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ABSTRACT

Gkamas, Theodosios, N.

MSc, Computer Science Department, University ohioaa, Greece. October, 2010.
Optical flow estimation using spatially varying sotlaing.

Thesis Supervisor: Christophoros Nikou.

The problem of estimating the optical flow in aggence of images is an
important research problem in the area of compuggon with applications in visual
object tracking, stereopsis and motion segmentasiorong others. Optical flow is the
2D velocity field, describing the apparent motion the image that results from
independently moving objects in the scene or fraaseover motion. Its estimation is a
particularly difficult problem due to several fargoAt first, the massive image data
which produce small and/or large scale linear systéhat must be solved to obtain
the solution in as little as possible and compatifperiod of time. Furthermore, the
problems that occur because of the nature of thages, such as motion
discontinuities and object occlusion must be adw@s To overcome these
difficulties, the majority of the state of the aptical flow computation techniques
rely on the imposition of a smoothness constramthe motion field. In this work, we
propose two methods for the accurate estimatiorthef optical flow where the
smoothness constraint varies with respect to treg@ncontent. The first method is
based on image segmentation and the smoothnedsatonis applied to image areas
belonging to the same segment and simultaneouslsepting low spatial gradient
information, to avoid smoothing probable motion bdaries. The second method
relies on a probabilistic modeling of the optickdw problem where the motion
vectors are considered as unobserved random wesiganerated by a Student's
distribution with spatially varying parameters. timat case, as the complete data
likelihood is intractable we recur to the variatBayes methodology for inference
of the model parameters and variables.
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EKTENHX ITEPIAHYH XTA EAAHNIKA

®e006010¢ I'kdipag Tov NikoAdov Kot TG AVvovAng.

MSc. Tunipa [Tinpoeopiknig, [oavemoto loavvivav, Oktdpprog, 2010.
Extipmon g omtikng pong pe pedddovg yopukd petofaridpevne eEopdivvong.
EmBrénov: Xpiotépopog Nikov.

To mpdPAnua extipnong g OMTIKNG PONG o€ o akoAovBio eKOVLV,
AmoTEAEL ONUOVTIKO EPELVNTIKO TPOPANLA GTOV TOUEN TNG VTOAOYIGTIKNG OpAoNG, LE
EPAPUOYEG OTNV ONTIKN TOPAKOAOLONGN OVTIKEWEVOV, TNV CTEPEOCKOTIO KOl TNV
Katdtunon kivnong, petad dAdov. Ontikn pon ovopdlovpe 1o 2A  medio
LETATOMICEWV, TOV TEPLYPAPEL TNV EUPOVY Kivnom péco o€ o €KOva 1 omoia
TPOKVTITEL OO aveCAPTNTO KIVOOUEVO OVTIKEILEVO GTNV GKNVI N Ao TNV Kivion Tov
mopatnpnty. H extiunon mg etvan éva diaitepa 00GKOA0 TPOPANUE TOV OPEiAETAL GE
dtapopovg mapdyovtes. Katapyds, ta oyk@on dedouéva g €KOVAG TOV TAPAYOLV
LKPNG Ko/ peyding d146taong YPOUUIKE GUGTHUATO TO, OO0 TTPETEL VO EMAVOOVV
v va AdBovpe v Avon péca o€ 0G0 TO dVVATOV KPS KOl OVTOYMVIGTIKO YPOVIKO
dtonua. EmmAéov, ta mpofAnpato mov TpokOTTouy AOYm TG UoNG TOV EKOVDV,
OmM®G Ol U1 OLVEXEIG KIWNOELG KOl Ol EMKOADWELS OVIIKEWWEVOV TPEMEL VO
avTipetonmotovv. o va EemepacTovv anTEC Ol OLOKOAEC, M TAEWYNEio TOV
KOPLOUI®MV TEYVIKOV VTOAOYIGHOV TNG ONTIKNG pong Pacilovion otnv ecaymyn
mEPLOPIoU®V eEoAALVONG GTO TTEdT0 Kivnomg. XtV mapovca dtoTpiPr), Tpoteivovue
dv0 pebdoovg Yoo TNV aKkPPn EXTIUNON NG ONTIKNG PONG, OTIG OTTOIEG O TEPLOPIGUOG
eEopudAvvong petafaiieTon avaroyo pe to meEPlEYOUEVO NG ewovoc. H mpot
puébodoc ompiletor otV KotdTunon eKOvVoS Kot 0 TEPLOPIGUOS EEOUAAVVONG
epappoletorl og mEPLOYEG TG EKOVOS TOL OVIKOVV GTO {010 TUNHO KOl TOVTOYPOVOL
TOPOVGIALOVY YOUNAT] TANPOPOPIN GTNV YWPIKN TUPAY®YO, ATOPEVYOVTOS £TGL TNV
eCopdrvuvon oe mbavd 6pia kivnong. H devtepn pnéBodog Paciletar og £va mBavoTikd
HOVTELO TOV TPOPANUATOC TG OTTTIKNG PONG OTTOV Ta OlVOGHATO Kiviiong Bewpovvton
OC KPLQEG TUYIES HETOPANTEC Tapoydueves and po Student’s-kotavoun pe xopika
HETOPAANOUEVEG TTOPOAUETPOVS. XE QTN TNV TMEPIMTOON, EMEWN| OEV UITOPOVUE V.
VTOAOYIGOVUE OKPPDOG TNV CLVOAIKY] TOAVOPAVEID TOV OEOOUEVOV OVUTPEYOVLE
omv MmreblQiavy (variational-Bayes) pebodoroyic yio v mpocéyylon ToV
TOPOUETPOV KOL TOV TUYOI®V HETAPANTOV TOL LOVTELOV.
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CHAPTER 1. INTRODUCTION

1.1. Objectives of the Thesis
1.2. Structure of the Thesis

1.1. Objectives of the Thesis

In this thesis, we deal with the problem of ogtilaw containing small
movements. Without doubt, the measurement of dptitav is one of the
fundamental problems in computer vision. It is fveblem of approximating the
movement of brightness patterns in an image seguand, thus, provides useful
information for the determination of the 3D struetwf the environment and the
object in the image [2] but also can be used famgenregistration. In the last two
decades the quality of optical flow estimation noelh has increased dramatically.
Starting from the original approaches of Horn actusick [25] as well as Lucas and
Kanade [28], research developed many new conceptdefaling with shortcomings
of previous models. In order to handle discontiesiin the flow field, the quadratic
regulariser in the Horn and Schunck model was ogldby smoothness constraints
that permit piecewise smooth results [7]. Someheké ideas are close in spirit to
methods motivated from robust statistics whereiengtlare penalized less severely
[9]. Coarse-to-fine strategies [2, 9] as well as-tinearised models [7] have been

used to tackle large displacements.

However, not only new ideas have improved the ituaf optical flow

estimation techniques. Also efforts to obtain atdretinderstanding of what the
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methods do in detail, and which effects are calrsyechanging their parameters, gave
an insight into how several models could work tbget Furthermore, variational
formulations of models gave access to the long mapee of numerical mathematics
in solving partly difficult optimization problems:inding the optimal solution to a
certain model is often not trivial, and often th#l potential of a model is not used
because concessions to implementation aspects tbabe made. Moreover, one
method using the variational inference and belompdm the state of the art is the
algorithm proposed by T. Brox, A. Bruhn, N. Papegband J. Weickert [12] in the
year of 2004. Finally, our contribution to this ayés to introduce three method, two
from the combination of [7, 32] and a novel apploageated via variational

inference.

1.2. Structure of the Thesis

The structure of the thesis is as follows: chafeshows three classic
methods, the Lucas-Kanade (LK) method [28], thénafoptical flow method [39]
and the Horn-Schunck method [25]. The last seatfcthis chapter describes the error
metrics which were used in order to evaluate théhaus. Chapter 3 shows two
proposed methods, firstly, the Joint Lucas-Kanadghod [7] and secondly, the
method of Nageét al. [32]. Additionally, in this chapter, we proposeudot variations
derived by the combination of [7, 32]. Moreover,apter 4 introduces a novel
algorithm for the estimation of the optical flowy lusing the variational Bayes
inference. Finally, chapter 5 is the conclusiorihaf thesis and the future work which

worth to be studied further in order to improve fineposed methods.
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CHAPTER 2. OPTICAL FLOW

2.1. Definition of the Problem

2.2. Optical Flow Methods

2.3. Classic Algorithms for Computing Optical Flow
2.3.1. Lucas-Kanade (LK) Method
2.3.2. Affine Optical Flow
2.3.3. Horn-Schunck (HS) Method

2.4, Error Metrics

2.1. Definition of the Problem

First of all let's give the definition of the prign. As there are many
definitions for optical flow let's start with a stiocone: optical flow is the observed
motion of intensity patterns on the image planeothar one according to B. Horn
and B. Schunck [25], who are among the pioneerthan field, optical flow is the
distribution of apparent velocities of movementbofghtness patterns in an image.
Additional to this, optical flow can arise from aélve motion of objects and the
viewer [20, 21]. Consequently, optical flow canegimportant information about the
spatial arrangement of the objects viewed and dte of change of this arrangement
[22].

Additionally to the definition, we have to makeeofundamental assumption
regarding the nature of the scene the moving abjewintain constant intensity
profile throughout their motion. This assumptionihe famoushrightness constancy

assumptionand forms the basis of all the approaches fomesiing optical flow. Let
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| be an image ant(x(t), y(t), t) denote the intensity of a point projected onte th
image at the locatiorx(t), y(t)) at timet . At a timet + At, the projected point moves
to a new locationX(t + At), y(t + At)). According to thebrightness constancy

assumptionthe point has the same intensity at both locatiamich means

I(X(t + AD), Y(t + AD), t+At) =1(x1), Y(0), D). (2.1)

Expanding the above equation using Taylor seriesutathe point X(t), y(t)) and
taking the limits, a familiar form of the opticdbW equation is obtained which is

given by

(ufvt)=Ixku+lyv+I;=0, (2.2)

wherel, andly, represent the partial derivatives of the image iandy directions
respectivelyl; represents the temporal derivative of the imagelu andv are the
horizontal and vertical components of the unknowelpvelocity respectively. Given
a pair of images and their spatial and temporalvdgves, the goal is to determine
[u, v]". Since there is only one equation involving twukmowns, the system is
under-constrained, and an unambiguous solutionatare obtained. This is the well
known aperture problem, and herein lays the biggest challenge in estirgatie

optical flow.

The way to address tlaperture problems to add more constraints so as to
obtain a required set of equations at least equalimber to the unknowns. Solving
for [u, v]" requires an additional equation which can be abthi for example, by
considering motion of two pixels together insteafd ome. This results in two
equations, and the system can be solved. In peaaticltiple pixels are considered
together to obtain a set of equations such that Hwution minimizes some error
function. Most optical flow approaches differ fraaach other in the way they bunch
pixels together for the estimation of their combineslocity, or the kind of error

function they minimize.
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2.2. Optical Flow Methods

The prominent optical flow approaches can be #ledsinto one of the

following categories:

Block matching methods: estimating the optical flow vectors for a
window of pixels by computing its warp in the coosgve frame
using techniques likenormalized cross correlatiofNCC), sum of
absolute differencel§SAD), orsum of squared differencéSSD) [2].

Differential methods: using the spatial and temporal derivatives of the
image to estimate the pixel displacement. This lbanachieved by
computing local displacement of image patcHascés-Kanadg28]),

or imposing a global smoothness function on thev ffeeld (Horn-
Schuncld25]), or a combination of bottB¢uhn et al.[13], Birchfield-
Pundlik[7]). Lucas-Kanadeappeals more to the idea of sparse optical
flow while Horn-Schunclapproach is more suited for computing dense

flow.

Variational methods: involving use of additional terms based on the
calculus of variations in the energy functional de minimized to
obtain optical flow. Such techniques have becompulas recently
because of their ability to model the discontiragtin the motion and
produce highly accurate optical flow estimat€semers-Soattg17],
Brox et al.[11]).

The next section describes three classic algorifiomastimating the optical flow.

2.3. Classic Algorithms for Computing Optical Fow

In this section we are going to describe thressitamethods for estimating

optical flow, which are Lucas—Kanade[28], Affine Optical Flow [39] and
Horn—Schunck25].
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2.3.1. Lucas-Kanade (LK) Method

The basic assumption in the Lucas-Kanade (LK) oekik that the pixels in a
local neighborhood undergo a constant but unknoisplatementu = [u ' . This
additional constraint is used to overcome the apengproblem as it yields one optical
flow Equation (see 2.2) per pixel in the neighbardhoThe constant displacement of
neighboring pixels implies two basic assumptionamaly, the spatial coherence
(neighboring pixels belong to the same 3D surfacgepted onto the image plane)
and the temporal persistence (motion of the piagmborhood changes gradually
over time). Letl andJ be the two frames between which the flow has tonesed
and letx = [x }|" denote a pixel location. Optical flow equation2j2for a single

pixel x can be rewritten as
LX) 1y(x) ] m = —1(x) =1(x) - Ax) (2.3)

Considering that the pointsxy, ..., X, in a local neighborhood have the same amount
of displacement, all of the pixels will then follow equation (2.3), leading to

y(xy)  Ty(x)] [1(x,)]
| H | (2.4)
\)
(%) Ty(x,) | i (x4) |
y(x,) Ty(x)] [1(%,)]
() ... ly(x,) ' ' {u} Ik e Ty(xy) '
IX(Xn) SR Iy(xn) ' \Y - IX(Xn) s Iy(xn)
(%) Ty(,) | e (%q) |

(2.5)
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2
n |X(Xj) IX(Xj) I y(xj) {u} : l:IX(Xj)It(Xi):I (2.6)

Z1x0) 1y () |§(Xj) v Sl yx)l(x)

=1

Equation (2.6) consolidates the optical flow by sumg the spatial and temporal
derivatives over the neighborhood. Instead of perfiog a summation over a spatial
window, a weighted window such as a Gaussian wstimiean at the center pixel can

also be used. Hence, a general case of Lucas-Kaagaddion is given by

Kp*(li) Kp*('x'y) u] _ Kp*(?xlt) 2.7
) ol o)

where K, is a suitable convolution kernel whose size deitses) the number of
neighboring pixels to be aggregated and assignsopppte weights to the pixels
inside the window. The size &, has to be selected carefully because a small sized
window may not be enough to overcome the aperttoblgm due to the presence of
image noise. On the other hand, a very large winsiae' may lead to the breakdown

of spatial coherency assumption. Equation (2.7)bmawritten in a simplified form as
uze (2.8)

It can be seen that Z looks like a covariance matith squares of gradients in the

andy directions along the diagonal, and it is symmetsibich is why it is called the

gradient covariance matrix or the Hessian.

Displacementsi of a local neighborhood of pixels can be dirediermined

by solving (2.8) via least squares, i.e. by miningz

) = Ko * (£ (U, 1)) (2.9)
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or equivalently, solving for the estimate =Z"e. However, this may not yield an
accurate estimate because (2.6) is a linear appatixin of a nonlinear function (the
original optical flow equation is nonlinear if dhe terms in the Taylor series are
considered). To obtain an accurate estimate, iveraachemes such as Newton-
Raphson [15] are used. Newton-Raphson is a popedanique of approximating the
values of the roots of a real valued function gitke initial estimate of the roots.

Consider a 1D case, wheredf“ (pixel displacement in 1D) is the estimate of thetr

of function f(u,t): | u+1, =0 (1D counterpart to the optic flow function) at tk&

— . o flu®

iteration, then its update value &-+1)" iteration is given byu — f'(u(") . From
inspection it can be seen thafu®)=1u®+1, and f'(u®)=1,, which means
uten — 1o Every iteration yields a value af that is added to the overall

_t
IX

displacement and convergence is obtained whedoes not change significantly

between two iterations. Extending this idea to thimensions, every iteration of the

Newton-Raphson technique gives a displacernéhof the window. The window in

the next frame is shifted hyand warped with the first image to obtain a nevigaif

l, at each iteration and a new displacement estinsafeund usingl =Z"'e (see

Algorithm Lucas-Kanade for a complete description).

To efficiently compute the optical flow using LEgme implementation issues
should be addressed. The computational cost oéltf@ithm depends on the nature
of mathematical operations performed and the titmiakes to converge. Since the
same set of steps are applied to each point (dr giael) for which the flow field is
computed, reducing the computation time of one flesctor directly affects the
overall computation cost. Looking at the descriptal the Lucas-Kanade algorithm
(figure 2.1) it can be seen that the mathematip@rations include computing *,
spatial derivatives of the image@nd warping of the window in imageo computd;.

Of the above mentioned quantities, image derivativan be computed beforehand
along with their squares and products (hertdor each point can be computed
beforehand). Solving for a system of equations shimn(2.8) yieldsu, but it is more

efficient to use Gaussian elimination rather thetualy computingz™.
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The only computation that needs to be iteratiymyformed is the warping of
the window in the second image and computatioe. djsually, the location of the
shifted window is given by non-integers. Hence, hods like bilinear interpolation
are utilized to compute the value of image intgnsit sub-pixel precision.
This improves the accuracy of estimationuofRegarding the convergence, Newton-
Raphson reaches an optimum solution within a fewaitons if the initial estimate of
the root is close enough. In this case it also dépeone k, the threshold for

minimum displacement obtained during one iteration.

Algorithm: Lucas-Kanade

Input: two images$ andJ of a sequence
Output: optical flow field
1. pre-compute the spatial derivativgandl,
2. initialize K,
3. for each poinit
(a) compute gradient covariamzgrix, Z;
(b) initializey; = (0, 0)
(c) repeat until convergence
i. compute from first image and shifted second image,
e = 1(xi) = I +u)
ii. compu
iii. find the estimate osglacement(l, = Ze,

iVUi =u + Cli

V. if|| Gi” < &y (minimum displacement threshold), exit

Figure 2.1: The standard Lucas-Kanadgoathm.

Many implementations of LK adopt a coarse-to-freéinement strategy to
accurately estimate optic flow [6, 10]. The ideaehes to sub-sample the images
progressively and build image pyramids such that ¢barsest scale is at the top.

Thenu is computed starting from the coarsest level tdfitiest level. At every level,
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theu is scaled up according to the scale factor of ldnatl and the warp is computed
between corresponding levels of the two image pyamThere are two main
advantages of such an approach. First, it reddee®ffect of temporal aliasing and
the high frequency component introduced as a résutie image signal. Second, it
can estimate large motions (where inter-frame dsphent of the feature window is
large). Since velocity is reduced at the coarsmatl] estimates at the coarsest level
can be scaled up and determined accurately airteelévels. Computational cost in
this kind of implementation is increased as comgdre the standard case and is
directly proportional to the number of levels ofetlpyramid used. A pyramidal
implementation of LK isO(nNm) as compared tdO(Nm) of the single scale
implementation, wher&l is the number of pointsn is average number of Newton-

Raphson iterations andis the number of pyramid levels.

2.3.2. Affine Optical Flow

Affine optical flow is an extension of the prevsdy described.ucas-Kanade
method.

+ Two Models of Image Motion

As the camera moves, the patterns of image intessthange in a complex
way. However, away from occluding boundaries andrrsurface markings, these

changes can often be described as image motion,

Xy, t+7) =I(x=¢ (X, ¥, t,7), y—n(X, V¥, t, 7)), (2.10)

Thus, a later image taken at tirder can be obtained by moving every point in the
current image, taken at tinteby a suitable amount. The amount of motbon (&, 7)
is called thedisplacemenof the point ak = (x, V).

The displacement vectéris a function of the image position and variations

in ¢ are often noticeable even within the small windayvged for tracking. It then
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makes little sense to speak of “the” displacemérat f@ature window, since there are
different displacements within the same window. #fine motion fieldis a better

representation:

0=Dx+d , 2.11)
where
D= {dxx dxy:|
dyX dyy

is a deformation matrix, and is the translation of the feature window’s ceniidre
image coordinates are measured with respect to the window’s cefitieen, a point
x in the first imagd moves to poinAx + d in the second imag& where A =1 +D

andlis the 2x 2 identity matrix:
J(Ax+d)=1(x) , (2)12

Given two image$ andJ and a window in imagg tracking means determining the
six parameters that appear in the deformation m@trand displacement vectak.
The quality of this estimate depends on the sizethaf feature window, the
texturedness of the image within it, and the amoointamera motion between
frames. When the window is small, the matxis harder to estimate, because the
variations of motion within it are smaller and tsfere less reliable. However, smaller
windows are in general preferable for tracking lnseathey are less likely to straddle
a depth discontinuity. For this reasonpwae translationmodel is preferable during

tracking, where the deformation matbixis assumed to be zero:
o=d.

According to J. Shi and C. Tomasi [39], experinsemad shown that the best
combination of these two motion models is purediaion for tracking, because of
its higher reliability and accuracy over the smatker-frame motion of the camera,
and affine motion for comparing features betweenfttst and the current frame in

order to monitor their quality.
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+ Computing Image Motion

Because of image noise and because the affine motazlel is not perfect, (2.12) is
in general not satisfied exactly. The problem dkedaining the motion parameters is
then that of finding thé andd that minimize thelissimilarity

€= j j [3(AX+d) — 1 (x) Pw(x)dx |, (2.13)

whereW is the given feature window amgXx) is a weighting function. In the simplest
case,w(x) = 1. Alternatively,w could be a Gaussian-like function to emphasize the
central area of the window. Under pure translattbe, matrixA is constrained to be
equal to the identity matrix. To minimize the ragatl(2.13), we differentiate it with
respect to the unknown entries of the deformatiairisn D and the displacement
vectord and set the result to zero. We then linearizeréselting system by the

truncated Taylor expansion
J(AX+d)=J(X)+g" (u). (2.14)
This yields (see [40]) the following lineax@ system:
Tz=a, (2.15)

wherez' = [d dyx Oy dy dy d] collects the entries of the deformati@nand

displacementl, the error vector

YO | \wdx

a=[[, [1)-300)]
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depends on the difference between the two imagesthee 6x 6 matrix T, which can

be computed from one image, can be written as

'r=[h Lyr ;} wdx | (2.16)

where

x*gZ  x’9,0, Xyg;  Xyg,g,
X*9,9, X0; %G9, Xyg \,T::[ng Xq,9, YO Y99,
Xyd;  Xyg,9, Y°Or Y°0,0,| Xg,9, X9, Y99, VYO, |
xyg,9, Xyg; vy’9,9, Vy°O,

2
7= gx gxgy .
9.9, 9y

Even when affine motion is a good model, equat®mnly approximately

U:

satisfied, because of the linearization of (2. HQwever, the correct affine change
can be found by using (2.15) iteratively in a NewRaphson style minimization
[40].

During tracking, the affine deformatidh of the feature window is likely to be
small, since motion between adjacent frames mussrball in the first place for
tracking to work at all. It is then safer to §eto the zero matrix. In fact, attempting to
determine deformation parameters in this situaigonot only useless but can lead to
poor displacement solutions: in fact, the defororatdb and the displacemerd
interact through the # 2 matrixV of equation (2.16), and any errorDnwould cause

errors ind. Consequently, when the goal is to deterntinthe smaller system

Zd=e, (2.17)

should be solved, where collects the last two entries of the vectoof equation
(2.15).
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2.3.3. Horn-Schunck (HS) Method

The main difference between Lucas-Kanade and Boiminck is that in the
first method we used a window in which we considirpixels having the same

displacement, while in the second method we hagxiey pixel independently.

First of all, let's see the optical flow equatiathout the summing window.
We will derive an equation that relates the changmage brightness at a point to the
motion of the brightness pattern. Let the imaggHhiriess at the point (x, y) in the
image plane at time t be denotedIby; y, t). Now consider what happens when the

pattern moves. The brightness of a particular paithe pattern is constant, so that

dl
—=0. 2.18
ot (2.18)
Using the chain rule for differentiation we seettha
ﬂ%Jrﬂngﬂ: 0. (2.19)
oxot oyot ot
(See Appendix A for a more detailed derivation).
dx dy i . .
If we let u:a and v=a, then it is easy to see that we have a singlealine
equation in the two unknowns u and v,
u+lyw+1i=0, (2.20)

where we have also introduced the additional abatiensl,, |y, andl; for the partial
derivatives of image brightness with respeck,tg andt, respectively. The constraint
on the local flow velocity expressed by this equaiis illustrated in figure 2.2, where
we can see that the basic rate of change of imagktihess equation constrains the
optical flow velocity. The velocityy, v) has to lie along a line perpendicular to the
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brightness gradient vectok,(ly). The distance of this line from the origin equils

divided by the magnitude ok( Iy). Writing the equation in still another way,

(1) - (U, V) = - 1. (2)2

Thus the component of the movement in the directbrihe brightness gradient

(Ix, ly) equals: - X

2 2’
NiPE by

v i

(Ix, Iv)

u

constraint hne

Figure 2.2: The constraint on the local flow vetgci

We cannot, however, determine the component of tffewement in the
direction of the iso-brightness contours, at righglles to the brightness gradient. As a
consequence, the flow velocity, (v) cannot be computed locally without introducing

additional constraints.

Now we will see some more complex issues insidertathod.

First of all, we will analyze, what we call, tlenoothness constraint If
every point of the brightness pattern can move peddently, there is little hope of
recovering the velocities. More commonly we viewagpe objects of finite size
undergoing rigid motion or deformation. In this easeighboring points on the objects

have similar velocities and the velocity field dietbrightness patterns in the image
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varies smoothly almost everywhere. Discontinuifieglow can be expected where
one object occludes another. An algorithm based smoothness constraint is likely

to have difficulties with occluding edges as a lesu

One way to express the additional constraint imlmimize the square of the

magnitude of the gradient of the optical flow veéigc

(@jz + (@J and (@jz + (@J , (2.22)
OX oy OX oy

Another measure of the smoothness of the optioal fleld is the sum of the squares
of the Laplacians of the- andy-components of the flow. The Laplaciansuwéndv

are defined as

2 2 2 2
V%z%ﬂéy—ij andV2v=8—\2/+% : (2.23)
X

In simple situations, both Laplacians are zerthéf viewer translates parallel to a flat
object, rotates about a line perpendicular to tiréase or travels orthogonally to the
surface, then the second partial derivatives ofhhbotand v vanish (assuming
perspective projection in the image formation). m#&chunck here uses the square of
the magnitude of the gradient as smoothness measure

Secondly, let's see how Horn-Schunck estimategpé#rgal derivatives. We
must estimate the derivatives of brightness fromdlscrete set of image brightness
measurements available. It is important that themeses ofly, Iy, and |, be
consistent. That is, they should all refer to taene point in the image at the same
time. While there are many formulas for approxindiféerentiation [16, 23] we will
use a set which gives us an estimatdypfy, I, at a point in the center of a cube
formed by eight measurements. The relationshippace and time between these
measurements is shown in figure 2.3. Each of thimates is the average of four first

differences taken over adjacent measurements incube. More analytically, the
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columnindexj corresponds$o thex direction in the image, the roimdexi to they

direction, whilek lies in the time direction.

1+] —

1 —» $

k+1
t T &

j i+l

Figure 2.3: The relationship in space and time s}, I, I;.

TR (T T Y B By —
x ~ 4 i,j+1k i,j,k i+1,j+1k i+1,j,k i, j+Lk+1 i,j,k+1 i+1, j+Lk+1 i+1,j,k+1
b
|~ |+ | | ! ! | )
y ¥ Vissin = ik Tl ook = Nk T hivnjer = Vijkes T Vi jeaket = Vijeakn
b
T A R S iy e)
t =~ 4 i,j,k+1 i,j,k i+1,j,k+1 i+1,j,k i, j+Lk+1 i,j+1Lk i+1, j+1Lk+1 i+1, j+1k
]

(2.24)

Here the unit of length is the grid spacing intéimeeach image frame and the unit of

time is the image frame sampling petiod

We also need to approximate the Laplacians offltve velocitiesu andv.

One convenient approximation takes the followingrfo

V2u ~ K(Ui,j,k —ui'j’k) and Vv~ K(Vi,,-,k _Vi,j,k) ’ (2.25)

where the local averages andv are defined as follows
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_ 1 1
U= g{ui—lj,k F Uik T Ui }+E{ui—1,j—1,k Uk Tk t ui+:l.j—1,k}

_ 1 1
Viik ® E{Vi—l,j,k +Vi ik T Visnjk +Vi,j7],k}+E{Vi—l,j—Lk Vi T Vi jak +Vi+l,j—],k}

(2.26)

The proportionality factok equals 3 if the average is computed as shown and w
again assume that the unit of length equals theesgracing interval. In figure 2.4 we
can see that the Laplacian is estimated by subigathe value at a point from a

weighted average of the values at neighboring point

112 s |[L1/12

16 -1 i

1112 | e |12

Figure 2.4: The Laplacian operator.
Now we have to analyze theninimization problem. Horn-Schunck
minimizes the sum of the errors in the equation tfee rate of change of image
brightness,

Ep= Lu+lyv+l, (2.27)

and the measure of the departure from smoothnehbg wvelocity flow,

EZ= (@jz + K@J +(@j2 +£@J , (2.28)
oX oy oX oy

What should be the relative weight of these twotdia® In practice the image
brightness measurements will be corrupted by gmatibin error and noise so that we
cannot expeck, to be identically zero. This quantity will tend tave an error
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magnitude that is proportional to the noise inrreasurement. This fact guides us in
choosing a suitable weighting factor, denotedhyas will be seen later.

Let the total error to be minimized be

E” = [[(a?E2 + EZ )dxdy, (2.29)

The minimization is to be accomplished by findingiable values for the optical flow

velocity (u, v). Using calculus of variation (see Appendix C) exain

2u+1,1 v=a’Viu-1,l
X X ; az , X't ’ (230)
L yutlv=a"Viv-I 1
Using the approximation to the Laplacian introdupegviously we will get,
211U+l v=(a’u—1,l
{(a X) , ><2y (az_ X '() ’ (2'31)
LIu+(a®+1))v=(aV-1]1,)

The determinant of the coefficient matrix equaig”® + I, + 1,%). Solving foru andv
we find that

{(a2+IX2+Ij)u=+(a2+If)U—IXIyV—IXIt (2.32)

(@2 +1F+15v==1 1 u+(@*+1)v-1,1

Let us now see the difference of the flow at anpbly using local average in

comparison with the LK method. Firstly, (2.32) danwritten in the alternative form

{(a2+|f+|§)(u—U)=—Ix(IxU+'yV+'t) (2.33)

(@2 +12+1D)(v-V) ==l (L u+1,V+1) "

This shows that the value of the flow velocity ) which minimizes the error

E? lies in the direction towards the constraint liaeng a line that intersects the
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constraint line at right angles. This relationstspllustrated geometrically in figure
2.5, andthe value of the flow velocity which minimizes theas lies on a line drawn
from the local average of the flow velocity perpenthr to the constraint line. The
distance from the local average is proportionatht® error in the basic formula for
rate of change of brightness when v are substituted far andv. Finally we can see
that o plays a significant role only for areas where bhightness gradient is small,
preventing haphazard adjustments to the estimé&tadvielocity occasioned by noise
in the estimated derivatives. This parameter shbeldoughly equal to the expected
noise in the estimate of + 1,°.

(Ix, Iy)

L1

constramt hne

Figure 2.5: The relationship between (u, (1, V) , Ixand L.

Additionally to the previous part, we are going doalyze the impact of
parametera®>. When we allowa® to tend to zero we obtain the solution to a
constrained minimization problem. Applying the nuethof Lagrange multipliers [36,
43] to the problem of minimizing.> while maintainE, = 0 leads to

| Vu=1V?

Lu+l v+l =0
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Approximating the Laplacian by the difference oe thelocity at a point and the

average of its neighbors then give us

L [naer g+t ]
4y“j+dVHJ' (239

;) (u-

+1
+I§)(v—

)
)

< C

Referring again to figure 2.5, we note that thenpaiomputed here lies at the
intersection of the constraint line and the lingigiit angles through the poil(iﬁ,\‘/).
We will not use these equations since we do expgars in the estimation of the

partial derivatives.

We now have a pair of equations for each poirth@éimage, let's see which
will be the iterative solution. It would be very costly to solve these equations
simultaneously by one of the standard methods, aadBauss-Jordan elimination [23,
24]. The corresponding matrix is sparse and vengelaince the number of rows and
columns equals twice the number of picture cellh@&image. Iterative methods, such
as the Gauss-Seidel method [23, 24], suggest theass&Ve can compute a new set

of velocity estimatesu{**, v**1) from the estimated derivatives and the averaghef

previous velocity estimate(ﬁ”,vn) by

{umlzu“—lxhXUW+UV”+h]/(a2+'f+'9 (2.35)
— u |

It is interesting to note that the new estimates gtarticular point do not depend

directly on the previous estimates at the sametpoin

The natural boundary conditions for the variatiop@blem turn out to be a
zero normal derivative. At the edge of the imagane of the points needed to
compute the local average of velocity lie outside tmage. Here we simply copy

velocities from adjacent points further in.
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The next point we are going to analyze is the dese we have tdill in
uniform regions. In parts of the image where the brightness grade zero, the
velocity estimates will simply be averages of theghboring velocity estimates.
There is no local information to constrain the appa velocity of motion of the
brightness pattern in these areas. Eventually #Hieeg around such a region will
propagate inwards. If the velocities on the bordfethe region are all equal to the
same value, then points in the region will be assigthat value too, after a sufficient
number of iterations. Velocity information is thtised in from the boundary of a

region of constant brightness.

If the values on the border are not all the sainis, a little more difficult to
predict what will happen. In all cases, the valtided in will correspond to the
solution of the Laplace equation for the given katany condition [1, 31, 35].

The progress of this filling-in phenomena is sanilo the propagation effects
in the solution of the heat equation for a unifdiat plate, where the time rate of
change of temperature is proportional to the LaptacThis gives us a means of
understanding the iterative method in physical seamd of estimating the number of
steps required. The number of iterations shoultalger than the number of picture
cells across the largest region that must be filhedf the size of such regions is not
known in advance one may use the cross-sectidmeoivhole image as a conservative

estimate.

Another part we have to discuss is ttghtness of constraint When
brightness in a region is a linear function of ilmage coordinates we can only obtain
the component of optical flow in the direction bétgradient. The component at right
angles is filled in from the boundary of the regemdescribed before. In general the
solution is most accurately determined in regioheng the brightness gradient is not
too small and varies in direction from point to mtoilnformation which constrains
both components of the optical flow velocity is rihavailable in a relatively small
neighborhood. Too violent fluctuations in brighteesn the other hand are not
desirable since the estimates of the derivativéieicorrupted as the result of under-

sampling and aliasing
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Also we have to choose tliterative scheme As a practical matter one has a
choice of how to interlace the iterations with tirae steps. On the one hand, one
could iterate until the solution has stabilized doef advancing to the next image
frame. On the other hand, given a good initial gumse may need only one iteration
per time-step. A good initial guess for the optitalv velocities is usually available

from the previous time-step.

The advantages of the latter approach includekdityato deal with more
images per unit time and better estimates of dpfiica velocities in certain regions.
Areas in which the brightness gradient is smalllléa uncertain, noisy estimates
obtained partly by filling in from the surround. 8¢e estimates are improved by
considering further images. The noise in measur&gneh the images will be
independent and tend to cancel out. Perhaps maqueriamtly, different parts of the
pattern will drift by a given point in the imagehd direction of the brightness
gradient will vary with time, providing informatioabout both components of the
optical flow velocity. A practical implementationowld most likely employ one

iteration per time step for these reasons

2.4. Error Metrics

The first measure of performance that we usearctimparison is thaverage
angular error (AAE) [4]. This is the most common measure of perforceafor
optical flow [3]. Letvy = (Uo , vo) be the correct velocity and, = (uy , v1) be the
estimated velocity. Thangular error (AE) between these two vectors is

W, = arcco$v, -v,) 2.36)
whereV,, v, are the 3D normalized representations/gf v,, respectively and they

are defined as

Vo= —— 2 (Uy,00.1) (2.37)
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Vet (u,0,,) - (2.38)

1
2 2
VU +o +1

The AAE is then obtained by calculating the average ofaatjular errors between
correct and estimated velocities in the opticalfldHowever, it can be seen from
(2.36) that errors in regions of large flows araglzed less INAE than errors in
regions of small flows [3]. One needs to be cawiadnen using th&AE metric as
estimates with the same error magnitude may raswlignificantly different angular

error values.

Another error metric is thaormalized magnitude of the vector difference
between the correct and estimated flow vectors.[Z8F magnitude of the correct

velocity is used as the normalization factor. Thagmtude of difference error is

defined as
[vo —vi| -
— if [Vo[=T
v [vel
E, = w it Jvo| <T and|v)|>T . (2.39)
0, if [vo|<T and|v,|<T

whereT is a threshold, whose purpose is to ignore smead#letors’ norms thaif . The
algorithm is not expected to reliably produce aateiflow vectors in areas where the
actual flow magnitude is less thanf29]. We usedr = 0.5 in all of our experiments.
The average magnitude of difference errofAME) is then calculated as the average

of the normalized magnitude of difference errors.

A third error metric, which is slightly similar ti AAE, is theabsoluteerror,

which is the error in flovendpoint (EP) [3] defined by

EP=(Uy—u,)* + (g -0 )F = Vo v (2.40)



37

CHAPTER 3. COMPUTING OPTICAL
FLOW THROUGH SYNERGY OF ADAPTIVE
SMOOTHING AND SEGMENTATION

3.1. Joint Lucas-Kanade (JLK) method
3.2. Optical flow with adaptive smoothing
3.3. Combination of JLK and adaptive smoothing
3.4. Guiding optical flow using segmentation
3.5. Experimental Results and Discussion
3.5.1. Squared-texture Sequence
3.5.2. Textured-Triangles with equal in Norm\ie
3.5.3. Textured-Triangles with unequal in Ndvtaves
3.5.4. Yosemite without Clouds Sequence
3.5.5. Yosemite with Clouds Sequence
3.5.6. Dimetrodon Sequence
3.5.7. Rubberwhale Sequence

3.6. Partial Conclusion

In this chapter we study two methods. FirstlyBBchfield’'s and S. Pundlik’s
method [7] (section 3.1) and secondly, H. Nagefid &/. Enkelmann’s method [32]
(section 3.2). Additionally, we propose two vamaus resulting from the combination
of the previously mentioned methods (sections 3.8). In section 3.5, we present

experimental results which are discussed in se&ién
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3.1. Joint Lucas-Kanade (JLK) method

S. Birchfield and S. Pundlik [7] proposed a conaltion of Lucas-Kanade and
Horn-Schunck energy functionals respectively whiebulted in an energy functional

to be minimized for Joint Lucas-Kanade (JLK):

Eux =i(ED<i)+i.Es<i)), (8.1

whereN is the number of pixels, and the data and smooghieess are given by

Eo () =K, *(f(u.vi 1)) (3.2)

Es(i):((ui _ai )2+(Vi _\7i)2) (3.3)

where K, is a suitable convolution kernel whose size deitees) the number of
neighboring pixels to be aggregated and assignsopppte weights to the pixels

inside the window.

In these equations, the energy of pixed determined by how well its displacement

(u, vi)" matches the local image data, as well as how fardtsplacement deviates
from the expected displaceme@;,\?i)T. Note that the expected displacement can be

computed in any desired manner and is not necssaquired to be the average of
the neighboring displacements. According to [7],eythpredict the motion

displacement of a pixel by fitting an affine motiorodel to the displacements of the
surrounding pixels, which are inversely weightedaading to their distance to the

pixel. They use a Gaussian weighting function andistance, witla = 10 pixels.
Differentiating E; x with respect to the displacements, (/i)T, i=1,...,N,

and setting the derivatives to zero, yields a laiiyex 2N sparse matrix equation,
whose (2- 1)th and (Bth rows are

iuZ= g, (3.4)
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where

ﬂ'i+Kp*(|x|x) Kp*(lxly) Ziui_Kp*(lxlt)

Kp*(lxly) ﬁ“i+Kp*(|y|y) ﬂ’i\’}i_Kp*(Iylt)
This sparse system of equations can be solved dairgpi iterations of the form

500 o (k)
Il + I,V + Jy

uled = g 20 (3.5)
A+dutdy
i Iy 00+ 3,00 4]
v = g0 _ 20 yy " (3.6)
At+dutdy

wheredy = Kp #(1,5), Joy = Kp *(Iddy), It = Kp *(1dy), Jyy = Kp %(1,7), anddye = K *(Iyly).

To sum up, the (JLK) algorithm is presented in fey8.1:

Algorithm: Joi nt Lucas- Kanade

1. For each pixdl,

(a) Initializeu; — (0, OY
(b) Initialize \;

2. For pyramid leveh — 1 to O step -1,

(a) For each pixal computez,
(b) Repeat until convergence:

i. For each pixe|
(a) Determing,
(b) Compute the differericbetween the first image and the shifted

second imdgX, y) = 11(X, y) — (X + U, y + V)
(c) Comput
(d) Solvigu’; = g for incremental motiow’;
(e) Add incremental motion teemll estimateu; < u; + U’;
(c) Expand to the next leval; < ku;, wherek is the pyramid scale factor

Figure 3.1: The Joint Lucas-Kanade algoritfifij.
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3.2. Optical flow with adaptive smoothing

H. Nagel and W. Enkelmann proposed in [32] to &saly introduce
smoothness constraints into the problem of optioal.

We recall the basic optical flow equation of Horch8nck [25]:

rEan{”( (VI Tu+ It)2 + (uf +UJ +V +v§) )dxdy} : (3.7)

u, Vv . . o

whereu = (u, v)" and Vu ={ X XJ, represents the matrix of partial derivatives of

u, Vv
y y

the displacement vector components with respecthé image coordinates. The
second term in (3.7) represents the smoothnessreatgnt introduced by Horn and
Schunck [25]. Parametet denotes the strength of the smoothness requirement
relative to the first term.

Horn and Schunck used one parametesame for all the pixels. This means
that one pixel, inside a texture and one piXelon the borders of an object use the
same smoothness constraint. As a result, for pixée estimated optical flow is
computed well, but for the pixg| which is located on an edge of an object, the
estimated optical flow tend to lose its accuracyause it expands its flow around that

edge.

Therefore, the main idea was to introduce a weiglatrix C* into the
smoothness term, whose purpose is to give zerohivéig pixels located on edges
and greater values than zero for other pixels éatatside textured areas. So, in that
case, the optical flow problem becomes:

min {”( (VITu+1,f +4 tracc€(Vu)T C‘l(Vu)) ) dxdy} : (3.8)

where

F I I ! 2 Iyy _Ixy Iyy _lxyT
C'= and F = Y Y1 +b . (3.9)
detF -1, =1, —|Xy . —|Xy |
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The factorb® denotes the relative weight of the two contribusiolf we carefully
examine matri¥ we will see that it is a 2 x 2 matrix and aftem&manipulation we

obtain:

2+b2(|2 +Ify) _( +b2( Xy yy+|xy|xx))J£(Fll Flzj

" :[_( +b2( xy yy+|xy|xx)) x +b2(| fx"_lfy) I:12 I:22

At this point, we have to find the solution to thenimization problem of
(3.8). Firstly, let us rewrite the problem in a m@onvenient way:
rrJ’ivn{E(u,v,ux,uy,vx,vy)dxdy} =
rrunvn”(l U+l vl P (Fyu? +2F,u,u) + Fp U2

+ Py Vi +2F, v, v, + Fy vy)dxdy : (310

The solution of (3.10) is obtained by using thedOhls of Variations theory, (see

Appendix C for details) where the related Euler4laage equations are

min OE_dfoE)_dfoE|_, (311a)
ou dx au dy| ou,

min) 5 _ A [CE ) d[E ) _, (311b)

v ov dx|ov, dy 8v

From equation (3.11a), in order to find a solutfon u we have to compute the

following expressions

oE
. a=2(lxu+lyv+lt)lx
OE
L4 a_uXZZFj'lﬂdux-i_ZFlzluy
d( oE
dx[@uj 2F AU +2F,AU,
. a—E:2I:22/”tuy+2Flz/1uX

8uy
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d| oE
d—y[a—uyJ - 2 FZZ/I Uyy + 2 F12ﬁ“ ny

Substituting the above expressions into (3.11a) ceme up with the following

equation:

1Zu+ 1,0, v = =11, + 4 (Fyug, + Fpu, +Fpuy ).

By repeating the same procedure for equation (3.we&kfind a similar equation for.

Finally, we end up with the following linear system

1Zu+ 1,0, v =11 + 2 (Fyu, + Fyu, +Fou )

2
LI us12v =1 1+ 2 (Fyv, + Fovy, + Fuvy )

A usual approach to solve the above linear syssemproceed iteratively. For

the computation of™® andv"*) at step 1) we employ their derivatives computed

at time step.
2 (t+1) (t+1) _ (t) () (t)
I, u +leyv _—let+l(F11uxx+F22uyy+F12qu)
=
(t+1) 2,,0t+) (t) (t) (t)
LUt 120D — 2 (R v + Fo v + Fyv?)
2 (t+1) (t) (t) (t)
|2 11 u —1 0+ 4 (Fpu® + Fpyu® + Fyul)
= 2 AX®Y =p® | (312)
2 (t+1) (t) (t) (t)
1l 12| v 11+ 2 (P v + Py v + Fuv)

In (3.12), ifF11=F,2 = 1 andF;, = 0 we obtain the linear system we have at theaHor
and Schunck scenario [25]. Finally, the solution(3d.2) is obtained by solving the

previous iterative scheme.

3.3. Combination of JLK and adaptive smoothing

The first method we propose in this chapter is ¢bmbination of the two

previously mentioned methods of S. Birchfield — Fundlik [7] and H.Nagel-
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W. Enkelmann [32]. The main idea is to keep theppsed scheme of Naget al.
[32], in order to have adaptive smoothness comgg@nd modifying it by adding the
neighboring area proposed by Lucas-Kanade [28}laewl also used by S. Birchfield—
S. Pundlik [7]. In other words, the linear systeBrnl@) proposed in section 3.2 now
becomes:

(t+1) (t) (t) (t)
J, 3, u — 3+ 4 (Fuu® + Fpu® + Fyu®)

= (3.13)
Jy I, V| ] =3, + 4 (Fuv® + Py v + Fyv©)
wherede = Kp #(17), Joy = Kp #(Ixly), I = Kp #(Ixly), Jyy = Kp *(1y7), anddye = Ky *(I1)
and K, is a suitable convolution kernel whose size deiees1 the number of
neighboring pixels to be aggregated and assignsopppte weights to the pixels
inside the window. For our experiments, which wevgln section 3.5, we use a 7x7

average kernel.

3.4. Guiding optical flow using segmentation

The second method we propose in this chaptervariation of the method
described in section 3.3. The innovation here a¢ e “carefully” choose which of
the neighboring pixels are going to participateitfte convolution matrix,. The
choice is taken by examining if the neighboringgbix belongs to the same super-
pixel with the current pixel. If it doesn’t belong to the same super-pixel,nthiee

value ofK, for that neighboring pixel is equal to zero.

Here appears the need to analyze what we medrelgrm “super-pixel” and
how it is produced. It is common to use the teripestpixel in order to name a unit —
a piece from the result of the procedure calledyensegmentation. Another name you
may be seen in bibliography instead of super-pigxedegment. Additionally, image
segmentation is the procedure in which we grouttegy pixels of an image that
appear to have the same features (or simpler the sa&haviour). The most common

feature that is used in this scientific area isitiiensity value of the pixel.
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An example of image segmentation is shown in figuge

(©

Figure 3.2: Various image segmentations. (a) Yowesnvithout clouds, (b) Dimetrodon’s
and (c) Rubberwhale’s image segmentation.

In our experiments, the super-pixels were produbgdusing the method
purposed in [38], where G. Mori proposed a methe@ded on normalized cuts
(spectral clustering). For each experiment (exéepnh the trivial artificial images of
sections 3.5.1-3.5.3 where the number of the sppets does not affect the result),
we are showing various combinations between thelovinsize and the number of the
super-pixels at the appendix E.
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3.5. Experimental Results and Discussion

The proposed methods were tested on image secuenckiding both
synthetic and real scenes. Some of the synthetigeswere synthesized from us and
other were taken from publicly available data setsfor example the Middlebury
public flow dataset [3], [4, 29] in order to guai@® the objectiveness of our

evaluations.

More specifically, we tested our method on thrgetlsetic sequences. The
first sequence is showingTextured Squarenoving from the center to the top left
corner by one pixel. The second one is showing Textured TrianglesThe upper
left triangle moves about one pixel to the bottaft torner, while the bottom right
triangle moves about one pixel to the bottom rigtner. The third one is showing
two Textured Trianglesvith the only difference from the second synthsgguence
that here the bottom right triangle moves abouix2lp to the bottom right corner.
The background color for all the previously mendidrsequences is black, without

loss of generality.

Additionally, we tested our methods on the welbWm Yosemitesequence
without clouds, théimetrodonsequence and tHeubberwhalesequence [3] (which
contain hidden texture ~ occlussions). We compavad approaches with the
algorithms of Pundlik’'s method [7] and Nagel's nath32]. For the evaluation of

our method we used the error metrics describeddtion 2.4.
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3.5.1. Texturedquare Sequen

This is a simple 256 x 256 example, which considta textured squal
located at the center of the first frame, whiletreg second frame it moves by c
pixel towards the top left corneFigure 3.3 shows adme of the image and figure4
showsoptical flow estimations from the compared methattsng with the ground
truth. Figure 3.5shows theangular error and figure 3.6 presettte flow by using
color coding [3. We do not show the e-point error for each pixel as it has too sn
values (but weshow the average enpleint error, which is equivalent and mc

meaningful).

Figure 3.3 Texturer-square sequence: first frame of tleggence
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(a) (b)
(© (d)

Figure 3.5: Textured-squareAngular Error (AE) of the compared methods. (a) Jhthod
[7], (b) method of Nagel et 4B2] (c) JLK with adaptive smoothing (section 3.3) and
(d) guided optical flow using image segmentati@tiisn 3.4).
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(@)

(b)

(©)

(d)

(e)

Figure 3.6: Textured-square sequencetorful optical flow. (a) Flow field color coding,
(b) ground truth, (c) flow field using the JLK med{7], (d) flow field using the method of
Nagel et al[32], (e) flow field using the method proposed in sec8.3 and (f) flow field

(f)

using the method proposed in section 3.4.
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Table 3.1 Average error metrics for the Textursquare sequenc

Method AAE (in degrees)| AME (in pixels) | EP (in pixels)
Lucas-Kanadg2€] 3.09 0.08 0.08
Horn-Schunck2Eg] 1.84 0.04 0.04

Joint LucasKanad¢ [7] 2.67 0.04 0.05

Nagel et al[32] 1.60 0.04 0.04
Method of section 3.3 1.50 0.05 0.04
Method of section 3.4 1.46 0.04 0.04

As we can see from table 3.1 our appres achievesmaller errors tha

Nagel’set al.[32] andJoint Lucas-Kanade method [Tdr all the error metric

3.5.2. Textured+iangles with equal in Norm Mov

This is a slightly more complicated 256 x 256 ex@nphich consists of tw
textured triangles located at the top left cornsal at the bottonright corner of the
first frame, while at the second frame the uppgrtteangle moves by one pixel to tl
bottom left corner, while the bottom right triangteoves by one pixel to the bottc
right corner. Figure 7 shows the image and figure 3.8 théneated optical flos.
Figure 3.9 showshe angular error and figt 3.10 presentthe flow by using colo
coding [3. We do not show the e-point error for each pixel as it s too small
values (but weshow the average e-point error, which is equivalt and more

meaningful).

Figure 3.7 Texturectriangles (with equal in norm movegqence:irst frame of the
sequence.
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Figure 3.8: Textured-triangles (with equal in nomoves) sequence: (a) ground truth optical

flow, (b) optical flow using the JLK methpd, (c) flow using the method of Nagel et[3R],

(d) resulting optical flow of the proposed methddection 3.3 and (e) resulting optical flow

of the proposed method of section 3.4.
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(a) (b)
() (d)

Figure 3.9: Textured-trianglegwith equal in norm moves) Angular Error (AE) oéth
compared methods. (a) JLK metH@{l (b) method of Nagel et 4B2] (c) JLK with adaptive
smoothing (section 3.3) and (d) guided optical flesing image segmentation (section 3.4).
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(@) (b)

(© (d)

(e) (f)

Figure 3.10: Textured-triangles (with equal in nomoves) sequenceolorful optical flow.
(a) Flow field color coding, (b) ground truth, (fpw field using the JLK methdd],
(d) flow field using the method of Nagel et[aR], (e) flow field using the method proposed
in section 3.3 and (f) flow field method proposedéction 3.4.
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Table 32: Average error metrics for the Texturtriangles(with equal in norm move

sequence.

Method AAE (in degrees)| AME (in pixels) | EP (in pixels)
Lucas-Kanadg2€] 5.91 0.15 0.14
Horn-SchuncK2£] 2.47 0.05 0.05

Joint LucasKanad¢ [7] 4.10 0.07 0.08
Nagel et al[32] 2.25 0.06 0.05
Method of section 3.3 2.33 0.08 0.05
Method of section 3.4 2.26 0.07 0.05

As we can see from table 3.2 our appres are slightly worse than Nageet
al. approach [32]~ 0.01 difference IIAAE) although our results in fig. 10 are more
coherent our lost comes because our methods exgamdgtical flow slightly outsid
the edges of the triangl but better than Joint Luc&anade methc [7], for all the

error metrics.

3.5.3. Textured-Tangles with unequal in Norm Moy

A next experiment consists in increasing the diftix of the previou:
configurations. We have a 256 x 256 example, whiohsists of two texture
triangles located at the top left corner and atbiggom right corneof the first frame,
while at the second frame the upper left triangteve@s by one pixel to the bottom |
corner, while the bottom right triangle moves bytpixel to thebottom right corner
Figure 3.11shows the image and figurel2 the estimated aptl flows. Figure 3.13
showsthe angular error and figL 3.14 presentthe flow by using color codingc3].
We do not show the e-point error for each pixel as it has too small ealbut we

show the average espbint error, which is equivalent and maneaningful)

Figure 3.11: Texturedriangles (with unequal in norm moveggsience:irst frame of the
sequence.
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Figure 3.12: Textured-triangles (with unequal inrmomoves) sequence: (a) ground truth
optical flow, (b) optical flow using the JLK meth{@d, (c) flow using the method of Nagel et

al. [32], (d) resulting optical flow of the proposed metloddection 3.3 and (e) resulting

optical flow of the proposed method of section 3.4.
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(a) (b)
() (d)

Figure 3.13: Textured-trianglegivith unequal in norm moves) Angular Error (AE)Ioé¢
compared methods. (a) JLK metH@{l (b) method of Nagel et 4B2] (c) JLK with adaptive
smoothing (section 3.3) and (d) guided optical flesing image segmentation (section 3.4).
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Figure 3.14: Textured-triangles (with unequal irmomoves) sequenceolorful optical
flow. (a) Flow field color coding, (b) ground trytfc) flow field using the JLK methéd],
(d) flow field using the method of Nagel etfa2], (e) flow field using the method proposed
in section 3.3 and (f) flow field method proposedeéction 3.4.
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Table 3.3: Average error metrics for the Texturddrgles (with unequal in nhorm moves)

sequence.
Method AAE (in degrees)| AME (in pixels) | EP (in pixels)
Lucas-Kanadg28] 8.58 0.17 0.26
Horn-SchuncK25] 5.57 0.14 0.19
Joint Lucas-Kanadé§r] 6.95 0.18 0.22
Nagel et al[32] 4.79 0.13 0.18
Method of section 3.3 4.67 0.17 0.17
Method of section 3.4 4.78 0.16 0.18

As we can see from table 3.3 our approach achiswealler errors than
Nagel's et al. approach [32] inAAE and EP and slightly worse inAME, while in
comparison with the Joint Lucas-Kanade method (ifjraethods performs better for

all the error metrics, although all the methodsrditi have perfectly estimations.

3.5.4. Yosemite Sequence without Clouds

The Yosemite sequence  without clouds, is available at
http://ww. cs. brown. edu/ peopl e/ bl ack/i mages. htm .

Figure 3.15: Yosemite sequence without cloud< fiiesne of the sequence.
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of section 3.4.

Figure 3.21: Yosemite without clouds’ Angular Er(&E) of the JLK method].
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(b)

(©)

Figure 3.22: Yosemite without clouds’ Angular Er(&E) of the compared methods.
(a) Method of Nagel et dl32], (b) JLK with adaptive smoothing (section 3.3) é&idguided
optical flow using image segmentation (section.3.4)
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(@) (b)
(© (d)
I
(e) ®

Figure 3.23: Yosemite sequence without clouds:radloptical flow. (a) Flow field color
coding, (b) ground truth, (c) flow field using thieK method7], (d) flow field using the
method of Nagel et gi32], (e) flow field using the method proposed in sec8.3 and
(f) flow field using the method proposed in sec8ah
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Table 3.4: Average error metrics for the Yosemitbaut Clouds sequence.

Method AAE (in degrees)| AME (in pixels) | EP (in pixels)
Lucas-Kanadg28] 11.65 0.23 0.48
Horn-Schunck25] 5.43 0.10 0.20

Joint Lucas-Kanad§r] 7.97 0.17 0.35
Nagel et al[32] 9.15 0.19 0.36
Method of section 3.3 5.12 0.12 0.22
Method of section 3.4 3.79 0.09 0.15

As we can see from the table 3.4 our approactebeiter than Nagel'st al.
method [32], JLK [7], LK [28] and HS [25] for alh& error metrics. In order to obtain
those results, we used 40 super-pixels and a 1%ib@ow, representing the
neighborhood. See appendix E for more combinatlmetsveen the number of the

super-pixels and the window size.

3.5.5.  Yosemite Sequence with Clouds

The original version of th& osemitesequence with cloudy sky was created by Lynn
Quam and is available &tp: //ftp. csd. uwo. ca/ pub/ vi si on.

Figure 3.24: Yosemite sequence with clouds: fiesnk of the sequence.
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Figure 3.25: Yosemite sequence with clouds: grduunth optical flow
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Figure 3.30: Yosemite with clouds’ Angular Errorpof the JLK methof¥].
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(b)
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Figure 3.31: Yosemite with clouds’ Angular Errolpof the compared methods. (a) Method
of Nagel et al[32], (b) JLK with adaptive smoothing (section 3.3) ér)dguided optical flow
using image segmentation (section 3.4).
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(@) (b)
() (d)
(e) ]

Figure 3.32: Yosemite sequence with clouds: colayfdical flow. (a) Flow field color
coding, (b) ground truth, (c) flow field using thieK method7], (d) flow field using the
method of Nagel et d132], (e) flow field using the method proposed in &c8.3 and

(f) flow field using the method proposed in sec8ah
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Table 3.5: Average error metrics for the Yosemitl @louds sequence.

Method AAE (in degrees)| AME (in pixels) | EP (in pixels)
Lucas-Kanadg28] 20.75 0.46 0.87
Horn-Schunck25] 12.57 0.32 0.55

Joint Lucas-Kanad§r] 16.69 0.35 0.63
Nagel et al[32] 19.78 0.47 0.84
Method of section 3.3 13.46 0.38 0.66
Method of section 3.4 11.86 0.30 0.52

As we can see from the table 3.5 our approactebetter than Nagel'st al.
method [32], Joint Lucas-Kanade [7], LK [28] and [25] for all the error metrics. In
order to obtain those results, we used 40 sup@ipiand a 21x21 window,
representing the neighborhood. See appendix E @we mombinations between the

number of the super-pixels and the window size.

3.5.6. Dimetrodon Sequence

The dimetrodon sequence is obtained from the Miolgly database [3]. It

contains non-rigid motion and large areas witlelithidden or not) texture.

Figure 3.33: Dimetrodon sequence: first frame & fequence.
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Figure 3.37:Dimetrodon sequence: resulting optical flow of pheposed method of section
3.3.
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Figure 3.38:Dimetrodon sequence: resulting optical flow of fineposed method of section
3.4.

Figure 3.39: Dimetrodon’s Angular Error (AE) of tlB&K method7].
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(b)
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Figure 3.40: Dimetrodon’s Angular Error (AE) of tkempared methods. (a) Method of
Nagel et al[32], (b) JLK with adaptive smoothing (section 3.3) &ridguided optical flow
using image segmentation (section 3.4).
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(e) f) (

Figure 3.41: Dimetrodon sequence: color@gtical flow. (a) Flow field color coding,
(b) ground truth, (c) flow field using the JLK med{7], (d) flow field using the method of
Nagel et al[32], (e) flow field using the method proposed in sec8.3 and (f) flow field

using the method proposed in section 3.4.
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Table 3.6: Average error metrics for the Dimetrodmguence.

Method AAE (in degrees)| AME (in pixels) | EP (in pixels)
Lucas-Kanadg28] 27.52 0.56 1.07
Horn-SchuncK25] 8.51 0.24 0.49

Joint Lucas-Kanad§r] 33.14 0.65 0.35
Nagel et al[32] 17.58 0.38 1.17
Method of section 3.3 10.17 0.24 0.52

Method of section 3.4 6.24 0.18 0.36

As we can see from table 3.6 our approaches dterliban Nagel'st al.
method [32], Joint Lucas-Kanade [7], HS [25] and [28], for all the error metrics.
The EP = 0.35 for the JLK method is misleading since Jiaieid in AAE metric. In
order to obtain those results, we used 40 supe&igpiand a 29 x 29 window,

representing the neighborhood. See appendix E @oe mombinations between the

number of the super-pixels and the window size.

3.5.7. Rubberwhale Sequence

The rubberwhale sequence is obtained from the Mhldly database [3].

Figure 3.42: Rubberwhale sequence: first framehefdequence.
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Figure 3.47:Rubberwhale sequence: resulting optical flow offiteposed method of section
3.4.

Figure 3.48: Rubberwhale’s Angular Error (AE) oBtiLK method7].
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(b)

(©)

Figure 3.49: Rubberwhale’s Angular Error (AE) okthompared methods. (a) Method of
Nagel et al[32], (b) JLK with adaptive smoothing (section 3.3) &)dguided optical flow
using image segmentation (section 3.4).
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Figure 3.50: Rubberwhale sequence: colodptical flow. (a) Flow field color coding,
(b) ground truth, (c) flow field using the JLK medt7], (d) flow field using the method of
Nagel et al[32], (e) flow field using the method proposed in s&c8.3 and (f) flow field

using the method proposed in section 3.4.
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Table 3.7: Average error metrics for the Rubberehsgquence.

Method AAE (in degrees)| AME (in pixels) | EP (in pixels)
Lucas-Kanadg28] 9.59 0.22 0.29
Horn-SchuncK25] 8.75 0.22 0.25

Joint Lucas-Kanadé§r] 18.44 0.43 0.50
Nagel et al[32] 11.87 0.29 0.33
Method of section 3.3 8.35 0.21 0.25
Method of section 3.4 8.17 0.21 0.24

As we can see from table 3.7 our approaches dterliban Nagel'st al.
method [32], Joint Lucas-Kanade [7], LK [28] and [£5], for all the error metrics.
In order to obtain those results, we used 100 sppets and a 9x9 window,
representing the neighborhood. See appendix E @wemombinations between the

number of the super-pixels and the window size.

3.6. Partial Conclusion

In this chapter we studied the methods proposeff]in[32] but also we
proposed two variations of them. As we can see fthm previous section, our
suggestions manage to achieve significantly betult than the JLK method [7] and
the approach of Naget al. [32].

Furthermore, we conclude that for the same windiae@, as the number of the
super-pixels increases, we obtain worse resultdit®nally, it is understood that the
window size has a greater role than the numberhef duper-pixels, which was
expected, since super-pixels have an effect onlyhenpixel belonging to motion
boundaries or to edges in the image, who are thenity of the image canvas.
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CHAPTER 4. VARIATIONAL BAYESIAN
OPTICAL FLOW

4.1. Introduction

4.2. A Prior for the Motion Vectors

4.3. A Probabilistic Model for Optical Flow

4.4. Model Inference

4.5. Experimental Results and Discussion
4.5.1. Squared-texture Sequence
4.5.2. Textured-Triangles with equal in Norm\ie
4.5.3. Textured-Triangles with unequal in Ndvtaves
4.5.4. Yosemite without Clouds Sequence
4.5.5. Dimetrodon Sequence

4.6. Partial Conclusion

4.1. Introduction

This work resulted from the combination of the hoet proposed in [14] with
the well-known Horn—-SchunckHE method [25]. More specifically, the main
difference between our approach and the methodSfs that we don’'t employ a
deterministic parameter to control the strengththaef smoothness constraint. More
specifically, we impose stochastic parameters,foneach pixel, similar in spirit with

[14], which are updated at each iteration. Morepwee impose Gaussian noise
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statistics in order to capture the missing infoioratiue to the linearization by Taylor

expansion series.

4.2. A Prior for the Motion Vectors

We assume thait(i), uy(i) fori = 1 ,...,N are i.i.d zero mean Student'slistributed
(see Appendix B for details), with parametgsy, and4y, vy, respectively:

{Ux(i) - St(o’ j‘x 1 Vx (41)

u, (i) ~ StQ, 4,,v,) ’

The Student’s-distribution implies a two-level generative pros¢8]. More

specifically,a,(i) anday(i) are first drawn from a Gamma distribution

a, ()~ Gammf{v—x,v—xj

2 2 4.2)
a, (i)~ Gamm{v—,ﬁ]

2 2

At this step, the probability density function (Brhay be written as an integral

p(uk(l)) = St(O, Xk,Vk) :J.: p(uk(i),ak (i )) d(lk(l)
= [ p(u, Ol O)p(a, () da, (). (43)

As v goes to infinity, the pdf odk(i)’'s has its mass concentrated around its
mean. This in turn reduces the Studenhts-a normal distribution, because alli),

ke{xy} are drawn from the same normal distribution wittegision Ak, since
a(i) = 1. Whenv, — 0 the prior becomes uninformative. In general, foaB values

of v the probability mass of the Student’pdf is more “heavy tailed”.
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Then, u.(i), uy(i) are generated from two independent zero-mean aorm
distributions with precisioriy Q'A,Q, Ay QTAyQ, respectively, where& is the
Laplacian operator andAx = diag{ ax(i) }, Ay =diag{ ay(i) }, according to

plu, 1 A,)=N[0.(2.07A,Q)")

, 4.4)

plu, 1 A,)=N(0.(4,07A,Q)")

Equation (4.4) may also be written more compadly a
p(u | ,3\): N (0,(/1@,3\ 5)_1) :

A ~ A . . . -
where 4 = LX] A :[ OX AO } , 0is a zero matrix of sizeN(x N and similarly
y y

~ [Q o
Q{o Q]

Combining both components of in one equation we obtain the density for the
motion vectors
N N 1/2 1 TAT
plulA)= TT T1(AA)" expl-Z AUIQTAQuy | (4.5)
i=1

ke{x,y} i=

Following (4.3), the marginal distributiop(u) yearns for a closed form.
However, this prior is analytically intractable bese one cannot find in closed form
its normalization constantThis problem stems from the fact that it is nosgble to
find the eigenvalues of the mat®'A.Q since it is very large and it does not have a
structure that is amenable to efficient eigenvalmputation. Consequently, we have
to import a proper model inference scenario, wichur case is described in section
4.4,
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4.3. A Probabilistic Model for Optical Flow

Let | be the first image frame (vectorized intensity ues) which is
commonly named as the target imadehe second image frame, which will be the
source imagex the vector containing the 2D coordinates of theslgiin a frame, and
u the optical flow vectors of the pixels. For conwce, but without loss of

generality, we use 1D notation.

As many methods usually do, based on the brighteesstancy constraint,
our aim is to minimize the intensity erral(x) — I(x + u), with respect tau. By
developing the Taylor series expansion(@f+ u) around pointx and keeping only

the linear part, we come up with the following Bneystem:

which can be written also as

d=Gu+w, (4.6)

whered is the initial intensity difference between theotivamesd = J(x) — [(X) in
vectorized form (e.g. lexicographic orderingp contains the spatial gradients

G=VI=[G, G,luon G,= diag{g—‘]} G, = diag{ﬂ} . N being
i=1,...N i=1,...N

the number of pixelgy = [uy, uy]T, andw is additive white noise modeling the rest of

the Taylor expansion terms. We also assume Gaustsitistics for the noise:

W(O’ (ﬂ“noise B)_l)' (47)

where Anis8 IS the noise precision matrif) is an N x 1 vector of zeros and

B =diag{b(1),...b(N)}. To make the model more flexible, we also coesithat:

b(i) ~Gamm€§,§j , (4.8)
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Following the optical flow model in (4.6),

p(d [u) = A (GU, (4,0sB) ), (4.9)
- X
o) M d N
< N
SCIOSING
A:\W / A} \T/
T \T/ 1
Vg Vy

Figure 4.1: The grapéli model of the method.
As it may be observed the graphical model of #gdrl,d is the vector

containing the observations (temporal differences)A,, Ay, b, are the hidden

variables of the model arig, 4y, Anoise Vx, Vy @andu are the model’s parameters.

4.4. Model Inference
Working in the Bayesian framework, the completeadikelihood is
p(d,u,;\,b; 49)= p(d |u,A,b; H)p(u |A,b; e)p(i;e )p(b; 6), (4.10)
whered = [Anoise, Ax » Ay , 1, Vx, V] cONtains the parameters of the model.

Estimation of the model parameters could be obthifirough maximization

of the marginal distribution of the observatiqi{d; 6):
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é:argmaxm p(d,u,,&,b;e) du dA db (4.112)
7

However, in the present case, this marginalizaisonot possible, since the

posterior of the latent variables given the obstona p(u, A, b | d) is not known
explicitly and inference via the Expectation-Maxaation (EM) algorithm is not

possible [5].

For this reason, we have to resort to the vanationethodology [14], [8], [26]

and [5]. According to this methodology, we haventaximize the following lower

T oen)_ ~ qlu,A,b
L(u,A,b,@)—u;bq(u,A,b)logg(ém%) . (4.12)

This involves finding approximations of the posperidistribution of the hidden

bound

variables, denoted bg(u), q(;&), g(b) because there is no analytical form of the
auxiliary functionq for which the bound in (4.12) becomes equalitythie variational
methodology, however, we employ tMean Fieldapproximation (see Appendix D
for details):

olu.A.b)=q(u) oA) olb) (4.13)
and (4.12) becomes

L(u,;&,b;e): I q(u)q(ﬂ)q(b) Iog%. (4.14)

uAb

In our case, in the VE-step of the variationaloalipm, optimization of the
functional L(q(x), 0) is performed with respect to the auxiliary fuonc. In the
present case following the variational inferencarfework, the distributiong(u),

ke{x, y}, are normal:
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Therefore, this bound is actually a function of th@rameterRx and my and a
functional w.r.t. the auxiliary functiong(Ax), q(B). Using (4.13), the variational

bound in our problem becomes

La(u,).a(u,).a(A,).q(A,),a(B).6,.,6, )=

[ TTat,:6)a(A,)a®)log p(d.u.A,B;6,) du dA dB

ke{x,y}

—ICI(UK;Ql)Q(Ak)Q(BNOg [ p(uc;6)a(A)a(B) du dA dB , (4.15)

keix,y}

whered; = [Rx, Ry, my, my] andf = [Ax, Ay, B, Ax, Ay vx, w]. Thus, in the VE-step of
our algorithm the bound must be optimized with ezspoRy, My, q(Ax) andqg(B).

Taking the derivatives of (4.1%).r.t to my, Rk, q(Ax), q(B) and setting them to zero

we obtain

md = 0 _ROBYG (d-G,uV)

, (4.16)
m = 20 RUBOG (d-G,ul)
RO — (/1“) GTBYG +/1“’QTA“’Q)‘1
, (4.17)

RED = (10, GTBYG, + AVQTAVQ)*

After some manipulation, we obtain the update &#gna for the model
parameters which maximize ovg(Ay), q(b). The form of allg approximating-to-the-
posterior functions will remain the same as theresponding prior (due to the
conjugate priors we employ) namefAy), q(b) which approximatg@(Ax | Uk, Ak, Ck;
Vi), P(b |u, Znoise F; 1) will follow Gamma distributions.

(t) (t)
q(“l)(ax(i))=Gamm{V; % V2 + ;ﬂm((Qu‘t)). +C§<t)(i’i)) Vi,

(4.18)

(t) ()
q(t+1)((ly(i )): Gamm{%Jr%,vzt 1,1‘”((Qu“)) C(yt)(i ,i)) , Vi,
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(t)
g2 (b(i))= Gamm{ ”2 + % My %xg‘gise((eu O _df +FOG,i ))J Vi, (4.19)

where C¥ =QRYQ", ke{x, y}, F = D> G, RVG; , d = J(x) —1(x) (the intensity
ke{x,y}

difference between the two initial frames) . Notibat the final estimates far, and

uy aremy andmy, in (4.16) respectively.

Observing the size of matric&, Ry and consequentlg,, Cy, F, we have to
use an iterative method in order to calculate theence, we recur to the Lanczos
method [14, 33].

As we can see from (4.16) there is a dependereyelauy anduy, as it is the
case in the standard Horn—Schunck method.

Notice that since eachg™(ei) are Gamma pdfs of the form

q*? (@l (i))= Gammda, B), their expected values are

<(l (I)> t+1 :ﬁ: VS)+1
e T g T +29(QuO Y +c (i)
, (4.20)
_ a v +1
<(ly(|)>q(t+l)(ay(i)) B B B v‘y‘) +/1(yt) ((ng) ).2 +C(y”(i,i))
and the same stands for the expected valléipf
<b(i)> _a u+1 (4.21)
D) " g~ 19 4 10 ((Gu“) —d)_2 +FO® (||)) .

where () denotes the expectation w.rt. an arbitrary digtidn g(.). These

a0)
estimates are used in (4.16) and (4.17), whafe and BY are diagonal matrices

with elements

Aff)(i,i)=<ak(i)>q(t)(ak(i)) and  BO(,i)=(b(i)) 0 1= N,
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At the variational M-step, the bound is maximizedthwrespect to the model

parameters:

VM-step: Y = argmax L(q(”l)(uk ), gtV (Ak),q(”l)(é), o ,492) , Where
0.

2

L(q(“l) (u ) ) q(t+1) (A ) ) q(t+1) (é) 91(t+1) ,0, ) o <Iog p(d, u,A K B; 0, )>q(uk;9£t+l)J’q(t+l)(Ak)’q(t+1)(é)

is calculated using the results from (4.16) —9%.1

The update for Anise IS oObtained after taking the derivative of

L(q(”l)(uk),q(”l) (Ak),q(”l) (I%) 61(”1),62) in (4.15) and setting it to zero:

N
A8 = : 4.22
S bG) (Gu® —df +FIG,i)) (422

By the same procedure we obtain:

20 _ N
et (Qui P et
: (4.23)
l(;+1)= ~ = Nt2 —
> o0 (Quf +ci(i)

The “degrees of freedom” parametgrof the Student’s-distribution is also

computed by setting the derivative of (4.15) edaaero with respect ta:

N

1({d ) _ VI((t) 1

vh o1 v v
—log X +=|-w| =X |+log =X |+1=0
9(2 2] ‘”sz QLZJ

0= logr(x)= Fr'g; |

. (4.24)

for vi, Vk € {x,y} , where

is the digamma function ang” is the value ofy at the previous iteration)(used
to evaluate the expectations in (4.20) during testep.
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Finally, by the same procedure we obtain estimfmethe parametex of the
noise distribution

)

%(,Zil log(b(i)) 24 ~ Zi:(b(i Datn iy J " W(ﬂz " %J

®
—Iog(ﬂ2 +%J—w(gj+log(%j+1=0
, (4.25)

wheren © is the value of 4 at the previous iteratiort)(used to evaluate the

expectations in (4.21) during the VE-step.

In our implementation, we solve (4.16), (4.24) add®5) iteratively. For
equations (4.24) and (4.25), we employ the biseatiethod, as also proposed in [27]
and [14]. For equation (4.16) we employ a methogetaon the Lanczos process [5],
[33].

To resume, the steps of the Variational EM — athariare presented in fig. 4.2.

Algorithm: Variational — Bayesian optical flow method

1: |Initializeuy , u, by theHorn-Schuncloptical flow.

2: DO until convergence

3 VE-step:

4 Compute the expectatiog$), a,(i) using (4.20).

5: Compute the expectatiom@j using (4.21).

6 VM-step:

7 Compufgise Using (4.22).

8 Compute , A, using (4.23).

9 Solve fox, vy, equation (4.24), using the bisection method.
10: Solve far equation (4.25), using the bisection method.
11: Update the mean vectors u@ntg).

12: Update matricg C,, F andR,, R, using (4.17) and thieanczosmethod.
13: Solve (4.16) to obtain tldues ofm,, m,.

14: Setf, uy] : = [my, my].

15: END DO

Figure 4.2: The steps of the proposed method.
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4.5. Experimental Results and Discussion

The proposed method was tested on image sequerbasing both synthetic
and real scenes. Some of the synthetic images syathesized from us and other
were taken from publicly available data sets asefcample the Middlebury public
flow dataset [3], [4, 29] in order to guarantee thgectiveness of our evaluations.

More specifically, we tested our method on thrgetlsetic sequences. The
first sequence is showingTextured Squarenoving from the center to the top left
corner by one pixel. The second one is showing Textured TrianglesThe upper
left triangle moves about one pixel to the bottaft torner, while the bottom right
triangle moves about one pixel to the bottom rigtner. The third one is showing
two Textured Trianglesvith the only difference from the second synthsgguence
that here the bottom right triangle moves abouix2lp to the bottom right corner.
The background color for all the previously menéidrsequences is black, without

loss of generality.

Additionally, we tested our method on the well-lumoYosemitesequence
without clouds and thBimetrodonsequence [3] (which contains hidden texture). We
compared our approach with the algorithms of Hocht®ick [25], and Lucas-Kanade
[28]. For the evaluation of our method we useddtrer metrics described in section
2.4,
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45.1. Textureddhiare Sequence

This isa simple 256 x 256 examplewhich consists ofa textured square
locaked at the center of the first frame, while at tkecnd frame it move by one
pixel towards the tofeft corner. Figure 4.8hows a frame of the image i figure 4.4
shows optical flowestimations fronthe comparednethods along with the groul
truth. Figure 4.5showsthe angular error and figure 4gsesentsthe flow by using
color coding [3]. V& do not how the end-point errdor each pixeas it has too small
values(but we are shoing the average englint error, which is equivalent and mc

meaningful).

Figure 4.3 Texturer-square sequence: first frame of tleggence
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Figure 4.4: Textured-square sequence: (a) grounthtoptical flow, (b) optical flow
initialization using the method of Horn-Schurj2zk], (c) optical flow using the method of

Lucas-Kanad¢28] and (d) resulting optical flow of the proposed nwet.
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Figure 4.5: Textured-square’Angular Error (AE) of the compared methods. (a}i#hiAE
using the method of Horn-Schurj2k], (b) AE using the method of Lucas-Kan§## and
(c) AE of the proposed method.
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(@)

(b) ()

(d) (e)

Figure 4.6: Textured-square sequencelorful optical flow. (a) Flow field color coding,
(b) ground truth, (c) initial flow field using theethod of Horn-SchungR5], (d) flow field
using the method of Lucas-Kand@8] and (e) flow field of the proposed method.
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Table 4.1 Average error metrics for the Textursquare sequenc

Method AAE (in degrees)| AME (in pixels) EP (in pixels)
Lucas-Kanadg28] 3.09 0.08 0.08
Horn-Schunck25] 1.84 0.04 0.04

Joint Lucas-Kanadg7] 2.67 0.04 0.05
Nagel et a[32] 1.60 0.04 0.04
Method of section 3.3 1.50 0.05 0.04
Method of section 3.4 1.46 0.04 0.04
Proposed method (Chapter 4) 0.76 0.02 0.02

As we can see frortable 4.1 our approach achiewssaller error than Horn-
Schunck and Lucakanademethod, for all the error metrics.

4.5.2. Textured+iangles with equal iINorm Moves

This is aslightly more complicated 256 x 256 example, which consibts/o
textured triangles located at the top left corned at the bottom right corner of t
first frame, while at the second frame the uppgrti@angle moves by one pixel to tl
bottom left cornerwhile the bottom right triangle moves by one pit@lthe botton
right corner. Figuret.7 shows the image and figure 4t& estimated optical flov
Figure 4.9shows the angular error and figi4.10 presents the flow by using col
coding [§. We do not how the endioint error for each pixel as it has too sn
values (but we are shing the average englint error, which is equivalent and mc

meaningful).

Figure 4.7 Texturectriangles (with equal in norm move®qence:irst frame of the
sequence.
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Figure 4.8: Textured-triangles (with equal in nomoves) sequence: (a) ground truth optical

flow, (b) optical flow initialization using the nietd of Horn-Schuncl5], (c) optical flow

using the method of Lucas-Kand@8] and (d) resulting optical flow of the proposed noet.
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Figure 4.9: Textured-trianglegwith equal in norm moves) Angular Error (AE) oéth
compared methods. (a) Initial AE using the methiddarn-Schunck25], (b) AE using the
method of Lucas-Kanad28] and (c) AE of the proposed method.
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Figure 4.10: Textured-triangles (with equal in nomoves) sequenceolorful optical flow.

(@) Flow field color coding, (b) ground truth, (ojitial flow field using the method of Horn-

SchuncK25], (d) flow field using the method of Lucas-Kan§h] and (e) flow field of the
proposed method.
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Table 42: Average error metrics fohe Textured-triangle@vith equal in norm move

sequence.

Method AAE (in degrees)| AME (in pixels, | EP (in pixels)
Lucas-Kanadg2€] 5.91 0.15 0.14
Horn-Schunck2Eg] 2.47 0.05 0.05

Joint LucasKanade[7] 4.10 0.07 0.08
Nagel et a[32] 2.25 0.06 0.05
Method of section 3.3 2.33 0.08 0.05
Method of section 3.4 2.26 0.07 0.05
Proposed method (Chapter 4) 1.06 0.02 0.03

As we can see from tab4.2 our approach achieves smaller errors than -
Schunck and Lucakanade method, for all the error metr Additionally, by
observing figure 4.1@), we understand that Lu-Kanade method have problel

estimating the motiovectors at the edges of the objects.

4.5.3. Textured+iangles with unequal iNorm Moves

A next experiment consists in increasing the diffig of the previous
configurations.We havea 256 x 256example, which consists of two textul
triangles located at the top left corned at the bottom right corner of the first frar
while at the second frame the upper left triangteve@s by one pixel to the bottom |
corner, while the bottom right triangle moves bytpixel to the bottom right corne
Figure 4.11shows the ima¢ and figure 4.12he estimated optical flow. Figu4.13
shows theangular error and figure.14 presents the flow by using color codir3].
We do not show the e-point error for each pixel as it has too small ealbut we

are showng the average e-pointerror, which is equivalent and more meanin).

Figure 4.11: Texturedriangles (with unequal in norm moveggsience:irst frame of the
sequence.
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Figure 4.12: Textured-triangles (with unequal inrmomoves) sequence: (a) ground truth
optical flow, (b) optical flow initialization usinthe method of Horn-Schunf2&], (c) optical
flow using the method of Lucas-Kand@8] and (d) resulting optical flow of the proposed
method.
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Figure 4.13: Textured-trianglegivith unequal in norm moves) Angular Error (AEXIo¢
compared methods. (a) Initial AE using the methfadarn-Schunck25], (b) AE using the
method of Lucas-Kanad28] and (c) AE of the proposed method.
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(d) (e)

Figure 4.14: Textured-triangles (with unequal irmomoves) sequenceolorful optical
flow. (a) Flow field color coding, (b) ground trytfc) initial flow field using the method of
Horn-Schunck25], (d) flow field using the method of Lucas-Kanfi] and (e) flow field of
the proposed method.
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Table 4.3: Average error metrics for the Texturddrgles (with unequal in norm moves)

sequence.

Method AAE (in degrees)| AME (in pixels) | EP (in pixels)
Lucas-Kanadg28] 8.58 0.17 0.26
Horn-Schunck25] 5.57 0.14 0.19
Joint Lucas-Kanad§g/] 6.95 0.18 0.22
Nagel et a[32] 4.79 0.13 0.18
Method of section 3.3 4.67 0.17 0.17
Method of section 3.4 4.78 0.16 0.18
Proposed method (Chapter 4) 3.93 0.10 0.16

As we can see from table 4.3 our approach achiewedler errors than Horn-
Schunck and Lucas-Kanade method, for all the enedrics, although all methods did
not have perfectly estimations. Additionally, by sebving figure 4.14(d), we
understand that Lucas-Kanade method have problstinsating the motion vectors at

the edges of the objects.

4.5.4. Yosemite Sequence without Clouds

The Yosemite sequence  without clouds, is available at
http://ww. cs. brown. edu/ peopl e/ bl ack/i mages. htm .

Figure 4.15: Yosemite sequence without clouds: fiiesne of the sequence.
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Figure 4.18: Yosemite sequence without cloudscaptiow using the method of Lucas-

Kanade[28].
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(b)

(€)

Figure 4.20: Yosemite’'s Angular Error (AE) of thengpared methods. (a) Initial AE using
the method of Horn-Schunf25], (b) AE using the method of Lucas-Kani2i] and (c) AE
of the proposed method.
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(@)

(b) c) (

(d) (e)

Figure 4.21: Yosemite sequence without clouds:radloptical flow. (a) Flow field color
coding, (b) ground truth, (c) initial flow field g the method of Horn-Schunj@s], (d) flow
field using the method of Lucas-Kandd8] and (e) flow field of the proposed method.
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Table 4.4: Average error metrics for the Yosemitbaut Clouds sequence.

Method AAE (in degrees)| AME (in pixels) | EP (in pixels)
Lucas-Kanad¢28] 11.65 0.23 0.48
Horn-Schunck25] 5.43 0.10 0.20

Joint Lucas-Kanad§r] 7.97 0.17 0.35
Nagel et a[32] 9.15 0.19 0.36
Method of section 3.3 5.12 0.12 0.22
Method of section 3.4 3.79 0.09 0.15
Proposed method (Chapter 4) 4.45 0.11 0.24

As we can see from the table 4.4 our approaclettebthan Horn-Schunck
method at the average angular error metric (whecithe most important), slightly
worse for the average magnitude error (differen®d)ObutHS must know the exact

value of the deterministic parameter and also #iighiorse for the average end-point

error (difference 0.04).

45.5. Dimetrodon Sequence

The Dimetrodon sequence is obtained from the Mioldity database [3]. It

contains nonrigid motion and large areas witheliftiidden or not) texture.

Figure 4.22: Dimetrodon sequence: first frame & fequence.




112

e e e e e e e e e e e i i e e e e A e e i L e e e e e i e g
HHHHM'&'&MM‘\H‘a\erHHHFFHHHHHHHHHHFff‘H(
e e WMol Wl W TR T e TR TR TR e Rl \h‘_HHHHHHHHFHHHHHHHEHE/
Tl el T el R T TR TR R T e R e N \th_y____t__t__t__f_t__t__t__f_f_qﬂ_fff‘,f‘/
EEEHMHMMMHH“\&\Mmhmrﬁfﬂ_,f_ﬂffffﬁf‘,f////
MEEMHHHHHH"\\\‘\‘\‘KHH‘H"—_‘—HHHH‘_F‘_FHHH/‘___/////
— e e e el TR TRl e R e e e e R e e e e e e e e e e e e e o e
T e e e L L R R B e R R R T e R e e e e e e e e e S e e
B T e i e P A G e
— e e e e T e e e e e e e R e e e e e e P R e
e e e e e TRl e e e e R e R e e e e . e e e - L
e el e e el T e R R R e e e e e e e e T e e e L
e T T i M"—_hm_h-.q_._‘,‘,/‘,‘,‘,‘,/‘,///
B T e T T T T T e U
B T T T T T e . A \,_.hm_,__,./‘,//
e e T e e e T T
e T T T T e e e T T Y
B T e T S U
B T T O T
B T T T T e T T T el I U,
B e T T T S S e T S SRR S S SO S
R T o T o T T T S W T T e T e
—_— e m ml mL R m e T A N L e e T T — me wl
Figure 4.23:Dimetrodon sequence: ground truth optical flow.
.o~ o ., P
- R e e e e e e e e e T e e e o o a A A am T e — e A= e = = e e o -
e e m e M R R e M o e e e e e e e e e we a —  -
axmmxhh‘%\‘x&‘x‘x‘x\._f_‘_,‘fq_._,/‘,_F‘,_F/‘_ T -
— e e e e e e e e e e e N e e v v e e e — e A A A e e .
nmnmxmhhhm\‘x\‘thu%h_,/‘_,_‘,_F__,‘__/_d_‘_,‘,_,_,/ PR -
el el el el el e R e e e R T e e e e e e e o e e i a e e e e ™
e T T T e e e T e e e e e e e e e e e e e =T e e ey s e w
._H—EE-EHMH&MM\\M&q_\"ah.._.._..__._‘d_‘d_.._‘___/////;/, .
el me e e e, R e e e, e, e e . n\\-h\..“,,_.._.._.._‘_,/‘,/////,, -
e e el el me e e e e R e e e el el e B e P I -
““HHMMHMRMM\MHMEMM"‘-\-."‘-u""‘-\"‘—\—“—‘-"'_‘—d—"‘—’/////_./_,/// -
T T T
o T N ,IRM\‘\HMEEFF,,,,,{‘,,,,
e e e N e e T T e Tl e e e e R e e v e e e i e e e e e -
B e e e T S P
T T T T
e e e R R R R B R TR R T e e e e e R R N N R R s el e e e -
B T T T T T N
B T e T T
T T T e N
B T T T T T e T S,
B T T T T T T T T
. T L T T T VO e
v e .- N

v
2
.

Figure 4.24: Dimetrodon sequence: optical flowiadization using the method of Horn-
SchuncK25].




113

SN
L e~

NN -
W e

~
.
L

-

e e e e e e e A
B e el e e e e e e e

T

.

_—

o

R

T
e e TR N

T e TR
-
-

T s W
e m e mEER R L .

. t
i t
| f
Lttt
bty

’
’
’
.
!

e

—

—

T . N
B T e, S SN
PR LN N, N S N S TR T N N N T

— T e e e

e e

A e
i e — — o~

o e am

e e e e e TR

Py oy

S

e -

o e T

— T R TR . Ve ey e

B

N e e T
. R R M e m
e e e

!

E

p AT e
AAAS S
AT
PV A A |

prr Mt

t
|
i

4

i
i
!

!

t
f
t

!

! AR

!
|

VRN oy L

)
A

L N

!

FRF A

N w

(R

i

/

'\\\-._._.._.._,___

\

/
/t
!

-

!
!

Figure 4.25:Dimetrodon sequence: optical flow using the metbfdducas-Kanad§28].

PV A

!

N A A A A A A

t

f

L

— m — m
T e e el el ™
T e el e e
T el Tl T el el
e T el Tl Tl e
— e el L R R
T e e T
— e e L L e
T
e T, S
,— e e me e e
e
e
— e e w T T
,— e el EL e
— e e e
e e
— e e e el e
— e e e e e
—_ e e e m e
e
B e
T
R S T T Y
B T S

PEPRVENENE RSN I AN IV AV I B N A A A A A A

FAVAVIN RN Ry A A AN A A A A A A A A A
PRVIN AN RIS A A N N N N A

NN NN
AN NN NN NN

{

!

s

B
R L T e e e e o o —— -—

e e e e
R e e e e .
e e e T e e e e e
T T T e e e e e e L
T TR TRl el N R m w el e
e T e T
T el v el oml R R e ml R R
e T T e
R T T T e N
B T T N T S
R T T T T
R T T L S S
. s s e - At . - s s e - . .
e T T T S L N
R e o N

i

A AV A A A A A
PR AR A S
LA
AR S

N T TR

.
i
t

7
i
{

!

[ W U N L B N
LT U S T !
R R N N N UL T

1
|

!

!
t

!

!
{
\
)
1

i

T O O N L !

O T L L T
N T T T U O U O L |
P O L VL UL T UL L U T O U
P I SO L U S S S L T U T ST

L T
F A A |

i

4

|
!

;

s

!

|

!

Y

Figure 4.26:Dimetrodon sequence: resulting optical flow of pheposed method.




114

(b)

(€)

Figure 4.27: Dimetrodon’s Angular Error (AE) of tlkempared methods. (a) Initial AE using
the method of Horn-Schunf2s], (b) AE using the method of Lucas-Kanfzi] and (c) AE
of the proposed method.
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(b) (©)

(d) e)(

Figure 4.28: Dimetrodon sequence: colorfytical flow. (a) Flow field color coding,
(b) ground truth, (c) initial flow field using theethod of Horn-SchungR5], (d) flow field
using the method of Lucas-Kand@8] and (e) flow field of the proposed method.
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Table 4.5: Average error metrics for the Dimetrodmguence.

Method AAE (in degrees)| AME (in pixels) | Avg EP (in pixels)
Lucas-Kanad¢28] 27.52 0.56 1.07
Horn- Schunck25] 8.51 0.24 0.49

Joint Lucas-Kanad§g/] 33.14 0.65 0.35
Nagel et a[32] 17.58 0.38 1.17
Method of section 3.3 10.17 0.24 0.52
Method of section 3.4 6.24 0.18 0.36
Proposed method (Chapter 4) 4.31 0.13 0.22

As we can see from table 4.5 our approach is gt both Horn-Schunck

method and Lucas-Kanade, for all the error metrics.

4.6. Partial Conclusion

At the beginning, let’'s discuss the reason whgame experiments we do not
manage better results than the HS method and LKadetAlthough our method is
more flexible tharHS method, since we allow every pixel to move indegernky in
the spatial domain, it has more parameters toTims will be also a disadvantage, if

we have to deal with sequences which contain “ssmploves.

Secondly, our method obtains better estimationenmive have a variety of
different in norm movements than Horn-Schunck andas-Kanade methods produce

(as we can see from section 4.5.4).

One issue which is worth proposing for future waskto update a part of the
equations (4.18 — 4.23) at each step, since theersuise Ax, Ay tend to increase

their values rapidly, whilé,, Ay andb(i) more slowly.
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CHAPTER 5. CONCLUSION AND
FUTURE WORK

5.1. Conclusion

5.2. Future work

5.1. Conclusion

In the present thesis, we studied the fundameprablem of optical flow,
located in the area of computer vision, but alsqovagosed three methods in order to

solve it.

More detail, in chapter 2 we studied three clagséthods, the Lucas-Kanade
(LK) method [28], the Horn-Schunck (HS) method [2B]d the affine optical flow
method [39]. Next, in chapter 3, we studied twaatasns of the LK and HS methods,
firstly the Joint Lucas-Kanade [7] and secondly thethod proposed from Nagel
al. [32] where they use adaptive smoothness consdrahalditionally, we analyze our
suggestions in order to improve those methods aedshow experimental result.
Finally, in chapter 4, was presented a brand negvogeh, which was inspired from
the HS method and was imposed stochastic paramestesd of stationary that were
used in HS.

5.2. Future work

To begin with, one improvement for the methodsppe®d in chapter 3, is to

find a suitable method to approximate the secowéroderivatives which they were
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used in the linear system. Secondly, you can usghan method for the image
segmentation which will give more competitive résullhirdly, you can experiment
in finding the suitable type of the neighboring &y instead of the average kernel

which we used, but also the size of it.

As for the method proposed in chapter 4, one wosfiort is to find a
different algorithm instead of Lanzcos method, idev to solve the iterative system

of this chapter.
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APPENDICES

APPENDIX A. Rate of Change of Image Brightness

Consider a patch of the brightness pattern thdisjglaced a distane in the
x-direction andy in they-direction in timest. The brightness of the patch is assumed

to remain constant so that
Xy, t) = I(x+ox, y+dy, t+dt). (A.1)
Expanding the right-hand side about the poiny,(t) we get,

(X, y,t) =1(XVy,t) +5xﬂ+§yﬂ+étﬂ+g.

Wheree contains second and higher order termsgxndy, andot. After subtracting
(X, y, ) from both sides and dividing through étywe have

+ =U.
Aox oy ot (A.3)

whereQ(dt) is a term of ordeft (we assume thaix anddy vary asdt). In the limit as

ot — 0 this becomes

§ﬂ+ﬁﬂ +ﬂ:0. (A.4)
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APPENDIX B. Student’st-distribution

In what follows, we briefly present the propertsStudent’s-distributions.

A d-dimensional random variabbé that follows a multivariate t-distribution
with mean u, positive definite, symmetric and rahk d covariance matrix’ and has

ve [0, « ) degrees of freedom has a density expressed by

p(X 4, %,v)= (B.1)

v+d !

d =
(nv)2 F(\zlj [1+v’15(x, y;z)] 2
where 5(X, H; 2):(x—y)TZ‘l(x—y) is the Mahalanobis squared distance Amslthe
Gamma function.

It can be shown that the Studentdistribution is equivalent to a Gaussian

distribution with a stochastic covariance matrix. dther words, given a weiglt

following a Gamma distribution parameterizedvwy
u~/(v/2,v/2), (B.2)

The variable X has the multivariate normal disttibn with meanu and covariance
2lu:

X |, Z,v,u~N(,Z/u), 83.
It can be shown that forw — « the Student'st-distribution tends to a Gaussian

distribution with covariance. Also, if v > 1, u is the mean oX and ifv > 2,

v(v-2)2 is the covariance matrix oK. Therefore, the family ot-distributions
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provides a heavy-tailed alternative to the norraahify with mearnu and covariance
matrix that is equal to a scalar multipleXpfif v > 2 (Fig.B.1).

0.4

0.34

0.3

0.25

pi)

0z

0.15

0.1

0.05

Figure B.1: A univariate Student’s t-distributiam € 0, ¢ = 1) for various Degrees of
Freedom. As v» « the distribution tends to a Gaussian. For smallrea of v the
distribution has heavier tails than a Gaussian.
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APPENDIX C. Calculus of Variations

C.1. Introduction

Variational methods have their origins in the 18émtury with the work of
Euler, Lagrange, and others on thalculus of variations Standard calculus is
concerned with finding derivatives of functions. Wen think of a function as a
mapping that takes the value of a variable as npeatiand returns the value of the
function as the output. The derivative of the fiumctthen describes how the output
value varies as we make infinitesimal changes ¢oitput value. Similarly, we can
define afunctionalas a mapping that takes a function as the inputlaaideturns the
value of the functional as the output. An examptuld be the entropy K], which
takes a probability distributionp(x) as the input and returns the quantity

HIp] = [ p(x)In p(x)ax, ©.

as the output. We can introduce the concept dlractional derivative which
expresses how the value of the functional changessponse to infinitesimal changes
to the input function (Feynmaet al, 1964). Many problems can be expressed in
terms of an optimization problem in which the quignbeing optimized is a
functional. The solution is obtained by exploringpossible input functions to find
the one that maximizes, or minimizes, the functiowariational methods have broad
applicability and include such areas as finite @etnmethods (Kapur, 1989) and
maximum entropy (Schwarz, 1988).

C.2. ' Derivative in the Functional

For a given functiomi(x): [a, b]—» ® and a functionaF(x, u, u’) we define
b
E(u)sz(x,u,u’) dx, y\

and the problem is to minimizgu) with respect ta(x).
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Firstly, we have to define the first variationk(u), which is

% =E(u+Vv)-E(u) withv(x) such that(a) =v(b) =0, (C.3)

therefore%:o < E(u+Vv)-E(u)=0, (C.49)

Secondly, by using Taylor series expansionFdi,u+v,u’+V') around the point

(x, u, v), we get

F(x,u+v,u' +V)=F(xu, v)+vﬁ+v£
ou ou’

<:>IF(x,u+v,u’+v')dx:I[F(x,u,v) ZE ’Szl}dx

& Eu+V) = EW)+ ] {vz—iw Zﬂdx, (C.5)

Then follows the minimization,

rLQiX?{E(u)} < Eu+Vv)-E(u)=0

o j[va—F+ v'a—F}dx= 0
ou ou’

v—dx+ \ —dx 0
< j j ou'f
X=b
o jva—Fdx+{v(x)a—F} —jvia—Fdx= 0
u’ dx ou’

v(a) v(b)=0

d aF
J-_d _J- dxau
oF d oF
|

————}d x=0, YVv(X)
ou dxo

PENL LN o) (C.6)
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By solving the previougkuler equation we obtain the solutiom(x) which

minimizes the energy functida(u).

The next point we have to stand is the ocabken we have second order

derivatives in the functional.
C.3. F'& 2" Order Derivatives in the Functional
In this case the functidB(u) we want to minimize becomes
b
E(u) = J' F(x,u,u’,u") dx = m(igl{E(u)} : (C.7)

While the differential equation becomes

_ oF d(oF) d2(oF
minE(u — | t7= =0, 8
u<x){ W} ou dx(@u’j dx’ (811"} o)

C.4. Second order Partial Derivatives in the Fuanfl and 2-D unknown Functions

u(x, y)
For a given functiom(x, y): [a, b] x [c, d]»> ® and a functiondF(x, u, u’,u")
the modified problem is

E(u):ﬁF(x,u,u’,u”) dxdy = min{E(u)}
at o (C.9)

Similarly we obtain the following differential eqgi@an,

_ OF d(oF) d[oF | d?®(oF ), d*( oF
O g v TR T A v Al v
y u-oxiou ) dylady ) ax ol ) ay {dly )¢ 10)

whereuy , U, , Uy, Uy are defined as the partial derivatives

ou ou o°u
y u =— 1u = 5 u,=—

yy ayZI
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APPENDIX D. Approximate Inference

In this appendix, we are going to quote someessabout the approximate

inference which were taken from C. Bishop’s book [8
D.1. Variational Inference

Suppose we have a fully Bayesian model in whi¢hpatameters are given
prior distributions. The model may also have latesntiables as well as parameters,
and we shall denote the set of all latent variables parameters . Similarly, we
denote the set of all observed variables<byror example, we might have a seth\bf
independent, identically distributed data, for whic= {xy, . . ., xn} andZ ={z; ,...,
zn}. Our probabilistic model specifies the joint dibution p(X,Z), and our goal is to
find an approximation for the posterior distributip(Z|X) as well as for the model

evidencegy(X). We can decompose the log marginal probabilitygis

In p(X) = L(q) +KL(qll p) , (D.1)

where we have defined

p(X,2)
L = Z)Ink ———= *dZ , D.2
(@) jq()n{ o) } (D.2)
pZ|X)
KL =-1q(2) | dz , D.3
(all p) jq()n{ ) } (D.3)

We can maximize the lower bounid(g) by optimization with respect to the
distributionq(Z), which is equivalent to minimizing the KL divemyze. If we allow
any possible choice fa@(Z), then the maximum of the lower bound occurs witen
KL divergence vanishes, which occurs whifz) equals the posterior distribution
p(Z|X). However, we shall suppose the model is such wwaking with the true

posterior distribution is intractable.
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We therefore consider instead a restricted faofilgstributionsg(Z) and then
seek the member of this family for which the KL eligence is minimized. Our goal is
to restrict the family sufficiently that they conmg® only tractable distributions, while
at the same time allowing the family to be sufiintig rich and flexible that it can
provide a good approximation to the true postedistribution. It is important to
emphasize that the restriction is imposed purelyatbieve tractability, and that
subject to this requirement we should use as ricfaraily of approximating
distributions as possible. In particular, theraas'over-fitting’ associated with highly
flexible distributions. Using more flexible approxations simply allows us to

approach the true posterior distribution more diose

One way to restrict the family of approximatingstdbutions is to use a
parametric distributio(Z|w) governed by a set of parametersThe lower bound
L(q) then becomes a function ab, and we can exploit standard nonlinear

optimization techniques to determine the optimdlies for the parameters.

D.1.1. Factorized distributions

Here we consider an alternative way in which tdrretsthe family of distributions
g(Z). Suppose we partition the elementZahto disjoint groups that we denote By
wherei =1, ..., M. We then assume that ¢heistribution factorizes with respect to

these groups, so that
M
Q(Z):Hqi(zi) ' .
i=1

It should be emphasized that we are making no durssumptions about the
distribution. In particular, we place no restriction the functional forms of the
individual factorsgi(Z;). This factorized form of variational inferenceri@sponds to
an approximation framework developed in physictedahean field theoryAmongst

all distributionsq(Z) having the form (D.4), we now seek that distribatfor which
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the lower bound_(q) is largest. We therefore wish to make a free f@variational)
optimization ofL(qg) with respect to all of the distributiortg(Z;), which we do by
optimizing with respect to each of the factors imnt To achieve this, we first
substitute (D.4) into (D.2) and then dissect oet dependence on one of the factors

gi(Z;). Denotingq;(Z;) by simplyq; to keep the notation uncluttered, we then obtain

L@ =[]Ta, {ln p(X,2)-> Ing }dZ

= qjj{ln p(X,Z)—Hini}de —J'qj Ing,dZ ; +const

i#]

:J'qj In F)(X,Zj)de—J'qj Ing;dZ; +const, (D.5)
where we have defined a new distributip{X,Z ;) by the relation

InB(X,Z,) =E,,[In p(X,Z)]+const , (D.6)

i#]

Here the notatiore.

i#]

[...] denotes an expectation with respect to dhdistributions

over all variableg; for i # j, so that

E,.,[In p(X,2)]=[Inp(X,2) [Ta,dz, (D.7)

i#]

Now suppose we keep th%qiij} fixed and maximizeL(q) in (D.5) with

respect to all possible forms for the distributiqjfZj). This is easily done by
recognizing that (D.5) is a negative Kullback-Leibtivergence betwees(Z;) and

p(X,Z;). Thus maximizing (D.5) is equivalent to minimizitige Kullback-Leibler

divergence, and the minimum occurs whei@ ;)= p(X,Z;). Thus we obtain a

general expression for the optimal solutigi(Z,;) given by

Ing;(Z,)=E,,[In p(X,Z)]+const , (D.8)
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It is worth taking a few moments to study the foainthis solution as it
provides the basis for applications of variatiomadthods. It says that the log of the
optimal solution for facton; is obtained simply by considering the log of thejo
distribution over all hidden and visible variabbsd then taking the expectation with

respect to all of the other factorg} for i #].

The additive constant in (D.8) is set by normaligihe distributionq’(Z)).

Thus if we take the exponential of both sides amwinalize, we have

explE,,;[In p(X,2)])
IEi¢j[ln p(X1Z)]de

Q]f(Zj)Z

In practice, we shall find it more convenient torlwavith the form ( D.8) and then

reinstate the normalization constant (where reglibg inspection.

The set of equations given by (D.8) for 1, . . . , Mrepresent a set of
consistency conditions for the maximum of the lowmwsund subject to the

factorization constraint. However, they do not esgnt an explicit solution because

the expression on the right-hand side of (D.8)th& optimumq;(Z;) depends on

expectations computed with respect to the othetofaa;(Z;) for i # j. We will
therefore seek a consistent solution by first atizing all of the factorsgi(Z;)
appropriately and then cycling through the factamgl replacing each in turn with a
revised estimate given by the right-hand side of)levaluated using the current
estimates for all of the other factors. Convergeiscguaranteed because bound is

convex with respect to each of the factg(g;).
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APPENDIX E. Additional Numerical Experimental Reaults
from Chapter 3

Table E.1: Various combinations between the nurabsuper-pixels and the window size for
the Yosemite sequence, with and without clouds.

Number of | Window | Yosemite without clouds Yosemite with clouds

super-pixels| size AAE | AeM | AEP AAE AeM AEP
40 5X5 5.76| 0.13 0.25 13.81 0.40 0.7Y0
70 5Xx5 5.80| 0.13 0.25 13.88 0.40 0.71
100 5X5 580 0.13 0.25 13.88 0.40 0.71
200 5X5 5.89| 0.13 0.26 13.98 0.40 0.71
1000 5X5 6.07 0.14 0.27 14.32 0.41 0.3
40 7X7 5.06| 0.12 0.22 13.25 0.38 0.66
70 X7 5.12| 0.12 0.22 13.34 0.38 0.67
100 X7 5.18| 0.12 0.22 13.34 0.38 0.67
200 X7 530 0.12 0.23 13.52 0.38 0.68
40 9x9 462| 0.11 0.20 12.87 0.36 0.62
70 9x9 469| 0.11 0.20 12.95 0.36 0.63
100 9x9 4.76| 0.11 0.20 12.98 0.36 0.63
200 9x9 489 0.11 0.21 13.17 0.37 0.64
40 11x11| 4.28] 0.10 0.18 12.59 0.34 0.9
70 11x11] 4.38] 0.10 0.19 12.67 0.34 0.60
100 11x11 4.45 0.10 0.19 12.69 0.34 0.60
40 13x13] 4.06] 0.10 0.17 12.34 0.38 0.p7
70 13x13] 4.14| 0.10 0.18 12.42 0.38 0.p7
40 15x 15| 3.90] 0.10 0.16 12.16 0.32 0.5
70 15x15] 3.96| 0.09 0.17 12.24 0.32 0.p6
40 17x17| 3.80] 0.09 0.15 12.01 0.31 0.p4
70 17x17| 3.87 0.09 0.16 12.10 0.32 0.p4
40 19x19| 3.79 | 0.09 0.15 | 11.90 0.31 0.53
70 19x19| 3.85] 0.09 0.16 12.01 0.31 0.p4
40 21x21] 3.89 0.09 0.16| 11.86 0.30 0.52
70 21x21] 3.90| 0.09 0.16 11.99 0.31 0.p3
40 23x23| 4.06| 0.09 0.16 11.91 0.30 0.p2
70 23x23| 4.04] 0.09 0.16 12.06 0.31 0.p3
40 25Xx25] 431 0.10 0.17 12.04 0.30 0.p2
70 25Xx25| 4.26| 0.09 0.17 12.21 0.31 0.p3
40 27 x27] 458 0.10 0.18 12.26 0.30 0.p3
70 27x27| 4.51 0.10 0.18 12.44 0.31 0.p4
40 29x29| 4.84| 0.11 0.19 12.57 0.31 0.p4
70 29x29| 4.79 0.10 0.19 12.15 0.31 0.p5
40 31x31] 5.11 0.11 0.20 12.92 0.31 0.p5
70 31x31] 5.05| 0.11 0.20 13.11 0.32 0.p6
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Table E.2: Various combinations between the nurabsuper-pixels and the window size for
the Dimetrodon sequence and the Rubberwhale segquenc

Number of | Window | Dimetrodon Sequence Rubberwhale Sequende
super-pixels| size AAE | AeM | AEP | AAE | AeM | AEP
40 5x5 11.31) 0.26] 0.57 8.45 0.22 0.26
70 5x5 11.34) 0.26] 0.56 8.44 0.22 0.26
100 5x5 11.36/ 0.26f 056 8.46 0.22 0.26
200 5x5 11.46/ 0.26f 056 8.50 0.22 0.26
1000 5x5 11.78 0.27 057 852 0.22 0.26
40 7X7 10.04/ 0.24/ 051 8.24 0.21  0.25
70 7X7 10.09] 0.24/f 052 8.22 0.21  0.25
100 7X7 10.14f 0.24 052 822 0.21 0.25
200 7x7 10.26/ 0.25 0.52 8.2y 0.21 0.25
40 9x9 9.18 0.23| 0.48 8.22 0.21 0.24
70 9x9 9.23 0.23| 0.48 8.19 0.21 0.24
100 9x9 9.28 0.23] 0.49 8.17 0.21| 0.24
200 9x9 9.42 0.23] 049 8.20 0.21 0.24
40 11x 11| 8.55 0.220 0.46 8.36 021 0.24
70 11x 11| 8.60 0.220 0.46  8.30 0.21 0.24
100 11x 11| 8.65 0.22 0.46 8.26 0.21 0.24
40 13x 13| 8.07 0.21 0.44 8.5¢Y 0.22 0.25
70 13x 13| 8.12 0.21] 0.44 8.49 0.22 0.25
40 15x 15| 7.68 0.20 0.42 8.81 0.22 0.25
70 15x 15| 7.75 0.200 0.43 8.70 0.22 0.25
40 17 x 17| 7.34 0.200 0.41 9.0y 0.23 0.26
70 17 x 17| 7.43 0.200 0.41 8.94 0.23 0.25
40 19x 19| 7.06 0.19 0.40 9.35 0.24 0.26
70 19x 19| 7.17 0.19 040 9.22 0.23 0.26
40 21x21| 6.82 0.19 0.39 9.65 0.24  0.27
70 21x21| 6.95 0.19 039 951 0.24  0.27
40 23x 23| 6.61 0.19 0.38 9.96 0.25 0.28
70 23x23| 6.77 0.19 038 9.81 0.24  0.27
40 25x 25| 6.43 0.18 0.37 10.27 0.26 0.29
70 25x 25| 6.61 0.19 038 10.12 0.25 0.28
40 27 x 27| 6.29 0.18 03¢ 1056 0.26 0.29
70 27x 27| 6.47 0.18 0.37 1042 0.26 0.29
40 29x 29| 6.24 0.18| 0.36| 10.84| 0.27 0.30
70 29x 29| 6.42 0.18 0.37 10.41 0.26 0.29
40 31x31| 6.26 0.18 036 11.13 0.28 0.31
70 31x31| 6.43 0.18 0.3¢6 11.03 0.27 0.80
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