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ABSTRACT 

Gkamas, Theodosios, N.  
MSc, Computer Science Department, University of Ioannina, Greece. October, 2010.  
Optical flow estimation using spatially varying smoothing.  
Thesis Supervisor:  Christophoros Nikou. 
 
 
 The problem of estimating the optical flow in a sequence of images is an 
important research problem in the area of computer vision with applications in visual 
object tracking, stereopsis and motion segmentation, among others. Optical flow is the 
2D velocity field, describing the apparent motion in the image that results from 
independently moving objects in the scene or from observer motion. Its estimation is a 
particularly difficult problem due to several factors. At first, the massive image data 
which produce small and/or large scale linear systems that must be solved to obtain 
the solution in as little as possible and competitive period of time. Furthermore, the 
problems that occur because of the nature of the images, such as motion 
discontinuities and object occlusion must be addressed. To overcome these 
difficulties, the majority of the state of the art optical flow computation techniques 
rely on the imposition of a smoothness constraint on the motion field. In this work, we 
propose two methods for the accurate estimation of the optical flow where the 
smoothness constraint varies with respect to the image content. The first method is 
based on image segmentation and the smoothness constraint is applied to image areas 
belonging to the same segment and simultaneously presenting low spatial gradient 
information, to avoid smoothing probable motion boundaries. The second method 
relies on a probabilistic modeling of the optical flow problem where the motion 
vectors are considered as unobserved random variables generated by a Student’s t-
distribution with spatially varying parameters. In that case, as the complete data 
likelihood is intractable we recur to the variational-Bayes methodology for inference 
of the model parameters and variables. 
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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ  

Θεοδόσιος Γκάµας του Νικολάου και της Αννούλας.  
MSc. Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Οκτώβριος, 2010.  
Εκτίµηση της οπτικής ροής µε µεθόδους χωρικά µεταβαλλόµενης εξοµάλυνσης.  
Επιβλέπων: Χριστόφορος Νίκου. 
 
 
 Το πρόβληµα εκτίµησης της οπτικής ροής σε µια ακολουθία εικόνων, 
αποτελεί σηµαντικό ερευνητικό πρόβληµα στον τοµέα της υπολογιστικής όρασης, µε 
εφαρµογές στην οπτική παρακολούθηση αντικειµένων, την στερεοσκοπία και την 
κατάτµηση κίνησης, µεταξύ άλλων. Οπτική ροή ονοµάζουµε το 2∆ πεδίο 
µετατοπίσεων, που περιγράφει την εµφανή κίνηση µέσα σε µια εικόνα η οποία 
προκύπτει από ανεξάρτητα κινούµενα αντικείµενα στην σκηνή ή από την κίνηση του 
παρατηρητή. Η εκτίµησή της είναι ένα ιδιαίτερα δύσκολο πρόβληµα που οφείλεται σε 
διάφορους παράγοντες. Καταρχάς, τα ογκώδη δεδοµένα της εικόνας που παράγουν 
µικρής και/ή µεγάλης διάστασης γραµµικά συστήµατα τα οποία πρέπει να επιλυθούν 
για να λάβουµε την λύση µέσα σε όσο το δυνατόν µικρό και ανταγωνιστικό χρονικό 
διάστηµα. Επιπλέον, τα προβλήµατα που προκύπτουν λόγω της φύσης των εικόνων, 
όπως οι µη συνεχείς κινήσεις και οι επικαλύψεις αντικειµένων πρέπει να 
αντιµετωπιστούν. Για να ξεπεραστούν αυτές οι δυσκολίες, η πλειοψηφία των 
κορυφαίων τεχνικών υπολογισµού της οπτικής ροής βασίζονται στην εισαγωγή 
περιορισµών εξοµάλυνσης στο πεδίο κίνησης. Στην παρούσα διατριβή, προτείνουµε 
δύο µεθόδους για την ακριβή εκτίµηση της οπτικής ροής, στις οποίες ο περιορισµός 
εξοµάλυνσης µεταβάλλεται ανάλογα µε το περιεχόµενο της εικόνας. Η πρώτη 
µέθοδος στηρίζεται στην κατάτµηση εικόνας και ο περιορισµός εξοµάλυνσης 
εφαρµόζεται σε περιοχές της εικόνας που ανήκουν στο ίδιο τµήµα και ταυτόχρονα 
παρουσιάζουν χαµηλή πληροφορία στην χωρική παράγωγο, αποφεύγοντας έτσι την 
εξοµάλυνση σε πιθανά όρια κίνησης. Η δεύτερη µέθοδος βασίζεται σε ένα πιθανοτικό 
µοντέλο του προβλήµατος της οπτικής ροής όπου τα διανύσµατα κίνησης θεωρούνται 
ως κρυφές τυχαίες µεταβλητές παραγόµενες από µια Student’s t-κατανοµή µε χωρικά 
µεταβαλλόµενες παραµέτρους. Σε αυτή την περίπτωση, επειδή δεν µπορούµε να 
υπολογίσουµε ακριβώς την συνολική πιθανοφάνεια των δεδοµένων ανατρέχουµε 
στην Μπεϋζιανή (variational-Bayes) µεθοδολογία για την προσέγγιση των 
παραµέτρων και των τυχαίων µεταβλητών του µοντέλου. 
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CHAPTER 1.   INTRODUCTION 

1.1.  Objectives of the Thesis 

1.2.  Structure of the Thesis 

 

 

1.1.    Objectives of the Thesis 

 

 In this thesis, we deal with the problem of optical flow containing small 

movements. Without doubt, the measurement of optical flow is one of the 

fundamental problems in computer vision. It is the problem of approximating the 

movement of brightness patterns in an image sequence and, thus, provides useful 

information for the determination of the 3D structure of the environment and the 

object in the image [2] but also can be used for image registration. In the last two 

decades the quality of optical flow estimation methods has increased dramatically. 

Starting from the original approaches of Horn and Schunck [25] as well as Lucas and 

Kanade [28], research developed many new concepts for dealing with shortcomings 

of previous models. In order to handle discontinuities in the flow field, the quadratic 

regulariser in the Horn and Schunck model was replaced by smoothness constraints 

that permit piecewise smooth results [7]. Some of these ideas are close in spirit to 

methods motivated from robust statistics where outliers are penalized less severely 

[9]. Coarse-to-fine strategies [2, 9] as well as non-linearised models [7] have been 

used to tackle large displacements. 

 

 However, not only new ideas have improved the quality of optical flow 

estimation techniques. Also efforts to obtain a better understanding of what the 
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methods do in detail, and which effects are caused by changing their parameters, gave 

an insight into how several models could work together. Furthermore, variational 

formulations of models gave access to the long experience of numerical mathematics 

in solving partly difficult optimization problems. Finding the optimal solution to a 

certain model is often not trivial, and often the full potential of a model is not used 

because concessions to implementation aspects have to be made. Moreover, one 

method using the variational inference and belonging to the state of the art is the 

algorithm proposed by T. Brox, A. Bruhn, N. Papenberg and J. Weickert [12] in the 

year of 2004. Finally, our contribution to this area, is to introduce three method, two 

from the combination of [7, 32] and a novel approach created via variational 

inference. 

1.2.    Structure of the Thesis 

 

 The structure of the thesis is as follows: chapter 2 shows three classic 

methods, the Lucas-Kanade (LK) method [28], the affine optical flow method [39] 

and the Horn-Schunck method [25]. The last section of this chapter describes the error 

metrics which were used in order to evaluate the methods. Chapter 3 shows two 

proposed methods, firstly, the Joint Lucas-Kanade method [7] and secondly, the 

method of Nagel et al. [32]. Additionally, in this chapter, we proposed two variations 

derived by the combination of [7, 32]. Moreover, chapter 4 introduces a novel 

algorithm for the estimation of the optical flow, by using the variational Bayes 

inference. Finally, chapter 5 is the conclusion of the thesis and the future work which 

worth to be studied further in order to improve the proposed methods. 
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CHAPTER 2.   OPTICAL FLOW  

2.1. Definition of the Problem 

2.2. Optical Flow Methods 

2.3. Classic Algorithms for Computing Optical Flow 

       2.3.1. Lucas-Kanade (LK) Method 

       2.3.2. Affine Optical Flow 

       2.3.3. Horn-Schunck (HS) Method 

2.4. Error Metrics 

 

2.1.    Definition of the Problem 

 

 First of all let’s give the definition of the problem. As there are many 

definitions for optical flow let’s start with a short one: optical flow is the observed 

motion of intensity patterns on the image plane. Another one according to B. Horn 

and B. Schunck [25], who are among the pioneers in that field, optical flow is the 

distribution of apparent velocities of movement of brightness patterns in an image. 

Additional to this, optical flow can arise from relative motion of objects and the 

viewer [20, 21]. Consequently, optical flow can give important information about the 

spatial arrangement of the objects viewed and the rate of change of this arrangement 

[22].  

 

 Additionally to the definition, we have to make one fundamental assumption 

regarding the nature of the scene the moving objects maintain constant intensity 

profile throughout their motion. This assumption is the famous brightness constancy 

assumption and forms the basis of all the approaches for estimating optical flow. Let 
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I be an image and I(x(t), y(t), t) denote the intensity of a point projected onto the 

image at the location (x(t), y(t)) at time t . At a time t + ∆t, the projected point moves 

to a new location (x(t + ∆t), y(t + ∆t)). According to the brightness constancy 

assumption, the point has the same intensity at both locations, which means 

 

                    I(x(t + ∆t), y(t + ∆t), t + ∆t)  = I(x(t), y(t), t).                         (2.1) 

 

Expanding the above equation using Taylor series about the point (x(t), y(t)) and 

taking the limits, a familiar form of the optical flow equation is obtained which is 

given by 

 

                                          f(u, v; t) = Ix u + Iy v + I t = 0,                                      (2.2) 

 

where Ix and Iy represent the partial derivatives of the image in x and y directions 

respectively, It  represents the temporal derivative of the image, and u and v are the 

horizontal and vertical components of the unknown pixel velocity respectively. Given 

a pair of images and their spatial and temporal derivatives, the goal is to determine   

[u, v]T.  Since there is only one equation involving two unknowns, the system is 

under-constrained, and an unambiguous solution cannot be obtained. This is the well 

known aperture problem, and herein lays the biggest challenge in estimating the 

optical flow. 

 

 The way to address the aperture problem is to add more constraints so as to 

obtain a required set of equations at least equal in number to the unknowns. Solving 

for [u, v]T requires an additional equation which can be obtained, for example, by 

considering motion of two pixels together instead of one. This results in two 

equations, and the system can be solved. In practice, multiple pixels are considered 

together to obtain a set of equations such that their solution minimizes some error 

function. Most optical flow approaches differ from each other in the way they bunch 

pixels together for the estimation of their combined velocity, or the kind of error 

function they minimize. 
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2.2.    Optical Flow Methods 

 

 The prominent optical flow approaches can be classified into one of the 

following categories: 

 

• Block matching methods: estimating the optical flow vectors for a 

window of pixels by computing its warp in the consecutive frame 

using techniques like normalized cross correlation (NCC), sum of 

absolute differences (SAD), or sum of squared differences (SSD) [2]. 

 

• Differential methods: using the spatial and temporal derivatives of the 

image to estimate the pixel displacement. This can be achieved by 

computing local displacement of image patches (Lucas-Kanade [28]), 

or imposing a global smoothness function on the flow field (Horn-

Schunck [25]), or a combination of both (Bruhn et al. [13], Birchfield-

Pundlik [7]). Lucas-Kanade appeals more to the idea of sparse optical 

flow while Horn-Schunck approach is more suited for computing dense 

flow. 

 

• Variational methods: involving use of additional terms based on the 

calculus of variations in the energy functional to be minimized to 

obtain optical flow. Such techniques have become popular recently 

because of their ability to model the discontinuities in the motion and 

produce highly accurate optical flow estimates (Cremers-Soatto [17], 

Brox et al. [11]). 

 

The next section describes three classic algorithms for estimating the optical flow. 

2.3.    Classic Algorithms for Computing Optical Flow 

 

 In this section we are going to describe three classic methods for estimating 

optical flow, which are Lucas–Kanade [28], Affine Optical Flow [39] and           

Horn–Schunck [25]. 
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2.3.1.    Lucas-Kanade (LK) Method 

 

 The basic assumption in the Lucas-Kanade (LK) method is that the pixels in a 

local neighborhood undergo a constant but unknown displacement u = [u  v]T . This 

additional constraint is used to overcome the aperture problem as it yields one optical 

flow Equation (see 2.2) per pixel in the neighborhood. The constant displacement of 

neighboring pixels implies two basic assumptions, namely, the spatial coherence 

(neighboring pixels belong to the same 3D surface projected onto the image plane) 

and the temporal persistence (motion of the pixel neighborhood changes gradually 

over time). Let I and J  be the two frames between which the flow has to estimated 

and let x = [x  y]T denote a pixel location. Optical flow equation (2.2) for a single 

pixel x can be rewritten as 
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u
 =  − It(x) = I(x)  - J(x)                              (2.3) 

 

Considering that the n points x1, …, xn in a local neighborhood have the same amount 

of displacement, all of the n pixels will then follow equation (2.3), leading to  
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Equation (2.6) consolidates the optical flow by summing the spatial and temporal 

derivatives over the neighborhood. Instead of performing a summation over a spatial 

window, a weighted window such as a Gaussian with its mean at the center pixel can 

also be used. Hence, a general case of Lucas-Kanade equation is given by 
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  ,                   (2.7)    

 

where Kp is a suitable convolution kernel whose size determines the number of 

neighboring pixels to be aggregated and assigns appropriate weights to the pixels 

inside the window. The size of Kp has to be selected carefully because a small sized 

window may not be enough to overcome the aperture problem due to the presence of 

image noise. On the other hand, a very large window size may lead to the breakdown 

of spatial coherency assumption. Equation (2.7) can be written in a simplified form as 

   

                                                Z u = e                                                        (2.8) 

 

It can be seen that Z looks like a covariance matrix with squares of gradients in the x 

and y directions along the diagonal, and it is symmetric, which is why it is called the 

gradient covariance matrix or the Hessian. 

 

 Displacements u of a local neighborhood of pixels can be directly determined 

by solving (2.8) via least squares, i.e. by minimizing 

 

                                             EKL(u) = Kp * ( f (u, t)2 ) ,                                         (2.9) 
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or equivalently, solving for the estimate e Z  ˆ -1=u . However, this may not yield an 

accurate estimate because (2.6) is a linear approximation of a nonlinear function (the 

original optical flow equation is nonlinear if all the terms in the Taylor series are 

considered). To obtain an accurate estimate, iterative schemes such as Newton-

Raphson [15] are used. Newton-Raphson is a popular technique of approximating the 

values of the roots of a real valued function given the initial estimate of the roots. 

Consider a 1D case, where if )(ku (pixel displacement in 1D) is the estimate of the root 

of function ( ) 0, =+= tx IuItuf  (1D counterpart to the optic flow function) at the thk  

iteration, then its update value at ( )thk 1+  iteration is given by ( )
( )( )
( )( )k

k
k

uf

uf
u

′
− . From 

inspection it can be seen that ( )( ) ( )
t

k
x

k IuIuf +=  and ( )( ) x
k Iuf =′ , which means 

( )

x

tk

I

I
u −=+1 . Every iteration yields a value of u that is added to the overall 

displacement and convergence is obtained when u does not change significantly 

between two iterations. Extending this idea to two dimensions, every iteration of the 

Newton-Raphson technique gives a displacement u(k) of the window. The window in 

the next frame is shifted by u and warped with the first image to obtain a new value of 

It at each iteration and a new displacement estimate is found using e Z  ˆ -1=u  (see 

Algorithm Lucas-Kanade for a complete description).  

 

 To efficiently compute the optical flow using LK, some implementation issues 

should be addressed. The computational cost of the algorithm depends on the nature 

of mathematical operations performed and the time it takes to converge. Since the 

same set of steps are applied to each point (or each pixel) for which the flow field is 

computed, reducing the computation time of one flow vector directly affects the 

overall computation cost. Looking at the description of the Lucas-Kanade algorithm 

(figure 2.1) it can be seen that the mathematical operations include computing Z−1, 

spatial derivatives of the image I and warping of the window in image J to compute It.  

Of the above mentioned quantities, image derivatives can be computed beforehand 

along with their squares and products (hence, Z for each point can be computed 

beforehand). Solving for a system of equations shown in (2.8) yields u, but it is more 

efficient to use Gaussian elimination rather than actually computing Z−1. 
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 The only computation that needs to be iteratively performed is the warping of 

the window in the second image and computation of e. Usually, the location of the 

shifted window is given by non-integers. Hence, methods like bilinear interpolation 

are utilized to compute the value of image intensity at sub-pixel precision.              

This improves the accuracy of estimation of u. Regarding the convergence, Newton-

Raphson reaches an optimum solution within a few iterations if the initial estimate of 

the root is close enough. In this case it also depends on εLK, the threshold for 

minimum displacement obtained during one iteration. 

 

 

 Algorithm: Lucas-Kanade 

  

 Input: two images I and J of a sequence 

 Output: optical flow field 

1. pre-compute the spatial derivatives Ix and Iy 

2. initialize Kp 

3. for each point i 

                   (a) compute gradient covariance matrix, Zi 

                   (b) initialize ui = (0, 0) 

                   (c) repeat until convergence 

                         i. compute It  from first image and shifted second image,  

                            I t   =  I(xi) − J(xi  + ui) 

                        ii. compute ei 

                       iii. find the estimate of displacement, i
-1
ii e Z  û =  

                       iv. ui   = ui   + iû  

                     v. if  KLε<iˆ u  (minimum displacement threshold), exit 

 

           Figure 2.1: The standard Lucas-Kanade algorithm. 

 

 Many implementations of LK adopt a coarse-to-fine refinement strategy to 

accurately estimate optic flow [6, 10]. The idea here is to sub-sample the images 

progressively and build image pyramids such that the coarsest scale is at the top.  

Then u is computed starting from the coarsest level to the finest level. At every level, 
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the u is scaled up according to the scale factor of that level and the warp is computed 

between corresponding levels of the two image pyramids. There are two main 

advantages of such an approach. First, it reduces the effect of temporal aliasing and 

the high frequency component introduced as a result in the image signal. Second, it 

can estimate large motions (where inter-frame displacement of the feature window is 

large). Since velocity is reduced at the coarsest level, estimates at the coarsest level 

can be scaled up and determined accurately at the finer levels. Computational cost in 

this kind of implementation is increased as compared to the standard case and is 

directly proportional to the number of levels of the pyramid used. A pyramidal 

implementation of LK is O(nNm) as compared to O(Nm) of the single scale 

implementation, where N is the number of points, m is average number of Newton-

Raphson iterations and n is the number of pyramid levels. 

2.3.2.    Affine Optical Flow 

 

 Affine optical flow is an extension of the previously described Lucas-Kanade 

method. 

 

� Two Models of Image Motion 

 

 As the camera moves, the patterns of image intensities change in a complex 

way. However, away from occluding boundaries and near surface markings, these 

changes can often be described as image motion, 

 

                          I(x, y, t+τ) = I( x – ξ (x, y, t, τ),  y – η(x, y, t, τ) ) ,                    (2.10) 

 

Thus, a later image taken at time t+τ can be obtained by moving every point in the 

current image, taken at time t, by a suitable amount. The amount of motion δ = (ξ, η) 

is called the displacement of the point at x = (x, y).  

 

 The displacement vector δ is a function of the image position x, and variations 

in δ are often noticeable even within the small windows used for tracking. It then 
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makes little sense to speak of “the” displacement of a feature window, since there are 

different displacements within the same window. An affine motion field is a better 

representation: 

                                                         δ = Dx + d  ,                                               (2.11) 

where 

                                       







=

yyyx

xyxx

dd

dd
D  , 

 

is a deformation matrix, and d is the translation of the feature window’s center. The 

image coordinates x are measured with respect to the window’s center. Then, a point 

x in the first image I moves to point Ax + d in the second image J, where A = 1 + D 

and 1 is the 2 x 2 identity matrix: 

 

                                                   ( ) )(xdx IAJ =+  ,                                            (2.12) 

 

Given two images I and J and a window in image I, tracking means determining the 

six parameters that appear in the deformation matrix D and displacement vector d. 

The quality of this estimate depends on the size of the feature window, the 

texturedness of the image within it, and the amount of camera motion between 

frames. When the window is small, the matrix D is harder to estimate, because the 

variations of motion within it are smaller and therefore less reliable. However, smaller 

windows are in general preferable for tracking because they are less likely to straddle 

a depth discontinuity. For this reason, a pure translation model is preferable during 

tracking, where the deformation matrix D is assumed to be zero:   

 

                                               δ = d. 

 

 According to J. Shi and C. Tomasi [39], experiments had shown that the best 

combination of these two motion models is pure translation for tracking, because of 

its higher reliability and accuracy over the small inter-frame motion of the camera, 

and affine motion for comparing features between the first and the current frame in 

order to monitor their quality. 
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� Computing Image Motion 

 

Because of image noise and because the affine motion model is not perfect, (2.12) is 

in general not satisfied exactly. The problem of determining the motion parameters is 

then that of finding the A and d that minimize the dissimilarity 

 

                                   [ ]∫ ∫ −+=
W

dwIAJ xxxdx )()()( 2ε  ,                                 (2.13) 

 

where W is the given feature window and w(x) is a weighting function. In the simplest 

case, w(x) = 1. Alternatively, w could be a Gaussian-like function to emphasize the 

central area of the window. Under pure translation, the matrix A is constrained to be 

equal to the identity matrix. To minimize the residual (2.13), we differentiate it with 

respect to the unknown entries of the deformation matrix D and the displacement 

vector d and set the result to zero. We then linearize the resulting system by the 

truncated Taylor expansion 

 

                                          )()()( uxdx TgJAJ +=+ .                                        (2.14) 

 

This yields (see [40]) the following linear 6 x 6 system: 

 

                                                          T z = a ,                                                     (2.15) 

 

where zT = [dxx  dyx  dxy  dyy  dx  dy] collects the entries of the deformation D and 

displacement d, the error vector 
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depends on the difference between the two images, and the 6 x 6 matrix T, which can 

be computed from one image, can be written as 

 

                                             xdw
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 Even when affine motion is a good model, equation is only approximately 

satisfied, because of the linearization of (2.14). However, the correct affine change 

can be found by using (2.15) iteratively in a Newton-Raphson style minimization 

[40].  

 

 During tracking, the affine deformation D of the feature window is likely to be 

small, since motion between adjacent frames must be small in the first place for 

tracking to work at all. It is then safer to set D to the zero matrix. In fact, attempting to 

determine deformation parameters in this situation is not only useless but can lead to 

poor displacement solutions: in fact, the deformation D and the displacement d 

interact through the 4 x 2 matrix V of equation (2.16), and any error in D would cause 

errors in d. Consequently, when the goal is to determine d, the smaller system 

 

                                                        Z d = e ,                                                       (2.17) 

 

should be solved, where e collects the last two entries of the vector a of equation     

(2.15). 
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2.3.3.    Horn-Schunck (HS) Method 

 

 The main difference between Lucas-Kanade and Horn-Schunck is that in the 

first method we used a window in which we consider all pixels having the same 

displacement, while in the second method we handle every pixel independently. 

 

 First of all, let’s see the optical flow equation without the summing window. 

We will derive an equation that relates the change in image brightness at a point to the 

motion of the brightness pattern. Let the image brightness at the point (x, y) in the 

image plane at time t be denoted by I(x, y, t). Now consider what happens when the 

pattern moves. The brightness of a particular point in the pattern is constant, so that  

 

                                              .0=
dt

dI
                                                       (2.18) 

 

Using the chain rule for differentiation we see that  
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(See Appendix A for a more detailed derivation).  

 

If we let 
dt

dy
 v

dt

dx
u ==  and  , then it is easy to see that we have a single linear 

equation in the two unknowns u and v, 

 

                                           Ixu + Iyv + It = O ,                                                (2.20) 

 

where we have also introduced the additional abbreviations Ix, Iy, and It for the partial 

derivatives of image brightness with respect to x, y and t, respectively. The constraint 

on the local flow velocity expressed by this equation is illustrated in figure 2.2, where 

we can see that the basic rate of change of image brightness equation constrains the 

optical flow velocity. The velocity (u, v) has to lie along a line perpendicular to the 
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brightness gradient vector (Ix, Iy). The distance of this line from the origin equals It 

divided by the magnitude of (Ix, Iy). Writing the equation in still another way, 

 

                                     (Ix, Iy) · (u, v) = - It.                                              (2.21) 

 

Thus the component of the movement in the direction of the brightness gradient       

(Ix, Iy) equals:      .
22
yx

t

II

I

+
−  

 

 

Figure 2.2: The constraint on the local flow velocity. 

 

 We cannot, however, determine the component of the movement in the 

direction of the iso-brightness contours, at right angles to the brightness gradient. As a 

consequence, the flow velocity (u, v) cannot be computed locally without introducing 

additional constraints. 

 

Now we will see some more complex issues inside the method. 

 

  First of all, we will analyze, what we call, the smoothness constraint. If 

every point of the brightness pattern can move independently, there is little hope of 

recovering the velocities. More commonly we view opaque objects of finite size 

undergoing rigid motion or deformation. In this case neighboring points on the objects 

have similar velocities and the velocity field of the brightness patterns in the image 
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varies smoothly almost everywhere. Discontinuities in flow can be expected where 

one object occludes another. An algorithm based on a smoothness constraint is likely 

to have difficulties with occluding edges as a result.  

 

 One way to express the additional constraint is to minimize the square of the 

magnitude of the gradient of the optical flow velocity: 
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Another measure of the smoothness of the optical flow field is the sum of the squares 

of the Laplacians of the x- and y-components of the flow. The Laplacians of u and v 

are defined as  
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,                          (2.23) 

 

In simple situations, both Laplacians are zero. If the viewer translates parallel to a flat 

object, rotates about a line perpendicular to the surface or travels orthogonally to the 

surface, then the second partial derivatives of both u and v vanish (assuming 

perspective projection in the image formation). Horn-Schunck here uses the square of 

the magnitude of the gradient as smoothness measure. 

 

 Secondly, let’s see how Horn-Schunck estimates the partial derivatives. We 

must estimate the derivatives of brightness from the discrete set of image brightness 

measurements available. It is important that the estimates of Ix, Iy, and It, be 

consistent. That is, they should all refer to the same point in the image at the same 

time. While there are many formulas for approximate differentiation [16, 23] we will 

use a set which gives us an estimate of Ix, Iy, It, at a point in the center of a cube 

formed by eight measurements. The relationship in space and time between these 

measurements is shown in figure 2.3. Each of the estimates is the average of four first 

differences taken over adjacent measurements in the cube. More analytically, the 
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column index j corresponds to the x direction in the image, the row index i to the y 

direction, while k lies in the time direction.  

 

 

                            

Figure 2.3: The relationship in space and time between Ix, Iy, It . 
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                                                                                                                             (2.24) 

 

Here the unit of length is the grid spacing interval in each image frame and the unit of 

time is the image frame sampling period. 

 

 We also need to approximate the Laplacians of the flow velocities u and v. 

One convenient approximation takes the following form 

 

                          
( ) ( )kjikjikjikji vvvuuu ,,,,

2
,,,,

2    and  −≈∇−≈∇ κκ
 ,                    (2.25) 

 

where the local averages vu  and   are defined as follows  
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                                                                                                                             (2.26) 

 

The proportionality factor κ equals 3 if the average is computed as shown and we 

again assume that the unit of length equals the grid spacing interval. In figure 2.4 we 

can see that the Laplacian is estimated by subtracting the value at a point from a 

weighted average of the values at neighboring points. 

 

 

Figure 2.4: The Laplacian operator. 

 

 Now we have to analyze the minimization problem. Horn-Schunck 

minimizes the sum of the errors in the equation for the rate of change of image 

brightness,    

 

                                       Eb  =  Ix u + Iy v + It ,                                          (2.27) 

 

and the measure of the departure from smoothness in the velocity flow, 
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What should be the relative weight of these two factors? In practice the image 

brightness measurements will be corrupted by quantization error and noise so that we 

cannot expect Eb to be identically zero. This quantity will tend to have an error 
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magnitude that is proportional to the noise in the measurement. This fact guides us in 

choosing a suitable weighting factor, denoted by α
2, as will be seen later. 

Let the total error to be minimized be 

 

                                 ( )∫∫ += yxEEE bc d d   2222 α ,                                           (2.29) 

 

The minimization is to be accomplished by finding suitable values for the optical flow 

velocity (u, v). Using calculus of variation (see Appendix C) we obtain 
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Using the approximation to the Laplacian introduced previously we will get, 
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The determinant of the coefficient matrix equals α
2(α2  + Ix

2 + Iy
2). Solving for u and v 

we find that  
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 Let us now see the difference of the flow at a point by using local average in 

comparison with the LK method. Firstly, (2.32) can be written in the alternative form 
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 This shows that the value of the flow velocity (u, v) which minimizes the error 

E2 lies in the direction towards the constraint line along a line that intersects the 
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constraint line at right angles. This relationship is illustrated geometrically in figure 

2.5, and the value of the flow velocity which minimizes the error lies on a line drawn 

from the local average of the flow velocity perpendicular to the constraint line. The 

distance from the local average is proportional to the error in the basic formula for 

rate of change of brightness when u , v  are substituted for u and v. Finally we can see 

that α2 plays a significant role only for areas where the brightness gradient is small, 

preventing haphazard adjustments to the estimated flow velocity occasioned by noise 

in the estimated derivatives. This parameter should be roughly equal to the expected 

noise in the estimate of Ix
2 + I y

2. 

 

 

 
 

Figure 2.5: The relationship between (u, v), ),( vu , Ix and Iy. 

 

 Additionally to the previous part, we are going to analyze the impact of 

parameter α2. When we allow α2 to tend to zero we obtain the solution to a 

constrained minimization problem. Applying the method of Lagrange multipliers [36, 

43] to the problem of minimizing Ec
2 while maintain Eb = 0 leads to 

 

                                vIuI xx
22 ∇=∇  ,    0=++ tyx IvIuI
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Approximating the Laplacian by the difference of the velocity at a point and the 

average of its neighbors then give us 
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Referring again to figure 2.5, we note that the point computed here lies at the 

intersection of the constraint line and the line at right angles through the point ( )vu, . 

We will not use these equations since we do expect errors in the estimation of the 

partial derivatives. 

 

 We now have a pair of equations for each point in the image, let’s see which 

will be the iterative solution. It would be very costly to solve these equations 

simultaneously by one of the standard methods, such as Gauss-Jordan elimination [23, 

24]. The corresponding matrix is sparse and very large since the number of rows and 

columns equals twice the number of picture cells in the image. Iterative methods, such 

as the Gauss-Seidel method [23, 24], suggest themselves. We can compute a new set 

of velocity estimates (un+1, vn+1) from the estimated derivatives and the average of the 

previous velocity estimates ( )nn vu ,  by 

 

                         
[ ] ( )
[ ] ( )





++++−=

++++−=
+

+

2221

2221

     

     

yxt
n

y
n

xy
nn

yxt
n

y
n

xx
nn

IIIvIuIIvv

IIIvIuIIuu

α
α

 ,                   (2.35) 

 

It is interesting to note that the new estimates at a particular point do not depend 

directly on the previous estimates at the same point. 

 

 The natural boundary conditions for the variational problem turn out to be a 

zero normal derivative. At the edge of the image, some of the points needed to 

compute the local average of velocity lie outside the image. Here we simply copy 

velocities from adjacent points further in. 
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 The next point we are going to analyze is the case how we have to fill in 

uniform regions. In parts of the image where the brightness gradient is zero, the 

velocity estimates will simply be averages of the neighboring velocity estimates. 

There is no local information to constrain the apparent velocity of motion of the 

brightness pattern in these areas. Eventually the values around such a region will 

propagate inwards. If the velocities on the border of the region are all equal to the 

same value, then points in the region will be assigned that value too, after a sufficient 

number of iterations. Velocity information is thus filled in from the boundary of a 

region of constant brightness.  

 

 If the values on the border are not all the same, it is a little more difficult to 

predict what will happen. In all cases, the values filled in will correspond to the 

solution of the Laplace equation for the given boundary condition [1, 31, 35]. 

 

 The progress of this filling-in phenomena is similar to the propagation effects 

in the solution of the heat equation for a uniform fiat plate, where the time rate of 

change of temperature is proportional to the Laplacian. This gives us a means of 

understanding the iterative method in physical terms and of estimating the number of 

steps required. The number of iterations should be larger than the number of picture 

cells across the largest region that must be filled in. If the size of such regions is not 

known in advance one may use the cross-section of the whole image as a conservative 

estimate. 

 

 Another part we have to discuss is the tightness of constraint. When 

brightness in a region is a linear function of the image coordinates we can only obtain 

the component of optical flow in the direction of the gradient. The component at right 

angles is filled in from the boundary of the region as described before. In general the 

solution is most accurately determined in regions where the brightness gradient is not 

too small and varies in direction from point to point. Information which constrains 

both components of the optical flow velocity is then available in a relatively small 

neighborhood. Too violent fluctuations in brightness on the other hand are not 

desirable since the estimates of the derivatives will be corrupted as the result of under-

sampling and aliasing. 
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 Also we have to choose the iterative scheme. As a practical matter one has a 

choice of how to interlace the iterations with the time steps. On the one hand, one 

could iterate until the solution has stabilized before advancing to the next image 

frame. On the other hand, given a good initial guess one may need only one iteration 

per time-step. A good initial guess for the optical flow velocities is usually available 

from the previous time-step.  

 

 The advantages of the latter approach include an ability to deal with more 

images per unit time and better estimates of optical flow velocities in certain regions. 

Areas in which the brightness gradient is small lead to uncertain, noisy estimates 

obtained partly by filling in from the surround. These estimates are improved by 

considering further images. The noise in measurements of the images will be 

independent and tend to cancel out. Perhaps more importantly, different parts of the 

pattern will drift by a given point in the image. The direction of the brightness 

gradient will vary with time, providing information about both components of the 

optical flow velocity. A practical implementation would most likely employ one 

iteration per time step for these reasons. 

 

2.4.    Error Metrics 

 

 The first measure of performance that we use in the comparison is the average 

angular error (AAE) [4]. This is the most common measure of performance for 

optical flow [3]. Let v0 = (u0 , υ0) be the correct velocity and v1 = (u1 , υ1) be the 

estimated velocity. The angular error  (AE) between these two vectors is 

 

                                           ( )10arccos vv
rr
⋅=AEψ    ,                                              (2.36) 

where 0v
r

, 1v
r

 are the 3D normalized representations of 0v , 1v , respectively and they 

are defined as 
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The AAE is then obtained by calculating the average of all angular errors between 

correct and estimated velocities in the optical flow. However, it can be seen from 

(2.36) that errors in regions of large flows are penalized less in AE than errors in 

regions of small flows [3]. One needs to be cautious when using the AAE metric as 

estimates with the same error magnitude may result in significantly different angular 

error values.  

 

 Another error metric is the normalized magnitude of the vector difference 

between the correct and estimated flow vectors [29]. The magnitude of the correct 

velocity is used as the normalization factor. The magnitude of difference error is 

defined as 

                          

 and    if                  ,0

   and    if     ,  

 if                           ,

10

10
1

0
0

10
















<<

≥<
−

≥
−

=

TT

TT
T

T

T

EM

vv

vv
v

v
v

vv

,                          (2.39) 

where T is a threshold, whose purpose is to ignore smaller vectors’ norms than T . The 

algorithm is not expected to reliably produce accurate flow vectors in areas where the 

actual flow magnitude is less than T [29]. We used T = 0.5 in all of our experiments. 

The average magnitude of difference error (AME) is then calculated as the average 

of the normalized magnitude of difference errors. 

 

 A third error metric, which is slightly similar with AAE, is the absolute error, 

which is the error in flow endpoint (EP) [3] defined by 
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CHAPTER 3.   COMPUTING OPTICAL 

FLOW THROUGH SYNERGY OF ADAPTIVE 

SMOOTHING AND SEGMENTATION 

3.1. Joint Lucas-Kanade (JLK) method 

3.2. Optical flow with adaptive smoothing 

3.3. Combination of JLK and adaptive smoothing 

3.4. Guiding optical flow using segmentation 

3.5. Experimental Results and Discussion 

 3.5.1.    Squared-texture Sequence 

 3.5.2.    Textured-Triangles with equal in Norm Moves 

 3.5.3.    Textured-Triangles with unequal in Norm Moves 

 3.5.4.    Yosemite without Clouds Sequence 

 3.5.5.    Yosemite with Clouds Sequence 

 3.5.6.    Dimetrodon Sequence 

 3.5.7.    Rubberwhale Sequence 

3.6. Partial Conclusion 

 

 

 

 In this chapter we study two methods. Firstly, S. Birchfield’s and S. Pundlik’s 

method [7] (section 3.1) and secondly, H. Nagel’s and W. Enkelmann’s method [32] 

(section 3.2). Additionally, we propose two variations resulting from the combination 

of the previously mentioned methods (sections 3.3, 3.4). In section 3.5, we present 

experimental results which are discussed in section 3.6. 
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3.1.    Joint Lucas-Kanade (JLK) method 

 

 S. Birchfield and S. Pundlik [7] proposed a combination of Lucas-Kanade and 

Horn-Schunck energy functionals respectively which resulted in an energy functional 

to be minimized for Joint Lucas-Kanade (JLK): 

 

                                       ( )∑
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+=
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i
SiDJLK iEiEE

1

)()( λ ,                                              (3.1) 

 

where N is the number of pixels, and the data and smoothness terms are given by 

 

                             ( )( )( )2;,*)( IvufKiE iipD =                                             (3.2) 

 

                            ( ) ( )( )22 ˆˆ)( iiiiS vvuuiE −+−=                                             (3.3) 

 

where Kp is a suitable convolution kernel whose size determines the number of 

neighboring pixels to be aggregated and assigns appropriate weights to the pixels 

inside the window. 

 

In these equations, the energy of pixel i is determined by how well its displacement 

(ui, vi)
T matches the local image data, as well as how far the displacement deviates 

from the expected displacement T
ii vu )ˆ,ˆ( . Note that the expected displacement can be 

computed in any desired manner and is not necessarily required to be the average of 

the neighboring displacements. According to [7], they predict the motion 

displacement of a pixel by fitting an affine motion model to the displacements of the 

surrounding pixels, which are inversely weighted according to their distance to the 

pixel. They use a Gaussian weighting function on the distance, with σ = 10 pixels. 

 

 Differentiating EJLK with respect to the displacements (ui, vi)
T, i = 1, . . . , N, 

and setting the derivatives to zero, yields a large 2N × 2N sparse matrix equation, 

whose (2i − 1)th and (2i)th rows are 

 

                                          Ziui = ei,                                                              (3.4) 
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where 
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This sparse system of equations can be solved using Jacobi iterations of the form 
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where Jxx = Kp ∗(Ix
2), Jxy = Kp ∗(IxIy), Jxt = Kp ∗(IxIt), Jyy = Kp ∗(Iy

2), and Jyt = Kp ∗(IyIt). 

 

To sum up, the (JLK) algorithm is presented in figure 3.1: 

 
 
Algorithm: Joint Lucas-Kanade 
 
1. For each pixel i, 
 

(a) Initialize ui ← (0, 0)T 
(b) Initialize λi 
 

2. For pyramid level n − 1 to 0 step −1, 
 

(a) For each pixel i, compute Zi 
(b) Repeat until convergence: 
 
             i. For each pixel i, 
                    (a) Determine iû  

                    (b) Compute the difference I t between the first image and the shifted 
                                        second image: I t(x, y) = I1(x, y) − I2(x + ui, y + vi) 

                    (c) Compute ei 
                                 (d) Solve Ziu′i = ei for incremental motion u′i 

                    (e) Add incremental motion to overall estimate: ui ← ui + u′i 
(c) Expand to the next level: ui ← kui, where k is the pyramid scale factor 
 

 

Figure 3.1: The Joint Lucas-Kanade algorithm [7]. 
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3.2.    Optical flow with adaptive smoothing 

 

 H. Nagel and W. Enkelmann proposed in [32] to adaptively introduce 

smoothness constraints into the problem of optical flow. 

 

We recall the basic optical flow equation of Horn-Schunck [25]: 
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vu
u , represents the matrix of partial derivatives of 

the displacement vector components with respect to the image coordinates. The 

second term in (3.7) represents the smoothness requirement introduced by Horn and 

Schunck [25]. Parameter λ denotes the strength of the smoothness requirement 

relative to the first term. 

 

 Horn and Schunck used one parameter λ, same for all the pixels. This means 

that one pixel i, inside a texture and one pixel j, on the borders of an object use the 

same smoothness constraint. As a result, for pixel i the estimated optical flow is 

computed well, but for the pixel j, which is located on an edge of an object, the 

estimated optical flow tend to lose its accuracy because it expands its flow around that 

edge. 

 

 Therefore, the main idea was to introduce a weight matrix C-1 into the 

smoothness term, whose purpose is to give zero weight for pixels located on edges 

and greater values than zero for other pixels located inside textured areas. So, in that 

case, the optical flow problem becomes: 
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The factor b2 denotes the relative weight of the two contributions. If we carefully 

examine matrix F we will see that it is a 2 x 2 matrix and after some manipulation we 

obtain: 
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 At this point, we have to find the solution to the minimization problem of 

(3.8). Firstly, let us rewrite the problem in a more convenient way: 
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The solution of (3.10) is obtained by using the Calculus of Variations theory, (see 

Appendix C for details) where the related Euler-Lagrange equations are 
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From equation (3.11a), in order to find a solution for u we have to compute the 

following expressions 
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Substituting the above expressions into (3.11a) we come up with the following 

equation: 
 

                     ( )xyyyxxtxyxx uFuFuFIIvIIuI 122211
2 +++−=+ λ . 

 

By repeating the same procedure for equation (3.11b) we find a similar equation for v. 

Finally, we end up with the following linear system: 
 

                   

( )

( )







+++−=+

+++−=+

xyyyxxtyyyx

xyyyxxtxyxx

vFvFvFIIvIuII

uFuFuFIIvIIuI

122211
2

122211
2

λ

λ

     

 

 A usual approach to solve the above linear system is to proceed iteratively. For 

the computation of u(t+1) and v(t+1) at step (t+1) we employ their derivatives computed 

at time step t. 
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In (3.12), if F11 = F22 = 1 and F12 = 0 we obtain the linear system we have at the Horn 

and Schunck scenario [25]. Finally, the solution to (3.12) is obtained by solving the 

previous iterative scheme. 

3.3.    Combination of JLK and adaptive smoothing 

 

 The first method we propose in this chapter is the combination of the two 

previously mentioned methods of S. Birchfield – S. Pundlik [7] and H.Nagel–          
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W. Enkelmann [32]. The main idea is to keep the proposed scheme of Nagel et al. 

[32], in order to have adaptive smoothness constraints and modifying it by adding the 

neighboring area proposed by Lucas-Kanade [28] and then also used by S. Birchfield– 

S. Pundlik [7]. In other words, the linear system (3.12) proposed in section 3.2 now 

becomes: 
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where Jxx = Kp ∗(Ix
2), Jxy = Kp ∗(IxIy), Jxt = Kp ∗(IxI t), Jyy = Kp ∗(Iy

2), and Jyt = Kp ∗(IyIt) 

and Kp is a suitable convolution kernel whose size determines the number of 

neighboring pixels to be aggregated and assigns appropriate weights to the pixels 

inside the window. For our experiments, which we show in section 3.5, we use a 7x7 

average kernel.   

3.4.    Guiding optical flow using segmentation 

 

 The second method we propose in this chapter is a variation of the method 

described in section 3.3. The innovation here is that we “carefully” choose which of 

the neighboring pixels are going to participate into the convolution matrix Kρ. The 

choice is taken by examining if the neighboring pixel i'  belongs to the same super-

pixel with the current pixel i. If it doesn’t belong to the same super-pixel, then the 

value of Kρ for that neighboring pixel is equal to zero. 

 

 Here appears the need to analyze what we mean by the term “super-pixel” and 

how it is produced. It is common to use the term super-pixel in order to name a unit – 

a piece from the result of the procedure called image segmentation. Another name you 

may be seen in bibliography instead of super-pixel is segment. Additionally, image 

segmentation is the procedure in which we group together pixels of an image that 

appear to have the same features (or simpler the same behaviour). The most common 

feature that is used in this scientific area is the intensity value of the pixel.  
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An example of image segmentation is shown in figure 3.2. 

 

     
 

(a)                                                                    (b) 

 
 

                               
 

                                                            (c) 

 
Figure 3.2: Various image segmentations. (a) Yosemite’s without clouds, (b) Dimetrodon’s 

and (c) Rubberwhale’s image segmentation.  
 

 

 In our experiments, the super-pixels were produced by using the method 

purposed in [38], where G. Mori proposed a method based on normalized cuts 

(spectral clustering). For each experiment (except from the trivial artificial images of 

sections 3.5.1-3.5.3 where the number of the super-pixels does not affect the result), 

we are showing various combinations between the window size and the number of the 

super-pixels at the appendix E. 
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3.5.    Experimental Results and Discussion 

 

 The proposed methods were tested on image sequences including both 

synthetic and real scenes. Some of the synthetic images were synthesized from us and 

other were taken from publicly available data sets as for example the Middlebury 

public flow dataset [3], [4, 29] in order to guarantee the objectiveness of our 

evaluations.  

 

 More specifically, we tested our method on three synthetic sequences. The 

first sequence is showing a Textured Square moving from the center to the top left 

corner by one pixel. The second one is showing two Textured Triangles. The upper 

left triangle moves about one pixel to the bottom left corner, while the bottom right 

triangle moves about one pixel to the bottom right corner. The third one is showing 

two Textured Triangles with the only difference from the second synthetic sequence 

that here the bottom right triangle moves about 2 pixels to the bottom right corner. 

The background color for all the previously mentioned sequences is black, without 

loss of generality.  

 

 Additionally, we tested our methods on the well-known Yosemite sequence 

without clouds, the Dimetrodon sequence and the Rubberwhale sequence [3] (which 

contain hidden texture ~ occlussions). We compared our approaches with the 

algorithms of Pundlik’s method [7] and Nagel’s method [32]. For the evaluation of 

our method we used the error metrics described in section 2.4. 
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3.5.1.    Textured-Square Sequence

 

 

 This is a simple 256 x 256 example, which consists of a textured square 

located at the center of the first frame, while at the second frame it moves by one 

pixel towards the top left corner. 

shows optical flow estimations from the compared methods along w

truth. Figure 3.5 shows the 

color coding [3]. We do not show the end

values (but we show

meaningful). 

 

 

Figure 3.3: Textured

Square Sequence   

This is a simple 256 x 256 example, which consists of a textured square 

located at the center of the first frame, while at the second frame it moves by one 

pixel towards the top left corner. Figure 3.3 shows a frame of the image and figure 3.

optical flow estimations from the compared methods along w

shows the angular error and figure 3.6 presents

]. We do not show the end-point error for each pixel as it has too small 

show the average end-point error, which is equivalent and more 

 
 

: Textured-square sequence: first frame of the sequence.
 

This is a simple 256 x 256 example, which consists of a textured square 

located at the center of the first frame, while at the second frame it moves by one 

ame of the image and figure 3.4 

optical flow estimations from the compared methods along with the ground 

 the flow by using 

point error for each pixel as it has too small 

point error, which is equivalent and more 

 

equence. 
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(a)                                                                 (b) 

 

    

                               (c)                                                                   (d) 

 

                                      

                                                                (e) 
 

Figure 3.4: Textured-square sequence: (a) ground truth optical flow, (b) optical flow using 
the JLK method [7], (c) flow using the method of Nagel et al. [32], (d) resulting optical flow of 

the proposed method of section 3.3 and (e) resulting optical flow of the proposed method of 
section 3.4. 
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                            (a)                                                                     (b) 

 

 

         
 

                            (c)                                                                     (d) 

 

Figure 3.5: Textured-square’s Angular Error (AE) of the compared methods. (a) JLK method 
[7], (b) method of Nagel et al. [32] (c) JLK with adaptive smoothing (section 3.3) and          

(d) guided optical flow using image segmentation (section 3.4). 
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                             (a)                                                                             (b)              

             

                                 (c)                                                                         (d)              

                  

                                   (e)                                                             (f) 

 
Figure 3.6: Textured-square sequence: colorful optical flow. (a) Flow field color coding,    
(b) ground truth, (c) flow field using the JLK method [7], (d) flow field using the method of 
Nagel et al. [32], (e) flow field using the method proposed in section 3.3 and (f) flow field 

using the method proposed in section 3.4. 
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Table 3.1: Average error metrics for the Textured

Method 
Lucas-Kanade [28
Horn-Schunck [25

Joint Lucas-Kanade
Nagel et al. [32

Method of section 
Method of section 

 As we can see from table 3.1 our approach

Nagel’s et al. [32] and 

3.5.2.    Textured-Triangles with equal in Norm Moves

 

 This is a slightly more complicated 256 x 256 example, which consists of two 

textured triangles located at the top left corner and at the bottom 

first frame, while at the second frame the upper left triangle moves by one pixel to the 

bottom left corner, while the bottom right triangle moves by one pixel to the bottom 

right corner. Figure 3.

Figure 3.9 shows the angular error and figure

coding [3]. We do not show the end

values (but we show the average end

meaningful). 

 

Figure 3.7: Textured

: Average error metrics for the Textured-square sequence.
 

AAE (in degrees) AME (in pixels) 
28] 3.09 0.08 
25] 1.84 0.04 

Kanade [7] 2.67 0.04 
32] 1.60 0.04 

section 3.3 1.50 0.05 
section 3.4 1.46 0.04 

 

As we can see from table 3.1 our approaches achieve smaller errors than 

and Joint Lucas-Kanade method [7], for all the error metrics.

Triangles with equal in Norm Moves 

This is a slightly more complicated 256 x 256 example, which consists of two 

textured triangles located at the top left corner and at the bottom 

first frame, while at the second frame the upper left triangle moves by one pixel to the 

bottom left corner, while the bottom right triangle moves by one pixel to the bottom 

right corner. Figure 3.7 shows the image and figure 3.8 the estimated optical flow

the angular error and figure 3.10 presents the flow by using color 

]. We do not show the end-point error for each pixel as it ha

show the average end-point error, which is equivalen

 
 

: Textured-triangles (with equal in norm moves) sequence: f
sequence. 

square sequence. 

EP (in pixels) 
0.08 
0.04 
0.05 
0.04 
0.04 
0.04 

smaller errors than 

, for all the error metrics. 

This is a slightly more complicated 256 x 256 example, which consists of two 

textured triangles located at the top left corner and at the bottom right corner of the 

first frame, while at the second frame the upper left triangle moves by one pixel to the 

bottom left corner, while the bottom right triangle moves by one pixel to the bottom 

timated optical flows. 

the flow by using color 

point error for each pixel as it has too small 

point error, which is equivalent and more 

equence: first frame of the 
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(a)                                                                         (b) 

 

    

                               (c)                                                                          (d) 

 

                                      

                                                                       (e) 
 

Figure 3.8: Textured-triangles (with equal in norm moves) sequence: (a) ground truth optical 
flow, (b) optical flow using the JLK method [7], (c) flow using the method of Nagel et al. [32], 
(d) resulting optical flow of the proposed method of section 3.3 and (e) resulting optical flow 

of the proposed method of section 3.4. 
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                               (a)                                                                   (b) 

 
 
 

          
 

                               (c)                                                                   (d) 

 

Figure 3.9: Textured-triangles’ (with equal in norm moves) Angular Error (AE) of the 
compared methods. (a) JLK method [7], (b) method of Nagel et al. [32] (c) JLK with adaptive 
smoothing (section 3.3) and (d) guided optical flow using image segmentation (section 3.4). 
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            (a)                                                                (b) 

              

                              (c)                                                                     (d) 

             

                              (e)                                                                     (f) 

Figure 3.10: Textured-triangles (with equal in norm moves) sequence: colorful optical flow. 
(a) Flow field color coding, (b) ground truth, (c) flow field using the JLK method [7],          

(d) flow field using the method of Nagel et al. [32], (e) flow field using the method proposed 
in section 3.3 and (f) flow field method proposed in section 3.4. 
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Table 3.2: Average error metrics for the Textured

Method 
Lucas-Kanade [28
Horn-Schunck [25

Joint Lucas-Kanade
Nagel et al. [32

Method of section 
Method of section 

 As we can see from table 3.2 our approach

al. approach [32] (~ 0.01 difference in 

coherent our lost comes because our methods expands the optical flow slightly outside 

the edges of the triangles,

error metrics.  

3.5.3.    Textured-Triangles with unequal in Norm Moves

 

 A next experiment consists in increasing the difficulty of the previous 

configurations. We have a 256 x 256 example, which consists of two textured 

triangles located at the top left corner and at the bottom right corner 

while at the second frame the upper left triangle moves by one pixel to the bottom left 

corner, while the bottom right triangle moves by two pixel to the 

Figure 3.11 shows the image and figure 3.

shows the angular error and figure

We do not show the end

show the average end-

 

Figure 3.11: Textured-

2: Average error metrics for the Textured-triangles (with equal in norm moves)
sequence. 

 

AAE (in degrees) AME (in pixels) 
28] 5.91 0.15 
25] 2.47 0.05 

Kanade [7] 4.10 0.07 
32] 2.25 0.06 

section 3.3 2.33 0.08 
section 3.4 2.26 0.07 

 

 

As we can see from table 3.2 our approaches are slightly worse than Nagel’s 

(~ 0.01 difference in AAE) although our results in fig. 3.

coherent our lost comes because our methods expands the optical flow slightly outside 

the edges of the triangles, but better than Joint Lucas-Kanade method

angles with unequal in Norm Moves 

A next experiment consists in increasing the difficulty of the previous 

configurations. We have a 256 x 256 example, which consists of two textured 

triangles located at the top left corner and at the bottom right corner 

while at the second frame the upper left triangle moves by one pixel to the bottom left 

corner, while the bottom right triangle moves by two pixel to the bottom right corner. 

shows the image and figure 3.12 the estimated optical flow

the angular error and figure 3.14 presents the flow by using color coding [

We do not show the end-point error for each pixel as it has too small values (but we 

-point error, which is equivalent and more meaningful).

 
 

-triangles (with unequal in norm moves) sequence: f
sequence. 

(with equal in norm moves) 

EP (in pixels) 
0.14 
0.05 
0.08 
0.05 
0.05 
0.05 

es are slightly worse than Nagel’s et 

although our results in fig. 3.10 are more 

coherent our lost comes because our methods expands the optical flow slightly outside 

Kanade method [7], for all the 

A next experiment consists in increasing the difficulty of the previous 

configurations. We have a 256 x 256 example, which consists of two textured 

triangles located at the top left corner and at the bottom right corner of the first frame, 

while at the second frame the upper left triangle moves by one pixel to the bottom left 

bottom right corner. 

ical flows. Figure 3.13 

the flow by using color coding [3]. 

point error for each pixel as it has too small values (but we 

meaningful). 

equence: first frame of the 
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(a)                                                                 (b) 

 

    

                             (c)                                                                 (d) 

 

                                     

                                                              (e) 
 

Figure 3.12: Textured-triangles (with unequal in norm moves) sequence: (a) ground truth 
optical flow, (b) optical flow using the JLK method [7], (c) flow using the method of Nagel et 

al. [32], (d) resulting optical flow of the proposed method of section 3.3 and (e) resulting 
optical flow of the proposed method of section 3.4. 
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                            (a)                                                                     (b) 

 

 

           

(c)                                                                    (d) 

 

Figure 3.13: Textured-triangles’ (with unequal in norm moves) Angular Error (AE) of the 
compared methods. (a) JLK method [7], (b) method of Nagel et al. [32] (c) JLK with adaptive 
smoothing (section 3.3) and (d) guided optical flow using image segmentation (section 3.4). 
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                                   (a)                                                                (b) 

                        

                                 (c)                                                                 (d) 

                  

                                (e)                                                                (f) 

Figure 3.14: Textured-triangles (with unequal in norm moves) sequence: colorful optical 
flow. (a) Flow field color coding, (b) ground truth, (c) flow field using the JLK method [7],  

(d)  flow field using the method of Nagel et al. [32], (e) flow field using the method proposed 
in section 3.3 and (f) flow field method proposed in section 3.4.  
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Table 3.3: Average error metrics for the Textured-triangles (with unequal in norm moves) 
sequence. 

 
Method AAE (in degrees) AME (in pixels) EP (in pixels) 

Lucas-Kanade [28] 8.58 0.17 0.26 
Horn-Schunck [25] 5.57 0.14 0.19 

Joint Lucas-Kanade [7] 6.95 0.18 0.22 
Nagel et al. [32] 4.79 0.13 0.18 

Method of section 3.3 4.67 0.17 0.17 
Method of section 3.4 4.78 0.16 0.18 

 

 As we can see from table 3.3 our approach achieves smaller errors than 

Nagel’s et al. approach [32] in AAE and EP and slightly worse in AME, while in 

comparison with the Joint Lucas-Kanade method [7] our methods performs better for 

all the error metrics, although all the methods did not have perfectly estimations.  

3.5.4.    Yosemite Sequence without Clouds 

 

 The Yosemite sequence without clouds, is available at 
http://www.cs.brown.edu/people/black/images.html. 
 
 
 
 

  
 

Figure 3.15: Yosemite sequence without clouds: first frame of the sequence. 
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Figure 3.16: Yosemite sequence without clouds: ground truth optical flow. 

 
 

 
 

Figure 3.17: Yosemite sequence without clouds: optical flow using the JLK method [7]. 
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Figure 3.18: Yosemite sequence without clouds: optical flow using the method of Nagel et al. 
[32]. 

 

 
 

Figure 3.19: Yosemite sequence without clouds: resulting optical flow of the proposed method 
of section 3.3. 
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Figure 3.20: Yosemite sequence without clouds: resulting optical flow of the proposed method 
of section 3.4. 

 
 
 
 

 
 

 
Figure 3.21: Yosemite without clouds’ Angular Error (AE) of the JLK method [7]. 
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(a) 

 

 
 

(b) 
 

 
 

(c) 

Figure 3.22: Yosemite without clouds’ Angular Error (AE) of the compared methods.          
(a) Method of Nagel et al. [32], (b) JLK with adaptive smoothing (section 3.3) and (c) guided 

optical flow using image segmentation (section 3.4). 
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(a)                                                                            (b) 

         
  (c)                                                                            (d)                                     

      

                                 (e)                                                                          (f) 

 
Figure 3.23: Yosemite sequence without clouds: colorful optical flow. (a) Flow field color 
coding, (b) ground truth, (c) flow field using the JLK method [7], (d) flow field using the 
method of Nagel et al. [32], (e) flow field using the method proposed in section 3.3 and         

(f) flow field using the method proposed in section 3.4. 
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Table 3.4: Average error metrics for the Yosemite without Clouds sequence. 
 

Method AAE (in degrees) AME (in pixels) EP (in pixels) 
Lucas-Kanade [28] 11.65 0.23 0.48 
Horn-Schunck [25] 5.43 0.10 0.20 

Joint Lucas-Kanade [7] 7.97 0.17 0.35 
Nagel et al. [32] 9.15 0.19 0.36 

Method of section 3.3 5.12 0.12 0.22 
Method of section 3.4 3.79 0.09 0.15 

 
 

 As we can see from the table 3.4 our approaches are better than Nagel’s et al. 

method [32], JLK [7], LK [28] and HS [25] for all the error metrics. In order to obtain 

those results, we used 40 super-pixels and a 19x19 window, representing the 

neighborhood. See appendix E for more combinations between the number of the 

super-pixels and the window size. 

3.5.5.    Yosemite Sequence with Clouds 

 

The original version of the Yosemite sequence with cloudy sky was created by Lynn 
Quam and is available at ftp://ftp.csd.uwo.ca/pub/vision. 
 

  
 

Figure 3.24: Yosemite sequence with clouds: first frame of the sequence. 
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Figure 3.25: Yosemite sequence with clouds: ground truth optical flow. 

 
 

 
 

Figure 3.26: Yosemite sequence with clouds: optical flow using the JLK method [7]. 
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Figure 3.27: Yosemite sequence with clouds: optical flow using the method of Nagel et al. 
[32]. 

 

 
 

Figure 3.28: Yosemite sequence with clouds: resulting optical flow of the proposed method of 
section 3.3. 
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Figure 3.29: Yosemite sequence with clouds: resulting optical flow of the proposed method of 
section 3.4. 

 
 
 
 

 
 

 
Figure 3.30: Yosemite with clouds’ Angular Error (AE) of the JLK method [7]. 
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(a) 

 

 
 

(b) 
 

 
 

(c) 

Figure 3.31: Yosemite with clouds’ Angular Error (AE) of the compared methods. (a) Method 
of Nagel et al. [32], (b) JLK with adaptive smoothing (section 3.3) and (c) guided optical flow 

using image segmentation (section 3.4).     
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(a)                                                                            (b) 

         
  (c)                                                                            (d)                                     

      

                                 (e)                                                                          (f) 

 
Figure 3.32: Yosemite sequence with clouds: colorful optical flow. (a) Flow field color 
coding, (b) ground truth, (c) flow field using the JLK method [7], (d) flow field using the 
method of Nagel et al. [32], (e) flow field using the method proposed in section 3.3 and         

(f) flow field using the method proposed in section 3.4. 
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Table 3.5: Average error metrics for the Yosemite with Clouds sequence. 
 

Method AAE (in degrees) AME (in pixels) EP (in pixels) 
Lucas-Kanade [28] 20.75 0.46 0.87 
Horn-Schunck [25] 12.57 0.32 0.55 

Joint Lucas-Kanade [7] 16.69 0.35 0.63 
Nagel et al. [32] 19.78 0.47 0.84 

Method of section 3.3 13.46 0.38 0.66 
Method of section 3.4 11.86 0.30 0.52 

 

 As we can see from the table 3.5 our approaches are better than Nagel’s et al. 

method [32], Joint Lucas-Kanade [7], LK [28] and HS [25] for all the error metrics. In 

order to obtain those results, we used 40 super-pixels and a 21x21 window, 

representing the neighborhood. See appendix E for more combinations between the 

number of the super-pixels and the window size. 

3.5.6.    Dimetrodon Sequence 

 

 

 The dimetrodon sequence is obtained from the Middlebury database [3]. It 

contains non-rigid motion and large areas with little (hidden or not) texture. 

 
 

 
 

Figure 3.33: Dimetrodon sequence: first frame of the sequence. 
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Figure 3.34: Dimetrodon sequence: ground truth optical flow. 
 
 
 
 
 

 
 

Figure 3.35: Dimetrodon sequence: optical flow using the JLK method [7]. 
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Figure 3.36: Dimetrodon sequence: optical flow using the method of Nagel et al. [32]. 

 
 
 
 
 

 
 

Figure 3.37: Dimetrodon sequence: resulting optical flow of the proposed method of section 
3.3. 
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Figure 3.38: Dimetrodon sequence: resulting optical flow of the proposed method of section 
3.4. 

 
 
 
 
 
 

 
 

 
Figure 3.39: Dimetrodon’s Angular Error (AE) of the JLK method [7]. 
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(a) 
 

 
 

(b) 
 

 
 

(c) 
 

Figure 3.40: Dimetrodon’s Angular Error (AE) of the compared methods. (a) Method of 
Nagel et al. [32], (b) JLK with adaptive smoothing (section 3.3) and (c) guided optical flow 

using image segmentation (section 3.4). 
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(a)                                                                  (b) 
 

    
 

                               (c)                                                                   (d) 
 

  
 
                               (e)                                                                   (f) 
 
 

Figure 3.41: Dimetrodon sequence: colorful optical flow. (a) Flow field color coding,         
(b) ground truth, (c) flow field using the JLK method [7], (d) flow field using the method of 
Nagel et al. [32], (e) flow field using the method proposed in section 3.3 and (f) flow field 

using the method proposed in section 3.4. 
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Table 3.6: Average error metrics for the Dimetrodon sequence. 
 

Method AAE (in degrees) AME (in pixels) EP (in pixels) 
Lucas-Kanade [28] 27.52 0.56 1.07 
Horn-Schunck [25] 8.51 0.24 0.49 

Joint Lucas-Kanade [7] 33.14 0.65 0.35 
Nagel et al. [32] 17.58 0.38 1.17 

Method of section 3.3 10.17 0.24 0.52 
Method of section 3.4 6.24 0.18 0.36 

 

 As we can see from table 3.6 our approaches are better than Nagel’s et al. 

method [32], Joint Lucas-Kanade [7], HS [25] and LK [28], for all the error metrics. 

The EP = 0.35 for the JLK method is misleading since JLK failed in AAE metric. In 

order to obtain those results, we used 40 super-pixels and a 29 x 29 window, 

representing the neighborhood. See appendix E for more combinations between the 

number of the super-pixels and the window size. 

3.5.7.    Rubberwhale Sequence 

 

The rubberwhale sequence is obtained from the Middlebury database [3]. 

 
 

 
 

Figure 3.42: Rubberwhale sequence: first frame of the sequence. 



77 

 

 

 

 

 
 

Figure 3.43: Rubberwhale sequence: ground truth optical flow. 
 
 
 
 
 

 
 

Figure 3.44: Rubberwhale sequence: optical flow using the JLK method [7]. 
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Figure 3.45: Rubberwhale sequence: optical flow using the method of Nagel et al. [32]. 

 
 
 
 
 

 
 

Figure 3.46: Rubberwhale sequence: resulting optical flow of the proposed method of section 
3.3. 
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Figure 3.47: Rubberwhale sequence: resulting optical flow of the proposed method of section 
3.4. 

 
 
 
 
 
 

 
 

 
Figure 3.48: Rubberwhale’s Angular Error (AE) of the JLK method [7]. 
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(a) 
 

 
 

(b) 
 

 
 

(c) 
 

Figure 3.49: Rubberwhale’s Angular Error (AE) of the compared methods. (a) Method of 
Nagel et al. [32], (b) JLK with adaptive smoothing (section 3.3) and (c) guided optical flow 

using image segmentation (section 3.4). 
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(a)                                                                  (b) 
 

    
 

                               (c)                                                                   (d) 
 

  
 
                               (e)                                                                   (f) 
 
 

Figure 3.50: Rubberwhale sequence: colorful optical flow. (a) Flow field color coding,       
(b) ground truth, (c) flow field using the JLK method [7], (d) flow field using the method of 
Nagel et al. [32], (e) flow field using the method proposed in section 3.3 and (f) flow field 

using the method proposed in section 3.4. 
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Table 3.7: Average error metrics for the Rubberwhale sequence. 
 

Method AAE (in degrees) AME (in pixels) EP (in pixels) 
Lucas-Kanade [28] 9.59 0.22 0.29 
Horn-Schunck [25] 8.75 0.22 0.25 

Joint Lucas-Kanade [7] 18.44 0.43 0.50 
Nagel et al. [32] 11.87 0.29 0.33 

Method of section 3.3 8.35 0.21 0.25 
Method of section 3.4 8.17 0.21 0.24 

 

 As we can see from table 3.7 our approaches are better than Nagel’s et al. 

method [32], Joint Lucas-Kanade [7], LK [28] and HS [25], for all the error metrics. 

In order to obtain those results, we used 100 super-pixels and a 9x9 window, 

representing the neighborhood. See appendix E for more combinations between the 

number of the super-pixels and the window size. 

 

3.6.    Partial Conclusion 

 

 In this chapter we studied the methods proposed in [7], [32] but also we 

proposed two variations of them. As we can see from the previous section, our 

suggestions manage to achieve significantly better result than the JLK method [7] and 

the approach of Nagel et al. [32]. 

 

 Furthermore, we conclude that for the same window size, as the number of the 

super-pixels increases, we obtain worse results.  Additionally, it is understood that the 

window size has a greater role than the number of the super-pixels, which was 

expected, since super-pixels have an effect only on the pixel belonging to motion 

boundaries or to edges in the image, who are the minority of the image canvas.  
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CHAPTER 4.   VARIATIONAL BAYESIAN 

OPTICAL FLOW  

4.1. Introduction 

4.2. A Prior for the Motion Vectors 

4.3. A Probabilistic Model for Optical Flow 

4.4. Model Inference 

4.5. Experimental Results and Discussion 

 4.5.1.    Squared-texture Sequence 

 4.5.2.    Textured-Triangles with equal in Norm Moves 

 4.5.3.    Textured-Triangles with unequal in Norm Moves 

 4.5.4.    Yosemite without Clouds Sequence 

 4.5.5.    Dimetrodon Sequence 

4.6. Partial Conclusion 

 

 

 

4.1.    Introduction 

 

 This work resulted from the combination of the method proposed in [14] with 

the well-known Horn–Schunck (HS) method [25]. More specifically, the main 

difference between our approach and the method of HS is that we don’t employ a 

deterministic parameter to control the strength of the smoothness constraint. More 

specifically, we impose stochastic parameters, one for each pixel, similar in spirit with 

[14], which are updated at each iteration. Moreover, we impose Gaussian noise 
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statistics in order to capture the missing information due to the linearization by Taylor 

expansion series. 

4.2.    A Prior for the Motion Vectors 

 

We assume that ux(i), uy(i) for i = 1 ,…, N are i.i.d zero mean Student’s-t distributed 

(see Appendix B for details), with parameters λx, vx and λy, vy, respectively: 
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 The Student’s t-distribution implies a two-level generative process [8]. More 

specifically, αx(i) and αy(i) are first drawn from a Gamma distribution  
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At this step, the probability density function (4.1) may be written as an integral 
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 As vk goes to infinity, the pdf of αk(i)’s has its mass concentrated around its 

mean. This in turn reduces the Student’s-t to a normal distribution, because all uk(i), 

{ }yxk ,∈  are drawn from the same normal distribution with precision λk, since      

αk(i) = 1. When 0→kv  the prior becomes uninformative. In general, for small values 

of vk the probability mass of the Student’s-t pdf is more “heavy tailed”.  
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 Then, ux(i), uy(i) are generated from two independent zero-mean normal 

distributions with precision λx QTAxQ, λy QTAyQ, respectively, where Q is the 

Laplacian operator and   Ax = diag{  αx(i) }, Ay = diag{  αy(i) },  according to 
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Equation (4.4) may also be written more compactly as: 
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Combining both components of u in one equation we obtain the density for the 

motion vectors 
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 Following (4.3), the marginal distribution p(u) yearns for a closed form. 

However, this prior is analytically intractable because one cannot find in closed form 

its normalization constant. This problem stems from the fact that it is not possible to 

find the eigenvalues of the matrix Qk
TAkQ since it is very large and it does not have a 

structure that is amenable to efficient eigenvalue computation. Consequently, we have 

to import a proper model inference scenario, which in our case is described in section 

4.4. 
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4.3.    A Probabilistic Model for Optical Flow 

 

  Let I be the first image frame (vectorized intensity values) which is 

commonly named as the target image, J the second image frame, which will be the 

source image, x the vector containing the 2D coordinates of the pixels in a frame, and 

u the optical flow vectors of the pixels. For convenience, but without loss of 

generality, we use 1D notation. 

 

 As many methods usually do, based on the brightness constancy constraint, 

our aim is to minimize the intensity error, J(x) – I(x + u), with respect to u. By 

developing the Taylor series expansion of I(x + u) around point x and keeping only 

the linear part, we come up with the following linear system: 
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which can be written also as 
 

                                                       wuGd +=  ,                                                      (4.6) 

 

where d is the initial intensity difference between the two frames d = J(x) – I(x) in 

vectorized form (e.g. lexicographic ordering), G contains the spatial gradients  
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N being 

the number of pixels, u = [ux , uy]
T, and w is additive white noise modeling the rest of 

the Taylor expansion terms. We also assume Gaussian statistics for the noise:  

 

                                                 w ~ N ( )( )1, −B0 noiseλ ,                                            (4.7) 

 

where λnoiseB is the noise precision matrix, 0 is an N x 1 vector of zeros and                

B = diag{ b(1),…,b(N)}. To make the model more flexible, we also consider that: 
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Following the optical flow model in (4.6),  

 

                                           =)|( udp N ( )( )1, −BGu noiseλ ,                                    (4.9) 
 

   

 
 

                             Figure 4.1: The graphical model of the method. 

 

 As it may be observed the graphical model of figure 4.1, d is the vector 

containing the observations (temporal differences), u, Ax, Ay, b, are the hidden 

variables of the model and λx, λy, λnoise, vx, vy and µ are the model’s parameters. 

 

4.4.    Model Inference 

 

 Working in the Bayesian framework, the complete data likelihood is 
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where θ = [λnoise , λx , λy , µ, νx, νy] contains the parameters of the model. 

 

 Estimation of the model parameters could be obtained through maximization 

of the marginal distribution of the observations p(d; θ): 
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 However, in the present case, this marginalization is not possible, since the 

posterior of the latent variables given the observations p(u, A
~

, b | d) is not known 

explicitly and inference via the Expectation-Maximization (EM) algorithm is not 

possible [5]. 

 

 For this reason, we have to resort to the variational methodology [14], [8], [26] 

and [5]. According to this methodology, we have to maximize the following lower 

bound 
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This involves finding approximations of the posterior distribution of the hidden 

variables, denoted by q(u), q( A
~

), q(b) because there is no analytical form of the 

auxiliary function q for which the bound in (4.12) becomes equality. In the variational 

methodology, however, we employ the Mean Field approximation (see Appendix D 

for details): 
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 In our case, in the VE-step of the variational algorithm, optimization of the 

functional L(q(x), θ) is performed with respect to the auxiliary functions. In the 

present case following the variational inference framework, the distributions q(uk),     

k є{ x, y}, are normal:  
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Therefore, this bound is actually a function of the parameters Rk and mk and a 

functional w.r.t. the auxiliary functions q(Ak), q(B). Using (4.13), the variational 

bound in our problem becomes  
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where θ1 = [Rx, Ry, mx, my] and θ2 = [Ax, Ay, B, λx , λy νx, νy]. Thus, in the VE-step of 

our algorithm the bound must be optimized with respect to Rk, mk, q(Ak) and q(B). 

 

Taking the derivatives of (4.15) w.r.t to mk, Rk, q(Ak), q(B) and setting them to zero 

we obtain 
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 After some manipulation, we obtain the update equations for the model 

parameters which maximize over q(Ak), q(b). The form of all q approximating-to-the-

posterior functions will remain the same as the corresponding prior (due to the  

conjugate priors we employ) namely q(Ak), q(b) which approximate p(Ak | uk, λk, Ck;  

vk),  p(b | u, λnoise, F;  µ) will follow Gamma distributions.  
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t GRGF , d = J(x) – I(x) (the intensity 

difference between the two initial frames) . Notice that the final estimates for ux and 

uy are mx and my, in (4.16) respectively. 

 

 Observing the size of matrices Rx, Ry and consequently Cx, Cy, F, we have to 

use an iterative method in order to calculate them. Hence, we recur to the Lanczos 

method [14, 33]. 

 

 As we can see from (4.16) there is a dependency between ux and uy, as it is the 

case in the standard Horn–Schunck method. 

 

Notice that since each q(t+1)(αk(i)) are Gamma pdfs of the form 

( )( ) ( ),  ,1)1( βαGammaiq )(t
k

t =++
α  their expected values are 

 

                  

( ) ( )( ) ( ) ( )( )

( )
( )( ) ( ) ( )( )














++

+
==

++

+
==

+

+

iiv

v
i

iiv

v
i

t
yi

t
y

t
y

t
y

t
y

iy
tqy

t
xi

t
x

t
x

t
x

t
x

ix
tqx

,

1

,

1

)(2)()()(

)(

)1(

)(2)()()(

)(

)1(

CQu
α

CQu
α

α

α

λβ
α

λβ
α

 ,                      (4.20) 

 

and the same stands for the expected value of b(i): 
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where 
(.)

.
q

denotes the expectation w.r.t. an arbitrary distribution q(.). These 

estimates are used in (4.16) and (4.17), where )(ˆ t
kA  and )(ˆ tB  are diagonal matrices 

with elements 
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At the variational M-step, the bound is maximized with respect to the model 

parameters: 
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The update for λnoise is obtained after taking the derivative of 
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in (4.15) and setting it to zero: 
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By the same procedure we obtain: 
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 The “degrees of freedom” parameter νk of the Student’s t-distribution is also 

computed by setting the derivative of (4.15) equal to zero with respect to νk: 
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for vk, { }yxk ,∈∀  , where 
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logψ   , 

is the digamma function and  vk
(t)  is the value of  vk  at the previous iteration (t) used 

to evaluate the expectations in (4.20) during the VE-step. 
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 Finally, by the same procedure we obtain estimates for the parameter µ of the 

noise distribution 
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where µ (t)  is the value of  µ  at the previous iteration (t) used to evaluate the 

expectations in (4.21) during the VE-step. 
 

 In our implementation, we solve (4.16), (4.24) and (4.25) iteratively. For 

equations (4.24) and (4.25), we employ the bisection method, as also proposed in [27] 

and [14]. For equation (4.16) we employ a method based on the Lanczos process [5], 

[33]. 
 

To resume, the steps of the Variational EM – algorithm are presented in fig. 4.2. 
 

 

Algorithm: Variational – Bayesian optical flow method 

 

 1:    Initialize ux , uy by the Horn-Schunck optical flow. 
 

 2:    DO  until convergence 

 3: VE-step: 

 4:                  Compute the expectations αx(i), αy(i) using (4.20). 

 5:                  Compute the expectation of b(i) using (4.21). 

 6: VM-step: 

 7:                  Compute λnoise using (4.22). 

 8:                  Compute λx , λy using (4.23). 

 9:                  Solve for vx, vy equation (4.24), using the bisection method.  

10:                  Solve for µ equation (4.25), using the bisection method.  

11:                  Update the mean vectors using (4.16). 

12:                    Update matrices Cx, Cy, F and Rx, Ry using (4.17) and the Lanczos method. 

13:                    Solve (4.16) to obtain the values of mx, my. 

14:                  Set [ux, uy] : =  [mx , my]. 
 

15:    END DO 
 

Figure 4.2: The steps of the proposed method. 
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4.5.    Experimental Results and Discussion 

 

 

 The proposed method was tested on image sequences including both synthetic 

and real scenes. Some of the synthetic images were synthesized from us and other 

were taken from publicly available data sets as for example the Middlebury public 

flow dataset [3], [4, 29] in order to guarantee the objectiveness of our evaluations.  

 

 More specifically, we tested our method on three synthetic sequences. The 

first sequence is showing a Textured Square moving from the center to the top left 

corner by one pixel. The second one is showing two Textured Triangles. The upper 

left triangle moves about one pixel to the bottom left corner, while the bottom right 

triangle moves about one pixel to the bottom right corner. The third one is showing 

two Textured Triangles with the only difference from the second synthetic sequence 

that here the bottom right triangle moves about 2 pixels to the bottom right corner. 

The background color for all the previously mentioned sequences is black, without 

loss of generality.  

 

 Additionally, we tested our method on the well-known Yosemite sequence 

without clouds and the Dimetrodon sequence [3] (which contains hidden texture). We 

compared our approach with the algorithms of Horn-Schunck [25], and Lucas-Kanade 

[28]. For the evaluation of our method we used the error metrics described in section 

2.4. 
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4.5.1.    Textured-Square

 

 

 This is a simple

located at the center of the first frame, while at the seco

pixel towards the top left

shows optical flow estimations from 

truth. Figure 4.5 shows 

color coding [3]. We do not s

values (but we are show

meaningful). 

 

Figure 4.3: Textured

 

 

 

 

 

quare Sequence   

a simple 256 x 256 example, which consists of 

ed at the center of the first frame, while at the second frame it moves

left corner. Figure 4.3 shows a frame of the image and

estimations from the compared methods along with the ground 

shows the angular error and figure 4.6 presents 

e do not show the end-point error for each pixel 

(but we are showing the average end-point error, which is equivalent and more 

 

 

: Textured-square sequence: first frame of the sequence.

which consists of a textured square 

nd frame it moves by one 

shows a frame of the image and figure 4.4 

methods along with the ground 

presents the flow by using 

for each pixel as it has too small 

point error, which is equivalent and more 

 

equence. 
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  (a)                                                                   (b) 

 

 

    

                               (c)                                                                    (d) 

 
 

Figure 4.4: Textured-square sequence: (a) ground truth optical flow, (b) optical flow 
initialization using the method of Horn-Schunck [25], (c) optical flow using the method of 

Lucas-Kanade [28] and (d) resulting optical flow of the proposed method. 
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                                    (a)                                                       (b) 

 

 

 

(c) 

 
 

Figure 4.5: Textured-square’s Angular Error (AE) of the compared methods. (a) Initial AE 
using the method of Horn-Schunck [25], (b) AE using the method of Lucas-Kanade [28] and 

(c) AE of the proposed method. 
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(a) 

   

  (b)                                                           (c) 

   

                                (d)                                                              (e) 

 
Figure 4.6: Textured-square sequence: colorful optical flow. (a) Flow field color coding,    

(b) ground truth, (c) initial flow field using the method of Horn-Schunck [25], (d) flow field 
using the method of Lucas-Kanade [28] and (e) flow field of the proposed method. 
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Table 4.1: Average error metrics for the Textured

Method 
Lucas-Kanade [28] 
Horn-Schunck [25] 

Joint Lucas-Kanade [7]
Nagel et al [32] 

Method of section 3.3 
Method of section 3.4 

Proposed method (Chapter

 As we can see from 

Schunck and Lucas-Kanade 

4.5.2.    Textured-Triangles with equal in 

 

 This is a slightly

textured triangles located at the top left corner and at the bottom right corner of the 

first frame, while at the second frame the upper left triangle moves by one pixel to the 

bottom left corner, while the bottom right triangle moves by one pixel to the bottom 

right corner. Figure 4

Figure 4.9 shows the angular error and figure 

coding [3]. We do not s

values (but we are show

meaningful). 

 

Figure 4.7: Textured

: Average error metrics for the Textured-square sequence.
 

AAE (in degrees) AME (in pixels) 
3.09 0.08 
1.84 0.04 

] 2.67 0.04 
1.60 0.04 

 1.50 0.05 
 1.46 0.04 

(Chapter 4) 0.76 0.02 
 

As we can see from table 4.1 our approach achieves smaller errors

Kanade method, for all the error metrics. 

Triangles with equal in Norm Moves 

slightly more complicated 256 x 256 example, which consists of two 

textured triangles located at the top left corner and at the bottom right corner of the 

first frame, while at the second frame the upper left triangle moves by one pixel to the 

while the bottom right triangle moves by one pixel to the bottom 

4.7 shows the image and figure 4.8 the estimated optical flow. 

shows the angular error and figure 4.10 presents the flow by using color 

]. We do not show the end-point error for each pixel as it has too small 

values (but we are showing the average end-point error, which is equivalent and more 

 
 

: Textured-triangles (with equal in norm moves) sequence: f
sequence. 

square sequence. 

EP (in pixels) 
0.08 
0.04 
0.05 
0.04 
0.04 
0.04 
0.02 

smaller errors than Horn-

more complicated 256 x 256 example, which consists of two 

textured triangles located at the top left corner and at the bottom right corner of the 

first frame, while at the second frame the upper left triangle moves by one pixel to the 

while the bottom right triangle moves by one pixel to the bottom 

the estimated optical flow. 

presents the flow by using color 

point error for each pixel as it has too small 

point error, which is equivalent and more 

equence: first frame of the 
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(a)                                                                 (b) 

 

 

    
 

                             (c)                                                                 (d) 
 
 

Figure 4.8: Textured-triangles (with equal in norm moves) sequence: (a) ground truth optical 
flow, (b) optical flow initialization using the method of Horn-Schunck [25], (c) optical flow 

using the method of Lucas-Kanade [28] and (d) resulting optical flow of the proposed method. 
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                               (a)                                                               (b) 

 

 

 

                                                                 (c) 

 
 

Figure 4.9: Textured-triangles’ (with equal in norm moves) Angular Error (AE) of the 
compared methods. (a) Initial AE using the method of Horn-Schunck [25], (b) AE using the 

method of Lucas-Kanade [28] and (c) AE of the proposed method. 
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(a) 

   

  (b)                                                           (c) 

   

                                (d)                                                              (e) 

Figure 4.10: Textured-triangles (with equal in norm moves) sequence: colorful optical flow. 
(a) Flow field color coding, (b) ground truth, (c) initial flow field using the method of Horn-
Schunck [25], (d) flow field using the method of Lucas-Kanade [28] and (e) flow field of the 

proposed method. 
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Table 4.2: Average error metrics for t

Method 
Lucas-Kanade [28
Horn-Schunck [25

Joint Lucas-Kanade 
Nagel et al [32

Method of section 
Method of section 

Proposed method (Chapter 

 As we can see from table 

Schunck and Lucas-Kanade method, for all the error metrics.

observing figure 4.10(d), we understand that Lucas

estimating the motion 

4.5.3.    Textured-Triangles with unequal in 

 

 A next experiment consists in increasing the difficulty

configurations. We have 

triangles located at the top left corner an

while at the second frame the upper left triangle moves by one pixel to the bottom left 

corner, while the bottom right triangle moves by two pixel to the bottom right corner. 

Figure 4.11 shows the image

shows the angular error and figure 4

We do not show the end

are showing the average end

 

Figure 4.11: Textured-

2: Average error metrics for the Textured-triangles (with equal in norm moves)
sequence. 

 

AAE (in degrees) AME (in pixels)
28] 5.91 0.15 
25] 2.47 0.05 

Kanade [7] 4.10 0.07 
32] 2.25 0.06 

section 3.3 2.33 0.08 
section 3.4 2.26 0.07 

(Chapter 4) 1.06 0.02 

 

As we can see from table 4.2 our approach achieves smaller errors than Horn

Kanade method, for all the error metrics.

(d), we understand that Lucas-Kanade method have problems 

estimating the motion vectors at the edges of the objects. 

Triangles with unequal in Norm Moves 

A next experiment consists in increasing the difficulty

We have a 256 x 256 example, which consists of two textured 

triangles located at the top left corner and at the bottom right corner of the first frame, 

while at the second frame the upper left triangle moves by one pixel to the bottom left 

corner, while the bottom right triangle moves by two pixel to the bottom right corner. 

shows the image and figure 4.12 the estimated optical flow. Figure 

angular error and figure 4.14 presents the flow by using color coding [

We do not show the end-point error for each pixel as it has too small values (but we 

ing the average end-point error, which is equivalent and more meaningful

 

-triangles (with unequal in norm moves) sequence: f
sequence. 

(with equal in norm moves) 

(in pixels) EP (in pixels) 
0.14 
0.05 
0.08 
0.05 
0.05 
0.05 

0.03 

our approach achieves smaller errors than Horn-

Kanade method, for all the error metrics. Additionally, by 

Kanade method have problems 

A next experiment consists in increasing the difficulty of the previous 

example, which consists of two textured 

d at the bottom right corner of the first frame, 

while at the second frame the upper left triangle moves by one pixel to the bottom left 

corner, while the bottom right triangle moves by two pixel to the bottom right corner. 

the estimated optical flow. Figure 4.13 

presents the flow by using color coding [3]. 

point error for each pixel as it has too small values (but we 

error, which is equivalent and more meaningful). 

equence: first frame of the 
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(a)                                                                 (b) 

 

 

    

                             (c)                                                                  (d) 

 
 

Figure 4.12: Textured-triangles (with unequal in norm moves) sequence: (a) ground truth 
optical flow, (b) optical flow initialization using the method of Horn-Schunck [25], (c) optical 

flow using the method of Lucas-Kanade [28] and (d) resulting optical flow of the proposed 
method. 
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                               (a)                                                               (b) 

 

 

 

                                                                 (c) 

 
 

Figure 4.13: Textured-triangles’ (with unequal in norm moves) Angular Error (AE) of the 
compared methods. (a) Initial AE using the method of Horn-Schunck [25], (b) AE using the 

method of Lucas-Kanade [28] and (c) AE of the proposed method. 
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(a) 

   

  (b)                                                           (c) 

   

                                (d)                                                              (e) 

Figure 4.14: Textured-triangles (with unequal in norm moves) sequence: colorful optical 
flow. (a) Flow field color coding, (b) ground truth, (c) initial flow field using the method of 

Horn-Schunck [25], (d) flow field using the method of Lucas-Kanade [28] and (e) flow field of 
the proposed method. 



106 

 

 

Table 4.3: Average error metrics for the Textured-triangles (with unequal in norm moves) 
sequence. 

 
Method AAE (in degrees) AME (in pixels) EP (in pixels) 

Lucas-Kanade [28] 8.58 0.17 0.26 
Horn-Schunck [25] 5.57 0.14 0.19 

Joint Lucas-Kanade [7] 6.95 0.18 0.22 
Nagel et al [32] 4.79 0.13 0.18 

Method of section 3.3 4.67 0.17 0.17 
Method of section 3.4 4.78 0.16 0.18 

Proposed method (Chapter  4) 3.93 0.10 0.16 
 

 As we can see from table 4.3 our approach achieves smaller errors than Horn-

Schunck and Lucas-Kanade method, for all the error metrics, although all methods did 

not have perfectly estimations. Additionally, by observing figure 4.14(d), we 

understand that Lucas-Kanade method have problems estimating the motion vectors at 

the edges of the objects. 

4.5.4.    Yosemite Sequence without Clouds 

 

 The Yosemite sequence without clouds, is available at 
http://www.cs.brown.edu/people/black/images.html. 
 
 
 

  
 

Figure 4.15: Yosemite sequence without clouds: first frame of the sequence. 
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Figure 4.16: Yosemite sequence without clouds: ground truth optical flow. 

 
 

 
 

Figure 4.17: Yosemite sequence without clouds: optical flow initialization using the method of 
Horn-Schunck [25]. 
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Figure 4.18: Yosemite sequence without clouds: optical flow using the method of Lucas-
Kanade [28]. 

 
 

 
 

Figure 4.19: Yosemite sequence without clouds: resulting optical flow of the proposed 
method. 
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(a) 
 

 
 

(b) 
 

 
 

(c) 

Figure 4.20: Yosemite’s Angular Error (AE) of the compared methods. (a) Initial AE using 
the method of Horn-Schunck [25], (b) AE using the method of Lucas-Kanade [28] and (c) AE 

of the proposed method. 
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(a) 

 

   

                              (b)                                                                    (c) 

 

  

                                 (d)                                                                        (e) 

 
 

Figure 4.21: Yosemite sequence without clouds: colorful optical flow. (a) Flow field color 
coding, (b) ground truth, (c) initial flow field using the method of Horn-Schunck [25], (d) flow 

field using the method of Lucas-Kanade [28] and (e) flow field of the proposed method. 
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Table 4.4: Average error metrics for the Yosemite without Clouds sequence. 
 

Method AAE (in degrees) AME (in pixels) EP (in pixels) 
Lucas-Kanade [28] 11.65 0.23 0.48 
Horn-Schunck [25] 5.43 0.10 0.20 

Joint Lucas-Kanade [7] 7.97 0.17 0.35 
Nagel et al [32] 9.15 0.19 0.36 

Method of section 3.3 5.12 0.12 0.22 
Method of section 3.4 3.79 0.09 0.15 

Proposed method (Chapter 4) 4.45 0.11 0.24 
 

 

 As we can see from the table 4.4 our approach is better than Horn-Schunck 

method at the average angular error metric (which is the most important), slightly 

worse for the average magnitude error (difference 0.01) but HS must know the exact 

value of the deterministic parameter and also slightly worse for the average end-point 

error (difference 0.04). 

4.5.5.    Dimetrodon Sequence 

 

 The Dimetrodon sequence is obtained from the Middlebury database [3]. It 

contains nonrigid motion and large areas with little (hidden or not) texture. 

 

 
 

Figure 4.22: Dimetrodon sequence: first frame of the sequence. 

 



112 

 

 

 

 
 

Figure 4.23: Dimetrodon sequence: ground truth optical flow. 
 
 
 
 
 

 
 

Figure 4.24: Dimetrodon sequence: optical flow initialization using the method of Horn-
Schunck [25]. 
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Figure 4.25: Dimetrodon sequence: optical flow using the method of Lucas-Kanade [28]. 

 
 
 
 
 

 
 

Figure 4.26: Dimetrodon sequence: resulting optical flow of the proposed method. 
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(a) 
 

 
 

(b) 
 

 
 

(c) 
 

Figure 4.27: Dimetrodon’s Angular Error (AE) of the compared methods. (a) Initial AE using 
the method of Horn-Schunck [25], (b) AE using the method of Lucas-Kanade [28] and (c) AE 

of the proposed method. 
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(a) 
 
 

    
 
                                (b)                                                                (c) 
 
 

  
 
                               (d)                                                                   (e) 
 
 

Figure 4.28: Dimetrodon sequence: colorful optical flow. (a) Flow field color coding,         
(b) ground truth, (c) initial flow field using the method of Horn-Schunck [25], (d) flow field 

using the method of Lucas-Kanade [28] and (e) flow field of the proposed method. 
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Table 4.5: Average error metrics for the Dimetrodon sequence. 
 

Method AAE (in degrees) AME (in pixels) Avg EP (in pixels) 
Lucas-Kanade [28] 27.52 0.56 1.07 
Horn- Schunck [25] 8.51 0.24 0.49 

Joint Lucas-Kanade [7] 33.14 0.65 0.35 
Nagel et al [32] 17.58 0.38 1.17 

Method of section 3.3 10.17 0.24 0.52 
Method of section 3.4 6.24 0.18 0.36 

Proposed method (Chapter 4) 4.31 0.13 0.22 
 

 As we can see from table 4.5 our approach is better than both Horn-Schunck 

method and Lucas-Kanade, for all the error metrics. 

 

4.6.    Partial Conclusion 

 
 At the beginning, let’s discuss the reason why in some experiments we do not 

manage better results than the HS method and LK method. Although our method is 

more flexible than HS method, since we allow every pixel to move independently in 

the spatial domain, it has more parameters to fix. This will be also a disadvantage, if 

we have to deal with sequences which contain “simple” moves. 

 

 Secondly, our method obtains better estimations when we have a variety of 

different in norm movements than Horn-Schunck and Lucas-Kanade methods produce 

(as we can see from section 4.5.4). 

 

 One issue which is worth proposing for future work, is to update a part of the 

equations (4.18 – 4.23) at each step, since the parameters λnoise, λx, λy tend to increase 

their values rapidly, while Ax, Ay and b(i) more slowly. 
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CHAPTER 5.   CONCLUSION AND 

FUTURE WORK 

5.1. Conclusion  

5.2. Future work 

 

5.1.    Conclusion 

 

 In the present thesis, we studied the fundamental problem of optical flow, 

located in the area of computer vision, but also we proposed three methods in order to 

solve it.  
 

 More detail, in chapter 2 we studied three classic methods, the Lucas-Kanade 

(LK) method [28], the Horn-Schunck (HS) method [25] and the affine optical flow 

method [39]. Next, in chapter 3, we studied two variations of the LK and HS methods, 

firstly the Joint Lucas-Kanade [7] and secondly the method proposed from Nagel et 

al. [32] where they use adaptive smoothness constraints. Additionally, we analyze our 

suggestions in order to improve those methods and we show experimental result. 

Finally, in chapter 4, was presented a brand new approach, which was inspired from 

the HS method and was imposed stochastic parameters instead of stationary that were 

used in HS.  

5.2.    Future work 
 

 To begin with, one improvement for the methods proposed in chapter 3, is to 

find a suitable method to approximate the second order derivatives which they were 
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used in the linear system. Secondly, you can use another method for the image 

segmentation which will give more competitive results. Thirdly, you can experiment 

in finding the suitable type of the neighboring kernel, instead of the average kernel 

which we used, but also the size of it. 

 

 As for the method proposed in chapter 4, one worthy effort is to find a 

different algorithm instead of Lanzcos method, in order to solve the iterative system 

of this chapter. 
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APPENDICES 

APPENDIX A.   Rate of Change of Image Brightness 

 

 Consider a patch of the brightness pattern that is displaced a distance δx in the 

x-direction and δy in the y-direction in time δt. The brightness of the patch is assumed 

to remain constant so that 

 

                           I(x, y, t) = I(x+δx,  y+δy,  t+δt).                                          (A.1) 

 

Expanding the right-hand side about the point (x, y, t) we get, 
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Where ε contains second and higher order terms in δx, δy, and δt. After subtracting 

I(x, y, t) from both sides and dividing through by δt we have 
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where O(δt) is a term of order δt (we assume that δx and δy vary as δt). In the limit as 

δt → 0 this becomes 
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APPENDIX B.   Student’s t-distribution 

 

In what follows, we briefly present the properties of Student’s t-distributions.  

 

 A d-dimensional random variable X that follows a multivariate t-distribution 

with mean  µ, positive definite, symmetric and real d x d covariance matrix Σ and has 

v∈[0, ∞ ) degrees of freedom has a density expressed by 
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where ( ) ( ) ( )µµµδ −Σ−=Σ − xxx T 1;,  is the Mahalanobis squared distance and Γ is the 

Gamma function. 

 

 It can be shown that the Student’s t-distribution is equivalent to a Gaussian 

distribution with a stochastic covariance matrix. In other words, given a weight u 

following a Gamma distribution parameterized by v: 

 

                                                  ( )2,2~ vvΓu ,                                                    (B.2) 

 

The variable X has the multivariate normal distribution with mean µ and covariance 

Σ/u: 

 

                                         )/,(~,,,| uNuvX ΣΣ µµ ,                                               (B.3) 

 

It can be shown that for ∞→v the Student’s t-distribution tends to a Gaussian 

distribution with covariance Σ. Also, if v > 1, µ is the mean of X and if v > 2,          

v(v-2)-1Σ is the covariance matrix of X. Therefore, the family of t-distributions 
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provides a heavy-tailed alternative to the normal family with mean µ and covariance 

matrix that is equal to a scalar multiple of Σ, if v > 2 (Fig. Β.1).  

 

 

Figure B.1: A univariate Student’s t-distribution (µ = 0, σ = 1) for various Degrees of 
Freedom. As v ∞→  the distribution tends to a Gaussian. For small values of v the 

distribution has heavier tails than a Gaussian. 
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APPENDIX C.   Calculus of Variations 

 

C.1. Introduction 

 

 Variational methods have their origins in the 18th century with the work of 

Euler, Lagrange, and others on the calculus of variations. Standard calculus is 

concerned with finding derivatives of functions. We can think of a function as a 

mapping that takes the value of a variable as the input and returns the value of the 

function as the output. The derivative of the function then describes how the output 

value varies as we make infinitesimal changes to the input value. Similarly, we can 

define a functional as a mapping that takes a function as the input and that returns the 

value of the functional as the output. An example would be the entropy H[p], which 

takes a probability distribution p(x) as the input and returns the quantity 

 

                                           ∫= xxpxpp d)(ln)(]H[ ,                                               (C.1) 

 

as the output. We can introduce the concept of a functional derivative, which 

expresses how the value of the functional changes in response to infinitesimal changes 

to the input function (Feynman et al., 1964). Many problems can be expressed in 

terms of an optimization problem in which the quantity being optimized is a 

functional. The solution is obtained by exploring all possible input functions to find 

the one that maximizes, or minimizes, the functional. Variational methods have broad 

applicability and include such areas as finite element methods (Kapur, 1989) and 

maximum entropy (Schwarz, 1988). 

 

C.2. 1st Derivative in the Functional 

 

For a given function u(x): [a, b] ℜ→  and a functional F(x, u, u′ ) we define 

                                            
∫ ′=
b

a

xuuxFuE d  ),,()( ,                                                (C.2) 

and the problem is to minimize E(u) with respect to u(x). 
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Firstly, we have to define the first variation of E(u), which is 
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Secondly, by using Taylor series expansion of ( )vuvuxF ′+′+  , ,  around the point    

(x, u, v), we get 
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 By solving the previous Euler equation, we obtain the solution u(x) which 

minimizes the energy function E(u).  

 

        The next point we have to stand is the case when we have second order 

derivatives in the functional.  

 

C.3. 1st & 2nd Order Derivatives in the Functional 

 

In this case the function E(u) we want to minimize becomes 
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While the differential equation becomes 
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C.4. Second order Partial Derivatives in the Functional and 2-D unknown Functions   

u(x, y) 

 

 For a given function u(x, y): [a, b] x [c, d] ℜ→  and a functional F(x, u, u′ ,u ′′ ) 

the modified problem is 
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Similarly we obtain the following differential equation, 
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where ux , uy , uxx , uyy are defined as the partial derivatives 
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APPENDIX D.   Approximate Inference 

 

 In this appendix, we are going to quote  some issues about the approximate 

inference which were taken from C. Bishop’s book [8]. 

 

D.1. Variational Inference 

 

 Suppose we have a fully Bayesian model in which all parameters are given 

prior distributions. The model may also have latent variables as well as parameters, 

and we shall denote the set of all latent variables and parameters by Z. Similarly, we 

denote the set of all observed variables by X. For example, we might have a set of N 

independent, identically distributed data, for which X = {x1, . . . , xN}  and Z = {z1 ,…, 

zN}. Our probabilistic model specifies the joint distribution p(X,Z), and our goal is to 

find an approximation for the posterior distribution p(Z|X) as well as for the model 

evidence p(X). We can decompose the log marginal probability using 
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where we have defined 
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We can maximize the lower bound L(q) by optimization with respect to the 

distribution q(Z), which is equivalent to minimizing the KL divergence. If we allow 

any possible choice for q(Z), then the maximum of the lower bound occurs when the 

KL divergence vanishes, which occurs when q(Z) equals the posterior distribution 

p(Z|X). However, we shall suppose the model is such that working with the true 

posterior distribution is intractable. 

 



130 

 

 

 We therefore consider instead a restricted family of distributions q(Z) and then 

seek the member of this family for which the KL divergence is minimized. Our goal is 

to restrict the family sufficiently that they comprise only tractable distributions, while 

at the same time allowing the family to be sufficiently rich and flexible that it can 

provide a good approximation to the true posterior distribution. It is important to 

emphasize that the restriction is imposed purely to achieve tractability, and that 

subject to this requirement we should use as rich a family of approximating 

distributions as possible. In particular, there is no ‘over-fitting’ associated with highly 

flexible distributions. Using more flexible approximations simply allows us to 

approach the true posterior distribution more closely. 

 

 One way to restrict the family of approximating distributions is to use a 

parametric distribution q(Z|ω) governed by a set of parameters ω. The lower bound 

L(q) then becomes a function of ω, and we can exploit standard nonlinear 

optimization techniques to determine the optimal values for the parameters. 

 

 

D.1.1. Factorized distributions 

 

Here we consider an alternative way in which to restrict the family of distributions 

q(Z). Suppose we partition the elements of Z into disjoint groups that we denote by Z i 

where i = 1, . . . , M. We then assume that the q distribution factorizes with respect to 

these groups, so that 
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It should be emphasized that we are making no further assumptions about the 

distribution. In particular, we place no restriction on the functional forms of the 

individual factors qi(Z i). This factorized form of variational inference corresponds to 

an approximation framework developed in physics called mean field theory. Amongst 

all distributions q(Z) having the form (D.4), we now seek that distribution for which 
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the lower bound L(q) is largest. We therefore wish to make a free form (variational) 

optimization of L(q) with respect to all of the distributions qi(Z i), which we do by 

optimizing with respect to each of the factors in turn. To achieve this, we first 

substitute (D.4) into (D.2) and then dissect out the dependence on one of the factors 

qj(Z j). Denoting qj(Z j) by simply qj to keep the notation uncluttered, we then obtain 
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where we have defined a new distribution ),(p~ jZX by the relation 
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Here the notation [...]ji≠E denotes an expectation with respect to the q distributions 

over all variables zi for ji ≠ , so that 
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 Now suppose we keep the { }jiq ≠  fixed and maximize L(q) in (D.5) with 

respect to all possible forms for the distribution qj(Zj). This is easily done by 

recognizing that (D.5) is a negative Kullback-Leibler divergence between qj(Z j) and 

),(~
jZXp . Thus maximizing (D.5) is equivalent to minimizing the Kullback-Leibler 

divergence, and the minimum occurs when ),(~ = )( jjj ZXZ pq . Thus we obtain a 

general expression for the optimal solution )( jZ∗
jq  given by 
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∗ ZX,EZ  ,                                     (D.8) 
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 It is worth taking a few moments to study the form of this solution as it 

provides the basis for applications of variational methods. It says that the log of the 

optimal solution for factor qj is obtained simply by considering the log of the joint 

distribution over all hidden and visible variables and then taking the expectation with 

respect to all of the other factors {qi}  for i ≠ j.  

 

 The additive constant in (D.8) is set by normalizing the distribution )( jZ∗
jq . 

Thus if we take the exponential of both sides and normalize, we have 
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In practice, we shall find it more convenient to work with the form ( D.8) and then 

reinstate the normalization constant (where required) by inspection.  

 

 The set of equations given by (D.8) for j = 1, . . . , M represent a set of 

consistency conditions for the maximum of the lower bound subject to the 

factorization constraint. However, they do not represent an explicit solution because 

the expression on the right-hand side of (D.8) for the optimum )( jZ∗
jq  depends on 

expectations computed with respect to the other factors qi(Z i) for i ≠ j. We will 

therefore seek a consistent solution by first initializing all of the factors qi(Z i) 

appropriately and then cycling through the factors and replacing each in turn with a 

revised estimate given by the right-hand side of (D.8) evaluated using the current 

estimates for all of the other factors. Convergence is guaranteed because bound is 

convex with respect to each of the factors qi(Z i). 
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APPENDIX E.   Additional Numerical Experimental Results 

from Chapter 3 

 

Table E.1: Various combinations between the number of super-pixels and the window size for 
the Yosemite sequence, with and without clouds. 

 
Number of 
super-pixels 

Window 
size 

Yosemite without clouds Yosemite with clouds 
AAE AeM AEP AAE AeM AEP 

40 5 x 5 5.76 0.13 0.25 13.81 0.40 0.70 
70 5 x 5 5.80 0.13 0.25 13.88 0.40 0.71 
100 5 x 5 5.80 0.13 0.25 13.88 0.40 0.71 
200 5 x 5 5.89 0.13 0.26 13.98 0.40 0.71 
1000 5 x 5 6.07 0.14 0.27 14.32 0.41 0.73 
40 7 x 7 5.06 0.12 0.22 13.25 0.38 0.66 
70 7 x 7 5.12 0.12 0.22 13.34 0.38 0.67 
100 7 x 7  5.18 0.12 0.22 13.34 0.38 0.67 
200 7 x 7 5.30 0.12 0.23 13.52 0.38 0.68 
40 9 x 9 4.62 0.11 0.20 12.87 0.36 0.62 
70 9 x 9 4.69 0.11 0.20 12.95 0.36 0.63 
100 9 x 9 4.76 0.11 0.20 12.98 0.36 0.63 
200 9 x 9 4.89 0.11 0.21 13.17 0.37 0.64 
40 11 x 11 4.28 0.10 0.18 12.59 0.34 0.59 
70 11 x 11 4.38 0.10 0.19 12.67 0.34 0.60 
100 11 x 11 4.45 0.10 0.19 12.69 0.34 0.60 
40 13 x 13 4.06 0.10 0.17 12.34 0.33 0.57 
70 13 x 13 4.14 0.10 0.18 12.42 0.33 0.57 
40 15 x 15 3.90 0.10 0.16 12.16 0.32 0.55 
70 15 x 15 3.96 0.09 0.17 12.24 0.32 0.56 
40 17 x 17 3.80 0.09 0.15 12.01 0.31 0.54 
70 17 x 17 3.87 0.09 0.16 12.10 0.32 0.54 
40 19 x 19 3.79 0.09 0.15 11.90 0.31 0.53 
70 19 x 19 3.85 0.09 0.16 12.01 0.31 0.54 
40 21 x 21 3.89 0.09 0.16 11.86 0.30 0.52 
70 21 x 21 3.90 0.09 0.16 11.99 0.31 0.53 
40 23 x 23 4.06 0.09 0.16 11.91 0.30 0.52 
70 23 x 23 4.04 0.09 0.16 12.06 0.31 0.53 
40 25 x 25 4.31 0.10 0.17 12.04 0.30 0.52 
70 25 x 25 4.26 0.09 0.17 12.21 0.31 0.53 
40 27 x 27 4.58 0.10 0.18 12.26 0.30 0.53 
70 27 x 27 4.51 0.10 0.18 12.44 0.31 0.54 
40 29 x 29 4.84 0.11 0.19 12.57 0.31 0.54 
70 29 x 29 4.79 0.10 0.19 12.75 0.31 0.55 
40 31 x 31 5.11 0.11 0.20 12.92 0.31 0.55 
70 31 x 31 5.05 0.11 0.20 13.11 0.32 0.56 
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Table E.2: Various combinations between the number of super-pixels and the window size for 
the Dimetrodon sequence and the Rubberwhale sequence. 

 
Number of 
super-pixels 

Window 
size 

Dimetrodon Sequence Rubberwhale Sequence 
AAE AeM AEP AAE AeM AEP 

40 5 x 5 11.31 0.26 0.57 8.45 0.22 0.26 
70 5 x 5 11.34 0.26 0.56 8.44 0.22 0.26 
100 5 x 5 11.36 0.26 0.56 8.46 0.22 0.26 
200 5 x 5 11.46 0.26 0.56 8.50 0.22 0.26 
1000 5 x 5 11.78 0.27 0.57 8.52 0.22 0.26 
40 7 x 7 10.04 0.24 0.51 8.24 0.21 0.25 
70 7 x 7 10.09 0.24 0.52 8.22 0.21 0.25 
100 7 x 7  10.14 0.24 0.52 8.22 0.21 0.25 
200 7 x 7 10.26 0.25 0.52 8.27 0.21 0.25 
40 9 x 9 9.18 0.23 0.48 8.22 0.21 0.24 
70 9 x 9 9.23 0.23 0.48 8.19 0.21 0.24 
100 9 x 9 9.28 0.23 0.49 8.17 0.21 0.24 
200 9 x 9 9.42 0.23 0.49 8.20 0.21 0.24 
40 11 x 11 8.55 0.22 0.46 8.36 0.21 0.24 
70 11 x 11 8.60 0.22 0.46 8.30 0.21 0.24 
100 11 x 11 8.65 0.22 0.46 8.26 0.21 0.24 
40 13 x 13 8.07 0.21 0.44 8.57 0.22 0.25 
70 13 x 13 8.12 0.21 0.44 8.49 0.22 0.25 
40 15 x 15 7.68 0.20 0.42 8.81 0.22 0.25 
70 15 x 15 7.75 0.20 0.43 8.70 0.22 0.25 
40 17 x 17 7.34 0.20 0.41 9.07 0.23 0.26 
70 17 x 17 7.43 0.20 0.41 8.94 0.23 0.25 
40 19 x 19 7.06 0.19 0.40 9.35 0.24 0.26 
70 19 x 19 7.17 0.19 0.40 9.22 0.23 0.26 
40 21 x 21 6.82 0.19 0.39 9.65 0.24 0.27 
70 21 x 21 6.95 0.19 0.39 9.51 0.24 0.27 
40 23 x 23 6.61 0.19 0.38 9.96 0.25 0.28 
70 23 x 23 6.77 0.19 0.38 9.81 0.24 0.27 
40 25 x 25 6.43 0.18 0.37 10.27 0.26 0.29 
70 25 x 25 6.61 0.19 0.38 10.12 0.25 0.28 
40 27 x 27 6.29 0.18 0.36 10.56 0.26 0.29 
70 27 x 27 6.47 0.18 0.37 10.42 0.26 0.29 
40 29 x 29 6.24 0.18 0.36 10.84 0.27 0.30 
70 29 x 29 6.42 0.18 0.37 10.71 0.26 0.29 
40 31 x 31 6.26 0.18 0.36 11.13 0.28 0.31 
70 31 x 31 6.43 0.18 0.36 11.03 0.27 0.30 
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