FAST REALISTIC SKINNING FOR ANIMATING HIGHLY DEFORMABLE OBJECTS

H
METAIITYXIAKH EPT'AXIA EZEIAIKEYXHX

YnoBdaiietor otV
optobeica amd v [N'evikn Zovérevon Ewdumg XHvOeong

tov Tunpoatog ITAnpogopikng
E&etactikr Emitponn

oo Tov

l'eopyro AvtwvomovAio

®G LEPOG TV Y TOYPEDCEDY
yioe T Ay
TOV
METAIITYXIAKOY AIMTAQMATOZX XTHN ITAHPO®OPIKH

ME EZEIAIKEYZH XTO AOTI'’=MIKO

Noéupprog 2010

DEDICATION

To Aristoula and to my family

ACKNOWLEDGEMENTS

First of all | want to thank my supervisor Professor loannis Fudos for his trust, tolerance, guidance and
help, both in academic and personal level, over all these years of our cooperation.

| also want to thank Ph.D candidate Andreas A. Vasilakis for his insight, his time, his papers and above all
his friendship.

| would also like to thank Ph.D Vasiliki Stamati for her help, guidance and soothing presence.

Finally, even though no words can contain my gratitude, | want to thank Dimitra Alexiou for setting my
soul at ease and putting my train back on the rails.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ..ottt ettt sttt b ettt st s bt s bbbt bbbt s nbe st s st s 1
11 RELATED WORK ... ettt ettt ettt ettt et e e st s at e s bt e s bt e bt e a b e eabeeubeeb e e be e beeabesabesaeesheesaeenbeenbeeubeeabesbeenbeenbean 3
CHAPTER 2 PRELIMINARIESoitittietitietse ettt ettt s ettt sa bt s bt en e be st s s be st ene s s 5
2.1 MATRIX TRANSFORMATIONSeviuteterieeetertetesesteseesestessesessensesessassesestensesessensesessensesessensesessensesessensesessensasens 5
2.1.1 Linear TranSfOrMAaLtiONS..........ccveiiieiieieeie sttt ettt ettt ettt et e e et e st e e teesteeseesseaesessesseeseesenssanseens 5
2.1.2 Composition Of TranSfOrMAatiONS..........cceveierieriri ettt sttt e e e e sse e re e 9
2.1.3 AffiNe TranSfOrMALtiONS........c.eocvieiieiieieeeec ettt ettt e ettt e teeaeeaseaesesaesseeseesenssanseens 9
2.1.4 Euclidean TransformMationS.........c.eceverieiriesieiriesieesiesie sttt sttt sttt sttt tesse e stesnenessens 10
2.1.5 INVerse TranSfOrMALtiONScccecuieiiieiieieeiecees ettt ettt et et e e e et e e ta e s ta e taesteesseaseeaeaeseanseeans 11

2.2 QUATERNION TRANSFORMATIONScuveuitireerestirtesestessesessessesessessesessessesessessenessessensssessensesessensesessensesessenseses 11
N R O 1V -1 (=Y 4 0] o] TSR 12
2.2.2 DUAI QUALEINIONS. ...c.veevieereetieetieeteectteteeteete et e et e et eeseeeteeteetseeseeeseeeseeaseeaseessesssesssesssesssesseaseesssessanseenss 16
2.2.3 Quaternion to MatriX Transformationcc.eceeiievieciieee ettt 21
2.24 MatriX VS QUALEINION ...cvvevieteeeteetreeteecteeeteeeteeeteete et e et e vt eeb e e b e et e essesseeesseaseeassesseesseeseeaseeseessesssesssenses 21

2.3 PLANE THEORY ELEMENTStiiuttitteitteiteete et st e st e ste e bt e tesatesatesheenbeebesatesatesaeesbeanbeemtesaeesbtesbeebeenbesatesatesaes 23
2.3.1 Quadratic Plane REPreSENIALION.cccveieieiisieriietietieeietetes e e e ettt et e e et este e e ta e s esse e ssessessesneenes 23
2.3.2 Plane Deformation QUANTITIES.........c.eevieiieiecieceeseee ettt st e te e te e taeseeaaeereaeseeans 25

24 BARYCENTRIC COORDINATE SYSTEMutitiietirteietesieseesesteseesestessesessessesessensesessensesessessesessensesessensesessessesens 29
2.4.1 Triangle BaryCentric COOMTINALES.c.ceieieriirieite ettt ettt ettt ettt se e e e 29
2.4.2 Tetrahedron BaryCentriC COOIAINALESccevvivrerveeeietieieiesieeestesttetteie et te et eeae e se e sseetenseenseaes 30
CHAPTER 3 LINEAR BLEND SKINNING ..ottt sttt sttt sne e ene e 31
3.1 SKINNING WITH SKELETAL HIERARCHYttiutiiiiitienitente et ete sttt saeeste et eatesatesbtesbeesbeebesatesaeesaeesaeenbesnsenns 31
3.2 SKINNING HIGHLY DEFORMABLE IMODELScutieutitiieiisteientstesiesestessenestessenessessenessessenessessenessessensssessensenes 33
3.3 TRANSFORMATION MATRIX FITTING....ceittetteteeieete st ste ettt et satesttesbeesbeesbesbesatesaeesbeesbeebeeatesasesaaesbeenbean 34
3.3.1 Fitting with Affine Transformation MatriCESccvevveierierieeirretieeeiee ettt 35
3.3.2 Fitting With Dual QUALEINIONScc.eeuieeieieieieiet ettt ettt te ettt e stesseste s eas 38

34 BONE AND WEIGHT FITTINGtitiuietiriiietesteietesietete sttt sttt ste e beste e ebeste e esesteneesesteneesesteneesesseneesens 42
3.4.1 Moving from BONeS t0 PrOXY JOINTSc.ceiiieiiieiee ettt 43
3.4.2 Principles of Efficient Proxy Joint and Weight Specificationccccecevvvvvirveieieiesesese s 44
3.4.3 Uniform Proxy Joint Distribution using P-Center CIUSIEriNGccceeeeierierieriiriese e 47
3.4.4 Deformation Gradient Based Bone and Weight Fittingcccecvvveveieieveneccceeeeeeses e 50
CHAPTER 4 IMPROVING EFFICIENCY BY DECIMATION ..ottt 74
41 INTRODUCTIONttitteittete et et eateetteste e bt e be e besaeesatesheesae e bt eabeeateeateeb e e beebeeabeeaeesaeesheesae e bt enbeeabeensesbsenbeenbenn 74
4.2 SIMPLIFICATION PROCESS OVERVIEWc.utuietirtiieetrtiteutstessesestessesessessesessessesessessenessessenessessensssensensssesseneeses 75
4.3 CONTRACTION PRIORITY SPECIFICATIONcutteutiattesttesteenteestesueesutesueesseesesusesasesssesseesseesessesusesseessesssesnsenns 76
4.3.1 Proxy Joint Validity PreSErVAtIONcccecveviivieriisiietietieieesesestee et te e e sttt e e te e ssestas s enananens 77
4.3.2 CoNtraCtion ValIGITY.......cceeeeieiee ettt sttt 78
4.3.3 PriOrity QUEUE SCREMES.......ccoveieiieiietietietiesieeste st s e et e tte e e te st et e te e st e stese s e e ssesseassessessessasessassansenns 79

4.4 MERGE VERTEX COORDINATES SPECIFICATION METHODScoooiuttiiiiieiiiiiiieeieee e esiieeeeeeeesssisneeeeeesssssnnees 83

45 WEIGHT INFLUENCES PROPAGATION.....cciiiiiiiitttetieeeieeiitterieeeeessibireeeeseessssbasseessessssssssesessesssssasssessesssssssrens 85
CHAPTER 5 REFINEMENTS ..ottt ettt e e s st e e s st e e s s bt e e s ebbe e e s sbb b e e s sabasesssbbeessssbaeessabanessbannas 86
5.1 N0 510 [0 86
5.2 = RS | OO RTN 86
5.3 REST POSE AND WEIGHT CORRECTIONS.uveiiieteieeeiteeeeeetteeeeeseeeessseeesssssessessseessessesssssssessssssssessssssesssssessens 88
CHAPTER 6 IMPLEMENTATION AND RESULTSoo oottt e e st s et saae e e enaee s 94
6.1 IMPLEMENTATION DETALLS ..ottt eeett et e e e s e ettt e e e e e s eeaab b e e e e e s eesaabaeseeeseeessabaaseesseessnrarreeeeas 94
6.2 TEST-BED ANIMATION SEQUENGCEScicttieiietteeeeeteeeeetreeeeetaeeeessseeesaseesessseesesassesesasesessssssesssssesessssesesssseees 95
6.3 ERROR IMETRICS. ... ttttiiiiee ittt ee ettt e e e e e ettt et e e e e e esaab b e e e e e e eeesaabaaeeeeeeessabaaaseeseesassbabbeeseessesssbaeeseesseses 97
6.4 DECIMATED APPROXIMATION RESULTS ... uvvieiieeteieeeteeeeeeteeeeeesteeeeeseeesssseeeseesaeessenseeessnssesesssseeessssensssnseesesns 98

CHAPTER 7 CONCLUSIONS AND FUTURE WORKcocoiiiieiiineeee et 108

Vi

LIST OF FIGURES

FIGURE 2.1: ROTATION ABOUT X-AXIS BY 90 DEGREESccvevververvenrene. o
FIGURE 2.2: SCALING AN OBJECT TOWARDS THE Y-AXIS BY FACTOR 2 .8
FIGURE 2.3: SHEARING AN OBJECT TOWARDS X=AXISesvtsttrteeriereeeessessessessesseasesssesessessessessessessesssessessessessessessesssessenses 8
FIGURE 2.4: REFLECTION ABOUT THE XZ -PLANEutttitteiiteesteesteesteesseessseesseesssesssessssessssessssessssessssessssessssessssessssess 9
FIGURE 2.5: COMPLEX NUMBER ROTATION AROUND THE ORIGIN BY ANGLE ©.....cccvevverierresieseeseeeesessessessessessessesssesaens 12
FIGURE 2.7: A PLANE DEFINED BY A POINT AND A NORMAL VECTORteittestiesueesereesseesseesseessesssesssseesssessssessssesssnes 24
FIGURE 2.8: FACET DEFORMATIONS IN A TRIANGULATED MESH ANIMATION SEQUENCEvecvvevveeieiesiesieseeseesensseesesaens 26
FIGURE 2.9: DIHEDRAL ANGLE BETWEEN THE SAME TRIANGLE AT TWO DIFFERENT POSESccveieieiieeveeteeveereeeesvennens 27
FIGURE 2.10: BARYCENTRIC COORDINATE REPRESENTATION IN THE CONTEXT OF A TRIANGLEcvvevvisierieseeeereeeienens 29
FIGURE 3. 1: BONE-VERTEX INFLUENCE ON ARTICULATED MODEL PART ...cccutttittestreesteesereesseessseessessssessssessssessssesssnes 31
FIGURE 3. 2: HIGHLY DEFORMABLE ANIMATION OF A FLAG UNDER THE INFLUENCE OF WINDccevvevuesiesieseeeeneeenennens 34

FIGURE 3. 3: RESULTS OF LINEAR BLEND SKINNING USING AFFINE FITTING, PF=1.6, A) ORIGINAL ANIMATION, B)
APPROXIMATION USING AFFINE, P-CENTER BASED FITTING, C) APPROXIMATION ERROR DISTRIBUTION. RED
AREAS DENOTE HIGH ERROR OF APPROXIMATION......cctittiiiiiiiiiiiiiiiinie ettt e et s s e s et s e s s esaaae s e e ssesannaas 38

FIGURE 3. 4: A) THE AVERAGE SOLVING TIME AND B) APPROXIMATION ERROR OF 1) AFFINE FITTING, I1) RIGID
FITTING WITH THE NUMBER OF LSQR ITERATIONS EQUAL TO THAT OF AFFINE, I11) RIGID FITTING WITH

UNLIMITED NUMBER OF ITERATIONS. HORIZONTAL AXIS IS LSQR ERROR TOLERANCE.ccccveeveeevreereesieesneens 41
FIGURE 3. 5: A) AFFINE FITTING, B) RIGID FITTING, C) ERROR DISTRIBUTIONc.cocteriinririeseesteeseeseessesseseessessessessesaens 42
FIGURE 3. 6: PROXY JOINTS INSTEAD OF BONES, AND WEIGHT INFLUENCES PER PROXY JOINT. THE BRIGHTNESS OF THE

COLOR DENOTES THE INTENSITY OF THE INFLUENCE.cuteuteuieieiteeteeteeteeteeteesetesteetesteeseessensessessessessessesssessessensens 43

FIGURE 3. 7: APPROXIMATION ERROR BY ASSIGNING A VERTEX TO IRRELEVANT PROXY BONES. A) REST POSE, B)
ACTUAL POSE P, C) APPROXIMATED POSE P. VERTEX Vi'p IS ELEVATED DUE TO ELEVATION OF ITS PROXY BONES.

... 44
FIGURE 3. 8: TABLECLOTH ANIMATION SEQUENCE. BONE AND WEIGHT FITTING CAVEATS. A) ACTUAL ANIMATION, B)

OVER-FITTED APPROXIMATION, C) UNDER-FITTED (RIGID) APPROXIMATION.ecvervirteereeeeereeiesiessessessesseeseessensens 46
FIGURE 3. 9: PROXY JOINT INFLUENCE AREAS AND THE EFFECT OF P FACTOR IN P-CENTER CLUSTERING........cvveeeeun.. 48

FIGURE 3. 10: A) HOW TRANSFORMATION FITTING EXECUTION TIME PROGRESSES AS P-FACTOR CHANGES, B) HOW THE
CHANGE IN P-FACTOR AFFECTS THE APPROXIMATION ERROR. TESTS WERE RUN ON TABLECLOTH SEQUENCE WITH
TOLZ0.0000B5. ... ettt ettt b et b et et sa bt e Rt na bt e bt neen et nen et een s 49

FIGURE 3. 11: PROXY JOINT AND WEIGHT FITTING USING P-CENTER CLUSTERING. A) PROXY JOINTS UNIFORMLY
DISTRIBUTED OVER THE AREA OF THE MODEL, B) AREAS OF INFLUENCE WITH P-FACTOR=1.6, C) AREAS OF

INFLUENCE WITH P-FACTORTL.0 ...ttt ettt 50
FIGURE 3. 12: A) ROTATIONAL DEFORMATION COMPONENT, B) SCALING DEFORMATION COMPONENT, C) SHEARING
DEFORMATION COMPONENT, D) DEFORMATION GRADIENT(SUM OF A),B),C)). eerververueruernienieienieneesiesresaeeneeeeneenes 53

FIGURE 3. 13: A) K-MEANS CLUSTERING BASED PURELY ON DEFORMATION DATA (17 CLUSTERS), B) HIERARCHICAL K-
MEANS CLUSTERING (59 CLUSTERS) WITH EQUALLY WEIGHT DEFORMATION AND SPATIAL DATA C)
HIERARCHICAL K-MEANS CLUSTERING WITH HIGHLY WEIGHT DEFORMATION DATA (37 CLUSTER, 947 DISIOINT

CLUSTERS). COLORS ARE RANDOMLY CHOSEN AND DEPICT NO INFORMATION OTHER THAN SPATIAL.cccoveuenne. 56
FIGURE 3. 14: HIERARCHICAL K-MEAN CLUSTERING MAPPING. FACETS ARE ASSIGNED TO THE CLUSTERS OF LEVEL 2
VIA THE MAPPING TO THE CLUSTERS OF LEVEL 1 ...ciiiiiiiiieieeeee ettt s s e 57

FIGURE 3. 15: A) MEAN DEFORMATION GRADIENT DISTRIBUTION OF ANIMATION SEQUENCE, B) VARIATIONAL REGION
GROWING L.ttt et e e e e et e e e e e e b e e e e e e b s b e e e e e e e bbbt s e e e e s s bbb s e e e e s e bbbt eees 62

Vi

FIGURE 3. 16: A) DEFORMATION GRADIENT BLUEPRINT, B) PROXY JOINTS DISTRIBUTION AGAINST DEFORMATION
GRADIENT, C) VARIATIONAL REGION GROWING PARTITION, D) PROXY JOINTS DISTRIBUTION AGAINST REGION
PARTITIONING ..ettiiiiiiiiiiiiiin e e e e e e e e e e e s e e e e e e e bbb s e e e e s s bbb s e e s e sa bbb eans 66

FIGURE 3. 17: DISTANCE BASED INTER-CLUSTER INFLUENCE ..c..ccutttetestentintertesteeseentensensessessesseeseensessessessessessesseensensens 67

FIGURE 3. 18: APPROXIMATION WITH DISTANCE BASED WEIGHT INFLUENCE. A)DEFORMATION BASED REGION
SPECIFICATION, B) DEFORMATION BASED PROXY JOINT DISTRIBUTION, C) APPROXIMATION D) APPROXIMATION

WITH PROXY JOINTS, E) APPROXIMATION ERROR DISTRIBUTION.vtcttetieereieiessessessessessaeseessessessessessessessensasssenses 69
FIGURE 3. 19: BUMPS ON ISOLATED REGIONS DUE TO OVER-FITTING ..69
FIGURE 3. 20: STAR OF A VERTEX .vveveieriesiesreseessesseeeessessessessessessesssessenns .70
FIGURE 3. 21: A) INITIAL REGION SPECIFICATION, B) 1-PASS SMOOTHING, C) 5-PASS SMOOTHING, D) 10-PASS

SIMOOTHING .utteetteeeiteestte e sttt estteesteestteesase ettt essseesseaasseessseessseesseassseessseaasseensseaasseessseessseensseessseensseessseessseesnsennsses 71
FIGURE 3. 22: APPROXIMATION WITH CONVOLUTION PROPAGATED WEIGHT FITTING. ..ecvviecveeeierieeesiesieseeseessnseeseneens 73
FIGURE 4. 1: VERTEX CONTRACTION IN SIMPLIFICATION PROCESS.......uteiteestteesueesereesseessseessseessseesssessssessssessssesssssessnes 75
FIGURE 4. 2: FACET FLIPPING AFTER CONTRACTIONettittstisteseeeseeseessessessessessesseessessessessessessessessssssessessessessessessessssssans 78

FIGURE 4. 3: GLOBAL PRIORITY QUEUE DECIMATION. A) DEFORMATION FOOTPRINT AND CLUSTERING, B) 20%
DECIMATION, C)40% DECIMATION, D) 60% DECIMATION. THE BOUNDARIES OF THE CLUSTERS CLEARLY VISIBLE.

... 79
FIGURE 5. 1: EIGEN SKINN CORRECTION VECTOR eip ... 87
FIGURE 6. 1: APPLICATION USER INTERFACE SCREENSHOT ...cccuttiiteeitriesteesireesueeseseesseessseessseesssessssssssesssssssssesssseessnes 95
FIGURE 6. 2: TABLECLOTH ANIMATION SEQUENCE SNAPSHOTSveteitertestistesreseeeseesessessessessessssssessessessessessessessesssessens 95
FIGURE 6. 3: FLAPPING FLAG ANIMATION SEQUENCE SNAPSHOT96
FIGURE 6. 4: COLLAPSING CAMEL ANIMATION SEQUENCE SNAPSHOT .96
FIGURE 6. 5. DEFORMING BALLOONcuvtiititisteeititesteesteesteesteesseessseessssessseessssesssesssseessssesssessssesssssssssesssssesssessssesssses 97
FIGURE 6. 6: TABLECLOTH DECIMATION AVERAGE SOLVING TIMES ON VARIOUS DECIMATION LEVELScccvevveeevenns 99
FIGURE 6. 7: TABLECLOTH APPROXIMATION ERROR E PROGRESSION DUE TO DECIMATION. ...oovevereeerereseceneenanens 99
FIGURE 6. 8: TABLECLOTH APPROXIMATION ERROR E gy, PROGRESSION DUE TO DECIMATION.occomvenriniannennanns 100
FIGURE 6. 9: TABLECLOTH APPROXIMATION ERROR davg (X,Y) PROGRESSION DUE TO DECIMATION.cvvreerenenns 100
FIGURE 6. 10: FLAG DECIMATION AVERAGE SOLVING TIMES ON VARIOUS DECIMATION LEVELS.......ccovvveeeeeeeeeereeneenns 101
FIGURE 6. 11: FLAG APPROXIMATION ERROR (UE PROGRESSION DUE TO DECIMATION.eoverereeeeseeeeseeseessessesseseans 101
FIGURE 6. 12: FLAG APPROXIMATION ERROR E ;s PROGRESSION DUE TO DECIMATION.couvvemrenrenienciacnesnienanes 102
FIGURE 6. 13: FLAG APPROXIMATION ERROR davg (X,Y) PROGRESSION DUE TO DECIMATION.coureermeunierreinannes 102
FIGURE 6. 14: CAMEL COLLAPSE DECIMATION AVERAGE SOLVING TIMES ON VARIOUS DECIMATION LEVELS............. 103
FIGURE 6. 15: CAMEL COLLAPSE APPROXIMATION ERROR E PROGRESSION DUE TO DECIMATION.ovveeviereannnn. 103
FIGURE 6. 16: CAMEL COLLAPSE APPROXIMATION ERROR ERMS PROGRESSION DUE TO DECIMATION.ccccvverveennrennn 104
FIGURE 6. 17: CAMEL COLLAPSE APPROXIMATION ERROR da\,g (X,Y) PROGRESSION DUE TO DECIMATION............... 104
FIGURE 6. 18: BALLOON DECIMATION AVERAGE SOLVING TIMES ON VARIOUS DECIMATION LEVELS.......ccccververvennene. 105
FIGURE 6. 19: BALLOON APPROXIMATION ERROR UE PROGRESSION DUE TO DECIMATION.vovenveeeeceereseeseesesenenn 105
FIGURE 6. 20: BALLOON APPROXIMATION ERROR E ;s PROGRESSION DUE TO DECIMATION.......ouvuuienimieninaeennnens 106
FIGURE 6. 21: BALLOON APPROXIMATION ERRORA_ . (X ,Y) PROGRESSION DUE TO DECIMATION.......c.cvmreerrrreennnes 106

avg

viii

LIST OF TABLES

TABLE 2.1: COMPARISON BETWEEN MATRICES AND QUATERNIONS IN TERMS OF STORAGE AND OPERATIONS.............. 22

LIST OF ALGORITHMS

ALGORITHM 3. 1: ANIMATION SEQUENCE APPROXIMATION PROCEDUREcctiiiitvieeeerteeeeireeeeeteeeeensseeessseeessseesesnnes 33
ALGORITHM 3. 2: P-CENTER CLUSTERING
ALGORITHM 3. 3: K_MEANS CLUSTERING

ALGORITHM 3. 4: HIERARCHICAL K-MEANS CLUSTERING .57
ALGORITHM 3. 5: VARIATIONAL REGION GROWINGeeeiiiueeeeieteeeeeteeeeeeseeeeesseeeeesseeesesssrsessseesssssessssssssssssssesesssseesssnnes 61
ALGORITHM 4. 1: DESCRIPTION OF THE DECIMATION PROCESS USING A GLOBAL PRIORITY QUEUE......c.ccceeivevieeeeieeeeenns 82

ALGORITHM 4. 2: DESCRIPTION OF THE DECIMATION PROCESS USING LOCAL PRIORITY QUEUES........cccenviriereeneeeeeneenne 83

ABSTRACT

Antonopoulos, Georgios, N.

MSc, Computer Science Department, University of loannina, Greece. November, 2010.
Fast Realistic Skinning For Animating Highly Deformable Objects.

Thesis Supervisor: loannis Foudos

In 3D animation, key-frame compression is essential for the efficient storing and processing of
the animation sequence. Compression is usually performed by producing an approximation of the
animation. In the case of animating articulated objects, there exists an abundance of methods for
skinning the object by using the bones of the model to establish bone-vertex influences,
determine the movement of vertices as a function of the movements of the bones and achieve
high quality results with satisfactory compression. In the case of highly deformable objects
however there is no appropriate skeletal hierarchy to facilitate the skinning methods. A set of
proxy-joints has to be introduced and distributed across the model so as to offer the best possible
coverage. Influence weights also need to be established so as to introduce as many degrees of
freedom as possible. We present a method that distributes the proxy-joints based on the
deformation caused during the animation. Areas of similar deformation are identified and proxy-
joints are distributed in these areas according to the degree of deformation. The goal is to position
more proxy-joints in areas of high deformation to provide for the need of multiple degrees of
freedom. We also accelerate the fitting process by applying it on decimated versions of the
model. We show that although the simplification radically accelerates the fitting process, it barely

affects the quality of the approximation.

Xi

EKTENHX ITEPIAHYH XTA EAAHNIKA

['edpylog Aviovomoviog tov NikoAdov kot tng Evyeviag

MSc. Tpuqua ITAnpoeopikng, Iavemotuo loavviveov, NoéuBpiog, 2010.

MéBooor Avakatackevng IlepipAnuatog yuo v Amodotikny Avomapayoyn g Kivnong
Avtikeipévov Yynang Hapopdpewong

Emprénov: lodvvng ®obvvrog

H ovunieon tov otyudtnov (key-frames) amd to omoio amoteleitar po TpdidoTaTy
axoArovBia kivnong (animation sequence) eivar amopaitnT ywo. TV arod0OTIKY amodnKevon Kot
enefepyacia Tov. XV TEPITTOOTN TOV apOpOTOV GKEAETIKOV OVTIKEIWEVOV givor duvatd va
ypnowonomoovpe pebddovg mpocsdoptopod tov mepiAnuatog (SKinning) pe moAv kaAd
AMOTEAECLLATO, GYETIKA LLE TNV GLUTIEST] TOV EMTLYYAVOVLE KOl TO GOAALLON TOL TPOKLITEL. TNV
TEPIMTOON OUMG TOV AVTIKEWUEVOV VYNANG TOPAUOPP®ONG OEV VTLAPYEL CKEAETIKN 1EpOPYic OAAL
UTOPOVLE VO EIGAYOVHE £VOL GUVOAD OO YEVJO-apOPMOELS TOV TPEMEL VO KATAVEUNO0VV TV
OTO HOVIEAO (OTE VO TOPEXETOL 1 KAAVTEPT dLVATH TPOGEYYIoN Tov. Mo mopdpeTpog mov
emnpealel oNUAVTIKA TO YOPOUKTNPLOTIKA TG LeBOdoV avng gival 0 TPosdlopiordc twv Papdv
EMPPONG TOV apOPMOGEMY GTO CTUELN TOV AVTIKEUEVOD. ZTNV €PYAGIO QLT TAPOLGIALOVUE LidL
€030 TPOGHIOPIGHOV TOV APOPOCEDV CGE AVTIKEILEVO LYNANG Tapapdpemong Pacilopevor
GTNV TOCOTNTA TUPAUOPP®ONG TOV LEIoTATOL KAOE TEPLOYN TOV LOVTEAOV KT TNV O18PKELN TOVL
animation. H emdvelo tov avtikelpévon dtopepiletor o€ meployég GuVaQovg mapapUdpP®ONG,
EVAD 0l apBPADCELS KATAVELOVTOL OTIG TEPLOYES QVTES pHe Pdon v mocdHTNTO TOPAUOPPOONG.
YKomdg eivor M KATA TO SVVATO KOAVTEPT TPOGEYYION TMOV TEPLOYDV LE LYNAN TOPOUOPPOON
(OOTE VO LLEUWWOOVUE TO GPAAUO TG ocvumieong o avtés. EmmAéov yia va emtoyvvovue v
dwdkacio g cvpumieong epappolovpe peBOdOVG PEIMONG TG AVAALGNG TOV AVTIKEWEVOD Kot
delyvovpe OTL €ivol €QIKTO VO LEUOGOVUE OPACTIKA TOV XPOVO YWPIig HeyOAn avénomn Tov
cQaAn0TOC. Apyika mapabiétovpe To podnuotikd vrofabpo mov amouteiTon Yo THV KOTOvONom
TV peBddwV mov mapovcldlovpe. LTV CLUVEXELL TOPOLGLALOVUE TNV €mKpoTovoa HEBOSO
ocoumieong yio opfpmTd, OKEAETIKA OVTIKEILEVO KOl KAVOLUE ovoywyn NG HeBOdOL avThg oF
avTiKeipeva VYNNG Tapopope®onsg. YTOOEIKVOOVUE OpYEG Yol OOJOTIKY] O1ddoon Poapdv

EMPPONG, TOoPOoLGLAlovHE TNV €vvold TNG TOCGOTNTAG TOPAUOPPMOONS KOl TOPOVSIALOVUE

Xii

peBOO0VG KATOVOUNG TV YELJO-0pOpDOCEDY. XTNV GCULVEXEWL TEPLYPAPOLUE KAVOVES Kol
peBdooVg pelmoNg TG avAALONG TOV OVTIKEILEVOV Kol TG YIVETOL 1 €Qaproyn Tov uebddwv
OLUT{EONG GE AVTIKEIPEVO TTOV £YO0VV LOOTEL TNV pelmon avth. AkoAovBohv vapyoVcES KaOMG
Kol O1kéG pog péBodot yia ex’ TV voTéPV Peltimon g cvumieonc. TEAog vapyel o cvuvToun
TEPLYPOPT] TNG EQPAPUOYNAG MOG, OTOTEAEGULOTO TOV HETPNOEDV HOG, OCLUTEPACUOTO KoL

EMEKTAGELS.

CHAPTER 1
INTRODUCTION

1.1 Related Work

Computer animation plays a major role in 3D visualization process. Animation is used in a broad
spectrum of applications such as heavy industry, medicine, clothing, fashion design industry or
entertainment industry (cinema, computer games). Although articulated (skeletal) animations
currently dominate the field, with the advance of computer graphics hardware the demand for
highly deformable animations has also been made feasible. Highly deformable animations are
used to describe objects that deform under no skeletal influence, or act as a complement to
existing skeletal animations. Highly deformable objects can be used to model clothes, both
independently and in conjunction with skeletal animation. 3D animations of soft body internal
organs are also used in medicine in the process of treatment, research and virtual reality medical
training. Heavy industry also employs 3D animations of deformable objects in the process of
studying material behavior under certain conditions such as pressure or temperature of variable
intensity. Finally, highly deformable objects, in the form of clothing, are being employed by the
clothing and fashion, entertainment and computer game industry. 3D animated movies
production has increased in recent years and so has the use of animated models as substitute to
real actors in the representation of crowds or to generate realistic scenes.

A 3D animation consists of a sequence of poses or key-frames of the same model. The
production of such a sequence can be done, on certain occasions, by advanced scanning
machinery. However in most cases it is the result of strenuous labor from the part of artists, who
create the animation pose by pose. Specialized computer software provides several automated
techniques for the generation of deformations but adding fine details always requires human

intervention.

Apart from creation, real time animation sequence rendering and processing also raises

challenges. The animation processing can occur key-frame by key-frame. However this technique

introduces the problem of storage. Animation sequences consist of hundreds, sometimes
thousands of frames, with each frame enclosing the same amount of information slightly
changed. When animating large models, each sequence can sum up to hundreds of megabytes.
The ramifications of size manifest not only in terms of the space used on the disk but also in
terms of time required by an application to load the sequence as well as the amount of space to
used in RAM. Furthermore the processing of the sequence is affected by size. In a scene a
sequence may have to be replicated at various levels of details or required to interact with other
objects (e.g. collide). Additionally to save time, for animating similar objects the animator may
require the deformation of an object to be transferred to another. The amount of space and
processing time increases dramatically considering that a scene may contain more than one

animation sequences.

Matrix palette skinning (also referenced as Skeletal Subspace Deformation, or simply
Skinning), is an alternative real-time rendering technique. It operates on the observation that on
articulated models, in accordance to the skin, the deformation of each vertex is influenced by the
skeleton. It assigns each vertex of the animation an influencing bone and the amount (weight) of
this influence. The most popular algorithm employing this technique is Linear Blend Skinning.
Instead of having a key-frame by key-frame representation, the animation sequence is diminished
in a single reference key-frame and a collection of bone transformations and vertex weights.
However, specifying the bones and their transformations and finding the vertex weights requires
a processing of the sequence as a whole so, although model reproduction is hitherto simplified,

the size of the animation sequence is still a drawback. So data reduction is imperative.

Although matrix palette skinning assumes the existence of some underlying skeletal
hierarchy, it can still be applied to highly deformable objects which contain no skeleton. In this
paper we present extensions of matrix palette skinning in this direction. We attempt to efficiently
specify bones and areas of bone influences using clustering techniques based on the amount of
deformation of the object. In addition we study and employ mesh decimation techniques to
reduce the amount of data processed by the linear blend skinning algorithm and speed up the
weight specification procedure. Weight acquisition is performed using both affine and rigid body

transformations.

The rest of the document is structured as follows. In Chapter 2 the required mathematical
background for this thesis is given. It contains elements of transformation theory describing the
use of transformation matrices and dual quaternions. Certain aspects of plane theory are also
discussed as well as the Barycentric coordinate system. Chapter 3 explains Matrix palette
skinning and elaborates on two existing methods of fitting that where the motivation for this
thesis. It distinguishes three stages of the fitting process. That of proxy joint specification,
transformation fitting and weight fitting and each one is analyzed in depth. Chapter 4 describes
how the fitting process can be made more efficient using a simplified version of a model. Chapter
5 describes refinement techniques that can improve the visual fidelity of the approximation.
Chapter 6 contains implementation specifics and results. Finally, Chapter 7 offers conclusions

and future research directions.

1.1 Related Work

Although a lot of work has been done on matrix palette skinning for articulated objects and quasi-
articulated not much literature is concerned with this class of highly deformable objects.

In the case of quasi-articulated objects, which are more relevant, [8] constructs a skinning
approximation by computing the transformations of near rigid components on the model. These
are identified using facet deformation gradient and mean shift analysis. The results are very good
but the algorithm presents with poor quality in highly deformable objects.

For highly deformable objects, Kavan et. al in [9] present a fitting method using dual
quaternions which manages to reduce the execution time of the fitting process in the expense of
quality. A refinement technique similar to Eigen-Skin [18] is also presented which improves the
results with the cost of extra complexity and reduction in compression since more information
must be stored. In [20] a fast approach in of the fitting process is presented, based on an iterative
global optimization process. However no topology information is preserved and the location of
proxy joints is occluded once the optimization process begins and can no longer be used.

In the field of mesh segmentation, [21] presents a method for identifying regions of similar
movement by also employing mean shift analysis on the deformation gradient of vertices which

is extracted from the weighted transformation matrices of each vertex. However only one proxy

joint with a set of parameters is associated with each area and the goal is to produce a reduced
representation of the model for animation editing. [22] also employs deformation gradient to
identify near rigid sections onto the model. Using region growing and a geodesic distance metric,
it identifies regions of low deformation and sets as segmentation boundaries the areas of high
deformation. These near rigid areas are destined for use in decimation and deformation transfer.
In this method the use of geodesic distances causes areas with different deformation to be group
together due to proximity. What we need is to identify areas of similar deformation, whether low
or high. Another technique for identifying near-rigid components is presented in [23]. Dihedral
angle is used as deformation quantity and the method performs region partitioning based on
minimum spanning tree expansion. However this method produces lots of fragmented sets and a
merging algorithm must be employed. Furthermore dihedral angle greatly depends on the

triangulation density of the model and may not produce accurate results.

CHAPTER 2
PRELIMINARIES

2.1 Matrix Transformations
2.2 Quaternion Transformations
2.3 Plane Theory Elements

2.4 Barycentric Coordinate System

2.1 Matrix Transformations

In this section we will describe certain theoretical aspects of matrix theory and how matrices are
related to 3D transformation

2.1.1 Linear Transformations

In linear algebra, a linear transformation from a linear vector spaceR"to R"is a map

L:R" — R™that preserves the linear properties of R":

L(x+y)=L(X)+L(y), Vx,yeR" 2.1)
L(ax) =aL(x), VvxeR",aeR

This map can be represented by a matrix A € R™"such that:

L(x) = Ax, VxeR" @2

If ¢ =@0,..,0),e,=(01..,0),...e, =(0,0,...,1) is the standard basis of R", the i-th column
\—ﬁ/_J

n—elements n—elements n—elements

of matrix A is the image of the standard basis vector e; e R"under the map L, i.e.:

A=[L(&),L(e,)...L(e,)] € R™ 2.9

This is an important property of linear transformations since it allows for sequences of
transformations to be expressed as a sequence of matrix multiplications. Matrix multiplication
can be efficiently implemented in the hardware and thus allow for very fast transformation

operations.

In computer graphics, all rendering transformations take place in 3 dimensions, i.e. n,m=3

so we narrow our approach to this dimension. When applied, linear transformations have the
property of maintaining the angles of the transformed object, i.e. parallel lines remain parallel
after the transformation. Depending on the effect of the transformation upon the object, linear
transformations can represent rotations, scaling, shearing or reflections, with rotations, scaling

and reflections being the most commonly used.

Rotation
In 3-D, rotation transformations have the effect of rotating the transformed data around an axis
for a certain angle. For arbitrary axis described byn=[n, nynZ]T, the matrix that performs
rotation around it by @ degrees is given by:

n%(1—cos@d)+cosd nn, (1-cosd)—n,sin(@) n,n, (1-cosd)+n, sing

R(n,0)=|nn, (1-cosd)+n,sined nj(l—cosH)+cos€ n,n,(l—cosd)—n,sinéd
nn,(l-cos@)—-n sind nn,(1-cosd)+n,sing n’(1—cos @) +cos &

(2.4)

For example, for rotation around X-axis in a right-handed (the rotation direction is that of the
fingers of the right hand, when the thumb shows down the positive X axis) coordinates system,

wheren=[100]" :

1 0 0 ”s
R(n,0)=|0 cos® -—sind 2-9)
0 singd cosé

Figure 2.1 shows the effect of applying such transformation forg =90°.

Figure 2.1: Rotation about X-Axis by 90 degrees

Scaling

Scaling transformations affect the size of an object towards an axis by a factor s . For arbitrary

axis described by n=[n,n, n,]", the transformation matrix is given by:

2
1+(s-Yn; (s-Yn,n, (s-Dn,n,
S(n,s)=| (s-Hn,n, 1+(s-1n} (s—Dn,n,
(s-Dn,n, (s-n,n, 1+(s-1)n?

(2. 6)

To double the size of an object towards the Y-Axis, that is n=[01 0] ands = 2, the resulting

transformation matrix would be:

1 00
S(n,s)={0 2 O
0 01

2.7)

Figure 2.2 shows the application of such transformation on the object to the left.

Figure 2.2: Scaling an object towards the Y-axis by factor 2.

Shearing

In 3-D, shearing is a transformation that “skews” the coordinate space and stretches it non-
uniformly. It operates on the coordinate of one axis by adding to it a scalar multiple of the other.
Depending on which axis is affected the transformation matrices are as follows:

(2.8)
H,, (s,t) =

w O B
-~ P O
L O o

1 00
, H,(s,t)=|s 1 t|, Hyz(s,t)=
0 01

o O
O R »
= O ~

Figure 2.3 depicts the effect of shearing upon a model.

Figure 2.3: Shearing an object towards X-AxXis

Reflection

In 3-D, reflection, or mirroring is a transformation that “flips” the object about a plane.

Reflection is achieved if a scaling of factor s=-1is applied upon the object. Thus, if

n= [nx,ny,nz]T is the normal (perpendicular) vector to the plane then the reflection matrix is by:

1-2n -2nn, -2n.n,
R(N)=S(n,-)=|-2n,n, 1-2n? -2nn,
-2n,n, -2nn, 1-2n’

(2.9)

Figure 2.4 shows a reflection of an object about the XZ-plane

Figure 2.4: Reflection about the XZ -plane

2.1.2 Composition of Transformations

Several consecutive transformations can be expressed via a single matrix. The process of
composing individual transformations is carried out by multiplying the corresponding matrices in
an order, reversed to the one the transformations occur. For a rotation R followed by a scaling

transformation S, the composition matrix is:

2.10
M =SR (2.10)

2.1.3 Affine Transformations

An affine transformation Lfrom R"to R"is defined by a non-singular, linear transformation

matrix Ae R™" , and a vector b € R"such that:

2.11
L:R" 5> R";x+— Ax+b (@ 11)

10

It should be noted that such a map is not linear unlessb =0. To alleviate this and allow for

affine transformations also to be performed as matrix multiplications Lis raised by one

X
dimension. Expressing xe R”asL}eR“*l, L becomes a map from R""to R"™and Error!

Reference source not found.(2. 11) becomes:

L R™ oy R NHF b}m (2.12)
11 1o 1|1

This representation of xis called homogenous representation and it is used extensively in

computer graphics since it allows for Abto be expressed with a single matrix while preserving

linearity of transformations.

Translation

The addition of vector beR"to a linear transformation (2. 12) denotes another commonly used
transformation called translation and has the effect of changing the transformed vectors location.
The matrix representation of a translation by a vectort=[t, t, t.]', in homogenous

representation is given by:

100t
010t .
T(t) = , (2. 13)
00 1t
000 1

2.1.4 Euclidean Transformations

A Euclidean transformation Lfrom R"to R"is defined by a non-singular, linear transformation

matrix R € R™ which has the property of being orthogonal (i.e. R'TR=RR" =1), and a vector

T € R"such that:

(2. 14)
L:R" > R":x+— Rx+T

11

The notation choice of Ris not random. Of all linear transformations, only rotation has the
property of being orthogonal. Thus a Euclidian transformation is an affine transformation, which
in homogenous representation is expressed by :

|:R T} c R(n+1)x(n+1) (2- 15)
0 1

and represents a rotation and a translation. Such transformations are also called rigid body

Transformations since, upon application, the shape of the transformed object remains intact and

what changes is the orientation and the location of the transformed object.
2.1.5 Inverse Transformations

A transformation is invertible if an opposite transformation exists that can restore the transformed
object to its former condition. Since transformations are expressed as matrices, finding the
inverse transformation is equivalent to finding the inverse matrix of the transformation. As far as
the affine transformations are concerned, inverting the translational part is only a matter of
negating it, i.e. translating the object to the opposite direction. However not all linear
transformations are invertible thus A’s singularity has to be checked. This is not the case with

Euclidean transformations which are always invertible since R is orthogonal andR™" =R .

Knowing that the composing transformations of M =M ,M,..M_ are invertible, the inverse

transformation of M is given by:

. g (2. 16)
M =M. .MM,

n

2.2 Quaternion Transformations

In this section we present the theory behind using quaternions and dual quaternions to substitute

matrix transformations.

12

2.2.1 Quaternions

A vector p =[x y]' can be expressed as a complex number as follows:

p = (X+Yi) (2.17)

Then it can be rotated around the origin (Figure 2.5) by an angle @if it gets multiplied by another

complex number q = (cos & + (sin)i) .

p(cos@ + (sin)i)

v

Figure 2.5: Complex number rotation around the origin by angle 6

Quaternions where introduced by William Hamilton [1] in an attempt to extend this notion in

3-D. As the name denotes, a quaternion is a quad of numbers q=[w n]=[w,X,y, z]that can be

expressed a complex number

q=W+Xi+Yyj+zK (2. 18)

where i’ = j°>=k*=-1ij=k, ji=—k, jk=1i, kj=—i, ki=j, ik =—]j . A quaternion can be used
to represent a rotation (angular displacement) by & degrees about an arbitrary vector n in 3-D.

Figure 2.5 shows the relation between the quaternion elements, the angle fand the axis of

rotationn.

13

0 . 6
q :[COSE smEn]
(2. 19)

q—[cosgsingn singn singn]
2 227 2

Note that only those quaternions that can be described by this equation can be used for

angular displacement representations.

Quaternion Magnitude

The magnitude of a quaternion is given by:

- \/wz +p 2 +p,’+p, = \/WZ +p| (2. 20)

ol =[lw pl=|w ¢y P, P.)
If |af| =1, a quaternion is called Unit Quaternion. Only unit quaternions can be used to describe

angular displacement. Unit quaternions are described by (2. 24).

3-D Point as Quaternion
3-D points can also be represented by a quaternion. A point can be interpreted a quaternion that
inflicts zero angular displacement around it, i.e. for point p =[p, P, pz]T the following equation

holds:

p=d,=[0 p]=[0 p, p, P,] (2.21)

Quaternion Negation

Denoted by —q, negating a quaternion is performed by negating each of its elements:

—q=[-w —-n]=[-w —xi —yj —ZK] (2.22)

g and —q represent the same angular displacement, executed from the opposite direction.

14

Identity Quaternion
Identity quaternions inflict no angular displacement upon a quaternion. The quaternion that

achieves this is:

q=[10]=[1 0 0 0]=1+0i+0j+0k (2.23)

—q =[-1 0] results in the same angular displacement but, mathematically, only q =[1 0] is to be

considered as a identity quaternion.

Quaternion Normalization

As with vectors, transforming quaternions into unit ones is carried out by dividing them by their

length:

q
Uoormal =771 (2. 24)
el

Quaternion Conjugate and Inverse

Following the complex number conjugate, the conjugate of a quaternion is given by:

g =[wxy 2l =[w-(xy 2)]=w-xi-yj-z (2. 25)

The inverse quaternion is given by:

*

1_49

qQ =7 (2. 26)
ol

In the case of unit quaternions, the inverse is equal to the conjugate.

15

Quaternion Product (Cross Product)

According to their complex number representation, multiplication among two quaternions is

defined as:
4,4, = 2. 27)
[w, (v, Vi Vi W, (Vo Vay Vo)1 =[Ww, —viev, (W, +W,V, +V, xV,)] .
Note that, as with matrices, quaternion multiplication is associative but not commutative:
(%,9,)9, = 0,(9,0;) 2.28)

0hd, # 9,%

Angular Displacement via Quaternions

To rotate a 3-D point p=[p, P, pz]T by angle & about an axis defined by a vector

n=[n, n, n,]", the point pand the angular displacement are expressed as a quaternions p and

q respectively (2. 21). Rotation is performed as follows:

p'=apq” (2. 29)

and then p'is expressed back as 3-D point. For multiple rotations equation becomes:

p'=0,(qpd;)d," = (a,0,) pP(a,a) " (2.30)

showing that as series of rotations, as with matrices, it can be performed as a series of quaternion

multiplications.

Quaternion Dot Product

Dot product among quaternions is defined as follows:

0,°Q, = [Wl V1]°[W2 Vz] =WW, + VoV, = WW, +V, Vo, + Vi Vo, +V,Vy, (2.31)

16

Quaternion Scalar Multiplication

Scalar multiplication by a scalar k is performed by multiplying each of quaternion elements with
K:

ag=[aw an]=[aw axi ay] azk] (2.32)

2.2.2 Dual Quaternions

Dual numbers
Similar to complex numbers, a dual number ais written asa =a, +¢a_, where ¢ has the property

g*=0. a,is considered the non-dual part, a, is the dual part and ¢ is the dual unit. Dual number

operations follow complex numbers operations. For example dual number multiplication is

carried out as follows:

(a, +¢a,)(b, +eb,) =ab, +e(a,b, +a.b,) (2. 33)

The inverse of a dual number is given by:

A-1 1 1 a,
a,+¢ca, q a,

Quaternions and dual numbers

Dual quaternions are dual numbers with their dual and non-dual parts being quaternions:

a:qo"‘gqg:[wo XO yO ZO]+8[W5 Xe yg Zg]

=W, + X0 + Yy] + 2K+ W, +eX i+ey, j+ezk “®
where
gl=lg
gj=je (2. 36)

ek =ke

17

3-D Point as Dual Quaternion

A 3-D point p=[p, p, p,] can be expressed as a dual quaternion by:

[3:1+ e(PJI+p,J+p,K) (2.37)

where 0, =P,1+P, J+P,K is given by (2. 21).

Dual Quaternion Conjugate
There are three types of dual quaternion conjugates depending upon which component the
operant is applied:

a) Dual conjugate: Conjugation is applied only upon the dual unit and the result is given by:

0=0, 21, ke

b) Quaternion Conjugate: Conjugation is applied only upon quaternion parts and the result

is given by:

a4’ =q;+&q (2. 39)

c) Dual Quaternion Conjugate: Conjugation is applied both on quaternion parts and the

dual unit and the result is given by:

o~

q =0 - &0, (2:40)

18

Dual Quaternion Magnitude

The magnitude of a dual quaternion is given by :

ol =G =5 2 an

If Hq” 1,ie. |a,[=1(g,.9,)=0, then qis a unit dual quaternion and has the property of always

being invertible.

Dual Quaternion Inverse

The inverse of a dual quaternion exists if g, = 0and is given by:

L
<,)

4 =3 (2. 42)

0>

*>

-l
In the case of a unit dual quaternion it holdsthat q =0Q .

Dual Quaternion Normalization

Transforming a dual quaternion into a unit one is carried out by dividing it by its magnitude:

~
a4y =777 2.43
q (2.43)
Using (2. 41), this equation becomes:
~ (O g, Y <q0’qg>]
0, =% +e _ (2. 44)
] (Ilqoll oo

19

Rigid Body Transformations via Dual Quaternions

Dual quaternions have the property of representing both rotation and translation transformations
in 3-D. The non-dual is the rotational part and the dual is the translational part of a
transformation. Similar to simple quaternions, only unit dual quaternions can be used to represent

transformations.

Rotation
As with simple quaternions, for a 3-D point to be rotated, it must be represented as a dual
quaternion (2. 37). Rotation is then carried out by multiplying the vector with the dual quaternion

in an analogous fashion as in (2. 29):

p'=apqt=qpq’ (2.49)

The second part of the equation holds due to use of unit dual quaternions. Since ais a

rotation only dual quaternion, ¢, = 0. So the above is simplified into:
Qo (+&(P,d+p, j+p.K))dy =1+50,(p,i+p, J+P.K)q (2. 46)
Notice that the dual part is the quaternion rotation equation described by (2. 29). Also notice

that after the multiplication operation is completed, what remains is the transformed 3-D point

expressed as a dual quaternion.

20

Translation

A ~ t
A unit dual quaternion tdefined as t =1+ g(t?xi +?y J +%Zk)corresponds to a translation by the

vectort=[t, t, t 1. Notice that the rotational part is the identity quaternion, thus there is no

angular displacement.

Translation of a 3-D vector is carried out in the same way described in (2. 45):

tpt" =1+ &((p, +t,)i+(D, +1,)j+ (P, +1,)k) @2.47)

and what remains is the 3-D vector, expressed as a dual quaternion, translated by t.

Rigid Body Motion
A unit dual quaternion awhich describes rotation can be combined with a unit dual quaternionf
which describes translation, to jointly describe a rigid body motion. The combination of these
two quaternions, as in matrix representation, is their product. Again, the order of multiplication is
important:

6= eCeiv 2 oty =g+ a2 j+ Lkyg, = g, + 20, (2. 48)

2 2 2 2 2 2

Applying the combined transformation is done in the way described by (2. 45) and in the form of

quaternion transformations the result is:

p'=(d, +£0,)p(a, —&9;) = (0, +£0,)(PG, —£PA;) =

d, PY, — G, pqzj (2. 49)
dp PG,

do PG, — £9, PA; +£0, pg, =1+ s(

21

2.2.3 Quaternion to Matrix Transformation

On several occasions it is required to change representation from quaternion to matrix. For a dual

quaternion:

0= (W + Xoi + Yo + ZoK) + £(W, + X i+, j+2.k) (2. 50)

its matrix representation is given by:

1-2y2 =222 2(XoYo —WoZo) 2(XoZg +WoYy) —2(W.X, — X W, +Y,Z,—Z,Y,)

2% Yy +Woz,) 1-2%0 =227 2(Y,2, —WoX,) —2(W.Y, —X_.Zy =Y, W, +2Z,X,)

2(XOZO_WOy0) 2(yozo+WoXo) 1_2X§_2yg —2(WSZO+ngO—ngO—ZgWO)
0 0 0 1

(2. 51)

The representation for a simple quaternion is acquired by setting :

q,=0:w =0,x.=0,y,=0,2 =0

2.2.4 Matrix VS Quaternion

Quaternions and dual quaternions offer an alternative representation for rotation and rigid body
transformations respectively. When compared to matrices, quaternions appear to be advantageous
in terms of required storage and in composition of transformations. However, they require
considerably more operations to apply the transformation. Dual quaternions too require less
storage than matrices, but the number of operations both for transformation composition and 3-D
vector transformation is very high.

Table 2.1 shows a comparison between the quaternions and matrices in terms of storage and
speed. Speed is measured in terms of the number of operations, namely Multiplications (M) and
Additions (A).

A few notes on how these numbers emerged are necessary. First of all, the quaternion product
operation and thus the composition of transformations, in the general case require 16M+12A
operations. However, if the product is between a quaternion and a 3-D point representation as

quaternion, then the number of operations is reduced to 12M+8A, since the real part of the 3-D

22

point is 0. Dual Quaternions require 3(16M+12A)+4A=48M+40A operations for composition.
However only a rotation or only a translation, requires the same amount (i.e. 16M+12A) with

quaternions since in the first case ¢, =0 and in the secondq, =1. Thus the operation is reduced

in a quaternion product instead of a dual quaternion product. Additionally, the product of a dual
quaternion with a 3-D point requires 2(12M+8A) = 24M+16A operations.

Finally, although quaternions require more operations than matrices to apply a
transformation, if this transformation is a composition of several transformations then, as seen in
Error! Reference source not found., the operations gained by composition speed, earn quaternions
enough time to be expressed as matrices and then apply the transformation. This is not the case

with dual quaternions since even in composition time are outperformed by matrices.

Table 2.1: Comparison between matrices and quaternions in terms of storage and operations

Matrix representation | Quaternion Representation Dual Quaternion

Representation

Rotation Storage 9 4 4
(in numbers)
Rigid Body 12 - 7
Storage

(in numbers)

Quaternion To Mult. Add. Mult. Add. Mult. Add.
Matrix - - 18 21 30 33
Operations
Composition 16 12 48 40
Operations
Rotation Only 27 18 16 12 16 12
Composition
Operations
Rigid Body 36 24 - - 48 40
Composition
Operations

23

Rotation Only Mult. Add. Mult. Add. Mult. Add.
Transformation 9 6 32 20 32 20
Operations
Rigid Body Mult. Add. Mult. Add. Mult. Add.
Transformation 12 9 - - 100 64
Operations
n Rotation Mult. Add. Mult.* Add.* Mult. Add.
Compositions 27n+12 18n+9 16n+18+12 | 12n+21+9 - -
followed
Transformation
N Rigid Body Mult. Add. Mult. Add. Mult.* Add.*
Compositions 36n+12 24n+9 - - 48n+30+12 | 40n+33+9
followed
Transformation
*Quaternions and dual quaternions transformed to matrices before transformation occurred

2.3 Plane Theory Elements

2.3.1 Quadratic Plane Representation

A plane can be represented by a pointv =[v, v, v,]", and a vectorn=[a b c]", which is
perpendicular to that plane and defines it (Figure 2.7). Any point X =[X, X, xZ]TIies on that
plane if the following equation holds [2]:

(X=Vv)'en=0=

a(x, —v,)+b(x, v)+c(x,-v,) =0 (2.52)

ax, +bx, +cx, —(av, +bv, +cv,)=0

which is an equation of the form ax+by+cz+d =0.

24

Figure 2.6: A plane defined by a point and a normal vector

In this paper, planes are specialized in the context of triangles, the building blocks of
triangulated meshes. In the following sections all plane equations will be in reference to a triangle
whose vertices areT =[t, t, t,], t, e R®. Point vcan be any of the triangles vertices. Under this
context, in the plane equation (2. 52) part d is the triple product of the coordinates of the edges
of the triangle [3]:

d=-[t,t,, t;]=—((t, xt,)st;) (2.53)

Equation (2. 52) states that any point X lies on the triangle if the vector connecting X and v is

perpendicular to the normal vector n (Figure 2.7). Also, since the distance from a plane is given

by:

ax+by+cz+d
D=

Ja? +b? +c?

(2. 54)

for a unit normal vectorn (i.e. va®+b?+c® =1), (x—v)"«nis the distance of any point X from

the triangle’s plane. Intuitively, a point X lies on the triangle if its distance from it, is zero.

25

Combining (2. 52) and (2. 53) we can deduce that a plane can be represented by a vector

p=[abcd]so:

(p"-x)=[a bcdl[xyzI]

is the distance of any vector X from planep.

The squared distance then, denoted by Q,(x), is given by:

Q%) =(p™)’

=(P"™)(Pp"X)
=(x"p)(p™X)
=x"(pp")x

=x'K x

where K is the matrix:

a> ab ac ad
K - ab b*> bc bd
P lac bc ¢® cd
ad bd cd d?

(2. 55)

(2. 56)

(2.57)

K_ is called fundamental error quadric and can be used to find the squared distance of any

p

vertex fromaplane p=[a b ¢ d].

2.3.2 Plane Deformation Quantities

When triangulation is used for 3D Mesh segmentation, triangles become the building blocks of

the mesh. If a triangulated mesh is animated, almost all of its triangles undergo series of affine

transformations throughout the animation sequence. Figure 2.7 shows how a facet of a

triangulated mesh can deform within an animation sequence.

26

Figure 2.7: Facet Deformations in a triangulated mesh animation sequence

There are various means to quantify this deformation. In the following sections we present three

of them. In each method we are referring to a mesh animation P consisting of nposesP,,...,P

PR]

one of these poses is chosen as a reference pose (say F,).

Triangle Area Deformation

One way is to measure how the area of the triangle changes between the triangle at some

reference pose P, and the examining pose P. The area of a triangle T =[t, t, t,], t, e R® in 3D

is given by:
2 2 2
1 XX X Yi Y2 Y5 4, 1, I
Area=§ det|y, v, VYs|| +|det|z, z, zg|| +|det]x X, X (2.58)
1 1 1 1 1 1 1 1 1

This way the shape deformation of the triangle can be measured.

Dihedral Angle
To measure the change in orientation, dihedral angle can be used, i.e. the angle between the
triangle at some reference pose P, and the examining pose P,. To measure this angle the normal

vectors of both faces are used. The angle between these vectors, acquired by the dot product, is

the Dihedral Angle of the planes:

27

(Ne*n;) =|n,|[[In; [cos(6) <=

H:acos((n".ni)J (@59

ol]

Figure 2.8: Dihedral angle between the same triangle at two different poses

Deformation Gradient

Deformation Gradient is a quantity that encloses both shape and orientation of the deformation.
Assume that we have an animation sequence of a triangulated model with each triangle

T ={v,,v,,v,} performing series of affine transformations throughout the animation. The affine

transformation @ of the J -th triangle that contains some vertex v is given by [5]:

®,;(v)=C,v+t; (2. 60)
where C,; is a 3x3 transformation matrix which contains the rotation, scaling and skew
components of the deformation and t; the translation component. The deformation gradient of the

triangle between its status in a pose P, and a reference pose P, is enclosed in the Jacobian matrix:

D,®,(v)=C, 2. 61)

28

Note that the three vertices of the triangle are not enough to describe the deformation towards
the direction perpendicular to the triangle. To alleviate this, a fourth vertex is introduced in the

direction of the triangle’s normal vector, with length proportional to the edges of the triangle [4]:

(v, =) x (V; —Vv,)

Vo=Vt (2. 62)
\/|(V2 AL _V1)|
The affine transformation of each vertex is then described by:
CVv, +t, =V, 1<i<n, 1<k<4 (2.63)
and in matrix form it is given by:
CIVi—v; vi=vi Vv, —vi]=[V3-v V)V V) -]
[2 1 73 1 "4 1] [2 1 3 1 4 1] (2.64)

00 VIV Vi T

C=[vy -V, v§ -V}

Both rotation and stretch information can be extracted fromc by applying polar
decomposition [6] [7]. Performing thin SVD upon C we get:
C=UsVT =(UVT)(VZV")=RS (2. 65)
where R € R*?is the orthogonal matrix representing the rotational component, and S € R*®is a
symmetric matrix that applies stretching to the triangle before the rotation [8]. S can be further

dissected into a scale (Sc) and a shear (Sh) matrix by extracting the associated matrix elements:

Sc =diag(S)

Sh =S —diag(S) (2.66)

29

2.4 Barycentric Coordinate System

A Barycentric coordinate system is a system in which the coordinates of a point are defined with
reference to the centre of mass of an object. The point may be located within the area of the
object, including its boundary. Due to this notion Barycentric Coordinates are also called Area

Coordinates. Barycentric coordinates where introduced by August Ferdinand Mdébius in 1827.

2.4.1 Triangle Barycentric Coordinates

Given a triangle T with vertices[t, t, t.], t; € R*® any point twithin the area of this triangle

can be described by the weighted sum of these vertices:

t=At + A4t + At (2. 67)

The A coefficients have the property A4, =1—- 4, — A, and are called Barycentric coordinates. Figure

2.9 shows how triangle areas can be described using this coordinate system.

(1,0,0) (1/2,1/2,0) (0,1,0)

(1;’2,1!4,;1 4) (IM‘ 1/2,1/4)

]
(1/3,1/3,1/3)

(1;‘4,1;4, 1/2) (0,1/2,1/2)

(0,0,1)

Figure 2.9: Barycentric Coordinate representation in the context of a triangle

30

Having the Cartesian coordinates of pointt, specifying the corresponding Barycentric one is a

matter of solving the following system:

X =A% +2,X, "’(1_/11_/12))(3
y =ﬂ,ly1+ﬂ,2y2 +(1_A1_ﬂ'2)y3
What (2. 68) describes is a linear transformation that in matrix notation is given by :
(X1_X3 X, _ij(ﬁljz(x_xsjc
i—Ys Y=Y)\ 4 Y=Y, (2. 69)

Th=t-t, < h=T'(t-t,)

(2. 68)

and shows that specifying the Barycentric coordinates is a matter of inverting the 2x2 matrix T .

2.4.2 Tetrahedron Barycentric Coordinates

Barycentric coordinates can be extended to 3D allowing to specify areas within a 3D simplex (i.e.

a tetrahedron). In this context four coordinates A, 4,,4,, 4, must be specified. Extending (2. 69)

the resulting system becomes:

T4, |=t-t, (2. 70)

2

whose solution is a matter of inverting the 3x3 matrix:

X=Xy X=X X=X

T= Yi=Ys Yo Y4 Ys—VYa (2.71)
-1, 1,-1, 1;-1,

31

CHAPTER 3
LINEAR BLEND SKINNING

3.1 Approximating Models With Skeletal Hierarchy
3.2 Approximating Highly Deformable Models

3.3 Transformation Matrix Fitting

3.4 Bones and Weight Fitting

In the following section we will present methods for the acquisition of the bone transformation

matrices and then elaborate on methods of weight-influences computation.

3.1 Skinning with Skeletal Hierarchy

Approximating an animation sequence to produce a more succinct representation is common in
the case of articulated models and is carried out through a process called Skinning. The idea is to
approximate the trajectories of vertices based on the trajectories of the bones that influence them.
This means that bone-vertex relations need to be established, meaning, which bones affect each

vertex and what is the amount of their influence. Figure 3.1 shows an example of a vertex v,

being affected by 2 bones by, b, on an articulated model part in two different poses{p, p +k}.

Figure 3. 1: Bone-Vertex influence on articulated model part

32

Using the linear blend skinning technique, the location of v, can be approximated by the
transformation matrices T, and T,that describe the movement of b; and b, weighted by the

amount of influence each transformation should have on the vertex. These transformation
matrices represent the movement of the bones compared to their location in a reference pose (rest
pose) of the animation sequence. Usually this rest pose is chosen thus, that the model is depicted
in a neutral state. In the case of the elbow example in Figure 3.1 a neutral position suitable for
rest pose would be with the elbow straightened. In general, knowing the transformation that each
bone undergoes in each pose and the amount of influence of each bone to the vertices of the
model, we can approximate the whole animation sequence using only the rest pose.

More formally, we assume that we have an animation sequence of P poses of an articulated
model consisting of B bones. The model has N vertices. It is important to state that the
connectivity of the vertices throughout the animation sequence is not affected. Neither vertices
nor edges are added or removed. We also assume that a skeletal hierarchy has been established on
a selected rest pose of the animation sequence and each vertex has been assigned to one or more

bones. We denote by T,Pthe transformation matrix that describes the transformation that bone
b e{l,..., B}undergoes from the rest pose to pose p e{l,..., P}. With w, we denote the amount of
influence of bone b g the vertex with indexi e{l,..., N}. In the rest of this thesis we shall refer to

this quantity as weight-influence or simply weight, of a bone to a vertex. Finally we denote by

v/? e R*the approximation of vertex i in pose p and by v, e R®the coordinates of vertex i in the

rest pose. Using linear blend skinning the approximation of v is given by:

B
3.1
Vi'IO = (Zwib-rbpjvi G-
b=1
In the formula above if a bone does not affect a vertex, w, is zero.

Weight influences are established in the rest pose and remain the same throughout the
animation regardless of the pose we are approximating. Additionally, for each vertex the sum of

the weights of the influencing bones is 1 and each weight-influence is non-negative, i.e.:

33

Z W, =1 2

and
(3.3)

Finally, it has been proved in practice that 4 bone influences per vertex are adequate for a
good approximation. More than 4 weight-influences definitely add more detail but not enough to
compensate for the increased complexity of weight acquisition.

In its entirety the approximation procedure is described by the following algorithm:

Algorithm 3.1 Approximate_SequencePerPose(AnimationSequencel[])

1. Bone_L := GetBoneList(AnimationSequencel]);

2.WeightInfluences_L :=GetWeightInfluenceList(AnimationSequence[],Bone_L);

3.for each pose in AnimationSequence do

4, T[pose]:=ComputeTMatrices(AnimationSequence[Pose], Bone_L, Weightinfluences_L);

5. ApproximatedSequence[pose]=PerformLBS(T[Pose],AnimationSequence[Pose],Bone_L,
WeightInfluences_L);

Algorithm 3. 1: Animation Sequence Approximation Procedure

Lines 1, 2 and 4 comprise the part of the process called fitting. Determining the bone number
and location is referred to as bone-fitting, while determining the weight-influences is referred to

as weight-fitting. Line 5 is the application of (3. 1) to produce the approximation.

3.2 Skinning Highly Deformable Models

The existence of a skeleton defines degrees of freedom on the vertex movement. For example in
the case of the arm in Figure 3.1, although high deformation is expected in the area of the elbow,
the majority of the vertices between the elbow and the wrist will follow the movement of the
bone. Normally a bone is not supposed to change its shape and thus its movement is that of rigid
body and so is the movement of the affected bone. This is not the case in highly deformable
objects, i.e. models with no skeletal hierarchy established. There are no directives under which a

vertex may move. Figure 3.2 shows selected frames from an animation sequence of a highly

34

deformable object. Notice that all areas, except from the rightmost which is the area of the flag
that adheres to the pole, are subject to random deformation.

Figure 3. 2: Highly deformable animation of a flag under the influence of wind

Nevertheless, following certain adaptations, the concept of skinning can be extended to
highly deformable models. In fact in the following sections, when talking about highly
deformable models, we shall regularly transform the problem to articulated model simply to
reinforce our intuition. One of the adaptations mentioned, is to consider affine transformation
matrices instead of rigid, to facilitate capturing of possible scaling and shearing deformations.
Adaptations must also be made to the methods of the weight-influences specification, a task quite

elaborate and less well established than transformation theory.

3.3 Transformation Matrix Fitting

We will assume for now that bone structure and weight-influences have been established in some
way. The next step in the LBS algorithm is to compute the transformation matrices that describe
the transformations that bones undergo throughout the animation. As stated before, describing the
movement of highly deformable objects requires the use of affine transformation matrices, to
capture deformations other than rotation and translation. Rigid body motion can be used but not
without penalty in the quality of the approximation, since there is no guarantee that the

deformation of a vertex is purely rigid.

35

3.3.1 Fitting with Affine Transformation Matrices

To formulate the problem of approximation, if v is the actual vertex coordinates in pose p (i.e.
the value we are trying to approximate) and v’ is the approximation produced by implementing

the LBS algorithm, we are trying to minimize the quantity:

)

namely the error of each vertex approximation.

V_’p _V,DHZ (3. 4)
1 I

As Algorithm 3. 1 states this operation is performed in a per pose basis. With reference to
[9], this is equivalent to the least squares solution of the system:

B
" _ (3.5)
Vit = Z Wi, Ty Vi
b=1

for each vertex of the model.

The above is a linear system of 3N equations, the unknowns of which are the (3x4) elements
of the transformation matrices of each bone. This sums to 12B unknowns. The system can be
expressed in a Ax=Db form, where Ais a 3Nx12B known matrix constructed by combining the
rest-pose vertex positions and the corresponding vertex weights. More specifically the first 3
rows of matrix Awhich refer to the first vertex to be approximated are as follows:

b=1 b=B
Wi, Vi W11V1y Wi, Vi, Wi WiV, Wlely WigVi, W

(3.6)

A(l : 3’ :) = Wllle Wllvly Wllvlz 1 Wlelx WlB Vly Wlelz B

Wl Wl
Wllle Wllvly Wllvlz Wll WlB le WlB Vly WlBVlz WlB

bis a 3N known vector where the actual vertex coordinates are stacked:

36

p
le
p
V1y
p
Vlz 3.7)
b=| : |
P
VNx
p
Viy
p
_VNz
Transformation matrices are of the form:
a, &, 3 a,
T = 8y 8y 8y 8y 3.8)
L=
QG 8 Ay 9y
0O 0 O 1

Since the last row is not needed in solving the system, x is a 12B vector of unknowns of the

form:

A, 3.9)

Recall that each vertex is not influenced by all bones, in which case the weight is 0 along
with the corresponding 12 elements of matrix A. Also recall that to each vertex usually
correspond no more than 4 bones. This means matrix Acan be highly sparse. To exploit this
sparsity for the solution of the system we utilize the LSQR [10] algorithm. Figure 3. 3 depicts the

results of the method.

38

a) b) C)

Figure 3. 3 : Results of Linear Blend Skinning using Affine Fitting, PF=1.6, a) Original
animation, b) Approximation using Affine, P-Center based fitting, c) Approximation error
distribution. Red areas denote high error of approximation

3.3.2 Fitting with Dual Quaternions

Even with the boost gained by LSQR algorithm, the transformation matrix computation is very
time consuming and acts as a bottleneck to the algorithm of LBS as a whole. As shown in Figure
3. 4, meddling with the convergence tolerance error or the number of iterations LSQR is to
perform, has significant effect upon the quality of the approximation. Solving time could be
improved if there was a way to reduce the number of unknowns. Kavan et.al [9] suggested the
use of dual quaternions to describe the motion of bones. Recall from (2. 37) that a 3D point can
be represented by a dual quaternion. To the existing formulation we add the use of “~” to denote

a quantity expressed as a dual quaternion. Thus V,is a rest pose vertex expressed as a dual

A~

quaternion, v is the actual coordinates of a vertex in a pose and V'’is the approximation
coordinates of that vertex. We denote by g, the dual quaternion that represents the transformation
of bone b. Recall from (2. 48) that given a transformation described by a dual quaternion g,
applying this transformation on a vertex, also expressed as a dual quaternion p, is done by
multiplying p from the right gand from the left with the conjugate inverse of §. Using this

notation (3.5) becomes:

1
., NV (L (3. 10)
Vi b= (zwibquvi (Z\Nibqu
i1 i1

39

N
Multiplying with [Z wibqu from the left to remove the inverse we obtain:

i=1

e

-1
The resulting dual quaternions however must be invertible fo{z bqu to exist which
=1

means that at least one element must be non-zero, otherwise (2. 42) does not hold. To ensure this
we force the real component of the non-dual part g, of the quaternion to 1. This rule does not

affect the range of transformations this method can describe since any dual quaternion represents

exactly the same transformation with its real multiple

Thus we transform the problem of finding 12 element transformation matrices to finding 7 (8
minus the one set to 1) element Dual quaternions. Following a series of substitutions and
calculations, (3. 11) can be simplified in the form of Ax =b. Matrix A is a 4NX7B one whose
first 4 rows and 7 columns (i.e. the coefficients of the influence of the first vertex by the first

bone) are described as follows:

b=1
Wi, (lex - le) Wiy (ley - Vly Wi, (Vlg -V 2W11 0 0 0
AL 41:7) = 0 w, (V) +vy,) W, (vlpy +Vy, 0 2w, O 0 (5.12)
—Wy, (lez + Vlz) 0 Wiy (V1F>)< + le) 0 0 2W11 0
Wi, (ley + Vly) —Wp; (V& + le) 0 0 0 0 2W11

The rest of the matrix is filled in a similar fashion. Vector b is a 4Nx1 comprising of the rest

pose vertices, the actual vertex positions and the sum of all the weights applied on each vertex.

The first 4 rows of b, i.e the right part of the system for the first vertex, are:

8) 8 A B] ! (3.13)
= O Z Wlb (le - le) Z Wlb (Vly - Vly) Z Wlb (Vlz - Vlz o
b=1 b=1 b=1

40

and the rest of the matrix is filled in the same fashion.
Finally matrix x is a 7Bx1 matrix of unknown dual quaternion elements stacked:

b=1 b=B

—_— —_—

1 1 1 B B

X={Ooy Goy % % T 9 O oy Gor CGow O

B B (3.14)
qsy £

Dual Quaternions are capable of describing rigid body motion. This means that an error in the
approximation is to be expected. However as shown in Figure 3. 4 the reduction in the time
required for transformation matrix calculation, due to the reduction of unknowns in the system, is
significant. We also see that dual quaternion fitting can be slower than affine if we don’t set a
limit to the number of iterations the LSQR must perform in the process of achieving the required

tolerance.
Average Solving Time
25
§ 20 A
£ 15 -
£
® 10 4
S 5 —a— Affine Avg Time
o
@ Rigid_AffineDep Avg Time
0 1 1 T T T T T T T T T T T 1
O O 0O O O O O 0O 0O 0O O O O w1 o —m—Rigid Avg Time
O O O O O O O O O O O n +*€ O o
O O O O O O O O O Nn «# 0 O O o
O O O O O O O Nn 4« 0O OO O O o o
O O O O O n 1 O O O ©O O o oo o
O O O 1NN « O O O O O O O O O o
O 1N « O O O O O O O O O O o o
9909089883588 99 S 9 S 9
O OO0 0o oo oo oo o o o
Solving Tolerance

~~
N

Approximation Error (dE)

0.35
0.3 §\
T 025
g \
o 0.2
=
~ 0.15
o)
= —a— Affine Error
w 0.1
—o— Rigid_AffineDep Error
0.05 -
—— Rigid Error
O T T T T T T T T T T T T T 1
O O O O O O O O O O O O O un
O O O O O O O O O O O In «* O O
O ©O O O O O O O O In «#« O O O O
O O O O O O O n 4 0 O O © o o
O ©O O O O 1N 4 O O O O O O O O
O O O 1N 4« O O O O O O O O O O
O 1NN W O O O O O O O O O O O O
<+ 9 © 9 9 9 9 9 9 9 9 9 9 9 Q9
O OO 0O o oo 0o oo o o o o
Solving Tolerance

41

Figure 3. 4: a) The Average solving time and b) Approximation error of i) Affine Fitting, ii) Rigid Fitting with the
number of LSQR lterations Equal to that of Affine, iii) Rigid fitting with unlimited number of iterations. Horizontal
axis is LSQR error Tolerance.

42

@ (b) (©)

Figure 3. 5: a) Affine Fitting, b) Rigid Fitting, ¢) Error Distribution

3.4 Bone and Weight Fitting

Bone and weight-influences specification is fundamental to the skinning process. The choices
made in this stage will greatly define the final result. We describe this process first by defining
the transition from skeleton bones for articulated models to proxy bones for highly deformable
ones. Then we elaborate on the principles of efficient bone and weight-influences fitting. Finally

we mention the existing policy and the one we propose for bone and weight fitting.

43

3.4.1 Moving from Bones to Proxy Joints

One major difference when comparing articulated and highly deformable objects is that in a
highly deformable object, not only it is difficult to specify a skeletal hierarchy but doing so may
also impose undesired limitations. Consider for example the case of clothing an articulated
model. It is desirable for the cloth to present with a deformable behavior and not be constrained
by the rigidity of the movement of the bone it covers. Kavan et.al [9] suggested that selected
vertices on the rest pose can act as bones (proxy joints). Each proxy joint will create an area of
influence and each vertex within this area is assigned a weight according to some criterion. This
criterion is usually based on the distance of the vertex from the influencing proxy joint. Figure
3.3 depicts this idea. The red dots underline the vertices that act as proxy joints and the contrast
of the color denotes areas of different influence.

Figure 3. 6: Proxy joints instead of bones, and weight influences per proxy joint. The brightness
of the color denotes the intensity of the influence.

The replacement of a bone structure by proxy joint vertices, distributed according to some
pattern upon the model, appears to offer the flexibility and the control over the surface required
for describing a highly deformable animation. The distribution pattern, along with a weight
assignment policy will define the areas of influence and ultimately the quality of the
approximation, thus both must be chosen carefully.

44

3.4.2 Principles of Efficient Proxy Joint and Weight Specification

Understanding how proxy bones and weight influences affect the approximation process is
essential for establishing a specification that will lead to a quality result. Intuitively, proxy bones
act as attractors and the weights represent the intensity of their attraction. Each vertex can be
attracted by different bones and each bone attracts each vertex in its area of influence with
different intensity. This presents several caveats when distributing proxy bones and assigning

weight-influences.

Misfitting
The first is the possibility of assigning a vertex to a proxy bone whose movement is different.
Figure 3.4 demonstrates this scenario. Vertex v, is assigned to proxy bones whose movement is

not representative to that of the vertex. The proxy bone movement affects (by some weight) the

movement of the vertex and the result is a spike where it shouldn’t be.

Figure 3. 7: Approximation error by assigning a vertex to irrelevant proxy bones. a) Rest pose, b)
Actual pose p, c) Approximated pose p. Vertex v/? is elevated due to elevation of its proxy bones.

45

The above scenario exhibits the importance both of the proxy joint placement and weight
assignment policy. Placing another proxy bone in the vicinity of the vertex and enforcing a
proximity criterion for the intensity of the other two bone influences could alleviate the error. It
would introduce a stronger attractor whose deformation would also be more representative of the
deformation around the vertex. That would diminish the influence of the other joints (recall that

weight influences are convex).

Over-Fitting

Excess of influences, may lead to the second caveat, that of over-fitting. Too many attractions
will result in area averaging and ultimately to extreme loss of detail. Figure 3. 8(b) shows the
effects of over-fitting, where the model appears rounded. Notice the bumps on the surface that
imply the location of proxy joints. The influence each joint inflicts upon its immediate area is
stronger and it forces this area to follow its movement. Another implication of over-fitting is the
increase of the solving time for the transformation matrices, since more non —zero entries are
introduced in the Amatrix (3. 6).

Under-fitting

Lack of influence is the third caveat with the worst scenario being a vertex to be influenced by
one proxy joint only. This will force the vertices to follow the movement of the proxy joint as if
performing rigid body motion. The result is indeed rigidity in the areas of influence of each proxy
joint as is demonstrated in Figure 3. 8(c).

For and efficient bone and weight fitting, these limitations need to be compromised. Even so
there are no exact rules on how fitting is to be carried out. It mostly depends on the nature of the
deformations throughout the animation sequence. Intuitively the more proxy joints present, with
limited areas of influence to avoid over-fitting, the better the representation of deformations and
thus the approximation. However the number of proxy bones directly affects the size of the
system producing the transformation matrices (3. 6). Adding more bones means increase in the

approximation time.

a) b)

Figure 3. 8: Tablecloth animation sequence. Bone and weight fitting caveats. a) Actual animation,
b) Over-fitted approximation, c) Under-fitted (rigid) approximation.

47

3.4.3 Uniform Proxy Joint Distribution using P-Center Clustering

One way to ensure that the surface gets enough coverage from proxy joints is to distribute them
uniformly and adjust the influence areas accordingly. This can be done utilizing the p-center
algorithm [12]. In brief, this algorithm assigns a new proxy joint on the model by creating a new
cluster in each step whose center is the vertex with the largest among the distances, of the
vertices furthest from the center of their clusters. Upon creation each cluster claims from the
existing clusters all vertices closest to its center. The algorithm repeats until the required number

of proxy joints has been assigned. The distance metric used is the Euclidian.

Algorithm 3.2 P-CenterClustering(AnimationSequence[0], k)

1.VertexIndex:= PickRandomVertexIndex(AnimationSequence[0]);
2.while ProxyJointsSet = k

3. NewClusterCenter = FindMostDistantVertex(ClusterList);

4 NewCluster = AssignVerticesToNewCluster(NewClusterCenter);
5. ClusterList. Add(NewCluster);

6 ProxyJointsSet= ProxyJointsSet+1;

Algorithm 3. 2: P-Center Clustering

Note that, since in each step the furthest vertex is extracted, in the very first steps the
algorithm tends to assign centers to the borders of the model and gradually moves to the interior.
This behavior will come of use in a later section during the initialization of the Variation Region
Growing algorithm.

The influence of each cluster is not limited only to the vertices it contains. That would lead to

under-fitting. Instead each cluster defines a cyclic area of influence with radius Iy; equal to the

distance Dpj of its furthest from the joint vertex. These influence areas are further enhanced by a

factor P > 1. Figure 3.9 depicts a scenario of proxy joint placement using P-Center clustering. The
dotted circle around each proxy joint is its area of influence without the P-Factor and the green

dashed line is the area of influence including the P-Factor.

48

Figure 3. 9: Proxy joint influence areas and the effect of P factor in P-Center clustering

Recall that each time a new cluster center (proxy joint) is defined it assimilates all vertices
around it which are closer than they are from the other cluster centers. Intuitively a line is drawn
perpendicular to the middle of the line that connects the new center with each old one. Vertices
are assigned according to which side of that line they are. Thus each cluster ends up being a
polygon with a number of edges equal to the number of surrounding clusters. The weight

influence on a vertex depends on its distance d, from the proxy joint b that influences it:

Wiy :1-0—%, r, = max(d;,) - PFactor (3. 15)

b
The result needs to be convex so we normalize it by dividing by the sum of all weight
influences on this vertex. If only one proxy joint affects the vertex, then its weight becomes 1.
In the case of vertex v, in Figure 3.9 which is affected by three proxy joints the weights are:
d. d. d.
1.0--* 1.0- 2 1.0
r r, r (3. 16)
W, =———, W
i2 :
2 Wis
b

_ 1 _ 3
N~ BT~
Zij Zij
b b

W

49

The penetration of the area of influence of one cluster to another depends on where its most
distance vertex is. The addition of P-Factor increases this penetration so P-Factor must be chosen
carefully to avoid overfitting. Figure 3. 10 shows that, as the P-Factor increases so does the
execution time. The approximation error reduces but from a certain point and after it is stabilized

or even increases. Thus there is no point in setting very high P-Factor values.

Average Solving Time

10
7 8 ot
ﬁ M
g - X
En 4 A7 —a— Affine Avg Time
§) _‘;r(!/ Rigid Avg Time

0 T 1

11131517 19 21 23 2527 29 3.1 3.3 35 3.7 39
P-Factor
(a)
Approximation Error(dE)

1

0.9 -

0.8 _1\
:g 0.7 \
g 06
a 05 \
5 04 \ —a— Affine Error
= g; \ Rigid Error

0.1 -+ \—-& -

0 = e e e e e e e e e e e e

11 13 15 17 19 21 23 25 27 29 3.1 33 35 3.7 39
P-Factor
(b)

Figure 3. 10: a) How transformation fitting execution time progresses as P-Factor changes, b)
How the change in P-Factor affects the approximation error. Tests were run on Tablecloth
sequence with TOL=0.00005.

50

a) b) c)
Figure 3. 11: Proxy joint and weight fitting using P-Center clustering. a) Proxy joints uniformly

distributed over the area of the model, b) Areas of influence with P-Factor=1.6, c) Areas of

influence with P-Factor=1.0

P-Center based distribution yields satisfactory results with low approximation error. However
the effect (bumps on the surface) of the spherical influence area upon the model is evident.
Furthermore this distribution is bound to assign proxy joints to areas with low deformation where
they will be of no actual use and could possibly be approximated by smaller amount of proxy
bones. On the other hand it may assign less proxy joints than necessary in areas with high
deformation. For example in our tablecloth model we would like less proxy joints on the area that
adheres to the table and has low deformation and more proxy joints on the rest of the areas that
present with higher deformation.

3.4.4 Deformation Gradient Based Bone and Weight Fitting

We propose a method of bone and weight fitting based on the deformation of the model
throughout the animation. Our goal is to identify areas of characteristic deformation and
distribute the proxy joints accordingly. A mean is required to quantify the deformation and we
have chosen that mean to be Deformation Gradient. Deformation gradient is computed per facet
and encloses the quantity of the facets rotation, scaling and shearing. In section 2.3.2 we saw that

deformation gradient is embedded in three matrices, each describing a different type of

51

deformation. To extract the exact magnitude of each deformation type from their containing

matrices, we use the Frobenius norm, i.e. we compute the magnitude of each matrix.

Deformation Quantification and Decomposition

In an animation sequence of a triangulated mesh the deformation gradient at each pose can be
computed by comparing the deformation of a pose with that of its preceding or with that of a
specified reference pose. Then the deformation gradient of each pose is averaged to produce the
deformation gradient of the sequence. We have chosen to perform comparison with a reference
pose, and in particular with the rest pose of the animation sequence. The reason is that we want to
capture all deformations throughout the animation. In per pose basis the majority of the
deformations have very small values and averaging them at the end results in loss of information.
For example a facet at some point may have presented with a high deformation and remained idle
for the rest of the sequence. That would dominate over continuous but smaller deformations of

other facets.

More formally, we denote by d?; the rotational deformation of facet i in pose p of the mesh,

by d¢,; the scaling deformation, by dg; the shearing deformation and by d’; the sum of these
deformation values.
Rotational component is extracted from the rotation matrix R by first computing the rotation

axis | as the solution to the following system:
RI . I (3.17)

and then computing the angle of rotation around this axis:
d? = Z(u,Ru) (3.18)
R,i

where u is the vector perpendicular tol .

Scaling and shearing deformation components are given by:
(3. 19)
g, =[sc?],. . g =[sw],

The sum of the deformation is then given by:

52

dzp,i = dFE,i + dSpc,i + dSph,i 20

This quantity contains all three deformation types and actually is the Deformation Gradient of

the facet

By Digsesnsyi We denote the average deformation of faceti, for each type, throughout the

sequence

Dy, =avg (dF’:,i)’ Ds.i = an(dspc,i)' Dy = an(dsrL,i)a D;; =avg (dzp,i) (3.21)
p p p p

Figure 3. 12 depicts each deformation component the tablecloth animation sequence. The rest
pose contains no deformation data since it is the reference pose (deformation is zero). Thus rest
pose is used to contain the mean of each facets deformation throughout the animation. The
visualization shows which areas are close the global maximum value of the according
deformation component. Red areas are those with deformation close to the maximum for that
type and green are those close to minimum. There is no common maximum and minimum since
each deformation component has its own domain of values and even normalization would make

no difference.
In the following sections deformation gradient will always refer to Dy ;. This will be

considered the deformation gradient of a facet for all the animation sequence. All deformation

gradient calculations we use as input this quantity

o
V4
-
V4
&
o
o

Figure 3. 12: a) Rotational deformation component, b) Scaling deformation component, c)

Shearing deformation component, d) Deformation Gradient(sum of a),b),c)).

54

Deformation Based Clustering

It is now possible divide the surface into areas with similar deformation gradient. To carry out
this division, a clustering method must be utilized. 3 properties must be satisfied:
1) The clusters must present with deformational coherency, to be possible to distribute proxy
joints based on how much deformation an area presents.
2) The clusters must be connected (spatial coherency), to be possible to apply a weight
fitting scheme on the cluster as a whole.
3) The method must be able to return at most the requested by the user number of clusters, to
be possible to specify the number of distributed proxy bones.
4)
We have tested three possible clustering techniques:
a) K-Means
a. Regular
b. Hierarchical

b) Variational Region Growing

of which, Variational Region Growing vyielded the best results. It should be noted that
deformation gradient is a quantity closely related to the mesh’s facets. For that, all clustering
techniques are applied with reference to facets and not vertices and the distances used are the
Euclidean among the centroids of the facets.

K-Means Clustering

K-Means is a widely used heuristic algorithm for partitioning a data set into k subsets. More
formally, the algorithm attempts to partition a set of observations (x;,X,,...,X,)Into k < nsets
S={5,,S,,...,S,} where sum of squared distances of each point of the partition from the center of

the partition is minimized:

arg minzk: > ||xj —pi”Z (3.22)

i=1 X;eS;

where p; is the center produced by the mean of values (centroid) of S,

55

2% (3.23)

Xj€S;

S|

B =

The k-means algorithm is outlined in the following pseudo code:

Algorithm 3.3 Perform_K_Means(MeanDeformationSequence[0])

1. Prev_K CenterList:=¢y;

2. K_CenterList := Pick_K_RandomFacets(MeanDeformationSequence[0]);

3. while Prev_K_CenterList = & and objfun() > TOL do

4, Prev_K_ CenterList:= K_CenterList ;

5. [KCenterMapping,K_CenterL.ist]:=AttractNearestPoints(Prev_K_CenterList,

eanDeformationSequence[0]);

Algorithm 3. 3: K_Means Clustering

We start by picking k-random facets as initial cluster centers. Then each cluster attracts the
facets closer to it. Upon insertion of new vertices, the centroids, i.e. the new cluster centers are
being and the process repeats until some stopping criterion is reached. The algorithm returns the
coordinates of the cluster centers and a mapping to these centers for each vertex.

Since k-means is a heuristic, there is no guarantee that it will converge and even if it does, the
solution is not a global minimum. The result of the method will always depend on the initial
choice of centers. Even so, in the context of our research, it can adequately recognize areas of
similar deformation. However, if fed only with deformation data it presents with a serious
disadvantage. The areas yielded are disjoint. Figure 3. 13 (a) depicts the result of applying K-
Means clustering on purely deformation data. Apparently it is not possible to enforce some

weighting behavior if the proxy joint of the same cluster are scattered all over the model.

56

(@) (b)

(©)

Figure 3. 13: a) K-Means clustering based purely on deformation data (17 clusters), b)
Hierarchical K-Means clustering (59 clusters) with equally weight deformation and spatial data c)
Hierarchical K-Means clustering with highly weight deformation data (37 cluster, 947 disjoint
clusters). Colors are randomly chosen and depict no information other than spatial.

To insert topology in the clustering result and reduce disjoint sets, we implemented
Hierarchical K-Means clustering, a two stage application of k-means. At the first level regular k-
means is applied on a dataset that contains the deformation data of nfacets and a first

partitioning of k',k’<nclusters is created. Then, at the second level, we apply k-means to the

centers of the clusters created by the first level, based on their coordinates and a second

57

partitioning of k, k <k’<nclusters. Finally based on the Level2 cluster mapping we map the

Levell results to those of Level2. Algorithm 3. 4 describes this procedure.

Algorithm 3.4 Hierarchical _K_Means(DatasetWeight, MeanDeformationSequence[0])

DatasetWeight

1. Dataset = U MeanDeformationSequence[0];
i=1

2. [L1_K_ClusterMapping, L1 K_ClusterCenters] := Perform_K_Means(Dataset);
3. [L2_K_ClusterMapping,L2_K_ClusterCenters]= Perform_K_Means(L1 K _ClusterCenters);
4. L2 _K Clusters:= MapL1ToL2(L1 K_ClusterMapping, L1 K_ClusterCenters,L2_K_ClusterMapping

);

Algorithm 3. 4: Hierarchical K-Means Clustering

The mapping notion is depicted in Figure 3. 14

L1 Clustering L2 Clustering
1
fl Cl
1 1 2
fZ C4 Cl C3
1 1 2
f, |c. C, | C
¢ | ¢
1
fn C7

Figure 3. 14: Hierarchical k-mean clustering mapping. Facets are assigned to the clusters of Level

2 via the mapping to the clusters of Level 1

In terms of functions if C'(x) maps facets to the clusters of the first level of clustering and
C?(x) maps first level cluster centers to second level clusters then each facet’s cluster is given

by:

58

C(f)=C*(C'(f) (3.24)

As shown in Algorithm 3. 4, to avoid clustering being dominated by spatial (center
coordinates) information in the second level, the deformation domain can be enhanced by
repetitions of the deformation data set. Figure 3. 13 (b) contains the result of hierarchical
clustering with no deformation enhancement. It is apparent that clustering is dominated by spatial
data. Results of enhancing the clustering domain with the deformation data appear in Figure 3. 13
(©).

Hierarchical k-means achieves better capturing of deformation data but does not avoid
disjoint sets. Figure 3. 13 (c) only 37 clusters are returned, however if we apply an algorithm to
identify disjoint clusters parts the number soars to 947. It appears that the number of returned
clusters cannot be controlled if spatial coherency is enforced. Furthermore if each cluster is to be
assigned at least one proxy bone, it is not practical to hold on to this partitioning scheme. In
general k-means appears inadequate to satisfy the 3 properties mentioned in (0) and another

partitioning method must be used to identify the required areas.

Variational Region Growing Clustering

A region growing algorithm appears to be a suitable solution for identifying areas of spatial
coherency. Setting the upper limit of returned clusters is also a matter of specifying the required
number of initial seeds and start the region growing algorithm from each.

A naive region growing scheme would be to grow seed facets until a certain criterion is met.
Specifying this criterion is not a trivial task. It must ensure that facets with the right deformation
are added to the appropriate region. If the threshold is not carefully chosen, a region may claim a
facet that shouldn’t, simply because it reached at it first. Also a special care must be taken for the
possibility of orphaned facets. Apparently it is cumbersome to satisfy all these limitations and
cannot be done without compromises that will render the result suboptimal.

Steiner et.al [13] presented a clustering technique which attempts to perform a partitioning of a
mesh in a way that preserves anisotropy by globally minimizing the following distance for each

regionR;:

59

=N

where T, is the triangle of facet i which belongs in R; ,|Ti| is the triangle area, P is the centroid of

the area , n;is the normal vector of that facet, N is the area weighted average normal vector of
region R;:
N, = > [T|n, (3. 26)
TieR;

This method attempts to identify areas based on the similarity of each facet normal vectors
with a normal vector that is considered characteristic for each area. There is an analogy with the
objective of our research since we have to identify areas based on the similarity of the
deformation gradient of a facet and a deformation gradient quantity, characteristic of the area. To

the existing nomenclature we add R, (f;) which is the facet of the region with index i, R;(v,)

which is the vertex of the region with index i,|Rj|f and |Rj

which are the number of facets and

vertices in the region respectively.
We employ the same clustering algorithm as in [13], attempting to minimize the following

distance for each regionR; :

D(T,.F)) =[d., D, (3.27)

where D is the mean deformation gradient of region R;:
5 fiesz D;, (3. 28)
LR

Note that all these operations take place on the rest pose. That is why the inter-pose mean
deformation gradient D, ; of facet f; is employed.

Steiner et.al name (3. 25) distortion error, so to preserve the analogy we name D(T,F,)

deformation error. Notice that deformation error is not area weighted. There is no need for
inserting the area in the metric since it is deformation we seek to capture upon the surface. Any
area differentiation in the course of the animation sequence is captured by scaling and shearing

60

deformation quantities, embedded in deformation gradient. The clustering algorithm is divided in

three steps

1.

Initialization: A number of k facets are picked at random, equal to the maximum
number of clusters we require. These facets will serve as the first seeds for the growing
algorithm. In a sense each seed is a region in this phase, and its deformation gradient is

the D, quantity of the deformation error. It must be noted here that this algorithm too is

heuristic and greatly dependent on the initial seed choice. In an animation sequence the
parts of a highly deformable model that are subject to most deformation are usually the
boundaries. Recall that the P-Center algorithm has the tendency to assign centers at the
boundaries in its first steps. Since k is small, this appears as a useful property and P-
Center is used for initial seed selection instead of random selection.

Deformation-Minimizing Flooding: Each seed facet registers its immediately adjacent
facets (one edge in common) to a global priority queue, sorted by their deformation error

against D;of the region they belong. Along with the facet, an index is stored indicating

the region it has been tested against. So a facet may appear in the priority queue at most 3
times. Once all seeds have registered their adjacent facets, the first facet is exported from
the priority queue and a check is made if it has already been assigned to some region. If
not, it is assigned to the region that the corresponding index indicates and the facet is
marked as claimed by that region. If the facet has been assigned to some region it is
ignored and the next facet is exported from the priority queue. Prior to its assignment to
the indicated region, each facet registers it’s immediately (up to two) adjacent facets into
the queue. The procedure continues in the same fashion until the priority queue is empty
upon which point each facet has been assigned to a region. Note that seed facets don’t
enter the priority queue. This way we ensure that the requested number of regions is
returned even if a region consists of one facet.

Seed Fitting: Upon emptying of the priority queue, the value D, of each new region is
calculated and a new seed is selected in each region. The seed is the facet whose
deformation gradient is closer toD,. Notice that we do not replace D; with Dy ..., . The

seed facet is simply used to initiate the growing process.

61

The process repeats from 2 to 3 until sum criterion is met or until a specified number of
iterations is performed. The criterion we have used was the deformation error, at each step, of the

newly appointed seed facet Dy .., as described in Seed Fitting part of the algorithm. Algorithm
3.5 gives the partitioning algorithm in pseudo code. We denote as RLSeed the seed facet of region

R j»andas D, ., the deformation gradient of the seed facet.

j,Seed

Algorithm 3.5 VariationalRegionGrowing(AnimationSequence[0], k ,maxlterations, TOL)

1. newC:=P-CenterClustering(AnimationSequence[0], k);
2. PriorityQueue:=g;

3. AssignedFacets:= &;

4. C :=newC,

2
5. while avg| >’ ||Dj,59ed -D; ” <TOL or maxIterations>iterations do

‘C‘ RjeC

6. for each Rj inCdo

7. PriorityQueue := PriorityQueue U ImmediatelyAdjacentFacets(ijseed);

8. while PriorityQueue '=@do

9. Facet:= PopFromQueue();

10. if 1AssignedFacets.Contains(Facet.ID)

11. PriorityQueue:= PriorityQueue U ImmediatelyAdjacentFacets(Facet);
12. AssignedFacets.Add(Facet.ID);

13. newC|[Facet.RegionID].Add(Facet);

14. for each R;in Cdo
15. D, :=ComputeMeanDeformationgradient(R;);

16. R; «ed :=GetNearestFacetToMean(D,);

j,seed *

17. C :=newC;
18. newC:= ;

19. iterations:= iterations+1;

Algorithm 3.5: Variational region growing

62

Variational region growing ensures spatial and deformation coherency returns the required

number of clusters. Initialization process is performed in P-CentersO(kn)complexity.
Deformation-minimizing flooding is performed rapidly (nlog(n) complexity), while seed fitting
is performed in O(n)since all facet deformation gradients are to be compared with the mean

deformation gradient of the region. Figure 3. 15 depicts the results when applying this algorithm.

a) b)
Figure 3. 15: a) Mean deformation gradient distribution of animation sequence, b) Variational

region growing

Deformation Based Proxy Joint Distribution

With the model partitioned according to the distribution of deformation gradient, it is now
possible to distribute the proxy joints using this information. The idea is to distribute more proxy
joints in region that enclose high deformation, while also considering the size of each area. It is
pointless to assign a big number of proxy joints in a very small cluster because it presents with
very high deformation and undermine larger clusters with slightly lower deformation. The area
calculations are with respect to the rest pose of the animation. No assumptions or calculations are
made about variations in the model’s area through the animation sequence. The procedure is
completed in two steps:

1) Specification of the number of proxy joints per region.

2) Distribution of proxy joints over the region.

63

Specification of the number of proxy joints per region

By default, all regions will be assigned with at least one proxy joint. We then need to distribute
the rest of the proxy joints based on the participation of each region to the overall deformation
and the overall area. One way to compute this participation would be to compute the deformation
gradient of an area compared to that of the rest pose. However the deformation of a region has the
area information embedded. As a result, large areas have high percentage of participation even if
they present with small deformation and vice versa. It is essential that the deformation gradient
amount of a region be separated by that of the area.

We achieve that by sorting each region according to the maximum value of deformation
present in it. To avoid be misguided by outliers, we average a very small portion (e.g. 1%) of its
maximum deformation gradients. The result is then linearly interpolated between the minimum
and maximum deformation gradient values of the rest pose as a whole, to produce a value in

[0,1]. We call the resulting quantity, Deformation Indicator.

(3. 29)
dl; =lerp(avg _max;)

where

lerp(x): [mjin(Dj), m?x(Dj)] —[0,1] (3. 30)

To maintain balance between region size and deformation we then compute the percentage of

participation of each region to the area of the model. We denote by dI the deformation indicator
of region R;and a, the area percentage of the region with respect to the area of the model. Their

product gives the Participation Factor of the region:
FP, =dl, 3, (3. 31)

To transform this factor into a percentage we sum up all participation factors and divide it by

this sum. If nproxy joints are to be distributed then the share of each region is given by:

FP

i
SF
i

n-

(3. 32)

64

Assignment is performed with regions sorted by the deformation indicator. Thus regions with
high deformation have higher priority. This formulation results in residuals due to truncation. The
remaining proxy joints are sequentially assigned one per region, according to the priority
bestowed by their deformation indicator. Only in this case the area percentage is not taken into

account.

Distribution of proxy joints over the region

Knowing how many proxy joints each region has, what is left is to distribute the proxy joints
upon this region. To facilitate our weight fitting policy we need the proxy joints uniformly
distributed over each area. For this reason we employ the regular k-means clustering algorithm.
Recall that proxy joints are vertices. So this time clustering is done using vertex coordinates. In
case a region has only one proxy joint we assign it to the vertex closer to the centroid of the
region. The centroid of the region is trivially computed by:

2V

C, :|iR— (3.33)

Iy

Figure 3. 16 shows the results of our method on the tablecloth animation sequence and on a

flapping flag. Notice how red areas are overpopulated with proxy joints.

65

66

(c) (d)
Figure 3. 16: a) Deformation gradient blueprint, b) Proxy joints distribution against deformation
gradient, c) Variational region growing partition, d) Proxy joints distribution against region

partitioning

Deformation Based Weight Fitting

Deformation based partitioning and proxy joint distribution can now be used to facilitate the
weight fitting process. It must be noted that, as with proxy joint fitting, weight fitting is vertex
and not facet oriented. In the course of our research two weighting schemes were tested:

a. Distance based influence

b. Convolution propagated influence
on which we elaborate in the following sections. Weight initialization in both schemes is based
on the distance of a vertex from the proxy joint. The further a vertex is from a proxy joint, the

less influence it receives from it.

Distance based influence

This scheme employs purely distance based inter-cluster influence from proxy joints. Each proxy
joint creates a spherical influence area around it affecting all vertices in it. Recall that k-means
clustering has been used to distribute the proxy joints upon each region. The results of this
clustering can also be used to define the influence regions of proxy joints. The radius of each
influence area is set equal to the distance of the proxy joint from the furthest vertex of the cluster
k-means returned and had as center that proxy joint. This scheme is similar to the one used of

uniform proxy joint distribution (section 3.4.3). Figure 3. 17 depicts this notion.

67

Figure 3. 17: Distance based inter-cluster influence

Proxy joint b has v. as its furthest vertex in its cluster. This produces a region of radius equal

to their distance and outlined by the red dashed circle. The continuous red line marks the within-
region borders between the clusters returned by applying k-means. There is also a P-Factor
present to facilitate the enhancement of the influence area. Equations (3. 15) and (3. 16) give how

weight influence is computed. Figure 3. 18 shows the results of the approximation process when
using this scheme for weight fitting.

(b)

L A & 4

69
(© (d) (€)

Figure 3. 18: Approximation with distance based weight influence. a) Deformation based region

specification, b) Deformation based proxy joint distribution, c) Approximation d) Approximation
with proxy joints, e) Approximation error distribution.

As in uniform proxy joint distribution, over-fitting effect is obvious. The result is the
presence of bumps in the approximation. Especially in the event of small isolated regions with
one proxy joint (Figure 3. 19).

& B

Figure 3. 19: Bumps on isolated regions due to over-fitting

It appears that in some way the amount of inter-cluster influence must be regulated. We also
need to take advantage of our deformation based region specification. For example in areas where
there is little deformation (such as the middle of the tablecloth), a certain degree of rigidity may
be acceptable and more inter-cluster influence should be added as we approach the borders of the

regions.

70

Convolution Propagated Influence

In this scheme, during the initialization stage, we use the borders of the region to block inter-
cluster penetration. All vertices within a region are influenced only be its proxy joints.
Additionally each proxy joint affects all vertices within a region. Only the vertices on the borders,
receive inter-cluster influence. Weight assignment is still distance based. Recall that only
Euclidian distances are being used.

Kim et.al [14], proposed to perform Laplacian smoothing to smooth the weight influences
from various bones of quasi articulated animation sequences. We adapt this idea to highly
deformable animations sequences and change Laplacian smoothing, which is liable to produce
negative weights, to mean smoothing. The process is analogous to the convolution process,
applied for smoothing 2D images. Instead of pixels we have vertices and instead of color
components (i.e. RGBA) we have influences from bones.

We denote by:

Star(v;) ={Sv;, SV,,..., SV, } (3. 34)

the set of vertices neighboring to v;.

Sy, Sv,

Sv, Sv,

Sv,

Figure 3. 20: Star of a vertex

The convolution kernel is not based on the pixels neighborhood but of the vertex’s star. Thus
each weight component (influence) is given by:

71

(3. 35)
Wi = |Star(v)| Zwb

Upon completion of the initialization process, the convolution phase initiates, during which
each vertex convolves its weight influences with the influences of its neighboring vertices. Figure
3.21 visualizes the effects of various levels of smoothing while Figure 3.22 depicts the
approximation results when Convolution Propagated Weight fitting is used.

..' 4
(b)

o

(c) (d)
Figure 3. 21: a) Initial region specification, b) 1-pass Smoothing, c) 5-pass Smoothing, d) 10-pass

-

Smoothing

73

Figure 3. 22: Approximation with Convolution propagated weight fitting.

We see that the bumps on the surface have disappeared. This is a result of uniformly
distributed weight influences over the surface due to weight smoothing. However the error is still
close to that of the Uniform proxy joint distribution. This is because our method also suffers from
over-fitting. We do not have a limitation over the number of influences a vertex may have. So
even with regulated influences the result is an overall rounding of the model. Execution time has

also increased due to over-fitting as expected.

74

CHAPTER 4

IMPROVING EFFICIENCY BY DECIMATION

4.1 Introduction
4.2 Simplification Process Overview
4.3 Contraction Priority Specification

4.4 Contraction Location Algorithms

4.1 Introduction

Transformation matrix fitting is the most time consuming phase of the approximation process.
Using Dual quaternions instead of affine matrices can boost execution but with a tradeoff in
quality. Another way would be to reduce the number of proxy joints but rationally this would
also lead to increase of error. Another way to speedup execution of transformation fitting is to
reduce the number of vertices of the model by applying some decimation (simplification) method
on it. Depending on the level of simplification we expect some increase in the approximation
error due to reduction of available samples for the approximation of transformations and to
possible misplacements of the contracting vertices. However we show that the reduction in
execution time is significant enough to render the approximation error acceptable.

The idea is to simplify the animation sequence to any level of detail we desire and then use
the remaining vertices to specify the transformation matrices of the proxy joints.

In the following sections we present methods of achieving simplifications of animated
sequences in a manner that produces quality approximations. We present an error metric that is
used to decide the order in which the edge contractions must occur and then present various

methods of deciding the vertex position of the contracting edge.

75

4.2 Simplification Process Overview

Equation (3.34) and Figure 3.20 present the definition of the star of a vertex. Simplification is the
process of iteratively merging the stars of adjacent vertices. This merging is called contraction.

Figure 4. 1 gives an example of a single iteration of simplification process.

Via Vis Vie Visia Vise

VI +1,2

V
Vi0 Vig Vig +1.10 Viss

Figure 4. 1: Vertex contraction in simplification process

Index lindicates the level of detail the mesh currently is.

Generally for two verticesv,, v, to contract, any of the following must hold:
1. (v,,v,)isan edge

2. |v—v,| <t, where t is some threshold.

In our context however it is not desirable for unconnected vertices to contract due to
proximity, because mesh connectivity preservation is a major prerequisite. Additionally we make

no distinction between edges (v;,v;)and (v;,v,) since the methods we use do not require such.

Also, as seen in Figure 4. 1, when two vertices contract the resulting one takes the index of the
second vertex of the edge. Finally the triangles that contain both contracting vertices disappear
after contraction and with them any unused vertex indices.

It is also desirable to delay simplification of areas that undergo high deformation because we

need as much vertices as possible to better approximate them. This means that a priority must be

76

kept in3 the order of vertex contractions. Finally we must make sure that simplification does not
leave a proxy joint without vertices dependent on it because it will not be possible to compute its

transformation matrix and thus approximate the area it covers in the original model.

4.3 Contraction Priority Specification

To enforce a priority in the order of contractions it is necessary to introduce a metric that
describes their cost. All contractions can then be sorted and executed according to this cost. Upon
each contraction an algorithm is employed to decide the optimal position of the vertex produced
by merging the contracting ones. No matter how accurate this positioning is, an error is always
propagated with respect to how the shape of the model is preserved after each contraction. The
amount of this error can be the cost criterion of the contraction. For now we assume that a
method which decides on the merge vertex location after the contraction already exists. We shall
present such methods later.

To quantify this error [15] introduce a method of approximating it using quadrics (2. 56) (2.
57). Each vertex in a triangulated mesh is the solution of the system of equations that describe the
plane of the facets that contain it. Thus each facet has an error quadric (2. 57) associated with it.
If we moved this vertex to some other location v' then the sum of the squared distances from all

its former planes would be:

AV) = > (Vp)(P'V)

peplanes(v)

= > VT(pp")V

peplanes(v)

(4.1)
— VIT (z ppT) VI
peplanes(v)

T '
=V (> Kp]v
peplanes(v)

This gives the distance of any vertex from a set of facets that belong to the star of a vertex v.

Potentially what happens when a contraction takes place is that two vertices are moved from their

77

original position and, merged, are positioned somewhere else, in a distance from the set of facets
(planes) they belonged. This means that both vertices propagate an error dictated by their
fundamental error quadrics. For two contracting vertices v,andv,, we denote by Q,and Q,the
error quadrics of each one respectively and the accumulated error quadric of their contraction

(movement) is:
4.2
Q(1,2) = Ql + Qz

Depending on the coordinates of the merge vertex after the contraction, Q(lyz) gives the sum

of squared distances of these coordinates from all of the facets from the stars of the contracting
vertices.
The formulation above applies to static meshes, but it can be extended to animated sequences

[17]. Assume that we have defined the new merge vertex coordinates for all contractions

throughout the animation sequence. We denote by \7(?, j) the vertex coordinates of the new vertex

after contracting edges i, j in pose p. For each contraction pair (i, j) on an animated sequence

of P poses the contraction error of an edge is:
: T (4.3)
5P P PP :
Z;V(i,n (Qi +Q)V(i,n
p:

This formulation presents with an interesting property. The higher the deformation a facet
undergoes the higher the contraction cost it produces for its vertices. This information can be
used to form a priority queue for contractions and perform the contractions with high quadric

error as late in the process as possible.

4.3.1 Proxy Joint Validity Preservation

Recall that proxy joint locations in the original model are associated with vertex locations.
During the decimation process proxy joints maintain their original coordinates. That means that
their base vertices may freely contract. We ensure that these contractions will not leave a proxy

joint without vertices dependent on it by allowing contractions only between vertices that share

78

exactly the same proxy joint influences, in the case of uniform proxy joint distribution (P-
Center). In the case of deformation based region specification the rule is augmented by
prohibiting contractions which contain vertices that are positioned on the border of a region. The
reason is that we want to preserve the locality offered by this method even in the simplification

phase.

4.3.2 Contraction Validity

One caveat of the simplification process is the possibility of change in the orientation of a facet.
Figure 4. 2 demonstrates this behavior. If we assume that all facets are co-planar then contraction

of verticesv, and v,from the mesh to the left results in what was facet [v,v,v,]to change its
orientation (flip) and also overlap with [v,v,v,]. This leads to not valid tessellation and

potentially degenerate mesh. To avoid this effect, upon contraction cost computation we check
the normal vectors of all facets in the star of contracting vertices. If the contraction results in a

facet rotating its normal by 180° then this contraction is canceled and ignored.

pa
Figure 4. 2: Facet flipping after contraction

79

4.3.3 Priority Queue Schemes

The two different proxy joint distributions we presented employ different strategies in enforcing
priority in the order of contractions.

In the case of proxy joint uniform distribution the priority queue is global. Contractions are
viable to occur on any location upon the model, subject to the rules we have mentioned.
Deformation based proxy joint fitting can also implement decimation using global priority queue.
Figure 4. 3 shows the results of applying global priority queue decimation. Notice how dense the
areas with high deformation remain and how the boundaries of the clusters are beginning to show
after a certain level of decimation.

(b) (c) (d)
Figure 4. 3: Global priority queue decimation. a) Deformation footprint and clustering, b) 20%

Decimation, ¢)40% decimation, d) 60% decimation. The boundaries of the clusters clearly

visible.

80

In the case of Deformation based proxy joint fitting however, it is possible to deploy a more
convoluted strategy. The reason is that our method has the notion of deformation embedded. We
do make use of the quadric error but merely to order the contractions within each cluster.
Globally, we want to use the information of deformation we have associated with the various
regions, and allow regions with less deformation to be decimated to a higher degree while
preserving regions with more deformation as much as possible. Another advantage that
deformation clustering offers is the possibility to have multiple priority queues, each associated
with a region. With the isolation provided by the proxy joint validity scheme we have the ability
to perform the decimation process in parallel.

Deformation gradient data is utilized to decide how many contractions each region will
perform on its vertices, compared the overall amount requested. This is done in a manner similar
to the proxy joint distribution scheme. The size of the regions which in this context is interpreted
as the size of the priority queue of each region (i.e. the vertex pairs viable for contractions) is also
taken into account. The less deformation gradient enclosed within it and the largest its priority
queue, the more contractions a region performs. In general we want all regions to participate in
the simplification process and not have any exhaustively decimated.

To represent the deformation amount of a region, a quantity similar to deformation indicator

(see (3. 29)) diis utilized. However its use is slightly different. In the case of proxy joint

distribution the higher the indicator was, the bigger the amount of data (proxy joints) to be
distributed was. In the context of decimation the opposite holds. Big deformation indication
means small amount of distributed data (contractions). Again we average only of a small portion
of the maximum deformation values of each region (say 1%). Only this time the deformation
returned is inverted and interpolated between the inverse maximum and minimum deformation

values of the rest pose:

idl; =inv_lerp(——— (4.4)
avg _max

where

1 1
max(D;) min(D;)
]]

inv_lerp(x):[]—-1[0,1] (4.5)

81

Each time the simplification process is performed, each region is obliged to perform a fixed

percent of contractions from its priority queue. We call this percentage shuffling ratio. idl,
(inverse deformation indicator) is used to regulate shuffling ratio. If we denote by PQ; the set of
contractions currently available in the priority queue of regionR;, the amount of contractions

each region contributes is given by:
idl, - shuffling _ratio-|PQ| (4. 6)

If a region manages to cover the amount of requested contractions, the process stops. This
means that the larger the shuffling ratio, the less regions contribute in the decimation process. In
general a large shuffling ratio is not preferable because it causes regions with small deformation
to be exhaustively decimated while others remain untouched.

Algorithm 4. 1 provides a description of the decimation algorithm when using a global priority
queue. For the priority queue to be populated, virtually all contractions in all poses must be
calculated (function ComputeContractionCosts). This is done once during initialization and after

each contraction only for those edges that where affected (function ContractGlobal, line5).

Algorithm 4.1 DecimationGlobalPQ(AnimationSequence,amount)

1. DummySequence:= AnimationSequence.Clone();

2. EdgeL.ist := GetConnectivity(AnimationSequence);

3. GPQ := ComputeContractionCosts(EdgeL.ist);

4. ContractionsList:=J ;

5. while ContractionsList.Count != amount && GPQ != Jdo
6. Contraction := Pop(GPQ);

7 if IsValid(Contraction) then

8. ContractGlobal (Contraction);

9

ContractionsList. Add(Contraction);

1. function ComputeContractionCosts (EdgeList)
2. foreach Edge in EdgeL.ist do

82

3. SumCost :=0;

4. foreach Pose in AnimationSequence

5. MergeV:=NewVertexCoordinates(Edge,Pose);

6. SumCost := SumCost + MergeV ' - Edge.Q, - Edge.Q, - MergeV
7. PQ.Push(SumCost,Edge);

1. function ContractGlobal(Contraction);

3. DummySequence.Delete(Contraction.V1);
4. GPQ.DeleteRelated(Contraction.V1);

5. GPQ.UpdateRelated(Contraction.V2);

Algorithm 4. 1: Description of the decimation process using a global priority queue

Algorithm 4. 2 describes the decimation process using one priority queue per deformation region.

Algorithm 4.2 DecimationLocalPQ(AnimationSequence,amount)

1. DummySequence := AnimationSequence.Clone();
2. ContractionsPerRegion := J;

. ContractionsList := &;

3
4. foreach Region in AnimationSequence.DeformationRegions do
4 EdgeL.ist := GetConnectivity(Region);

5

LPQ[Region] := ComputeContractionCosts(EdgeL.ist);
6. ContractionsPerRegion := idl - shuffling _ ratio~|LPQ[Region]|

~

. while ContractionsList.Count != amount && LPQ != Jdo
8. foreach Region in AnimationSequence.DeformationRegions do

ContractionsDone:=0;

9 while ContractionsPerRegion[Region] > ContractionsDone
Contraction := Pop(LPQ[Region]);
10. if IsValid(Contraction) then

11. ContractLocal(Contraction, LPQ[Region]);

83

ContractionsDone:= ContractionsDone +1;

1. function ContractLocal(Contraction,PQ)
2. DummySequence.Delete(Contraction.V1);
3. PQ.DeleteRelated(Contraction.V1);

4. PQ.UpdateRelated(Contraction.V2);

Algorithm 4. 2: Description of the decimation process using Local priority queues

4.4 Merge Vertex coordinates Specification Methods

To perform a contraction, the coordinates of the merge vertex must be specified. Various
schemes can be implemented for this decision. However it must be taken into account that this
operation takes place at the heart of the simplification process and is repeated frequently. This
means that the more complex the scheme the more time consuming the simplification process

will be.

Second Edge Selection

Simple schemes can be used to for this selection such as selecting the location of the second
vertex of the contracting edge. Figure 4.1 gives an example of such a contraction. This is the
simplest scheme, the fastest and presents with good approximation results. The reason is that it
retains the existing coordinates of the meshes vertices and thus the transformations of the real
mesh. Some more sophisticated positioning might have been optimal with respect to the visual
quality, but it would introduce deviations from the original geometry and thus error in the
approximation. However a strong representation from the whole surface is still necessary and this

method does not guarantee this prerequisite.

Optimal-Error Minimizing Selection

From equations (4. 1) and (4. 2) comes that merging the two contracting vertices to a new

location V results in an error of:

84

4.7
A(V)=V'QV @0
If we denote the unknown quadric matrix by :

qll q12 q13 q14
Q — q21 q22 q23 q24 (4 8)

q3l q32 q33 q34

O 0 0 1

then it holds that :
A(V) =V'QV

(4.9)

= (:]11)(2 + 20, XY + 20,,XZ + 20, X+ 0,, y2 +20,,y2z

+200,,Y + O352° + 20,2+,

which is a quadratic equation and to find the vertex V=[x y z]' that minimizes it is simply am

matter of finding the roots of partial derivatives:

8A_8A_8A_O (4.10)
ox oy oz
This is equivalent to solving :
Gy o Gy Cha 0
O O Oz O V= 0 (4.11)
O Oz Oz O 0
0 0 0 1 1
which is a matter of invertingQ :
-1
Gy G Chs G| |O
v: q21 q22 q23 q24 0 (4 12)
qSl q32 q33 q34 0
0O 0 0 1 1

85

It is possible that matrix Q is not invertible. For each vertex, before the contraction, the 3x3
upper left part of its error quadric matrix is symmetric and positive semi definite:

a? ab ac

A=|ab b® bc
ac bc c?

(4. 13)

The eigen-values and eigen-vectors of this matrix define the principal axes of an ellipsoid
whose centroid is the vertex. That ellipsoid is an iso-surface that contains all the possible

locations around the vertex that have error A(V) =& . During contraction, the optimal location of

the merge vertex is searched in the union of the two iso-surfaces of the contracting vertices.

In the event that the stars of these vertices are completely co-planar, then the iso-surfaces are
planes, and the possible optimal locations are infinite. The same holds when the contracting
vertices lie on a sharp edge, where the iso-surfaces are cylinders extending to infinite.

In these two cases, matrix Q is singular, an optimal location cannot be specified using (4. 12) and

as such we rollback to selecting the second vertex of the contracting pair.

4.5 Weight Influences Propagation

The main purpose of decimating the object is to perform transformation fitting using smaller
versions of the original model. As the decimation process removes and relocates vertices, vertex
weights need to be updated. Depending on the fitting scheme different strategies may be
followed.

In the case of Uniform Fitting, because weight fitting is purely distance based, the weights of
the remaining vertices can be recalculated upon completion of the decimation process.
In deformation based fitting due to convolution propagated influences the weights need to be
assigned during the contraction process. This is done in the same way that weights propagate

during the weight fitting procedure.

86

CHAPTER 5
REFINEMENTS

5.1 Introduction
5.2 Eigen-Skin
5.3 Rest Pose Corrections

5.4 Weigh Corrections

5.1 Introduction

Matrix palette skinning is an approximation technique and has not enough information to
approximate sufficiently all the fine details of an animation sequence. It is simply not possible to
contain all the degrees of freedom required around a bone within a transformation matrix. There
exist techniques that can be used to improve the visual fidelity of the model, however each one
presents with a cost in complexity. In the following section we shall describe one such popular
technique along with two optimization techniques that we introduce and add to the overall result

of our methods.

5.2 Eigen-Skin

In [9] a variation of the Eigen Skin corrections presented in [18], is suggested. The basic idea of
Eigen Skin is to compute the error produced by the approximation process at each vertex and
after adding this error to the rest pose, repeat the Linear Blend Skinning Process. This results in
correction of the approximation errors. To specify the correction vector the difference between

the approximation and the actual pose is used:

5.1
eip = Vi, _prvip -3

Correction vector is then transformed back to the rest pose using the inverse of the

transformation matrix:

87

(5.2)

Figure 5. 1 describes this notion.

T Rest Pose

Approximation Pose

Figure 5. 1: Eigen Skin correction vector e

All correction vectors for each pose are computed and stacked in a 3NxP matrix E. Thin SVD

is then performed upon E to decompose it in:

5.3
E =DK ©-3)

where D is a 3NxP matrix containing the so called eigen-displacement vectors while K =SV is

a PxP containing the eigen-displacement coefficients. To store these matrices so to have all the

range of the corrections available would cancel the compression effect of matrix palette skinning.

After all, not all of matrix D is required but a small number of its first columns which institute the

eigenvectors that best describe the correction that must be applied per vertex so to be corrected

throughout the animation. Thus instead of storing P columns only some f < P requires to be

stored. The rest of the unused columns are set to zero.

The resulting matrices are:

88

5.4
E'=D'K' =.4)
where
B f p—f]
dy, d; 0 0
D'= d:21 d2f 0 O (5.5)
d(3N)1 d(SN)f 0 0
and
i f -t T
k11 110 0
K'e kiz kfzq 0 (5.6)
Kp - KpO - 0

Correcting the approximation is then only a matter of adding the corresponding eigen-
correction to the approximation:

57
Vip,correct — pr (V: + (eip)) ()

Note that Eigen-Corrections need to be stored along with the rest of the matrices of the

approximation. This reduces the compression achieved.

5.3 Rest Pose and Weight Corrections

Following the same philosophy we present two methods of applying corrections to the rest pose
and the weights of the fitting process. These corrections are embedded in the final result and need

not be stored separately as is the case with Eigen-Skin.

89

Rest Pose Corrections

Having computed transformation matrices T for all poses and proxy joints, we seek a vector e,

that is added to each vertex of the rest pose and minimizes the sum of the squared errors of the

approximation in each pose:

2

B
i 5.8
min| > (Zwbinpj(vi +e)-vP ©.8)
p b=1
The solution of this problem is equal to finding the least squares solution to:
B B

Z w,T,"e; =V — Z W, TV, <

= (5.9)

b=1
B

Pa _ b p
zwbin €=V, -V
b=1

for each vertex i and pose p. The above can be expressed as a linear system of the form Ax=Db

where Ais a block vector of N blocks. Each of these blocks of size 3Px3 contains the weighted
transformation matrices, without the translation component, of the proxy joints that affects each
vertex for all poses. The 4™ column, that of the translation component, is removed because we

want e;to lie on the plane W=0 in homogenous coordinates. This is because it is added to v,

which already is on plane W=1 of the homogenous coordinates. If we denote by:

L =T(1:3)0 (610
to be the linear part of the affine transformation matrix T then:
- Zb: w, L |
A A.\Z A Zb:wibLﬁ (5. 11)

AL S
L b _

90

From the right, b is a block vector of N blocks. Each block is of size 3Px1 that contains the

difference of the actual pose from the approximation pose for all poses:

bt] Vvt]
S L O Gl (5. 12)
LbN | _ViP _Vi!P—

Solving this set on N systems A'x =b' results in one correction vector for each vertex in the
rest pose. The rest pose is thus altered and all subsequent operations must take place on this rest
pose. This is also the rest pose that is stored by the algorithm as a result of the compression

process.

Weight Corrections

Another correction process can be applied on the weight influences. Again having performed the

fitting process we are searching for a weight wj, that is added to each corresponding weight

influence to a vertex i such the sum of the squared errors of the approximation in each pose is

minimized:
’ 5.13
min| > I (W + Wi)T Py, —vf ©.13)
p i
Again this is equivalent to the least squares solution of :
B
Z (W +W)T)” |V =V =0

b=1

(5. 14)

B B
p TP p_
b=1 b=1

B

TPy —yP p
ZWbin Vi=Vi =V,
b=1

91

for each vertex i and pose p. This can also be expressed as a system of linear equations of the
form Ax=Db where Ais a vector of blocks. Each block is of size 3PxB and contains the

transformed rest pose vertex for each of the influencing proxy joints. Overall A e R*"™® :

[AL (Tiv, Tiv, - Tl]
A= A’ A — T12Vi T22Vi TBZVi (5. 15)
A" TPV, TSv, - TRV

Matrix b is constructed from the differences of the actual from the approximation location of

each vertex in each pose and is the same as (5. 12):

bt] Vvt]
b — bz bi — Viz _Vi'2 (5- 16)
LbN | _ViP _Vi!P |

Recall from (3. 2) and (3. 3) that weight need to satisfy certain properties. The addition of
the correction weight must not disturb these conditions. Thus certain constrains need to be added

in the optimization process.

Convex Weight Requirement

Constraining all weights, after the addition of the correction weight, to sum up to 1 can be
achieved if the sum of the first B-1 weights of the correction set is constrained to be equal to the
negative of the B™ weight. This is because the sum of the fitted weights is already 1. The

following equation describes this notion:

B

Z(Wbi +w) =1l

b=1

B

B

, —
Zwbi -0
bh=1
B-1

Wi = —Wg;
-1

o

Substituting wj, in (5. 14) we get:

p p p _
W, TPV + W, TV W, Ty, =

ZB:wbi =1

B , b=1
Dw > w =1 o
b-1 b-1

B-1
p p p _
W, T,Pv, + W, TPV, +...+(—ZwbijTB Vv, =
b=1

Wi (Tlp _TBp)Vi + W, (sz _TBp)Vi ot W(B—l)i (TBp—l _TBp)Vi = Vip _Vi’p

92

(5. 17)

(5. 18)

From the above holds that this constraint can be added implicitly by subtracting the last

column of matrix A from each of the other. Thus A becomes:

2[1
2[2

o

B B-1
N 1 1 1
T1 Vi T2 Vi TB—lvi
2 2 2
Q[i _ T1 \Z Tz Vi TBflvi
p p p
i Tl Vi Tz Vi TB—lvi

(5. 19)

and weight wi; is removed from the unknowns vector since it can be computed once all other

weights have been specified.

93

Non-negativity Constraint

Each weight must be non negative. For that we must ensure that after the addition of the

corrections the corrected weight remains positive. This means:
!/
W, — Wy 20 & (5. 20)
/
Wi < —Wi

This produces a problem because we have removed the last correction weight from the list of

unknowns to satisfy the convexity requirement. Thus we cannot add the wj, > —w;, constraint
implicitly. The walk-around for this was to request explicitly that:

!
Wy, < —Wg; <
B-1

=) Wy S Wy & (5.21)
b=1
B-1
Wbi = WBi
b=1

Solving this set on N systems A'x=Db' results in a correction for each weight influence of
each vertex.
Both correction processes can be applied independently or in conjunction with the order of

application presenting with no actual difference.

94

CHAPTER 6
IMPLEMENTATION AND RESULTS

6.1 Implementation Details

6.2 Test-bed Animation Sequences
6.3 Error Metrics

6.4 Decimated Approximation Results

6.1 Implementation Details

Our implementation was build using C# programming language. OpenTK, an OpenGL and
GLSL shading language wrapper for C#, and was used for 3D visualization. Mircosoft .NET
libraries where utilized for the creation of user interface and Matlab for complex scientific
calculations. Interoperability between matlab and .NET was established via Matlab.NET builder
which creates dlls containing matlab code that can be executed by .NET applications. The whole
application was developed using Microsoft Visual Studio Development Environment, versions
2008 and 2010. Matlab Development environment was also utilized. For the dockable windows,
the open source DockPanel Suite [24] was used.

The application has the ability to load multiple mesh files of Wavefront .obj format, to render
an animation sequence. Multiple animation sequences can be loaded and processed
simultaneously. It utilizes all the techniques that were mentioned in this report to approximate the
animation and can render the result of the approximation, as well as visualize error distribution
upon the surface. We also use GLSL shading language to create visualizations for clustering and
proxy joints. The approximation results can be saved in xml files and again be reloaded. Our
application can also execute decimation of a mesh at variable levels and apply approximation
techniques one the decimated model. Figure 6. 1 shows a snapshot of our application.

All experiments were run on a Intel Core i7 880 3.06Ghz 6GB RAM, NVidia GForece 480
GTX, under Windows7 64-bit operating System. All animation sequences where created using
Blender.

POl = e

- lo @ | B
Fle Eda Tooh Help Solih Form
WL E YD
|
_______ i - % | PoseSequence List B x
Ko 380 | v FE5| o
4 Mok e noe
= e
Lnesr Bard Sarvar o Beocn, 00008
Dusterng Peae 0
I3 [viam + = Pran_t
- Feam 3
Poae 1
Fome 4
Peoe 8
Fean 6
Foan 7
Pose
Fese %
Pove 30
Pean_11
F Cuser] Pow 12
Pty Borma | i Cameterue | @?@1
Prwsw | 1800 [Uk e | [P Duanen] Tkt 000008
ot Diststugion Method [- =]
[rtmchter irfumrce (¥ iteacesifience
[termahoe: Wb
M FHS (Uit | =]
[ol

olStripStasLabal
% Mehlatiom | Pose Sequence List |

sty Werrertm 57 2010
I Cises - (Posetasform)
i et P Tl EnienSeoct

matiect)
in-Threaded

n-Troeaded ABATI10508 eecs
i Thmenten] CE14B8MITAEH0RE S

LR

6.2 Test-bed Animation Sequences

Figure 6. 1: Application User Interface screenshot

95

We present four of the models that were used to test the results of our approximation techniques.
Each model was picked to represent a specific type of deformation.

Tablecloth

Figure 6. 2: Tablecloth animation sequence snapshots

96

Tablecloth is an animation sequence of a piece of cloth falling upon a table and starting to
deform. Tablecloth is a characteristic example of moderately highly deformable animation in
which large areas remain virtually un-deformed. Of the tablecloth animation, 70 poses where
used.

Flapping Flag

N)
— —— Y

Figure 6. 3: Flapping Flag animation sequence snapshot

Flapping flag is a model of a flag deforming against a wind field. Flag presents with extreme
deformation to the right part and moderate to the left, which is the part adjacent to the pole. 70
poses of the flag animation were also used

Collapsing Camel

e .\\\}-(l < \}

- “‘_-('% = - /1‘ \ / -
\ 7 /] N £ \’\/ N
'4 o £\ - S
7 - \ K
& N Wr I | N, —

Figure 6. 4: Collapsing Camel animation sequence snapshot

Collapsing camel is an animation sequence of a camel cloth model that collapses under is own
weight. This animation sequence is an example of extreme deformation. Collapsing camel is a 35
pose sequence.

97

Balloon

Figure 6. 5: Deforming Balloon

Balloon animation sequence depicts a cloth sphere that falls upon a pole and is deformed.
Balloon generally presents with overall moderate deformation. 60 poses of the balloon sequence
where used.

6.3 Error Metrics

For the evaluation of the approximation process three metrics where used. Two of them provide a
percentage of deviation. They have been used in [9] and [20], so we used them for comparison.
The first is called Distortion Percentage [8] and is given by:

HA\)rig - Aappr
HAorig - Aavg

where A, is a 3PxN matrix that contains the original coordinates of each vertex throughout the

F

dE =100*

(6. 1)

F

animation sequence. Aappr is structured similar to Aﬂppr and contains the approximation

coordinates. Aavg contains in its first 3 rows the average coordinates of each vertex and repeats

for each pose. Because this metric is sensitive to global motion applied to the entire mesh,
another metric which is translation invariant is used. It is similar to the first, only it divides by the

scalar ~/3NP to get the average deformation throughout the sequence:

HAOHQ A F (6.2)
Vv3NP

Eys =100%

98

The third metric is a variation of Hausdorff metric, only we average the average of the
minimum distances:

da (X,Y) =avg {avg (iyrg d(x, y)),avg (IXQ]: d(x, Y))} (6.3)

xeX yeY

6.4 Decimated Approximation Results

We have conducted experiments with the purpose of presenting the results of Deformation Based
Fitting and the implications of approximating a decimated animation sequence. Uniform Fitting
(P-Center based) is used as a benchmark for our method. The two fitting methods are applied and
compared on various levels of decimation from 0% (no decimation) to 60%. The legend of the
following figures is read as follows:
) OS(PC): Optimal-Error Minimizing Decimation on P-Center based fitting
i) OS(Deform):Optimal-Error Minimizing Decimation on Deformation Based Fitting
iii) SE(PC): Second Edge Decimation on P-Center based Fitting
iv) SE(Deform): Second Edge Decimation on Deformation based Fitting
V) OS(Corr): Optimal-Error Minimizing Decimation on P-Center based fitting with
corrections applied
vi) OS(Corr_Deform): Optimal-Error Minimizing Decimation on Deformation Based
Fitting with corrections applied
vii) SE(Corr): Second Edge Decimation on P-Center based Fitting with corrections
applied
viii) SE(Corr_Deform): Second Edge Decimation on Deformation Based Fitting with

corrections applied

Tablecloth Results

99

__ 14
9
L 12
3
£ 10
]
[«
o 8
£
' 6
[=
£
S 4
[J]
[-T]
g 2
[J]
Z

0

Average Solve Time

\’\\ —e— 0OS(PC)
~—_

\x 0OS(Deform)

N —*—SE(Deform)

0 20 30 40 50 60

Decimation Level (%)

Figure 6. 6: Tablecloth decimation average solving times on various decimation levels

Approximation Error *100(%)

Translation Aware Error (dE)
180000
160000 /’
140000 / e 05(PC)
120000 / —i— OS(Deform)
100000 / —a— SE(PQ)
80000 / —>— SE(Deform)
60000 / et 0S(CoIT)
40000 / ------ OS(CorrDeform)
20000 J SE(Corr)
L O - -] SE(CorrDeform)
0 20 30 40 50 60
Decimation Level (%)

Figure 6. 7: Tablecloth approximation error dE progression due to decimation.

60000

50000

40000

30000

20000

Approximation Error *100(%)

10000

Translation Invariant Error (E,s)

/ —e— 0S(PC)

—— OS(Deform)
/ —4— SE(PC)
/ —¢— SE(Deform)

et OS(CoIr)

---@-- OS(CorrDeform)

/ SE(Corr)

= SE(CorrDeform)
20 30 40 50 60

L

2)
L T -~

Decimation Level (%)

Figure 6. 8: Tablecloth approximation error E.,, progression due to decimation.

35000

30000

25000

20000

15000

10000

Approximation Error *100(%)

5000

Avg Minimum Error (d,,(X,Y))
!
/ —e— 05(PC)
/ —— OS(Deform)
/ —a— SE(PC)
SE(Deform)
/ et OS(Corr)

---l--- OS(CorrDeform)

J SE(Corr)

i} — SE(CorrDeform)
20 30 40 50 60

it

Decimation Level (%)

Figure 6. 9: Tablecloth approximation errord,,, (X,Y) progression due to decimation.

100

Flag Results

101

Average Solving Time per Pose (secs)

25

20

15

10

Average Solve Time

—e— 0OS(PC)
0OS(Deform)
—aA—SE(PC)

20 30 40

Decimation Level (%)

50

60

SE(Deform)

Figure 6. 10: Flag decimation average solving times on various decimation levels

Approximation Error *100(%)

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Translation Aware Error(dE)

= ~ N f/‘ —— 0S(Deform)
PR— . : . i
" S T e = —a— SE(PC)
cefBocemmnn== M--=oommms »---
SE(Deform)
et 0S(Corr)
---l--- OS(CorrDeform)
SE(Corr)
| | I SE(CorrDeform)
0 20 30 40 - 60

Decimation Level (%)

Figure 6. 11: Flag approximation error dE progression due to decimation.

0.3

$ 025

1=}

o

[l

* 02

e

b

c 0.15

S

Ed

£

£ 01

2

Q

& 005
0

Translation Invariant Error (Egys)

—— OS(PC)
4 A
*— & & i —1— OS(Deform)
e ' ' = = —a— SE(PC)
——————— W--=mennen W= E
—>— SE(Deform)
et OS(Corr)
---@-- OS(CorrDeform)
SE(Corr)
' ' ' ' ' - SE(CorrDeform)
0 20 30 40 50 60

Decimation Level (%)

Figure 6. 12: Flag approximation error E,,; progression due to decimation.

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Approximation Error *100(%)

Avg Minimum Error (d,.(X,Y))

vg

: — a —&— 0S(PC)

—— OS(Deform)

—4— SE(PC)

—>— SE(Deform)

et OS(Corr)

---l--- OS(CorrDeform)

SE(Corr)

T T T T T " SE(CorrDeform)

0 20 30 40 50 60

Decimation Level (%)

Figure 6. 13: Flag approximation errord,,, (X,Y) progression due to decimation.

102

103

Camel Collapse Results

Average Solving Time per Pose (secs)

30

25

20

15

10

Average Solve Time

\ 0OS(Deform)

v —a—SE(PC)

—*—SE(Deform)

0 20 30 40 50 60

Decimation Level (%)

Figure 6. 14: Camel collapse decimation average solving times on various decimation levels

0.06

0.05

0.04

0.03

0.02

0.01

Approximation Error *100(%)

Translation Aware Error (dE)

—— 0S(PC)
'_H = —m— OS(Deform)
—a&— SE(PC)
) I I I I | —>— SE(Deform)
"""""" B — — e . et OS(Corr)
---l--- OS(CorrDeform)
SE(Corr)
T T T T T 1 SE(CorrDeform)
0 20 30 40 50 60

Decimation Level (%)

Figure 6. 15: Camel collapse approximation error dE progression due to decimation.

0.035

0.03

0.025

0.02

0.015

0.01

Approximation Error *100(%)

0.005

Translation Invariant Error(Egy,)

e — e S
X———————%—

——————— - D EEEEE L SEEEEEEES W L I
0 20 30 40 50 60

Decimation Level (%)

—e— 0S(PC)

—— OS(Deform)

—a— SE(PC)

—¢— SE(Deform)

et OS(CoIr)

---@-- OS(CorrDeform)
SE(Corr)
SE(CorrDeform)

Figure 6. 16: Camel collapse approximation error E,,; progression due to decimation.

0.4

Avg Minimum Error (d,

vg

(X,Y))

0.35

0.3

0.25

0.2

0.15

0.1

Approximation Error *100(%)

0.05

20

30 40

Decimation Level (%)

50

60

—— OS(PC)

—— OS(Deform)

—a— SE(PC)

—— SE(Deform)

e OS(Corr)

---l--- OS(CorrDeform)
SE(Corr)
SE(CorrDeform)

Figure 6. 17: Camel collapse approximation errord

avg

(X,Y) progression due to decimation.

104

105

Balloon Results

Average Solve Time

3.5 \

\
NN -
2 N —e—0S(PC)

Average Solving Time per Pose (secs)

0OS(Deform)
1.5 — —
—a— SE(PC)
1
—*—SE(Deform)
0.5
0 T T T T T 1

Decimation Level (%)

Figure 6. 18: Balloon decimation average solving times on various decimation levels

Translation Aware Error(dE)
0.05

0.045 —
0.04 — A
/ / —e— 0S(PC)
0.035 / .
0.03 /// —— 0S(Deform)
0.025 A~ SE(PC)

0.02 % —— SE(Deform)

Approximation Error *100(%)

0.015 ' F— S — - m == 0S(Corr)
0.01 +—fpnmmez- T ------ OS(CorrDeform)
0.005 SE(Corr)
0 T T T T T 1 SE(CorrDeform)
0 20 30 40 50 60

Decimation Level (%)

Figure 6. 19: Balloon approximation error dE progression due to decimation.

Translation Invariant Error (E,s)

0.25
£ 02 __* Pad
¥ / / —*—0s(PQ)
*
. —— OS(Deform
g 015 / ()
'-"-z' —a— SE(PC)
',*E 0.1 - —— SE(Deform)
= R W---oooee- a empee OS(Corr)
e | - -
&& 0.05 Bi=eszccois . ---m--- OS(CorrDeform)
SE(Corr)
0 T T T T T 1 SE(CorrDeform)
0 20 30 40 50 60

Decimation Level (%)

Figure 6. 20: Balloon approximation error E,,; progression due to decimation.

Avg Minimum Error(d,,,

(X,Y))

0.35
g - //. T
e /x/*—" Y
*8 0.25 — .
o .%K B
E . —4— SE(PC)
3 *— /
£ 015 ———=—_ *~ 2 e se(Deform)
- A - - -
: I B et OS(Corr)
o 01 +——— —
; - ---@-- OS(CorrDeform)
< 0.05
SE(Corr)
0 T T T T T 1 SE(COerefOI’m)
0 20 30 40 50 60

Decimation Level (%)

Figure 6. 21: Balloon approximation errord,,, (X,Y) progression due to decimation.

106

107

Results show that P-Center based fitting and deformation based fitting are close to each other.
Execution times may vary according to the initial clustering which is random in both methods,
and according to different values for P-Factor and weight smoothing for P-Center and
Deformation based fitting respectively.

Also, experiments show that the improvement in execution time is not followed by an
analogous increase in the approximation error. Reduction can reach up to 4 times the original
execution time while error increase is rarely more than 10%. These results also depict that our
method is very close the uniform distribution results.

Finally it should be noted that when applying the corrections we proposed to the Uniform
Fitting the approximation quality tents to be lower of that, using Deformation Based Fitting. The

difference may seem small but at this low level of approximation error, it is notable.

108

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

We have presented a method that uses the deformation gradient information of an animated
sequence to partition the model into areas of similar deformation. These areas can be used to
distribute the proxy bones of the matrix palette skinning process in a deformation based manner
that results in more proxy bones being positioned at areas of higher deformation. We evaluated
certain possible methods that can be used to identify these areas and presented a region growing
variation of k-means clustering algorithm that accomplishes this task. A weight fitting technique
has also been suggested. It is based on the notion of convolution and used to smoothly propagate
inter-cluster influence. To accelerate the matrix palette skinning process we performed mesh
decimation.

Results show that deformation based fitting produces slightly higher approximation error than
the P-Center based one. Visual results however show that the approximation is free of the bumps
that denote the presence of cyclic regions around proxy joints. Although a certain amount of
rounding due to over-fitting is evident it is also possible that the model is scaled to a certain
degree throughout the process and thus this error is propagated. Recall that we allow more than
four weight influences to be applied to a vertex. This increases considerably the preprocessing
time. Multiple weight influences have been efficiently substituted by less in the case of
articulated objects but whether it is suitable to perform this on highly deformable ones has yet to
be studied. Uniform propagation of influences may also be sub-optimal. Distance is probably not
the only criterion for weight assignment and another scheme, probably deformation based, may
need to be considered. Our decimation scheme with our deformation based clustering can also be
extended. The potential of storing only the decimated pose along with the weights and the

clustering and reconstruct the model using this information only is worth investigating.

109

BIBLIOGRAPHY

[1] W. R. Hamilton. “On quaternions, or on a new system of imaginaries in algebra”, Philosophical
Magazine. Vol. 25, n 3. p. 489-495. 1844,

[2] M. Garland, Y. Zhou. “Quadric-Based Simplification in Any Dimension”, ACM Transactions on
Graphics, Vol. 24, No. 2, April 2005, p. 209-239.

[3] P. Lindstorm. “Out-of-core simplification of large polygonal models”, Proceedings of SIGGRAPH
2000, p. 259-262.

[4] R. W. Sumner, J. Popovic. “Deformation Transfer for triangle meshes”, ACM Transactions on
Graphics 23,3 (Aug. 2004), p. 399-405

[5] R. W. Sumner, M. Zwicker, C. Gotsman, J. Popovic. “Mesh-Based Inverse Kinematics”,
Proceedings of ACM SIGGRAPH 2005, p.488-495.

[6] G. H. Golub, C. F. Loan. “Matrix Computations”, third ed. Johns Hopkins University Press,
Baltimore, 1996.

[71 K. Shoemake, T. Duff. “Matrix Animation and Polar Decomposition”. Proceedings of the
Conference on Graphics Interface *92, p.258-264.

[8] D.L.James, C. D. Twigg. “Skinning Mesh Animations”, ACM Trans. Graph. 24,3, p.399-407

[9] L. Kavan, R. McDonnell, S. Dobbyn, J. Zara, C. O’ Sullivan. “Skinning Arbitrary Deformations”.
Proceedings of the 2007 symposium on Interactive 3D graphics and games -13D 07, p53-60.

[10] C. Paige, M. Saunders. “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least
Squares”. ACM Transactions on Mathematical Software, Vol 8,No. 1, March 1982, p.43-71.

[11] J. M. McCarthy. "Introduction to Theoretical Kinematics”. MIT Press, Cambridge, MA, USA

[12] T. F. Gonzales. “Clustering to Minimize Maximum Intercluster Distance”. Theoretical Computer
Science, 38, (1985), p.293-306

[13] D. Cohen-Steiner, P. Allienz, M.Desbrun. “Variational Shape Approximation”, ACM
Transactions on Graphics (2004), 23,3, p.905-914.

[14] B. U. Kim, W. W. Feng, Y. Yu. “Real-time data driven deformation with affine bones”. The
Visual Computer, 26,6-8, June 2010,p.487-495

[15] M. Garland, P. Heckbert. “Surface Simplification Using Quadric Error Metrics”. In Proceedings
of SIGRAPH ’97 (1997), p.209-218

[16] R. Ronfart, J. Rossignac. “Full-range approximation of triangulated polyhedra.”Computer
Graphics Forum, 15(3), Aug. 1996. Proc. Eurographics 1996.

http://www.emis.ams.org/classics/Hamilton/OnQuat.pdf�

110

[17]1 A. Mohr, M. Gleicher. “Deformation sensitive decimation.”. Technical Report, University of
Wisconsin, 2003.

[18] P. G. Kry, D. L. James, D. K. Pai. “EigenSkin: Real Time Large Deformation Character Skinning
in Hardware”. In the Proceedings of the 2002 ACM SIGGRAPH /Eurographics Symposium on
Computer Animation, ACM Press, p.153-159

[19] L. Kavan, S. Collins, J. Zara, C. O’Sullivan.”Skinning with Dual Quaternions”. In Proceedings of
symposium on Interactive 3D graphics and games, p.39-46.

[20] L. Kavan, P. Sloan, C. O’Sullivan. "Fast and Efficient Skinning of Animated Meshes”.
Eurographics 2010.

[21] K. G. Der, R. W. Sumner, J. Popovic. “Inverse Kinematics for Reduced Deformable Models”.
Inverse kinematics for reduced deformable models, ACM Transactions on Graphics (TOG), v.25
n.3, July 2006

[22] T. Y. Lee, Y. S. Wang, T.G. Chen.”Segmenting a deforming mesh into near-rigid components”.
The Visual Computer 2006, 22, p.729-739

[23] S. Wuhrer, A. Brunton. “Segmenting Animated Objects into Near-Rigid Components”. Visual
Computer 2010, 26, p.147-155

[24] http://dockpanelsuite.sourceforge.net/

http://portal.acm.org/citation.cfm?id=1142011&CFID=112469837&CFTOKEN=24696151�
http://portal.acm.org/citation.cfm?id=1142011&CFID=112469837&CFTOKEN=24696151�

111

SHORT VITA

George Antonopoulos was born on June 16, 1980 in Xanthi. He graduated from the 2" High School of
Chios and received his B.Sc. degree in 2007 from the Department of Computer Science of the University
of loannina. He is currently pursuing his M.Sc degree from the same department. His research interests
include 3D animation and software engineering.

	1.1 Related Work
	2.1 Matrix Transformations
	2.1.1 Linear Transformations
	2.1.2 Composition of Transformations
	2.1.3 Affine Transformations
	2.1.4 Euclidean Transformations
	2.1.5 Inverse Transformations

	2.2 Quaternion Transformations
	2.2.1 Quaternions
	2.2.2 Dual Quaternions
	2.2.3 Quaternion to Matrix Transformation
	2.2.4 Matrix VS Quaternion

	2.3 Plane Theory Elements
	2.3.1 Quadratic Plane Representation
	2.3.2 Plane Deformation Quantities

	2.4 Barycentric Coordinate System
	2.4.1 Triangle Barycentric Coordinates
	2.4.2 Tetrahedron Barycentric Coordinates

	3.1 Skinning with Skeletal Hierarchy
	3.2 Skinning Highly Deformable Models
	3.3 Transformation Matrix Fitting
	3.3.1 Fitting with Affine Transformation Matrices
	3.3.2 Fitting with Dual Quaternions

	3.4 Bone and Weight Fitting
	3.4.1 Moving from Bones to Proxy Joints
	3.4.2 Principles of Efficient Proxy Joint and Weight Specification
	3.4.3 Uniform Proxy Joint Distribution using P-Center Clustering
	3.4.4 Deformation Gradient Based Bone and Weight Fitting

	4.1 Introduction
	4.2 Simplification Process Overview
	4.3 Contraction Priority Specification
	4.3.1 Proxy Joint Validity Preservation
	4.3.2 Contraction Validity
	4.3.3 Priority Queue Schemes

	4.4 Merge Vertex coordinates Specification Methods
	4.5 Weight Influences Propagation
	5.1 Introduction
	5.2 Eigen-Skin
	5.3 Rest Pose and Weight Corrections
	6.1 Implementation Details
	6.2 Test-bed Animation Sequences
	6.3 Error Metrics
	6.4 Decimated Approximation Results

