
Novelty-aware Event Delivery

Ç ÌÅÔÁÐÔÕ×ÉÁÊÇ ÅÑÃÁÓÉÁ ÅÎÅÉÄÉÊÅÕÓÇÓ

õðïâÜëëåôáé óôçí

ïñéóèåßóá áðü ôçí ÃåíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò

ôïõ ÔìÞìáôïò ÐëçñïöïñéêÞò ÅîåôáóôéêÞ ÅðéôñïðÞ

áðü ôïí

ÄçìÞôñéï ÓïõñáâëéÜ

ùò ìÝñïò ôùí Õðï÷ñåþóåùí ãéá ôç ëÞøç ôïõ

ÌÅÔÁÐÔÕ×ÉÁÊÏÕ ÄÉÐËÙÌÁÔÏÓ ÓÔÇÍ ÐËÇÑÏÖÏÑÉÊÇ

ÌÅ ÅÎÅÉÄÉÊÅÕÓÇ

ÓÔÏ ËÏÃÉÓÌÉÊÏ

Éïýíéïò 2011

Dedication

To my family.

Acknowledgements

I would �rst like to thank my supervisor Professor Evaggelia Pitoura, for guiding, encour-

anging, motivating me, for the time spent and especially, the patience she has shown until

this thesis is completed. I would like to thank Kostas Stefanidis and Marina Drosou for

our great collaboration. With Kostas and Marina, we have worked on the initial approach

of exploring novelty as a ranking criterion in publish/subscribe systems. Many thanks

to Georgia Koloniari and Nikos Ntarmos. With Georgia and Nikos, we have worked to-

gether during the last year on distributed �ltering approaches for duplicate-free event

delivery. Special thanks to my colleague and friend Vasilis Bourgos. With Vasilis, we

have co-operated not only during our undergraduate but also during our postgraduate

studies. Finally, I would like to thank my family and my friends for their continuous

support throughout the years of my studies.

Table of Contents

List of Figures 5

List of Tables 6

Algorithm Index 7

1 Introduction 10

1.1 Scope of Thesis . 10

1.2 Thesis Outline . 11

2 Model 12

2.1 Event-Delivery Model . 12

2.2 Novelty-Aware Relevance . 13

2.2.1 Delivery Rate Model . 13

2.2.2 Delivery Interval Model . 13

2.2.3 Novelty-aware Event Relevance . 14

2.3 Novelty and Entropy . 15

2.3.1 Entropy . 15

2.3.2 Improving Output Entropy . 15

2.3.3 Other Measures . 16

2.4 Subscription Subsumption . 17

3 Novelty-based Event Filtering 19

3.1 Relevance Filtering . 19

3.2 Algorithms . 20

3.2.1 Lazy vs Eager Mode . 20

3.2.2 Rate-based vs Interval-based Scoring Mode 21

3.2.3 Threshold-based Algorithm . 21

3.2.4 Novelty-biased Sampling Algorithm 22

3.3 Aging . 24

3.4 Distributed Setting . 24

3.4.1 Threshold-based Algorithm . 25

3.4.2 Novelty-biased Sampling Algorithm 25

3

4 Experimental Evaluation 26

4.1 Synthetic Data . 26

4.1.1 Threshold-based Algorithm . 27

4.1.2 Novelty-biased Sampling Algorithm 29

4.1.3 Threshold-based vs Novelty-biased Sampling Algorithm 31

4.1.4 Transient data distribution . 33

4.1.5 Aging . 34

4.1.6 Subscription Subsumption . 36

4.2 Real Data . 37

5 Related Work 39

5.1 Ranked Publish/Subscribe . 39

5.2 Novelty-aware Delivery . 41

6 Conclusions and Future Work 43

4

List of Figures

2.1 Subscription graph . 17

4.1 Threshold-based Algorithm . 27

4.2 Threshold . 28

4.3 Period . 29

4.4 Novelty-biased Sampling Algorithm . 30

4.5 Threshold-based vs Novelty-biased Sampling Algorithm 31

4.6 \Skew-transient" Scenario . 32

4.7 \Skew-reverse" Scenario . 32

4.8 \Insertion/Deletion" Scenario - Threshold-based Algorithm 32

4.9 \Insertion/Deletion" Scenario - Novelty-biased Sampling Algorithm 33

4.10 Rate-based Scoring Mode - Threshold-based Algorithm 34

4.11 Interval-based Scoring Mode - Threshold-based Algorithm 35

4.12 Rate-based Scoring Mode - Novelty-biased Sampling Algorithm 36

4.13 Subsumption . 36

4.14 Real dataset . 37

4.15 Threshold-based Algorithm - Real dataset 37

4.16 Novelty-biased Sampling Algorithm - Real dataset 38

5

List of Tables

4.1 Input parameters . 26

6

Algorithm Index

1 Threshold-based Algorithm - Lazy Mode 21

2 Novelty-biased Sampling Algorithm - Lazy Mode 23

7

Abstract

Dimitris N. Souravlias. MSc, Computer Science Department, University of Ioannina,

Greece. June, 2011. Novelty-aware Event Delivery. Thesis Supervisor: Evaggelia Pi-

toura.

In publish/subscribe systems users express their interests by submitting long standing

queries, called subscriptions, and get noti�ed whenever new events that match their in-

terests become available.

Traditional publish/subscribe systems forward to users all available pieces of infor-

mation that are relevant to one of their interests. In an e�ort to avoid overwhelming

the users with this ever-growing ocean of relevant information, in this work we propose

a new notion of relevance that is called novelty-aware relevance. An event is considered

novelty-aware relevant, if it matches a subscription whose previously matching events were

rarely delivered to the user. Novelty-aware relevance is used in a per user �ltering mecha-

nism, called novelty-based event �ltering, that �lters out relevant, but less novelty-aware

relevant events in an e�ort to maximize the information gain received by the user.

We have fully implemented our approach and present our extensive experimental re-

sults which show that user-perceived novelty maintains a per user steady load and leads

to e�cient and e�ective event pruning.

8

ÅêôåôáìÝíç Ðåñßëçøç óôá ÅëëçíéêÜ

ÄçìÞôñéïò ÓïõñáâëéÜò ôïõ ÍéêïëÜïõ êáé ôçò Áéêáôåñßíçò. MSc, ÔìÞìá Ðëçñïöïñé-

êÞò, ÐáíåðéóôÞìéï Éùáííßíùí, Éïýíéïò, 2011. ÄéÜôáîç Ãåãïíüôùí âÜóåé ôïõ ×ñüíïõ Äç-

ìéïõñãßáò ôïõò. ÅðéâëÝðïõóá: Åõáããåëßá ÐéôïõñÜ.

Óôá óõóôÞìáôá Ýêäïóçò/óõíäñïìÞò, ïé ÷ñÞóôåò åêöñÜæïõí ôá åíäéáöÝñïíôÜ ôïõò õðïâÜë-

ëïíôáò óõíå÷Þ åñùôÞìáôá, ôá ïðïßá ïíïìÜæïíôáé óõíäñïìÝò, êáé åíçìåñþíïíôáé üôáí íÝá

ãåãïíüôá ðïõ ôáéñéÜæïõí óôá åíäéáöÝñïíôÜ ôïõò ãßíïíôáé äéáèÝóéìá.

Ôá ðáñáäïóéáêÜ óõóôÞìáôá Ýêäïóçò/óõíäñïìÞò ðñïùèïýí óôïõò ÷ñÞóôåò üëåò ôéò äéá-

èÝóéìåò ðëçñïöïñßåò ðïõ åßíáé ó÷åôéêÝò ìå ôá åíäéáöÝñïíôÜ ôïõò. Óå ìéá ðñïóðÜèåéá íá

áðïöýãïõìå íá êáôáêëýóïõìå ôï ÷ñÞóôç ìå áõôüí ôïí ôåñÜóôéï üãêï ðëçñïöïñßáò, ðñï-

ôåßíïõìå ìéá íÝá èåþñçóç ôçò óõó÷Ýôéóçò ìåôáîý óõíäñïìÞò êáé ãåãïíüôïò, ôçí ïðïßá

êáëïýìå óõó÷Ýôéóç ìå âÜóç ôï novelty. ¸íá ãåãïíüò åßíáé ó÷åôéêü ìå âÜóç ôï novelty,

áí ôáéñéÜæåé ìå ìéá óõíäñïìÞ, ôçò ïðïßáò ôá ãåãïíüôá óôï ðáñåëèüí ðáñáäßäïíôáé óðÜíéá

óôï ÷ñÞóôç. Ç óõó÷Ýôéóç ìå âÜóç ôï novelty ÷ñçóéìïðïéåßôáé ãéá êÜèå ÷ñÞóôç ùò Ýíáò

ìç÷áíéóìüò öéëôñáñßóìáôïò, ðïõ ïíïìÜæåôáé öéëôñÜñéóìá ìå âÜóç ôï novelty. Ï ìç÷áíé-

óìüò áõôüò áðáëåßöåé ôá ëéãüôåñï ó÷åôéêÜ ãåãïíüôá, ìå óôü÷ï ôçí áýîçóç ôïõ êÝñäïõò

ôçò ðëçñïöïñßáò ðïõ ëáìâÜíåé ï ÷ñÞóôçò.

Óôçí ðáñïýóá åñãáóßá, áñ÷éêÜ ðñïôåßíïõìå Ýíá èåùñçôéêü ìïíôÝëï, üðïõ ïñßæïõìå

ôçí Ýííïéá ôçò novel óõíäñïìÞò êáé âÜóåé áõôÞò ïñßæïõìå ôçí Ýííïéá ôçò óõó÷Ýôéóçò ìå

âÜóç ôï novelty. Ãéá ôï öéëôñÜñéóìá ãåãïíüôùí ðñïôåßíïõìå äýï íÝïõò áëãïñßèìïõò·

Ýíáí áëãüñéèìï äåéãìáôïëçøßáò êáé Ýíáí áëãüñéèìï êáôùöëßïõ. Êáé ïé äýï áëãüñéèìïé

áðáëåßöïõí óå ðñáãìáôéêü ÷ñüíï ôá ëéãüôåñï ó÷åôéêÜ ãåãïíüôá, ìå óôü÷ï ôçí áýîçóç

ôïõ êÝñäïõò ôçò ðëçñïöïñßá ðïõ ëáìâÜíåé ï ÷ñÞóôçò. ¸÷ïõìå õëïðïéÞóåé ðëÞñùò ôçí

ðñïóÝããéóÞ ìáò êáé ðáñïõóéÜæïõìå ôá åêôåíÞ áðïôåëÝóìáôá ôùí ðåéñáìÜôùí ìáò.

9

Chapter 1

Introduction

1.1 Scope of Thesis

1.2 Thesis Outline

1.1 Scope of Thesis

Publish/Subscribe systems o�er an attractive alternative to search by providing a proac-

tive model of information supply that disburdens the users of the hard task of explicit

search. In such systems, users (or subscribers) express their interest in speci�c pieces

of data (or events) through long standing queries called subscriptions. Then, they get

noti�ed whenever an information source (or publisher) generates an event that is relevant

(or matches) one of their subscriptions. Examples of such proactive delivery include news

aggregators, RSS feeds and noti�cation services in social networks such as Facebook and

Twitter.

Traditional publish/subscribe systems forward to the users all events that are relevant

to one of their subscriptions. In an e�ort to avoid overwhelming the users with this huge

volume of relevant data, we introduce a new notion of relevance between subscriptions

and events that is called novelty-aware relevance.

Novelty is gaining increasing interest in information retrieval as evaluation measure

[10], [11]. As there is not a formal de�nition, one can de�ne novelty as the need to

limit redundancy by avoiding results with overlapping content. In our previous work

[1], we have explored novelty as a ranking criterion in publish/subscribe delivery. Our

interpretation of novelty is that an event is considered novelty-aware relevant, if it matches

a subscription whose previously matching events were rarely delivered to the user.

This streaming notion of novelty is desirable for a major reason; making rare events

visible and thus increasing the information gain of the user. Consider a user that submits

subscriptions with varying rates of matching events. As an example, take a user in a social

10

networking application like Twitter, that follows both publishers that are very productive

in terms of content generation and publishers that generate information seldom. Novelty-

aware relevant events (i.e. events that match subscriptions which have been matched by

events rarely delivered in the past) will be forwarded to the user whereas less relevant

will be discarded, targeting that all subscriptions of the user will be equally represented

in the stream of delivered events.

The focus of this work is on incorporating novelty-aware relevance in a per user �ltering

mechanism, called novelty-based event �ltering, that �lters out relevant, but less novelty-

aware relevant events. To this end, we propose two algorithms than work in on-line

mode; a threshold-based and a novelty-biased sampling algorithm. The �rst forwards to

the user events that have novelty scores above a per user threshold. The second forwards

to the user with high probability events that their matching subscriptions have been rarely

matched in the past.

1.2 Thesis Outline

The rest of this thesis is structured as follows. In Chapter 2, we present the model

and de�ne the notion of novelty-aware relevance. Also, we present the relation between

novelty and entropy. In Chapter 3, we explore novelty-based event �ltering and present

our threshold-based and novelty-biased sampling algorithms along with their variations.

In Chapter 4, we present our evaluation setup and experimental results. Chapter 5 de-

scribes related work and �nally Chapter 6 concludes this thesis with a summary of our

contributions and outlines future work.

11

Chapter 2

Model

2.1 Event-Delivery Model

2.2 Novelty-Aware Relevance

2.3 Novelty and Entropy

2.4 Subscription Subsumption

2.1 Event-Delivery Model

We consider a generic event delivery approach based on a typical publish/subscribe

(pub/sub) model. In this model, users express their interests in certain events via long-

standing queries, called subscriptions. Whenever an event is generated or published, it

is matched against the current subscriptions. Matching events are then delivered to the

corresponding users.

There are two broad types of publish/subscribe systems that di�er on the expres-

sive power of the subscription language: (a) topic-based and (b) content-based ones. In

topic-based systems, users subscribe to topics and get noti�ed when events on matching

topics are generated. In content-based systems, subscriptions specify conditions that the

content associated with the event must satisfy. Our novelty model is applicable to both

types. Many popular web applications fall under this generic pub/sub paradigm. For

example, many social networking sites such as Twitter and Facebook allow their users

to \follow" the content generated by their friends. RSS feeds and news aggregators are

other examples.

Let us assume that event matching is exact that is an event e either matches or does not

match a subscription s. We denote this by match(e; s) which is equal to 1 if subscription

s matches event e and 0 otherwise.

12

2.2 Novelty-Aware Relevance

Let U be the set of all users, S be the set of all subscriptions, and I be the (potentially

in�nite) sequence of input events in the system. Further, let M ⊆ I be the set of all

input events that match at least one subscription in the system, and O ⊆ M the set of

all such events that were delivered to subscribers. For a speci�c user u ∈ U , we denote as
S(u) ⊆ S the set of the subscriptions of u,Ms(u) ⊆M the set of all input events matching

a subscription s ∈ S(u), and as Os(u) ⊆ Ms(u) the set of all events being delivered to u

as a result of matching s.

Further, let M(u) = e1; : : : ei : : : be the sequence of all input events matching at least

one of u's subscriptions. We denote with Mj(u) the subsequence of M(u) up to event ej,

and by Ms;j(u) ⊆ Mj(u) the sequence of events up to event ej matching subscription s.

Similarly, let Oj(u) be the subsequence of Mj(u) that includes only the events delivered

to u, and Os;j(u) ⊆ Oj(u) be the sequence of events delivered to u as a result of matching

s.

Typically, an event e is considered relevant to the interests of a user u and thus

delivered to the user if it matches at least one of the subscriptions s ∈ S(u). In this work,

we make the case that the relevance of events does not depend solely on the user interests

but also on the events previously delivered to that user, that is on how much novel an

event is with respect to what the user has seen in the past. We call this new notion of

relevance novelty-aware event relevance. To de�ne the novelty-aware event relevance, let

us �rst de�ne the novelty of a subscription s. We discern two major ways of de�ning the

novelty of a subscription; one according to the delivery rate model and the other according

to the delivery interval model.

2.2.1 Delivery Rate Model

Let Rs;t(u) be an indicator variable associated with subscription s ∈ S(u), counting the

number of events in Os;t−1(u); that is, Rs;t(u) = |Os;t−1(u)| = f , if exactly f of the events

in It−1 were delivered to u as a result of s being matched and being the most novel among

other matched subscriptions. Then, the novelty score of s for u at time t is given by:

novelrate(s; u; t) = 1− Rs;t(u)

|It−1|
: (2.1)

Note that the fraction in eq. 2.1 is equal to the delivery rate of s at time i; that is, the

fraction of all input events in It−1 having been delivered as a result of matching s.

2.2.2 Delivery Interval Model

Let Ls;t be an indicator variable associated with subscription s ∈ S(u), recording the last

event before t which was delivered as a result of subscription s; that is:

Ls;t =

{
max {j : ej ∈ Os;t−1(u)}; if Os;t(u) 6= ∅
t− 1; otherwise

13

Then:

novelinter(s; u; t) = t− Ls;t: (2.2)

Note that novelinter(·) is in essence the time between consecutive deliveries of events

matching s. Naturally, the mean value of this metric, that is, the inter-delivery time for

s, is equal to the inverse of the delivery frequency for s.

Given the above ways of computing subscription novelty, a subscription s is novel for

user u at time t if and only if its score is above an appropriate per user threshold th(u):

De�nition 2.1. Subscription s is novel for user u at time t i� novel(s;Os;t−1(u)) > th(u)

Also, the following theorem holds:

Theorem 2.1. Both novelrate(·) and novelinter(·) result in equivalent rankings.

Proof can be found in the Appendix.

2.2.3 Novelty-aware Event Relevance

In our model, each event e is delivered to user u if and only if it is novelty-aware relevant

to at least one of the subscriptions of the user u. An event e is novelty-aware relevant if

and only if both of the following conditions hold:

(a) The event e matches at least one of the subscriptions s ∈ S(u).

(b) At least one of the subscription s that is matched by e has a novelty score above user

threshold th(u).

Each event e delivered to the user u is associated with a novelty score that indicates how

much novel it is for user u. This score is computed in accordance with the score of the

subscriptions that cover it. In the simple case, in which event e matches exactly one

subscription s ∈ S(u), the novelty score of the event is assigned the novelty score of the

subscription that covers it. In the case that we have multiple matches, the novelty score

of the event is assigned the score of the most novel of the subscriptions (i.e. that has the

highest novelty score) of user u that cover e.

For example, take two subscriptions s1 = {director = S:Spielberg; genre = sci− fi}
and s2 = {genre = sci − fi; release year > 1999}. Note that none of the subscriptions
covers the other. An event that matches both subscriptions will get the score of the most

novel one. For example, if many events that match subscription s1 have been delivered to

the user and only a few that match subscription s2, then the event is assigned the score

of s2 (that is the most novel one) so that rare events are noticed.

14

2.3 Novelty and Entropy

2.3.1 Entropy

In information theory, entropy is a measure of the uncertainty associated with a random

variable. It was �rst introduced by Shannon in [2]. Entropy quanti�es the expected value

of the information that is contained in a message and is measured in terms of bits. The

entropy H of a discrete random variable X with posible values {x1, x2, : : : , xn} is:

H(X;n) = E(I(X)) (2.3)

Here E denotes the expected value and I denotes the information content of X. If p

denotes the probability mass function of X, then entropy can be written explicity as:

H(X;n) = −
n∑
i=1

p(xi) · log2(p(xi)) (2.4)

Theorem 2.2. Entropy is maximized when p(xi) = 1=n, for i = 1, : : : , n, that is when

the random variable X follows a uniform distribution.

The value of the maximum entropy is equal to:

Hmax(X;n) = −
n∑
i=1

1=n · log2(1=n) = n · 1=n · log2(n) = log2(n) (2.5)

In this work, we measure the entropy of events of the output stream, namely the events

that are delivered to a user u. In our case, the probability mass function is based on the

probability that an event e that is delivered to user, matches one of the subscriptions in

S(u) = {s1, s2, : : : , sn} of the user u.
For example, let S(u) = {s1, s2, s3} be the subscriptions of the user u and 100 the

total number of events that are delivered to him. Also, suppose that 20 of the delivered

events match subscription s1, 30 match s2 and 50 match s3. Then the output entropy is:

H(X; 3) = −
3∑

i=1

p(xi) · log2(p(xi))

= −[(20=100) · log2(20=100) + (30=100) · log2(30=100)

+ (50=100) · log2(50=100)] = 1:48548

Intuitively, high output entropy value indicates a more uniform-like distribution of the

output stream and a higher probability that novel events will be �nally noticed.

2.3.2 Improving Output Entropy

We now give the de�nition of the most novel subscription of user u at time t.

15

De�nition 2.2. The most novel subscription of user u at time t is the subscription with

the lowest novelty score of the subscriptions of the user.

Let N be the number of events delivered to the user u and et be the N+1 event

that is delivered to the user. Also, let H(X;N) be the entropy of the �rst N events and

H(X;N + 1) be the value of the entropy after the delivery of the et event.

Theorem 2.3. The di�erence between H(X;N) and H(X;N + 1) is maximized if the

event et matches the most novel subscription of the user u.

Proof can be found in the Appendix. Intuitively, the delivery of an event that matches

the most novel subscription of the user, leads to the maximum possible increase of the

output entropy.

Let L(s) = {s1; s2; : : : ; sm} be the list of the m subscriptions of the user u sorted in

a descending order from the most popular subscription to the least popular one. Let rs1 ,

rs2 , : : : , rsm be the corresponding matching rates with rs1 > rs2 > : : : > rsm and ds1 , ds2 ,

: : : , dsm be the corresponding target delivery rates of events the match each subscription.

Also, let |Ot(u)| be the number of events delivered to the user u up to the arrival of the

matching event et. We aim at improving the entropy of the delivered events, namely we

want the target delivery rates of the subscriptions to be equal and independent from the

corresponding matching rates. Next, we present the minimum rmin and the maximum

�ltering rate rmax per user u in order to maximize the entropy of delivered events.

Observation 2.1. The minimum target delivery rate per subscription is equal to 1
|Ot(u)| ,

namely one matching event per subscription is delivered. Consequently, the minimum

�ltering rate rmin per user u is equal to m
|Ot(u)| .

Observation 2.2. The maximum target delivery rate per subscription is equal to rsm,

namely each subscription has a delivery rate equal to the matching rate of the least popular

one (i.e. the most novel). Consequently, the maximum �ltering rate rmax per user u is

equal to m · rsm.

Note that if the �ltering rate r per user u is less than rmin or more than rmax the

subscriptions will not achieve an equal delivery share and thus the entropy will not be

maximized.

2.3.3 Other Measures

The fairness measure [3] is used in network engineering to determine whether users or

applications receive a fair share of system resources. In our work, we use fairness to

determine whether users receive a fair share of events per matching subscription.

The fairness F of a stream of events delivered to the user u that match one of the

subscriptions S(u) = {s1, s2, : : : , sn} of u is equal to:

16

type = drama

type = drama
length <100

type = drama
length >120

type = drama
length <100
rating <= 5.0

type = drama
length <100
rating >= 8.0

type = sci-fi

type = sci-fi
length <120

type = sci-fi
length >160

S1

S2 S3

S6

S4 S5

S7 S8

(a) Initial Subscription Graph

type = drama

type = drama
length <100

type = drama
length >120

type = drama
length <100
rating <= 5.0

type = drama
length <100
rating >= 8.0

type = sci-fi

type = sci-fi
length <120

type = sci-fi
length >160

S1

S2 S3

S6

S4 S5

S7 S8
type = drama
OTHER

type = drama
length <100
OTHER

type = sci-fi
OTHER

(b) Subscription Graph with dummy subscriptions

Figure 2.1: Subscription graph

F (s1; s2; :::; sn) =

(
n∑
i=1

Osi(u))2

n ·
n∑
i=1

O2
si
(u)

(2.6)

The value of the fairness ranges from 1
n
, which is the worst case to 1, which is the

best case and it is maximized when all subscriptions of the user match the same number

of delivered events. Using the above scenario for calculating entropy, the corresponding

value of fairness is:

F (s1; s2; s3) =
(20 + 30 + 50)2

3 · (202 + 302 + 502)
= 0:87719

2.4 Subscription Subsumption

Our model supports subscription subsumption or coverage. We say that subscription s2

is more speci�c than subscription s1 if and only if, ∀ event e such that match(e; s2) = 1,

it holds that match(e; s1) = 1. This may happen for example when s1 is a subscription

expressing interest in a general topic (e.g., a drama movie) and s2 is a subscription ex-

pressing interest in a most speci�c one (e.g., a drama movie with duration less than 120

17

min).

Suppose that a user u has submitted to the publish/subscribe system the subscriptions

that Figure 2.1(a) shows. Let et be the event {type = drama, length = 90, rating = 5.0}
that matches subscription s4. Clearly, et matches subscriptions s1, s2 and s3.

The �rst question that arrises is the novelty score of which subscription should be

updated (reduced), if event et is delivered. If et is delivered then the novelty scores of

all subscriptions that match it are updated. Intuitively, if et is delivered the novelty of

all subscriptions in the path from the root to the most speci�c matching subscription is

reduced, as the part {type = drama} is common in all matching subscriptions.

The next question that arrises is the way that we compute the entropy of the delivered

events. We compute the entropy at the most speci�c subscription that matches an event, if

it is delivered. Continuing the previous example, if et is delivered, we compute the entropy

at the most speci�c subscription that matches et, which is subscription s3. In case, that

the node of the most speci�c subscription that matches an event has children nodes, then

the system adds some dummy subscriptions (linked to the most general subscriptions with

dotted lines in Fig. 2.1(b)). For example, if event et is {type = drama} then the entropy

is computed at the dummy subscription {type = drama, OTHER}.
When a delivered event matches subscriptions that each is not more speci�c than the

other then the novelty score of each subscription is updated. For example, let et be the

event {type = drama AND type = sci-�}. Notice that the subscriptions are disjoint,

namely {type = drama} ∩ {type = sci-�} = ∅. In this case, the novelty scores of both

subscriptions are updated.

18

Chapter 3

Novelty-based Event Filtering

3.1 Relevance Filtering

3.2 Algorithms

3.3 Aging

3.4 Distributed Setting

3.1 Relevance Filtering

In this section, we focus on the use of novelty for enhancing event delivery. Since the input

stream of events can be large, instead of delivering all matching events to all users, rele-

vance �ltering can be used to select and deliver the most relevant events to each user. The

reason for this is twofold: (a) user satisfaction and (b) system performance. From a user

perspective, with relevance �ltering, each user receives a subset of the most representative

events, instead of being overwhelmed with all matching ones. From a system perspective,

�ltering events based on novelty decreases the system load and network tra�c.

In this work, we introduce a new way of �ltering out non-relevant events that is called

novelty-based event �ltering. We consider novelty-based event �ltering as a second-stage

step that follows the relevance �ltering of the event matching process. This new notion

of �ltering is both history-based and user-based; only events that were delivered to the

user u in the past a�ect the decision of delivering new events to u.

Suppose that the publish/subscribe system limits the subset of events that each user

receives with a maximum delivery rate per user threshold rTH(u) ∈ [0; 1]. Our objective

is to maximize the per user information gain by delivering events that cover fairly the

subscriptions of the user, that is all subscriptions achieve equal number of delivered events.

In this work, we quantify the quality of the information content that user receives by using

entropy. High entropy values express high information gains received by the user as they

19

indicate a more uniform-like distribution of delivered events. We now formally state the

Subsequence Selection Problem.

Subsequence Selection Problem Given user u, the set S(u) of the subscriptions of

u, the sequence M(u) of matching events, a maximum delivery threshold rTH(u) ∈ [0; 1]

and a period P of time, select a subsequence O(u) of events with size k = rTH(u) ·P and

deliver it to user u such that the entropy H of O(u) is maximized:

O(u)∗k = argmaxO(u)k subsequence of M(u)H(O(u)k) (3.1)

3.2 Algorithms

In this section, we present our novelty-aware algorithms. Our algorithms aim at improving

the entropy of the input stream of events that match at least one of the subscriptions of

the user by �ltering out non-novel events. We propose a threshold-based algorithm that

uses an adaptive per user threshold; a matching event that has a novelty score above this

threshold is delivered to the user; else it is discarded. Further, we propose a novelty-biased

sampling algorithm that uses a sampling rate per subscription of the user and �lters out

matching events that with high probability are non-novel. Our algorithms work only in

an on-line mode, as at the time of each event arrival, the decision whether it is novel or

not is made without knowing about the complete event stream.

3.2.1 Lazy vs Eager Mode

We propose a lazy and an eager mode that are both applicable to the threshold-based and

the novelty-biased sampling algorithm. The major di�erence between the lazy mode and

eager one is the time the threshold/sampling rate is adjusted. In the �rst case, we assume

that the stream of matching events M(u) is partitioned in disjoint periods of P events.

The threshold/sampling rate are adjusted at the end of each period. In the second case,

when a matching event arrives, it is inserted in a sliding window of size W . The sliding

window is tuple-based; when a new event et arrives, the least recent event (i.e. the event

that has been inserted in the window W units before et) slides out from the window. In

the eager update case, the threshold/sampling rate are adjusted when a new matching

event is inserted in the window.

When the threshold-based algorithm uses the eager mode, a considerable computa-

tional overhead is induced. In this mode, the computation of the threshold is based on the

last W matching events of the user u. As we will shortly see, when a new event arrives,

the threshold is updated. This update requires sorting the novelty scores of the events in

the window with each arrival of a matching event.

20

3.2.2 Rate-based vs Interval-based Scoring Mode

In section 2.2, we have discerned two major ways of computing the novelty of a subscrip-

tion; a rate-based scoring mode according to the delivery rate model and an interval-based

one according to the delivery interval model. We remind that the rate-based scoring mode

is based on a per subscription delivery rate; the more events are delivered for a subscrip-

tion, the less novel the subscription is. The interval-based scoring mode is based on the

distance of the current event that matches subscription s, from the previous event in the

stream that matches subscription s. The bigger the distance, the more novel subscrip-

tion s is. Our scoring modes are combined with both the threshold-based and the the

novelty-biased sampling algorithm.

3.2.3 Threshold-based Algorithm

Algorithm 1 Threshold-based Algorithm - Lazy Mode

Input: A sequence of matching events M(u), the set S(u) of the subscriptions of u, a

maximum delivery rate rTH(u) and a period length P

Output: A sequence of delivered events O(u)

1: begin

2: thr(u) ← 0

3: delivered ← 0

4: k ← rTH(u) · P
5: L ← empty list

6: for all et ∈M(u) do

7: s ← the subscription matched by et
8: if novel(s; u; t) ≥ thr(u) and delivered ≤ k then

9: deliver et to u

10: delivered ← delivered + 1

11: end if

12: insert novel(s; u; t) to L

13: if (t % P) = 0 then

14: sort L in descending order

15: thr(u) ← kth element of L

16: clear L

17: end if

18: end for

19: end

Now, we present the threshold-based algorithm. When a new event et that arrives at

the system matches at least one of the subscriptions of the user u, the algorithm reaches

a binary decision whether the event et is either novel or not for u. More speci�cally, the

score of the most novel of the matching subscriptions (i.e. that has the highest novelty

21

score) is compared against a novelty-aware per user threshold. In case that the score is

above the threshold, the event is delivered to user along with a score that indicates how

much novel the event et for user u is; else it is discarded. The score of the delivered event

is equal to the score of the most novel subscription that it matches.

The total number of delivered events per period/window is limited by a maximum

delivery rate rTH(u). In case the rate of the total delivered events becomes equal to

rTH(u), then no more events are delivered in the current period/window. The threshold

is adjusted at the end of each period/window and is equal to the kth highest novelty score

of the previous period/window, where k = rTH(u) · P and k = rTH(u) ·W respectively.

Algorithm 1 shows the pseudocode of the algorithm with the lazy mode.

3.2.4 Novelty-biased Sampling Algorithm

We propose a novelty-biased sampling algorithm that online �lters out non-novel events

for the user u. For each subscription of the user a sampling rate is computed. Let et
be the current event that matches at least one of the subscriptions of user u. The more

novel the subscription s that matches the event et is, the highest the probability that et
will be delivered to the user. Intuitively, the highest the value of the sampling rate of

subscription S of user u is, the highest the probability that the event et that matches s

will be delivered to the user.

The computation of the sampling probability, when the rate-based scoring is used, is

based on the following: Let rTH(u) be the maximum delivery rate per user u, S(u) be

the set of the subscriptions of the user u, s be a subscription in S(u). Also, let e be an

event and Pmatch(s) be the probability that event e matches subscription s. Intuitively,

we want each subscription of the user to achieve the same delivery rate, that is an equal

number of delivered events, thus rTH(u)
|S(u)| , where |S(u)| is the number of the subscriptions

of the user.

Consequently, the sampling probability per subscription s is equal to:

Psampl(s) =

{
1; if Pmatch(s) <

rTH(u)
|S(u)|

rTH(u)
|S(u)| ·

|M(u)|
|Ms(u)| ; otherwise

(3.2)

Proof can be found in the Appendix.

When the interval-based scoring is used, the sampling rate is equal to:

Psampl(s) =


1; if Pmatch(s) <

rTH(u)
|S(u)|

rTH(u)·
|Ms(u)|

P

i=1
Dist(esn;e

s
m)

|S(u)|·|Ms(u)| ; otherwise

(3.3)

where
M(u)∑
i=1

Dist(esn; e
s
m) is the addition of the distances of events en and em that match

the same subscription s and |Ms(u)| is the number of events that match subscription s.

The distance is measured in terms of matching events. n denotes the sequence number of

matching event en, that is n−1 events were matched before en, andm denotes the sequence

22

number of matching event em. Then, the distance Dist(esn; e
s
m) is equal to m − n, with

m > n. Note that

|Ms(u)|
P

i=1
Dist(esn;e

s
m)

|Ms(u)| is equal to the average interarrival distance of events

that match subscription s. Intuitively, the bigger the interarrival distance of s, the highest

the probability that an event that matches subscription s will be delivered.

Algorithm 2 Novelty-biased Sampling Algorithm - Lazy Mode

Input: A sequence of matching events M(u), the set S(u) of the subscriptions of user u,

a maximum delivery rate rTH(u) and a period length P

Output: A sequence of delivered events O(u)

1: begin

2: delivered ← 0

3: k ← rTH(u) · P
4: for all et ∈M(u) do

5: choose a number x uniformly at random in [0,1]

6: s ← the subscription matched by et
7: if Psampl(s) ≤ x and delivered ≤ k then

8: deliver et to u

9: delivered ← delivered + 1

10: end if

11: if (t % P) = 0 then

12: for all s ∈ S(u) do

13: if |Ms(u)|
|M(u)| <

rTH(u)
|S(u)| then

14: Psampl(s) = 1

15: else

16: Psampl(s) ← rTH(u)
|S(u)| ·

|M(u)|
|Ms(u)|

17: end if

18: end for

19: end if

20: end for

21: end

When a new event et arrives that matches at least one subscription of the user u, we

generate a number x uniformly at random. If x has a lower value than the sampling rate

of the most novel subscription s that matches et and the number of delivered events is less

than k = rTH(u) · P then it is delivered to the user u. Intuitively, an event that matches

a subscription which was rarely matched, has a high probability to reach the user. We

present the pseudocode of the novelty-biased sampling algorithm when the rate-based

scoring mode and the lazy update mode is used (Algorithm 2). We omit the pseudocode

when the interval-based scoring mode of the algorithm is used as it di�ers from the rate-

based scoring one in the way that the subscription sampling rate is computed. Also, we

omit the pseudocode when the eager mode is used as it di�ers from the lazy one only in the

23

time that the subscription sampling rate is computed as we have previously illustrated.

Our sampling algorithm is both space and time e�cient compared to our threshold-

based algorithm. It does not require maintaining and sorting a list of scores of events per

period/window. However, it has some drawbacks. Consider a scenario where a popular

(i.e. highly matched) subscription s is not matched in certain periods of time. Recall that

the computation of Psampl(s) is based on sharing equally the maximum total delivery rate

rTH(u) among the subscriptions of the user. Assigning a fraction of rTH(u) to subscription

s in periods when not matched, results in limiting the number of events delivered to the

user, as this fraction will not be used. Further, the probability Psampl(s) in periods when

s not matched takes high values, thus when s again highly matched, a huge number of

its matching events will be delivered to the user. Consequently, the entropy of delivered

events will deteriorate.

Due to the above reasons, the threshold-based algorithm is a) resistant in radical

changes of the distribution of the input stream and b) achieves a higher total delivery

rate than the sampling algorithm when changes in the distribution of the input occur as

it does not take into account the number of the subscriptions of the user.

3.3 Aging

The computation of the subscription novelty score can be based on the history of previous

delivered events. To incorporate the former delivery history into the novelty score of a

subscription, we consider an aging factor
 (i.e. a weight factor) that takes values in [0,1].

Let novel(s; u; t) be the novelty score of subscription s of user u when event et is

delivered and novel(s; u; t′) be the novelty score of subscription s of user u when event e′t
is delivered with t′ < t. The novelty score novel(s; u; t) of subscription when event et is

delivered, when the aging factor is used, is computing according to the following formula:

novel(s; u; t) =
 · novel(s; u; t) + (1−
) · novel(s; u; t′) (3.4)

Note that when
 is equal to 1, no aging is introduced. Also, when
 is equal to 0,

the current novelty score is equal to the previous one, that is the score is not updated.

3.4 Distributed Setting

We have presented the algorithms with the assumption that we have a centralized setting,

namely each subscription of the user is at the same node of the publish/subscribe system.

Now, we consider the case that the subscriptions of the user are distributed across a

number of nodes of the publish/subscribe system. We discuss the e�ect of the distribution

of the subscriptions on the threshold-based and the novelty-biased sampling algorithm.

24

3.4.1 Threshold-based Algorithm

In the rate-based scoring mode, the computation of the novelty score of the subscription

s is based on the number of events that match s and are delivered to the user and

the number of events that match at least one of the subscriptions of the user. In the

interval-based scoring mode, the novelty score is based on the time measured in terms

of matching events between two consecutive deliveries of events that match s. Both

variations are based on the total number of events that match at least one subscription of

the user. Each subscription maintains the number of its matching events. Consequently,

the computation of the total matching events per user requires the communication of the

nodes that maintain the subscriptions of the user with each update of the subscription

novelty score.

Further, the adjustment of the threshold requires sorting the novelty scores of the

events of the previous period/window. Since each event score is stored locally (i.e. in the

node of the matching subscription), a distributed top-k algorithm is needed for computing

the threshold.

3.4.2 Novelty-biased Sampling Algorithm

Both the rate-based and the interval-based scoring mode require the total number of

matching events of the user and the number of the active subscriptions of the user. A

subscription is active if it has been matched by at least one event. As explained earlier,

the total number of matching events per user induces a considerable communication over-

head. Also, the number of active subscriptions of the user, requires the communication

between the nodes that maintain the subscriptions of the user. The more often is the

communication, the more accurate is the sampling algorithm. In our work, the number

of active subscriptions of the user is updated periodically.

25

Chapter 4

Experimental Evaluation

4.1 Synthetic Data

4.2 Real Data

In this section, we present the results of the experimental evaluation of the performance

of our novelty-aware algorithms. We present results for both synthetic and real data. To

evaluate our approach, we have extended the SIENA noti�cation service with our novelty

functionality.

4.1 Synthetic Data

For the following experiments, we generate di�erent input streams, each of which consists

of 100000 events. The popularity of the events follows a zipf distribution to mimic the

distribution that follow real web data [4]. For each user, we generate a number of 10

mutually exclusive subscriptions, such that all published events of our scenarios match

one of the subscriptions of the user. Also, we use an aging factor that in
uences the

novelty subscription score. The aging factor that is equal to 1 indicates no aging. Our

input parameters are summarized in Table 4.1.

Table 4.1: Input parameters

Description Range Default

input stream (S) 100000

size of period/window (P) 100,1000 1000

maximum rate (maxrate) 0.2

aging factor (
) 0.1,0.5,1.0 1.0

of subscriptions (N) 10

of users (U) 1

event distribution zipf, � = 0.75,1.25 1.25

26

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 20 40 60 80 100

en
tr

op
y

periods

Lazy/Interval Lazy/Rate Eager/Interval Eager/Rate

(a) Entropy

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100

de
liv

er
ed

 e
ve

nt
s

periods

Lazy/Interval Lazy/Rate Eager/Interval Eager/Rate

(b) Delivered events

 8

 10

 12

 14

 16

 18

 20

 22

 0 20 40 60 80 100

av
er

ag
e

in
te

rd
el

iv
er

y
di

st
an

ce

periods

Eager/Rate Eager/Interval Lazy/Rate Lazy/Interval

(c) Average interdelivery distance

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

st
d

de
vi

at
io

n
of

 in
te

rd
el

iv
er

y
di

st
an

ce

periods

Lazy/Interval Lazy/Rate Eager/Interval Eager/Rate

(d) Standard deviation of interdelivery dis-

tance

Figure 4.1: Threshold-based Algorithm

4.1.1 Threshold-based Algorithm

First, the goal is to compare the e�ectiveness of the four variants of the threshold-based

algorithm in terms of the achieved output entropy, the average interdelivery distance, the

standard deviation of the interdelivery distance and the number of events delivered to the

user (Figure 4.1). The events follow a zipf distribution with skew � = 1.25.

Eager vs Lazy Mode. Figure 4.1(a) shows the output entropy versus the time mea-

sured in periods of events. We see that both the eager and the lazy update mode achieve

the same output entropy. Recall, however, that the eager mode induces a considerable

computational overhead. Consequently, both update modes are equivalently e�ective, but

it is more e�cient to apply the lazy mode to the threshold-based algorithm. Figure 4.1(b)

shows the number of events delivered to the user versus the time measured in periods of

events. We see that in all approaches, the number of events delivered to the user converges

to the maximum delivery rate per user threshold r that is equal to 0.2.

Rate-based vs Interval-based Scoring Mode. In Figure 4.1(a), we see that the rate-

27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

th
re

sh
ol

d

periods

Lazy/Rate Eager/Rate

(a) Rate-based Scoring

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

th
re

sh
ol

d

periods

Lazy/Interval Eager/Interval

(b) Interval-based Scoring

Figure 4.2: Threshold

based scoring mode outperforms the interval-based one in terms of the achieved entropy

for both the eager and the lazy mode. This occurs because the rate-based scoring results

in a more accurate ranking that deploys the history of delivered events and adapts more

e�ectively to the distribution of the input stream. This becomes more clear, when we

experiment with the average distance of events that match the some subscription and

are delivered to the user (i.e. average interdelivery distance) that Figure 4.1(c) depicts.

Intuitively, the optimal average interdelivery distance is equal to the number of the sub-

scriptions of the user (here 10), namely each event is delivered to the user after the arrival

of 10 matching events. Figure 4.1(d) shows the standard deviation of the interdelivery

distance. We see that the rate-based scoring has a value around 0.0, which is the optimal

value, for both the lazy and the eager mode. This indicates that the interdelivery dis-

tance for events that match the same subscription has small deviations around the average

interdelivery distance, namely we have the ideal interdelivery distance per subscription

which is equal to 10.

Threshold. Then, we experiment with the behavior of the threshold. Figure 4.2(a) shows

the threshold with the time measured in periods of events when the rate-based scoring

mode is used. When the eager mode is used, we witness a fast threshold conversion,

whereas when the lazy mode is used, the threshold needs a \warm-up" period to become

stable. Figure 4.2(b) shows the behavior of the threshold, when the interval-based scoring

is used. Again, we witness faster threshold conversion when the eager mode is used in

comparison with the lazy mode.

Period/Window. Finally, we explore the role of the period/window of size P used

by the threshold-based algorithm. Recall, that in the eager mode the calculation of the

threshold is based on the last P matching events (sliding window), whereas in the lazy

mode the threshold is updated over the P matching events of the previous period. We

set P = 100 events and evaluate the algorithm in terms of the output entropy, the av-

erage interdelivery distance, the standard deviation of the interdelivery distance and the

28

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 100 200 300 400 500 600 700 800 900 1000

en
tr

op
y

periods

Lazy/Rate Lazy/Interval Eager/Rate Eager/Interval

(a) Entropy

 18.2

 18.4

 18.6

 18.8

 19

 19.2

 19.4

 19.6

 19.8

 20

 0 100 200 300 400 500 600 700 800 900 1000

de
liv

er
ed

 e
ve

nt
s

periods

Lazy/Rate Lazy/Interval Eager/Rate Eager/Interval

(b) Delivered events

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

de
liv

er
y

di
st

an
ce

periods

Lazy/Rate-based Lazy/Time-based Eager/Rate-based Eager/Time-based

(c) Average interdelivery distance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

st
d

de
vi

at
io

n
of

 in
te

rd
el

iv
er

y
di

st
an

ce

periods

Lazy/Rate Lazy/Interval Eager/Rate Eager/Interval

(d) Standard deviation of interdelivery dis-

tance

Figure 4.3: Period

number of delivered events. In Figure 4.3(a), we see that a smaller period size results

in a lower value of the output entropy for the interval-based scoring mode. Further, we

see that the rate-based scoring mode outperforms the interval-based one in terms of the

average interdelivery distance (Figure 4.3(c)), the standard deviation of the interdelivery

distance (Figure 4.3(d))and the number of delivered events (Figure 4.3(b)).

4.1.2 Novelty-biased Sampling Algorithm

We evaluate the e�ectiveness of the four variants of the novelty-biased sampling algorithm

in terms of the achieved output entropy, the average interdelivery distance, the standard

deviation of the interdelivery distance and the number of events delivered to the user

(Figure 4.4).

Eager vs Lazy Mode. In Figure 4.4(a), we see that the output entropy converges to

the same �nal value for both modes. We witness the same behavior with the standard

deviation of the interdelivery distance in Figure 4.4(d) and the average interdelivery dis-

29

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 20 40 60 80 100

en
tr

op
y

periods

Eager/Rate Eager/Interval Lazy/Rate Lazy/Interval

(a) Entropy

 192

 193

 194

 195

 196

 197

 198

 199

 200

 0 20 40 60 80 100

de
liv

er
ed

 e
ve

nt
s

periods

Eager/Rate Eager/Interval Lazy/Rate Lazy/Interval

(b) Delivered events

 8

 10

 12

 14

 16

 18

 20

 22

 0 20 40 60 80 100

av
er

ag
e

in
te

rd
el

iv
er

y
di

st
an

ce

periods

Eager/Rate Eager/Interval Lazy/Rate Lazy/Interval

(c) Average interdelivery distance

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

st
d

de
vi

at
io

n
of

 in
te

rd
el

iv
er

y
di

st
an

ce

periods

Eager/Rate Eager/Interval Lazy/Rate Lazy/Interval

(d) Standard deviation of interdelivery dis-

tance

Figure 4.4: Novelty-biased Sampling Algorithm

tance in Figure 4.4(c). The main di�erence between the two modes is the time that the

novelty-biased sampling algorithm converges to the �nal value of the entropy, the average

interdelivery distance and the standard deviation of the interdelivery distance; the usage

of the eager update mode results in a faster conversion.

Rate-based vs Interval-based Scoring Mode. In Figure 4.4(c), we see that both

modes result in the same values of the average interdelivery distance. In Figure 4.4(a),

we witness small variations of the achieved entropy between the two scoring modes; rate-

based scoring seems to be a bit more e�ective. But, in Figure 4.4(d), we clearly see

that rate-based scoring mode results in a lower value of the standard deviation than the

interval-based one for both the eager and the lazy mode. Regarding the number of deliv-

ered events, Figure 4.4(b) shows that when the interval-based scoring is used, more events

are delivered to the user.

30

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 20 40 60 80 100

en
tr

op
y

periods

Random Sampling
Sampling/Eager/Rate

Threshold/Lazy/Rate

(a) Entropy

 0

 50

 100

 150

 200

 0 20 40 60 80 100

de
liv

er
ed

 e
ve

nt
s

periods

Random Sampling
Sampling/Eager/Rate

Threshold/Lazy/Rate

(b) Delivered events

 8

 10

 12

 14

 16

 18

 20

 22

 0 20 40 60 80 100

av
er

ag
e

in
te

rd
el

iv
er

y
di

st
an

ce

periods

Random Sampling
Sampling/Eager/Rate

Threshold/Lazy/Rate

(c) Average interdelivery distance

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

st
d

de
vi

at
io

n
of

 in
te

rd
el

iv
er

y
di

st
an

ce

periods

Random Sampling
Sampling/Eager/Rate

Threshold/Lazy/Rate

(d) Standard deviation of interdelivery dis-

tance

Figure 4.5: Threshold-based vs Novelty-biased Sampling Algorithm

4.1.3 Threshold-based vs Novelty-biased Sampling Algorithm

Next, we compare the most e�ective variant of the threshold-based algorithm and the

one of the novelty-biased sampling algorithm against a baseline approach (\random-

sampling"), where a percentage of the matching events per period are randomly selected

and delivered to the user. We see that our algorithms outperform the random sam-

pling alternative in terms of the output entropy (Figure 4.5(a)), the average interdelivery

distance (Figure 4.5(c)) and the standard deviation of the interdelivery distance (Fig-

ure 4.5(d)). Also, we see that the threshold-based and novelty-biased sampling algorithm

are equally e�ective in terms of the achieved entropy and the average interdelivery dis-

tance. However, the sampling algorithm outperforms the threshold-based one in terms of

the standard deviation of the interdelivery distance. Regarding the number of delivered

events, Figure 4.5(b) depicts that when the threshold-based algorithm is used, a bit more

events are delivered to the user.

31

 3.05

 3.1

 3.15

 3.2

 3.25

 3.3

 3.35

 0 20 40 60 80 100

en
tr

op
y

periods

Lazy/Rate Lazy/Interval Eager/Rate Eager/Interval

(a) Threshold-based Algorithm

 3.05

 3.1

 3.15

 3.2

 3.25

 3.3

 3.35

 0 20 40 60 80 100

en
tr

op
y

periods

Lazy/Rate Lazy/Interval Eager/Rate Eager/Interval

(b) Novelty-biased sampling Algorithm

Figure 4.6: \Skew-transient" Scenario

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 20 40 60 80 100

en
tr

op
y

periods

Lazy/Rate Lazy/Interval Eager/Rate Eager/Interval

(a) Threshold-based Algorithm

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 0 20 40 60 80 100

en
tr

op
y

periods

Lazy/Rate Lazy/Interval Eager/Rate Eager/Interval

(b) Novelty-biased sampling Algorithm

Figure 4.7: \Skew-reverse" Scenario

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 20 40 60 80 100

en
tr

op
y

periods

Lazy/Rate Lazy/Interval Eager/Rate Eager/Interval

(a) Entropy

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

av
er

ag
e

in
te

rd
el

iv
er

y
di

st
an

ce

periods

Lazy/Rate Lazy/Interval Eager/Rate Eager/Interval

(b) Average interdelivery distance

Figure 4.8: \Insertion/Deletion" Scenario - Threshold-based Algorithm

32

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100

en
tr

op
y

periods

Lazy/Rate Lazy/Interval Eager/Rate Eager/Interval

(a) Entropy

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

av
er

ag
e

in
te

rd
el

iv
er

y
di

st
an

ce

periods

Lazy/Rate Lazy/Interval Eager/Rate Eager/Interval

(b) Average interdelivery distance

Figure 4.9: \Insertion/Deletion" Scenario - Novelty-biased Sampling Algorithm

4.1.4 Transient data distribution

\Skew-transient" scenario. Next, we evaluate our algorithms when the distribution

of the input stream of events changes. We consider two scenarios where the popularity

of speci�c events of the input stream changes over time. In the �rst \Skew-transient"

scenario, we change the skew of the distribution of the input stream. More speci�cally,

the �rst half of the input stream follows a zipf distribution with � = 0.75, whereas the

second one a zipf distribution with � = 1.25. Figure 4.6 shows that the e�ectiveness of

almost all of our algorithms measured in terms of entropy, remains una�ected as the skew

of the distribution changes. However, as the skew increases, we witness small variations

of the measured entropy when the time-based scoring mode is used.

\Skew-reverse" scenario. In the second \Skew-reverse" scenario, we reverse the popu-

larity of subscriptions of the user. More speci�cally, in the second half of the input stream,

the most popular subscription becomes the less popular one, the second most popular one

becomes the second less popular one and so on. Figure 4.7 depicts the measured entropy

with the time in periods of events. We see that the e�eciveness of the di�erent variants of

the threshold-based algorithm remains una�ected as the distribution changes. However,

we see that the novelty-biased sampling algorithm is very sensitive to the changes of the

input distribution. To see why, take a subscription that is rarely matched in the past and

thus converges to a high sampling rate. As the input distribution changes radically in the

middle of the input stream, the less frequently matched subscription becomes the most

popular one. Consequently, events that match the most popular subscription are delivered

to the user with high probability and thus the value of the output entropy deteriorates.

\Insertion/Deletion" scenario. Finally, we consider an \Insertion/Deletion" scenario,

where a user unsubscribes from some of their subscriptions. More speci�cally, in the �rst

half of the input stream the user has submitted 10 subscriptions, whereas in the second

half he has unsubscribed from 5 of them. In Figure 4.8(a), we see that the considering

33

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 20 40 60 80 100

en
tr

op
y

periods

aging: 0.1 aging: 0.5 aging: 1.0

(a) Entropy

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

st
d

de
vi

at
io

n
of

 in
te

rd
el

iv
er

y
di

st
an

ce

periods

aging: 0.1 aging: 0.5 aging: 1.0

(b) Standard deviation of interdelivery dis-

tance

Figure 4.10: Rate-based Scoring Mode - Threshold-based Algorithm

scenario a�ects the output entropy which deteriorates. Note, however, that the entropy

in the �rst half of the input stream is measured over the 10 matching subscriptions of the

user, whereas in the second half over the 5 matching subscriptions of the user. Conse-

quently, we see that in this scenario, the threshold-based algorithm not only retains its

e�ectiveness but also adapts quickly to the change of the number of subscriptions of the

user. This is also con�rmed in Figure 4.8(b), where we see that after the change in the

number of subscriptions, the average interdelivery distance is equal to 5.

As for the novelty-biased sampling algorithm, Figure 4.9 depicts that the both the

entropy and the average interdelivery distance are a�ected by the change in the number

of subscriptions, especially when interval-based scoring mode is used. This is due to the

fact that the computation of the sampling rate per subscription is based on the number

of active subscriptions of the user, namely the subscriptions that have been matched

by at least one event. In the second half of the input stream, the number of matching

subscriptions is equal to 5. Recall, that the novelty-sampling algorithm, periodically,

updates the number of the active subscriptions of the user. This periodic update has an

e�ect on the measured entropy and average interdelivery distance.

4.1.5 Aging

Next, we evaluate our algorithms when an aging factor
 is used that takes values in [0,1].

An aging factor equal to 1 indicates no aging, whereas an aging factor equal to 0 indicates

that the novelty score of the subscription is equal to the previous novelty score (i.e. the

score is not updated). We report results only for the lazy mode, as in the previous section

we have shown that it is equally e�ective, but more e�cient than the eager update mode.

Threshold-based algorithm. First, we report results when the aging factor is used in

the threshold-based algorithm.

34

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 20 40 60 80 100

en
tr

op
y

periods

aging: 0.1 aging: 0.5 aging: 1.0

(a) Entropy

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

st
d

de
vi

at
io

n
of

 in
te

rd
el

iv
er

y
di

st
an

ce

periods

aging: 0.1 aging: 0.5 aging: 1.0

(b) Standard deviation of interdelivery dis-

tance

Figure 4.11: Interval-based Scoring Mode - Threshold-based Algorithm

Rate-based Scoring Mode. As expected, using aging with the rate-based scoring mode

does not improve the measured entropy as Figure 4.10(a) depicts. This is due to the fact

that the rate-based scoring mode is already based on the history of previous delivered

events. Also, we see in Figure 4.10(b) that the standard deviation of the interdelivery

distance deteriorates a bit when aging is used. Consequently, aging and rate-based scoring

mode is not a good combination.

Interval-based Scoring Mode. In the Interval-based scoring mode, as Figure 4.11

depicts, the lower the value of the aging factor
 (i.e. more aging), the higher the im-

provement of the entropy and the standard deviation of the interdelivery distance. Recall

that the novelty score of the event is based on the distance from the previous event that

matches the same subscription and is delivered to the user. When aging is used, the

computation of the novelty score deploys the former delivery history and leads to better

results.

Novelty-biased sampling algorithm. Next, we evaluate the novelty-biased sampling

algorithm when aging is used.

Rate-based Scoring Mode. Figure 4.12 depicts the entropy(left) and the standard de-

viation of the interdelivery distance(right). We see that the more aging is used, the slower

is the conversion of the algorithm, namely the slower is the conversion of the sampling

rate of each subscription.

Interval-based Scoring Mode. When the interval-based scoring mode is used, we also

see that the usage of aging leads to a slow conversion of the sampling rate of each sub-

scription. We omit the �gures that show the e�ect of the aging when the interval-based

scoring mode is used, as the results are equivalent to the rate-based scoring mode.

35

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 0 20 40 60 80 100

en
tr

op
y

periods

aging: 0.1 aging: 0.5 aging: 1.0

(a) Entropy

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

st
d

de
vi

at
io

n
of

 in
te

rd
el

iv
er

y
di

st
an

ce

periods

aging: 0.1 aging: 0.5 aging: 1.0

(b) Standard deviation of interdelivery dis-

tance

Figure 4.12: Rate-based Scoring Mode - Novelty-biased Sampling Algorithm

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 20 40 60 80 100

en
tr

op
y

periods

periodic/rate periodic/time sliding/rate sliding/time

(a) Threshold-based Algorithm

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 20 40 60 80 100

en
tr

op
y

periods

periodic/rate periodic/time sliding/rate sliding/time

(b) Novelty-biased Sampling Algorithm

Figure 4.13: Subsumption

4.1.6 Subscription Subsumption

Next, we consider a scenario with subscription subsumption or coverage. The user has

submitted 10 subscriptions {S1; S2; S3; S4; S5; S6; S7; S8; S9; S10}, where S1 covers S2 and

S3, S2 covers S4 and S5. Also, S6 covers S7 and S8, S7 covers S9 and S10. We have gener-

ated events that follow a zipf distribution with skew � = 1.25, considering the real-world

scenario that most general subscriptions are matched more frequently. Figure 4.13 depicts

the high value of the measured entropy when both the threshold-based and the novelty-

biased sampling algorithm are used. Consequently, we show that when a subsumption

scenario is considered, the choice to use the most novel subscription among other matching

subscriptions for threshold/sampling rate comparison leads to e�ectiveness.

36

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

TIM
E

NYTIM
ES

W
ASHINGTONPOST

REUTERS

FOXNEW
S

CNN
ABC

BBC
NEW

SW
EEK

M
SNBC

po
pu

la
rit

y
of

 s
ub

sc
rip

tio
ns

subscriptions

(a) Popularity of subscriptions

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ac
tiv

ity

periods

TIME
ABC
BBC

NEWSWEEK

WASHINGTONPOST
NYTIMES

REUTERS
FOXNEWS

MSNBC
CNN

(b) Activity of subscriptions

Figure 4.14: Real dataset

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 2 4 6 8 10 12 14 16

en
tr

op
y

periods

Random Sampling
Lazy/Rate

Lazy/Interval
Eager/Rate

Eager/Interval

(a) Entropy

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

st
d

de
vi

at
io

n
of

 in
te

rd
el

iv
er

y
di

st
an

ce

periods

Random Sampling
Lazy/Rate

Lazy/Interval
Eager/Rate

Eager/Interval

(b) Standard deviation of interdelivery dis-

tance

Figure 4.15: Threshold-based Algorithm - Real dataset

4.2 Real Data

In this section, we present results for a real-world dataset. We have used Twitter, a

popular networking site, in order to collect a real-time log �le. We have followed (i.e.

subscribed to) 10 news agencies and collected events (i.e. tweets) that they have generated

from 24th January 2011 until 24th March 2011. The log �le consists of 17362 entries and

its size is approximately 2.0 MB. In this dataset, we have considered the source that

generates each event as the subscription that the user has submitted. The popularity

of subscriptions (i.e. the percentage of events each source generates) follows a zipf-like

distribution as Figure 4.14(a) depicts. Figure 4.14(b) depicts the generation activity of

each source versus time measured in periods of events. In the next experiments, we have

used an aging factor
 = 0:1 in the interval scoring mode of both the threshold-based and

the novelty-biased sampling algorithm.

37

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 2 4 6 8 10 12 14 16

en
tr

op
y

periods

Random Sampling
Lazy/Rate

Lazy/Interval
Eager/Rate

Eager/Interval

(a) Entropy

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

st
d

de
vi

at
io

n
of

 in
te

rd
el

iv
er

y
di

st
an

ce

periods

Random Sampling
Lazy/Rate

Lazy/Interval
Eager/Rate

Eager/Interval

(b) Standard deviation of interdelivery dis-

tance

Figure 4.16: Novelty-biased Sampling Algorithm - Real dataset

Threshold-based algorithm. Figure 4.15(a) shows the entropy with the time in periods

of events. We see that the eager mode - rate-based scoring mode variant outperforms all

variants in terms of the achieved entropy. This is due to the fact that it adapts more

e�ectively to the nature of the distribution of the real-dataset. Despite the fact that

the real dataset follows a zipf-like distribution, we have witnessed that in each period,

events do not follow a distribution similar to the distribution of the whole dataset. Some

news agencies are in some periods highly productive, whereas in others are not. Also,

we see that the interval-based scoring mode achieves the worst entropy values for both

the eager and the lazy mode. Figure 4.15(b) that shows the standard deviation of the

interdelivery distance illustrates more clearly the di�erences in the e�ectiveness between

the four variants.

Novelty-biased sampling algorithm. Next, we present results for the novelty-biased

sampling algorithm. Figure 4.16(a) shows the entropy, whereas Figure 4.16(b) shows the

standard deviation of the interdelivery distance. We see that the lazy mode is less e�ective

than the eager mode. Again, the reason is that the eager mode adapts more accurately

to the distribution of the input stream.

38

Chapter 5

Related Work

5.1 Ranked Publish/Subscribe

5.2 Novelty-aware Delivery

5.1 Ranked Publish/Subscribe

In this section we present related work about ranked publish/subscribe systems.

The authors of [5] consider the problem of publish/subscribe delivery where a published

event is stored or discarded due to limited storage capacity. In their model a subscriber

receives the k most relevant publications per subscription within a sliding window of w

time units. The relevance between a subscription and a publication is computed using a

binary user-de�ned ranking function.

The proposed solution is based on the fact that at some point in time all publications

that belong to the top-k relevant subscriptions of a subscriber will eventually be delivered

to her. Publications that belong to the k most relevant publications at the moment

of their publishing are called excellent candidates and thus delivered to the subscriber

immediately. Publications that can be among the top-k publications at some later time

of their publishing with a probability at least Ã are called good candidates and delivered to

the subscriber at that time. Publications with probabilities smaller than Ã are discarded.

Each subscription is associated with a sorted queue that stores both excellent and

good candidates and is called publications queue. More speci�cally, excellent candidates

are stored at the head of the queue which is of size k and good candidates are stored at

the tail of the queue. The minimum size of the tail depends on the value of the given

probability Ã, aiming that an adequate number of good candidates (i.e. that have a high

probability that will enter the top-k publications) can be stored there.

Another work that focuses on the problem of ranked publish/subscribe is [6]. In this

work, the authors propose extending subscriptions to allow users express that some events

39

are more relevant or interesting to them than others. The proposed model uses preferential

subscriptions to compute event scores. Events that match highly preferred subscriptions

get higher scores than those that match subscriptions of low preference.

Also, a top-k variant of the problem is introduced where only highly ranked events are

delivered to subscribers, along with a number of delivery policies. In periodic delivery,

subscribers receive an amount of important events every period of time. In sliding window

delivery, the subscriber receives a number of highly ranked events within a tuple-based

window of size w. Every time a new event is produced, the top-k event computation

restarts. In history-based �ltering, the decision of delivering an event is based on previous

history, namely whether it is among the last top-k events that the subscriber has already

seen.

The model in addition to user preferences takes into account content diversity, where

the content of an event di�ers from other highly ranked events, as a means to increase

user satisfaction. Diversity is modelled as the distance between the recently published

event and the set of events that have already been delivered to the user.

The authors of [7] consider the problem of ranked publish/subscribe in a reverse way.

They aim at recovering the most relevant matching subscriptions for a published event,

instead of locating the most relevant events for a subscription of the user. This notion of

matching arises naturally in applications related to online-advertising, online-job �nding

etc. where the stream of incoming users corresponds to events who aim at retrieving only

the most important subscriptions based on some predi�ned criteria.

In the proposed model an event e is represented as a point (u1, . . . , ud) over a d-

dimensional space D and a subscription s is represented as a set of intervals (I1, . . . , Id)

over space D. A subscription matches exactly an event if the event is fully contained in

the hyper-rectangle of the subscription. Relaxed matching can also occur if at least one

dimension of the event is contained in the corresponding interval of the subscription. In

the case of exact matching, each subscription is associated with a score, whereas in the

case of relaxed matching each interval of the subscription is associated with a weight, and

the score of the subscription is the sum of the weights of the matching dimensions. The

overall goal is to retrieve the top subscriptions ordered by their score.

The authors propose two novel indexing structures to achieve e�cient top-k retrieval

both in time and space, the Interval R-tree (IR-tree) and the Score-Optimal R-tree

(SOPT-R-Tree). The IR-tree is an extension of the typical Interval Tree [8]. Each node

of the Interval Tree stores a list of intervals. In the worst case, answering a query may

require traversing the entire node list. The IR-tree is based on the idea of replacing

this list with an R-tree [9] that indexes the intervals that are stored in a node in order

to achieve e�cient query times. The SOPT-R-tree data structure is an extension of the

scored R-tree. In the scored R-tree, intervals are grouped together by their scores, namely

top-scored intervals are grouped together in a tree node, the next lower-scored intervals

are grouped together etc. In the worst case, answering a query often leads to visiting all

the leaf nodes of the scored R-tree. The SOPT-R-tree tackles this problem with a clever

40

rearrangement of the indexed intervals.

5.2 Novelty-aware Delivery

Novelty has been used in the context of information retrieval systems as a criterion to

rank search results in order to increase user satisfaction. The authors of [10] consider the

problem of ranking documents that are relevant to a query submitted by a user. They

propose a probabilistic model that considers the relevance of a document in respect with

the documents the user has seen before it.

Both information need of the user and information that is present in a document

are modelled with information nuggets. Information nuggets are common in the summa-

rization and question answering communities. An information nugget usually represents

speci�c pieces of information. For example a nugget may represent an answer to a ques-

tion. A document is relevant if it contains a least one nugget that is included in the

information need of the user. The computation of relevance depends on the estimation

of the probability that the information need of a user u contains nugget ni, denoted

P (ni ∈ u) and the probability that a document d contains nugget nj, denoted P (nj ∈ d).
The estimation of P (ni ∈ d) is based on a model where a human assesor reaches a

binary decision whether a given nugget is included in the document or not. Negative

decisions are always condidered correct whereas positive ones may be erroneous with

an error probability Ã. The estimation of P (ni ∈ u) requires knowledge about user

preferences which can be determined impicitly or explicitly by former user behavior and

feedback.

The decision whether a new document contains novel information for a user is com-

puted against a list of documents that the user has seen in the past. More speci�cally,

the novelty rank of a document is the probability that the nuggets that it contains are

not included in the documents that the user has already seen.

In the context of adapting �ltering [11], novelty has been used as a second-stage

�ltering step that follows the step of relevance �ltering. The authors introduce a suite of

similarity functions that compare the current document against the content of documents

that have been delivered to the user.

The set di�erence measure assumes that each document is represented as a set of words.

The novelty of a new document d is computed by the number of new words that it includes.

More speci�cally, a word w that is frequent in the new document and less frequent in old

documents may indicate that d covers novel information. The cosine distance measure

assumes that each document is represented by a vector of words. The similarity between a

new document d and each of the old documents is computed as a cosine distance between

word vectors of documents. High distance indicates high information novelty. Another

measure is distributional similarity. It uses the Kullback-Leibler divergence that is a well-

known distributional similarity function to compute the novelty of a document against

another, given the word distribution of both documents.

41

Finally, they propose a simple threshold-based technique that discards documents with

novelty score below a threshold. The threshold only decreases and when it becomes too

low there is not a way of increasing it again.

42

Chapter 6

Conclusions and Future Work

In this thesis, we introduce a new notion of relevance that is based on the former event

delivery activity of the user and is called novelty-aware relevance. We de�ne the novelty

of a subscription according to the delivery rate model and the delivery interval model and

introduce corresponding ways to compute subscription and event novelty scores.

Our overall goal in this work has been to present an e�cient and e�ective �ltering

mechanism to increase the information gain of the user by forwarding only novelty-aware

relevant events. To this end, we introduce two new algorithms that work in on-line mode;

a threshold-based algorithm and a novelty-biased sampling algorithm. The �rst forwards

to the user events that have novelty scores above a threshold. The second forwards to

the user with high probability events that their matching subscriptions have been rarely

matched in the past.

Our focus has been to increase user satisfaction by delivering to the user an equal

number of events per subscription. There are many directions for future work. Novelty-

aware relevance is only one of the criteria to characterize the importance of an event.

Other possible criteria include relevance, source authoritativeness, content diversity and

user preferences. How to combine such criteria for e�ectiveness is a di�cult problem.

In this work we have explored novelty-aware relevance from a user perspective. Another

interesting dimension is exploring novelty from a system perspective mainly regarding

system performance. For example, novelty-based �ltering can be viewed as a �ltering

mechanism for groups of users with similar interests mainly targeting in decreasing the

overall computational and network overhead by forwarding only novelty-aware relevant

events.

43

Bibliography

[1] D. Souravlias, M. Drosou, K. Stefanidis, and E. Pitoura. On Novelty in Pub-

lish/Subscribe Delivery, in DBRank, March 2010.

[2] E.C. Shannon, Prediction and entropy of printed English, The Bell System Technical

Journal, 30:50-64, January 1951.

[3] R. Jain, D.M. Chiu, and W. Hawe A Quantitative Measure of Fairness and Discrim-

ination for Resource Allocation in Shared Systems, DEC Research Report TR-301,

1984.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and zipf-like

distributions: evidence and implications, Proceedings of the Eighteenth Annual Joint

Conference of the IEEE Computer and Communications Societes, INFOCOM, 1999.

[5] K. Pripuzik, I.P. Zarko, and K. Aberer, Top-k/w publish/subscribe: �nding k most

relevant publications in sliding time window w, in DEBS, 2008.

[6] M. Drosou, K. Stefanidis, and E. Pitoura, Preference-Aware Publish/Subscribe De-

livery with Diversity, in DEBS, 2009.

[7] A. Machanavajjhala, E. Vee, M. Garofalakis, and J. Shanmungassundaram Scalable

Ranked Publish/Subscribe, in PVLDB, 2008.

[8] F. P. Preparata, M. I. Shamos, Computational Geometry: An Introduction, Springer-

Verlag, 1985.

[9] A. Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching, in SIGMOD,

1984.

[10] C. L. A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Buttcher,

and I. MacKinnon, Novelty and diversity in information retrieval evaluation, in SI-

GIR, 2008.

[11] Y. Zhang, J. Callan, and T. Minka, Novelty and redundancy detection in adaptive

�ltering, in SIGIR, 2002.

44

Appendix

We give the proof of Theorem 2.1.

Proof. Both for rate and interval-based novelty ranking, the threshold is de�ned as the

k-th larger score during either the previous period (in lazy mode) or the current window

(in eager mode). Let thrrate be the threshold for rate-based ranking, and thrinter be the

frequency-based threshold.

For rate-based ranking we have:

pnovelrate(s; u) = P (novelrate(s;Ot−1(u)) > thrrate)

= 1− P (novelrate(s;Ot−1(u)) ≤ thrrate)

= 1− P
(
novelrate(s;Ot−1(u)) ≤ novel

(k)
rate(s

′; Ot′−1(u))
)

= 1− P

(
1− |Ot−1(u)|

|It−1|
≤ 1−

|O(k)(u)|
|I(k)|

)

)
= 1− P

(
|Ot−1(u)|
|It−1|

≥
|O(k)(u)|
|I(k)|

)

)
In periodic mode |It−1| = |I(k)| as subscription scores are recomputed at the end of

every period and thus the denominator is the same for all subscriptions and equal to the

number of events in the period. Moreover, in eager mode |It−1| = |I(k)| as well since the
denominator in both scores is the number of events in the window. Thus:

pnovelrate(s; u) = 1− P
(
|Ot−1(u)| ≥ |O(k)(u)|

)
(6.1)

On the other hand, for interval-based ranking it holds that:

pnovelinter(s; u) = P (novelinter(s;Ot−1(u)) > thrinter)

= 1− P (novelinter(s;Ot−1(u)) ≤ thrinter)

= 1− P
(
novelinter(s;Ot−1(u)) ≤ novel

(k)
inter(s

′; Ot′−1(u))
)

= 1− P (t− Ls;t ≤ t′ − Ls′;t′)

Intuitively, the mean of t−Ls;t is equal to the interdelivery time for subscription s and

thus the inverse of the delivery frequency of s. That is: E(t−Ls;t) = 1
deliveryrate(s)

= 1
|Ot−1(u)|

|It−1|

,

or E(t− Ls;t) = |It−1|
|Ot−1(u)| . That makes the above equation:

pnovelinter(s; u) = 1− P

(
|It−1|
|Ot−1(u)|

≤
|I(k)|
|O(k)(u)|

)
45

Last, as in rate-based ranking, |It−1| = |I(k)| for both period and sliding window modes.

Substituting in the above equation we get:

pnovelinter(s; u) = 1− P
(
|Ot−1(u)| ≥ |O(k)(u)|

)
(6.2)

Comparing equations 6.1 and 6.2 concludes the proof.

Then, we give the proof of Theorem 2.3.

Proof. Let u be a user, S(u) = {s1; s2; : : : ; sm} be the set of the subscriptions of the user
and |Ou| be the number of events delivered to the user u. Also, let |Os(u)| denote the

number of events delivered to the user u that match subscription s ∈ S(u) and p(s) denote

the delivery rate of subscription s that is equal to |Os(u)|/|Ou|. The entropy of the events
delivered to the user u is equal to:

H(X;m) = −
m∑
i=1

p(si) · log2(p(si)) (6.3)

Let I(si) = p(si) · log2(p(si)), with 1 ≤ i ≤ m. From Equation 6.3 we have:

H(X;m) = −
m∑
i=1

I(si) (6.4)

An event that is delivered and matches subscription s ∈ S contributes to the total

entropy a factor -I(s). Let et be a new event that arrives at the system and matches

subscription s. In case et is delivered, it contributes to the total entropy a factor -I(s+�),

with � = |O(u)|−|Os(u)|
|O(u)|·(|O(u)|+1)

> 0.

We de�ne as ∆I a distance function that is equal to the di�erence between -I(s) and

-I(s+ �), that is:

∆I(s) = I(s)− I(s+ �) = p(s) · log2(p(s))− p(s+ �) · log2(p(s+ �)) (6.5)

We aim at delivering the event that contributes at most to the total entropy, namely

that has the highest value of distance function ∆I.

The �rst derivate of the distance function ∆I is:

∆I ′(s) = log2(p(s))− log2(p(s+ �)) < 0 (6.6)

The �rst derivative of the distance function is negative, so it is a monotonically de-

creasing function. The distance function takes its highest value, when an event is delivered

that matches a subscription that has the lowest delivery rate, namely the most novel sub-

scription.

We give the proof of Equation 3.2.

Let S(u) be the set of the subscriptions of user u, s be a subscription in S(u) and e

be an event. Also, let |Os(u)| be the number of delivered events that match s, |Ms(u)| be
the number of events that match s, |M(u)| be the number of events that match at least

46

one of the subscriptions in S(u) and |O(u)| be the number of events that are delivered to

the user. We de�ne the following probabilities:

P (e delivered |e matches s; u) =
|Os(u)|
|Ms(u)|

P (e matches s) = Pmatch (s) =
|Ms(u)|
|M(u)|

The sampling probability Psampl(s) of subscription s is equal to P (e delivered |e matches

s).

Psampl (s) = P (e delivered |e matches s)

=
|Os(u)|
|Ms(u)|

=
|Os(u)|
|M(u)|

· |M(u)|
|Ms(u)|

Let rTH(u) be the maximum delivery rate of user u. We want each subscription to

achieve the same number of delivered events, that is rTH(u)
|S(u)| . Consequently, we want

|Os(u)|
|M(u)|

to be equal to rTH(u)
|S(u)| . Also, note that |M(u)|

|Ms(u)| is equal to inverse matching probability

of subscription s, that is 1
Pmatch(s)

. Consequently, the sampling probability Psampl(s) of

subscription s is:

Psampl(s) =

{
1; if Pmatch(s) <

rTH(u)
|S(u)|

rTH(u)
|S(u)| ·

|M(u)|
|Ms(u)| ; otherwise

47

Author's Publications

D. Souravlias. Data Stream Summarization to Avoid Overlap, in Proc. of the 3rd Panhel-

lenic Scienti�c Student Conference on Informatics, Related Technologies and Applications

(EUREKA 2009), Sept 10-12, 2009, Corfu, Greece.

D. Souravlias, M. Drosou, K. Stefanidis and E. Pitoura. On Novelty in Publish/Subscribe

Delivery, in Proc. of the 4th International Workshop on Ranking in Databases (DBRank

2010), in conjunction with the ICDE 2010 Conference, Long Beach, California, USA.

Short Vita

Dimitris Souravlias was born in Ioannina in 1987. He was admitted at the Computer

Science Department of the University of Ioannina in 2004 and graduated in February

2009. In March 2009 he began his postgraduate studies at the same department. Since

2007, he is a member of the Distributed Management of Data Laboratory (DMOD).

