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EKTENHX ITEPIAHYH XTA EAAHNIKA

I'eopyrog Poykdkog tov Oopd kot ¢ Zoitcoc. MSc, Tuiua ITAnpogopikng,
[Movemomjuwo loavvivov, Iovdog 2010. Amotiunon Opotdtntog Asdopévov oce
[ToAvdrdotaTovg Xmpoug.

Emprénovrtag: Toavayunng Baciieldong.

[T6c0 powalovv 6vo KOPot dedopévmy, Me dAra Adyla To epdTNUO TOL TiBeTON Elvan
T0 €€g : AoBévtmv 300 cLUVOLWV amd onueia evOg TOALIACTUTO YDPOV UE 1EPAPYIES,
nowo. gival 1 amdoTOON avAUESH oTa. V0 cUVOAN;, AdY® Tov peYdAov TANBoLE TV
OE0OUEVMV IOV GULVOVTALE, €lvol BepeAM®OEg vor TOPEXOVUE LETPO. OUOLOTNTOG Yol

GUVOAL TTOAVOLAGTATMOV JESOUEVDV.

To cvykekpipévo mpdPAnua eivor yevikd KabdG cuvavtdtol 6e apKETEG EPAPUOYES
oto. mAaiclo NG €£0pVENG TANpoopiag TOAVUECHV, GE EMOCTNUOVIKES Pdoelg
dedopévav kol o ynoelakéc Piplodnkes. Te tétoteg epappoyég, dnuovpyeiton M
avaykn vy amofnkevon eEopeTikd HEYAAOV OYKOV ETEPOYEVAV OEOOUEVAOV. ALTO
odnyel oty avaykn ywo ovalntmon opoldtrag oe dedopéva t€totov tHmov. [a to
AOyo w10, givor ypriolwo va PBpodue HETPO OUOLOTNTOC 7OV VO TKOVOTOOUV TIg
avOpOTIVES aVAYKES OE E€QAPUOYEC TOVL APOPOLV OVOLNTNAGES GE VTOAOYIOTIKA

GUGTNLLOTOL.

YtV mapovoa doTpiPr| peAetdpe €vo, GOLVOAO GLVAPTHCE®V OTOGTACT|G TOV UTOPOVV
va xpnoorotnfody yio TV amoTipnon opoldTTag OeS0UEVOV GE TOAVILAGTOTOVG
YOPOVG e tepapyiec Owotdoewv. H  xartnyopromoinon owtod Tov  GLVOAOL
OLUVOPTNOCEDV OTOCTOCNG OPYUVAOVETOL HE Pdon TG WO10TNTEG TOV 1EPAPYLUDY TMV
JOTACEWMYV, TOV EMITEI®V Kol TOV TILOV Tovc. Edikdtepa, 1 Kotryoplonoinon twv

oLVOPTNoEDV opyavavetol ¢ &ENg: [lpdTtov, mePLypl@OvE TIC GLVAPTNGELS
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amdoTAoNG OV LOAOYILoVV TV amdcTacT petad 6vo TH®V NG dlg ddoTaong
€VOG TOAVILAGTATOL YDPOL, SEVTEPOV TEPTYPAPOVILE GLVOUPTNCELS OTOGTUCNS Y10 TOV
VIToAOYIoUO NG amdoTaong HeTaEh onpelov evOg TOALSAGTATOV YDPOL Kol TEAOG
TEPLYPAPOVIE GLUVOPTNOELG TOL LIOAOYilovv TV amndotacy HETOEDL dVO GUVOA®V

TOAVILAGTATOL YDPOV.

Mo 10 oKkomd TOV TPOGIHOPIGUOL TOV GLUVOPTNCENDV TOV IKAVOTOLOLV KOADTEPA TIG
AVAYKEG TV YPNOTMOV, OPYAVAOCAUE dVO TEPAUATO He ¥pNoTeS. To mpdTo Teipapa
aeopA TNV MO TPOTUNTEN GLVAPTNOTN andotocng ond TN Katnyopio TV
CLUVOPTNCEMV ATOCTAONG LETAED dVO TIHAOV TN 010G d1doTaoNS EVOS TOAVIAGTATOV
1EPaPYIKOD Y®Pov dedopévav (mbava dumc, og SloPOPETIKA emineda TG tepapyiog
™G d1dotacng) dedopuévav. To Bactkd GUUTEPAGHO. AVTOD TOV TEWPANATOC HTAV OTL )
O TPOTIUNTEN GLVAPTNON amdoTOoNG HETAED SO0 TIHMV piag didotaong, eivar exeivn
OV YPNOLOTOLEL TO EAAYIOTO LLOVOTATL TOL GLVOEEL TIG OVO TIUESG KO TOV KOO TOVG

TPOYOVO GTNV tepapyio TG S1AGTAONG.

Aopupdvoviag vroyn TO  CLUTEPACUOTO TOL TPOTOL MEPAUATOS YPNOTOV
opyovooape to véo melpapo pe ypnotes. To devtepo meipapa eiye okomd v
AVOKGADYT] TNG TO TPOTIUNTENG GLVAPTNONG OTOCTACNG HETAED TOV GLVAPTHGEMV
Kovuvorepov Xvvoedeuévov (n omoia amotiud v omdctaon 6o KOPov cav évo
Cuylopévo aBpotoua TV ETUEPOVS EAAYIOTOV AMTOCTACE®V TOV KEM®OV TOLC) Kot
Hausdorff(n onoia anotipd v andotacn 6o KOPoV oav Tn HEYIOTN TOV EANYICTOV,
TOV ATOCTACEDV TOV KEAMMOV TOVG) amd TNV KUTNYopio T®V GLUVOPTHGEDY OTOCTOCTG
petald 6vo KOPwv dedopévov. Tehkd, 1o cvunépacua and To deHTEPO TEIpOLL NTOV
o0tL  ovvapnon Kovrivotepov Zvvioedeuévon €xel €va. GYETIKO, OAAG Ol amdALTO

npofadioua og oyéon pe ™ ovvaptnon Hausdorff
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ABSTRACT

Georgios Rogkakos, MSc, Computer Science Departrieiversity of loannina,
Greece. July, 2010. Similarity Measures For Muftidhsional Data.

Thesis Supervisor: Panos Vassiliadis.

How similar are two data-cubes? In other words,ghestion under consideration is:
given two sets of points in a multidimensional Arehical space, what is the distance
value between them? Due to the great amount of diieed nowadays, it is
fundamental to provide similarity measures withétssof multidimensional data. This
problem is generic since it can be found withiruenber of applications in fields such
as multimedia information retrieval, scientific daases and digital libraries. In the
context of such applications a huge amount of bgtreous data is stored. This leads
to the necessity of similarity search among thpetgf data. Therefore, there is a need

for similarity measures that can capture human aelsaf search computing.

In this thesis we explore various distance fundiaat can be used over
multidimensional hierarchical spaces. We organize tliscussed functions with
respect to the properties of the dimension hierasgHevels and values. Especially,
the taxonomy of distance functions we provide isf@d®ws: Firstly, we describe

distance functions that compute the distance betwee values of a dimension of a
multidimensional space, secondly we describe distaianction that compute the
distance between two points of a multidimension@dce and finally we describe
distance functions that compute the distance of teeis of points of a

multidimensional space.

In order to discover which distance functions amrersuitable and meaningful to the

users, we conducted two user study analysis. Teeudser study analysis concerns
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the most preferred distance function from the aatg@f distance functions between
two values of a dimension. The findings of thisrustidy indicate that the most
preferred distance function was the length of ththetween the two values and

their common ancestor in the dimension’s hierarchy.

Taking into consideration the findings of the fitster study we conducted a second
user study. The second user study aimed in distayerhich distance function,
between theclosest relativeand the Hausdorff from the category of distance
functions between two data cubes, users prefer.résdts of the second user study
indicate that theclosest relativedistance function was rather preferred by users in

contrast to thédausdorfffunction.



CHAPTER 1. INTRODUCTION

How similar are two data-cubes? To put the questibttle more precisely, given two
sets of points in a multidimensional hierarchigahee, what is the distance between
these two collections? The above research probkengeneric and has several
applications in domains such as multimedia inforomatretrieval, statistical data
analysis, scientific databases and digital libsafi2ZADBO06]. In such applications,
where contemporary data lead to huge repositoffideterogeneous data stored in
data warehouses, there is a need of similaritychetliat complements the traditional
exact match search. For example, one might easilisien a context where a user of
an OLAP tool is proactively informed on reportsttlaae similar to the one she is

currently browsing.

In this thesis, we address the problem by (a) orgamalternative distance functions
in a taxonomy of functions and (b) experimentallgessing the effectiveness of each

distance function via a user study.

So far, related work has dealt with similar probdeim different ways; however, this
particular problem has not been dealt per se. Spaty, Sarawagi in [Sara99] and

[Sara00] has dealt with the problem of discoveimgresting patterns and differences
within two instances of an OLAP cube. The DIFF &iLAX operators summarize

the difference between two sub-cubes in order soadier the reason of abnormalities
within the measures of two given cells. The onlynomon factor of this work with

ours is the usage of the Manhattan distance fumatidhe procedure of discovering
abnormalities. Our work addresses the problem radirig the appropriate distance
function among a great variety of functions in erbecompute the similarity between
two given OLAP cubes. Giacometti et. al. [GMNSO09bgose a recommendation

system for OLAP queries by evaluating distancesvéenh multidimensional queries.



This work involves the distance between queriesredme our work involves distance
functions between the data of multidimensional opserLi et.al. in [LiBMO3]

describe the semantic similarity between ontolagiescontrast to our work, they
consider a limited set of functions whereas we havevider range of distance
functions and our work focuses on distances betvezga in the multidimensional

space.

The main findings of our approach are due to twer studies that we have conducted
to assess which distance functions appear to wettietbfor the users (Section 4). The
first experiment involved 15 users of various baokgds and thé&dult real dataset
[FUWYO05]. Each user was given 14 scenarios thatatoad a reference cube as well
as a set o variant cubes, each associated witstande function. The task of the user
was to select a cube from the set of variant cubas seemed more similar to the
reference cube. The diversity of users and datastgpntained in the experiment was
taken into consideration in order to discover whatstance function between two
values of a dimension is preferred depending onudex group or the type of data.
The first user study showed that all distance fionmst under test were used at least
once, but there were a couple of distance functibas were most preferred among
the others. In particular, the users seemed tepi$tance functions that express the
similarity between two cubes based on the hieraattshortest path or in regards to

ancestor values.

The second user study involved 39 users and thdtsesf the first user study were
taken into account. Each user was given 14 scendrai contained a reference cube
and three variant cubes. The purpose of this secsed study concerns the most

preferred distance function between two data cubes.

Our approach is structured as follows: We startafitér 2) with the a description of
the related work then (Chapter 3) we provide soammél foundations of modeling
multidimensional spaces and cubes based on amngxiebdel in the related literature
[VaSkO00]. and we also provide a taxonomy of diséafunctions for cubes based on a
detailed study of the characteristics of dimensimnarchies, levels and members.



At first, we organize our families of functions é&sllows: Initially we describe
functions that can be applied between two speeidilties that belong in the same
level of hierarchy within a given dimension. Foliogy, we describe distance
functions that are applied between two cells ofubecand then distance functions
between two OLAP cubes.

Finally, in chapter 4 the implementation issuethed thesis are presented and also the
user study experiments along with the results @& thost preferred functions.



CHAPTER 2. RELATED WORK

2.1 Fundamentals
2.2 Distances on Graphs and Lattices
2.3 Distances for Collections of Structured Data

2.4 Integrating Texts and Databases

In the related literature there are a number ofepmpghat have pointed out the
necessity of having appropriate similarity measunesrder to discover objects that
are similar to each other and measure in a quanétevay the distance among them.
Most of them examine similarity measures used betwabjects that are described
from a number of various features such as in immagyeeval or data that are stored in
a hierarchical taxonomy. In addition, there areewa fpapers that describe how
similarity measures used by human perception antpater science follow different
properties. Not only computer scientists, but aseentists from other areas need
similarity measures for the purpose of comparint @dend objects of their expertise.
In the area of Biology, a well-known example is theed of comparing genes.
Another area that has dealt with the problem abuhicing similarity measures is that
of mathematics. Computer scientists in the areaslatdh mining and information
retrieval have also considered the problem of thicing appropriate similarity
measures. Few papers have associated the areatha#inatics and computer science
and have introduced similarity measures for thecephof lattices by mapping them

with semantic hierarchies.

In the following subsections we will present thdared work. More precisely
subsection 2.1 describes some fundamental concapsit distance functions,

subsection 2.2 presents some distance functionsctmabe applied on graphs and



lattices, subsection 2.3 presents distances foctstred data and finally subsection 2.4
describes a work about integrating texts and datsha

2.1. Fundamentals

In this subsection, we start with the presentattdnsome fundamental distance
functions and their properties that were used is MSc thesis. Specifically, this
subsection is structured as follows: in section12We start the analysis of several
distance measures that are categorized accorditigetdypes of variables that are
applied on, in section 2.1.2 the Hausdorff distasqaesented and in section 2.1.3 we
discuss a work that introduces a similarity measuré demurs at the classic metric

axioms.

2.1.1.Distance Measures

In this section, we follow the presentation of fantental concepts around some
common distance measures made by Han and Kamb@iKi0]. Generally, a
distance measure is calledn@tricwhen it satisfies the following criteria:

d(ij) >0
d(i,j) =d(.i)
d(i,i) =0

d(i,j) < d(i,k)+d(,k)

The distance measures are categorized accordihg type of variables that they are
applied on, in order to describe their dissimilarithe different types of variables are
the interval-scaled variables, the binary variablde categorical variables and,
finally, variables of mixed types.

As for theinterval-scaled variablegshe presented distances are Eheclidean the
Manhattan and the Minkowski distances. For two pointg;(x;, X2 ,..., Xy ) and
P2(y1,Y2,..., Yn) In then dimensional space, the formulas for the aboveadcsts are
expressed as:

Manhattan dist(py,p2)=| X, = Y1 [+ X, = ¥, [+... +[X, =V, |



Euclidean dist(pl,p2)=\/| X, =Yy |2+ X =Y, [* +e +| X, =Y, |

Minkowski(p-norm): dist(pl,p2)=5/| X =Y [P+ % =Y, [P+ +X, =Y, |°

Binary variables The Jaccard distance is defined for pairs of setmprised of
members that are treated as binary variables\{ieegan only check them for identity
M. Viewed
|AUB]|

from another point of view, we need to define twategories of binary variables

or not). For two object#& andB the jaccard distance JA, B) =

before defining the Jaccard similarity. The firgitegory is the symmetric binary
variables and the second the asymmetric binaryabkes. The difference between
asymmetric and symmetric binary variables is thhervconsidering of symmetric
variables, both of its states are equally valuabie.example, the agreement of two 1s
(positive match) is considered the same as theeaget of two 0Os (negative match).

r+s

So, for the symmetric binary objegtswe can use the equatidr(, j)=—
g+r+s+t

whereq is the number of variables that equal 1 for bio#ndj, r is the number of
variables that equal to 1 for objecbut that are O for objegt s is the number of
variables that equal O fobut equal 1 foj andq is the number of variables that equal

0 for bothi andj. For the asymmetric binary dissimilarity betweeo objects and]

r+s
q+r+s

the previous equation becomek(, j) = because negative matches

considered unimportant and s ignored. Based on the notion of similarity beén

i andj the equation of similarity sm(, j) = q ? S:1—d0,j). Then,sim(i,j) is
+r+

called Jaccard coefficient.

A categorical variableis a generalization of the binary variable becausan take

more than two states. So, the dissimilarity for wabegorical objectsj is computed

by the equationl (, j) :p;pm wherem is the number of matches apds the total

number of variables.



2.1.2.Hausdorff Distance

In [ZADBO6] the authors describe the Hausdorff aiste. For two sets of features
A(X1,X2,.... %) and B(Yy1,Y2,....¥ym) the Hausdorff distance is defined a¥AB) =
max ds(A,B),ds(B,A)}. In the above formuladsAB) = supdy(x,B) and dy{B,A)=

XeA

supdy(A)y;) where sup is the supremum of all the distandiesThe dy(x;,B) and

yeB

dy(A)y;) are denoted by the following formulasds(x,B)= ing de(x,y;) and dy(Ay)=
ye

inl‘\ de(X;,y) where inf is the infimum of all the distancds Finally, de can be an

arbitrary distance measure, e.g. the Euclideaarniist

For example, in the figure 2.1 there are two séfomts, the sef containing {a, &,
ag} and the seB containing{b1,bp,bs}. We assume, without loss of generality, that
denotes the Euclidean distance. In this exampledtiens of inf and sup coincide in

being the min and max respectively. @(nl,B):im; de(a1,y;)=de(au, b)) and similarly
ye

do(a2,B)= de(az, b), dp(as,B)=de(as, b2), do(Abr)=de(a2, 1), do(Ab2)=de(az, b)) and
dp(A,b3)=d(az,b3). From the above, we have tiaA,B)=supd,(x;,B)= des(as, b)) and

XeA

also dyB,A)= sup dy(Ay)= dy(Abs)=dg(az, Bsz). Finally, d(AB) =

yeB

max ds(A,B),ds(B,A)}=max dy(as, b), de(az, bs)}.

Figure 2.1 Two sets of points



2.1.3.Controversy on Metric Axioms

In [SJ95] and [SJ99] the authors introduce a shitylaneasure as an extension of
Tversky’'s Feature Contrast. This extension is baseduzzy Logic and it is called

Fuzzy Feature Contrast (FFC). Especially in tha afdmage and texture comparison
the authors suggest that similarity measures maeastclbse enough to human’s
similarity judgment introduced by psychologists.eThuthors were driven to use
Fuzzy Logic because in a variety of works thereaisdisagreement on the
correspondence of the metric axioms to the behavidhe real users in practice.
Specifically, they provide a collection of referescwhere the metric axioms have

been refuted.

After rejecting the geometrical distance axiomshsas symmetry and triangular
inequality, the authors present the extension @ir3ky’s Feature Contrast by making
use of Fuzzy Logic. The trivial procedure of measythe similarity of two images is

by expressing it as a combination (e.g., averaggghwted summation) of a number of
individual similarity measures between the variteetures that describe an image. In
this paper, the authors introduce a similarity meagased on Fuzzy Logic. This
way, the authors manage to express similarity betweo images that are described
by a number of features by taking into consideratiwe relationship and degree of
association among the object’s features. The idexoressing a similarity measure
through a Fuzzy Logic model was mainly motivated tbg need of expressing a
measure that can capture the human judgment. &iscauthors conducted a number
of experiments trying to find similarities betweemages of faces and textures. Their
main goal was to introduce a measure between f=atiimat captures the human
perception as close as possible. Therefore, im thgieriments they compared FFC
and a couple of other measures (e.g., Euclidealantis) with human perception.
Specifically, human subjects provided a rankingmoéges (faces, textures), which
were compared with the equivalent rankings thatioed from the FFC and the other

measures.



2.2. Distances on Graphsand L attices

In this section we present distances that are eghpln Graphs and Lattices. In section
2.2.1 the basic ideas of highway hierarchies asthdces in semantic hierarchies are
presented. Following, in section 2.2.2 the distanom lattices and semantic
hierarchies are presented. Finally, in section32tl2e similarity of words in semantic
hierarchies is discussed.

2.2.1.Highway Hierarchies

In [SS05] the authors introduce a technique for fdster computation of shortest

paths between two nodes of a graph. This techriigu®ws the idea of the highway

roads in the road networks and also the Dijksted¢orithm idea. The technique is

based on the observation that the shortest patbagitwo points in a road network,

usually consists of small roads locally and a higiwoad. So, the distance between
two nodes in a road network is calculated by figdine shortest path of each node
from a highway road and then by making use of tighvay road. Based on the

previous idea, a highway hierarchy is construcBkcifically, the highway hierarchy

consists of highway edges with attached sub trekscally computable shortest paths
of nodes from the highway network. An edge of thmplete graph belongs in the set
of highway edges if it represents an important raecbrding to the information that it

carries.

The approach of [SaSc05] was motivated by the gaeadunt of time needed to
compute distances of shortest paths in large radanks when using Dijkstra’s
Algorithm. The authors proposed an approach thas ulse highway hierarchies in
order to compute distance matrices. The basic ighgorfor fast computation of

distance tables is introduced based on the basicepts and definitions of highway
hierarchies. This algorithm is making use of thgtvay Hierarchies query algorithm
and two specific operations, namely the operatibliighway Hierarchy Forward

Search Space and Highway Hierarchy Backward Se@pate. Highway Forward
Search Space finds the nodes that belong in théesth@ath originating from a source
node in a graph G. Backward Search on the othed fiads the set of nodes that

belong in the shortest path originating from a eéamgode in the converse graph of G.
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Finally, some optimizations on this algorithm brifigrther improvement on the
computational time of the distance tables. In tle&periments, the authors compared
Dijkstra’s Algorithm with the Highway Hierarchieseatiod for the computation of
distance matrices. The first experiment include® t@ndom nodes on the street
network of Germany and the second included 173 sxodehe street network of four
European countries. The experiments showed thatptbposed approach for the

computation of distance matrices outperforms Digkstalgorithm.

2.2.2.Lattices and Semantic Hierarchies

In [JO04], the author describes some fundameng&asdbout treating large posets as
data objects. Specifically, he refers to the natiai distance and level in such
structures as an interval-valued property. A phytiarder set (poset) is a directed
graph with no cycles and it is more general thtne@ or a lattice and a node can have
multiple parents. The main idea that gave feedi® work was the POSet Ontology
Categorizer (POSOC), which was motivated by thedseef biologists to use
algorithmic tools to navigate the Gene Ontology [G&fter reviewing POSOC'’s
foundations, including some elementary theory alpautially ordered set (poset) and
in general semantic hierarchies, the author intteduwo basic distance metrics in
the overall structure of object under the posetomotNamely, these metrics are (a)
the interval valued poset rank and (b) the vectdued poset distance. The first
metric describes a rank as a measure of the vieftinael” of a node within a poset.
The second metric describes a distance measure gamodes by taking into
consideration their horizontal relationship as wélinally, the author provides a
discussion of how the two proposed metrics couldkwia concept lattices. This

discussion is based on the trivial observation ldtéites are special cases of posets.

In [JBO5] paper the authors introduce link weigatsl weighted normalized pseudo-
distances among comparable nodes in a poset. Tdkiogconsideration some
fundamental elements on DAGs, Posets and Covess, atithors continue by
reintroducing the pseudo-distances implementedso®. Posoc is a Categorizer for a
gene ontology poset which is called a POSet Onyol®PSO) [JMFHO4]. These

pseudo-distances briefly are (a) the minimum changth, (b) the maximum chain
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length, (c) the average of extreme chain length @h)dthe average of all chain

lengths. A collectiorA of nodes in a poset is called chainvif,be A, a<b ora>b

In addition there is a quick review on the basieragions of probabilities on posets.

2.2.3.Semantic Similarity between Words

In [YZMO3] the authors introduce a similarity measure in tiedfof semantic
similarity between words. The propose measure coesbdifferent, already known
measures such us the path length between two wierdssemantic hierarchy, the
depth of the subsumer concept node of these waordthe hierarchy and the
information content that makes use of the probighaf encountering an instance of a
concept in a corpus. The proposed measure ando#esures were tested through an
extensive experimental analysis in order to discavieich measure captures better
the human perception. For the needs of their empmeris, the authors used two
databases, the WordNet [MI95] and the Brown CofglisTo evaluate their method
against the state of the art methods, they apphedl similarity on a word set with
human ratings. The word set consisted of two sgb3éte first word set included 30
pairs of words and the second included 37 pairkspéits were rated for similarity in
meaning. The authors used the second word sedsr ¢o design their method. The
first word set was used in order to test their psgal method. The authors tested 10
variations of different measures where each onerroed as a combination of the
above similarity measures (i.e., the one proposgdhk authors and the already
known measures) and by altering the values of idiffeparameters. The findings of
[YZMO3] show that the best similarity measure amdhg 10 measures that were
tested was the similarity measure, that combined siortest path length and the
depth of the subsumer in a nonlinearly type of ciovaton. Moreover, this new

measure outperforms all previous published methods.

2.3. Distancesfor Collections of Structured Data
This category includes works where the distancevéen collections of data is

measured.
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In [Sar99] the author introduces a new operator @mtine Analytical Processing
(OLAP) products. This idea was motivated by thedsef®r data analysts to perform
data mining tasks faster. Current OLAP productsvige operators for aggregations
such as Sum and Average and also provide navigataperators like Roll-up and
Drill-down. The analysts use these operators f@lang the data but as the size and
dimensionality increases, ad hoc exploration geftScult and error prone. The
introduced operator, called DIFF, saves time afattefior the analysts by eliminating
the manual exploration for detecting reasons ddtflations observed at an aggregated
level. More precisely, the DIFF summarizes the saador which a cell has a bigger
or a smaller aggregated quantity compared with learoand completes the above
operation in one step. Without the DIFF operatoe, analysts should make use of a
combination of several Roll-up and Drill-down opévas in order to achieve the

same result and with a possibility of containinges.

The use of the DIFF operator is simple. The andiyghlights two aggregated cells
on a report and then invokes the DIFF operator. dgerator then will return the top
rows that contain aggregated data over lower levédiese top rows are the ones that
mostly affect the variance of the two cells. Thember of the rows that will be

returned is configurable by the user.

In general, given the two aggregated cells, theatpe firstly finds the rows at the

detailed level that have the biggest changes arttearg and secondly, it summarizes
some or all of them that have similar changes. th reason, the returned rows
include also a ratio and an error field. In thistpaf the procedure a problem that
arises concerns whether the changes of a largenitndg are more important than

the summarization of rows with similar changes.

To handle this problem the author developed anrimmédion theoretic model for
cleanly capturing these tradeoffs and also suggestdgorithm that is making use of
dynamic programming. The author firstly presentswhay the algorithm works for a
single dimension with no hierarchies. Then, thighuod is generalized for a single

dimension with hierarchies and, finally, for muldgimensions.
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Concerning the implementation of the proposed wihri,author developed the DIFF
operator as a stored procedure that resides osettver’s side. The stored procedure
is a light-weight addition to the server because itidexing and query processing
capability of the server is used to do the heaviglteprocessing. Moreover, the
amount of memory used by the stored proceduredspendent of the number of

rows.

Finally, for the experiments the author used twtaskets. The first dataset was the
OLAP Council Benchmark [Cou] and the other wasdkeno dataset Grocery Sales
data, which was obtained from the Microsoft DSSdpik [Mic98a]. The results of
the experiments showed that even for a huge nuofbtiples included in the DIFF
query, the processing time was maximum 1 minutesoAkhe scalability of the
algorithm was tested over increasing number fordabase tuples, the number of

levels of the hierarchy and the answer size.

In [SSO01] the authors propose a new operator toenthk exploration of large
multidimensional databases easier. This new opecaited RELAX is very similar
to the DIFF [Sar00] operator with the main differerthat it acts the opposite way.
Specifically, this new operator generalizes a dyopn increase between two cells in
the detailed level. That means that the operates tto generalize the observed
drop/increase on a higher lever in some of the dsima’'s hierarchies. Without
RELAX the analyst should use multiple Roll-ups agridots followed by multiple
drill-downs and so on. This operation might be @edi and imprecise especially for

large datasets.

The use of the Relax is simple. The analyst specii tuplels and a property ofs
that he wants to generalize. An example of a ptgpserthat the sales in current year
are less than sales in previous years. Then aifuriRtmeasures how closely another
tuple T conforms to the generalization property. Functi@nis called the
generalization error and is zero whEts very close tds and increases asdeparts

from the generalization property. There is algmenalty functionS that is close to 0
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when the difference betwednandTs increases and large whénis close toTs. A
generalization is approved when the sung@) is greater than the sum B(T). In

every generalization there might be exceptionsdlsat appear in the results.

The authors used two datasets for their experimémsOLAP Council Benchmark
[Cou] and the Food dataset. The findings of theearpents showed that their
algorithm for finding exceptions is optimal for tloase of single hierarchies and
finite-domained functions. Also the algorithm assighe heavy-weight processing to

the DBMS and the amount of needed memory is incegrarof the number of tuples.

In [MUFLO6] the authors try to describe the distametween two relational databases
under the same schema. One example of such databarethe presence of replicas
of a given database that might have different mcatibns. The motivation on the
way the authors compute the distance stems froncahenon way that the distance
between two strings is computed. More precisely,atthors define the distance of a
relational databas& from another relational databaBeas the number of updates that
must be performed 4, in order to become identical B By referring to updates, the
authors refer to sql-like insertions, deletions apdates. Without loss of generality,
they don’t use insertions and deletions on thago@ihms. There might be several
update sequences that can bring the desired ré&dudt.sequence with the fewer
updates is considered the optimal. As they preseimén an update is performed it
might cause more conflicts between the two relafictatabases than before the

update but it might ease the next updates in dadachieve less number of updates.

2.4. Integrating Texts and Databases

In [XDH++08] the authors integrate traditional OLAdubes with text data and
introduce Informational Retrieval (IR) techniques these text data. The result is
what they call & ext CubeThe contributions of this work are (a) the inwoton of a
new semantic hierarchy over the terms of text cotas, (b) the ability of making
use of IR measures over aggregated text data gnithgcpartial materialization of
some previously computed cubes in order to commdee efficiently the complete

aggregated cube. In theext Cubetwo kinds of hierarchies coexist, the traditional
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OLAP dimension hierarchy and the proposenn hierarchy Theterm hierarchyis a
semantic hierarchy that helps the navigation intéhe data. Its structure is similar
with the traditional OLAP hierarchies which are &&®n levels. In addition, the term
hierarchy is related with two operations that aated pull-up andpush-downIn the
detailed Text Cube, for a specific assignment efilues in the cube’s dimensions, a
document collection is attached. In this modegnfaggregation is performed on the
text data, then two IR measurésym frequencyandinverted indexare materialized.
Consequently, IR queries on the aggregated text dah be efficiently answered.
Moreover, the authors introduce algorithms for tpimal processing of OLAP
gueries. Taking into consideration that the malieatdon of the full text cube is
prohibitive, the authors materialized the cube iplyt In addition, the authors
propose an optimization on the partially matergdizcube by bounding the query

processing cost.
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CHAPTER 3. FAMILIESFOR SIMILARITY
MEASURES

3.1 OLAP Fundamentals
3.2 Distance Functions between two Values
3.2 Distance Functions between two Cells of OLAB&u

3.4 Distance Functions between two OLAP Cubes

In this section, we organize the distance functithreg can be used to measure the
distance between two cubes. We begin with a prasentof the OLAP model that
was used in this thesis. Then we build our taxonaigistances progressively: In
section 3.2 we describe the distance functionsdaatbe applied between two values
for a given dimension. In section 3.3 we provid@eonomy for distance functions
between two cells of cubes and in 3.4 a taxonomyligtance functions between two
OLAP cubes. Throughout all our deliberations wel wéfer to two reference
dimensions,Time and Location The hierarchies of these dimensions are shown in
figure 1(a). In more detail, th€&ime dimension hierarchy consists of 5 levels. The
levels of Time are Day (L;), Week(L2) andMonth (L), Year (L3) andAll (Ls). The
dimensionLocation consists of four levels of hierarchy which @y (L,), Country
(L2), Continent (Ls) and All (Lg). In figure 1(b) we illustrate the lattice of the
dimensionLocationat the instance level.

3.1. OLAP Fundamentals
Our model consists of data that are stored undaruetured form making use of

OLAP technologies. We model a collection of datéhie form of a multi-dimensional
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array called Cube. Each cell of the cube contdata and the cell is uniquely defined

by its coordinates as values of the dimensionk@ttbe.
Definition 1 (level). A levelL= (4, i>1) is a set of finite names whetiés a name.

Definition 2 (dimension) [VS00]. A dimensiorD is a lattice £, < ) such thatL=

(L4, ...,Ln, ALL) is a finite subset of levels and is a partial order defined among the
levels of £, such that.; < Lj< ALL for every 14<n. We require that the upper

bound of the lattice is always the lewdlL, so that we can group all the values of the
dimension into the single value ‘all’. The lowerumdl of the lattice is called the

detailed level of the dimension.

Each dimension has an associated hierarchy ofdefedggregated data. In addition,

for every level; there is a domain of values denotedlas(L;). Therefore, for every

dimensionD; the domain is denoted mOM(Di):Udon(Lj)which states that it is
j=1

the union of the domains of every level of hiergrohthe specific dimension.
Definition 3 (hierarchy). A hierarchy#= (hy, hy, ..., hy) is a preordered set of levels.

Definition 4 (Cube) [VS00]. A cubec over the schemd.|, ...L,, My, ...,Mq], is an
expression of the fornt= (DS, ¢, [L1, ...Ln, M1, ...Mn], [aga(M<°, ..., aggn(MO)]),
whereDS is a detailed data set over the schemal$% [..L.>, M°, ...My7], mek, ¢
is a detailed selection conditioh,?, ..M.’ are detailed measurdsly, ..My, are
aggregated measurds® andL; are levels such that® < L, 1<i<n andagg, 1<i<m

are aggregated functions from the sirfjy min, max count.

A strict hierarchy is defined as a one-to-manytrefship between the values of the
different levels in a dimension. In other wordsswase that; < Li.; are two levels of
hierarchy in a dimension. This hierarchy is chaazed as strict when each value
from L; is related to only one value frolp.; and a value fronhi.; may be related to

many values from the level. Therefore, the relationship between values décght



18

L.
levels of hierarchy can be achieved through theafiseset of functionsancl_J is a
i

function that assigns a value from the domaih;db a value from the domain b&f ,
where L < L.

L.
Thus, for the set of functiorr.‘x;ncl_J the following conditions hold:
i

For each pair of levelt; and L, such thatl; < L, the functionanctl2 maps each

element odom(L) to an element aom(L,).

Given levelsLy, L, andLs such thatl; < L, < Ls, the fUﬂCtiOﬂanql:f equals to the

L, L
composmonancl_lz °ancL .
2

For each pair of levels; andL, such that, < L, the functionang? is monotone i.e.,
vx,yedomL,) 2 <ang 2(y)
X,y edo :x<y:>anc|_1 XSancL1 y

L
For each pair of levels; andL, such that; < L the functionancl_l2 determines a
set of finite equivalence classes X such that:

L L
VX Yye don'(Ll), L1 < L2 : ancLl2 (xX) = ancl_l2 (y) = x y belongs to the sam§.

L L
The relationship descf_l2 is the inverse of the ancl_l2 function i.e.,

descfl__lz(l) {x don(L)'ancll:lz(x) 1}
= = : =

According to the type of values that a dimensevel may have we can classify the
distance functions that can be applied. Thus, wegoaize the dimension levels
according to the values of their domain as follayvin

A dimension’s level domain iNominal when its values hold the distinctness
property. In other words, the values in such a dsie can be explicitly
distinguished. For example in a dimensiorcation the levelCity can take distinct

values such asondon New Yorketc.
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A dimension’s level domain i©rdinal when its values hold the distinctness property
as well as the order property. The order properplies that the values of such a
dimension abide by an order. For example in a dgioerSizea level can take distinct
and ordered values suchsamall mediumlarge.

A dimension level idnterval when its values apart from the distinctness anerord
property also have the addition property. The aaldiproperty states that a unit of
measurement exists. The difference between twoesahas a meaning, indicating
how many values intermediate between them.

A dimension level isRatio when its values apart from the distinctness, owatet
addition property also satisfy the multiplicatioroperty. The multiplication property
states that differences and ratios between valaes & meaning. In other words, the
ratio between two values indicates their analogfeidince expressed in a percentage

scale.

3.2. Distance Functions between two Values

In this section we specify the distance functidreg tan be applied over two specific
values of a dimension. In order to clarify thingstance functions described in this
section apply only between two dimension values rastdbetween measure values of
a cube.

Assume a specific dimensid, its lattice of level hierarchids; <L,<... <ALL, and
two specific valuesx andy from levels of hierarchy., and Ly, respectively. We
classify the distance functions in the followindeggories: (a)Jocally computableand

(b) hierarchical computableélistance functions.

3.2.1.Locally Computable Distance Function.

The first category of locally computable distanoadtions can be divided into three
subcategories: (a) Distance functions with exphsisignment of values, (b) Distance
functions based on attribute values and (c) Digidnnctions based on the valuescof

andy.



20

Distance Functions with Explicit Assignment of \éslI'he functions of this category
explicitly definen? distances for the values of thedom (L;) (the compared values
must belong in the same level of the hierarchy)s Tequiresdom (L) is a finite set.
For example, assume a case where the distance dretiwe cities is explicitly

defined via a distance table.

Distance Functions based on Attribute Valudssume a level whose instances are
accompanied with a set of attributes. Then evergllestance can be described as a
tuple of attribute values. In this case, the distabetween the two valugsandy can
possibly be expressed with respect to their atteibualues via simple distance
function applicable to the attributes’ domains (esgmple subtraction for arithmetic
values). For instance, assume a dimen$&lorductsaccompanied with an attribute
Weightwhich describes the weight of the products andrassa level of hierarchy of
the dimension namedrinks. In addition, assume two specific values ‘milk’ and y

= ‘orange juice’ where their weight attributes arereight= 500 andy.weight= 330
respectively. Then the distance between these dlges can be expressed according
to their weight attribute by making use, for instanof the Minkowski distance
function which is described in the following subisae. Thus, the distance between

the valuex andy can be defined as.jveight—y.weight = 170

Distance Functions based on the Values x anbh \this subcategory, the distance
between two values may be expressed through aidancf their actual values
whenever this is possible. In this subcategory @ptéon is to make use of the simple
identity function for nominal values. Thus, a vafumn the set {0, 1} where
. 0,ifx=y
dist(x, y)= { _
1,ifxzy

This function is applicable for all type values B\er nominal values.

Another option is to make use of the Minkowski fintdistance functions especially
in case where the values are of interval type. hvgki family distance functions can
be applied between two ordinal type values underctndition that the ordinal values
have been mapped to the set of integer numberhidrsection, since the distance
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function is applied for two specific values, alpgs of Minkowski distances reduce to
the Manhattan distance which|isy|. As an example, consider the dimensiome
whose levels are shown in figure 1(a). Assume twgtancex andy from the level
Year, wherex= ‘1995’ andy= ‘2000’. Then the distance between these two &isie
obviously |1995-2000| = 5. In order to normalizes thistance function within the
interval [0, 1], we can divide the distance valughwthe difference between the

maximum and minimum values of the level whe@ndy belong in.

Al All L1 all
ALL -
’ o
T T I” ) N
Year Continent Y Ewrope America
Continent , .
4’ ’Q
UK o0
J P
Week Month Country ; . US4  CANADA
. Country , N
e * ®
J'! ‘1 / : N : ‘\
- ’ Al
Day City ;o rolN 1o
. W f] 1 3 1 \ I A
City }; |‘ ,, : \ 'l \\
. . . - Al
Time Hierarchy Location Hierarchy 9 8 o 0 & &
T g s =1 B
N § Q& 3 &
(@) (b)

Figure 3. 1(a) The hierarchy of levels for dimensions Time &ncation (b) Values
of the Location dimension

3.2.2.Hierarchical Computable Distance Functions
The second category of hierarchical computableades functions can be divided
into four subcategories: (a) Distance functionshwiespect to an aggregation
function, (b) Distance functions with respect tcerbrchy path, (c) Percentage
distance functions and (d) Highway distance fumcio

The distance for two values that do not belonghe tletailed level; can be

expressed with respect to an aggregation funceam,tount max applied over the
descendants of the two values in a lower level@fanchy.
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Distance functions with respect to an Aggregatiamdétion. Assume an instance

from levell; and desc’g‘L (X) the set of its descendants, whereis any lower level of
Li. The result of applying an aggregation functioerothe seIdeS(fL (X)is denoted as

X

ager = faggr(desﬂgl (X)) . Assume two values andy with x

agar = faggr

(des¢' (x)) and

Yager = faggr(desqLi (y)), whereL, could be any lower level df; andL;, xeLi, yeL;
and faggr denotes an aggregation function suctc@snt min, max avg or sum The
distance between the valugsandy can now be expressed according to the following

formula:dist(x, y) = g(x ), where the functiomg can be computed from the

aggr’yaggr

locally computable functions. The normalized forrh this function, within the
g (Xaggr’ yaggr)

MaX g(agg Paggr)}

any possible values from the same level of hiegaeshx and vy, i.e., adL; .

interval [0, 1], can be expresseddist(x, y) = , Wherea andb are

Distance Functions with respect to Hierarchy Pathe distance between two values
x andy can be expressed according to the length of thie ipathe hierarchy that
connects them. Several distance functions and cmtibns falling into this
subcategory where described by Li, Bandar and MeLea[LiBM03]. Here, we
describe the distance functions that can be appktdeen two valuesandy from a
hierarchy, (a) with respect to the length of théhpa the hierarchy, and, (b) with
respect to the depth in the hierarchy path. Asswwoevaluesx andy such thak e Ly

andy € L,. We denote theowest Common Ancestof x andy aslca(x,y).

The lowest common ancestior, of two valuesx andy wherex € Ly andy € Ly, Ica

€ L, andL; is any non lower level df, andLy, L.~ L, Ly is a value such that:

lca={zz=anq* (x) nz= ancLLyZ (WA@ 2z |z=ang () A Z'= ancLLyZ (NALz=<L} (1)

The distance between the valueandy can be expressed with one of the following

formulas:

w, *| path(x,Ica) |+ w, *| path(y,Ica
1.dist(X,y)=fpath(x | path(x,Ica) |+ w, *| path(y )IJ

(W, +w, )*| path(ALL, L) |
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2t o PR

| path(ALL,L,)|

The first formula indicates that the distance firection of the weighted sum of the
length of the path from the valugsandy to their lowest common anceston. The
second formula indicates that the distance of @laes is expressed as a function of
the length of the path of the lowest common ancdstofrom the detailed level; of
the hierarchy. In both formulas the functioign and fgeprn may be any linear or
exponential function such d6) = €, wherec is any real parameter. These two
functions are normalized in the interval [0, 1] imaking use of the height of the

hierarchy. Specifically, the first formula is died by (w, +w, )* | path(ALL,L,)|

whereas the second formula is divided|ipath(ALL,L,)|. As an example, assume

two valuesx="NY’ and y='Canada’ from the hierarchiyocation denoted in figure
1(b) where their lowest common ancestor is thee/kia = ‘America’ from the level
Continent For simplicity, assume the functiofysn andfyepmn are equal to the identity
function and the weighted factovg, andw, are set to 1. Therefore, the functions
becomefar= (Jpath (x, Ica)| + path (y, Ica)|)/ 2*|path(ALL, L1)| andfuept= |path (Ica,
L1)|/ path(ALL, L1)|. The distance betweenandy occurs to béyai—= (2+1)/2*3 =0.5

andfdepth:2/3 .

Percentage Distance Functian&ccording to this subcategory, the distance betwe
two valuesx andy, wherey is an ancestor af, may be expressed according to a
percentage of occurrences over the values of tkeadtchy. In other words, the
similarity of two values is expressed as the sintyleof the number of descendants
this two values have. Assume the lattice of levedrdrchies be denoted as
L1=<...<L< Ly« < Ly < All whereL; denotes the most detailed level. The distance of a
valuexin a levelLy in regards to its ancestgin levelL, may be calculated according

to the function:

| des¢” (x)|

- L
|des¢ (y)|
The above formula expresses the distance betwealuex and one of its ancestoys

dist(x, y) , WhereL; is one of the levelky, L. andL; (3)

as a percentage via three ways. In dase Ly, then the distance is expressed as a

percentage in regards to the occurrences of allother values fromLx whose
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ancestor isy. In casel; is L (or L;), the distance is expressed as a percentage of
occurrences of the descendantx @i a lower level of hierarchly (or L;) in regards

to the descendants pfin the same lower levél (or L;). As an example, assume the
dimensionLocationwhere its lattice can be visualized in figure J4ajl the values of
this dimension are visualized in figure 1(b). Assurhe valuesx="USA’' and
y=‘America’. Then, in regards to the above formuia distance between these two

values can be computed as:

1 1 .
| des (gommem(, America)|:§ wherelL; is chosen to

ountry

. dist( USA','America) =

be the level,, i.e.,Lcountry

des¢™ ('USA
| (%.“y t ( ,)l _3 where Li is chosen to
| des¢&M™™('America)| 5

ity

ii. dist( USA',' America) =

be the detailed levély, i.e.,Lciy
As for the third case, in this example it coincisath the second since the lower and

detailed level, i.eCity, are identical.

Highway Distance Functiong\ssume that every level of hierarchyis grouped into
k groups and every group has its own representativEhen, the distance between
two representatives can be thought of as a highBag$c05]. We denote with(x)
andr(y) the representatives of the groups wheeady belong in respectively. There
fore, the distance between the valuesandy can be expressed with the following

formula:

dist (x, y) =dist (x, r(x)) +dist (r(x), r(y)) + dist(y, r(y)) (2)

The partial distances between a value and its reptaisve and the distance between
the two representative$x) andr(y) depend on the way the representative is selected.
In most cases the representatives are selectdthsthey belong in the same level of
hierarchy and thus their distance can be computeoh fthe locally computable
functions, the path functions or the aggregatedctians (in case the two
representatives belong in different levels thestalice may be computed by applying
any distance function from the path section or #ggregated distance function

section). The main categories of selecting the sgmtative apart from an explicit
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assignment are in regards to (a) an ancestor gral descendant. For the following,
dist(a, b) denotes the distance of any two val@ed. Without loss of generality

assumel, < Ly. In addition, assume the ancestor fin level L, denoted as

xy=ancLLxy (x) and a representative of in the level of hierarchyLx denoted

asy, = f(desquy(y)). These can be visualized through figure 2. The tfancf

applied over the descendantsyafan result either to an explicitly assigned dedaanh
or to the result of an aggregation function (exgn, max over the set of descendants.
In the following we describe the partial distanoé$ormula 2 depending on the way

the representative is selected.

ALL all .

lca i

L P
X, J’j ﬁ\\ 1.

Ly —"¢—>—¢
4 dist(x,, y)  Qisty, y,}
aLst(x, %) |

===

-
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F] ) ] )
I L] I L]
L ¥, L]

L;—4& * . S

Vx

Figure 3.2 Partial distances between two valuesfiarent levels of hierarchy.

a) The representative of a group is an ancedtbe representative of each valuand

y could ber(x) = ancLLxU k)andr(y) = ancLLyV (/ whereLy andLy is any upper level

of Ly and Ly respectively.Ly and Ly are not obligatory different. In general, the
distance between a valueand its representative may be computed through any
distance function from the path, the percentageher aggregated functions. For
example, assume two valugs'UK’ and y="USA’ from the level Country of the

hierarchyLocationdenoted in figure 3.1(b). Assume the represerdafk)="Europe’
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and the representativy)="America’. The distance of the valuesandy is by

summing the distancedist('UK’, ‘Europe’), dist('Europe’, ‘America’) and

dist('America’, ‘USA’). In this category there are tvepecial cases:

1. The representativa$x) andr(y) coincide in being the lowest common ancekiay
where the formula is simplified agist (X, y) = dist (x, Ica) + dist (y, Ica).

2.The representativey) is identical to the actual value wfin this case the distance
is expressed as a summatiordisi(x, x,) anddist(xy, y),as shown in figure 2, where
Xy IS the representative affrom the levelL,. Therefore, the distanabst(y, r(y)) =

0. Formally this is expressed as:
dist(x, y)= dist(x, x,) + dist(x, , y) = dist(x, ang” (x)) + dist(ang” (x), ).
In case the representativg of x andy coincide, the distance is simplified as
dist(x, y) = dist(x, X,) . Sincedist(x, x,) anddist(x,, y) are within the interval [0, 1],
the normalized form oflist(x, y) occurs by dividing it with 2. For example, assume
two valuesx = ‘USA’ andy = ‘Europe’ from the dimensiobocationas seen in figure

Continent

1. The ancestoxy of X is anCouy (X) ='America’. Assumedist(x, xy) is computed

from the percentage family functiordist(xy, y) is computed through the first formula
from the path family functions where the weightadtbrswy andwy, are set to 1. The
distance betweexandy becomeslist(' USA', ‘Europe)= (dist(X, xy) + dist(xy, y))/2 =
(dist" USA’, ‘America) + dist(‘ America’, ‘Europe))/2 = (1/2 + 2/3)/2 = 7/12.

b) The representative of a group is a descendda representative of a group can be

selected with respect to the descendants of thepgnderex belongs. For example,
consider countries whose representatives can betedlamong their cities, based for

instance on the major airport or the highest pdmnaln case the representatifg)

is a value from the domain &f (i.e.,r(x) picked explicitly from the setﬂesg.f: (X) or

by applying amin or maxaggregation over the scmsg.f: (X)), the distance between

and r(x) can be any function from the families of pathrgeatage or aggregated
functions. In case&(X) is an arithmetic type value (i.e.,samor count aggregation
function applied over the sndaes¢: (X)), the distance betweenandr(x) can be any

simple arithmetic function such as the Minkowsknefe is a special case where the

representative(X) is identical to the actual value xfThus, the distance is expressed
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as a summation dafist(y, yx) anddist(yx, X), whereyy is the representative gffrom
the levelL, as shown in figure 2. Therefore, the distadis#(x, r(x))=0. Formally this

is expressed as:

dist(y, y,) +dist(y, ,X) _ dist(y. f (descy (y))) +dist(f (des? (¥)). %)
2 2

where the denominator is set to 2 for normalizateEasons. For example, assume two

dist(x,y) =

values from the hierarchiyocation x="USA’ and y="Europe’, where the descendant

of y is selected asﬁ(desqL:(y)) ='UK'. Assume the distance betwegnand its

_[des¢:(y, )
| desc” ()|

percentage family functions. The distance betweandyy is computed through the

descendanyy is computed through the formuthst(y, , y) from the

first formula from the path family functions witky, andwy set to 1. Consequently, the
distance between x and y becomes  dist( USA',"Europe) =
dist(y, y, ) +dist(y,,x) _ dist( Europe;'UK') +dist( UK','USA") 11+46 5

2 - 2 2 6

In the special case whereis a descendant of the above formula is simplified

as:dist(x,y) = dist(y,y, )

3.3. Distance Functions between two Cells of Cubes

In this section we describe the distance functibas can possibly be applied in order
to measure the distance between two cells frombe.cAssume an OLAP cul@
defined over the detailed sche®@a [L:°, L., ..., L0, Mi°, M2, ... M), whereL is

a detailed level an¥® is a detailed measure. In addition assume twa éeln this
cube,c; = (114 124 .., I meh, met L, myY) ande = (144 1A . 1A M me
my2), whereli, [i? € dom(L®) andm?, m? denote the values of the corresponding
measureM;® . The distance between two cedisandc, can be expressed in regards to
a) their level coordinatedi(Li*, Li®) and b) their measure valuégM;*, M. In other
words, dist(c, ¢o)= f (di(Li}, L), di(Mi*, Mi?). The functionf can possibly be (a) a
weighted sum, (b) Minkowski distance, (c) min or) (proportion of common

coordinates.
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3.3.1.Distance functions between two Cells of a Cube &sg®d as a Weighted Sum.

In this category the distance between two cejlsc, wherec;, ¢, € C can be

Swd, (7)Y wd,(m,m?)

expressed through the formula'= + , wherew; and

n

PRV Zmlw

i=1 i=1

W are parameters that assign a weight for the ldyebnd the measuré/;

respectivelydi(li}, 1;%) denotes the partial distance between two valfiéseodetailed
level L;° from dimensiorD; anddi(m®, m?) denotes the partial distance between two
instances of the measuM’. Regarding the distanca(li}, I}, this is expressed
through the various formulas from the section 3.hicw describes the possible
distance functions between two values from the s&wel of hierarchy over a
dimension. The distancd(m®, m? between two instances of a measure can be
calculated through the Minkowski family distanceemtm?, m? are of arithmetic
type, or through the simple identity function irseay!, m? are of character type. The
above formula is a general expression of the distabetween two cells.
Simplifications of this can be applied. For instanthe distance of two cells can be
calculated only with respect to the coordinates define each cell and without taking
into consideration the measure values of each icell, by omitting from the above
formula the second fraction. Moreover, in casepasial distances are normalized in
the interval [0, 1] therf, expresses the overall distance between two cefinalized

in the same interval [0, 1]. For example, assuneewant to compute the distance
between cellsc;, ¢, as shown in figure 3.3. Both cells consist of twmehsions
(Time, Locatiol, where their hierarchy levels can be seen inrédgdil, and contain
one measureSales. In the above formula we set the weight factdrhe dimensions
(w) and the weight factors of the measuras)(equal to 0.5. The distance between
dimensions is computed according to the funcfigm that takes into account the
length of the path of the hierarchy. The distanegvben the measures is computed
through the normalized Manhattan distance functionaddition, assume that the
overall maximum and minimum values of the measalessare 10 and 1 respectively.
With the above settings we obtad{c;,c,)-

w* d(Month, , Month, ) + w* d(Country, ,Country, ) . w'*d(Sales ,Sales)) _

!

W+ W w




29

05*1/3+05*1/3  05* (14~ 3|/[10-1])

=4/9
0.5+0.5 0.5
Month Country Sales
G| Mayr2000 Us4 4
Month Country Sales
Cy Apr/2000 canada 3

Figure 3.3 Instances of celigandc;

To compute the distance{Month,,Month, ) andd(Country, ,Country, )we refer

the reader to the figures 3.4 and 3.5. In figurkev@e see that the length of the path
between the nodesandicais 1, and the length of the path between the nbdewl

1+1 1
Ica is 1 again. According to the functidpun d(Month,,Month, )———5 In a
similar manner, by using the information that desivfrom the figure 3.5
1+1_ 1
d(Country,,Country, )=——=—_.
6 3
Dimension TIME
ALL ——All level
lca |
» Year level
a b .
Apr/2000 May/2000 Month level
d/Apr/2000 d/May/2000 Day level

Figure 3.4 Lattice of the dimensi@iME for the values of cells of figure 3.3
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Dimension TIME
ALL ——All level
Ica
Continent level
a b
us4 Canada County level
New York Toronto city level

Figure 3.5 Lattice of the dimensitW® CATIONfor the values of cells of figure 3.3

3.3.2.Distance functions between two Cells of a Cube &sq®d in regards to the
Minkowski Family Distances.

In this section we describe the possible distanoetions between two cells from a

cube by making use of the Minkowski family distasicén general the Minkowski

distance is defined via the formullap[(x,...,xn),(yl,...,yn)]zD/Zdi(xi,yi)p :
i=1

wheredi(X;, yi) denotes the distance between the two coordixatesly; of two given
pointsx andy. Assume two cells; = (4, 154, ..., 1.5, mt, mt, ..., myt) andc, = (142

1%, ... 102 i, m2, ..., my), wherel%, ;2 € dom(L;) andm*, m? denote the values of
the corresponding measubM;. The Minkowski distance can be applied in this
category, by substituting point coordinaiesndy; with cell coordinates, thug and

li%. In general, in the Minkowski family distances {b&rtial distances are defined as
di(x, vi)=K - yil. When applying the Minkowski distance over celbiinates, then
the partial distancedi(l;*, I;%) can be expressed as the distance between twesvalu

from the same level of hierarchy as described atice 3.1.

So far, the distance between two cells is descrily@g in regards to their level
coordinates. However, the distance between twa calh also be expressed by taking
into consideration the instance values of the céllas their measure values. The

Minkowski family distances can be applied, as wialliegards to the partial distances



31

d(m*, m?). Therefore, the distance between two cells caexpeessed by adding the
equivalent two formulas. Depending on the valug@ dfie Minkowski distances over

two cells are defined as:

L = Zn:di (112 + Zm:di (m*,m?), 1-norm distance
i=1 i=1

L, :\/_n (d (1,*,1.%))? +\/Zm:(di (m*,m?))?, 2-norm distance

L, =§»/Zn‘,(o|i (.51,%))° +r\»/zmj(o|i (m*,m?))" , p-norm distance

i=1

L = LILQO(S/Zn: (d (lil’liz))p] + Eﬂ(i/i (d, (ml’ mz))pJ =

max(d, (1,517, d, (1,1 1,%). .. d, (,11,2)) +

infinity norm distance or Chebyshev distance.

3.3.3.Distance Functions between two Cells of a Cube &sgmd as the Minimum
Partial Distance.
In this category the distance between two azlts (1%, 1%, ..., [,5 mt, mpt, ..., myY)

andc, = (114 15 ..., 1.4, m?, my, ..., myY) can be expressed as:

min(d, (%)} + min{d (m*,m?)} = min{d, (1,",1,7),d, 0,1, 1,)....d, 01,11, 2)
£ minfd, (M, m?),d,(m,’, m?),....d,,(m,", m,?)}.

Therefore, the distance between two points is esgae as the minimum distance of

their level coordinates plus the minimum distant#eir measure values.
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3.3.4.Distance Functions between two Cells of a Cube &sg®d as a Proportion of
Common Coordinates.

In this category the distance between two cells lmarexpressed as a proportion of

their common values of their level coordinates #rer measure values. Therefore,

the distance between two cetis= (1%, 154, ..., 1,5, mt, my', ..., myY) andc, = (142, 1%

i m? m? ..., myY) can be expressed through the formufa

coun(li1 = IiZVi €{1,2,...n}) N coun(m1 = mZVi e{1,2,....m})
n m

. The above formula states the

distance between two cells as a summation of tactibns. The first fraction is the
number of level values that are same for both céilsded by the number of all level
values that describe a cell. The second fractigmesses the number of measures that
have the same value for both cells divided by thmlver of all possible measures in a
cell.

3.4. Distance Functions between two OL AP Cubes

Assume two OLAP cube€ andC defined through the same detailed schem3 [
L2 ..., L M ML, Lo MyY], whereL® is a detailed level ant¥® is a detailed
measure. In addition assume that c@beonsists of cells of the fornc = (I, I, ...,

ln, My, My, ..., My) and cubeC’ consists ofk cells of the fornt’ = (4, I2, ..., In, M,
my, ..., Mn), wherel;, Ii € domL?® and m, m denote the values of the
corresponding measuh’ . In general the two cubes can be of differentlicatity,
i.e., | # k. Assumedist(c, c') wherec € C andc’ € C’ denotes the distance between
two specific cells according to the various categoof section 3.3. The distance
between the two cubes can be expressed as a Sgrhéise partial distancedist(c,
c’). In other wordddist(C, C')= f (dist(c, c’)) is a function of the partial distances
dist(c, ¢’). The functionf can possibly belong to one of the following faesli (a)
closest relative, (b) Hausdorff distance, (c) aght#d sum, (d) Minkowski distance,
and (e) Jaccard’s coefficient. Specifically, dis®rfunctions that fall within the
families (c) and (d) include th@ell Mappingmethod which is described in the next
subsection. The rest distance function families.(ita), (b), (e)) do not include the

cell mapping method.
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For example, assume we want to compute the distagtoeeen the two cub&3UBE;
and CUBE, as shown in figure 3.€UBE; consists of three cells where@4BE;
consists of 5 cells. Each cell in both cubes cdésg$ two dimensions in different
levels of hierarchy and the meas@ales Specifically, each cell aEUBE; is of the
form c = (Day, City, Sale$ and each cell c€UBE; is of the formc’ = (Year, Country,
Sales. The distance between the two cubes can be esqutds/ applying a functioh

over the partial distancebst(c,c’) of the cells of the two cubes.

CUBE, CUBE,
Day  City Sales Year Country ~ Sales
)| 3/5/2000 | London 3 c| 2000 Spoh 3
cy| 37572001 | New York ¢ o 2000 UsA &
e, /572001 | New York 7 G| 2001 Canada 3
ol 200! UK )
o 2000 UsA 9

Figure 3.6 Instances of two cubes

3.4.1.Cell Mapping and Categories of Distance Functionsading to it

In this section we introduce the method that isduseorder to map the cells of one
cube to the cells of another cube. We refer to tieshod a<Cell Mapping For two
cubesC; andC,, the simple mapping of their cells includes tharertion of every
cell of the cubeC; with one cell of the cub€,. Intuitively, the mapping of a cell in
cubeC; tries to capture the discovery of the “closestsae representative” of this
cell in cubeC,. The “closest representative” is the cell of theC, with the less
distance among the dimension values with the dethe cubeC;. In principle, the
Cell Mapping method can be thought of as a relatan connects the cells of a cube
to the cells of another cube (i.e., one can consdeeral candidate “representatives”
of a cell). However, in our setting, this relatisnreduced to a function, since we are
interested in mapping each cell from the first cti@nly one cell from the second
cube. This is done for reasons of simplicity arldved the elegant definition of cube
distances (see next). We impose the restrictiontbigafunction is total, i.e., each and
every cell from the first cube is mapped to a oélthe second cube. We do not
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require that the mapping is 1:1 and onto; thushénsecond cube there might be a cell
in which more than one, or, no cells at all, frdra first cube are mapped to it.

As an example assume the cubes that are presentieel igure 3.7. In figure 3.7 (a)
the cellsA, B, C of CUBE;, are mapped to the cells D, H of CUBE; respectively.
Moreover, in the same figure the cdfisG of CUBE, are not mapped with any cell of
CUBE,. In figure 3.7 (b) we can observe that the Eslif CUBE, is mapped with two
cells of CUBEL1

The cell mapping method needs to compute the disgahetween the dimensions of
each cell of the first cube with the dimensionsrgveell of the second cube and

ignoring the distance between the measures. Jioe iflistance between two cetls

c, is expressed as(di(Li, Li%), di(M;%, M%) then the mapping method considers only
the di(Li%, Li®). Thus, each cell of the first cube is mappedh® tell of the second

cube with the lesd(Li*, L) distance.

In our taxonomy, two distance functions betweenesulmake use of the cell mapping
method. These are (a) distance functions expraassesjards to th€losest Relative

and (b) the distance function expressed by Haukdmtiance. After the mapping has
been accomplished, the distances between the mappedre computed. Finally, the
computation of the distance between the two culnesives the distances among the

mapped cells.

The distance functions that can be used in ordeomnopute the distance between two
OLAP cubes can be divided into two categories. fliis¢ category involves distance
functions that include the cell mapping method. TWexond category contains
distance functions that do not include the cell pwag method. Following, we
describe each distance function and provide itdyacal formula. The distance
functions of the first category are tiidosest Relativend theHausdorff Distance
(section 3.4.2) that include the cell mapping mdththen, the category of families

that do not consider the cell mapping method iir tthefinition, include theNeighted
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Sumfunction, theminkowski familyof distance functions, th&accard’s Coefficient

and theminimum of distancdsinction.

CUBE; CUBE»

A D
>

O w
I O N

CUBE, CUBE,
D
:::2:5
~, F
G

H

O m>»

(b)

Figure 3.7 (a) cells of cul@UBE; mapped to the cells of cuJBE; (b) cells of
cubeCUBE; mapped to the cells of cuk#JBE,

3.4.2.Distance Functions that Include Mappings

This subsection contains the description of theéadee functions that involve the Cell
Mapping method. These distance functions arebsest Relativand theHausdorff
and are described as follows.

Distance function between two cubes expressedgards to the closest relativén
this category the distance between two cubesndC’ is expressed as the summation
of distances between every cell of a cube withnttust similar cell of another cube
through the formula:

Zk: (dist(c,,c"))
dist(C,C") == ” ve' | disty, (¢ ,¢') = min{dist,, (¢, ¢)} where distym

denotes the distance of two cells excluding thd¢adie of their measures. The
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vc' | disty, (¢,¢") = min{disty,, (¢, )} part of the above formula reveals the cell

mapping method. Each one of theells from cubeC is mapped to the cell of the

cubeC' that has the minimumisty, from it.

As an example, we will analyze the computationhs tlistance between the cubes
CUBE;, andCUBE, shown in figure 3.8. The first step is to map tledls of the cube
CUBE, to the appropriate cells of the cuB&BE,. In order to simplify the example
the computational part of the cell mapping meth®dot described here, but the cell
mapping is denoted in figure 3.8 through arrowsvieen the cells of the two cubes.
The distance function used in this example forghgose of computing the distance
between the cells of the two cubes is the weigkted. The weight that was used is
0.5, equal for both the dimensions and measuresaddition, the distance function
used to measure the distance between the dimerisitimsf,a, function. The cellg;,

C2, C3, are mapped to the cellg cs, andcs respectively. According to this mapping, in

order to compute the distance between the two ¢cubesneeded distances between

cells are:
* * * _ —
d(cy, c)= 05*1/6+ 05 1/6+0.5 (I5- 5|/]10 1|):1/6+0=1/6
0.5+05 0.5
* * * _ —
d(Cy, G3)= 05*1/6+ 05 1/6+0.5 (16— 6]/[20 1|)=1/6+0:1/6
0.5+05 0.5
* * * _ —
d(cs, G3)= 05*1/6+ 05 1/6+0.5 (16— 7|/]10 1|)=1/6+1/9:5/18
0.5+05 05

For the above computations we refer the readendgdigures 3.4 and 3.5 where the
hierarchies of the dimensioh®©CATIONand TIME are presented. With the above
distances, we can now compute the full distancevdmt the cube€UBE, and
CUBE; through the first formula of thelosest relativédamily functions:

d(c,,¢;) + d(c,,C5) + d(cs,C5) _1/6+1/6+5/18

d(CUBE;,CUBE)=
( 1 E) 3 3

=0.319444
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CUBE, CUBE,
Day  City Scailes Year Country  Sales
o 352000 | London 5 c 2000 | 3
cy| 37572001 | New York ] e 2000 UisA o]
€y 4/5/2001 | New York 7 G| 200 Canada &
el 2001 UK S
G 2000 a4 g
Cell Mapping

Figure 3.8 Instances of two cubes and the mapditigea cells

Distance functions between two cubes expressed dusddrff distance In this
category the distance between two cubes can beegsqn by making use of the

Hausdorff distance [HUKR93]. The Hausdorff distance betwés&a cubes can be

defined adH(C, C) = maxh(C,C’), h(C’,C)) where hC,C’) = Tég){ rcn!:n{ dist(c,c )}}

anddist (c, ¢’) is the distance between two cetl@ndc’ from the cubesC andC
respectively. The function(C, C') is called thedirectedHausdorff distance fror@ to
C’' and the distance measured is the maximum distaheecubeC to the“nearest”
cell of the other cub€’. The Hausdorff distance is the maximumhgC, C’) and
h(C’, C).

In the Hausdorff distance function the cell mappmgthod is bidirectional. That
means that except from the mapping that we haveniereal in the closest relative
function we need an extra mapping and that is tappimg from the cells of cul@

to the cells of Cub€.

When the bidirectional mapping is completed, weawbtwo sets of mapped cells. In
each set, for every pair of mapped cells, we compheir distance considering now
their measures as well. Thus, essentially, we hesxesets of minimum distances
between cells, the set of minimum distances froenaklls of cubeC to the cells of
cubeC’ and the set of minimum distances between fromcilés of cubeC’ to the
cells of cubeC. From each of the two sets we pick the greatesanice and finally

from these two distances we pick the greater one.
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To make things more clear an example follows. Assagain the cubeSUBE,; and
CUBE; as shown in figure 3.9. The figure 3.9 also pres#re mapping from the cells
of CUBE, to the cells oCUBE,. In figure 3.9 we can observe the same cubeshand t
mapping from the cells offUBE; to the cells of CUBE;.. According to this
bidirectional mapping the two resulting sets of imam distances are:

Si{d(c,.¢,).d(c,, 6 ).d(c;, Cs)}

S{d(c,,c;),d(c,,c;),d(cy,C,),d(c,,c,),d(cg,Cl)}

The distances of th§, are already computed on a previous example, soweronly
need to compute the distancesSaf The distanced(cs,c3),d(c7,c;) coincide with the

distancesl(cs,Cs),d(c1,¢7) respectively. The computations below use the sdistance

functions between values and cells and also the sa@ght factors like the previous

example.
d(ca, )= 05*1/6+ 05 1/6+ 05*(|3— 7|/]10-1)) —1/6+4/9=11/18
05+05 0.5
d(ce, 0)= 05*1/6+ 05 3/6+ 05*(|8— 6]/[10-1)) —4/1242/9=10/18
05+05 0.5
d(cs, C3)= 05*1/6+ 05 1/6+ 05*(|9- 7|/|10_1|)=1/6+2/9:7/18
05+05 0.5

Now, the Hausdorff distance between the cuBedBE, and CUBE,; is equal to the
next formula:

d(CUBE,,CUBE)=max max S}, maX S;}}=

max max1/6,1/6,5/18}max11/18,5/18, 1/6,10/18,7/18}}=
max5/18,11/18}=11/18.

CUBE, CUBE,
Day  Clity Sales Year Country  Sales

| 3/5/2000 | London 5 e 2000 USA 3
cy| 3/5/2001 | New York 2] | 2000 LsA 5]
5| /572001 | New York 7 Gl 200 Canada 8
ol 2001 UK 3

A o 2000 US4 9

Cell Mapping

Figure 3.9 Instances of cub€8/BE;, andCUBE, and the mapping of the cells of the
cubeCUBE;to the cells of the cub@UBE;
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3.4.3.Distance functions that do not include Mappings

This subsection includes the distance functions doa’t include mappings. These
functions are th&Veighted Surfunction, the Minkowski family of distance functis,
the Jaccard’s Coefficientand theminimum of distancesunction. The analytical

formula of each function is described bellow.

Distance functions between two cubes expressedvwasgited sumin this category
the distance between two cubes can possibly beessgd as a weighted sum over the

distances between each cell from one cube to ewellyfrom the other cube.

| Kk
w; dist(c, ')
i=1 j=1

Therefore, the distance can be expressed throwgfotmula:f :

k
Wi
=1

|
i=1 j
wheredist(c, ¢’)is the distance between a cell from c@t a cell from cub&’ and

w; denotes the weight factors assigned to each distan

Distance functions between two cubes expressedghrblinkowski family distances
The distance between two cub&sand C' can be expressed by making use of a
distance function from the Minkowski family. Thestince betwee and C' by
applying the Minkowski family distances, dependargthe values of the paramepgr
are defined as:

L=2,

Ik
dist(c,c'), 1-norm distance
i=1 j=1

i=1l j

Ik
L, = \/Z dist(c,c')? , 2-norm distance
i =1

k
’i/ dist(c,c')? , p-norm distance
i=1 j=1

Ik
L, =lim pi/ dist(c,c)’ | =
e ]

max{dist(c, ,c', ), dist(c,,c", ),...,dist(c,,C} ),...,dist(c ,c} ), dist(c,,C, ),...,dist(c , €' )}
infinity norm distance or Chebyshev distance.

LP
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Distance functions between two cubes expressedatgartl’s CoefficientIn this
category the distance between two cubes can bessqu in regards to tlaccard’s
coefficient [ZADBO06]. The Jaccard’s coefficient is defined as:

ICAC]

dist(C,C") =1- :
|CuC|

The distance is based on the ratio between ttinedities

of intersection and union of the cub8sandC'. In addition, based on the Jaccard’s
coefficient the distance between two cubes canxpeessed by applying the Dice’s
coefficient. For two cubesC and C' the Dice's coefficient is defined as:

2|CC|

distC,c') === ~1
[C[+[C]|

. This formula expresses the similarity between twbes as

the ratio between the cardinality of intersectio he summation of cardinalities of
the two cubes.

The Minimum of distances Functionother option is to express the distance as the
minimum distance among all possible distances levtbe cells of the compared
cubes. Therefore the distance betwedd and C is expressed as:
dist(C,C') = min{dist(c,c')|ce C,c'e C}, wheredist(c, c’) is the distance between a
cell from cubeC to a cell from cubeC'. In case the two cubes are disjoint i.e.,
CnC'=0, thendist(C, C’) is a positive number, whereas if the two cubegeha

common cells i.e.C N C'« / Othendist(C, C’) is zero.

As a simple example, assume the two cubes fromdigw and ignore the arrows that
denote the cell mapping. According to thenimum of distancesinction, the distance
between the two cubes is computed through theviiig formula where j denotes the
any cell fromCUBE;:

d(CUBE,,CUBE,)= mjin{d(cl,c]. ),d(c,, ¢, ). d(c,,C,)}Vj e {45..8} =1/6
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CHAPTER 4. IMPLEMENTATION AND
EXPERIMENTS

4.1 Implementation Issues
4.2 User Study for Distances between two Valud3infensions
4.3 User Study for Distances between two OLAP Cubes

This Chapter includes the technical part of thestt and also the user studies that we
conducted in order to examine the user prefereandbe distance functions that are
described in chapter 3. Thus, in section 4.1 sévienplementation issues are
examined including a short description of the impdaited classes and their UML
diagram. In section 4.2 we present the findingsthef first user study that we
conducted in order to examine which of the distafwrections between values of
dimensions is most preferred by the users. Finallysection 4.3, we provide the
results of the second user study that is conduetiédg into account the findings of
the previous section. In the second user studysisg@w their preference between the
closest relativeand theHausdorffdistance functions.

4.1. Implementation Issues

In this section we will present the implementatipart of this thesis, which is
organized as follows. In subsection 4.1.1 we dbsciihe architecture of the
application and the background of the databasdlten®atabase Management system
that was used and in subsection 4.1.2 there isUkk. diagram and a short

description of the implemented classes.
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4.1.1.Application Architecture

This section contains the description of the immated application for the
comparison of two OLAP cubes that we d@libe Comparison OLARCuUCOOL)
tool. The application takes as input two OLAP culvethe form of two queries and
returns their distance taking into account the cdete distance functions, firstly
between the values of the dimensions, secondlydmivihe cells of the two cubes
and finally between the cubes. The code is writteFava and it is implemented in the
NetBeans IDE 6.5.1.

The Database Management System (DBMS) that is issdte MySQL Server 5.1.
The application connects to the DBMS using theadtrMySQL-AB JDBC 5.1.7. The
application interacts with the DBMS by sending SQleries and retrieving the
resulting tuples. Further information about theadanhd the database schema that is
used are described analytically in section 4.2.

Qutput

input fila

cube2

cubel Standar

s
2,
$

Database

resource file

Figure 4.1CuCOOLTool architecture

4.1.2.UML Diagram and Basic Description of the Implement#asses
The UML Diagram of the application is shown in thgure 4.2. The part of the
implementation that concerns the distance functionkides the classéSube_func

and between_celland the interfacéunctions_between_valuek addition, there are
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several more classes (egpath Highway_ descetc) that implement the function
intercomput@ of the interfacdunctions_between_valuyeaccording to the distance
function between values that we select. The classveen_cellamplements the
weighted sunfunction from the functions between two cells abes. TheCube func
implements theell mappingmethod as well as thdosest relativeand theHausdorff

distance functions.

There are also some classes that are needed ¢drdtmmation about the dimensions,
their hierarchies and the levels of each hierarchese classes are nambdn,
Hierarchy andLev. Specifically, the clasllierarchy contains objects of typeev. So,
each object of typeHierarchy denotes a hierarchy and contains its levélev (
objects). The class nam&im is the classn which the names of the dimensions are
stored. Each objedim can contain manydierarchy objects but eachierarchyis

related to only one dimension.

Parsing.As we mentioned in 4.1.1, the input of the appiaraiare two OLAP cube
gueries. These queries are written in a specifimfm a text file called “Cubes.txt”.
The form of these queries is shown in figure 4.8e Tagnameis followed by the
name we give to the cube and the Ssjectis followed by the attributes that we want
to retrieve their data. The tdgct is followed from the fact table of our database and
together with the information of the talgnensionghese will create the “From” part
of the SQL query. The tapins_wherecontains the attributes from the dimension
tables that we want to connect with the respediveign keys of the fact table to
achieve the join. The tagshereandvalues_wherecontain the where conditions of
the query. The constraint here is that the ordé¢h@finformation in the&alues_where
tag must follow the order of the information in thweretag. For more than one
where conditions the tagdd_wheremust contain the logical connectives (i.e., and,
or) in the same order as the conditions in theiptsvtwo tags. Finally, thgroup_by
tag contains the attribute for the group by conditiThe resulting SQL query of the
figure 4.3 is:"select ag_levell, ed levell, houes wveek from age2, education2,
adult where ag_levelO=adult.age and ed_levelO=adluitation and ag_level2="27-

36" and ed_level2="Secondary” group_by ed_levelQ".
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* Parser
pm | 9 1. Main
parse_cubes()
1 “parse_hierarchies()
1
creatw_(q
=7 0..*
0.* N\
Hierarchy Cube_Func Cube_insertion
1
Between_Cells
0..*
Lev
: <<Interface>>
Highway_r_desc functions_between_values fdepth
E¥intercompute() Bintercompute() < E¥intercompute()
—
/ /7 g N V\\\\ Local_on_values
/ \ AN o L E¥intercompute()
percentage / / \ \ \
S¥intercompute() / / \ \ \ Low_lev_max
s \ AN S¥intercompute()
Highway_r_anc fpath Highway_desc Highway_anc Low_lev_count
E¥intercompute() S¥intercompute()| |E¥intercompute()| |E¥intercompute()| | E¥intercompute()

Figure 4.2 The UML Diagram of tHeLAP cube comparisoapplication

To parse a query given in the form as shown irfithee 4.3, a parser is needed. For
this reason the clagzarserwith the functioncube_parse) is created. Moreover, an
extra class namedube_Insertions created in order to keep the parsed valueadf e

query. Finally, to create the final SQL query, asslcreate gis constructed. This
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class uses the information that is storeube_Insertiorobjects in order to create
the appropriate SQL queries.

name cubel

select ag_levell ed_levell hours_per_week

fact adult

dimensions age2 education2

joins where ag_levelO=age ed_levelO=education
whereag_level2 ed_level2

add_whereand

groupby ed_level0

Figure 4.3 Form of a query that is given as inpuhe application

Apart from the queries, the application must beegialso the hierarchies of the
dimension tables of the database. The file “hidriactxt” serves this purpose and an
example of such a file is presented in the figure th the “hierarchies.txt” file, the
word that follows thenametag denotes the name of the hierarchy and it naisticle
with the dimension table of the database. For examp figure 4.4 age2 is a
dimension table in the database. The word thabvidItheFK tag denotes the foreign
key of the dimension table in the fact table, amel words after the tagvelsdenote
the levels of the hierarchy with the constraint teery level must be an attribute of
the dimension table. The process of parsing fa tie is done from the function
parse_hierarchieg in the Parser class. This information is stored in the classes

HierarchyandLev.

Name age2

FK age

Levelsag leveld ag_level3 ag_level2 ag_levell ag_levelO
Name education2

FK education

levelsed leveld ed level3 ed level2 ed levell ed_levelO

Figure 4.4 A caption from the file “hierarchies’txt
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4.2. User Study for Distances between two Values of Dimensions

In this section we describe a user study we cordufctr discovering which distance
functions between two values of a dimension seebetmore suitable for user needs.
The experiment involved 15 users out of which 1 gnaduate students in Computer
Science and 5 that are of other backgrounds. Inetsteof the paper we refer to the set
of users with computer science backgroundJasrs_csthe set of users with other
background a&Jsers_nomand the set of all users independently of theakgeound

asUsers_all

In the experiments we used the “Adult” real dath aecording to the dimension
hierarchies as described in [FUWYO05]. This dataeetains the fact tablédult and 8
dimension tables which are described in Table E fidure 4.5 shows the dimension

hierarchies of the dataset “Adult” and the figuré ghows the database schema of the

dataset.
Table 4.1 Adult dataset tables
Table Value Type # Tuples # Dim. Levels

Adult fact 30418 -

Age Dim. Numeric 72 5
Education Dim. Categorical 16 5
Gender Dim. Categorical 2 2
Marital Status Dim. Categorical 7 4
Native Country Dim. Categorical 41 4
Occupation Dim. Categorical 14 3
Race Dim. Categorical 5 3
Work Class Dim. Categorical 7 4
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|
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Figure 4.5 Dimension hierarchies of the dataseltadu
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education
65" ed_|ewelO
ad_lewvelq
ed_|evel2
ed_|ewvel3 A
- marital_status
agez ad_|eveld
_ <?5-' ag_leveld & ms_lewveld
ag_lewvall ms_lewel 1
ag_leveIZ ms_lewel2
ag_lewveld ms_lewel3
ag_leweld
adult
& i
age
work_class
education
marital_status occupation
work_class: ecupation
- R 45" oc_lewveld
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g _|evel3 native_courtry
salary
race?
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[ no_leveld ra_level2
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n_lewel2
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Figure 4.6 Database schema for the Adult dataset

The purpose of the experiment is to assess whistardie function between two
values is best in regards to the user preferen€ash user was given 14 case
scenarios. Each scenario contained a referenceasuba set of cubes, which we call
variant cubes, that occurred by slightly altering the refiee cube. The 14 scenarios
included different kinds of cubes in regards tovhkie types and the different levels
of granularity. For each reference cube which wasdomly selected, the variant

cubes were generated from the fact table by ayettre granularity level for one
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dimension, or by altering the value range of tHerence cube. For instance, assume
a reference cube containing the dimension ledgls_level, Education_levelunder
the age interval [17, 21]. According to the firgpé of modification, a variant cube
could be generated by changing the dimension levélge level or Age_leve), or
changing the level of the Education Dimension. Adow to the second type of
modification, another variant cube could be gemelrdty changing the age interval to
[22, 26] or to [17, 26]. Among all possible var@is of the reference cube we
manually chose the set of variant cubes such et ef them was most similar to the
reference cube according to a distance functiorortter to observe which distance
function is preferred by users depending on the typdata of the cubes, we have
organized the 14 scenarios into 3 sets. The fastaensists of cubes containing only
arithmetic type values (5 scenarios). The secohda@esists of cubes containing only
categorical type values (2 scenarios). The thitdceasists of cubes containing a
combination of both categorical and arithmetic tyadues (7 scenarios). A sample
scenario can be seen in figure 4.7. At this figine cube with the bolded outline is
the reference cube. Due to space limitations allsitenarios used for the user study

are not presented here but can be found in thendppat the end of this thesis.

Cubeb Cube6_1

ed_levell nc_levell salary ed_levell nc_levell s alary

Bachelors Central-Europe  <=350K Assoc-acdm Western-Europe  <=50K

Senior-5econdary Eastern-Europe  ==30K Sth-6th Southern-Eurcpe =30K

Junior-Secondary  Southern-Eurcpe <=50K Masters Central-Europe  <=50K

Assoc-acdm Western-Europe  <=50K Senior-Secondary Western-Europe  <=50K
Some-college Western-Europe  <=50K

Cubeb_2 Bachelors Central-Europe  <=50K

ed_levell nc_levell salary

Masters Eastern-Asia =50K Cubet_3

Masters Middle-East =50K ed_levell nc_levell salary

Senior-5econdary  Southeastern-Asia =30K Bachelors Central-Europe  =50K

Bachelors Southern-Asia 50K Senior-Secondary Eastern-Europe  »50K
Assoc-voc Southern-Europe =30K

Cubeb_4 Bachelors Western-Europe  »50K

ed_level2 nc_levell salary

University Central-Europe  <=50K

Secondary Eastern-Europe  <=30K

Secondary Southern-Europe <=50K

Assoc Western-Europe <=30K

Figure 4.7 Sample scenario
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Table 4.2 Notation of distance functions used sdkperiment

Family Abbr. Distance function name
Local oM Manhattan
Aggregation OLow,c With respect to a lower level of hierarchy where
faggr=count
OLow,m With respect to a lower level of hierarchy where
faggr= max
Hierarchical Path  dicap Lowest common ancestor througkn
OLCAD Lowest common ancestor throufghpn
Percentage 0% Applying percentage function
Highway OAnc With respect to an ancestqr
ODesc With respect to a descendant
OH.Desc Highway, selecting the representative from a
descendant
OH.Anc Highway, selecting the representative from gn
ancestor

In each scenario, the users were asked to selectatiant cube that seemed more
similar to the reference cube based on their patsmiiteria. The distance functions
that have been used in the experiment are showiale 2, where the first column
shows the family in which each distance functiotobgs to according to Chapter 3.
In the second column there is an abbreviated nameaich function. To compute the
distance between two cubes, tGsest Relativalistance function is used (section
3.4.2). The distance between two cells of cubethesweighted sum of the partial

distances of the two values, one from each ceth ali weights set to 1 (section 3.3).

Table 4.3 Top three most frequent distance funstfoneach user group.

Users_all Users_cs Users_non
dicap 40.47% 38.57% 44.28%
dAnc 18.09% 20% 14.28%
OH.Desc 9.52% 10.71% 7.14%

The analysis of the collected data provides severdings. The first finding concerns
thetop three most preferred distance functiomsasured over the detailed data for all
scenarios and all users. It is remarkable thatapehree distance functions for each

of the user groups were the same and with the sadexing and specifically, these
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are thed cap, the danc and thedy pese The frequencies for each one of the top three
distance functions in each group of users is shiowrable 4.3.

The second finding conceritise most preferred function by users dependinghen t
type of data the cubes containd@ble 4.4 summarizes the result of the most #agu
distance function for each set of scenarios antl sat of users. We observe that for
the categorical type of cubes, all user groups prefer theap distance function,
whereas for tharithmetic and thearithmetic & categoricalsets, the functions that
users mainly prefer are tldgca p anddanc. More than one distance functions appear as
winners in Table 4 due to ties in the frequencgadurrences for each function.

Table 4.4 The most frequent distance function &mheset of scenarios.

Users_all Users cs Users_non
Arithmetic dAnc dLcAP, OH,Desa OAnc dLcap
C&tGgOI’iC&' 8|_C/_\‘p 8LCA,P 8LCA,P
Arithmetic &
Categorical dAnc dAnc dLcAPs Oanc

The third finding concerns theinner distance function per scenaribor every
scenario, we take into account the 15 occurrengesl lusers and see which distance
function is the most frequent. We call this funotithe winner function of the
scenario. The most frequent winner function wasap. The percentages were
35.71% for theJsers_allgroup, 35,71% for th&Jsers_csgroup and 57.14% for the
Users_nongroup. The most frequent function for 14 users ti@s o cap function.

For one user from thdsers_cgroup the most frequent function was e p.

The fourth finding concerns thdiversity and spreadf user choices. There are two
major findings: (a) All functions were picked bynse user and (b) there are certain
functions that appeared as user choices for allsusea user group. Specifically,
functions d.cap, dnpesc @nd danc Were selected at least once by users of group
Users_cs Similarly, functionsd cap, dLowm anddanc Were selected at least once by

Users_non
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The fifth finding concerns thenost preferred family of functionable 4.5 depicts
the absolute number of appearances of each distancton family per user group.
The most preferred family of distance functionshis Hierarchy Pathfamily, which
also contains the top one most preferred distanoetibn o.cap. Moreover, we
observe that the ranking of the distance functamilies was exactly the same for
each user group.

Table 4.5 Frequencies of preferred distances wehuh user group for each distance

family.
Local | Aggregation| Hierarchy Path  Percentage Highwa
Users_cs 1 9 69 9 52
Users_non 2 5 34 5 24
Users_all 3 14 103 14 76

The selection stabilitye.g., how stable are users answers at the sapstians) of
users was the sixth observation. Thelection stabilitywas determined by the
following results, where the f3and the 1% scenario were a reordering of tHéahd
10" scenario respectively. 4 out of 5 users from tbieos Users_non 6 out of 10
users from the set dfsers_cs(consequently, 10 users froosers_allset) selected
the same function for both of the two similar se@® The rest of the users selected

the same function for only one out of the two répeacenarios.

Summary Overall, the findings indicate that the most predd distance function is
thedcap, Which is expressed in regards to the shortest giad hierarchy dimension.
Apart from thed cap, the distance functionSan. anddy pesc Were widely chosen by
users. In addition, the most preferred distancetfan family is theHierarchy Path

family.

4.3. User Study for Distances between two Cubes

This second user study is a follow up of the presiaser study. In the previous user
study the overall observation was that the usee$epithed cap distance function
between two values of the same dimension. BasaHdi®mesult and also by setting as
the distance function between cells theighted sunfunction we set up the second
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user study such that we can examine which distAneetion between two cubes the
users prefer. Specifically, we try to find out whiidistance function among the two
functions that include theell mappingmethod (section 3.4.1) is most closely related
to the human perception. These two distance funsteme namely thelosest relative
and theHausdorffdistance function (section 2.4.2). The table 46w the distance
functions that were used in this user study

The user study contained 14 new scenarios. Eactascancluded 4 cubes namég

B, C andD. The cubeA in every scenario was the reference cube. Thes ugere
asked to order the rest of the three cubes fronmtbst similar to the less similar
when compared to the culde The cube®3, C andD were chosen such that one of
them was the closest to the culeaccording to theclosest relativefunction and
another was the closest to cubeccording to thédausdorffdistance function. The
remaining cube was chosen to be the most distam tubeA for both distance
functions. A sample scenario can be seen in figuBeln this figure the cube which is
filled with light blue color is the reference cubeue to space limitations all the
scenarios used for this user study are not preddmtee but can be found in the
appendix at the end of this thesis.

All scenarios were uploaded as jpeg pictures itanl page where users were asked
to complete an answer sheet and send it back ¥@awesmail. The url link of this page
was sent via a social network and also by emathatemail-list of the graduate

students of the Computer Science Department dilthieersity of loannina.

In order to test a user's answer reliability, ie 8" scenario the cubB was identical
with the cubeA. Moreover, the 18 and 14 scenarios were replicas of th€ &nd ¢'
scenarios respectively with a reordering on theiools of the cubes. This was done

in order to measure the user stability of theiricés.



54

A B
Age WorkClass Race Age | Work Class | Race
(levell) (levell) (levell) (levell)| (levell) |(levell)
52-56 |Gov White 27-31 |Gov Colored
52-56 |Private Colored 52-56 |Private Colored
47-51 |Self-emp White 47-51 |Self-emp White
52-56 |Without-pay |White 52-56 |Without-pay |White
C
Age | Work Class | Race
(level2)| (level2) |(levell)
47-56 |With-Pay Colored
47-56 |With-Pay White
47-56  |Without-pay |White
Scenario 1 D
Age | Work Class | Race
(levell)| (levell) |(levell)
47-51 |Self-emp White
52-56 |Without-pay |White

The 1Zfirst scenarios can be divided into three groug®ating to the weights in the
distance function between cells. The first 4 scesaronsist of cubes that they do not
include measures. We refer to this group asrnbemeasuregroup. The next 4
scenarios consist of cubes that include measuresavthe weight factors on measures
and dimensions in the functidmetween cellsaare not equal. Specifically, assuming
that cubes consist ok dimensions and measures, the weight factors for the
dimensions was set to k&l+k) and for the measures was set td/fek). We refer to
this group as thaot_equalgroup. Finally, the last four scenarios consistubes that
include measures and the weight factors on the unesignd on the dimensions in the

between cellglistance function are equal and set to 0.5. Wer ttefthis group as the

equalgroup.

Figure 4.8 Sample scenario
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Table 4.6 The distance functions that are useldarsécond user study

Hausdorff
Closest relative
Distance function between two cells of cubes  weadigum

Distance functlo_n betv_veen two values of a SLCA.P
dimension

Distance function between two measures$ Manhattan

Distance functions between two cubes

The number of users that responded with an answest svas 39. Two from the 39
users did not choose the cub@n the sixth scenario as the most similar to tileed\.
For that reason their answers were not taken iottsideration. We refer to the

remaining 37 users aslid_users

The first finding of this user study concerns theshirequent distance functiotihat
was chosen from the users as their first choiceodgnall the 11 (scenarios) * 37
(users) = 407 answers (the sixth scenario is erdyd®32 times £57%) the users
gave as their first choice the cube that repredéeidosest relativadistance function.
The cube that represents thausdorff distance function was chosen 154 times
(= 38%) as the first choice of the users. Only 21 &iffacb%) the users chose the most
distant cube as their first choice. The summauratf the above results is shown in
the table 4.7.

Table 4.7 Frequency of chosen as first distancetiimm among all the 444 answers

Frequency Percentage
Hausdorff 154 38%
Closest relative 232 57%
Most distant cube 21 5%

The second finding of the user study concerns tiialgy of the user choices. As we
mentioned before, the T3and 14 scenario were replicas of th& &and §' scenario
respectively. In each of these two scenarios a thegrorders the cubes in the same
way as in the original scenario is denoteduasr_OK A user that gave the same
answer for the most similar cube but the ordehefdther cubes was not the same is

denoted asuser_Half OK Finally, a user that was denoted wser_ OKfor both
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replicas scenarios, or denoted aser OK for the one replica scenario and
user_Half OKfor the other replica scenario is denotedisesr  StableAccording to
the answers of the valid 37 users of this userystindthe 18" scenario there were 28
user_OKusers and Giser_Half_OKusers. In the 1scenario there were 18er_OK
users and &iser_Half OKusers. The 24 of the 3%65%) users wereser_Stable
users. We believe that a 65% is a safe numberdiiatensure the stability and

reliability of their answers. The table 4.8 sumrmesi the above results and

percentages.
Table 4.8 User stability
User OK user Half OK user_Stable
Frequency Percentagérequency Percentage Frequency Percentage

13th , 28 75% 5 13% 24 65%
scenario

lath | g 51% 8 21% 24 65%
Scenario

The third observation concerns thaning functionper scenario. The termvining
functionrefers to the function that was mostly selectedhasfirst choice from the
users in one scenario. Tiudosest relativefunction was the wining function for 6
scenarios and thdausdorfffunction was the wining function for the rest ®1sarios.
These results cannot ensure that one of the twatiins is more preferred than the

other.

The fourth observation concerns thaner functionper scenario group. For a group
of scenarios itsvinner functionoccurs to be the function that appearedvasng
function in most scenarios of the group. For the measuregroup thewinner
functionwas theclosest relativdfunction which it was thevining functionfor the 3
out of the 4 scenarios. For thet_equalgroup thewinner functionwas the Hausdorff
which it was thewinning functionfor the 2 out of the 3 scenarios. Finally, for the
group equal in two scenarios the wining function was ttlesest relativefunction
and in two scenarios the wining function was th@usdorff function. The above
results reveal a user preference indlusest relativdunction for scenarios that do no

include measures. On the other hand for the ojipestof scenarios the results are not
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clear. The analytical results of the third and fowbservation are presented in table

4.9.

Table 4.9 Thevinning functionsand thewinner functions

Scenario Group Scenario | Winningfunction | Winner function
no_measures | Scenariol Closest relative
Scenario2 Closest relative Closest relative
Scenario3 Closest relative
Scenario4 Hausdorff
not_equal Scenario5 Hausdorff
Scenario7 Closest relative Hausdorff
Scenario8 Hausdorff
equal Scenario9 Hausdorff
Scenariol0 Hausdorff -
Scenarioll| Closest relative

Scenariol?

Closest relative
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CHAPTER 5. CONCLUSIONS

This thesis presented a variety of distance funstithat can be used in order to
compute the similarity between two OLAP cubes. Turections were described with
respect to the properties of the dimension hierascand based on these they were
grouped into functions that can be applied (a) betwtwo values from a dimension
of a multidimensional space, (b) between two poaita multidimensional space and

(c) between two sets of points of a multidimensi@pace.

In order to assess which distance functions areemlmse to human perception, we
conducted two user study analysis. The first usadysanalysis was conducted in
order to discover, which distance function between values of a dimension is best
in regards to the user needs and data type. Odingia indicated that the distance
function d.cap, Which is expressed as the length of the path dxtviwo values and
their common ancestor in the dimension’s hieranslag the most preferred by users
in our experiments. Two more functions were widghpsen by users. These were the
highway functionsianc that is expressed in regards to the ancegtandon pescthat is

expressed by selecting the representative fronseetelant.

The second user study we conducted, took into atcine results of the first user
study analysis. Specifically, the second user stadglysis aimed in discovering
which distance function (theosest relativeor theHausdorffdistance function) from

the category of distance function between two datzes, users prefer. The findings
of this user study analysis indicated that the edbselative distance function was

rather preferred by users in contrast to the Hatisdistance functions.
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Future work can be pursued in various directiocinting (a) the deeper examination
of the presented families of functions with morenplicated scenarios and (b) the

discovery of the foundational reasons for the oletuser preferences.
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APPENDI X

Scenarios of the 1% user study

Cube1

ag_level2 ed_level2 oc_levelld

57-45 As=oc Craft-re pair

57-45 Elementary Machine-op-inspct
57-45 Fost-grad Exec-manageria
37-46 Przschoo Maching-op-inspct
37-48 Secondany Handlers-ceaners
57-45 Some-college Exec-manageria
57-465 University Adm-clerica
Cubet_2

ag_level2 ed_level2 oc_levelDd

47-58 Assoc Prof-specialty
37-45 Elementary Machine-op-inspct
57-45 Post-grad Exec-manageria
47-58 Preschoo Machine-op-inspct
37-48 Secondary Handlers-ckeaners
37-48 Some-college Exec-manageria
37-45 University Adm-clerica
Cube1 6

ag_level2 ed_level2 oc_levell

37-48 University Adm-clerica

37-46 Secondany Armed-Forces
37-45 As=soc Craft-re pair

37-45 Post-grad Exec-manageria
37-45 Secondary Farming-fishing
37-48 Secondary Handlers-ckeaners
37-45 Elementary Machine-op-inspct
37-48 Secondary Other-service
37-45 Secondary Briv-house-zerns
37-46 Post-grad Brof-specialty
37-48 Post-grad Protective-serv
37-48 Secondary Sales

37-45 Some-college Tech-support
57-45 Secondary Transport-moving

Cube1_1

ag_leveld ed_level2 oc_leveld

37-56 Assoc Craft-re pair

37-56 Elementary Machine-op-inspct
37-56 Fost-grad Exec-manageria
37-36 Preschoo WMachine-op-inspct
37-56 Secondary Handlers-cleaners
37-56 Some-college Exec-manageria
37-36 University Adm-clerica
Cube1_3

ag_level2 ed_levell oc_levell

37-46 ASSOC-VOC Craft-repair

37-46 5th-6th iachine-op-inspct
37-46 Masters Exec-manageria
37-48 Preschoo WMachine-op-inspct
37-48 Senior-Secondary Handlers-cleaners
37-48 Some-college Exec-manageria
37-46 Bachelors Adm-clerica
Cube1_4

ag_levelz  ed_levelZ oc_leveld

I7-da Secondary Handlers-cleaners
37-46 Secondary Qther-service
37-d4 Secondary Sales

Cube1_5

ag_level2 ed_leveld oc_leveld

37-46 Fost-Secondary Craft-re pair

37-48 Without-Post-Secondary  Machine-op-inspct
37-48 Post-Secondary Exec-manageria
37-46 Without-Post-Secondary  Machine-op-inspct
37-48 Without-Post-Secondary  Handlers-cleaners
37-46 Post-Secondary Exec-manageria
37-46 Post-Secondary Adm-clerica

Figure A.1 Cube scenario 1
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Cube2 Cube2_1
nc_level ed_level2 oc_levell nc_level ed_level2 oc_levell
Western-Europe  Assoc white-collar South-America Assoc Other
Central-Eurcpe Elementary Blue-collar South-America Elementary Blue—collar
Southern-Asia Post-grad white-collar South-America Post-grad white-collar
Southern-Asia Preschool Blue-collar Southern-Asia Preschool Blue-collar
Western-Europe  Secondary white-collar South-America Secondary Other
Southern-Asia some-college Blue-collar South-America Some-college white-callar
Southern-Asia University white-collar South-America University white-callar
Cube2_2 Cube2_3
nc_levell ed levell oc_levell nc_levell ed_leveld oc_levell
Western-Europe  Assoc-acdm white-collar Western-Europe  Post-Secondary white-collar
Central-Europe 7th-8th Blue-collar Central-Europe Without-Post-Secondary Blue-collar
Southern-Asia Masters white-collar Southern-Asia Post-Secondary white-collar
Southern-Asia Preschaol Blue-collar Southern-Asia Without-Post-Secondary Blue-collar
Western-Europe  Senior-Secondary  white-collar Western-Europe  Without-Post-Secondary white-callar
Southern-Asia Some-college Blue-collar Southern-Asia Post-Secondary Blue-collar
Southern-Asia Bachelors white-collar Southern-Asia Post-Secondary white-collar
Cube?_4 Cube2_5
nec_levell ed_level2 oc_levell nc_levell ed_levell oc_levell
Western-Europe  Secondary Blue-collar Western-Europe  Assoc-acdm white-callar
Southern-Asia Secondary Other Central-Europe 7th-8th Blue-collar
Southern-Asia University white-collar Southern-Asia Masters white-collar
Southern-Asia Preschool Blue-collar
Cube2_6 Western-Europe  Senior-Secondary white-callar
nc_levell ed level2 oc_levell Southern-Asia Some-college Blue-collar
Western-Europe  Secondary Blue-collar Southern-Asia Bachelors white-callar
Southern-Asia Secondary Other
Southern-Asia University white-collar
Figure A.2 Cube scenario 2

Cubel Cubel 1

ag_levell wc levell ag_levell wc_levell

27-31 Gov 22-26 Gov

27-31 Private 22-26 Private

27-31 Self-emp 22-26 Self-emp

27-31 Without-pay 22-28 Without-pay

Cubel 2

ag_levell wc levell
27-31 State-gov
27-31 Private

27-31
27-31

Cubed 3

ag_levell

we_levell

27-31
27-31

Private

Self-emp-not-inc
Without-pay

Cubed 5

ag_levelz wc levell
27-36 Gov
27-36 Private
27-36 Self-emp

27-36

Without-pay

Figure A.3 Cube scenario 3

Without-pay

Cubel 4

ag_levell wc_levell
27-31 Gav
27-31 Gav
27-31 Private
27-31 Self-emp
27-31 Self-emp
27-31 Gov

27-31

Without-pay
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Cubed 1

ag_levell wc_levell ra_levell
3741 Gaov White
3741 Private White
4751 Self-emp White
62-66 Without-pay White
Cubed 2

ag_levell wc_levell ra_levell
52-36 Gov White
47-51 Private White
4751 Self-emp White
52-56 Without-pay White
Cubed 3

ag_levell wc_levell ra_levell
3741 Gov White
3741 Private White
42-45 Self-emp White
42-46 Without-pay White
Cubed 7

ag_levell wc_level2 ra_levell
52-56 With-Pay White
52-56 With-Pay Colored
4751 With-Pay White
52-56 Without-pay White

Cubed

ag_levell wc_levell ra_levell
52-36 Gov White
52-36 Private Colored
47-51 Self-emp White
52-56 Without-pay White
Cubed 4

ag_levell wc_levell ra_levell
52-58 Gov White
52-36 Private Colored
52-56 Self-emp White
52-36 Without-pay White
Cubed_35

ag_levell wc_levell ra_levell
27-31 Gov Colored
52-38 Private Colored
47-51 Self-emp White
52-36 Without-pay White
Cubed_6

ag_levell wc_levell ra_levell
47-51 Self-emp White
52-36 Without-pay White
Cubed &

ag_level2 wc_levell ra levell
47-56 Gov White
47-56 Private Colored
47-56 Self-emp White
47-56 Without-pay White

Figure A.4 Cube scenario 4
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Cube5 Cube5_1

ed_levell we_levell ms_levell ra_levell ed_levell we_levell  ms_levell ra_levell

Ass0c-acdm Gov Never-married White Bachelors Gov Never-married  White

5th-6th Private Partner-present Senior-Secondary  Private Partner-ahsent  White

Vasters Private Partner-present Bachelors Self-emp Partner-present White

Preschool Gov MNever-married

Senior-Secondary  Private Partner-absent Cubeb_2

Some-college Gov Partner-present ed_level we_levell  ms_levell ra_levelt

Bachelors Gov MNever-married Some-college Gov Partner-present White
Bachelors Gov Partner-present

Cube5 3 Senicr-Secondary  Private Partner-absent

ed_levelt we_levell ms_levell Senior-Secondary  Self-emp Partner-absent

1st-4th Private Partner-present Bachelors Self-emp Partner-present

5th-6th Private Partner-present Bachelors Gov Never-married

7th-8th Gov Partner-present Senicr-Secondary  Without-pay Never-married

Assoc-acdm Gov MNever-married

AssoC-voc Gov Partner-present Cubeb_4

Bachelors Gov Never-married ed_levell we_levell  ms_levell ra_levell

Doctorate Private Partner-present Assoc-acdm Private Never-married  Colored

lunior-Secondary  Private Partner-present 7th-gth Private Partner-present Colored

Masters Private Partner-present Masters Self-emp Partner-absent Colored

Preschool Gov Never-married Preschool Private Never-married  Colored

Prof-school Private Partner-present Senicr-Secondary  Gov Never-married  Colored

Senior-Secondary  Private Partner-absent Some-college Private Partner-present Colored

Ssome-college Gov Partner-present Bachelors Private Partner-present Colored

Cube3_5 Cubeb_6

ed_levell we_level2 ms_levell ed_level? we_levell  ms_levell ra_levell

Assoc-acdm -Pay  Never-married Assoc Gov Never-married

5th-6th th-Pay  Partner-present Elementary Private Partner-present

Masters th-Pay  Partner-present Post-grad Private Partner-present

Preschool -Pay  Never-married Preschool Gov Never-married

Senior-Secondary th-Pay  Partner-absent Secondary Private Partner-absent

some-college With-Pay  Partner-present Some-college Gov Partner-present

Bachelors With-Pay  Never-married University Gov Never-married  White

Figure A.5 Cube scenario 5

Cubeb Cubeb_1

ed_levell nc_levell salary ed_levell nc_leveld salary

Bachelors Central-Europe  «<=50K Assoc-acdm Woestern-Europe  <=50K

Senior-Secondary  Eastern-Europe  <=50K 5th-6th Southern-Europe »30K

Junior-5econdary  Southern-Eurcpe <=50K Masters Central-Europe 4

Assoc-acdm Western-Europe «=50K
Cubeb_2

ed_levell nc_levell salary
Masters Eastern-Asia =50K
Masters Middle-East =50K
Senior-Secondary  Southeastern-Asia =50K
Bachelors Southern-Asia =50K
Cube6_4

ed_level2 nc_levell salary
University Central-Europe  <=30K
Secondary Eastern-Europe  <=50K
Secondary Southern-Europe <=50K
Assoc Western-Europe  <=50K

Some-college

Senior-Secondary

Western-Europe
Western-Europe

Bachelors Central-Europe
Cubef_3

ed_levell nc_levell s alary
Bachelors Central-Europe  »30K
Senior-Secondary Eastern-Europe 30K
Assoc-voc Southern-Europe 50K
Bachelars Woestern-Europe  =50K

Figure A.6 Cube scenario 6
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Cubefos Cubef_1

ed_level nc_levell hours_per_week ed_levell nc_level hours_per_week

Senior-Secondary  Central-Europe 55 Assoc-acdm Western-Europe 40

Bachelors Eastern-Europe 65 sth-gth Southern-Europe 55

Senior-Secondary  Southern-Europe 75 Masters Central-Europe 30

Senior-Secondary W estern-Europe 62| Senior-Secondary  \Western-Europe 40
Some-college Western-Europe 42

Cube7_2 Bachelors Central-Europe 40

ed_levell nc_level2 hours_per_week

Bachelors Europe 40 Cube?_4

Senior-Secondary Europe 50 ed_levell nc_levell hours_per_week

Junior-Secondary  Europe 40 Bachelars Central-Europe 40

Assoc-acdm Europe 40 Bachelors Eastern-Europe 40
Bachelors Southern-Europe 50

Cube?_3 Bachelors \Western-Europe 40

ed_level nc_levell hours_per_week

Bachelors Central-Europe 40 Cubel_5

some-college Eastern-Europe 40 ed_levell nc_levell hours_per week

Junior-Secondary  Southern-Europe 40 Prof-school Middle-America 60

Assoc-acdm \Western-Europe 40 Some-college North-America 30
Senior-secondary  South-America 72

Cube7_6

ed_level? nc_levell hours_per_week

University Central-Europe 40

Secondary Eastern-Europe 50

Secondary Southern-Europe 40

Assoc W estern-Europe 40

Figure A.7 Cube scenario 7
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Cubed

ed_levell wc_levell salary
AS50C-VOC Gov =50K
7th-8th Private =30K
Masters Private =50K
Senior-Secondary  Self-emp  =50K
Some-college Private >50K
Bachelors Private =50K
Cube 2

ed_levell wc_levell salary
Assoc-acdm Private ==50K
7th-8th Private ==50K
Masters Private <=30K
Preschool Private ==50K
Senior-3econdary  Private ==50K
Some-college Private =50K
Bachelors Private <=50K
Cubef_4

ed levell we_levell salary
Assoc-acdm Private =50K
7th-8th Private =30K
Masters Private =50K
Senior-Secondary  Private =50K
Some-college Private >50K
Bachelors Private 50K
Cubel_6

ed levell we_levell salary
Bachelors Gov >50K
Bachelors Gov 50K
Masters Private =50K
Some-college Self-emp  =50K
Senior-Secondary  Self-emp  =50K
Bachelors Gov =50K

Cubed_1

ed_levell wc_levell salary
Assoc-vocC Gov =50K
7th-8th Private =30K
Masters Private =50K
Senior-Secondary  Self-emp  =50K
Some-college Private >50K
Cubef_3

ed levell we levell salary
Assgc-acdm Private ==50K
7th-8th Private <=50K
Masters Private ==50K
Preschool Private <=50K
Senior-Secondary  Private ==50K
Some-college Private ==50K
Bachelors Private <=50K
Cubef_5

ed levell wc_levell salary
Ass0C-VOC Gov =30K
Sth-6th Gov >30K
Doctorate Gov =50K
Senior-Secondary  Gov =50K
Some-college Gov >50K
Bachelors Gov >30K
Cubel 7

ed level? wc_levell salary
AssoC Gov =50K
Elementary Private =20K
Post-grad Private >50K
Secondary Self-emp  =50K
Some-college Private >50K
University Private =50K

Figure A.8 Cube scenario 8
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Cubed

ag_levell salary hours_per week
28 «<=50K 40
30 <=50K 40
32 «<=50K 55
32 <=50K 40
28 «<=50K 50
27 <=50K 35
29 =50K 50
33 <=50K 45
29 «<=50K 40
35 =50K 40

Cubed 3

ag_levell salary hours _per week
36 «<=50K 40
33 «<=50K 55
35 =50K 50
32 <=50K 55
32 «<=50K 25
32 «<=50K 40
35 «<=50K 55
33 <=50K 45
35 =50K 40

Cubed_5

ag_levell salary hours _per week
27 =50K 40
31 <=50K 60
30 =30K 40
30 <=50K 50
29 <=50K 40
30 <=50K 40
27 «<=50K 40
30 =30K 50

Cubed 1

ag_leveld salary hours_per week
34 <=50K 40
35 «=50K 35
32 <=50K 40
35 «=50K 40
34 50K 40
35 «=50K 60
33 <=30K 40
34 «=50K 60
34 50K 35
33 <=30K 35
36 <=50K 40

Cubel 2

ag_levell salary hours_per_week
28 «<=50K 40
30 <=50K 40
27 »50K 65
28 «<=50K 50
27 <=50K 35
29 =50K 50
31 «<=50K 30
29 <=50K 40
31 «<=50K 40

Cubed 4

ag levell salary hours_per week
28 «=50K 40
27 <=50K 35
29 <=50K 40

Figure A.9 Cube scenario 9
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Cubell Cubel0_1
ag_levell salary hours per week ag levell salary hours per week
36 ==50K 24 34 =50 40
30 ==50K 40 35 =50K g0
35 =50K 50
35 <=50K 40 Cube10_2
32 <=50K 40 ag_levell salary hours_per week
20 ==50K 30
Cubell_4 17 ==50K 43
ag levell salary hours per week 21 «=50K 48
36 <=50K 40|
Cubell 3
ag_levell salary hours_per week
Cube10_5 | 35 >50K 40
ag_levell salary hours_per_week
36 <=50K 24
35 «=50K 40

Figure A.10 Cube scenario 10



Cube11

salary hours_per_week

236 ==50K 35
236 *50K a0
2-36 ==50K 40
236 ==50K 50
236 »50K 35
salary hours_per_week
3236 ==50K a0
3236 *50K 50
3236 =50K 5
3236 ==50K 55
3236 ==50K Ll
3236 »50K 40

salary

hours_per_week

==50K
==50K
==50K
==50K
==50K

13
35
30
20
a0

salary

hours_per_week

oo

w W ow|
P P P
oo
o

==350K
==50K
==50K

a0
35
45

salary

hours_per_week

oo

ag_level1 salary hours_per_week
27-31 <=50K 40
32-36 <=50K 55
32-36 < =50K 40K
27-31 <=50K 50
27-31 < =50K 35
27-31 >S0K 50
32-36 <=50K 45
32-36 >S0K 40
Cubet1_3

ag_level1 salary hours_per_week
32-36 ==50K 35
32-36 >S0K 40
32-36 = =50K a0
32-36 ==50K 60
32-36 >S0K 35
Cube11_5

ag_level1 salary hours_per_week
27-31 <=50K 40
27-31 >S0K &85
27-31 ==50K 50
27-31 ==50K 35
27-31 >S0K 50
27-31 ==50K 30
Cube11_6

ag_level1 salary hours_per_week
27-31 ==50K 40
27-31 ==50K 35
Cube11_8

ag_level1 salary hours_per_week
32-36 *50K 40|

[=a]

W oW owow
Fad Ped P P
W oo oW

[=a]

==350K
=50k
=50K

==50K

45

25
a0
a0

Figure A.11 Cube scenario 11
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Cubel2 Cube12_1
ag_levell salary hours_per_week ag_levell salary hours_per_week
32-36 <=50K 24 32-36 >50K 40
27-31 <=50K 40 32-36 »50K 80
32-36 >50K 50
32-36 <=50K 40 Cube12_2
ag_levell salary hours per week
Cubel2 5 32-36 <=50K 40
ag_levell salary hours per week
27-31 <=50K 43 Cube12_3
27-31 <=50K 35 ag_levell salary hours_per_week
27-31 <=50K 40 27-31 <=50K 40
Cubel2_B Cube12_4
ag_levell salary hours_per week ag_levell salary hours_per week
32-36 <=50K 24 [32-36 >50K 40
32-36 <=50K 40
Figure A.12 Cube scenario 12
Cubell Cube3_1
we_levell ag_levell we_levell ag_levell
Gov 27-31 Gov 22-26
Private 27-31 Private 22-26
Self-emp 27-31 Self-emp 22-26
Without-pay 27-31 Without-pay 22-26
Cube13_2 Cube13_3
we_levell ag levell we_levell ag_levell
State-gov 27-31 Private 27-31
Private 27-31 Without-pay 27-31
Self-emp-not27-31
Without-pay 27-31 Cubel3_4
we_levell ag_levell
Cubel3 5 Gov 27-31
we_levell ag level? Gov 27-31
Gov 27-36 Private 27-31
Private 27-36 Self-emp 27-31
Self-emp 27-36 Self-emp 27-31
Without-pay 27-36 Gov 27-31
Without-pay 27-31

Figure A.13 Cube scenario 13
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Cubeld Cube14 1
salary hours_per_week ag_levell salary hours_per week ag_levell
<=530K 24 36 =50K 40 34
==50K 40 30 =50K 80 35
>50K 30 35
<=50K 40 35 Cubeld_2
==50K 40 32| salary hours_per_week ag_levell
<=50K 30 20
Cubeld 4 <=50K 43 17
salary hours_per week ag_levell ==50K 48 21
<=50K 40 36
Cubeld 3
salary hours per week ag_levell
Cubeld_5 =50 40 35
salary hours_per week ag_levell
<=50K 24 36
==50K 40 35

Figure A.14 Cube scenario 14

Scenarios of the 2" user study

A B
Age WorkClass Race Age | WorkClass | Race
(levell) (levell) (levell) (levell)| (levell) |(levell)
52-56 |Gov White 27-31 |Gov Colored
52-56 |Private Colored 52-56 |Private Colored
47-51 |Self-emp White 47-51 |Self-emp White
52-56 |Without-pay [White 52-56 |Without-pay |White
C

Age | WorkClass | Race
(level2)| (level2) |(levell)
47-56  |With-Pay Colored
47-56  |With-Pay White
47-56 |Without-pay |White

Scenario 1 D

Age | WorkClass | Race
(levell)| (levell) |(levell)
47-51 |Self-emp White
52-56 |Without-pay |White

Figure A.15 Scenario 1of th@%user study



73

A
Education Work Class
(levell) (levell)
Assoc-voc Gov
7th-8th Private
Masters Private
Senior-Secondary |Self-emp
Some-college Private
Bachelors Private
Scenario 2

B
Education Work Class
(levell) (levell)
Assoc-acdm Private
7th-8th Private
Masters Private
Preschool Gov
Senior-Secondary |Private
Some-college Private
Bachelors Gov
C
Education Work Class
(levell) (levell)
Assoc-voc Gov
5th-6th Gov
Doctorate Gov
Senior-Secondary |Gov
Some-college Gov
Bachelors Gov
D
Education Work Class
(levell) (levell)
Some-college Private

Figure A.16 Scenario 2 of th8%user study
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A

Education Work Class Marital Status

{levell) (levell) {levell)

Assoc-acdm Private Never-married
7th-8th Private Partner-present
Masters Private Partner-present
Preschool Private Never-married
Senior-Secondary |Private Partner-absent
Some-college Private Partner-present
Bachelors Gov Never-married

Scenario 3

B
Education Work Class| Marital Status
(level2) {levell) (levell)
Assoc Private Never-married
Elementary Private |Partner-present
Post-grad Private |Partner-present
Preschool Gov Never-married
Secondary Private | Partner-absent
Some-college Private | Partner-present
University Gov Never-married
C
Education Work Class| Marital Status
(levell) {levell) (levell)
Bachelors Gov Partner-absent
Senior-Secondary Gov Partner-present
Bachelors Gov Partner-present
Some-college Gov Partner-absent
Bachelors Gov Never-married
Senior-Secondary Gov Partner-absent
Masters Gov Partner-absent
D
Education Work Class| Marital Status
(level2) {level2) ({levell)
Assoc With-Pay | Never-married
Elementary With-Pay | Partner-present
Post-grad With-Pay | Partner-present
Preschool With-Pay | Never-married
Secondary With-Pay | Partner-absent
Some-college With-Pay | Partner-present
University With-Pay | Never-married

Figure A.17 Scenario 3 of thd%user study
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A
Education Native Country
(levell) (levell)
Senior-Secondary | Central-Europe
Bachelors Eastern-Europe

Senior-Secondary

Southern-Europe

Senior-Secondary

Western-Europe

B
Education Native Country
(levell) (levell)
Masters Eastern-Asia
Masters Middle-East
Bachelors Southeastern-Asia
Bachelors Southern-Asia
C
Education Native Country
(levell) (levell)
Bachelors Central-Europe

Senior-Secondary

Eastern-Europe

Junior-Secondary

Southern-Europe

Assoc-acdm Western-Europe
D
Education Native Country
(levell) (level2)
Bachelors Europe
Senior-Secondary Europe
Junior-Secondary Europe
Assoc-acdm Europe

Figure A.18 Scenario 4 of th8%user study

Scenario 4
A
Education Native Country AVG
(levell) (levell) hours_per_week
Senior-Secondary | Central-Europe 60.8636
Bachelors Eastern-Europe 60.75
Senior-Secondary | Southern-Europe 64.8095
Senior-Secondary | Western-Europe 63.5652

Scenario 5

B
Education Native Country AVG
(levell) (levell) hours_per_week
Masters Eastern-Asia 41,9768
Masters Middle-East 44,0714
Bachelors Southeastern-Asia 39.8717
Bachelors Southern-Asia 41,53
C
Education Native Country AVG
(levell) (levell) hours_per_week
Bachelors Central-Europe 40.6447
Senior-Secondary | Eastern-Europe 44,5625
Junior-Secondary | Southern-Europe 42.626
Assoc-acdm Western-Europe 43.0738
D
Education Native Country AVG
(levell) (level2) hours_per_week
Bachelors Europe 40,6447
Senior-Secondary Europe 44,5625
Junior-Secondary Europe 42.626
Assoc-acdm Europe 43,0738
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Figure A.19 Scenario