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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ 

Γεώργιος Ρογκάκος του Θωµά και της Ζωίτσας. MSc, Τµήµα Πληροφορικής, 

Πανεπιστήµιο Ιωαννίνων, Ιούλιος 2010. Αποτίµηση Οµοιότητας ∆εδοµένων σε 

Πολυδιάστατους Χώρους.   

Επιβλέποντας:  Παναγιώτης Βασιλειάδης. 

 
Πόσο µοιάζουν δύο κύβοι δεδοµένων; Με άλλα λόγια το ερώτηµα που τίθεται είναι 

το εξής : ∆οθέντων δύο συνόλων από σηµεία ενός πολυδιάστατο χώρου µε ιεραρχίες, 

ποια είναι η απόσταση ανάµεσα στα δύο σύνολα; Λόγω του µεγάλου πλήθους των 

δεδοµένων που συναντάµε, είναι θεµελιώδες να παρέχουµε µέτρα οµοιότητας για 

σύνολα πολυδιάστατων δεδοµένων.  

 

Το συγκεκριµένο πρόβληµα είναι γενικό καθώς συναντάται σε αρκετές εφαρµογές 

στα πλαίσια της εξόρυξης πληροφορίας πολυµέσων, σε επιστηµονικές βάσεις 

δεδοµένων και σε ψηφιακές βιβλιοθήκες. Σε τέτοιες εφαρµογές, δηµιουργείται η 

ανάγκη για αποθήκευση εξαιρετικά µεγάλου όγκου ετερογενών δεδοµένων. Αυτό 

οδηγεί στην ανάγκη για αναζήτηση οµοιότητας σε δεδοµένα τέτοιου τύπου. Για το 

λόγο αυτό, είναι χρήσιµο να βρούµε µέτρα οµοιότητας που να ικανοποιούν τις 

ανθρώπινες ανάγκες σε εφαρµογές που αφορούν αναζητήσεις σε υπολογιστικά 

συστήµατα. 

 

Στην παρούσα διατριβή µελετάµε ένα σύνολο συναρτήσεων απόστασης που µπορούν 

να χρησιµοποιηθούν για την αποτίµηση οµοιότητας δεδοµένων σε πολυδιάστατους 

χώρους µε ιεραρχίες διαστάσεων. Η κατηγοριοποίηση αυτού του συνόλου 

συναρτήσεων απόστασης οργανώνεται µε βάση τις ιδιότητες των ιεραρχιών των 

διαστάσεων, των επιπέδων και των τιµών τους. Ειδικότερα, η κατηγοριοποίηση των 

συναρτήσεων οργανώνεται ως εξής: Πρώτον, περιγράφουµε τις συναρτήσεις 
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απόστασης που υπολογίζουν την απόσταση µεταξύ δύο τιµών της ίδιας διάστασης 

ενός πολυδιάστατου χώρου, δεύτερον περιγράφουµε συναρτήσεις απόστασης για τον 

υπολογισµό της απόστασης µεταξύ σηµείων ενός πολυδιάστατου χώρου και τέλος 

περιγράφουµε συναρτήσεις που υπολογίζουν την απόσταση µεταξύ δύο συνόλων 

πολυδιάστατου χώρου. 

 

Για το σκοπό του προσδιορισµού των συναρτήσεων που ικανοποιούν καλύτερα τις 

ανάγκες των χρηστών, οργανώσαµε δύο πειράµατα µε χρήστες. Το πρώτο πείραµα 

αφορά την πιο προτιµητέα συνάρτηση απόστασης από τη κατηγορία των 

συναρτήσεων απόστασης µεταξύ δύο τιµών της ίδιας διάστασης ενός πολυδιάστατου 

ιεραρχικού χώρου δεδοµένων (πιθανά όµως, σε διαφορετικά επίπεδα της ιεραρχίας 

της διάστασης) δεδοµένων. Το βασικό συµπέρασµα αυτού του πειράµατος ήταν ότι η 

πιο προτιµητέα συνάρτηση απόστασης µεταξύ δύο τιµών µιας διάστασης, είναι εκείνη 

που χρησιµοποιεί το ελάχιστο µονοπάτι που συνδέει τις δύο τιµές και τον κοινό τους 

πρόγονο στην ιεραρχία της διάστασης.  

 

Λαµβάνοντας υπόψη τα συµπεράσµατα του πρώτου πειράµατος χρηστών 

οργανώσαµε το νέο πείραµα µε χρήστες. Το δεύτερο πείραµα είχε σκοπό την 

ανακάλυψη της πιο προτιµητέας συνάρτησης απόστασης µεταξύ των συναρτήσεων 

Κοντινότερου Συνδεδεµένου (η οποία αποτιµά την απόσταση δύο κύβων σαν ένα 

ζυγισµένο άθροισµα των επιµέρους ελαχίστων αποστάσεων των κελιών τους) και 

Hausdorff (η οποία αποτιµά την απόσταση δύο κύβων σαν τη µέγιστη των ελαχίστων, 

των αποστάσεων των κελιών τους) από την κατηγορία των συναρτήσεων απόστασης 

µεταξύ δύο κύβων δεδοµένων. Τελικά, το συµπέρασµα από το δεύτερο πείραµα ήταν 

ότι η συνάρτηση Κοντινότερου Συνδεδεµένου έχει ένα σχετικό, αλλά όχι απόλυτο 

προβάδισµα σε σχέση µε τη συνάρτηση Hausdorff. 
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ABSTRACT 

Georgios Rogkakos, MSc, Computer Science Department, University of Ioannina, 

Greece. July, 2010. Similarity Measures For Multidimensional Data. 

Thesis Supervisor: Panos Vassiliadis. 

 

How similar are two data-cubes? In other words, the question under consideration is: 

given two sets of points in a multidimensional hierarchical space, what is the distance 

value between them? Due to the great amount of data stored nowadays, it is 

fundamental to provide similarity measures within sets of multidimensional data. This 

problem is generic since it can be found within a number of applications in fields such 

as multimedia information retrieval, scientific databases and digital libraries. In the 

context of such applications a huge amount of heterogeneous data is stored. This leads 

to the necessity of similarity search among this type of data. Therefore, there is a need 

for similarity measures that can capture human demands of search computing.  

 

In this thesis we explore various distance functions that can be used over 

multidimensional hierarchical spaces. We organize the discussed functions with 

respect to the properties of the dimension hierarchies, levels and values. Especially, 

the taxonomy of distance functions we provide is as follows: Firstly, we describe 

distance functions that compute the distance between two values of a dimension of a 

multidimensional space, secondly we describe distance function that compute the 

distance between two points of a multidimensional space and finally we describe 

distance functions that compute the distance of two sets of points of a 

multidimensional space. 

 

In order to discover which distance functions are more suitable and meaningful to the 

users, we conducted two user study analysis. The first user study analysis concerns 
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the most preferred distance function from the category of distance functions between 

two values of a dimension. The findings of this user study indicate that the most 

preferred distance function was the length of the path between the two values and 

their common ancestor in the dimension’s hierarchy. 

 

Taking into consideration the findings of the first user study we conducted a second 

user study. The second user study aimed in discovering which distance function, 

between the closest relative and the Hausdorff, from the category of distance 

functions between two data cubes, users prefer. The results of the second user study 

indicate that the closest relative distance function was rather preferred by users in 

contrast to the Hausdorff function. 
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CHAPTER 1. INTRODUCTION 

How similar are two data-cubes? To put the question a little more precisely, given two 

sets of points in a multidimensional hierarchical space, what is the distance between 

these two collections? The above research problem is generic and has several 

applications in domains such as multimedia information retrieval, statistical data 

analysis, scientific databases and digital libraries [ZADB06]. In such applications, 

where contemporary data lead to huge repositories of heterogeneous data stored in 

data warehouses, there is a need of similarity search that complements the traditional 

exact match search. For example, one might easily envision a context where a user of 

an OLAP tool is proactively informed on reports that are similar to the one she is 

currently browsing.  

 

In this thesis, we address the problem by (a) organizing alternative distance functions 

in a taxonomy of functions and (b) experimentally assessing the effectiveness of each 

distance function via a user study.   

  

So far, related work has dealt with similar problems in different ways; however, this 

particular problem has not been dealt per se. Specifically, Sarawagi in [Sara99] and 

[Sara00] has dealt with the problem of discovering interesting patterns and differences 

within two instances of an OLAP cube. The DIFF and RELAX operators summarize 

the difference between two sub-cubes in order to discover the reason of abnormalities 

within the measures of two given cells. The only common factor of this work with 

ours is the usage of the Manhattan distance function in the procedure of discovering 

abnormalities. Our work addresses the problem of finding the appropriate distance 

function among a great variety of functions in order to compute the similarity between 

two given OLAP cubes. Giacometti et. al. [GMNS09] propose a recommendation 

system for OLAP queries by evaluating distances between multidimensional queries. 
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This work involves the distance between queries whereas our work involves distance 

functions between the data of multidimensional queries. Li et.al. in [LiBM03] 

describe the semantic similarity between ontologies. In contrast to our work, they 

consider a limited set of functions whereas we have a wider range of distance 

functions and our work focuses on distances between data in the multidimensional 

space. 

 

The main findings of our approach are due to two user studies that we have conducted 

to assess which distance functions appear to work better for the users (Section 4). The 

first experiment involved 15 users of various backgrounds and the Adult real dataset 

[FuWY05]. Each user was given 14 scenarios that contained a reference cube as well 

as a set o variant cubes, each associated with a distance function. The task of the user 

was to select a cube from the set of variant cubes that seemed more similar to the 

reference cube. The diversity of users and data types contained in the experiment was 

taken into consideration in order to discover which distance function between two 

values of a dimension is preferred depending on the user group or the type of data. 

The first user study showed that all distance functions under test were used at least 

once, but there were a couple of distance functions that were most preferred among 

the others. In particular, the users seemed to prefer distance functions that express the 

similarity between two cubes based on the hierarchical shortest path or in regards to 

ancestor values.  

 

The second user study involved 39 users and the results of the first user study were 

taken into account. Each user was given 14 scenarios that contained a reference cube 

and three variant cubes. The purpose of this second user study concerns the most 

preferred distance function between two data cubes.  

 

Our approach is structured as follows: We start (Chapter 2) with the a description of 

the related work then (Chapter 3) we provide some formal foundations of modeling 

multidimensional spaces and cubes based on an existing model in the related literature 

[VaSk00]. and we also provide a taxonomy of distance functions for cubes based on a 

detailed study of the characteristics of dimension hierarchies, levels and members.  
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At first, we organize our families of functions as follows: Initially we describe 

functions that can be applied between two specific values that belong in the same 

level of hierarchy within a given dimension. Following, we describe distance 

functions that are applied between two cells of a cube and then distance functions 

between two OLAP cubes. 

 

Finally, in chapter 4 the implementation issues of this thesis are presented and also the 

user study experiments along with the results of the most preferred functions.
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CHAPTER 2. RELATED WORK 

 

2.1 Fundamentals  

2.2 Distances on Graphs and Lattices 

2.3 Distances for Collections of Structured Data 

2.4 Integrating Texts and Databases 

  

In the related literature there are a number of papers that have pointed out the 

necessity of having appropriate similarity measures in order to discover objects that 

are similar to each other and measure in a quantitative way the distance among them. 

Most of them examine similarity measures used between objects that are described 

from a number of various features such as in image retrieval or data that are stored in 

a hierarchical taxonomy. In addition, there are a few papers that describe how 

similarity measures used by human perception and computer science follow different 

properties. Not only computer scientists, but also scientists from other areas need 

similarity measures for the purpose of comparing data and objects of their expertise. 

In the area of Biology, a well-known example is the need of comparing genes. 

Another area that has dealt with the problem of introducing similarity measures is that 

of mathematics. Computer scientists in the areas of data mining and information 

retrieval have also considered the problem of introducing appropriate similarity 

measures. Few papers have associated the areas of mathematics and computer science 

and have introduced similarity measures for the concept of lattices by mapping them 

with semantic hierarchies. 

 

In the following subsections we will present the related work. More precisely 

subsection 2.1 describes some fundamental concepts about distance functions, 

subsection 2.2 presents some distance functions that can be applied on graphs and 
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lattices, subsection 2.3 presents distances for structured data and finally subsection 2.4 

describes a work about integrating texts and databases. 

2.1. Fundamentals 

In this subsection, we start with the presentation of some fundamental distance 

functions and their properties that were used in this MSc thesis. Specifically, this 

subsection is structured as follows: in section 2.1.1 we start the analysis of several 

distance measures that are categorized according to the types of variables that are 

applied on, in section 2.1.2 the Hausdorff distance is presented and in section 2.1.3 we 

discuss a work that introduces a similarity measure and demurs at the classic metric 

axioms. 

2.1.1. Distance Measures 

In this section, we follow the presentation of fundamental concepts around some 

common distance measures made by Han and Kamber in [JK00]. Generally, a 

distance measure is called a metric when it satisfies the following criteria:  

d(i,j) ≥ 0 

d(i,j) = d(j,i)  

d(i,i) =0 

d(i,j) ≤ d(i,k)+d(j,k)  

The distance measures are categorized according to the type of variables that they are 

applied on, in order to describe their dissimilarity. The different types of variables are 

the interval-scaled variables, the binary variables, the categorical variables and, 

finally, variables of mixed types.  

 

As for the interval-scaled variables the presented distances are the Euclidean, the 

Manhattan and the Minkowski distances. For two points p1(x1, x2 ,…, xn ) and 

p2(y1,y2,…, yn) in the n dimensional space, the formulas for the above distances are 

expressed as: 

Manhattan: dist(p1,p2)= |−|++|−|+|−| nn yxyxyx ...2211  
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Euclidean: dist(p1,p2)=
22

22
2

11 ... |−|++|−|+|−| nn yxyxyx  

Minkowski (p-norm): dist(p1,p2)=
p p

nn
pp yxyxyx |−|++|−|+|−| ...2211  

 

Binary variables. The Jaccard distance is defined for pairs of sets comprised of 

members that are treated as binary variables (i.e., we can only check them for identity 

or not). For two objects A and B the jaccard distance is
||

||
),(

BA

BA
BAJ

∪
∩

= . Viewed 

from another point of view, we need to define two categories of binary variables 

before defining the Jaccard similarity. The first category is the symmetric binary 

variables and the second the asymmetric binary variables. The difference between 

asymmetric and symmetric binary variables is that when considering of symmetric 

variables, both of its states are equally valuable. For example, the agreement of two 1s 

(positive match) is considered the same as the agreement of two 0s (negative match). 

So, for the symmetric binary objects i,i we can use the equation 
tsrq

sr
jid

+++
+

=),(  

where q is the number of variables that equal 1 for both i and j, r is the number of 

variables that equal to 1 for object i but that are 0 for object j, s is the number of 

variables that equal 0 for i but equal 1 for j  and q is the number of variables that equal 

0 for both i and j. For the asymmetric binary dissimilarity between two objects i and j 

the previous equation becomes 
srq

sr
jid

++
+

=),(  because negative matches 

considered unimportant and so t is ignored. Based on the notion of similarity between 

i and j the equation of similarity is ),(1),( jid
srq

q
jisim −=

++
= . Then, sim(i,j) is 

called Jaccard coefficient.  

 

A categorical variable is a generalization of the binary variable because it can take 

more than two states. So, the dissimilarity for two categorical objects i,j is computed 

by the equation 
p

mp
jid

−
=),(  where m is the number of matches and p is the total 

number of variables. 
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2.1.2. Hausdorff Distance 

In [ZADB06] the authors describe the Hausdorff distance. For two sets of features 

A(x1,x2,…,xn) and B(y1,y2,…,ym) the Hausdorff distance is defined as: d(A,B) = 

max{ ds(A,B),ds(B,A)}. In the above formula ds(A,B) = 
Ax

sup
∈

dp(xi,B) and ds(B,A)= 

By
sup
∈

dp(A,yj) where sup is the supremum of all the distances dp. The dp(xi,B) and 

dp(A,yj) are denoted by the following formulas : dp(x,B)= 
By

inf
∈

de(x,yj) and dp(A,y)= 

Ax
inf
∈

de(xi,y) where inf is the infimum of all the distances de. Finally, de can be an 

arbitrary distance measure, e.g. the Euclidean distance.  

 

For example, in the figure 2.1 there are two sets of points, the set A containing {a1, a2, 

a3} and the set B containing {b1,b2,b3} . We assume, without loss of generality, that de 

denotes the Euclidean distance. In this example the notions of inf and sup coincide in 

being the min and max respectively. So dp(a1,B)=
By

inf
∈

de(a1,yj)=de(a1, b2) and similarly 

dp(a2,B)= de(a2, b2), dp(a3,B)=de(a3, b2), dp(A,b1)=de(a2, b1), dp(A,b2)=de(a2, b2) and 

dp(A,b3)=de(a2,b3). From the above, we have that ds(A,B)=
Ax

sup
∈

dp(xi,B)= de(a1, b2) and 

also ds(B,A)= 
By

sup
∈

dp(A,yj)= dp(A,b3)=de(a2, B3). Finally, d(A,B) = 

max{ ds(A,B),ds(B,A)}=max{  de(a1, b2), de(a2, b3)}. 

 

Figure 2.1 Two sets of points 
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2.1.3. Controversy on Metric Axioms 

In [SJ95] and [SJ99] the authors introduce a similarity measure as an extension of 

Tversky’s Feature Contrast. This extension is based on Fuzzy Logic and it is called 

Fuzzy Feature Contrast (FFC). Especially in the area of image and texture comparison 

the authors suggest that similarity measures must be close enough to human’s 

similarity judgment introduced by psychologists. The authors were driven to use 

Fuzzy Logic because in a variety of works there is a disagreement on the 

correspondence of the metric axioms to the behavior of the real users in practice.  

Specifically, they provide a collection of references where the metric axioms have 

been refuted. 

After rejecting the geometrical distance axioms such as symmetry and triangular 

inequality, the authors present the extension of Tversky’s Feature Contrast by making 

use of Fuzzy Logic. The trivial procedure of measuring the similarity of two images is 

by expressing it as a combination (e.g., average, weighted summation) of a number of 

individual similarity measures between the various features that describe an image. In 

this paper, the authors introduce a similarity measure based on Fuzzy Logic. This 

way, the authors manage to express similarity between two images that are described 

by a number of features by taking into consideration the relationship and degree of 

association among the object’s features. The idea of expressing a similarity measure 

through a Fuzzy Logic model was mainly motivated by the need of expressing a 

measure that can capture the human judgment. Also, the authors conducted a number 

of experiments trying to find similarities between images of faces and textures. Their 

main goal was to introduce a measure between features that captures the human 

perception as close as possible. Therefore, in their experiments they compared FFC 

and a couple of other measures (e.g., Euclidean distance) with human perception. 

Specifically, human subjects provided a ranking of images (faces, textures), which 

were compared with the equivalent rankings that occurred from the FFC and the other 

measures. 
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2.2. Distances on Graphs and Lattices 

In this section we present distances that are applied on Graphs and Lattices. In section 

2.2.1 the basic ideas of highway hierarchies and distances in semantic hierarchies are 

presented. Following, in section 2.2.2 the distances on lattices and semantic 

hierarchies are presented. Finally, in section 2.2.3 the similarity of words in semantic 

hierarchies is discussed. 

2.2.1. Highway Hierarchies 

In [SS05] the authors introduce a technique for the faster computation of shortest 

paths between two nodes of a graph. This technique borrows the idea of the highway 

roads in the road networks and also the Dijkstra’s algorithm idea. The technique is 

based on the observation that the shortest paths among two points in a road network, 

usually consists of small roads locally and a highway road. So, the distance between 

two nodes in a road network is calculated by finding the shortest path of each node 

from a highway road and then by making use of the highway road. Based on the 

previous idea, a highway hierarchy is constructed. Specifically, the highway hierarchy 

consists of highway edges with attached sub trees of locally computable shortest paths 

of nodes from the highway network. An edge of the complete graph belongs in the set 

of highway edges if it represents an important road according to the information that it 

carries. 

 

The approach of [SaSc05] was motivated by the great amount of time needed to 

compute distances of shortest paths in large road networks when using Dijkstra’s 

Algorithm. The authors proposed an approach that uses the highway hierarchies in 

order to compute distance matrices. The basic algorithm for fast computation of 

distance tables is introduced based on the basic concepts and definitions of highway 

hierarchies. This algorithm is making use of the Highway Hierarchies query algorithm 

and two specific operations, namely the operations Highway Hierarchy Forward 

Search Space and Highway Hierarchy Backward Search Space. Highway Forward 

Search Space finds the nodes that belong in the shortest path originating from a source 

node in a graph G. Backward Search on the other hand finds the set of nodes that 

belong in the shortest path originating from a target node in the converse graph of G. 
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Finally, some optimizations on this algorithm bring further improvement on the 

computational time of the distance tables. In their experiments, the authors compared 

Dijkstra’s Algorithm with the Highway Hierarchies method for the computation of 

distance matrices. The first experiment included 100 random nodes on the street 

network of Germany and the second included 173 nodes on the street network of four 

European countries. The experiments showed that the proposed approach for the 

computation of distance matrices outperforms Dijkstra’s algorithm. 

2.2.2. Lattices and Semantic Hierarchies 

In [JO04], the author describes some fundamental ideas about treating large posets as 

data objects. Specifically, he refers to the notions of distance and level in such 

structures as an interval-valued property. A partially order set (poset) is a directed 

graph with no cycles and it is more general than a tree or a lattice and a node can have 

multiple parents. The main idea that gave feed to this work was the POSet Ontology 

Categorizer (POSOC), which was motivated by the needs of biologists to use 

algorithmic tools to navigate the Gene Ontology (GO). After reviewing POSOC’s 

foundations, including some elementary theory about partially ordered set (poset) and 

in general semantic hierarchies, the author introduces two basic distance metrics in 

the overall structure of object under the poset notion. Namely, these metrics are (a) 

the interval valued poset rank and (b) the vector-valued poset distance. The first 

metric describes a rank as a measure of the vertical “level” of a node within a poset. 

The second metric describes a distance measure among nodes by taking into 

consideration their horizontal relationship as well. Finally, the author provides a 

discussion of how the two proposed metrics could work in concept lattices. This 

discussion is based on the trivial observation that lattices are special cases of posets.  

 

In [JB05] paper the authors introduce link weights and weighted normalized pseudo-

distances among comparable nodes in a poset. Taking into consideration some 

fundamental elements on DAGs, Posets and Covers, the authors continue by 

reintroducing the pseudo-distances implemented in Posoc. Posoc is a Categorizer for a 

gene ontology poset which is called a POSet Ontology (POSO) [JMFH04]. These 

pseudo-distances briefly are (a) the minimum chain length, (b) the maximum chain 
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length, (c) the average of extreme chain length and (d) the average of all chain 

lengths. A collection A of nodes in a poset is called chain if ,, Aba ∈∀  ba ≤  or ba ≥  

In addition there is a quick review on the basic operations of probabilities on posets. 

2.2.3. Semantic Similarity between Words 

In [YZM03]  the authors introduce a similarity measure in the field of semantic 

similarity between words. The propose measure combines different, already known 

measures such us the path length between two words in a semantic hierarchy, the 

depth of the subsumer concept node of these words in the hierarchy and the 

information content that makes use of the probability of encountering an instance of a 

concept in a corpus. The proposed measure and other measures were tested through an 

extensive experimental analysis in order to discover which measure captures better 

the human perception. For the needs of their experiments, the authors used two 

databases, the WordNet [MI95] and the Brown Corpus [7]. To evaluate their method 

against the state of the art methods, they applied word similarity on a word set with 

human ratings. The word set consisted of two subsets. The first word set included 30 

pairs of words and the second included 37 pairs. All pairs were rated for similarity in 

meaning. The authors used the second word set in order to design their method. The 

first word set was used in order to test their proposed method. The authors tested 10 

variations of different measures where each one occurred as a combination of the 

above similarity measures (i.e., the one proposed by the authors and the already 

known measures) and by altering the values of different parameters. The findings of 

[YZM03] show that the best similarity measure among the 10 measures that were 

tested was the similarity measure, that combined the shortest path length and the 

depth of the subsumer in a nonlinearly type of combination. Moreover, this new 

measure outperforms all previous published methods. 

2.3. Distances for Collections of Structured Data 

This category includes works where the distance between collections of data is 

measured.  
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In [Sar99] the author introduces a new operator for Online Analytical Processing 

(OLAP) products. This idea was motivated by the needs for data analysts to perform 

data mining tasks faster. Current OLAP products provide operators for aggregations 

such as Sum and Average and also provide navigational operators like Roll-up and 

Drill-down. The analysts use these operators for exploring the data but as the size and 

dimensionality increases, ad hoc exploration gets difficult and error prone. The 

introduced operator, called DIFF, saves time and effort for the analysts by eliminating 

the manual exploration for detecting reasons of fluctuations observed at an aggregated 

level. More precisely, the DIFF summarizes the reasons for which a cell has a bigger 

or a smaller aggregated quantity compared with another and completes the above 

operation in one step. Without the DIFF operator, the analysts should make use of a 

combination of several Roll-up and Drill-down operations in order to achieve the 

same result and with a possibility of containing errors.  

 

The use of the DIFF operator is simple. The analyst highlights two aggregated cells 

on a report and then invokes the DIFF operator. The operator then will return the top 

rows that contain aggregated data over lower levels. These top rows are the ones that 

mostly affect the variance of the two cells. The number of the rows that will be 

returned is configurable by the user. 

 

In general, given the two aggregated cells, the operator firstly finds the rows at the 

detailed level that have the biggest changes among them and secondly, it summarizes 

some or all of them that have similar changes. For this reason, the returned rows 

include also a ratio and an error field. In this part of the procedure a problem that 

arises concerns whether the changes of a larger magnitude are more important than 

the summarization of rows with similar changes. 

 

To handle this problem the author developed an information theoretic model for 

cleanly capturing these tradeoffs and also suggests an algorithm that is making use of 

dynamic programming. The author firstly presents the way the algorithm works for a 

single dimension with no hierarchies. Then, this method is generalized for a single 

dimension with hierarchies and, finally, for multiple dimensions. 
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Concerning the implementation of the proposed work, the author developed the DIFF 

operator as a stored procedure that resides on the server’s side. The stored procedure 

is a light-weight addition to the server because the indexing and query processing 

capability of the server is used to do the heavy-weight processing. Moreover, the 

amount of memory used by the stored procedure is independent of the number of 

rows. 

 

Finally, for the experiments the author used two datasets. The first dataset was the 

OLAP Council Benchmark [Cou] and the other was the demo dataset Grocery Sales 

data, which was obtained from the Microsoft DSS product [Mic98a]. The results of 

the experiments showed that even for a huge number of tuples included in the DIFF 

query, the processing time was maximum 1 minute. Also, the scalability of the 

algorithm was tested over increasing number for the database tuples, the number of 

levels of the hierarchy and the answer size. 

 

In [SS01] the authors propose a new operator to make the exploration of large 

multidimensional databases easier. This new operator called RELAX is very similar 

to the DIFF [Sar00] operator with the main difference that it acts the opposite way. 

Specifically, this new operator generalizes a drop or an increase between two cells in 

the detailed level. That means that the operator tries to generalize the observed 

drop/increase on a higher lever in some of the dimension’s hierarchies. Without 

RELAX the analyst should use multiple Roll-ups and pivots followed by multiple 

drill-downs and so on. This operation might be tedious and imprecise especially for 

large datasets. 

 

The use of the Relax is simple. The analyst specifies a tuple Ts and a property of Ts 

that he wants to generalize. An example of a property is that the sales in current year 

are less than sales in previous years. Then a function R measures how closely another 

tuple T conforms to the generalization property. Function R is called the 

generalization error and is zero when T is very close to Ts and increases as T departs 

from the generalization property.  There is also a penalty function S that is close to 0 
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when the difference between T and Ts increases and large when T is close to Ts.  A 

generalization is approved when the sum of S(T) is greater than the sum of R(T). In 

every generalization there might be exceptions that also appear in the results. 

 

The authors used two datasets for their experiments, the OLAP Council Benchmark 

[Cou] and the Food dataset. The findings of the experiments showed that their 

algorithm for finding exceptions is optimal for the case of single hierarchies and 

finite-domained functions. Also the algorithm assigns the heavy-weight processing to 

the DBMS and the amount of needed memory is independent of the number of tuples. 

 

In [MUFL06] the authors try to describe the distance between two relational databases 

under the same schema. One example of such databases is in the presence of replicas 

of a given database that might have different modifications.  The motivation on the 

way the authors compute the distance stems from the common way that the distance 

between two strings is computed. More precisely, the authors define the distance of a 

relational database A from another relational database B, as the number of updates that 

must be performed to A, in order to become identical to B. By referring to updates, the 

authors refer to sql-like insertions, deletions and updates. Without loss of generality, 

they don’t use insertions and deletions on their algorithms. There might be several 

update sequences that can bring the desired result. The sequence with the fewer 

updates is considered the optimal. As they present, when an update is performed it 

might cause more conflicts between the two relational databases than before the 

update but it might ease the next updates in order to achieve less number of updates. 

2.4. Integrating Texts and Databases  

In [XDH++08] the authors integrate traditional OLAP cubes with text data and 

introduce Informational Retrieval (IR) techniques on these text data. The result is 

what they call a Text Cube. The contributions of this work are (a) the introduction of a 

new semantic hierarchy over the terms of text collections, (b) the ability of making 

use of IR measures over aggregated text data and (c) the partial materialization of 

some previously computed cubes in order to compute more efficiently the complete 

aggregated cube. In the Text Cube two kinds of hierarchies coexist, the traditional 
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OLAP dimension hierarchy and the proposed term hierarchy. The term hierarchy is a 

semantic hierarchy that helps the navigation in the text data. Its structure is similar 

with the traditional OLAP hierarchies which are based on levels. In addition, the term 

hierarchy is related with two operations that are called pull-up and push-down. In the 

detailed Text Cube, for a specific assignment of the values in the cube’s dimensions, a 

document collection is attached. In this model, if an aggregation is performed on the 

text data, then two IR measures, term frequency and inverted index, are materialized. 

Consequently, IR queries on the aggregated text data can be efficiently answered. 

Moreover, the authors introduce algorithms for the optimal processing of OLAP 

queries. Taking into consideration that the materialization of the full text cube is 

prohibitive, the authors materialized the cube partially. In addition, the authors 

propose an optimization on the partially materialized cube by bounding the query 

processing cost. 
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CHAPTER 3. FAMILIES FOR SIMILARITY 

MEASURES 

 

3.1 OLAP Fundamentals 

3.2 Distance Functions between two Values  

3.2 Distance Functions between two Cells of OLAP Cubes 

3.4 Distance Functions between two OLAP Cubes 

 

In this section, we organize the distance functions that can be used to measure the 

distance between two cubes. We begin with a presentation of the OLAP model that 

was used in this thesis. Then we build our taxonomy of distances progressively: In 

section 3.2 we describe the distance functions that can be applied between two values 

for a given dimension. In section 3.3 we provide a taxonomy for distance functions 

between two cells of cubes and in 3.4 a taxonomy for distance functions between two 

OLAP cubes. Throughout all our deliberations we will refer to two reference 

dimensions, Time and Location. The hierarchies of these dimensions are shown in 

figure 1(a). In more detail, the Time dimension hierarchy consists of 5 levels. The 

levels of Time are Day (L1), Week (L2) and Month (L2), Year (L3) and All (L4). The 

dimension Location consists of four levels of hierarchy which are City (L1), Country 

(L2), Continent (L3) and All (L4). In figure 1(b) we illustrate the lattice of the 

dimension Location at the instance level. 

3.1. OLAP Fundamentals 

Our model consists of data that are stored under a structured form making use of 

OLAP technologies. We model a collection of data in the form of a multi-dimensional 
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array called Cube.  Each cell of the cube contains data and the cell is uniquely defined 

by its coordinates as values of the dimensions of the cube.  

 

Definition 1 (level). A level L= (λi, i≥1) is a set of finite names where λi is a name. 

 

Definition 2 (dimension) [VS00]. A dimension D is a lattice (L, p ) such that: L= 

(L1, ..., Ln, ALL) is a finite subset of levels and p is a partial order defined among the 

levels of L, such that L1 p Li p ALL for every 1<i≤n. We require that the upper 

bound of the lattice is always the level ALL, so that we can group all the values of the 

dimension into the single value ‘all’. The lower bound of the lattice is called the 

detailed level of the dimension.  

 

Each dimension has an associated hierarchy of levels of aggregated data. In addition, 

for every level Li there is a domain of values denoted as dom(Li). Therefore, for every 

dimension Di the domain is denoted as U
m

j
ji LdomDDOM

1

)()(
=

= which states that it is 

the union of the domains of every level of hierarchy of the specific dimension. 

 

Definition 3 (hierarchy). A hierarchy H= (h1, h2, …, hn) is a preordered set of levels. 

 

Definition 4 (Cube) [VS00]. A cube c over the schema [L1, …Ln, M1, …,Mm], is an 

expression of the form: c= (DS0, φ, [L1, …Ln, M1, …Mm], [agg1(M1
0, …, aggm(Mm

0)]), 

where DS0 is a detailed data set over the schema S= [L1
0, …Ln

0, M1
0, …Mm

0], m≤k, φ 

is a detailed selection condition, M1
0, …Mm

0 are detailed measures, M1, …,Mm are 

aggregated measures, Li
0 and Li are levels such that Li

0
p  Li, 1<i≤n and aggi, 1<i≤m 

are aggregated functions from the set {sum, min, max, count}.  

 

A strict hierarchy is defined as a one-to-many relationship between the values of the 

different levels in a dimension. In other words, assume that Li p Li+1 are two levels of 

hierarchy in a dimension. This hierarchy is characterized as strict when each value 

from Li is related to only one value from Li+1 and a value from Li+1 may be related to 

many values from the level Li. Therefore, the relationship between values of different 
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levels of hierarchy can be achieved through the use of a set of functions: j
L

i
L

anc  is a 

function that assigns a value from the domain of Li to a value from the domain of Lj , 

where  Li p Lj.  

Thus, for the set of functions j
L

i
L

anc the following conditions hold: 

For each pair of levels L1 and L2 such that L1 p L2 the function 2L

1Lanc maps each 

element of dom(L1) to an element of dom(L2). 

Given levels L1, L2 and L3 such that L1 p L2 p L3, the function 3L

1Lanc equals to the 

composition 3

2

2

1

L

L
anc

L

L
anc ° . 

For each pair of levels L1 and L2 such that L1 p L2 the function 2

1

L
Lanc is monotone i.e., 

)(2

1
)(2

1
:)

1
(, y

L

L
ancx

L

L
ancyxLdomyx ≤⇒<∈∀  

For each pair of levels L1 and L2 such that L1 p L2 the function 2

1

L

L
anc determines a 

set of finite equivalence classes Xi such that: 

yxy
L

L
ancx

L

L
ancLLLdomyx ,)(2

1
)(2

1
:

21
),

1
(, ⇒=∈∀ p  belongs to the same Xi.  

The relationship 2

1

L

L
desc is the inverse of the 2

1

L

L
anc function i.e., 

}1)(2

1
:)({)1(2

1
=∈= x

L

L
ancLdomx

L

L
desc  

 According to the type of values that a dimension level may have we can classify the 

distance functions that can be applied. Thus, we categorize the dimension levels 

according to the values of their domain as following.  

A dimension’s level domain is Nominal when its values hold the distinctness 

property. In other words, the values in such a dimension can be explicitly 

distinguished. For example in a dimension Location the level City can take distinct 

values such as London, New York etc.  



19 

 

 

A dimension’s level domain is Ordinal when its values hold the distinctness property 

as well as the order property. The order property implies that the values of such a 

dimension abide by an order. For example in a dimension Size a level can take distinct 

and ordered values such as small, medium, large.  

A dimension level is Interval when its values apart from the distinctness and order 

property also have the addition property. The addition property states that a unit of 

measurement exists. The difference between two values has a meaning, indicating 

how many values intermediate between them.   

A dimension level is Ratio when its values apart from the distinctness, order and 

addition property also satisfy the multiplication property. The multiplication property 

states that differences and ratios between values have a meaning. In other words, the 

ratio between two values indicates their analogy difference expressed in a percentage 

scale.  

3.2. Distance Functions between two Values 

In this section we specify the distance functions that can be applied over two specific 

values of a dimension. In order to clarify things distance functions described in this 

section apply only between two dimension values and not between measure values of 

a cube.  

 

Assume a specific dimension D, its lattice of level hierarchies L1pL2p…pALL, and 

two specific values x and y from levels of hierarchy Lx and Ly respectively. We 

classify the distance functions in the following categories: (a) locally computable and 

(b) hierarchical computable distance functions. 

3.2.1. Locally Computable Distance Function. 

The first category of locally computable distance functions can be divided into three 

subcategories: (a) Distance functions with explicit assignment of values, (b) Distance 

functions based on attribute values and (c) Distance functions based on the values of x 

and y.  
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Distance Functions with Explicit Assignment of Values. The functions of this category 

explicitly define n2 distances for the n values of the dom (Li) (the compared values 

must belong in the same level of the hierarchy). This requires dom (Li) is a finite set. 

For example, assume a case where the distance between two cities is explicitly 

defined via a distance table.  

  

Distance Functions based on Attribute Values. Assume a level whose instances are 

accompanied with a set of attributes. Then every level instance can be described as a 

tuple of attribute values. In this case, the distance between the two values x and y can 

possibly be expressed with respect to their attribute values via simple distance 

function applicable to the attributes’ domains (e.g., simple subtraction for arithmetic 

values). For instance, assume a dimension Products accompanied with an attribute 

Weight which describes the weight of the products and assume a level of hierarchy of 

the dimension named Drinks. In addition, assume two specific values x = ‘milk’ and y 

= ‘orange juice’ where their weight attributes are x.weight = 500 and y.weight = 330 

respectively. Then the distance between these two values can be expressed according 

to their weight attribute by making use, for instance, of the Minkowski distance 

function which is described in the following subsection. Thus, the distance between 

the values x and y can be defined as |x.weight – y.weight| = 170 

 

Distance Functions based on the Values x and y. In this subcategory, the distance 

between two values may be expressed through a function of their actual values 

whenever this is possible. In this subcategory one option is to make use of the simple 

identity function for nominal values. Thus, a value from the set {0, 1} where 

  0, if x = y 
dist(x, y)= 

  1, if x ≠ y 

This function is applicable for all type values even for nominal values. 

 

Another option is to make use of the Minkowski family distance functions especially 

in case where the values are of interval type. Minkowski family distance functions can 

be applied between two ordinal type values under the condition that the ordinal values 

have been mapped to the set of integer numbers. In this section, since the distance 
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function is applied for two specific values, all types of Minkowski distances reduce to 

the Manhattan distance which is |x-y|. As an example, consider the dimension Time 

whose levels are shown in figure 1(a). Assume two instances x and y from the level 

Year, where x= ‘1995’ and y= ‘2000’. Then the distance between these two values is 

obviously |1995-2000| = 5. In order to normalize this distance function within the 

interval [0, 1], we can divide the distance value with the difference between the 

maximum and minimum values of the level where x and y belong in. 

 

 

(a) (b) 

Figure 3. 1. (a) The hierarchy of levels for dimensions Time and Location (b) Values 
of the Location dimension 

3.2.2. Hierarchical Computable Distance Functions 

The second category of hierarchical computable distance functions can be divided 

into four subcategories: (a) Distance functions with respect to an aggregation 

function, (b) Distance functions with respect to hierarchy path, (c) Percentage 

distance functions and (d) Highway distance functions. 

 

The distance for two values that do not belong to the detailed level L1 can be 

expressed with respect to an aggregation function (e.g., count, max) applied over the 

descendants of the two values in a lower level of hierarchy. 
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Distance functions with respect to an Aggregation Function. Assume an instance x 

from level Li and )(i

L
xdescLL the set of its descendants, where LL is any lower level of 

Li. The result of applying an aggregation function over the set )(i

L
xdescL

L is denoted as 

))(( i

Laggraggr xdescfx L
L= . Assume two values x and y with ))(( i

Laggraggr xdescfx L
L=  and 

))(( j

Laggraggr ydescfy
L

L= , where LL could be any lower level of Li and Lj, x∈Li, y∈Lj 

and faggr denotes an aggregation function such as count, min, max, avg or sum. The 

distance between the values  x and y can now be expressed according to the following 

formula: ),(),( aggraggr yxgyxdist = , where the function g can be computed from the 

locally computable functions. The normalized form of this function, within the 

interval [0, 1], can be expressed as 
)},({

),(
),(

aggraggr

aggraggr

bagmax

yxg
yxdist = , where a and b are 

any possible values from the same level of hierarchy as x and y, i.e., a,b∈Li . 

 

Distance Functions with respect to Hierarchy Path. The distance between two values 

x and y can be expressed according to the length of the path in the hierarchy that 

connects them. Several distance functions and combinations falling into this 

subcategory where described by Li, Bandar and McLean in [LiBM03]. Here, we 

describe the distance functions that can be applied between two values x and y from a 

hierarchy, (a) with respect to the length of the path in the hierarchy, and, (b) with 

respect to the depth in the hierarchy path. Assume two values x and y such that x ∈ Lx 

and y ∈ Ly. We denote the Lowest Common Ancestor of x and y as lca(x,y). 

 

The lowest common ancestor lca, of two values x and y where x ∈ Lx and y ∈ Ly, lca 

∈ Lz and Lz is any non lower level of Lx and Ly, LzfLx, Ly is a value such that: 

lca={z|z = ∧)(xanc z

x

L
L z = ∧)(yanc z

y

L
L (∄ z’ | z’= ∧)(xanc z

x

L
L z’= ∧)(yanc z

y

L
L Lz’ p Lz } (1) 

The distance between the values x and y can be expressed with one of the following 

formulas: 

1. dist(x, y) = fpath 










+ |),(|)*(

|) ,( | * + |) ,( | * 

1yx

x

LALLpathww

lcaypathwlcaxpathw y  
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2. dist(x, y) = fdepth 








|),(|

 |), ( | 

1

1

LALLpath

Llcapath
 

The first formula indicates that the distance is a function of the weighted sum of the 

length of the path from the values x and y to their lowest common ancestor lca. The 

second formula indicates that the distance of the values is expressed as a function of 

the length of the path of the lowest common ancestor lca from the detailed level L1 of 

the hierarchy. In both formulas the functions fpath and fdepth may be any linear or 

exponential function such as f(x) = ec*x, where c is any real parameter. These two 

functions are normalized in the interval [0, 1] by making use of the height of the 

hierarchy. Specifically, the first formula is divided by |),(|)*( 1yx LALLpathww +  

whereas the second formula is divided by |),(| 1LALLpath . As an example, assume 

two values x=‘NY’ and y=‘Canada’ from the hierarchy Location denoted in figure 

1(b) where their lowest common ancestor is the value lca = ‘America’ from the level 

Continent. For simplicity, assume the functions fpath and fdepth are equal to the identity 

function and the weighted factors wx and wy are set to 1. Therefore, the functions 

become: fpath= (|path (x, lca)| + |path (y, lca)|)/ 2*|path(ALL, L1)| and fdepth= |path (lca, 

L1)|/ |path(ALL, L1)|. The distance between x and y occurs to be fpath= (2+1)/2*3 =0.5 

and fdepth=2/3. 

 

Percentage Distance Functions. According to this subcategory, the distance between 

two values x and y, where y is an ancestor of x, may be expressed according to a 

percentage of occurrences over the values of the hierarchy. In other words, the 

similarity of two values is expressed as the similarity of the number of descendants 

this two values have. Assume the lattice of level hierarchies be denoted as 

L1p…pLLp Lx p Ly p All where L1 denotes the most detailed level. The distance of a 

value x in a level Lx in regards to its ancestor y in level Ly may be calculated according 

to the function: 

|)(|

|)(|
),(

y

i

x

i

ydesc

xdesc
yxdist

L

L

L
L=  , where Li is one of the levels Lx, LL and L1 (3) 

The above formula expresses the distance between a value x and one of its ancestors y 

as a percentage via three ways. In case Li is Lx, then the distance is expressed as a 

percentage in regards to the occurrences of all the other values from Lx whose 
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ancestor is y. In case Li is LL(or L1), the distance is expressed as a percentage of 

occurrences of the descendants of x in a lower level of hierarchy LL(or L1) in regards 

to the descendants of y in the same lower level LL(or L1). As an example, assume the 

dimension Location where its lattice can be visualized in figure 1(a) and the values of 

this dimension are visualized in figure 1(b). Assume the values x=‘USA’ and 

y=‘America’. Then, in regards to the above formula the distance between these two 

values can be computed as: 

i. 
2

1

|)America'('|

1
)America'',USA'(' ==

Continent
Countrydesc

dist  where Li is chosen to 

be the level Lx, i.e., Lcountry 

ii.  
5

3

|)America'('|

|)USA'('|
)America'',USA'(' ==

Continent
City

Country
City

desc

desc
dist  where Li is chosen to 

be the detailed level L1, i.e., Lcity 

As for the third case, in this example it coincides with the second since the lower and 

detailed level, i.e. City, are identical. 

 

Highway Distance Functions. Assume that every level of hierarchy L is grouped into 

k groups and every group has its own representative rk. Then, the distance between 

two representatives can be thought of as a highway [SaSc05]. We denote with r(x) 

and r(y) the representatives of the groups where x and y belong in respectively. There 

fore, the distance between the values  x and y can be expressed with the following 

formula: 

 

 

The partial distances between a value and its representative and the distance between 

the two representatives r(x) and r(y) depend on the way the representative is selected. 

In most cases the representatives are selected so that they belong in the same level of 

hierarchy and thus their distance can be computed from the locally computable 

functions, the path functions or the aggregated functions (in case the two 

representatives belong in different levels their distance may be computed by applying 

any distance function from the path section or the aggregated distance function 

section). The main categories of selecting the representative apart from an explicit 

dist (x, y) = dist (x, r(x)) + dist (r(x), r(y)) + dist (y, r(y)) (2)
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assignment are in regards to (a) an ancestor and (b) a descendant. For the following, 

dist(a, b) denotes the distance of any two values a, b. Without loss of generality 

assume Lx p Ly. In addition, assume the ancestor of x in level Ly denoted as 

)(y

xy xancx
L

L=  and a representative of y in the level of hierarchy Lx denoted 

as ))(( y

xx ydescfy
L

L= . These can be visualized through figure 2. The function f 

applied over the descendants of y can result either to an explicitly assigned descendant 

or to the result of an aggregation function (e.g., min, max) over the set of descendants. 

In the following we describe the partial distances of formula 2 depending on the way 

the representative is selected. 

 

Figure 3.2 Partial distances between two values in different levels of hierarchy. 

a) The representative of a group is an ancestor. The representative of each value x and 

y could be )()( U

x
xancxr L

L=  and )()( V

y
yancyr L

L= where LU and LV is any upper level 

of Lx and Ly respectively. LU and LV are not obligatory different. In general, the 

distance between a value x and its representative may be computed through any 

distance function from the path, the percentage or the aggregated functions. For 

example, assume two values x=‘UK’ and y=‘USA’ from the level Country of the 

hierarchy Location denoted in figure 3.1(b). Assume the representative r(x)=‘Europe’ 
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and the representative r(y)=‘America’. The distance of the values x and y is by 

summing the distances dist(‘UK’, ‘Europe’), dist(‘Europe’, ‘America’) and 

dist(‘America’, ‘USA’). In this category there are two special cases: 

1. The representatives r(x) and r(y) coincide in being the lowest common ancestor lca, 

where the formula is simplified as: dist (x, y) = dist (x, lca) + dist (y, lca).  

2. The representative r(y) is identical to the actual value of y. In this case the distance 

is expressed as a summation of dist(x, xy) and dist(xy, y), as shown in figure 2, where 

xy is the representative of x from the level Ly. Therefore, the distance dist(y, r(y)) = 

0. Formally this is expressed as: 

)),(())(,( ) ,( ) ,( ) ,( y

x

y

xyy yxancdistxancxdistyxdistxx distyxdist L
L

L
L +=+= . 

In case the representative xy of x and y coincide, the distance is simplified as 

) ,( ) ,( yxxdistyxdist = . Since dist(x, xy) and dist(xy, y) are within the interval [0, 1], 

the normalized form of dist(x, y) occurs by dividing it with 2. For example, assume 

two values x = ‘USA’ and y = ‘Europe’ from the dimension Location as seen in figure 

1. The ancestor xy of x is America'')( =xancContinent
Country . Assume dist(x, xy) is computed 

from the percentage family functions. dist(xy, y) is computed through the first formula 

from the path family functions where the weighted factors wx and wy are set to 1. The 

distance between x and y becomes dist(‘USA’, ‘Europe’)= (dist(x, xy) + dist(xy, y))/2 = 

(dist(‘USA’, ‘America’) + dist(‘America’, ‘Europe’))/2 = (1/2 + 2/3)/2 = 7/12. 

 

b) The representative of a group is a descendant. The representative of a group can be 

selected with respect to the descendants of the group where x belongs. For example, 

consider countries whose representatives can be selected among their cities, based for 

instance on the major airport or the highest population. In case the representative r(x) 

is a value from the domain of LL (i.e., r(x) picked explicitly from the set )(L

x
xdescL

L or 

by applying a min or max aggregation over the set )(L

x
xdescL

L ), the distance between x 

and r(x) can be any function from the families of path, percentage or aggregated 

functions. In case r(x) is an arithmetic type value (i.e., a sum or count aggregation 

function applied over the set )(L

x
xdescL

L ), the distance between x and r(x) can be any 

simple arithmetic function such as the Minkowski. There is a special case where the 

representative r(x) is identical to the actual value of x. Thus, the distance is expressed 
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as a summation of dist(y, yx) and dist(yx, x), where yx is the representative of y from 

the level Lx as shown in figure 2. Therefore, the distance dist(x, r(x))=0. Formally this 

is expressed as: 

2

))),((()))((,(

2

) ,( ) ,(
 ),(

y

x

y

xxx
xydescfdistydescfydistxydistyydist

yxdist
L

L

L

L +
=

+
=  

where the denominator is set to 2 for normalization reasons. For example, assume two 

values from the hierarchy Location, x=‘USA’ and y=‘Europe’, where the descendant 

of y is selected as 'UK'))(( y

x
=ydescf

L

L . Assume the distance between y and its 

descendant yx is computed through the formula 
|)(|

|)(|
),(

y

x

x

x x

x
ydesc

ydesc
yydist

L

L

L
L=  from the 

percentage family functions. The distance between x and yx is computed through the 

first formula from the path family functions with wx and wy set to 1. Consequently, the 

distance between x and y becomes =)Europe'',USA'('dist  

6

5

2

6411

2

)USA'',UK'(')UK'',Europe'('

2

),() ,( xx =
+

=
+

=
+ distdistxydistyydist

. 

In the special case where x is a descendant of y the above formula is simplified 

as: )y dist(y,y)dist(x, x= . 

3.3. Distance Functions between two Cells of Cubes 

In this section we describe the distance functions that can possibly be applied in order 

to measure the distance between two cells from a cube. Assume an OLAP cube C 

defined over the detailed schema C= [L1
0, L2

0, …, Ln
0, M1

0, M2
0, …,Mm

0], where Li
0 is 

a detailed level and Mi
0 is a detailed measure. In addition assume two cells from this 

cube, c1 = (l1
1, l2

1, …, ln
1, m1

1, m2
1, …, mm

1) and c2 = (l1
2, l2

2, …, ln
2, m1

2, m2
2, …, 

mm
2), where l i

1, l i
2 ∈ dom(Li

0) and mi
1, mi

2 denote the values of the corresponding 

measure Mi
0 . The distance between two cells c1 and c2 can be expressed in regards to 

a) their level coordinates di(Li
1, Li

2) and b) their measure values di(Mi
1, Mi

2). In other 

words, dist(c1, c2)= f (di(Li
1, Li

2), di(Mi
1, Mi

2)). The function f can possibly be (a) a 

weighted sum, (b) Minkowski distance, (c) min or (d) proportion of common 

coordinates.  
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3.3.1. Distance functions between two Cells of a Cube Expressed as a Weighted Sum. 

 In this category the distance between two cells c1, c2 where c1, c2 ∈ C can be 

expressed through the formula

∑

∑

∑

∑

=

=

=

=

′

′

+
m

i
i

m

i
iiii

n

i
i

n

i
iiii

w

mmdw

w

lldw

f

1

1

21

1

1

21 ),(),(
:  , where wi and 

iw′ are parameters that assign a weight for the level Li and the measure Mi 

respectively, di(l i
1, l i

2) denotes the partial distance between two values of the detailed 

level Li
0 from dimension Di and di(mi

1, mi
2) denotes the partial distance between two 

instances of the measure Mi
0. Regarding the distance di(l i

1, l i
2), this is expressed 

through the various formulas from the section 3.1 which describes the possible 

distance functions between two values from the same level of hierarchy over a 

dimension. The distance di(mi
1, mi

2) between two instances of a measure can be 

calculated through the Minkowski family distance when mi
1, mi

2 are of arithmetic 

type, or through the simple identity function in case mi
1, mi

2 are of character type. The 

above formula is a general expression of the distance between two cells. 

Simplifications of this can be applied. For instance, the distance of two cells can be 

calculated only with respect to the coordinates that define each cell and without taking 

into consideration the measure values of each cell, i.e., by omitting from the above 

formula the second fraction. Moreover, in case the partial distances are normalized in 

the interval [0, 1] then, f expresses the overall distance between two cells normalized 

in the same interval [0, 1].  For example, assume we want to compute the distance 

between cells c1, c2 as shown in figure 3.3. Both cells consist of two dimensions 

(Time, Location), where their hierarchy levels can be seen in figure 3.1, and contain 

one measure (Sales). In the above formula we set the weight factors of the dimensions 

(w) and the weight factors of the measures (w′ ) equal to 0.5. The distance between 

dimensions is computed according to the function fpath that takes into account the 

length of the path of the hierarchy. The distance between the measures is computed 

through the normalized Manhattan distance function. In addition, assume that the 

overall maximum and minimum values of the measure sales are 10 and 1 respectively. 

With the above settings we obtain: d(c1,c2)= 

w

SalesSalesdw

ww

CountryCountrydwMonthMonthdw cccccc

′

′
+

+

+ ),(*),(*),(*
212121 = 
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5.0

|)110|/|34(|*5.0

5.05.0

3/1*5.03/1*5.0 −−
+

+
+

=4/9 

 

Figure 3.3 Instances of cells c1 and c2 

To compute the distances ),(
21 cc MonthMonthd  and ),(

21 cc CountryCountryd  we refer 

the reader to the figures 3.4 and 3.5.  In figure 3.4 we see that the length of the path 

between the nodes a and lca is 1, and the length of the path between the nodes b and 

lca is 1 again. According to the function fpath, ),(
21 cc MonthMonthd =

6

11+
=

3

1
. In a 

similar manner, by using the information that derives from the figure 3.5 

),(
21 cc CountryCountryd =

6

11+
=

3

1
. 

 

Figure 3.4 Lattice of the dimension TIME for the values of cells of figure 3.3 
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Figure 3.5 Lattice of the dimension LOCATION for the values of cells of figure 3.3 

3.3.2. Distance functions between two Cells of a Cube Expressed in regards to the 

Minkowski Family Distances.  

In this section we describe the possible distance functions between two cells from a 

cube by making use of the Minkowski family distances. In general the Minkowski 

distance is defined via the formula p
n

i

p
iiinnp yxdyyxxL ∑

=

=
1

11 ),()],...,(),,...,[( , 

where di(xi, yi) denotes the distance between the two coordinates xi and yi of two given 

points x and y. Assume two cells c1 = (l1
1, l2

1, …, ln
1, m1

1, m2
1, …, mm

1) and c2 = (l1
2, 

l2
2, …, ln

2, m1
2, m2

2, …, mm
2), where l i

1, l i
2 ∈ dom(Li) and mi

1, mi
2 denote the values of 

the corresponding measure Mi. The Minkowski distance can be applied in this 

category, by substituting point coordinates xi and yi with cell coordinates, thus l i
1 and 

l i
2. In general, in the Minkowski family distances the partial distances are defined as 

di(xi, yi)=|xi - yi|. When applying the Minkowski distance over cell coordinates, then 

the partial distances di(l i
1, l i

2) can be expressed as the distance between two values 

from the same level of hierarchy as described in section 3.1.  

 

So far, the distance between two cells is described only in regards to their level 

coordinates. However, the distance between two cells can also be expressed by taking 

into consideration the instance values of the cells, thus their measure values. The 

Minkowski family distances can be applied, as well, in regards to the partial distances 
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di(mi
1, mi

2). Therefore, the distance between two cells can be expressed by adding the 

equivalent two formulas. Depending on the value of p the Minkowski distances over 

two cells are defined as:  

∑
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i
iii lldL
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 infinity norm distance or Chebyshev distance.  

3.3.3. Distance Functions between two Cells of a Cube Expressed as the Minimum 

Partial Distance.  

In this category the distance between two cells c1 = (l1
1, l2

1, …, ln
1, m1

1, m2
1, …, mm

1) 

and c2 = (l1
2, l2

2, …, ln
2, m1

2, m2
2, …, mm

2) can be expressed as: 

 

{ }),(),...,,(),,(min)},({min)},({min 212
2

1
22

2
1

1
11

2121
nnniii

d
iii

d
lldlldlldmmdlld

ii

=+

{ }),(),...,,(),,(min 212
2

1
22

2
1

1
11 mmm mmdmmdmmd+ .  

 

Therefore, the distance between two points is expressed as the minimum distance of 

their level coordinates plus the minimum distance of their measure values.  
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3.3.4. Distance Functions between two Cells of a Cube Expressed as a Proportion of 

Common Coordinates. 

In this category the distance between two cells can be expressed as a proportion of 

their common values of their level coordinates and their measure values. Therefore, 

the distance between two cells c1 = (l1
1, l2

1, …, ln
1, m1

1, m2
1, …, mm

1) and c2 = (l1
2, l2

2, 

…,ln
2, m1

2, m2
2, …, mm

2) can be expressed through the formula f: 

m

mimmcount

n

nillcount }){1,2,...,(}){1,2,...,( 2
i

1
i

2
i

1
i ∈∀=

+
∈∀= . The above formula states the 

distance between two cells as a summation of two fractions. The first fraction is the 

number of level values that are same for both cells, divided by the number of all level 

values that describe a cell. The second fraction expresses the number of measures that 

have the same value for both cells divided by the number of all possible measures in a 

cell. 

3.4. Distance Functions between two OLAP Cubes 

Assume two OLAP cubes C and C’ defined through the same detailed schema [L1
0, 

L2
0, …, Ln

0, M1
0, M2

0, …,Mm
0], where Li

0 is a detailed level and Mi
0 is a detailed 

measure. In addition assume that cube C consists of l cells of the form c = (l1, l2, …, 

ln, m1, m2, …, mm) and cube C’ consists of k cells of the form c’ = (l1
’, l2

’, …, ln
’, m1

’, 

m2
’, …, mm

’), where l i, l i
’ ∈ dom(Li

0) and mi, mi
’ denote the values of the 

corresponding measure Mi
0 . In general the two cubes can be of different cardinality, 

i.e., l ≠ k. Assume dist(c, c’) where c ∈ C and c’ ∈ C’ denotes the distance between 

two specific cells according to the various categories of section 3.3. The distance 

between the two cubes can be expressed as a synthesis of the partial distances dist(c, 

c’). In other words dist(C, C’)= f (dist(c, c’)) is a function of the partial distances 

dist(c, c’). The function f can possibly belong to one of the following families: (a) 

closest relative, (b) Hausdorff distance, (c) a weighted sum, (d) Minkowski distance, 

and (e) Jaccard’s coefficient. Specifically, distance functions that fall within the 

families (c) and (d) include the Cell Mapping method which is described in the next 

subsection. The rest distance function families (i.e., (a), (b), (e)) do not include the 

cell mapping method.  
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For example, assume we want to compute the distance between the two cubes CUBE1 

and CUBE2 as shown in figure 3.6 CUBE1 consists of three cells whereas CUBE2 

consists of 5 cells. Each cell in both cubes consists of two dimensions in different 

levels of hierarchy and the measure Sales. Specifically, each cell of CUBE1 is of the 

form c = (Day, City, Sales) and each cell of CUBE2 is of the form c’ = (Year, Country, 

Sales). The distance between the two cubes can be expressed by applying a function f 

over the partial distances dist(c,c’) of the cells of the two cubes. 

 

 

Figure 3.6 Instances of two cubes 

3.4.1. Cell Mapping and Categories of Distance Functions according to it 

In this section we introduce the method that is used in order to map the cells of one 

cube to the cells of another cube. We refer to this method as Cell Mapping. For two 

cubes C1 and C2, the simple mapping of their cells includes the connection of every 

cell of the cube C1 with one cell of the cube C2. Intuitively, the mapping of a cell in 

cube C1 tries to capture the discovery of the “closest possible representative” of this 

cell in cube C2. The “closest representative” is the cell of the cube C2 with the less 

distance among the dimension values with the cell of the cube C1. In principle, the 

Cell Mapping method can be thought of as a relation that connects the cells of a cube 

to the cells of another cube (i.e., one can consider several candidate “representatives” 

of a cell). However, in our setting, this relation is reduced to a function, since we are 

interested in mapping each cell from the first cube to only one cell from the second 

cube. This is done for reasons of simplicity and allows the elegant definition of cube 

distances (see next). We impose the restriction that the function is total, i.e., each and 

every cell from the first cube is mapped to a cell of the second cube. We do not 
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require that the mapping is 1:1 and onto; thus, in the second cube there might be a cell 

in which more than one, or, no cells at all, from the first cube are mapped to it. 

 

As an example assume the cubes that are presented in the figure 3.7. In figure 3.7 (a) 

the cells A, B, C of CUBE1 are mapped to the cells E, D, H of CUBE2 respectively. 

Moreover, in the same figure the cells F, G of CUBE2 are not mapped with any cell of 

CUBE1. In figure 3.7 (b) we can observe that the cell E of CUBE2 is mapped with two 

cells of CUBE1. 

 

The cell mapping method needs to compute the distances between the dimensions of 

each cell of the first cube with the dimensions every cell of the second cube and 

ignoring the distance between the measures. So, if the distance between two cells c1, 

c2 is expressed as f (di(Li
1, Li

2), di(Mi
1, Mi

2)) then the mapping method considers only 

the di(Li
1, Li

2). Thus, each cell of the first cube is mapped to the cell of the second 

cube with the less di(Li
1, Li

2) distance.  

 

In our taxonomy, two distance functions between cubes make use of the cell mapping 

method. These are (a) distance functions expressed in regards to the Closest Relative 

and (b) the distance function expressed by Hausdorff distance. After the mapping has 

been accomplished, the distances between the mapped cells are computed. Finally, the 

computation of the distance between the two cubes involves the distances among the 

mapped cells. 

  

The distance functions that can be used in order to compute the distance between two 

OLAP cubes can be divided into two categories. The first category involves distance 

functions that include the cell mapping method. The second category contains 

distance functions that do not include the cell mapping method. Following, we 

describe each distance function and provide its analytical formula. The distance 

functions of the first category are the Closest Relative and the Hausdorff Distance 

(section 3.4.2) that include the cell mapping method. Then, the category of families 

that do not consider the cell mapping method in their definition, include the Weighted 
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Sum function, the minkowski family of distance functions, the Jaccard’s Coefficient 

and the minimum of distances function. 

 

 

Figure 3.7 (a) cells of cube CUBE1 mapped to the cells of cube CUBE2 (b) cells of 
cube CUBE1 mapped to the cells of cube CUBE2 

3.4.2. Distance Functions that Include Mappings  

This subsection contains the description of the distance functions that involve the Cell 

Mapping method. These distance functions are the Closest Relative and the Hausdorff 

and are described as follows. 

Distance function between two cubes expressed in regards to the closest relative. In 

this category the distance between two cubes C and C’ is expressed as the summation 

of distances between every cell of a cube with the most similar cell of another cube 

through the formula: 

 )}',({min)',(|
k

)),((
)',( dim

i
dim

k

1i ccdistccdistc
ccdist

CCdist ii

i

=′∀
′

=
∑
=  where distdim 

denotes the distance of two cells excluding the distance of their measures. The 
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)}',({min)',(| dim
i

dim ccdistccdistc ii =′∀ part of the above formula reveals the cell 

mapping method. Each one of the k cells from cube C is mapped to the cell of the 

cube 'C  that has the minimum distdim from it. 

 

As an example, we will analyze the computation of the distance between the cubes 

CUBE1 and CUBE2 shown in figure 3.8. The first step is to map the cells of the cube 

CUBE1 to the appropriate cells of the cube CUBE2. In order to simplify the example 

the computational part of the cell mapping method is not described here, but the cell 

mapping is denoted in figure 3.8 through arrows between the cells of the two cubes. 

The distance function used in this example for the purpose of computing the distance 

between the cells of the two cubes is the weighted sum. The weight that was used is 

0.5, equal for both the dimensions and measures.  In addition, the distance function 

used to measure the distance between the dimensions is the fpath function. The cells c1, 

c2, c3, are mapped to the cells c7, c5, and c5 respectively. According to this mapping, in 

order to compute the distance between the two cubes, the needed distances between 

cells are: 

 d(c1, c7)=
5.0

|)110|/|55(|*5.0

5.05.0

6/1*5.06/1*5.0 −−
+

+
+

=1/6+0=1/6 

 d(c2, c5)= 
5.0

|)110|/|66(|*5.0

5.05.0

6/1*5.06/1*5.0 −−
+

+
+

=1/6+0=1/6 

 d(c3, c5)= 
5.0

|)110|/|76(|*5.0

5.05.0

6/1*5.06/1*5.0 −−
+

+
+

=1/6+1/9=5/18 

For the above computations we refer the reader to the figures 3.4 and 3.5 where the 

hierarchies of the dimensions LOCATION and TIME are presented. With the above 

distances, we can now compute the full distance between the cubes CUBE1 and 

CUBE2 through the first formula of the closest relative family functions: 

d(CUBE1,CUBE2)=
3

),(,(),( 535271 cc d)cc dccd ++
 =

3

18/56/16/1 ++
=0.319444 
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Figure 3.8 Instances of two cubes and the mapping of their cells 

Distance functions between two cubes expressed by Hausdorff distance. In this 

category the distance between two cubes can be expressed by making use of the 

Hausdorff distance [HuKR93]. The Hausdorff distance between two cubes can be 

defined as H(C, C’) = max(h(C,C’), h(C’,C)) where h(C,C’) = )}},({{
Cc'Cc

'ccdistminmax
'∈∈

 

and dist (c, c’) is the distance between two cells c and c’ from the cubes C and C’ 

respectively. The function h(C, C’) is called the directed Hausdorff distance from C to 

C’ and the distance measured is the maximum distance of a cube C to the “nearest” 

cell of the other cube C’. The Hausdorff distance is the maximum of h(C, C’) and 

h(C’, C).  

 

In the Hausdorff distance function the cell mapping method is bidirectional. That 

means that except from the mapping that we have examined in the closest relative 

function we need an extra mapping and that is the mapping from the cells of cube C’ 

to the cells of Cube C.  

 

When the bidirectional mapping is completed, we obtain two sets of mapped cells. In 

each set, for every pair of mapped cells, we compute their distance considering now 

their measures as well. Thus, essentially, we have two sets of minimum distances 

between cells, the set of minimum distances from the cells of cube C to the cells of 

cube C’ and the set of minimum distances between from the cells of cube C’ to the 

cells of cube C. From each of the two sets we pick the greatest distance and finally 

from these two distances we pick the greater one.  
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To make things more clear an example follows. Assume again the cubes CUBE1 and 

CUBE2 as shown in figure 3.9. The figure 3.9 also presents the mapping from the cells 

of CUBE1 to the cells of CUBE2. In figure 3.9 we can observe the same cubes and the 

mapping from the cells of CUBE2 to the cells of CUBE1. According to this 

bidirectional mapping the two resulting sets of minimum distances are: 

S1 )},(,,(,),({ 535271 ccd)ccdccd   

S2 )},(,),(,),(,),(,),({ 3817263534 ccdccdccdccdccd  

The distances of the S1 are already computed on a previous example, so here we only 

need to compute the distances of S2. The distances d(c5,c3),d(c7,c1) coincide with the 

distances d(c3,c5),d(c1,c7) respectively. The computations below use the same distance 

functions between values and cells and also the same weight factors like the previous 

example. 

d(c4, c3)=
5.0

|)110|/|73(|*5.0

5.05.0

6/1*5.06/1*5.0 −−
+

+
+

=1/6+4/9=11/18 

 d(c6, c2)= 
5.0

|)110|/|68(|*5.0

5.05.0

6/3*5.06/1*5.0 −−
+

+
+

=4/12+2/9=10/18 

 d(c8, c3)= 
5.0

|)110|/|79(|*5.0

5.05.0

6/1*5.06/1*5.0 −−
+

+
+

=1/6+2/9=7/18 

Now, the Hausdorff distance between the cubes CUBE1 and CUBE2 is equal to the 

next formula: 

d(CUBE1,CUBE2)=max{ max{ S1},max{ S2}}= 

max{ max{1/6,1/6,5/18},max{11/18,5/18, 1/6,10/18,7/18}}= 

max{5/18,11/18}=11/18. 

 

 

Figure 3.9 Instances of cubes CUBE1 and CUBE2 and the mapping of the cells of the 
cube CUBE2 to the cells of the cube CUBE1 
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3.4.3. Distance functions that do not include Mappings 

This subsection includes the distance functions that don’t include mappings. These 

functions are the Weighted Sum function, the Minkowski family of distance functions, 

the Jaccard’s Coefficient and the minimum of distances function. The analytical 

formula of each function is described bellow. 

 

Distance functions between two cubes expressed as a weighted sum. In this category 

the distance between two cubes can possibly be expressed as a weighted sum over the 

distances between each cell from one cube to every cell from the other cube. 

Therefore, the distance can be expressed through the formula:

∑∑

∑∑

= =

= =
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where dist(c, c’)is the distance between a cell from cube C to a cell from cube C’ and 

wij denotes the weight factors assigned to each distance.  

 

Distance functions between two cubes expressed through Minkowski family distances. 

The distance between two cubes C and C’ can be expressed by making use of a 

distance function from the Minkowski family. The distance between C and C’ by 

applying the Minkowski family distances, depending on the values of the parameter p, 

are defined as:  
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infinity norm distance or Chebyshev distance. 
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Distance functions between two cubes expressed by Jaccard’s Coefficient. In this 

category the distance between two cubes can be expressed in regards to the Jaccard’s 

coefficient [ZADB06]. The Jaccard’s coefficient is defined as: 

|'|

|'|
1)',(

CC

CC
CCdist

∪
∩

−= . The distance is based on the ratio between the cardinalities 

of intersection and union of the cubes C and C’. In addition, based on the Jaccard’s 

coefficient the distance between two cubes can be expressed by applying the Dice’s 

coefficient. For two cubes C and C’ the Dice’s coefficient is defined as: 

|'|||

|'|2
)',(

CC

CC
CCdist

+
∩

= . This formula expresses the similarity between two cubes as 

the ratio between the cardinality of intersection and the summation of cardinalities of 

the two cubes. 

 

The Minimum of distances Function. Another option is to express the distance as the 

minimum distance among all possible distances between the cells of the compared 

cubes. Therefore the distance between C and C’ is expressed as: 

}'',|)',(min{)',( CcCcccdistCCdist ∈∈= , where dist(c, c’) is the distance between a 

cell from cube C to a cell from cube C’. In case the two cubes are disjoint i.e., 

0' /=∩CC , then dist(C, C’) is a positive number, whereas if the two cubes have 

common cells i.e., 0' /≠∩CC , then dist(C, C’) is zero.  

 

As a simple example, assume the two cubes from figure 3.7 and ignore the arrows that 

denote the cell mapping. According to the minimum of distances function, the distance 

between the two cubes is computed through the following formula where j denotes the 

any cell from CUBE2: 

d(CUBE1,CUBE2)= }8...,5,4{)},(,,(,),({min 321 ∈∀jccd)ccdccd jjj
j

=1/6 
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CHAPTER 4. IMPLEMENTATION AND 

EXPERIMENTS 

 

4.1 Implementation Issues 

4.2 User Study for Distances between two Values of Dimensions  

4.3 User Study for Distances between two OLAP Cubes 

 

This Chapter includes the technical part of this thesis and also the user studies that we 

conducted in order to examine the user preferences on the distance functions that are 

described in chapter 3. Thus, in section 4.1 several implementation issues are 

examined including a short description of the implemented classes and their UML 

diagram. In section 4.2 we present the findings of the first user study that we 

conducted in order to examine which of the distance functions between values of 

dimensions is most preferred by the users. Finally, in section 4.3, we provide the 

results of the second user study that is conducted taking into account the findings of 

the previous section. In the second user study users show their preference between the 

closest relative and the Hausdorff distance functions. 

4.1. Implementation Issues 

In this section we will present the implementation part of this thesis, which is 

organized as follows. In subsection 4.1.1 we describe the architecture of the 

application and the background of the database and the Database Management system 

that was used and in subsection 4.1.2 there is the UML diagram and a short 

description of the implemented classes. 
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4.1.1. Application Architecture 

This section contains the description of the implemented application for the 

comparison of two OLAP cubes that we call Cube Comparison OLAP (CuCOOL) 

tool. The application takes as input two OLAP cubes in the form of two queries and 

returns their distance taking into account the selected distance functions, firstly 

between the values of the dimensions, secondly between the cells of the two cubes 

and finally between the cubes. The code is written in Java and it is implemented in the 

NetBeans IDE 6.5.1.  

 

The Database Management System (DBMS) that is used is the MySQL Server 5.1. 

The application connects to the DBMS using the driver MySQL-AB JDBC 5.1.7. The 

application interacts with the DBMS by sending SQL queries and retrieving the 

resulting tuples. Further information about the data and the database schema that is 

used are described analytically in section 4.2. 

 

Figure 4.1 CuCOOL Tool architecture 

4.1.2. UML Diagram and Basic Description of the Implemented Classes 

The UML Diagram of the application is shown in the figure 4.2. The part of the 

implementation that concerns the distance functions includes the classes Cube_func 

and between_cells and the interface functions_between_values. In addition, there are 
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several more classes (eg. Fpath, Highway_desc etc) that implement the function 

intercompute() of the interface functions_between_values, according to the distance 

function between values that we select. The class between_cells implements the 

weighted sum function from the functions between two cells of cubes. The Cube_func 

implements the cell mapping method as well as the closest relative and the Hausdorff 

distance functions.  

 

There are also some classes that are needed to store information about the dimensions, 

their hierarchies and the levels of each hierarchy. These classes are named Dim, 

Hierarchy and Lev. Specifically, the class Hierarchy contains objects of type Lev. So, 

each object of type Hierarchy denotes a hierarchy and contains its levels (Lev 

objects). The class named Dim is the class in which the names of the dimensions are 

stored. Each object Dim can contain many Hierarchy objects but each hierarchy is 

related to only one dimension. 

 

Parsing. As we mentioned in 4.1.1, the input of the application are two OLAP cube 

queries. These queries are written in a specific form in a text file called “Cubes.txt”. 

The form of these queries is shown in figure 4.3. The tag name is followed by the 

name we give to the cube and the tag Select is followed by the attributes that we want 

to retrieve their data. The tag fact is followed from the fact table of our database and 

together with the information of the tag dimensions these will create the “From” part 

of the SQL query. The tag joins_where contains the attributes from the dimension 

tables that we want to connect with the respective foreign keys of the fact table to 

achieve the join. The tags where and values_where contain the where conditions of 

the query. The constraint here is that the order of the information in the values_where 

tag must follow the order of the information in the where tag. For more than one 

where conditions the tag add_where must contain the logical connectives (i.e., and, 

or) in the same order as the conditions in the previous two tags. Finally, the group_by 

tag contains the attribute for the group by condition. The resulting SQL query of the 

figure 4.3 is:“select ag_level1, ed_level1, hours_per_week from age2, education2, 

adult where ag_level0=adult.age and ed_level0=adult.education and ag_level2=”27-

36” and ed_level2=”Secondary” group_by ed_level0”. 
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Figure 4.2 The UML Diagram of the OLAP cube comparison application  

To parse a query given in the form as shown in the figure 4.3, a parser is needed. For 

this reason the class Parser with the function cube_parser() is created. Moreover, an 

extra class named Cube_Insertion is created in order to keep the parsed values of each 

query. Finally, to create the final SQL query, a class create_q is constructed. This 
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class uses the information that is stored in Cube_Insertion objects in order to create 

the appropriate SQL queries. 

 

 

Figure 4.3 Form of a query that is given as input in the application 

Apart from the queries, the application must be given also the hierarchies of the 

dimension tables of the database. The file “hierarchies.txt” serves this purpose and an 

example of such a file is presented in the figure 4.4. In the “hierarchies.txt” file, the 

word that follows the name tag denotes the name of the hierarchy and it must coincide 

with the dimension table of the database. For example, in figure 4.4 age2 is a 

dimension table in the database. The word that follows the FK tag denotes the foreign 

key of the dimension table in the fact table, and the words after the tag levels denote 

the levels of the hierarchy with the constraint that every level must be an attribute of 

the dimension table. The process of parsing for this file is done from the function 

parse_hierarchies() in the Parser class. This information is stored in the classes 

Hierarchy and Lev.  

 

Figure 4.4 A caption from the file “hierarchies.txt”  

name  cube1 

select ag_level1 ed_level1 hours_per_week 

fact adult 

dimensions age2 education2 

joins_where ag_level0=age ed_level0=education 

where ag_level2 ed_level2 

values_where ="27-36" ="Secondary" 

add_where and 

groupby ed_level0 

Name age2  

FK age 

Levels ag_level4 ag_level3 ag_level2 ag_level1 ag_level0 

Name education2 

FK education 

levels ed_level4 ed_level3 ed_level2 ed_level1 ed_level0 

name native_country2 
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4.2. User Study for Distances between two Values of Dimensions 

In this section we describe a user study we conducted for discovering which distance 

functions between two values of a dimension seem to be more suitable for user needs. 

The experiment involved 15 users out of which 10 are graduate students in Computer 

Science and 5 that are of other backgrounds. In the rest of the paper we refer to the set 

of users with computer science background as Users_cs, the set of users with other 

background as Users_non and the set of all users independently of their background 

as Users_all.  

 

In the experiments we used the “Adult” real data set according to the dimension 

hierarchies as described in [FuWY05]. This dataset contains the fact table Adult and 8 

dimension tables which are described in Table 1. The figure 4.5 shows the dimension 

hierarchies of the dataset “Adult” and the figure 4.6 shows the database schema of the 

dataset. 

Table 4.1 Adult dataset tables  

Table Value Type # Tuples # Dim. Levels  
Adult fact  30418 - 
Age Dim. Numeric 72 5 

Education Dim. Categorical 16 5 
Gender Dim.  Categorical 2 2 

Marital Status Dim. Categorical 7 4 
Native Country Dim. Categorical 41 4 

Occupation Dim. Categorical 14 3 
Race Dim. Categorical 5 3 

Work Class Dim. Categorical 7 4 
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Figure 4.5 Dimension hierarchies of the dataset adult 
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Figure 4.6 Database schema for the Adult dataset  

 

The purpose of the experiment is to assess which distance function between two 

values is best in regards to the user preferences. Each user was given 14 case 

scenarios. Each scenario contained a reference cube and a set of cubes, which we call 

variant cubes, that occurred by slightly altering the reference cube. The 14 scenarios 

included different kinds of cubes in regards to the value types and the different levels 

of granularity. For each reference cube which was randomly selected, the variant 

cubes were generated from the fact table by altering the granularity level for one 
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dimension, or by altering the value range of the reference cube. For instance, assume 

a reference cube containing the dimension levels Age_level1, Education_level2 under 

the age interval [17, 21]. According to the first type of modification, a variant cube 

could be generated by changing the dimension level to Age_level2 or Age_level0, or 

changing the level of the Education Dimension. According to the second type of 

modification, another variant cube could be generated by changing the age interval to 

[22, 26] or to [17, 26]. Among all possible variations of the reference cube we 

manually chose the set of variant cubes such that each of them was most similar to the 

reference cube according to a distance function. In order to observe which distance 

function is preferred by users depending on the type of data of the cubes, we have 

organized the 14 scenarios into 3 sets. The first set consists of cubes containing only 

arithmetic type values (5 scenarios). The second set consists of cubes containing only 

categorical type values (2 scenarios). The third set consists of cubes containing a 

combination of both categorical and arithmetic type values (7 scenarios). A sample 

scenario can be seen in figure 4.7. At this figure the cube with the bolded outline is 

the reference cube. Due to space limitations all the scenarios used for the user study 

are not presented here but can be found in the appendix at the end of this thesis. 

 

 

Figure 4.7 Sample scenario 
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Table 4.2 Notation of distance functions used in the experiment 

Family Abbr. Distance function name 
Local δM Manhattan  

δLow,c With respect to a lower level of hierarchy where 
faggr =count 

Aggregation 

δLow,m With respect to a lower level of hierarchy where 
faggr = max 

δLCA,P Lowest common ancestor through fpath Hierarchical Path 
δLCA,D Lowest common ancestor through fdepth 

Percentage δ% Applying percentage function 
δAnc With respect to an ancestor xy 
δDesc With respect to a descendant yx 
δH,Desc Highway, selecting the representative from a 

descendant 

Highway 

δH,Anc Highway, selecting the representative from an 
ancestor  

 

In each scenario, the users were asked to select the variant cube that seemed more 

similar to the reference cube based on their personal criteria. The distance functions 

that have been used in the experiment are shown in Table 2, where the first column 

shows the family in which each distance function belongs to according to Chapter 3. 

In the second column there is an abbreviated name for each function. To compute the 

distance between two cubes, the Closest Relative distance function is used (section 

3.4.2). The distance between two cells of cubes is the weighted sum of the partial 

distances of the two values, one from each cell, with all weights set to 1 (section 3.3). 

Table 4.3 Top three most frequent distance functions for each user group. 

 Users_all Users_cs  Users_non 

δLCA,P  40.47% 38.57% 44.28% 

δAnc 18.09% 20% 14.28% 

δH,Desc 9.52% 10.71% 7.14% 

 

The analysis of the collected data provides several findings. The first finding concerns 

the top three most preferred distance functions measured over the detailed data for all 

scenarios and all users. It is remarkable that the top three distance functions for each 

of the user groups were the same and with the same ordering and specifically, these 
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are the δLCA,P, the δAnc and the δH,Desc. The frequencies for each one of the top three 

distance functions in each group of users is shown in Table 4.3. 

 

The second finding concerns the most preferred function by users depending on the 

type of data the cubes contained. Table 4.4 summarizes the result of the most frequent 

distance function for each set of scenarios and each set of users. We observe that for 

the categorical type of cubes, all user groups prefer the δLCA,P distance function, 

whereas for the arithmetic and the arithmetic & categorical sets, the functions that 

users mainly prefer are the δLCA,P and δAnc. More than one distance functions appear as 

winners in Table 4 due to ties in the frequency of occurrences for each function. 

Table 4.4 The most frequent distance function for each set of scenarios. 

 Users_all Users_cs Users_non 
Arithmetic δAnc δLCA,P, δH,Desc, δAnc δLCA,P 
Categorical δLCA,P δLCA,P δLCA,P 

Arithmetic & 
Categorical 

δAnc δAnc δLCA,P, δAnc 

 

The third finding concerns the winner distance function per scenario. For every 

scenario, we take into account the 15 occurrences by all users and see which distance 

function is the most frequent. We call this function the winner function of the 

scenario. The most frequent winner function was δLCA,P. The percentages were 

35.71% for the Users_all group, 35,71% for the Users_cs group and 57.14% for the 

Users_non group. The most frequent function for 14 users was the  δLCA,P function. 

For one user from the Users_cs group the most frequent function was the δLCA,D. 

 

The fourth finding concerns the diversity and spread of user choices. There are two 

major findings: (a) All functions were picked by some user and (b) there are certain 

functions that appeared as user choices for all users of a user group. Specifically, 

functions δLCA,P, δH,Desc and δAnc were selected at least once by users of group 

Users_cs. Similarly, functions δLCA,P, δLow,m and δAnc were selected at least once by 

Users_non.  
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The fifth finding concerns the most preferred family of functions. Table 4.5 depicts 

the absolute number of appearances of each distance function family per user group. 

The most preferred family of distance functions is the Hierarchy Path family, which 

also contains the top one most preferred distance function δLCA,P. Moreover, we 

observe that the ranking of the distance function families was exactly the same for 

each user group.  

Table 4.5 Frequencies of preferred distances within each user group for each distance 
family.  

 Local Aggregation Hierarchy Path Percentage Highway 
Users_cs 1 9 69 9 52 

Users_non 2 5 34 5 24 
Users_all 3 14 103 14 76 

 

The selection stability (e.g., how stable are users answers at the same questions) of 

users was the sixth observation. The selection stability was determined by the 

following results, where the 13th and the 14th scenario were a reordering of the 3rd and 

10th scenario respectively. 4 out of 5 users from the set of Users_non, 6 out of 10 

users from the set of Users_cs (consequently, 10 users from Users_all set) selected 

the same function for both of the two similar scenarios. The rest of the users selected 

the same function for only one out of the two repeated scenarios.  

 

Summary. Overall, the findings indicate that the most preferred distance function is 

the δLCA,P, which is expressed in regards to the shortest path of a hierarchy dimension. 

Apart from the δLCA,P, the distance functions δAnc and δH,Desc were widely chosen by 

users. In addition, the most preferred distance function family is the Hierarchy Path 

family. 

4.3. User Study for Distances between two Cubes 

This second user study is a follow up of the previous user study. In the previous user 

study the overall observation was that the users prefer the δLCA,P distance function 

between two values of the same dimension. Based on this result and also by setting as 

the distance function between cells the weighted sum function we set up the second 
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user study such that we can examine which distance function between two cubes the 

users prefer. Specifically, we try to find out which distance function among the two 

functions that include the cell mapping method (section 3.4.1) is most closely related 

to the human perception. These two distance functions are namely the closest relative 

and the Hausdorff distance function (section 2.4.2). The table 4.6 shows the distance 

functions that were used in this user study 

 

The user study contained 14 new scenarios. Each scenario included 4 cubes named A, 

B, C and D. The cube A in every scenario was the reference cube. The users were 

asked to order the rest of the three cubes from the most similar to the less similar 

when compared to the cube A. The cubes B, C and D were chosen such that one of 

them was the closest to the cube A according to the closest relative function and 

another was the closest to cube A according to the Hausdorff distance function. The 

remaining cube was chosen to be the most distant from cube A for both distance 

functions. A sample scenario can be seen in figure 4.8. In this figure the cube which is 

filled with light blue color is the reference cube. Due to space limitations all the 

scenarios used for this user study are not presented here but can be found in the 

appendix at the end of this thesis. 

 

All scenarios were uploaded as jpeg pictures in an html page where users were asked 

to complete an answer sheet and send it back to us via email. The url link of this page 

was sent via a social network and also by email at the email-list of the graduate 

students of the Computer Science Department of the University of Ioannina.  

 

In order to test a user’s answer reliability, in the 6th scenario the cube B was identical 

with the cube A. Moreover, the 13th and 14th scenarios were replicas of the 5th and 9th 

scenarios respectively with a reordering on the columns of the cubes. This was done 

in order to measure the user stability of their choices.  
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Figure 4.8 Sample scenario 

The 12 first scenarios can be divided into three groups according to the weights in the 

distance function between cells. The first 4 scenarios consist of cubes that they do not 

include measures. We refer to this group as the no_measures group. The next 4 

scenarios consist of cubes that include measures where the weight factors on measures 

and dimensions in the function between cells are not equal. Specifically, assuming 

that cubes consist of k dimensions and l measures, the weight factors for the 

dimensions was set to be k/(l+k) and for the measures was set to be l/(l+k). We refer to 

this group as the not_equal group. Finally, the last four scenarios consist of cubes that 

include measures and the weight factors on the measures and on the dimensions in the 

between cells distance function are equal and set to 0.5. We refer to this group as the 

equal group. 
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Table 4.6 The distance functions that are used in the second user study 

Hausdorff 
Distance functions between two cubes 

Closest relative 
Distance function between two cells of cubes weighted sum 

Distance function between two values of a 
dimension 

δLCA,P 

Distance function between two measures Manhattan 
 

  

The number of users that responded with an answer sheet was 39.  Two from the 39 

users did not choose the cube B in the sixth scenario as the most similar to the cube A. 

For that reason their answers were not taken into consideration. We refer to the 

remaining 37 users as valid_users. 

 

The first finding of this user study concerns the most frequent distance function that 

was chosen from the users as their first choice. Among all the 11 (scenarios) * 37 

(users) = 407 answers (the sixth scenario is excluded), 232 times (≈57%) the users 

gave as their first choice the cube that represents the closest relative distance function. 

The cube that represents the Hausdorff distance function was chosen 154 times 

( ≈38%) as the first choice of the users. Only 21 times (≈5%) the users chose the most 

distant cube as their first choice. The summarization of the above results is shown in 

the table 4.7.  

Table 4.7 Frequency of chosen as first distance function among all the 444 answers 

 Frequency Percentage 
Hausdorff 154 38% 

Closest relative 232 57% 
Most distant cube 21 5% 

 

The second finding of the user study concerns the stability of the user choices. As we 

mentioned before, the 13th and 14th scenario were replicas of the 5th and 9th scenario 

respectively. In each of these two scenarios a user that orders the cubes in the same 

way as in the original scenario is denoted as user_OK. A user that gave the same 

answer for the most similar cube but the order of the other cubes was not the same is 

denoted as user_Half_OK. Finally, a user that was denoted as user_OK for both 
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replicas scenarios, or denoted as user_OK for the one replica scenario and 

user_Half_OK for the other replica scenario is denoted as user_ Stable. According to 

the answers of the valid 37 users of this user study, in the 13th scenario there were 28 

user_OK users and 5 user_Half_OK users. In the 14th scenario there were 19 user_OK 

users and 8 user_Half_OK users. The 24 of the 37 (≈65%) users were user_Stable 

users. We believe that a 65% is a safe number that can ensure the stability and 

reliability of their answers. The table 4.8 summarizes the above results and 

percentages.  

Table 4.8 User stability 

 User_OK user_Half_OK user_Stable 
 Frequency Percentage Frequency Percentage Frequency Percentage 

13th 
scenario 

28 75% 5 13% 24 65% 

14th 
Scenario 

19 51% 8 21% 24 65% 

 

The third observation concerns the wining function per scenario. The term wining 

function refers to the function that was mostly selected as the first choice from the 

users in one scenario. The closest relative function was the wining function for 6 

scenarios and the Hausdorff function was the wining function for the rest 5 scenarios. 

These results cannot ensure that one of the two functions is more preferred than the 

other.  

 

The fourth observation concerns the winner function per scenario group. For a group 

of scenarios its winner function occurs to be the function that appeared as wining 

function in most scenarios of the group. For the no_measures group the winner 

function was the closest relative function which it was the wining function for the 3 

out of the 4 scenarios. For the not_equal group the winner function was the Hausdorff 

which it was the winning function for the 2 out of the 3 scenarios. Finally, for the 

group equal, in two scenarios the wining function was the closest relative function 

and in two scenarios the wining function was the Hausdorff function. The above 

results reveal a user preference in the closest relative function for scenarios that do no 

include measures. On the other hand for the other types of scenarios the results are not 
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clear. The analytical results of the third and fourth observation are presented in table 

4.9. 

Table 4.9 The winning functions and the winner functions  

Scenario Group Scenario Winning function Winner function 
Scenario1 Closest relative 
Scenario2 Closest relative 
Scenario3 Closest relative 

no_measures 

Scenario4 Hausdorff 

 
Closest relative 

Scenario5 Hausdorff 
Scenario7 Closest relative 

not_equal 

Scenario8 Hausdorff 

 
Hausdorff 

Scenario9 Hausdorff 
Scenario10 Hausdorff 
Scenario11 Closest relative 

equal 

Scenario12 Closest relative 

 
- 
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CHAPTER 5. CONCLUSIONS 

This thesis presented a variety of distance functions that can be used in order to 

compute the similarity between two OLAP cubes. The functions were described with 

respect to the properties of the dimension hierarchies and based on these they were 

grouped into functions that can be applied (a) between two values from a dimension 

of a multidimensional space, (b) between two points of a multidimensional space and 

(c) between two sets of points of a multidimensional space.  

 

In order to assess which distance functions are more close to human perception, we 

conducted two user study analysis. The first user study analysis was conducted in 

order to discover, which distance function between two values of a dimension is best 

in regards to the user needs and data type. Our findings indicated that the distance 

function δLCA,P, which is expressed as the length of the path between two values and 

their common ancestor in the dimension’s hierarchy was the most preferred by users 

in our experiments. Two more functions were widely chosen by users. These were the 

highway functions δAnc that is expressed in regards to the ancestor xy and δH,Desc that is 

expressed by selecting the representative from a descendant.  

 

The second user study we conducted, took into account the results of the first user 

study analysis. Specifically, the second user study analysis aimed in discovering 

which distance function (the closest relative or the Hausdorff distance function) from 

the category of distance function between two data cubes, users prefer. The findings 

of this user study analysis indicated that the closest relative distance function was 

rather preferred by users in contrast to the Hausdorff distance functions.  
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Future work can be pursued in various directions including (a) the deeper examination 

of the presented families of functions with more complicated scenarios and (b) the 

discovery of the foundational reasons for the observed user preferences. 
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APPENDIX 

Scenarios of the 1st user study  

 

Figure A.1 Cube scenario 1 
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Figure A.2 Cube scenario 2 

  

Figure A.3 Cube scenario 3 
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Figure A.4 Cube scenario 4 
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Figure A.5 Cube scenario 5 

 

Figure A.6 Cube scenario 6 
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Figure A.7 Cube scenario 7 
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Figure A.8 Cube scenario 8 



68 

 

 

 

Figure A.9 Cube scenario 9 



69 

 

 

 

Figure A.10 Cube scenario 10 
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Figure A.11 Cube scenario 11 
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Figure A.12 Cube scenario 12 

 

Figure A.13 Cube scenario 13 
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Figure A.14 Cube scenario 14 

Scenarios of the 2nd user study 

 

 

Figure A.15 Scenario 1of the 2nd user study 
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Figure A.16 Scenario 2 of the 2nd user study 
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Figure A.17 Scenario 3 of the 2nd user study 
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Figure A.18 Scenario 4 of the 2nd user study 
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Figure A.19 Scenario 5 of the 2nd user study 

 

Figure A.20 Scenario 6 of the 2nd user study 

 

Figure A.21 Scenario 7 of the 2nd user study 
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Figure A.22 Scenario 8 of the 2nd user study 
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Figure A.23 Scenario 9 of the 2nd user study 

 

 

Figure A.24 Scenario 10 of the 2nd user study 
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Figure A.25 Scenario 11 of the 2nd user study 
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Figure A.26 Scenario 12 of the 2nd user study 

 

 

Figure A.27 Scenario 13 of the 2nd user study 

 

Figure A.28 Scenario 14 of the 2nd user study



81 

 

 



82 

 

 

SHORT CV 

Giorgos Rogkakos was born in Ioannina in 1986. He received his BSc degree in 2008 
from the Department of Computer Science of the University of Ioannina in Greece. 
Then, he entered the Graduate Program of the same institution under the supervision 
of Panos Vassiliadis and he was a member of the Distributed Management of Data 
(DMOD) laboratory. He has been also an instructor in the Epirus Institute of 
Technology teaching the course of Data Mining. So far, his research is based on On-
Line Analytical Processing (OLAP) tools under the context of comparing and 
exploring the similarity between OLAP Cubes.  
 
 
 

 



 

 



 

 



 

 

 


