constraint. This 

constraint needs to be replaced by a more precise condition which will allow a 

bounded representation error. Thus, the optimization problem can be rewritten as: 

 

                                   min ||α||0  s.t.  ||Dlα – y||2
2

 ≤ ϵ                                       (3.6) 

 

The optimization problem (3.6) is NP-hard. However, as long as the two dictionaries 

Dl and Dh are constructed so that it is possible for any given low-resolution patch to 

have a sparse representation in Dl, the l
1
-norm can be used for the minimization: 

 

                                   min ||α||1  s.t.  ||Dlα – y||2
2

 ≤ ϵ                                       (3.7) 

 

Equivalently, the constraint of (3.7) can become a penalty with the use of the 

Lagrange multipliers and the optimization problem (3.7) can be written as: 

 

                                       min ||Dlα – y||2
2
 + λ||α||1                                           (3.8) 

                                         α 

 

where λ is a constant that balances the trade-off between fitting the data perfectly and 

emplo ing a sparse solution. The optimization problem (3.8) indicates that λ depends 

on how nois  the input data are. The noisier the data, the larger the value of λ should 

be, and the larger the value of λ, the smoother the result image gets. 

 

The compatibility between adjacent patches cannot be ensured when (3.8) is solved 

individually for each patch. A lot of different ways have been proposed in order to 

ensure compatibility between adjacent patches. In [24] the authors simply average the 

values in the overlapped regions, which results in blurring effects. In [22] a fast and 

simple one-pass algorithm is used and the results show that it works almost as well as 

the use of a full Markov random field (MRF) model [20]. For solving (3.7) the idea of 

overlapping patches is adopted, and the patches are processed in raster-scan order in 

the image, that is from left to right and top to bottom. The cohesion in the overlapped 

area is enforced by modifying (3.7) to include one more term in the objective, which 

leads to the following formulation: 
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                                     min ||α||1  s.t.  ||Dlα – y||2
2
 ≤ ϵ1 

                                                            ||PDhα – w||2
2
 ≤ ϵ2                               (3.9) 

 

where the matrix P extracts the overlapping region between the current desired high-

resolution patch and the previously reconstructed high-resolution image, and the 

vector w contains the values of the previously reconstructed high-resolution image in 

the overlapping region. Equivalently, with the use of the Lagrange multipliers (3.9) 

can be rewritten as: 

 

                                        min ||D α –  ||2
2
 + λ||α||1                                         (3.10) 

                                          α 

 

where D  = [ 
  

    
] and   = [ 

 
   ], and the constant β balances the tradeoff between 

matching the low-resolution input and finding a high-resolution patch that is 

compatible with its neighbors. In the experiments presented in this thesis β is alwa s 

equal to 1, β = 1. Solving the optimization problem (3.10) will produce the optimal 

solution α*, which will be used in the reconstruction of the high-resolution patch 

combined with the high-resolution dictionary Dh, that is: 

 

                                                  x = Dhα*.                                                    (3.11) 

 

3.2.2.  The Algorithm 

In this section, the algorithm which describes the reconstruction of the high-resolution 

image of a given low-resolution input by using sparse representation according to the 

optimization problem described previously is presented. The input data of the problem 

are the two jointly trained dictionaries Dh and Dl, for the high- and low-resolution 

image patch pairs respectively and the given low-resolution image Y. The algorithm 

seeks the sparsest representation for each original low-resolution patch of the input 

image Y and then uses the coefficients of this representation to generate the high-

resolution patch of the output X. The output of the algorithm is the super-resolved 
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image X. 

 

_____________________________________________________________________ 

Algorithm 

 

1 Input: the two jointly trained dictionaries Dh and Dl, a low-resolution image Y. 

2 For each 3x3 low-resolution patch y of Y, taken starting from the upper-left 

corner with one pixel overlap in each direction, 

a) Solve the optimization problem (3.10): minα ||D α –  ||2
2
 + λ||α||1. 

b) Generate the high-resolution patch x as described in (3.11): x = 

Dhα*. Put the reconstructed patch x into a high resolution image X. 

    3 End 

    4 Output: Super-resolution image X. 

 

3.3.  From Local Optimization to Global Optimization 

The problem of super-resolution by sparse representation as described in the previous 

section, in (3.7) and (3.9), does not enforce exact equality between the low-resolution 

patch y and its reconstruction Dlα. This can be a serious problem because along with 

noise, the aforementioned algorithm may lead to a high-resolution image X which 

will contain visible artifacts in the overlapping region; meaning that the super-

resolved image X will not satisfy the basic super-resolution model as described in 

(3.1): 

 

                                               Y = SHX + η.                                                        

 

A global reconstruction constraint has to be employed to fix this incompatibility. 

Specifically, the authors of [25] propose as a solution the projection of the output X 

onto the solution space of SHX = Y. Thus, if the output X of the super-resolution 

algorithm is denoted by X0 the optimal high-resolution image X* is computed by: 
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                           X* = arg min ||SHX – Y||2
2
 + c||X – X0||2

2
.                        (3.12) 

                                             X 

 

The optimization problem (3.12) can be efficiently solved by the gradient descent 

method or the back-projection method. The update equations for these two iterative 

methods are respectively: 

 

                          Xt+1 = Xt + v [H
T
S

T
(Y - SHXt) + c(X-X0)]                        (3.13) 

 

where Xt is the estimate of the high-resolution image after the t-th iteration and v is 

the step size of the gradient descent method, and 

 

                                  Xt+1 = Xt + ((Y – SHXt) ↑ s) * p                                 (3.14) 

 

where ↑ s is an upsampling factor of s and p is a bac -projection filter. The final high-

resolution image of the super-resolution process is the one generated by the 

optimization problem (12), which is as close as possible to the super-resolved image 

X0 generated by the algorithm described in the previous section and satisfies the basic 

super-resolution model. Therefore, the algorithm can be rewritten as:   

 

_____________________________________________________________________ 

Algorithm 

 

1 Input: the two jointly trained dictionaries Dh and Dl, a low-resolution image Y. 

2 For each 3x3 low-resolution patch y of Y, taken starting from the upper-left 

corner with one pixel overlap in each direction, 

a) Solve the optimization problem (3.10): minα ||D α –  ||2
2
 + λ||α||1. 

b) Generate the high-resolution patch x as described in (3.11): x = 

Dhα*. Put the reconstructed patch x into a high resolution image 

X0. 

    3 End 
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    4 Find the closest image to X0 which satisfies the global reconstruction 

constraint by solving the optimization problem (3.12):  

X* = arg min ||SHX – Y||2
2
 + c||X – X0||2

2
. 

                                         X 

    5 Output: Super-resolution image X*. 

 

The super-resolution algorithm described in this chapter is a simple approach to a 

more general sparse representation problem, where the high-resolution image X is 

enforced to be precisel  recovered b  the sparse representation coefficients α. It can 

be improved further to deal with larger images X, meaning that the overall high-

resolution image X can be used as a variable. Thus, the difference between X and the 

high-resolution image recovered b  the sparse coefficients α can be penalized in order 

to yield outputs which are better in terms of respecting the reconstruction constraints 

but are not perfectly sparse. This is a global approach which can lead to an overall 

algorithm. This optimization problem can be formulated as: 

 

       X* = arg min {||SHX – Y||2
2
 + λ ∑||αij||0 + γ ∑||Dhαij – PijX||2

2
 + τ ρ(X)}.   (3.15) 

           X,αij                                                             
 ij

                                
ij
 

 

where αij are the sparse representation coefficients for the (i,j) patch of the image X, 

the matrix Pij extracts the (i,j) patch from X and the penalt  function ρ(X) adds prior 

knowledge about the high-resolution image. The first term enforces the proximity 

between the image Y and its denoised and unknown version X. The two following 

terms are the image prior and they are included in order to ensure that every patch of 

the image X has a sparse representation with bounded error.  

 

This large optimization problem has a huge disadvantage which is the cost of the 

computational complexity. However, there are correspondences between the global 

approach described in (3.15) and the super-resolution algorithm of this chapter. The 

sparse representation coefficients α of (3.15) can be found b  the minimization of the 

sum of the second and third term, where the l0-norm of the second term is replaced by 

the l1-norm and the third term is approximated by its low-resolution counterpart ||Dlαij 

– yij||2
2
. Therefore, the aforementioned algorithm can be considered as a 
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computationally efficient approximation to the large optimization problem (3.15). 

Furthermore, the third term of (3.15) is related with the ||X0 – X|| term of (3.12) 

because it penalizes the difference between the super-resolution image X and its 

reconstruction given by the sparse coefficients.      
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CHAPTER 4. EXPERIMENTAL RESULTS 

4.1 Image Quality Evaluation Methods 

4.2 Results 

 

In this chapter, some of the super-resolved images that were generated by the 

algorithm described in section 3.2 are presented. The algorithm was applied only on 

frontal views of human faces. Specifically, for the experiments the CMU MultiPIE 

database was used. It is important to mention that the low-resolution images which are 

used in the experiments are synthetic, which means that they were artificially 

generated from the high-resolution images of the database. The low-resolution images 

are processed by using 3x3 low-resolution patches with one pixel overlap between 

neighboring patches in each direction starting from the upper-left corner,  while the 

high-resolution images are processed by using 6x6 high-resolution patches with two 

pixels overlap in order to preserve the correspondence between the low- and the high-

resolution patches.  

 

Fig. 4.1 shows some of the images included in the CMU MultiePIE database. These 

images which are high-resolution images were used as training images during the 

joint dictionary learning process in order to provide the high-resolution dictionary Dh 

for the high-resolution image patches. The same images were used in order to 

generate the low-resolution images by reducing their size. These downsampled low-

resolution images were also used as training images during the dictionary learning 

phase to generate the low-resolution dictionary Dl for the low-resolution image 

patches. The specific images which are presented in fig. 4.1 are deliberately chosen, 

to show that the training faces are of both genders, different races, varying ages, 
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varying facial expressions, with accessories or not and specifically for males with 

facial hair or not. 

 

 

 
 

Fig. 4.1:  Some of the images included in the CMU MultiePIE database. These are 

high-resolution images of both genders, different races, varying ages, varying facial 

expressions, with accessories or not and with facial hair or not. 
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Fig. 4.2:  The original high-resolution image (left) and the corresponding low-

resolution one (right) which was produced by downsamping the original. A lot of 

information is lost.  
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Fig. 4.2 shows the synthetic low-resolution images and the corresponding high-

resolution ones from which they were produced. Since, the CMU MultiePIE database 

does not include low-resolution images, all the images in the database were 

downsampled to form the low-resolution images. It is obvious that the downsampling 

process led to a great loss of the image information making the reconstruction of the 

original image a challenging job. 

 

In the super-resolution problem (3.10) onl  one free parameter exists and that is λ, 

which balances the trade-off between fitting the data perfectly and employing a sparse 

solution. This optimization problem indicates that λ depends on how nois  the input 

data are. The noisier the data, the larger the value of λ should be, and the larger the 

value of λ, the smoother the result image gets. In all the experiments presented in this 

chapter the value of λ is set to 0.4, λ = 0.4. The dictionar  size is alwa s 1024, both 

for the dictionary of the low-resolution patches and the dictionary of the high-

resolution patches, because larger dictionaries generate better results. The problem is 

that the computation cost increases while the dictionary gets larger, because obtaining 

compact dictionaries from the training data, which are the low-resolution patches and 

the corresponding high-resolution ones, that ensure sparse representation is by itself a 

biconvex optimization problem. Consequently, this was the problem we were 

confronted with when we were dealing with the image super-resolution technique 

described in this thesis.  

 

Furthermore, in this chapter, the presentation of the obtained super-resolved images is 

followed by a quantitative evaluation of the results. The image quality evaluation 

methods which are most commonly used in image processing are the Root Mean 

Square Error (RMSE), the Peak Signal-to-Noise Ratio (PSNR) and the Structural 

Similarity Index (SSIM). While RMSE and PSNR attempt to quantify the visibility of 

errors between a distorted image and a reference image by using a variety of known 

properties of the human eye perception, SSIM which was developed by [35] improves 

this two methods by relying on the degradation of the structural information, i.e. the 

image degradation is considered as perceived change in structural information. All 

these metrics are used for the evaluation of the results. 
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4.1.  Image Quality Evaluation Methods 

The image quality evaluation methods can be divided into two categories, the 

subjective methods and the objective methods. The methods of the first category are 

based on human judgment and operate without reference to explicit criteria. The 

methods of the second category are based on comparisons using explicit numerical 

criteria and several references are possible, such as the ground truth or prior 

knowledge expressed in terms of statistical parameters and tests. Therefore, the 

methods that are useful for the evaluation of the results generated by the image super-

resolution technique described in chapter 3 are the objective methods. These methods 

can be further divided into three categories, according to the availability of an original 

(reference) image with which the reconstructed image is compared. The first category 

includes the full-reference methods which assume that a complete reference image is 

available. The second category is composed of the no-reference methods where the 

reference image is not available and the third category includes the reduced-reference 

methods where the reference image is only partially available , as a set of extracted 

features made available as side information to help evaluate the quality of the 

distorted image. Since, in all the experiments of this thesis the reference image is 

always available, the full-reference image quality methods will be used for the 

evaluation of the results. More specifically, RMSE, PSNR and SSIM will be used. 

 

4.1.1.  RMSE 

The root-mean-square error (RMSE) or root-mean-square deviation (RMSD) is a 

measure of the differences between values predicted by a model or an estimator and 

the values actually observed. Thus, it is a measure of the average magnitude of the 

error. If X(i,j) are the values of the original (reference) image and Y(i,j) are the 

predicted values of the parameter in question which is the reconstructed image, with i 

= 1,2,…,N and j = 1,2,…,M then the mathematical definition of the RMSE is: 
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                   N     M 

Mean square Error (MSE) = 
 

   
 ∑ ∑ (Y(i,j) – X(i,j))

2 

                                                                                                   i=1   j=1 

 

RMSE = √MSE. 

 

 

RMSE is a squared quantity, since the errors are squared before they are averaged, 

which means that it is influenced more strongly by large errors than by small errors. 

The value of RMSE ranges from 0 to infinity and it is ideal when it is small; the 

smaller the better, with 0 being the perfect score. 

 

4.1.2.  PSNR 

The peak signal-to-ratio (PSNR) metric is the ratio between the maximum possible 

power of a signal and the power of corrupting noise that affects the fidelity of its 

representation. Specifically, in image processing the signal is the original image and 

the noise is the error introduced while reconstructing the image. While RMSE 

represents the error between the original image and the reconstructed image, PSNR 

represents the peak of the error, and it is mathematically defined as: 

 

PSNR = 10log10 
  

   
 

 

where R is the maximum fluctuation in the input image data type. If the input image 

has a double-precision floating data type then R = 1. If it has an 8-bit unsigned integer 

data type then R = 255, etc. In the experiments of this chapter it is always 255. The 

value of PSNR approaches infinity as the value of MSE approaches zero. This 

indicates that a higher PSNR value provides a higher image quality.  

 

4.1.3. SSIM 

The structural similarity index (SSIM) is a metric used to measure the similarity 
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between two images and it was developed in order to be a more reliable criterion for 

visual image quality than RMSE and PSNR. SSIM considers the image degradation as 

perceived change in the structural information thus, models any image distortion as a 

combination of three factors which are the loss of correlation (s), the luminance 

distortion (l) and the contrast distortion (c). The SSIM is mathematically defined as: 

 

SSIM (X,Y) = f ( l(X,Y), c(X,Y), s(X,Y)) 

 

where 

                                               2μXμY + C1 

                               l(X,Y) = 

                                             μΧ
2 
+μΥ

2
 +C1 

 

                                               2σXσY + C2 

                               c(X,Y) =  

                                             σΧ
2 
+σΥ

2
 +C2 

 

                                                 σXY + C3 

                               s(Χ,Υ) =  

                                                σXσY + C3 

 

with μX and μY being the average of X and Y respectivel , σΧ
2 
and σΥ

2
 the variance of 

X and Y respectivel , σXY the covariance of X and Y, σX and σY the standard deviation 

of X and Y, and C1, C2, C3 being the positive constants which are used to avoid a null 

denominator. The positive values of the SSIM index are decimals between 0 and 1, 

where a value 0 indicates that there is no correlation between the two images and a 

value 1 indicates that the images are identical. In simple words, without the use of 

mathematics, SSIM method can be described as a comparison of local patterns of 

pixel intensities that have been normalized for luminance and contrast. However, for 

the evaluation of the quality of an image it is more useful to use one single measure 

for the quality of the entire image, instead of using SSIM indexes of local patterns of 

pixels, thus a mean SSIM index which evaluates the total quality of the whole image 

is important to be defined. This mean SSIM index is known as MSSIM and is 

formulated as: 
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                                                               M 

MSSIM(X,Y) = 
 

 
 ∑ SSIM(xj,yj) 

                                                              
j=1 

 

where M is the number of the local windows of the image, in which the image is 

divided in order to compute the quality differences between the pixels of the reference 

image and the corresponding pixels of the reconstructed image, and xj, yj are the 

image contents at the jth local window. 

 

4.1.4.  Evaluation of the Evaluation techniques! 

The presentation of the full-reference methods RMSE, PSNR and SSIM indicates that 

the first two are simplest. Therefore, they are mostly used for the quality evaluation in 

image processing because they contain simple calculations, their physical meanings 

are clear and they are mathematically convenient for optimization. The disadvantage 

is that in some cases, one reconstructed image with a low PSNR may appear visually 

more appealing than another image with higher PSNR due to the way that the human 

visual perception works. Similarly, a reconstructed image with a high RMSE may 

appear to be better, that is closer to the reference image, than another one with lower 

RMSE. Furthermore, various types of degradations applied to the same image may 

lead to the same value of RMSE. This shows that the RMSE and PSNR metrics are 

not reliable criteria for visual image quality, although some studies have shown that 

these two have the best performance in estimating the quality of noisy images. SSIM 

was developed to improve RMSE and PSNR by taking into account the perceived 

changes in structural information, that is the strong dependencies between the pixels 

of an image which carry important information about the structure of the objects in 

the visual scene. Nevertheless, RMSE and PSNR are still most widely used for the 

evaluation of reconstructed images in image processing applications, and that is why 

all these three metrics will be used in the experiments presented in the next section.    

 

Fig. 4.3 shows that the RMSE metric is an insufficient criterion for visual image 

quality. The images (b) – (f) are different types of distortion of the same reference 
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image (a). Although, all these images have the same RMSE value (14,5), which 

means that for the RMSE method these images are of the same quality relative to the 

reference image, the visual results for some of them are very bad. For the human 

visual perception, in other words for the human eye, image (b) is of the best quality in 

comparison with all the other images, while image (c) is of the worst quality. 

Furthermore, none of these images seems to be visually of the same quality with 

another, as the value of RMSE implies. This is proven by the MSSIM metric which 

indicates that the images (b) – (f) are of different quality, with (c) being the best and 

(d) the worst. Despite these observations, RMSE will be used for the evaluation of the 

super-resolution results because it is commonly used. 

 

 

 

 

Fig. 4.3:  Comparison of different types of distortion of the same reference image, all 

with RMSE = 14.5. (a) Reference image, (b) Contrast-stretched image, MSSIM = 

0.9168, (c) Mean-shifted image, MSSIM = 0,9900, (d) JPEG compressed image, 

MSSIM = 0.6949, (e) Blurred image, MSSIM = 0.7052 and (f) Salt-pepper impulsive 

noise contaminated image, MSSIM = 0.7748. 
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Another example which illustrates that the PSNR metric which is related to the RMSE 

metric can disagree with the SSIM outcome about the quality of an image when 

compared with a reference image is shown in fig. 4.4. This figure shows two images 

that yield the same MSSIM index (0.9480) relative to the same reference image. For 

the RMSE and the PSNR method, and also for the human eye, these two images are 

qualitatively different. Both of these metrics conclude that the image on the right is of 

better quality than the one on the left although the MSSIM index indicates that both of 

them are of the same quality relative to the reference image on the top. However, a 

subjective comment would be that the image on the left seems better than the one on 

the right because it is clearer and smoother, and thus closer to the reference image, but 

the explicit objective numerical criteria reject such an allegation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4:  Comparison of two images with the same MSSIM = 0.9480. Reference 

image (top), image with RMSE = 5.80 and PSNR = 32.86 (left), image with RMSE 

=5.75 and PSNR = 32.94 (right). 
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4.2.  Results 

In this section, the super-resolved images that were generated by the application of the 

super-resolution algorithm with the use of sparse representation described in chapter 3 

are demonstrated. The reconstructed images are presented side by side with the low-

resolution input images and the original high-resolution images (which were used for 

the creation of the low-resolution inputs), to illustrate that the algorithm generates 

outputs which enhance the resolution of the inputs and which are visually appealing 

relative to the original high-resolution images. Furthermore, the reconstructed images 

are compared to the outputs of other methods, such as kernel, nearest-neighbor, 

bilinear and bicubic interpolation to show that super-resolution via sparse 

representation yields better results. Once again the comparison is visual by the side by 

side presentation of the generated images of all the methods, but the comparison is 

also quantitative to ensure that the subjective factor which is the limitations of the 

human visual perception will not lead to misunderstandings about the quality of the 

outputs. Therefore, the three objective image quality evaluation metrics which were 

described in the previous section, i.e. RMSE, PSNR and MSSIM, will be used. The 

input images constitute the test examples and they were not used during the training 

process of the coupled dictionaries. Finally, after training two coupled dictionaries 

using the method of [25], meaning the use of the upsampled patches during the 

training and the reconstruction process, we obtained high-resolution images which are 

compared with the high-resolution images of our approach where the dictionaries are 

trained using the original low-resolution patches and the sparse representation is also 

found by the initial low-resolution patches.  

 

Fig. 4.5 shows the results of super-resolution via sparse representation. The low-

resolution image which is the input for the algorithm is on the top, and its size is 

51x35 pixels. The super-resolved image is the one in the center and it was upsampled 

by a factor of 2x2, thus its size is 102x70 pixels. Finally, the original high-resolution 

image is the one at the bottom with 102x70 pixels size. The comparison between the 

input image and the super-resolved one reveals that the super-resolution process 
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generates visually appealing results, since all the characteristics of the face are clear 

with straight and sharp edges, explicitly distinguished at the super-resolved image 

while the facial information (corners and edges) at the input image are vague and 

blurred and concentrated only in a couple of pixels. The reconstructed high-resolution 

image is close to the original high-resolution one something that is proven by the 

quality evaluation MSSIM index (0.9530), but also by the RMSE (5.15) and PSNR 

(33.8947) values. In Table 4.1, the values of these three metrics for the reconstructed 

image are presented. The value of the MSSIM index means that the super-resolved 

image is 94.8% similar to the original high-resolution image.             

 

Table 4.2 shows the values of the RMSE, PSNR and MSSIM image quality 

evaluation methods for the reconstructed image shown in fig. 4.6. The MSSIM index 

value is interpreted as 94.06% similarity between the super-resolved image and the 

original high-resolution one. 

 

 

Metric Value 

RMSE 5.15 

PSNR 33.8947 

MSSIM 0.9530 

 

Table 4.1:  RMSE, PSNR and MSSIM values of the reconstructed image in fig. 4.5. 

The image is 95.3% similar to the reference (original) high-resolution image. 

 

 

Metric Value 

RMSE 4.9148 

PSNR 34.3006 

MSSIM 0.9406 

 

 

Table 4.2:  RMSE, PSNR and MSSIM values of the reconstructed image in fig. 4.6. 

The image is 94.06% similar to the reference (original) high-resolution image. 
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Fig. 4.5:  Comparison of the reconstructed image (center) with the low-resolution 

input (top) and the original high-resolution one (bottom).  
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Fig. 4.6:  Comparison of another reconstructed image (center) with the low-resolution 

input (top) and the original high-resolution one (bottom).  
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Fig. 4.6 presents another reconstructed image (center) from the test images, meaning 

that it was not used in the training set during the joint dictionary learning process, 

compared with the corresponding low-resolution input (top) and the original high-

resolution image (bottom). Once again, the information about the corners and edges of 

the low-resolution image is vague and thus, the super-resolution process becomes 

challenging. The output, i.e. the super-resolved image, is a very good result where all 

the facial information has been cleared and smoothed. 

 

Fig.4.7 presents the results of super-resolution via sparse representation compared to 

other methods, specifically kernel, nearest-neighbor, bilinear and bicubic 

interpolation. The low-resolution image which is the input for the algorithm is of size 

51x35 pixels. All the other images are the high-resolution versions of the input image 

upsampled by a factor of 2x2, thus their size is 102x70 pixels. The images from left to 

right are the low-resolution input and its upscaled kernel version on the top, the 

nearest-neighbor output and the bilinear output in the center and at the bottom the 

bicubic output and our high-resolution image. The comparison between these images 

reveals that the kernel and the nearest-neighbor techniques generate bad results with 

the facial information being as noisy and vague as it was before the magnification, 

while the corners and edges of the face are still concentrated in a couple of pixels. 

Bilinear interpolation yields a satisfying result where the corners and edges of the 

facial information are specific but on the other hand a lot of blur has been added to the 

image. Bicubic interpolation generates a clearer result which is still blurry, but as the 

MSSIM index (0.9523) indicates is of good quality relative to the reference image. 

Finally, our super-resolved output is better and clearer than all the other images 

without blur, where the characteristics of the face are clear with straight and sharp 

edges, explicitly distinguished, and the fact that our image is better is proven by the 

values of the three image quality evaluation methods RMSE (5.15), PSNR (33.8947) 

and MSSIM (0.9530).  
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Fig. 4.7:  Results of a test image magnified by a factor of 2. Top: low-resolution input, 

kernel output. Center: nearest-neighbor, bilinear interpolation. Bottom: bicubic 

interpolation and super-resolution by sparse representation.  
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In Tables 4.3, 4.4, 4.5, the values of these three metrics for all the reconstructed 

images are presented. These values show that the subjective conclusions of a human 

observing the images in fig. 4.7 can be supported b  the objective “observers” which 

are the evaluation techniques. The kernel and nearest-neighbor methods have the 

worst values (RMSE = 7.3835), (PSNR = 30.7655) and although they seem extremely 

bad the MSSIM index implies that they are 91.85% similar to the original high-

resolution image!  The values for the other methods lead to the same conclusions 

described in the previous paragraph. The bilinear output is better than the one of the 

kernel and nearest-neighbor methods, bicubic is even better and finally, our super-

resolved image is the best according to all the metrics, and specifically the MSSIM 

index indicates that it is 95.3% similar to the original high-resolution image. 

 

Tables 4.6, 4.7, 4.8 show the values of the RMSE, PSNR and MSSIM image quality 

evaluation methods for the output images shown in fig. 4.8. Once again, the kernel 

and nearest-neighbor methods have the worst values for all the three metrics and 

although their output images seem extremely bad, the MSSIM index indicates that 

they are 91.05% similar to the original high-resolution image! The values for the other 

methods lead to the same conclusions with those described for fig. 4.7. Bilinear is 

better than kernel and nearest-neighbor, bicubic is even better and finally, our super-

resolved image is the best according to all the metrics, and specifically the MSSIM 

index indicates that it is 94.06% similar to the original high-resolution image. 

 

Fig.4.8 presents the results of super-resolution via sparse representation for another 

test image compared to kernel, nearest-neighbor, bilinear and bicubic interpolation 

methods. The low-resolution image (top, left) is of size 51x35 pixels. All the other 

images are the high-resolution versions of the input image upsampled by a factor of 

2x2, thus their size is 102x70 pixels. The kernel output (top, right) and the nearest-

neighbor output (center, left) are the worst results with noisy and vague corners and 

edges, concentrated in a couple of pixels. The bilinear output (center, right) is better 

with specific corners and edges but again annoying blur has been added to the image. 

The bicubic output (bottom, left) is clearer but still blurry, and according to the 

MSSIM index 93.98% similar to the original high-resolution image. Finally, our 

super-resolved output (bottom, right) is better than all the other images without blur, 
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with straight and sharp edges and 94.06% similarity to the original high-resolution 

image.  

 

 

Method RMSE 

Kernel 7.3835 

Nearest-neighbor 7.3835 

Bilinear 6.1766 

Bicubic 5.1967 

Our 5.1505 

 

Table 4.3:  RMSEs of the images in fig. 4.7. Our super-resolved image has the best 

value. 

 

 

Method PSNR 

Kernel 30.7655 

Nearest-neighbor 30.7655 

Bilinear 32.3158 

Bicubic 33.8162 

Our 33.8947 

 

Table 4.4:  PSNRs of the images in fig. 4.7. Our super-resolved image has the best 

value. 

 

 

Method MSSIM 

Kernel 0.9185 

Nearest-neighbor 0.9185 

Bilinear 0.9429 

Bicubic 0.9523 

Our 0.9530 

 

Table 4.5:  MSSIM values of the images in fig. 4.7. Our super-resolved image has the 

best value which is interpreted as 95.3% similarity to the original high-resolution 

image. 
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Fig. 4.8:  Results of another test image magnified by a factor of 2. Top: low-resolution 

input, kernel output. Center: nearest-neighbor, bilinear interpolation. Bottom: bicubic 

interpolation and super-resolution by sparse representation.  
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Method RMSE 

Kernel 6.8192 

Nearest-neighbor 6.8192 

Bilinear 5.8228 

Bicubic 4.9177 

Our 4.9148 

 

Table 4.6:  RMSEs of the images in fig. 4.8. Our super-resolved image has the best 

value. 

 

 

Method PSNR 

Kernel 31.4561 

Nearest-neighbor 31.4561 

Bilinear 32.8281 

Bicubic 34.2954 

Our 34.3006 

 

Table 4.7:  PSNRs of the images in fig. 4.8. Our super-resolved image has the best 

value. 

 

 

Method MSSIM 

Kernel 0.9105 

Nearest-neighbor 0.9105 

Bilinear 0.9259 

Bicubic 0.9398 

Our 0.9406 

 

Table 4.8:  MSSIM values of the images in fig. 4.8. Our super-resolved image has the 

best value which is interpreted as 94.06% similarity to the original high-resolution 

image. 
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Fig. 4.9 shows an image generated by using the upsampled version of the low-

resolution input image (left) and the one generated directly from the initial low-

resolution input (right). The two coupled dictionaries for each approach were trained 

with the same few patches sampled from the training data (100 patches were chosen 

to speed up the computations of the learning process). The MSSIM value shows that 

the images are almost the same relative to the high-resolution image indicating that 

super-resolved images can be correctly recovered even by the initial information of 

the low-resolution input.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9:  The super-resolved image given by the upsampled low-resolution input 

(left), MSSIM = 0,9268, and the super-resolved given by the initial low-resolution 

input (right), MSSIM = 0,9218. 
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ΚΕΦΑΛΑΙΟ 1. CHAPTER 5. CONCLUSIONS 

 

The present thesis focuses on the problem of single image super-resolution via sparse 

representations, meaning the process of obtaining a high-resolution version of a low-

resolution image when only one single low-resolution image is known. The sparse 

representations are used in the recovery process in terms of combined dictionaries 

which are simultaneously trained from a database of low- and high-resolution image 

patch pairs sampled from training images. The essence of the dictionary training 

process is to learn the correspondences between the low- and high-resolution image 

patch pairs. Once the sparse representation of each patch of the low-resolution image 

is known, its coefficients can be used to recover the most likely high-resolution 

version of the output image. 

 

The super-resolution method which was presented by the authors of [25] takes 

advantage of this observation and applies the sparse representation of a low-resolution 

image patch with the high-resolution image patch dictionary to yield a high-resolution 

image patch.  The low-resolution input is upsampled before the training of the 

dictionaries and during the reconstruction process. A different approach was adopted 

in the frame of this thesis. The initial low-resolution image patches are directly used 

to obtain the two coupled dictionaries and then the original low-resolution patches are 

used in order to generate the high-resolution image. This perspective was materialized 

in the frame of this thesis and tested on synthetic data. Therefore, after obtaining the 

appropriate low-resolution and its corresponding high-resolution image patch 

dictionary, the sparse representation of any low-resolution image   given as an input 

can be found with respect to the low-resolution dictionary. Then, the corresponding 

high-resolution patch bases of the high-resolution dictionary will be combined 

according to these coefficients to generate the output high-resolution image. The 
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conclusions drawn from the implementation of the super-resolution by sparse 

representation new approach method indicate that although the super-resolution 

problem is severely ill-posed in general, meaning that precise recovery of the high-

resolution image is impossible, the results show the effectiveness of the method 

generating images of high quality.        

 

The problem of obtaining coupled dictionaries, which is of great importance in image 

processing generally and in super-resolution problems specifically, is also addressed 

in this thesis. The dictionaries are learned directly from the data and provide sparse 

representations for the training images. The dictionary learning process is generally 

divided into two iterative stages, the sparse approximation stage and the dictionary 

update stage. More specifically, in the first stage the algorithms start with an initial 

dictionary and try to find sparse approximations of the set of training signals while 

keeping the dictionary fixed, and in the second stage the sparse coefficients are kept 

fixed while the dictionary is optimized. Once the dictionaries are known, they are 

used in the recovery process to generate sparse representations for the test images and 

furthermore, to contribute in the reconstruction of the output.   

 

Image super-resolution is an active field at the moment because it provides answers 

and solutions through software instead of expensive hardware to many applications of 

our days, such as image processing, medical imaging devices, satellite imaging, 

surveillance cameras, visual electronics and document analysis. Therefore, it is 

expected to stay at the spotlight for a long time since all the research and work 

presented so far is promising, indicating that further improvement and enhancement 

can be achieved in the future. 

 

There are limitations in image super-resolution which should be broken in the future 

through systematic research. The method presented in the present thesis requires large 

training data in order to obtain the two coupled sparse dictionaries which are crucial 

during the reconstruction process. Most of the times the training data used in machine 

learning techniques are of some hundred thousand so that the compact dictionaries 

will ensure sparse representation. Due to the computational cost of such a large 

problem the training examples used for the experiments of the previous chapter were 
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almost ten times smaller, generating decent high-resolution images. Provided 

sufficient computational resources more training data could be used in the dictionary 

learning process and yield even better results than the ones presented. Furthermore, 

the computational cost is affected by the size of the dictionary. Larger dictionaries 

which are important for generating more accurate approximation lead to heavier 

computation. Thus, the computational cost is a problem which needs improvement, 

for example by developing new or improving the existing dictionary learning solvers.  

 

The method presented has the advantage that the sparse representation coefficients of 

the low-resolution input are directly used to recover the high-resolution output. 

However, the disadvantage of this method is that for different increases in resolution, 

that is different magnification factors, different jointly trained dictionaries need to be 

constructed! Therefore, improvements and different approaches may result in a more 

flexible super-resolution method based upon sparse representation. 

 

At the global model described in chapter 3 where the global reconstruction constrain 

is redefined in order to cope with larger high-resolution images (optimization problem 

(3.15)), a penalty function which includes prior knowledge about the high-resolution 

image is included. This type of knowledge was not included in the experiments 

conducted since the only available prior knowledge was the sparse representation 

generated from the downsampled signals. Hence, in cases where more information 

about the high-resolution data is available or can be extracted the performance may be 

improved.    

 

Furthermore, the single-image technique presented here may result in better outputs if 

it is combined with multi-image super-resolution in cases where multiple low-

resolution images are available. In these cases, the linear relationships among the 

high-resolution signals, that is the sparsity of the representation coefficients, 

recovered from the low-resolution signals may be more accurate. Consequently, the 

obtained dictionaries will be more appropriate. 

 

Since super-resolution by sparse representation was applied on human faces in the 

frame of this thesis, some further observations and limitations can be mentioned. In 
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the turbulent days that we live in, face recognition became very popular especially in 

forensic image analysis in terms of identifying or verifying an individual by an image 

or a video frame. Although, a great variety of face hallucination techniques are 

available for generating high-resolution images that portray the details of facial 

features recovered from low-resolution images and the results they have achieved are 

remarkable, there is still need for improvement and expansion. Improvement in order 

to obtain better super-resolved images and expansion in order to achieve remarkable 

results in cases of profile images instead of full frontal images and some degrees off, 

cases of poor lighting or with sunglasses or other accessories covering the individual’s 

face. Even though, in our experiments the training images included accessories -not 

sunglasses- and in the case of males some faces were partially covered by facial hair 

generating qualitatively and quantitatively appealing results, the performance of the 

algorithm in the previously mentioned cases (profile, poor lighting, sunglasses or 

other objects), which are common in real life face hallucination, is not known. 

Therefore, the presented super-resolution technique can be further tested by applying 

it at profile images, poor lighting images, accessorized face images and adapting it 

appropriately in order to generate decent results even in these challenging occasions. 

Finally, the technique can be further tested and improved to deal with real data and 

not just synthetic data, artificially generated by the original high-resolution images as 

the ones used in the frame of this thesis. 
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