
ΑΠΟΤΙΜΗΣΗ
 ΟΜΟΙΟΤΗΤΑΣ ∆Ε∆ΟΜΕΝΩΝ ΣΕ ΠΟΛΥ∆ΙΑΣΤΑΤΟΥΣ ΧΩΡΟΥΣ

Η

 ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙ∆ΙΚΕΥΣΗΣ

Υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης
του Τµήµατος Πληροφορικής

Εξεταστική Επιτροπή

από τον

Ρογκάκο Γεώργιο

ως µέρος των Υποχρεώσεων

για τη λήψη

του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ∆ΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙ∆ΙΚΕΥΣΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ

Ιούλιος 2010

ii

DEDICATION

This Thesis is dedicated to my family for their support since the beginning of my

studies.

iii

ACKNOWLEGMENTS

First of all would like to thank my supervisor Dr. Panos Vassiliadis for his support

and the motivation that I received in order to fulfill my research.

I would also like to thank my colleagues for their help and support. Specifically, I am

thankful to Eftychia Baikousi for helping me at the beginning of my research.

Finally, many thanks must be given to the people that spent some of their valuable

time in order to answer to our user studies.

iv

CONTENTS

 Pag
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. RELATED WORK 4

2.1. Fundamentals 5
2.1.1. Distance Measures 5
2.1.2. Hausdorff Distance 7
2.1.3. Controversy on Metric Axioms 8

2.2. Distances on Graphs and Lattices 9
2.2.1. Highway Hierarchies 9
2.2.2. Lattices and Semantic Hierarchies 10
2.2.3. Semantic Similarity between Words 11

2.3. Distances for Collections of Structured Data 11
2.4. Integrating Texts and Databases 14

CHAPTER 3. FAMILIES FOR SIMILARITY MEASURES 16
3.1. OLAP Fundamentals 16
3.2. Distance Functions between two Values 19

3.2.1. Locally Computable Distance Function. 19
3.2.2. Hierarchical Computable Distance Functions 21

3.3. Distance Functions between two Cells of Cubes 27
3.3.1. Distance functions between two Cells of a Cube Expressed as a Weighted
Sum. 28
3.3.2. Distance functions between two Cells of a Cube Expressed in regards to the
Minkowski Family Distances. 30
3.3.3. Distance Functions between two Cells of a Cube Expressed as the
Minimum Partial Distance. 31
3.3.4. Distance Functions between two Cells of a Cube Expressed as a Proportion
of Common Coordinates. 32

3.4. Distance Functions between two OLAP Cubes 32
3.4.1. Cell Mapping and Categories of Distance Functions according to it 33
3.4.2. Distance Functions that Include Mappings 35
3.4.3. Distance functions that do not include Mappings 39

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS 41
4.1. Implementation Issues 41

4.1.1. Application Architecture 42
4.1.2. UML Diagram and Basic Description of the Implemented Classes 42

4.2. User Study for Distances between two Values of Dimensions 46
4.3. User Study for Distances between two Cubes 52

CHAPTER 5. CONCLUSIONS 58
REFERENCES 60

v

APPENDIX 62
Scenarios of the 1st user study 62
Scenarios of the 2nd user study 72

vi

LIST OF TABLES

Table Pag
Table 4.1 Adult dataset tables 46
Table 4.2 Notation of distance functions used in the experiment 50
Table 4.3 Top three most frequent distance functions for each user group. 50
Table 4.4 The most frequent distance function for each set of scenarios. 51
Table 4.5 Frequencies of preferred distances within each user group for each distance

family. 52
Table 4.6 The distance functions that are used in the second user study 55
Table 4.7 Frequency of chosen as first distance function among all the 444 answers

 55
Table 4.8 User stability 56
Table 4.9 The winning functions and the winner functions 57

vii

LIST OF FIGURES

Figure Pag
Figure 2.1 Two sets of points 7
Figure 3. 1. (a) The hierarchy of levels for dimensions Time and Location (b) Values

of the Location dimension 21
Figure 3.2 Partial distances between two values in different levels of hierarchy. 25
Figure 3.3 Instances of cells c1 and c2 29
Figure 3.4 Lattice of the dimension TIME for the values of cells of figure 3.3 29
Figure 3.5 Lattice of the dimension LOCATION for the values of cells of figure 3.3

 30
Figure 3.5b Instances of two cubes 33
Figure 3.6 (a) cells of cube CUBE1 mapped to the cells of cube CUBE2 (b) cells of

cube CUBE1 mapped to the cells of cube CUBE2 35
Figure 3.7 Instances of two cubes and the mapping of their cells 37
Figure 3.8 Instances of cubes CUBE1 and CUBE2 and the mapping of the cells of the

cube CUBE2 to the cells of the cube CUBE1 38
Figure 4.1 CuCOOL Tool architecture 42
Figure 4.2 The UML Diagram of the OLAP cube comparison application 44
Figure 4.3 Form of a query that is given as input in the application 45
Figure 4.4 A caption from the file “hierarchies.txt” 45
Figure 4.5 Dimension hierarchies of the dataset adult 47
Figure 4.6 Adults database schema 48
Figure 4.7 Sample scenario 49
Figure 4.8 Sample scenario 54
Figure A.1 Cube scenario 1 62
Figure A.2 Cube scenario 2 63
Figure A.3 Cube scenario 3 63
Figure A.4 Cube scenario 4 64
Figure A.5 Cube scenario 5 65
Figure A.6 Cube scenario 6 65
Figure A.7 Cube scenario 7 66
Figure A.8 Cube scenario 8 67
Figure A.9 Cube scenario 9 68
Figure A.10 Cube scenario 10 69
Figure A.11 Cube scenario 11 70
Figure A.12 Cube scenario 12 71
Figure A.13 Cube scenario 13 71
Figure A.14 Cube scenario 14 72
Figure A.15 Scenario 1of the 2nd user study 72
Figure A.16 Scenario 2 of the 2nd user study 73

viii

Figure A.17 Scenario 3 of the 2nd user study 74
Figure A.18 Scenario 4 of the 2nd user study 75
Figure A.19 Scenario 5 of the 2nd user study 76
Figure A.20 Scenario 6 of the 2nd user study 76
Figure A.21 Scenario 7 of the 2nd user study 76
Figure A.22 Scenario 8 of the 2nd user study 77
Figure A.23 Scenario 9 of the 2nd user study 78
Figure A.24 Scenario 10 of the 2nd user study 78
Figure A.25 Scenario 11 of the 2nd user study 79
Figure A.26 Scenario 12 of the 2nd user study 80
Figure A.27 Scenario 13 of the 2nd user study 80
Figure A.28 Scenario 14 of the 2nd user study 80

ix

x

ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Γεώργιος Ρογκάκος του Θωµά και της Ζωίτσας. MSc, Τµήµα Πληροφορικής,

Πανεπιστήµιο Ιωαννίνων, Ιούλιος 2010. Αποτίµηση Οµοιότητας ∆εδοµένων σε

Πολυδιάστατους Χώρους.

Επιβλέποντας: Παναγιώτης Βασιλειάδης.

Πόσο µοιάζουν δύο κύβοι δεδοµένων; Με άλλα λόγια το ερώτηµα που τίθεται είναι

το εξής : ∆οθέντων δύο συνόλων από σηµεία ενός πολυδιάστατο χώρου µε ιεραρχίες,

ποια είναι η απόσταση ανάµεσα στα δύο σύνολα; Λόγω του µεγάλου πλήθους των

δεδοµένων που συναντάµε, είναι θεµελιώδες να παρέχουµε µέτρα οµοιότητας για

σύνολα πολυδιάστατων δεδοµένων.

Το συγκεκριµένο πρόβληµα είναι γενικό καθώς συναντάται σε αρκετές εφαρµογές

στα πλαίσια της εξόρυξης πληροφορίας πολυµέσων, σε επιστηµονικές βάσεις

δεδοµένων και σε ψηφιακές βιβλιοθήκες. Σε τέτοιες εφαρµογές, δηµιουργείται η

ανάγκη για αποθήκευση εξαιρετικά µεγάλου όγκου ετερογενών δεδοµένων. Αυτό

οδηγεί στην ανάγκη για αναζήτηση οµοιότητας σε δεδοµένα τέτοιου τύπου. Για το

λόγο αυτό, είναι χρήσιµο να βρούµε µέτρα οµοιότητας που να ικανοποιούν τις

ανθρώπινες ανάγκες σε εφαρµογές που αφορούν αναζητήσεις σε υπολογιστικά

συστήµατα.

Στην παρούσα διατριβή µελετάµε ένα σύνολο συναρτήσεων απόστασης που µπορούν

να χρησιµοποιηθούν για την αποτίµηση οµοιότητας δεδοµένων σε πολυδιάστατους

χώρους µε ιεραρχίες διαστάσεων. Η κατηγοριοποίηση αυτού του συνόλου

συναρτήσεων απόστασης οργανώνεται µε βάση τις ιδιότητες των ιεραρχιών των

διαστάσεων, των επιπέδων και των τιµών τους. Ειδικότερα, η κατηγοριοποίηση των

συναρτήσεων οργανώνεται ως εξής: Πρώτον, περιγράφουµε τις συναρτήσεις

xi

απόστασης που υπολογίζουν την απόσταση µεταξύ δύο τιµών της ίδιας διάστασης

ενός πολυδιάστατου χώρου, δεύτερον περιγράφουµε συναρτήσεις απόστασης για τον

υπολογισµό της απόστασης µεταξύ σηµείων ενός πολυδιάστατου χώρου και τέλος

περιγράφουµε συναρτήσεις που υπολογίζουν την απόσταση µεταξύ δύο συνόλων

πολυδιάστατου χώρου.

Για το σκοπό του προσδιορισµού των συναρτήσεων που ικανοποιούν καλύτερα τις

ανάγκες των χρηστών, οργανώσαµε δύο πειράµατα µε χρήστες. Το πρώτο πείραµα

αφορά την πιο προτιµητέα συνάρτηση απόστασης από τη κατηγορία των

συναρτήσεων απόστασης µεταξύ δύο τιµών της ίδιας διάστασης ενός πολυδιάστατου

ιεραρχικού χώρου δεδοµένων (πιθανά όµως, σε διαφορετικά επίπεδα της ιεραρχίας

της διάστασης) δεδοµένων. Το βασικό συµπέρασµα αυτού του πειράµατος ήταν ότι η

πιο προτιµητέα συνάρτηση απόστασης µεταξύ δύο τιµών µιας διάστασης, είναι εκείνη

που χρησιµοποιεί το ελάχιστο µονοπάτι που συνδέει τις δύο τιµές και τον κοινό τους

πρόγονο στην ιεραρχία της διάστασης.

Λαµβάνοντας υπόψη τα συµπεράσµατα του πρώτου πειράµατος χρηστών

οργανώσαµε το νέο πείραµα µε χρήστες. Το δεύτερο πείραµα είχε σκοπό την

ανακάλυψη της πιο προτιµητέας συνάρτησης απόστασης µεταξύ των συναρτήσεων

Κοντινότερου Συνδεδεµένου (η οποία αποτιµά την απόσταση δύο κύβων σαν ένα

ζυγισµένο άθροισµα των επιµέρους ελαχίστων αποστάσεων των κελιών τους) και

Hausdorff (η οποία αποτιµά την απόσταση δύο κύβων σαν τη µέγιστη των ελαχίστων,

των αποστάσεων των κελιών τους) από την κατηγορία των συναρτήσεων απόστασης

µεταξύ δύο κύβων δεδοµένων. Τελικά, το συµπέρασµα από το δεύτερο πείραµα ήταν

ότι η συνάρτηση Κοντινότερου Συνδεδεµένου έχει ένα σχετικό, αλλά όχι απόλυτο

προβάδισµα σε σχέση µε τη συνάρτηση Hausdorff.

xii

xiii

ABSTRACT

Georgios Rogkakos, MSc, Computer Science Department, University of Ioannina,

Greece. July, 2010. Similarity Measures For Multidimensional Data.

Thesis Supervisor: Panos Vassiliadis.

How similar are two data-cubes? In other words, the question under consideration is:

given two sets of points in a multidimensional hierarchical space, what is the distance

value between them? Due to the great amount of data stored nowadays, it is

fundamental to provide similarity measures within sets of multidimensional data. This

problem is generic since it can be found within a number of applications in fields such

as multimedia information retrieval, scientific databases and digital libraries. In the

context of such applications a huge amount of heterogeneous data is stored. This leads

to the necessity of similarity search among this type of data. Therefore, there is a need

for similarity measures that can capture human demands of search computing.

In this thesis we explore various distance functions that can be used over

multidimensional hierarchical spaces. We organize the discussed functions with

respect to the properties of the dimension hierarchies, levels and values. Especially,

the taxonomy of distance functions we provide is as follows: Firstly, we describe

distance functions that compute the distance between two values of a dimension of a

multidimensional space, secondly we describe distance function that compute the

distance between two points of a multidimensional space and finally we describe

distance functions that compute the distance of two sets of points of a

multidimensional space.

In order to discover which distance functions are more suitable and meaningful to the

users, we conducted two user study analysis. The first user study analysis concerns

xiv

the most preferred distance function from the category of distance functions between

two values of a dimension. The findings of this user study indicate that the most

preferred distance function was the length of the path between the two values and

their common ancestor in the dimension’s hierarchy.

Taking into consideration the findings of the first user study we conducted a second

user study. The second user study aimed in discovering which distance function,

between the closest relative and the Hausdorff, from the category of distance

functions between two data cubes, users prefer. The results of the second user study

indicate that the closest relative distance function was rather preferred by users in

contrast to the Hausdorff function.

1

CHAPTER 1. INTRODUCTION

How similar are two data-cubes? To put the question a little more precisely, given two

sets of points in a multidimensional hierarchical space, what is the distance between

these two collections? The above research problem is generic and has several

applications in domains such as multimedia information retrieval, statistical data

analysis, scientific databases and digital libraries [ZADB06]. In such applications,

where contemporary data lead to huge repositories of heterogeneous data stored in

data warehouses, there is a need of similarity search that complements the traditional

exact match search. For example, one might easily envision a context where a user of

an OLAP tool is proactively informed on reports that are similar to the one she is

currently browsing.

In this thesis, we address the problem by (a) organizing alternative distance functions

in a taxonomy of functions and (b) experimentally assessing the effectiveness of each

distance function via a user study.

So far, related work has dealt with similar problems in different ways; however, this

particular problem has not been dealt per se. Specifically, Sarawagi in [Sara99] and

[Sara00] has dealt with the problem of discovering interesting patterns and differences

within two instances of an OLAP cube. The DIFF and RELAX operators summarize

the difference between two sub-cubes in order to discover the reason of abnormalities

within the measures of two given cells. The only common factor of this work with

ours is the usage of the Manhattan distance function in the procedure of discovering

abnormalities. Our work addresses the problem of finding the appropriate distance

function among a great variety of functions in order to compute the similarity between

two given OLAP cubes. Giacometti et. al. [GMNS09] propose a recommendation

system for OLAP queries by evaluating distances between multidimensional queries.

2

This work involves the distance between queries whereas our work involves distance

functions between the data of multidimensional queries. Li et.al. in [LiBM03]

describe the semantic similarity between ontologies. In contrast to our work, they

consider a limited set of functions whereas we have a wider range of distance

functions and our work focuses on distances between data in the multidimensional

space.

The main findings of our approach are due to two user studies that we have conducted

to assess which distance functions appear to work better for the users (Section 4). The

first experiment involved 15 users of various backgrounds and the Adult real dataset

[FuWY05]. Each user was given 14 scenarios that contained a reference cube as well

as a set o variant cubes, each associated with a distance function. The task of the user

was to select a cube from the set of variant cubes that seemed more similar to the

reference cube. The diversity of users and data types contained in the experiment was

taken into consideration in order to discover which distance function between two

values of a dimension is preferred depending on the user group or the type of data.

The first user study showed that all distance functions under test were used at least

once, but there were a couple of distance functions that were most preferred among

the others. In particular, the users seemed to prefer distance functions that express the

similarity between two cubes based on the hierarchical shortest path or in regards to

ancestor values.

The second user study involved 39 users and the results of the first user study were

taken into account. Each user was given 14 scenarios that contained a reference cube

and three variant cubes. The purpose of this second user study concerns the most

preferred distance function between two data cubes.

Our approach is structured as follows: We start (Chapter 2) with the a description of

the related work then (Chapter 3) we provide some formal foundations of modeling

multidimensional spaces and cubes based on an existing model in the related literature

[VaSk00]. and we also provide a taxonomy of distance functions for cubes based on a

detailed study of the characteristics of dimension hierarchies, levels and members.

3

At first, we organize our families of functions as follows: Initially we describe

functions that can be applied between two specific values that belong in the same

level of hierarchy within a given dimension. Following, we describe distance

functions that are applied between two cells of a cube and then distance functions

between two OLAP cubes.

Finally, in chapter 4 the implementation issues of this thesis are presented and also the

user study experiments along with the results of the most preferred functions.

4

CHAPTER 2. RELATED WORK

2.1 Fundamentals

2.2 Distances on Graphs and Lattices

2.3 Distances for Collections of Structured Data

2.4 Integrating Texts and Databases

In the related literature there are a number of papers that have pointed out the

necessity of having appropriate similarity measures in order to discover objects that

are similar to each other and measure in a quantitative way the distance among them.

Most of them examine similarity measures used between objects that are described

from a number of various features such as in image retrieval or data that are stored in

a hierarchical taxonomy. In addition, there are a few papers that describe how

similarity measures used by human perception and computer science follow different

properties. Not only computer scientists, but also scientists from other areas need

similarity measures for the purpose of comparing data and objects of their expertise.

In the area of Biology, a well-known example is the need of comparing genes.

Another area that has dealt with the problem of introducing similarity measures is that

of mathematics. Computer scientists in the areas of data mining and information

retrieval have also considered the problem of introducing appropriate similarity

measures. Few papers have associated the areas of mathematics and computer science

and have introduced similarity measures for the concept of lattices by mapping them

with semantic hierarchies.

In the following subsections we will present the related work. More precisely

subsection 2.1 describes some fundamental concepts about distance functions,

subsection 2.2 presents some distance functions that can be applied on graphs and

5

lattices, subsection 2.3 presents distances for structured data and finally subsection 2.4

describes a work about integrating texts and databases.

2.1. Fundamentals

In this subsection, we start with the presentation of some fundamental distance

functions and their properties that were used in this MSc thesis. Specifically, this

subsection is structured as follows: in section 2.1.1 we start the analysis of several

distance measures that are categorized according to the types of variables that are

applied on, in section 2.1.2 the Hausdorff distance is presented and in section 2.1.3 we

discuss a work that introduces a similarity measure and demurs at the classic metric

axioms.

2.1.1. Distance Measures

In this section, we follow the presentation of fundamental concepts around some

common distance measures made by Han and Kamber in [JK00]. Generally, a

distance measure is called a metric when it satisfies the following criteria:

d(i,j) ≥ 0

d(i,j) = d(j,i)

d(i,i) =0

d(i,j) ≤ d(i,k)+d(j,k)

The distance measures are categorized according to the type of variables that they are

applied on, in order to describe their dissimilarity. The different types of variables are

the interval-scaled variables, the binary variables, the categorical variables and,

finally, variables of mixed types.

As for the interval-scaled variables the presented distances are the Euclidean, the

Manhattan and the Minkowski distances. For two points p1(x1, x2 ,…, xn) and

p2(y1,y2,…, yn) in the n dimensional space, the formulas for the above distances are

expressed as:

Manhattan: dist(p1,p2)= |−|++|−|+|−| nn yxyxyx ...2211

6

Euclidean: dist(p1,p2)=
22

22
2

11 ... |−|++|−|+|−| nn yxyxyx

Minkowski (p-norm): dist(p1,p2)=
p p

nn
pp yxyxyx |−|++|−|+|−| ...2211

Binary variables. The Jaccard distance is defined for pairs of sets comprised of

members that are treated as binary variables (i.e., we can only check them for identity

or not). For two objects A and B the jaccard distance is
||

||
),(

BA

BA
BAJ

∪
∩

= . Viewed

from another point of view, we need to define two categories of binary variables

before defining the Jaccard similarity. The first category is the symmetric binary

variables and the second the asymmetric binary variables. The difference between

asymmetric and symmetric binary variables is that when considering of symmetric

variables, both of its states are equally valuable. For example, the agreement of two 1s

(positive match) is considered the same as the agreement of two 0s (negative match).

So, for the symmetric binary objects i,i we can use the equation
tsrq

sr
jid

+++
+

=),(

where q is the number of variables that equal 1 for both i and j, r is the number of

variables that equal to 1 for object i but that are 0 for object j, s is the number of

variables that equal 0 for i but equal 1 for j and q is the number of variables that equal

0 for both i and j. For the asymmetric binary dissimilarity between two objects i and j

the previous equation becomes
srq

sr
jid

++
+

=),(because negative matches

considered unimportant and so t is ignored. Based on the notion of similarity between

i and j the equation of similarity is),(1),(jid
srq

q
jisim −=

++
= . Then, sim(i,j) is

called Jaccard coefficient.

A categorical variable is a generalization of the binary variable because it can take

more than two states. So, the dissimilarity for two categorical objects i,j is computed

by the equation
p

mp
jid

−
=),(where m is the number of matches and p is the total

number of variables.

7

2.1.2. Hausdorff Distance

In [ZADB06] the authors describe the Hausdorff distance. For two sets of features

A(x1,x2,…,xn) and B(y1,y2,…,ym) the Hausdorff distance is defined as: d(A,B) =

max{ ds(A,B),ds(B,A)}. In the above formula ds(A,B) =
Ax

sup
∈

dp(xi,B) and ds(B,A)=

By
sup
∈

dp(A,yj) where sup is the supremum of all the distances dp. The dp(xi,B) and

dp(A,yj) are denoted by the following formulas : dp(x,B)=
By

inf
∈

de(x,yj) and dp(A,y)=

Ax
inf
∈

de(xi,y) where inf is the infimum of all the distances de. Finally, de can be an

arbitrary distance measure, e.g. the Euclidean distance.

For example, in the figure 2.1 there are two sets of points, the set A containing {a1, a2,

a3} and the set B containing {b1,b2,b3} . We assume, without loss of generality, that de

denotes the Euclidean distance. In this example the notions of inf and sup coincide in

being the min and max respectively. So dp(a1,B)=
By

inf
∈

de(a1,yj)=de(a1, b2) and similarly

dp(a2,B)= de(a2, b2), dp(a3,B)=de(a3, b2), dp(A,b1)=de(a2, b1), dp(A,b2)=de(a2, b2) and

dp(A,b3)=de(a2,b3). From the above, we have that ds(A,B)=
Ax

sup
∈

dp(xi,B)= de(a1, b2) and

also ds(B,A)=
By

sup
∈

dp(A,yj)= dp(A,b3)=de(a2, B3). Finally, d(A,B) =

max{ ds(A,B),ds(B,A)}=max{ de(a1, b2), de(a2, b3)}.

Figure 2.1 Two sets of points

8

2.1.3. Controversy on Metric Axioms

In [SJ95] and [SJ99] the authors introduce a similarity measure as an extension of

Tversky’s Feature Contrast. This extension is based on Fuzzy Logic and it is called

Fuzzy Feature Contrast (FFC). Especially in the area of image and texture comparison

the authors suggest that similarity measures must be close enough to human’s

similarity judgment introduced by psychologists. The authors were driven to use

Fuzzy Logic because in a variety of works there is a disagreement on the

correspondence of the metric axioms to the behavior of the real users in practice.

Specifically, they provide a collection of references where the metric axioms have

been refuted.

After rejecting the geometrical distance axioms such as symmetry and triangular

inequality, the authors present the extension of Tversky’s Feature Contrast by making

use of Fuzzy Logic. The trivial procedure of measuring the similarity of two images is

by expressing it as a combination (e.g., average, weighted summation) of a number of

individual similarity measures between the various features that describe an image. In

this paper, the authors introduce a similarity measure based on Fuzzy Logic. This

way, the authors manage to express similarity between two images that are described

by a number of features by taking into consideration the relationship and degree of

association among the object’s features. The idea of expressing a similarity measure

through a Fuzzy Logic model was mainly motivated by the need of expressing a

measure that can capture the human judgment. Also, the authors conducted a number

of experiments trying to find similarities between images of faces and textures. Their

main goal was to introduce a measure between features that captures the human

perception as close as possible. Therefore, in their experiments they compared FFC

and a couple of other measures (e.g., Euclidean distance) with human perception.

Specifically, human subjects provided a ranking of images (faces, textures), which

were compared with the equivalent rankings that occurred from the FFC and the other

measures.

9

2.2. Distances on Graphs and Lattices

In this section we present distances that are applied on Graphs and Lattices. In section

2.2.1 the basic ideas of highway hierarchies and distances in semantic hierarchies are

presented. Following, in section 2.2.2 the distances on lattices and semantic

hierarchies are presented. Finally, in section 2.2.3 the similarity of words in semantic

hierarchies is discussed.

2.2.1. Highway Hierarchies

In [SS05] the authors introduce a technique for the faster computation of shortest

paths between two nodes of a graph. This technique borrows the idea of the highway

roads in the road networks and also the Dijkstra’s algorithm idea. The technique is

based on the observation that the shortest paths among two points in a road network,

usually consists of small roads locally and a highway road. So, the distance between

two nodes in a road network is calculated by finding the shortest path of each node

from a highway road and then by making use of the highway road. Based on the

previous idea, a highway hierarchy is constructed. Specifically, the highway hierarchy

consists of highway edges with attached sub trees of locally computable shortest paths

of nodes from the highway network. An edge of the complete graph belongs in the set

of highway edges if it represents an important road according to the information that it

carries.

The approach of [SaSc05] was motivated by the great amount of time needed to

compute distances of shortest paths in large road networks when using Dijkstra’s

Algorithm. The authors proposed an approach that uses the highway hierarchies in

order to compute distance matrices. The basic algorithm for fast computation of

distance tables is introduced based on the basic concepts and definitions of highway

hierarchies. This algorithm is making use of the Highway Hierarchies query algorithm

and two specific operations, namely the operations Highway Hierarchy Forward

Search Space and Highway Hierarchy Backward Search Space. Highway Forward

Search Space finds the nodes that belong in the shortest path originating from a source

node in a graph G. Backward Search on the other hand finds the set of nodes that

belong in the shortest path originating from a target node in the converse graph of G.

10

Finally, some optimizations on this algorithm bring further improvement on the

computational time of the distance tables. In their experiments, the authors compared

Dijkstra’s Algorithm with the Highway Hierarchies method for the computation of

distance matrices. The first experiment included 100 random nodes on the street

network of Germany and the second included 173 nodes on the street network of four

European countries. The experiments showed that the proposed approach for the

computation of distance matrices outperforms Dijkstra’s algorithm.

2.2.2. Lattices and Semantic Hierarchies

In [JO04], the author describes some fundamental ideas about treating large posets as

data objects. Specifically, he refers to the notions of distance and level in such

structures as an interval-valued property. A partially order set (poset) is a directed

graph with no cycles and it is more general than a tree or a lattice and a node can have

multiple parents. The main idea that gave feed to this work was the POSet Ontology

Categorizer (POSOC), which was motivated by the needs of biologists to use

algorithmic tools to navigate the Gene Ontology (GO). After reviewing POSOC’s

foundations, including some elementary theory about partially ordered set (poset) and

in general semantic hierarchies, the author introduces two basic distance metrics in

the overall structure of object under the poset notion. Namely, these metrics are (a)

the interval valued poset rank and (b) the vector-valued poset distance. The first

metric describes a rank as a measure of the vertical “level” of a node within a poset.

The second metric describes a distance measure among nodes by taking into

consideration their horizontal relationship as well. Finally, the author provides a

discussion of how the two proposed metrics could work in concept lattices. This

discussion is based on the trivial observation that lattices are special cases of posets.

In [JB05] paper the authors introduce link weights and weighted normalized pseudo-

distances among comparable nodes in a poset. Taking into consideration some

fundamental elements on DAGs, Posets and Covers, the authors continue by

reintroducing the pseudo-distances implemented in Posoc. Posoc is a Categorizer for a

gene ontology poset which is called a POSet Ontology (POSO) [JMFH04]. These

pseudo-distances briefly are (a) the minimum chain length, (b) the maximum chain

11

length, (c) the average of extreme chain length and (d) the average of all chain

lengths. A collection A of nodes in a poset is called chain if ,, Aba ∈∀ ba ≤ or ba ≥

In addition there is a quick review on the basic operations of probabilities on posets.

2.2.3. Semantic Similarity between Words

In [YZM03] the authors introduce a similarity measure in the field of semantic

similarity between words. The propose measure combines different, already known

measures such us the path length between two words in a semantic hierarchy, the

depth of the subsumer concept node of these words in the hierarchy and the

information content that makes use of the probability of encountering an instance of a

concept in a corpus. The proposed measure and other measures were tested through an

extensive experimental analysis in order to discover which measure captures better

the human perception. For the needs of their experiments, the authors used two

databases, the WordNet [MI95] and the Brown Corpus [7]. To evaluate their method

against the state of the art methods, they applied word similarity on a word set with

human ratings. The word set consisted of two subsets. The first word set included 30

pairs of words and the second included 37 pairs. All pairs were rated for similarity in

meaning. The authors used the second word set in order to design their method. The

first word set was used in order to test their proposed method. The authors tested 10

variations of different measures where each one occurred as a combination of the

above similarity measures (i.e., the one proposed by the authors and the already

known measures) and by altering the values of different parameters. The findings of

[YZM03] show that the best similarity measure among the 10 measures that were

tested was the similarity measure, that combined the shortest path length and the

depth of the subsumer in a nonlinearly type of combination. Moreover, this new

measure outperforms all previous published methods.

2.3. Distances for Collections of Structured Data

This category includes works where the distance between collections of data is

measured.

12

In [Sar99] the author introduces a new operator for Online Analytical Processing

(OLAP) products. This idea was motivated by the needs for data analysts to perform

data mining tasks faster. Current OLAP products provide operators for aggregations

such as Sum and Average and also provide navigational operators like Roll-up and

Drill-down. The analysts use these operators for exploring the data but as the size and

dimensionality increases, ad hoc exploration gets difficult and error prone. The

introduced operator, called DIFF, saves time and effort for the analysts by eliminating

the manual exploration for detecting reasons of fluctuations observed at an aggregated

level. More precisely, the DIFF summarizes the reasons for which a cell has a bigger

or a smaller aggregated quantity compared with another and completes the above

operation in one step. Without the DIFF operator, the analysts should make use of a

combination of several Roll-up and Drill-down operations in order to achieve the

same result and with a possibility of containing errors.

The use of the DIFF operator is simple. The analyst highlights two aggregated cells

on a report and then invokes the DIFF operator. The operator then will return the top

rows that contain aggregated data over lower levels. These top rows are the ones that

mostly affect the variance of the two cells. The number of the rows that will be

returned is configurable by the user.

In general, given the two aggregated cells, the operator firstly finds the rows at the

detailed level that have the biggest changes among them and secondly, it summarizes

some or all of them that have similar changes. For this reason, the returned rows

include also a ratio and an error field. In this part of the procedure a problem that

arises concerns whether the changes of a larger magnitude are more important than

the summarization of rows with similar changes.

To handle this problem the author developed an information theoretic model for

cleanly capturing these tradeoffs and also suggests an algorithm that is making use of

dynamic programming. The author firstly presents the way the algorithm works for a

single dimension with no hierarchies. Then, this method is generalized for a single

dimension with hierarchies and, finally, for multiple dimensions.

13

Concerning the implementation of the proposed work, the author developed the DIFF

operator as a stored procedure that resides on the server’s side. The stored procedure

is a light-weight addition to the server because the indexing and query processing

capability of the server is used to do the heavy-weight processing. Moreover, the

amount of memory used by the stored procedure is independent of the number of

rows.

Finally, for the experiments the author used two datasets. The first dataset was the

OLAP Council Benchmark [Cou] and the other was the demo dataset Grocery Sales

data, which was obtained from the Microsoft DSS product [Mic98a]. The results of

the experiments showed that even for a huge number of tuples included in the DIFF

query, the processing time was maximum 1 minute. Also, the scalability of the

algorithm was tested over increasing number for the database tuples, the number of

levels of the hierarchy and the answer size.

In [SS01] the authors propose a new operator to make the exploration of large

multidimensional databases easier. This new operator called RELAX is very similar

to the DIFF [Sar00] operator with the main difference that it acts the opposite way.

Specifically, this new operator generalizes a drop or an increase between two cells in

the detailed level. That means that the operator tries to generalize the observed

drop/increase on a higher lever in some of the dimension’s hierarchies. Without

RELAX the analyst should use multiple Roll-ups and pivots followed by multiple

drill-downs and so on. This operation might be tedious and imprecise especially for

large datasets.

The use of the Relax is simple. The analyst specifies a tuple Ts and a property of Ts

that he wants to generalize. An example of a property is that the sales in current year

are less than sales in previous years. Then a function R measures how closely another

tuple T conforms to the generalization property. Function R is called the

generalization error and is zero when T is very close to Ts and increases as T departs

from the generalization property. There is also a penalty function S that is close to 0

14

when the difference between T and Ts increases and large when T is close to Ts. A

generalization is approved when the sum of S(T) is greater than the sum of R(T). In

every generalization there might be exceptions that also appear in the results.

The authors used two datasets for their experiments, the OLAP Council Benchmark

[Cou] and the Food dataset. The findings of the experiments showed that their

algorithm for finding exceptions is optimal for the case of single hierarchies and

finite-domained functions. Also the algorithm assigns the heavy-weight processing to

the DBMS and the amount of needed memory is independent of the number of tuples.

In [MUFL06] the authors try to describe the distance between two relational databases

under the same schema. One example of such databases is in the presence of replicas

of a given database that might have different modifications. The motivation on the

way the authors compute the distance stems from the common way that the distance

between two strings is computed. More precisely, the authors define the distance of a

relational database A from another relational database B, as the number of updates that

must be performed to A, in order to become identical to B. By referring to updates, the

authors refer to sql-like insertions, deletions and updates. Without loss of generality,

they don’t use insertions and deletions on their algorithms. There might be several

update sequences that can bring the desired result. The sequence with the fewer

updates is considered the optimal. As they present, when an update is performed it

might cause more conflicts between the two relational databases than before the

update but it might ease the next updates in order to achieve less number of updates.

2.4. Integrating Texts and Databases

In [XDH++08] the authors integrate traditional OLAP cubes with text data and

introduce Informational Retrieval (IR) techniques on these text data. The result is

what they call a Text Cube. The contributions of this work are (a) the introduction of a

new semantic hierarchy over the terms of text collections, (b) the ability of making

use of IR measures over aggregated text data and (c) the partial materialization of

some previously computed cubes in order to compute more efficiently the complete

aggregated cube. In the Text Cube two kinds of hierarchies coexist, the traditional

15

OLAP dimension hierarchy and the proposed term hierarchy. The term hierarchy is a

semantic hierarchy that helps the navigation in the text data. Its structure is similar

with the traditional OLAP hierarchies which are based on levels. In addition, the term

hierarchy is related with two operations that are called pull-up and push-down. In the

detailed Text Cube, for a specific assignment of the values in the cube’s dimensions, a

document collection is attached. In this model, if an aggregation is performed on the

text data, then two IR measures, term frequency and inverted index, are materialized.

Consequently, IR queries on the aggregated text data can be efficiently answered.

Moreover, the authors introduce algorithms for the optimal processing of OLAP

queries. Taking into consideration that the materialization of the full text cube is

prohibitive, the authors materialized the cube partially. In addition, the authors

propose an optimization on the partially materialized cube by bounding the query

processing cost.

16

CHAPTER 3. FAMILIES FOR SIMILARITY

MEASURES

3.1 OLAP Fundamentals

3.2 Distance Functions between two Values

3.2 Distance Functions between two Cells of OLAP Cubes

3.4 Distance Functions between two OLAP Cubes

In this section, we organize the distance functions that can be used to measure the

distance between two cubes. We begin with a presentation of the OLAP model that

was used in this thesis. Then we build our taxonomy of distances progressively: In

section 3.2 we describe the distance functions that can be applied between two values

for a given dimension. In section 3.3 we provide a taxonomy for distance functions

between two cells of cubes and in 3.4 a taxonomy for distance functions between two

OLAP cubes. Throughout all our deliberations we will refer to two reference

dimensions, Time and Location. The hierarchies of these dimensions are shown in

figure 1(a). In more detail, the Time dimension hierarchy consists of 5 levels. The

levels of Time are Day (L1), Week (L2) and Month (L2), Year (L3) and All (L4). The

dimension Location consists of four levels of hierarchy which are City (L1), Country

(L2), Continent (L3) and All (L4). In figure 1(b) we illustrate the lattice of the

dimension Location at the instance level.

3.1. OLAP Fundamentals

Our model consists of data that are stored under a structured form making use of

OLAP technologies. We model a collection of data in the form of a multi-dimensional

17

array called Cube. Each cell of the cube contains data and the cell is uniquely defined

by its coordinates as values of the dimensions of the cube.

Definition 1 (level). A level L= (λi, i≥1) is a set of finite names where λi is a name.

Definition 2 (dimension) [VS00]. A dimension D is a lattice (L, p) such that: L=

(L1, ..., Ln, ALL) is a finite subset of levels and p is a partial order defined among the

levels of L, such that L1 p Li p ALL for every 1<i≤n. We require that the upper

bound of the lattice is always the level ALL, so that we can group all the values of the

dimension into the single value ‘all’. The lower bound of the lattice is called the

detailed level of the dimension.

Each dimension has an associated hierarchy of levels of aggregated data. In addition,

for every level Li there is a domain of values denoted as dom(Li). Therefore, for every

dimension Di the domain is denoted as U
m

j
ji LdomDDOM

1

)()(
=

= which states that it is

the union of the domains of every level of hierarchy of the specific dimension.

Definition 3 (hierarchy). A hierarchy H= (h1, h2, …, hn) is a preordered set of levels.

Definition 4 (Cube) [VS00]. A cube c over the schema [L1, …Ln, M1, …,Mm], is an

expression of the form: c= (DS0, φ, [L1, …Ln, M1, …Mm], [agg1(M1
0, …, aggm(Mm

0)]),

where DS0 is a detailed data set over the schema S= [L1
0, …Ln

0, M1
0, …Mm

0], m≤k, φ

is a detailed selection condition, M1
0, …Mm

0 are detailed measures, M1, …,Mm are

aggregated measures, Li
0 and Li are levels such that Li

0
p Li, 1<i≤n and aggi, 1<i≤m

are aggregated functions from the set {sum, min, max, count}.

A strict hierarchy is defined as a one-to-many relationship between the values of the

different levels in a dimension. In other words, assume that Li p Li+1 are two levels of

hierarchy in a dimension. This hierarchy is characterized as strict when each value

from Li is related to only one value from Li+1 and a value from Li+1 may be related to

many values from the level Li. Therefore, the relationship between values of different

18

levels of hierarchy can be achieved through the use of a set of functions: j
L

i
L

anc is a

function that assigns a value from the domain of Li to a value from the domain of Lj ,

where Li p Lj.

Thus, for the set of functions j
L

i
L

anc the following conditions hold:

For each pair of levels L1 and L2 such that L1 p L2 the function 2L

1Lanc maps each

element of dom(L1) to an element of dom(L2).

Given levels L1, L2 and L3 such that L1 p L2 p L3, the function 3L

1Lanc equals to the

composition 3

2

2

1

L

L
anc

L

L
anc ° .

For each pair of levels L1 and L2 such that L1 p L2 the function 2

1

L
Lanc is monotone i.e.,

)(2

1
)(2

1
:)

1
(, y

L

L
ancx

L

L
ancyxLdomyx ≤⇒<∈∀

For each pair of levels L1 and L2 such that L1 p L2 the function 2

1

L

L
anc determines a

set of finite equivalence classes Xi such that:

yxy
L

L
ancx

L

L
ancLLLdomyx ,)(2

1
)(2

1
:

21
),

1
(, ⇒=∈∀ p belongs to the same Xi.

The relationship 2

1

L

L
desc is the inverse of the 2

1

L

L
anc function i.e.,

}1)(2

1
:)({)1(2

1
=∈= x

L

L
ancLdomx

L

L
desc

 According to the type of values that a dimension level may have we can classify the

distance functions that can be applied. Thus, we categorize the dimension levels

according to the values of their domain as following.

A dimension’s level domain is Nominal when its values hold the distinctness

property. In other words, the values in such a dimension can be explicitly

distinguished. For example in a dimension Location the level City can take distinct

values such as London, New York etc.

19

A dimension’s level domain is Ordinal when its values hold the distinctness property

as well as the order property. The order property implies that the values of such a

dimension abide by an order. For example in a dimension Size a level can take distinct

and ordered values such as small, medium, large.

A dimension level is Interval when its values apart from the distinctness and order

property also have the addition property. The addition property states that a unit of

measurement exists. The difference between two values has a meaning, indicating

how many values intermediate between them.

A dimension level is Ratio when its values apart from the distinctness, order and

addition property also satisfy the multiplication property. The multiplication property

states that differences and ratios between values have a meaning. In other words, the

ratio between two values indicates their analogy difference expressed in a percentage

scale.

3.2. Distance Functions between two Values

In this section we specify the distance functions that can be applied over two specific

values of a dimension. In order to clarify things distance functions described in this

section apply only between two dimension values and not between measure values of

a cube.

Assume a specific dimension D, its lattice of level hierarchies L1pL2p…pALL, and

two specific values x and y from levels of hierarchy Lx and Ly respectively. We

classify the distance functions in the following categories: (a) locally computable and

(b) hierarchical computable distance functions.

3.2.1. Locally Computable Distance Function.

The first category of locally computable distance functions can be divided into three

subcategories: (a) Distance functions with explicit assignment of values, (b) Distance

functions based on attribute values and (c) Distance functions based on the values of x

and y.

20

Distance Functions with Explicit Assignment of Values. The functions of this category

explicitly define n2 distances for the n values of the dom (Li) (the compared values

must belong in the same level of the hierarchy). This requires dom (Li) is a finite set.

For example, assume a case where the distance between two cities is explicitly

defined via a distance table.

Distance Functions based on Attribute Values. Assume a level whose instances are

accompanied with a set of attributes. Then every level instance can be described as a

tuple of attribute values. In this case, the distance between the two values x and y can

possibly be expressed with respect to their attribute values via simple distance

function applicable to the attributes’ domains (e.g., simple subtraction for arithmetic

values). For instance, assume a dimension Products accompanied with an attribute

Weight which describes the weight of the products and assume a level of hierarchy of

the dimension named Drinks. In addition, assume two specific values x = ‘milk’ and y

= ‘orange juice’ where their weight attributes are x.weight = 500 and y.weight = 330

respectively. Then the distance between these two values can be expressed according

to their weight attribute by making use, for instance, of the Minkowski distance

function which is described in the following subsection. Thus, the distance between

the values x and y can be defined as |x.weight – y.weight| = 170

Distance Functions based on the Values x and y. In this subcategory, the distance

between two values may be expressed through a function of their actual values

whenever this is possible. In this subcategory one option is to make use of the simple

identity function for nominal values. Thus, a value from the set {0, 1} where

 0, if x = y
dist(x, y)=

 1, if x ≠ y

This function is applicable for all type values even for nominal values.

Another option is to make use of the Minkowski family distance functions especially

in case where the values are of interval type. Minkowski family distance functions can

be applied between two ordinal type values under the condition that the ordinal values

have been mapped to the set of integer numbers. In this section, since the distance

21

function is applied for two specific values, all types of Minkowski distances reduce to

the Manhattan distance which is |x-y|. As an example, consider the dimension Time

whose levels are shown in figure 1(a). Assume two instances x and y from the level

Year, where x= ‘1995’ and y= ‘2000’. Then the distance between these two values is

obviously |1995-2000| = 5. In order to normalize this distance function within the

interval [0, 1], we can divide the distance value with the difference between the

maximum and minimum values of the level where x and y belong in.

(a) (b)

Figure 3. 1. (a) The hierarchy of levels for dimensions Time and Location (b) Values
of the Location dimension

3.2.2. Hierarchical Computable Distance Functions

The second category of hierarchical computable distance functions can be divided

into four subcategories: (a) Distance functions with respect to an aggregation

function, (b) Distance functions with respect to hierarchy path, (c) Percentage

distance functions and (d) Highway distance functions.

The distance for two values that do not belong to the detailed level L1 can be

expressed with respect to an aggregation function (e.g., count, max) applied over the

descendants of the two values in a lower level of hierarchy.

22

Distance functions with respect to an Aggregation Function. Assume an instance x

from level Li and)(i

L
xdescLL the set of its descendants, where LL is any lower level of

Li. The result of applying an aggregation function over the set)(i

L
xdescL

L is denoted as

))((i

Laggraggr xdescfx L
L= . Assume two values x and y with))((i

Laggraggr xdescfx L
L= and

))((j

Laggraggr ydescfy
L

L= , where LL could be any lower level of Li and Lj, x∈Li, y∈Lj

and faggr denotes an aggregation function such as count, min, max, avg or sum. The

distance between the values x and y can now be expressed according to the following

formula:),(),(aggraggr yxgyxdist = , where the function g can be computed from the

locally computable functions. The normalized form of this function, within the

interval [0, 1], can be expressed as
)},({

),(
),(

aggraggr

aggraggr

bagmax

yxg
yxdist = , where a and b are

any possible values from the same level of hierarchy as x and y, i.e., a,b∈Li .

Distance Functions with respect to Hierarchy Path. The distance between two values

x and y can be expressed according to the length of the path in the hierarchy that

connects them. Several distance functions and combinations falling into this

subcategory where described by Li, Bandar and McLean in [LiBM03]. Here, we

describe the distance functions that can be applied between two values x and y from a

hierarchy, (a) with respect to the length of the path in the hierarchy, and, (b) with

respect to the depth in the hierarchy path. Assume two values x and y such that x ∈ Lx

and y ∈ Ly. We denote the Lowest Common Ancestor of x and y as lca(x,y).

The lowest common ancestor lca, of two values x and y where x ∈ Lx and y ∈ Ly, lca

∈ Lz and Lz is any non lower level of Lx and Ly, LzfLx, Ly is a value such that:

lca={z|z = ∧)(xanc z

x

L
L z = ∧)(yanc z

y

L
L (∄ z’ | z’= ∧)(xanc z

x

L
L z’= ∧)(yanc z

y

L
L Lz’ p Lz } (1)

The distance between the values x and y can be expressed with one of the following

formulas:

1. dist(x, y) = fpath 










+ |),(|)*(

|) ,(| * + |) ,(| *

1yx

x

LALLpathww

lcaypathwlcaxpathw y

23

2. dist(x, y) = fdepth 








|),(|

 |), (|

1

1

LALLpath

Llcapath

The first formula indicates that the distance is a function of the weighted sum of the

length of the path from the values x and y to their lowest common ancestor lca. The

second formula indicates that the distance of the values is expressed as a function of

the length of the path of the lowest common ancestor lca from the detailed level L1 of

the hierarchy. In both formulas the functions fpath and fdepth may be any linear or

exponential function such as f(x) = ec*x, where c is any real parameter. These two

functions are normalized in the interval [0, 1] by making use of the height of the

hierarchy. Specifically, the first formula is divided by |),(|)*(1yx LALLpathww +

whereas the second formula is divided by |),(| 1LALLpath . As an example, assume

two values x=‘NY’ and y=‘Canada’ from the hierarchy Location denoted in figure

1(b) where their lowest common ancestor is the value lca = ‘America’ from the level

Continent. For simplicity, assume the functions fpath and fdepth are equal to the identity

function and the weighted factors wx and wy are set to 1. Therefore, the functions

become: fpath= (|path (x, lca)| + |path (y, lca)|)/ 2*|path(ALL, L1)| and fdepth= |path (lca,

L1)|/ |path(ALL, L1)|. The distance between x and y occurs to be fpath= (2+1)/2*3 =0.5

and fdepth=2/3.

Percentage Distance Functions. According to this subcategory, the distance between

two values x and y, where y is an ancestor of x, may be expressed according to a

percentage of occurrences over the values of the hierarchy. In other words, the

similarity of two values is expressed as the similarity of the number of descendants

this two values have. Assume the lattice of level hierarchies be denoted as

L1p…pLLp Lx p Ly p All where L1 denotes the most detailed level. The distance of a

value x in a level Lx in regards to its ancestor y in level Ly may be calculated according

to the function:

|)(|

|)(|
),(

y

i

x

i

ydesc

xdesc
yxdist

L

L

L
L= , where Li is one of the levels Lx, LL and L1 (3)

The above formula expresses the distance between a value x and one of its ancestors y

as a percentage via three ways. In case Li is Lx, then the distance is expressed as a

percentage in regards to the occurrences of all the other values from Lx whose

24

ancestor is y. In case Li is LL(or L1), the distance is expressed as a percentage of

occurrences of the descendants of x in a lower level of hierarchy LL(or L1) in regards

to the descendants of y in the same lower level LL(or L1). As an example, assume the

dimension Location where its lattice can be visualized in figure 1(a) and the values of

this dimension are visualized in figure 1(b). Assume the values x=‘USA’ and

y=‘America’. Then, in regards to the above formula the distance between these two

values can be computed as:

i.
2

1

|)America'('|

1
)America'',USA'(' ==

Continent
Countrydesc

dist where Li is chosen to

be the level Lx, i.e., Lcountry

ii.
5

3

|)America'('|

|)USA'('|
)America'',USA'(' ==

Continent
City

Country
City

desc

desc
dist where Li is chosen to

be the detailed level L1, i.e., Lcity

As for the third case, in this example it coincides with the second since the lower and

detailed level, i.e. City, are identical.

Highway Distance Functions. Assume that every level of hierarchy L is grouped into

k groups and every group has its own representative rk. Then, the distance between

two representatives can be thought of as a highway [SaSc05]. We denote with r(x)

and r(y) the representatives of the groups where x and y belong in respectively. There

fore, the distance between the values x and y can be expressed with the following

formula:

The partial distances between a value and its representative and the distance between

the two representatives r(x) and r(y) depend on the way the representative is selected.

In most cases the representatives are selected so that they belong in the same level of

hierarchy and thus their distance can be computed from the locally computable

functions, the path functions or the aggregated functions (in case the two

representatives belong in different levels their distance may be computed by applying

any distance function from the path section or the aggregated distance function

section). The main categories of selecting the representative apart from an explicit

dist (x, y) = dist (x, r(x)) + dist (r(x), r(y)) + dist (y, r(y)) (2)

25

assignment are in regards to (a) an ancestor and (b) a descendant. For the following,

dist(a, b) denotes the distance of any two values a, b. Without loss of generality

assume Lx p Ly. In addition, assume the ancestor of x in level Ly denoted as

)(y

xy xancx
L

L= and a representative of y in the level of hierarchy Lx denoted

as))((y

xx ydescfy
L

L= . These can be visualized through figure 2. The function f

applied over the descendants of y can result either to an explicitly assigned descendant

or to the result of an aggregation function (e.g., min, max) over the set of descendants.

In the following we describe the partial distances of formula 2 depending on the way

the representative is selected.

Figure 3.2 Partial distances between two values in different levels of hierarchy.

a) The representative of a group is an ancestor. The representative of each value x and

y could be)()(U

x
xancxr L

L= and)()(V

y
yancyr L

L= where LU and LV is any upper level

of Lx and Ly respectively. LU and LV are not obligatory different. In general, the

distance between a value x and its representative may be computed through any

distance function from the path, the percentage or the aggregated functions. For

example, assume two values x=‘UK’ and y=‘USA’ from the level Country of the

hierarchy Location denoted in figure 3.1(b). Assume the representative r(x)=‘Europe’

26

and the representative r(y)=‘America’. The distance of the values x and y is by

summing the distances dist(‘UK’, ‘Europe’), dist(‘Europe’, ‘America’) and

dist(‘America’, ‘USA’). In this category there are two special cases:

1. The representatives r(x) and r(y) coincide in being the lowest common ancestor lca,

where the formula is simplified as: dist (x, y) = dist (x, lca) + dist (y, lca).

2. The representative r(y) is identical to the actual value of y. In this case the distance

is expressed as a summation of dist(x, xy) and dist(xy, y), as shown in figure 2, where

xy is the representative of x from the level Ly. Therefore, the distance dist(y, r(y)) =

0. Formally this is expressed as:

)),(())(,() ,() ,() ,(y

x

y

xyy yxancdistxancxdistyxdistxx distyxdist L
L

L
L +=+= .

In case the representative xy of x and y coincide, the distance is simplified as

) ,() ,(yxxdistyxdist = . Since dist(x, xy) and dist(xy, y) are within the interval [0, 1],

the normalized form of dist(x, y) occurs by dividing it with 2. For example, assume

two values x = ‘USA’ and y = ‘Europe’ from the dimension Location as seen in figure

1. The ancestor xy of x is America'')(=xancContinent
Country . Assume dist(x, xy) is computed

from the percentage family functions. dist(xy, y) is computed through the first formula

from the path family functions where the weighted factors wx and wy are set to 1. The

distance between x and y becomes dist(‘USA’, ‘Europe’)= (dist(x, xy) + dist(xy, y))/2 =

(dist(‘USA’, ‘America’) + dist(‘America’, ‘Europe’))/2 = (1/2 + 2/3)/2 = 7/12.

b) The representative of a group is a descendant. The representative of a group can be

selected with respect to the descendants of the group where x belongs. For example,

consider countries whose representatives can be selected among their cities, based for

instance on the major airport or the highest population. In case the representative r(x)

is a value from the domain of LL (i.e., r(x) picked explicitly from the set)(L

x
xdescL

L or

by applying a min or max aggregation over the set)(L

x
xdescL

L), the distance between x

and r(x) can be any function from the families of path, percentage or aggregated

functions. In case r(x) is an arithmetic type value (i.e., a sum or count aggregation

function applied over the set)(L

x
xdescL

L), the distance between x and r(x) can be any

simple arithmetic function such as the Minkowski. There is a special case where the

representative r(x) is identical to the actual value of x. Thus, the distance is expressed

27

as a summation of dist(y, yx) and dist(yx, x), where yx is the representative of y from

the level Lx as shown in figure 2. Therefore, the distance dist(x, r(x))=0. Formally this

is expressed as:

2

))),((()))((,(

2

) ,() ,(
),(

y

x

y

xxx
xydescfdistydescfydistxydistyydist

yxdist
L

L

L

L +
=

+
=

where the denominator is set to 2 for normalization reasons. For example, assume two

values from the hierarchy Location, x=‘USA’ and y=‘Europe’, where the descendant

of y is selected as 'UK'))((y

x
=ydescf

L

L . Assume the distance between y and its

descendant yx is computed through the formula
|)(|

|)(|
),(

y

x

x

x x

x
ydesc

ydesc
yydist

L

L

L
L= from the

percentage family functions. The distance between x and yx is computed through the

first formula from the path family functions with wx and wy set to 1. Consequently, the

distance between x and y becomes =)Europe'',USA'('dist

6

5

2

6411

2

)USA'',UK'(')UK'',Europe'('

2

),() ,(xx =
+

=
+

=
+ distdistxydistyydist

.

In the special case where x is a descendant of y the above formula is simplified

as:)y dist(y,y)dist(x, x= .

3.3. Distance Functions between two Cells of Cubes

In this section we describe the distance functions that can possibly be applied in order

to measure the distance between two cells from a cube. Assume an OLAP cube C

defined over the detailed schema C= [L1
0, L2

0, …, Ln
0, M1

0, M2
0, …,Mm

0], where Li
0 is

a detailed level and Mi
0 is a detailed measure. In addition assume two cells from this

cube, c1 = (l1
1, l2

1, …, ln
1, m1

1, m2
1, …, mm

1) and c2 = (l1
2, l2

2, …, ln
2, m1

2, m2
2, …,

mm
2), where l i

1, l i
2 ∈ dom(Li

0) and mi
1, mi

2 denote the values of the corresponding

measure Mi
0 . The distance between two cells c1 and c2 can be expressed in regards to

a) their level coordinates di(Li
1, Li

2) and b) their measure values di(Mi
1, Mi

2). In other

words, dist(c1, c2)= f (di(Li
1, Li

2), di(Mi
1, Mi

2)). The function f can possibly be (a) a

weighted sum, (b) Minkowski distance, (c) min or (d) proportion of common

coordinates.

28

3.3.1. Distance functions between two Cells of a Cube Expressed as a Weighted Sum.

 In this category the distance between two cells c1, c2 where c1, c2 ∈ C can be

expressed through the formula

∑

∑

∑

∑

=

=

=

=

′

′

+
m

i
i

m

i
iiii

n

i
i

n

i
iiii

w

mmdw

w

lldw

f

1

1

21

1

1

21),(),(
: , where wi and

iw′ are parameters that assign a weight for the level Li and the measure Mi

respectively, di(l i
1, l i

2) denotes the partial distance between two values of the detailed

level Li
0 from dimension Di and di(mi

1, mi
2) denotes the partial distance between two

instances of the measure Mi
0. Regarding the distance di(l i

1, l i
2), this is expressed

through the various formulas from the section 3.1 which describes the possible

distance functions between two values from the same level of hierarchy over a

dimension. The distance di(mi
1, mi

2) between two instances of a measure can be

calculated through the Minkowski family distance when mi
1, mi

2 are of arithmetic

type, or through the simple identity function in case mi
1, mi

2 are of character type. The

above formula is a general expression of the distance between two cells.

Simplifications of this can be applied. For instance, the distance of two cells can be

calculated only with respect to the coordinates that define each cell and without taking

into consideration the measure values of each cell, i.e., by omitting from the above

formula the second fraction. Moreover, in case the partial distances are normalized in

the interval [0, 1] then, f expresses the overall distance between two cells normalized

in the same interval [0, 1]. For example, assume we want to compute the distance

between cells c1, c2 as shown in figure 3.3. Both cells consist of two dimensions

(Time, Location), where their hierarchy levels can be seen in figure 3.1, and contain

one measure (Sales). In the above formula we set the weight factors of the dimensions

(w) and the weight factors of the measures (w′) equal to 0.5. The distance between

dimensions is computed according to the function fpath that takes into account the

length of the path of the hierarchy. The distance between the measures is computed

through the normalized Manhattan distance function. In addition, assume that the

overall maximum and minimum values of the measure sales are 10 and 1 respectively.

With the above settings we obtain: d(c1,c2)=

w

SalesSalesdw

ww

CountryCountrydwMonthMonthdw cccccc

′

′
+

+

+),(*),(*),(*
212121 =

29

5.0

|)110|/|34(|*5.0

5.05.0

3/1*5.03/1*5.0 −−
+

+
+

=4/9

Figure 3.3 Instances of cells c1 and c2

To compute the distances),(
21 cc MonthMonthd and),(

21 cc CountryCountryd we refer

the reader to the figures 3.4 and 3.5. In figure 3.4 we see that the length of the path

between the nodes a and lca is 1, and the length of the path between the nodes b and

lca is 1 again. According to the function fpath,),(
21 cc MonthMonthd =

6

11+
=

3

1
. In a

similar manner, by using the information that derives from the figure 3.5

),(
21 cc CountryCountryd =

6

11+
=

3

1
.

Figure 3.4 Lattice of the dimension TIME for the values of cells of figure 3.3

30

Figure 3.5 Lattice of the dimension LOCATION for the values of cells of figure 3.3

3.3.2. Distance functions between two Cells of a Cube Expressed in regards to the

Minkowski Family Distances.

In this section we describe the possible distance functions between two cells from a

cube by making use of the Minkowski family distances. In general the Minkowski

distance is defined via the formula p
n

i

p
iiinnp yxdyyxxL ∑

=

=
1

11),()],...,(),,...,[(,

where di(xi, yi) denotes the distance between the two coordinates xi and yi of two given

points x and y. Assume two cells c1 = (l1
1, l2

1, …, ln
1, m1

1, m2
1, …, mm

1) and c2 = (l1
2,

l2
2, …, ln

2, m1
2, m2

2, …, mm
2), where l i

1, l i
2 ∈ dom(Li) and mi

1, mi
2 denote the values of

the corresponding measure Mi. The Minkowski distance can be applied in this

category, by substituting point coordinates xi and yi with cell coordinates, thus l i
1 and

l i
2. In general, in the Minkowski family distances the partial distances are defined as

di(xi, yi)=|xi - yi|. When applying the Minkowski distance over cell coordinates, then

the partial distances di(l i
1, l i

2) can be expressed as the distance between two values

from the same level of hierarchy as described in section 3.1.

So far, the distance between two cells is described only in regards to their level

coordinates. However, the distance between two cells can also be expressed by taking

into consideration the instance values of the cells, thus their measure values. The

Minkowski family distances can be applied, as well, in regards to the partial distances

31

di(mi
1, mi

2). Therefore, the distance between two cells can be expressed by adding the

equivalent two formulas. Depending on the value of p the Minkowski distances over

two cells are defined as:

∑
=

=
n

i
iii lldL

1

21
1),(∑

=

+
m

i
iii mmd

1

21),(, 1-norm distance

∑
=

=
n

i
iii lldL

1

221
2)),((∑

=

+
m

i
iii mmd

1

221)),((, 2-norm distance

p
n

i

p
iiip lldL ∑

=

=
1

21)),((p
m

i

p
iii mmd∑

=

+
1

21)),((, p-norm distance











= ∑

=
∞→∞

p

n

i

p
iii

p
lldL

1

21)),((lim =









+ ∑

=
∞→

p

m

i

p
iii

p
mmd

1

21)),((lim

 ()),(),...,,(),,(max 212
2

1
22

2
1

1
11 nnn lldlldlld +

 ()),(),...,,(),,(max 212
2

1
22

2
1

1
11 mmm mmdmmdmmd

 infinity norm distance or Chebyshev distance.

3.3.3. Distance Functions between two Cells of a Cube Expressed as the Minimum

Partial Distance.

In this category the distance between two cells c1 = (l1
1, l2

1, …, ln
1, m1

1, m2
1, …, mm

1)

and c2 = (l1
2, l2

2, …, ln
2, m1

2, m2
2, …, mm

2) can be expressed as:

{ }),(),...,,(),,(min)},({min)},({min 212
2

1
22

2
1

1
11

2121
nnniii

d
iii

d
lldlldlldmmdlld

ii

=+

{ }),(),...,,(),,(min 212
2

1
22

2
1

1
11 mmm mmdmmdmmd+ .

Therefore, the distance between two points is expressed as the minimum distance of

their level coordinates plus the minimum distance of their measure values.

32

3.3.4. Distance Functions between two Cells of a Cube Expressed as a Proportion of

Common Coordinates.

In this category the distance between two cells can be expressed as a proportion of

their common values of their level coordinates and their measure values. Therefore,

the distance between two cells c1 = (l1
1, l2

1, …, ln
1, m1

1, m2
1, …, mm

1) and c2 = (l1
2, l2

2,

…,ln
2, m1

2, m2
2, …, mm

2) can be expressed through the formula f:

m

mimmcount

n

nillcount }){1,2,...,(}){1,2,...,(2
i

1
i

2
i

1
i ∈∀=

+
∈∀= . The above formula states the

distance between two cells as a summation of two fractions. The first fraction is the

number of level values that are same for both cells, divided by the number of all level

values that describe a cell. The second fraction expresses the number of measures that

have the same value for both cells divided by the number of all possible measures in a

cell.

3.4. Distance Functions between two OLAP Cubes

Assume two OLAP cubes C and C’ defined through the same detailed schema [L1
0,

L2
0, …, Ln

0, M1
0, M2

0, …,Mm
0], where Li

0 is a detailed level and Mi
0 is a detailed

measure. In addition assume that cube C consists of l cells of the form c = (l1, l2, …,

ln, m1, m2, …, mm) and cube C’ consists of k cells of the form c’ = (l1
’, l2

’, …, ln
’, m1

’,

m2
’, …, mm

’), where l i, l i
’ ∈ dom(Li

0) and mi, mi
’ denote the values of the

corresponding measure Mi
0 . In general the two cubes can be of different cardinality,

i.e., l ≠ k. Assume dist(c, c’) where c ∈ C and c’ ∈ C’ denotes the distance between

two specific cells according to the various categories of section 3.3. The distance

between the two cubes can be expressed as a synthesis of the partial distances dist(c,

c’). In other words dist(C, C’)= f (dist(c, c’)) is a function of the partial distances

dist(c, c’). The function f can possibly belong to one of the following families: (a)

closest relative, (b) Hausdorff distance, (c) a weighted sum, (d) Minkowski distance,

and (e) Jaccard’s coefficient. Specifically, distance functions that fall within the

families (c) and (d) include the Cell Mapping method which is described in the next

subsection. The rest distance function families (i.e., (a), (b), (e)) do not include the

cell mapping method.

33

For example, assume we want to compute the distance between the two cubes CUBE1

and CUBE2 as shown in figure 3.6 CUBE1 consists of three cells whereas CUBE2

consists of 5 cells. Each cell in both cubes consists of two dimensions in different

levels of hierarchy and the measure Sales. Specifically, each cell of CUBE1 is of the

form c = (Day, City, Sales) and each cell of CUBE2 is of the form c’ = (Year, Country,

Sales). The distance between the two cubes can be expressed by applying a function f

over the partial distances dist(c,c’) of the cells of the two cubes.

Figure 3.6 Instances of two cubes

3.4.1. Cell Mapping and Categories of Distance Functions according to it

In this section we introduce the method that is used in order to map the cells of one

cube to the cells of another cube. We refer to this method as Cell Mapping. For two

cubes C1 and C2, the simple mapping of their cells includes the connection of every

cell of the cube C1 with one cell of the cube C2. Intuitively, the mapping of a cell in

cube C1 tries to capture the discovery of the “closest possible representative” of this

cell in cube C2. The “closest representative” is the cell of the cube C2 with the less

distance among the dimension values with the cell of the cube C1. In principle, the

Cell Mapping method can be thought of as a relation that connects the cells of a cube

to the cells of another cube (i.e., one can consider several candidate “representatives”

of a cell). However, in our setting, this relation is reduced to a function, since we are

interested in mapping each cell from the first cube to only one cell from the second

cube. This is done for reasons of simplicity and allows the elegant definition of cube

distances (see next). We impose the restriction that the function is total, i.e., each and

every cell from the first cube is mapped to a cell of the second cube. We do not

34

require that the mapping is 1:1 and onto; thus, in the second cube there might be a cell

in which more than one, or, no cells at all, from the first cube are mapped to it.

As an example assume the cubes that are presented in the figure 3.7. In figure 3.7 (a)

the cells A, B, C of CUBE1 are mapped to the cells E, D, H of CUBE2 respectively.

Moreover, in the same figure the cells F, G of CUBE2 are not mapped with any cell of

CUBE1. In figure 3.7 (b) we can observe that the cell E of CUBE2 is mapped with two

cells of CUBE1.

The cell mapping method needs to compute the distances between the dimensions of

each cell of the first cube with the dimensions every cell of the second cube and

ignoring the distance between the measures. So, if the distance between two cells c1,

c2 is expressed as f (di(Li
1, Li

2), di(Mi
1, Mi

2)) then the mapping method considers only

the di(Li
1, Li

2). Thus, each cell of the first cube is mapped to the cell of the second

cube with the less di(Li
1, Li

2) distance.

In our taxonomy, two distance functions between cubes make use of the cell mapping

method. These are (a) distance functions expressed in regards to the Closest Relative

and (b) the distance function expressed by Hausdorff distance. After the mapping has

been accomplished, the distances between the mapped cells are computed. Finally, the

computation of the distance between the two cubes involves the distances among the

mapped cells.

The distance functions that can be used in order to compute the distance between two

OLAP cubes can be divided into two categories. The first category involves distance

functions that include the cell mapping method. The second category contains

distance functions that do not include the cell mapping method. Following, we

describe each distance function and provide its analytical formula. The distance

functions of the first category are the Closest Relative and the Hausdorff Distance

(section 3.4.2) that include the cell mapping method. Then, the category of families

that do not consider the cell mapping method in their definition, include the Weighted

35

Sum function, the minkowski family of distance functions, the Jaccard’s Coefficient

and the minimum of distances function.

Figure 3.7 (a) cells of cube CUBE1 mapped to the cells of cube CUBE2 (b) cells of
cube CUBE1 mapped to the cells of cube CUBE2

3.4.2. Distance Functions that Include Mappings

This subsection contains the description of the distance functions that involve the Cell

Mapping method. These distance functions are the Closest Relative and the Hausdorff

and are described as follows.

Distance function between two cubes expressed in regards to the closest relative. In

this category the distance between two cubes C and C’ is expressed as the summation

of distances between every cell of a cube with the most similar cell of another cube

through the formula:

)}',({min)',(|
k

)),((
)',(dim

i
dim

k

1i ccdistccdistc
ccdist

CCdist ii

i

=′∀
′

=
∑
= where distdim

denotes the distance of two cells excluding the distance of their measures. The

36

)}',({min)',(| dim
i

dim ccdistccdistc ii =′∀ part of the above formula reveals the cell

mapping method. Each one of the k cells from cube C is mapped to the cell of the

cube 'C that has the minimum distdim from it.

As an example, we will analyze the computation of the distance between the cubes

CUBE1 and CUBE2 shown in figure 3.8. The first step is to map the cells of the cube

CUBE1 to the appropriate cells of the cube CUBE2. In order to simplify the example

the computational part of the cell mapping method is not described here, but the cell

mapping is denoted in figure 3.8 through arrows between the cells of the two cubes.

The distance function used in this example for the purpose of computing the distance

between the cells of the two cubes is the weighted sum. The weight that was used is

0.5, equal for both the dimensions and measures. In addition, the distance function

used to measure the distance between the dimensions is the fpath function. The cells c1,

c2, c3, are mapped to the cells c7, c5, and c5 respectively. According to this mapping, in

order to compute the distance between the two cubes, the needed distances between

cells are:

 d(c1, c7)=
5.0

|)110|/|55(|*5.0

5.05.0

6/1*5.06/1*5.0 −−
+

+
+

=1/6+0=1/6

 d(c2, c5)=
5.0

|)110|/|66(|*5.0

5.05.0

6/1*5.06/1*5.0 −−
+

+
+

=1/6+0=1/6

 d(c3, c5)=
5.0

|)110|/|76(|*5.0

5.05.0

6/1*5.06/1*5.0 −−
+

+
+

=1/6+1/9=5/18

For the above computations we refer the reader to the figures 3.4 and 3.5 where the

hierarchies of the dimensions LOCATION and TIME are presented. With the above

distances, we can now compute the full distance between the cubes CUBE1 and

CUBE2 through the first formula of the closest relative family functions:

d(CUBE1,CUBE2)=
3

),(,(),(535271 cc d)cc dccd ++
 =

3

18/56/16/1 ++
=0.319444

37

Figure 3.8 Instances of two cubes and the mapping of their cells

Distance functions between two cubes expressed by Hausdorff distance. In this

category the distance between two cubes can be expressed by making use of the

Hausdorff distance [HuKR93]. The Hausdorff distance between two cubes can be

defined as H(C, C’) = max(h(C,C’), h(C’,C)) where h(C,C’) =)}},({{
Cc'Cc

'ccdistminmax
'∈∈

and dist (c, c’) is the distance between two cells c and c’ from the cubes C and C’

respectively. The function h(C, C’) is called the directed Hausdorff distance from C to

C’ and the distance measured is the maximum distance of a cube C to the “nearest”

cell of the other cube C’. The Hausdorff distance is the maximum of h(C, C’) and

h(C’, C).

In the Hausdorff distance function the cell mapping method is bidirectional. That

means that except from the mapping that we have examined in the closest relative

function we need an extra mapping and that is the mapping from the cells of cube C’

to the cells of Cube C.

When the bidirectional mapping is completed, we obtain two sets of mapped cells. In

each set, for every pair of mapped cells, we compute their distance considering now

their measures as well. Thus, essentially, we have two sets of minimum distances

between cells, the set of minimum distances from the cells of cube C to the cells of

cube C’ and the set of minimum distances between from the cells of cube C’ to the

cells of cube C. From each of the two sets we pick the greatest distance and finally

from these two distances we pick the greater one.

38

To make things more clear an example follows. Assume again the cubes CUBE1 and

CUBE2 as shown in figure 3.9. The figure 3.9 also presents the mapping from the cells

of CUBE1 to the cells of CUBE2. In figure 3.9 we can observe the same cubes and the

mapping from the cells of CUBE2 to the cells of CUBE1. According to this

bidirectional mapping the two resulting sets of minimum distances are:

S1)},(,,(,),({ 535271 ccd)ccdccd

S2)},(,),(,),(,),(,),({ 3817263534 ccdccdccdccdccd

The distances of the S1 are already computed on a previous example, so here we only

need to compute the distances of S2. The distances d(c5,c3),d(c7,c1) coincide with the

distances d(c3,c5),d(c1,c7) respectively. The computations below use the same distance

functions between values and cells and also the same weight factors like the previous

example.

d(c4, c3)=
5.0

|)110|/|73(|*5.0

5.05.0

6/1*5.06/1*5.0 −−
+

+
+

=1/6+4/9=11/18

 d(c6, c2)=
5.0

|)110|/|68(|*5.0

5.05.0

6/3*5.06/1*5.0 −−
+

+
+

=4/12+2/9=10/18

 d(c8, c3)=
5.0

|)110|/|79(|*5.0

5.05.0

6/1*5.06/1*5.0 −−
+

+
+

=1/6+2/9=7/18

Now, the Hausdorff distance between the cubes CUBE1 and CUBE2 is equal to the

next formula:

d(CUBE1,CUBE2)=max{ max{ S1},max{ S2}}=

max{ max{1/6,1/6,5/18},max{11/18,5/18, 1/6,10/18,7/18}}=

max{5/18,11/18}=11/18.

Figure 3.9 Instances of cubes CUBE1 and CUBE2 and the mapping of the cells of the
cube CUBE2 to the cells of the cube CUBE1

39

3.4.3. Distance functions that do not include Mappings

This subsection includes the distance functions that don’t include mappings. These

functions are the Weighted Sum function, the Minkowski family of distance functions,

the Jaccard’s Coefficient and the minimum of distances function. The analytical

formula of each function is described bellow.

Distance functions between two cubes expressed as a weighted sum. In this category

the distance between two cubes can possibly be expressed as a weighted sum over the

distances between each cell from one cube to every cell from the other cube.

Therefore, the distance can be expressed through the formula:

∑∑

∑∑

= =

= =
l

1i

k

1j
ij

l

1i

k

1j

)',(

:
w

ccdistw

f
ij

,

where dist(c, c’)is the distance between a cell from cube C to a cell from cube C’ and

wij denotes the weight factors assigned to each distance.

Distance functions between two cubes expressed through Minkowski family distances.

The distance between two cubes C and C’ can be expressed by making use of a

distance function from the Minkowski family. The distance between C and C’ by

applying the Minkowski family distances, depending on the values of the parameter p,

are defined as:

∑∑
= =

=
l

1i

k

1j
1)',(ccdistL , 1-norm distance

∑∑
= =

=
l

1i

k

1j

2
2)',(ccdistL , 2-norm distance

p

l

1i

k

1j

p
p)',(∑∑

= =

= ccdistL , p-norm distance

=









= ∑∑

= =
∞→∞

p

l

1i

k

1j

p

p
)',(lim ccdistL

{ })',(),...,',(),',(),...,',(),...,',(),',(max 2112111 klllk ccdistccdistccdistccdistccdistccdist

infinity norm distance or Chebyshev distance.

40

Distance functions between two cubes expressed by Jaccard’s Coefficient. In this

category the distance between two cubes can be expressed in regards to the Jaccard’s

coefficient [ZADB06]. The Jaccard’s coefficient is defined as:

|'|

|'|
1)',(

CC

CC
CCdist

∪
∩

−= . The distance is based on the ratio between the cardinalities

of intersection and union of the cubes C and C’. In addition, based on the Jaccard’s

coefficient the distance between two cubes can be expressed by applying the Dice’s

coefficient. For two cubes C and C’ the Dice’s coefficient is defined as:

|'|||

|'|2
)',(

CC

CC
CCdist

+
∩

= . This formula expresses the similarity between two cubes as

the ratio between the cardinality of intersection and the summation of cardinalities of

the two cubes.

The Minimum of distances Function. Another option is to express the distance as the

minimum distance among all possible distances between the cells of the compared

cubes. Therefore the distance between C and C’ is expressed as:

}'',|)',(min{)',(CcCcccdistCCdist ∈∈= , where dist(c, c’) is the distance between a

cell from cube C to a cell from cube C’. In case the two cubes are disjoint i.e.,

0' /=∩CC , then dist(C, C’) is a positive number, whereas if the two cubes have

common cells i.e., 0' /≠∩CC , then dist(C, C’) is zero.

As a simple example, assume the two cubes from figure 3.7 and ignore the arrows that

denote the cell mapping. According to the minimum of distances function, the distance

between the two cubes is computed through the following formula where j denotes the

any cell from CUBE2:

d(CUBE1,CUBE2)= }8...,5,4{)},(,,(,),({min 321 ∈∀jccd)ccdccd jjj
j

=1/6

41

CHAPTER 4. IMPLEMENTATION AND

EXPERIMENTS

4.1 Implementation Issues

4.2 User Study for Distances between two Values of Dimensions

4.3 User Study for Distances between two OLAP Cubes

This Chapter includes the technical part of this thesis and also the user studies that we

conducted in order to examine the user preferences on the distance functions that are

described in chapter 3. Thus, in section 4.1 several implementation issues are

examined including a short description of the implemented classes and their UML

diagram. In section 4.2 we present the findings of the first user study that we

conducted in order to examine which of the distance functions between values of

dimensions is most preferred by the users. Finally, in section 4.3, we provide the

results of the second user study that is conducted taking into account the findings of

the previous section. In the second user study users show their preference between the

closest relative and the Hausdorff distance functions.

4.1. Implementation Issues

In this section we will present the implementation part of this thesis, which is

organized as follows. In subsection 4.1.1 we describe the architecture of the

application and the background of the database and the Database Management system

that was used and in subsection 4.1.2 there is the UML diagram and a short

description of the implemented classes.

42

4.1.1. Application Architecture

This section contains the description of the implemented application for the

comparison of two OLAP cubes that we call Cube Comparison OLAP (CuCOOL)

tool. The application takes as input two OLAP cubes in the form of two queries and

returns their distance taking into account the selected distance functions, firstly

between the values of the dimensions, secondly between the cells of the two cubes

and finally between the cubes. The code is written in Java and it is implemented in the

NetBeans IDE 6.5.1.

The Database Management System (DBMS) that is used is the MySQL Server 5.1.

The application connects to the DBMS using the driver MySQL-AB JDBC 5.1.7. The

application interacts with the DBMS by sending SQL queries and retrieving the

resulting tuples. Further information about the data and the database schema that is

used are described analytically in section 4.2.

Figure 4.1 CuCOOL Tool architecture

4.1.2. UML Diagram and Basic Description of the Implemented Classes

The UML Diagram of the application is shown in the figure 4.2. The part of the

implementation that concerns the distance functions includes the classes Cube_func

and between_cells and the interface functions_between_values. In addition, there are

43

several more classes (eg. Fpath, Highway_desc etc) that implement the function

intercompute() of the interface functions_between_values, according to the distance

function between values that we select. The class between_cells implements the

weighted sum function from the functions between two cells of cubes. The Cube_func

implements the cell mapping method as well as the closest relative and the Hausdorff

distance functions.

There are also some classes that are needed to store information about the dimensions,

their hierarchies and the levels of each hierarchy. These classes are named Dim,

Hierarchy and Lev. Specifically, the class Hierarchy contains objects of type Lev. So,

each object of type Hierarchy denotes a hierarchy and contains its levels (Lev

objects). The class named Dim is the class in which the names of the dimensions are

stored. Each object Dim can contain many Hierarchy objects but each hierarchy is

related to only one dimension.

Parsing. As we mentioned in 4.1.1, the input of the application are two OLAP cube

queries. These queries are written in a specific form in a text file called “Cubes.txt”.

The form of these queries is shown in figure 4.3. The tag name is followed by the

name we give to the cube and the tag Select is followed by the attributes that we want

to retrieve their data. The tag fact is followed from the fact table of our database and

together with the information of the tag dimensions these will create the “From” part

of the SQL query. The tag joins_where contains the attributes from the dimension

tables that we want to connect with the respective foreign keys of the fact table to

achieve the join. The tags where and values_where contain the where conditions of

the query. The constraint here is that the order of the information in the values_where

tag must follow the order of the information in the where tag. For more than one

where conditions the tag add_where must contain the logical connectives (i.e., and,

or) in the same order as the conditions in the previous two tags. Finally, the group_by

tag contains the attribute for the group by condition. The resulting SQL query of the

figure 4.3 is:“select ag_level1, ed_level1, hours_per_week from age2, education2,

adult where ag_level0=adult.age and ed_level0=adult.education and ag_level2=”27-

36” and ed_level2=”Secondary” group_by ed_level0”.

44

creatw_q

Parser

parse_cubes()

parse_hierarchies()

Cube_insertion

Low_lev_count

intercompute()

Low_lev_max

intercompute()

Highway_anc

intercompute()

fdepth

intercompute()

Local_on_values

intercompute()

functions_between_values

intercompute()

<<Interface>>

percentage

intercompute()

Highway_r_anc

intercompute()

Highway_desc

intercompute()

fpath

intercompute()

Highway_r_desc

intercompute()

Cube_Func

Between_Cells

Dim

Lev

Hierarchy

1

0..*

1

0..*

Main

1

0..*

1

0..*

10..*

1

0..*0..*

1

10..*

Figure 4.2 The UML Diagram of the OLAP cube comparison application

To parse a query given in the form as shown in the figure 4.3, a parser is needed. For

this reason the class Parser with the function cube_parser() is created. Moreover, an

extra class named Cube_Insertion is created in order to keep the parsed values of each

query. Finally, to create the final SQL query, a class create_q is constructed. This

45

class uses the information that is stored in Cube_Insertion objects in order to create

the appropriate SQL queries.

Figure 4.3 Form of a query that is given as input in the application

Apart from the queries, the application must be given also the hierarchies of the

dimension tables of the database. The file “hierarchies.txt” serves this purpose and an

example of such a file is presented in the figure 4.4. In the “hierarchies.txt” file, the

word that follows the name tag denotes the name of the hierarchy and it must coincide

with the dimension table of the database. For example, in figure 4.4 age2 is a

dimension table in the database. The word that follows the FK tag denotes the foreign

key of the dimension table in the fact table, and the words after the tag levels denote

the levels of the hierarchy with the constraint that every level must be an attribute of

the dimension table. The process of parsing for this file is done from the function

parse_hierarchies() in the Parser class. This information is stored in the classes

Hierarchy and Lev.

Figure 4.4 A caption from the file “hierarchies.txt”

name cube1

select ag_level1 ed_level1 hours_per_week

fact adult

dimensions age2 education2

joins_where ag_level0=age ed_level0=education

where ag_level2 ed_level2

values_where ="27-36" ="Secondary"

add_where and

groupby ed_level0

Name age2

FK age

Levels ag_level4 ag_level3 ag_level2 ag_level1 ag_level0

Name education2

FK education

levels ed_level4 ed_level3 ed_level2 ed_level1 ed_level0

name native_country2

46

4.2. User Study for Distances between two Values of Dimensions

In this section we describe a user study we conducted for discovering which distance

functions between two values of a dimension seem to be more suitable for user needs.

The experiment involved 15 users out of which 10 are graduate students in Computer

Science and 5 that are of other backgrounds. In the rest of the paper we refer to the set

of users with computer science background as Users_cs, the set of users with other

background as Users_non and the set of all users independently of their background

as Users_all.

In the experiments we used the “Adult” real data set according to the dimension

hierarchies as described in [FuWY05]. This dataset contains the fact table Adult and 8

dimension tables which are described in Table 1. The figure 4.5 shows the dimension

hierarchies of the dataset “Adult” and the figure 4.6 shows the database schema of the

dataset.

Table 4.1 Adult dataset tables

Table Value Type # Tuples # Dim. Levels
Adult fact 30418 -
Age Dim. Numeric 72 5

Education Dim. Categorical 16 5
Gender Dim. Categorical 2 2

Marital Status Dim. Categorical 7 4
Native Country Dim. Categorical 41 4

Occupation Dim. Categorical 14 3
Race Dim. Categorical 5 3

Work Class Dim. Categorical 7 4

47

Figure 4.5 Dimension hierarchies of the dataset adult

48

Figure 4.6 Database schema for the Adult dataset

The purpose of the experiment is to assess which distance function between two

values is best in regards to the user preferences. Each user was given 14 case

scenarios. Each scenario contained a reference cube and a set of cubes, which we call

variant cubes, that occurred by slightly altering the reference cube. The 14 scenarios

included different kinds of cubes in regards to the value types and the different levels

of granularity. For each reference cube which was randomly selected, the variant

cubes were generated from the fact table by altering the granularity level for one

49

dimension, or by altering the value range of the reference cube. For instance, assume

a reference cube containing the dimension levels Age_level1, Education_level2 under

the age interval [17, 21]. According to the first type of modification, a variant cube

could be generated by changing the dimension level to Age_level2 or Age_level0, or

changing the level of the Education Dimension. According to the second type of

modification, another variant cube could be generated by changing the age interval to

[22, 26] or to [17, 26]. Among all possible variations of the reference cube we

manually chose the set of variant cubes such that each of them was most similar to the

reference cube according to a distance function. In order to observe which distance

function is preferred by users depending on the type of data of the cubes, we have

organized the 14 scenarios into 3 sets. The first set consists of cubes containing only

arithmetic type values (5 scenarios). The second set consists of cubes containing only

categorical type values (2 scenarios). The third set consists of cubes containing a

combination of both categorical and arithmetic type values (7 scenarios). A sample

scenario can be seen in figure 4.7. At this figure the cube with the bolded outline is

the reference cube. Due to space limitations all the scenarios used for the user study

are not presented here but can be found in the appendix at the end of this thesis.

Figure 4.7 Sample scenario

50

Table 4.2 Notation of distance functions used in the experiment

Family Abbr. Distance function name
Local δM Manhattan

δLow,c With respect to a lower level of hierarchy where
faggr =count

Aggregation

δLow,m With respect to a lower level of hierarchy where
faggr = max

δLCA,P Lowest common ancestor through fpath Hierarchical Path
δLCA,D Lowest common ancestor through fdepth

Percentage δ% Applying percentage function
δAnc With respect to an ancestor xy
δDesc With respect to a descendant yx
δH,Desc Highway, selecting the representative from a

descendant

Highway

δH,Anc Highway, selecting the representative from an
ancestor

In each scenario, the users were asked to select the variant cube that seemed more

similar to the reference cube based on their personal criteria. The distance functions

that have been used in the experiment are shown in Table 2, where the first column

shows the family in which each distance function belongs to according to Chapter 3.

In the second column there is an abbreviated name for each function. To compute the

distance between two cubes, the Closest Relative distance function is used (section

3.4.2). The distance between two cells of cubes is the weighted sum of the partial

distances of the two values, one from each cell, with all weights set to 1 (section 3.3).

Table 4.3 Top three most frequent distance functions for each user group.

 Users_all Users_cs Users_non

δLCA,P 40.47% 38.57% 44.28%

δAnc 18.09% 20% 14.28%

δH,Desc 9.52% 10.71% 7.14%

The analysis of the collected data provides several findings. The first finding concerns

the top three most preferred distance functions measured over the detailed data for all

scenarios and all users. It is remarkable that the top three distance functions for each

of the user groups were the same and with the same ordering and specifically, these

51

are the δLCA,P, the δAnc and the δH,Desc. The frequencies for each one of the top three

distance functions in each group of users is shown in Table 4.3.

The second finding concerns the most preferred function by users depending on the

type of data the cubes contained. Table 4.4 summarizes the result of the most frequent

distance function for each set of scenarios and each set of users. We observe that for

the categorical type of cubes, all user groups prefer the δLCA,P distance function,

whereas for the arithmetic and the arithmetic & categorical sets, the functions that

users mainly prefer are the δLCA,P and δAnc. More than one distance functions appear as

winners in Table 4 due to ties in the frequency of occurrences for each function.

Table 4.4 The most frequent distance function for each set of scenarios.

 Users_all Users_cs Users_non
Arithmetic δAnc δLCA,P, δH,Desc, δAnc δLCA,P
Categorical δLCA,P δLCA,P δLCA,P

Arithmetic &
Categorical

δAnc δAnc δLCA,P, δAnc

The third finding concerns the winner distance function per scenario. For every

scenario, we take into account the 15 occurrences by all users and see which distance

function is the most frequent. We call this function the winner function of the

scenario. The most frequent winner function was δLCA,P. The percentages were

35.71% for the Users_all group, 35,71% for the Users_cs group and 57.14% for the

Users_non group. The most frequent function for 14 users was the δLCA,P function.

For one user from the Users_cs group the most frequent function was the δLCA,D.

The fourth finding concerns the diversity and spread of user choices. There are two

major findings: (a) All functions were picked by some user and (b) there are certain

functions that appeared as user choices for all users of a user group. Specifically,

functions δLCA,P, δH,Desc and δAnc were selected at least once by users of group

Users_cs. Similarly, functions δLCA,P, δLow,m and δAnc were selected at least once by

Users_non.

52

The fifth finding concerns the most preferred family of functions. Table 4.5 depicts

the absolute number of appearances of each distance function family per user group.

The most preferred family of distance functions is the Hierarchy Path family, which

also contains the top one most preferred distance function δLCA,P. Moreover, we

observe that the ranking of the distance function families was exactly the same for

each user group.

Table 4.5 Frequencies of preferred distances within each user group for each distance
family.

 Local Aggregation Hierarchy Path Percentage Highway
Users_cs 1 9 69 9 52

Users_non 2 5 34 5 24
Users_all 3 14 103 14 76

The selection stability (e.g., how stable are users answers at the same questions) of

users was the sixth observation. The selection stability was determined by the

following results, where the 13th and the 14th scenario were a reordering of the 3rd and

10th scenario respectively. 4 out of 5 users from the set of Users_non, 6 out of 10

users from the set of Users_cs (consequently, 10 users from Users_all set) selected

the same function for both of the two similar scenarios. The rest of the users selected

the same function for only one out of the two repeated scenarios.

Summary. Overall, the findings indicate that the most preferred distance function is

the δLCA,P, which is expressed in regards to the shortest path of a hierarchy dimension.

Apart from the δLCA,P, the distance functions δAnc and δH,Desc were widely chosen by

users. In addition, the most preferred distance function family is the Hierarchy Path

family.

4.3. User Study for Distances between two Cubes

This second user study is a follow up of the previous user study. In the previous user

study the overall observation was that the users prefer the δLCA,P distance function

between two values of the same dimension. Based on this result and also by setting as

the distance function between cells the weighted sum function we set up the second

53

user study such that we can examine which distance function between two cubes the

users prefer. Specifically, we try to find out which distance function among the two

functions that include the cell mapping method (section 3.4.1) is most closely related

to the human perception. These two distance functions are namely the closest relative

and the Hausdorff distance function (section 2.4.2). The table 4.6 shows the distance

functions that were used in this user study

The user study contained 14 new scenarios. Each scenario included 4 cubes named A,

B, C and D. The cube A in every scenario was the reference cube. The users were

asked to order the rest of the three cubes from the most similar to the less similar

when compared to the cube A. The cubes B, C and D were chosen such that one of

them was the closest to the cube A according to the closest relative function and

another was the closest to cube A according to the Hausdorff distance function. The

remaining cube was chosen to be the most distant from cube A for both distance

functions. A sample scenario can be seen in figure 4.8. In this figure the cube which is

filled with light blue color is the reference cube. Due to space limitations all the

scenarios used for this user study are not presented here but can be found in the

appendix at the end of this thesis.

All scenarios were uploaded as jpeg pictures in an html page where users were asked

to complete an answer sheet and send it back to us via email. The url link of this page

was sent via a social network and also by email at the email-list of the graduate

students of the Computer Science Department of the University of Ioannina.

In order to test a user’s answer reliability, in the 6th scenario the cube B was identical

with the cube A. Moreover, the 13th and 14th scenarios were replicas of the 5th and 9th

scenarios respectively with a reordering on the columns of the cubes. This was done

in order to measure the user stability of their choices.

54

Figure 4.8 Sample scenario

The 12 first scenarios can be divided into three groups according to the weights in the

distance function between cells. The first 4 scenarios consist of cubes that they do not

include measures. We refer to this group as the no_measures group. The next 4

scenarios consist of cubes that include measures where the weight factors on measures

and dimensions in the function between cells are not equal. Specifically, assuming

that cubes consist of k dimensions and l measures, the weight factors for the

dimensions was set to be k/(l+k) and for the measures was set to be l/(l+k). We refer to

this group as the not_equal group. Finally, the last four scenarios consist of cubes that

include measures and the weight factors on the measures and on the dimensions in the

between cells distance function are equal and set to 0.5. We refer to this group as the

equal group.

55

Table 4.6 The distance functions that are used in the second user study

Hausdorff
Distance functions between two cubes

Closest relative
Distance function between two cells of cubes weighted sum

Distance function between two values of a
dimension

δLCA,P

Distance function between two measures Manhattan

The number of users that responded with an answer sheet was 39. Two from the 39

users did not choose the cube B in the sixth scenario as the most similar to the cube A.

For that reason their answers were not taken into consideration. We refer to the

remaining 37 users as valid_users.

The first finding of this user study concerns the most frequent distance function that

was chosen from the users as their first choice. Among all the 11 (scenarios) * 37

(users) = 407 answers (the sixth scenario is excluded), 232 times (≈57%) the users

gave as their first choice the cube that represents the closest relative distance function.

The cube that represents the Hausdorff distance function was chosen 154 times

(≈38%) as the first choice of the users. Only 21 times (≈5%) the users chose the most

distant cube as their first choice. The summarization of the above results is shown in

the table 4.7.

Table 4.7 Frequency of chosen as first distance function among all the 444 answers

 Frequency Percentage
Hausdorff 154 38%

Closest relative 232 57%
Most distant cube 21 5%

The second finding of the user study concerns the stability of the user choices. As we

mentioned before, the 13th and 14th scenario were replicas of the 5th and 9th scenario

respectively. In each of these two scenarios a user that orders the cubes in the same

way as in the original scenario is denoted as user_OK. A user that gave the same

answer for the most similar cube but the order of the other cubes was not the same is

denoted as user_Half_OK. Finally, a user that was denoted as user_OK for both

56

replicas scenarios, or denoted as user_OK for the one replica scenario and

user_Half_OK for the other replica scenario is denoted as user_ Stable. According to

the answers of the valid 37 users of this user study, in the 13th scenario there were 28

user_OK users and 5 user_Half_OK users. In the 14th scenario there were 19 user_OK

users and 8 user_Half_OK users. The 24 of the 37 (≈65%) users were user_Stable

users. We believe that a 65% is a safe number that can ensure the stability and

reliability of their answers. The table 4.8 summarizes the above results and

percentages.

Table 4.8 User stability

 User_OK user_Half_OK user_Stable
 Frequency Percentage Frequency Percentage Frequency Percentage

13th
scenario

28 75% 5 13% 24 65%

14th
Scenario

19 51% 8 21% 24 65%

The third observation concerns the wining function per scenario. The term wining

function refers to the function that was mostly selected as the first choice from the

users in one scenario. The closest relative function was the wining function for 6

scenarios and the Hausdorff function was the wining function for the rest 5 scenarios.

These results cannot ensure that one of the two functions is more preferred than the

other.

The fourth observation concerns the winner function per scenario group. For a group

of scenarios its winner function occurs to be the function that appeared as wining

function in most scenarios of the group. For the no_measures group the winner

function was the closest relative function which it was the wining function for the 3

out of the 4 scenarios. For the not_equal group the winner function was the Hausdorff

which it was the winning function for the 2 out of the 3 scenarios. Finally, for the

group equal, in two scenarios the wining function was the closest relative function

and in two scenarios the wining function was the Hausdorff function. The above

results reveal a user preference in the closest relative function for scenarios that do no

include measures. On the other hand for the other types of scenarios the results are not

57

clear. The analytical results of the third and fourth observation are presented in table

4.9.

Table 4.9 The winning functions and the winner functions

Scenario Group Scenario Winning function Winner function
Scenario1 Closest relative
Scenario2 Closest relative
Scenario3 Closest relative

no_measures

Scenario4 Hausdorff

Closest relative

Scenario5 Hausdorff
Scenario7 Closest relative

not_equal

Scenario8 Hausdorff

Hausdorff

Scenario9 Hausdorff
Scenario10 Hausdorff
Scenario11 Closest relative

equal

Scenario12 Closest relative

-

58

CHAPTER 5. CONCLUSIONS

This thesis presented a variety of distance functions that can be used in order to

compute the similarity between two OLAP cubes. The functions were described with

respect to the properties of the dimension hierarchies and based on these they were

grouped into functions that can be applied (a) between two values from a dimension

of a multidimensional space, (b) between two points of a multidimensional space and

(c) between two sets of points of a multidimensional space.

In order to assess which distance functions are more close to human perception, we

conducted two user study analysis. The first user study analysis was conducted in

order to discover, which distance function between two values of a dimension is best

in regards to the user needs and data type. Our findings indicated that the distance

function δLCA,P, which is expressed as the length of the path between two values and

their common ancestor in the dimension’s hierarchy was the most preferred by users

in our experiments. Two more functions were widely chosen by users. These were the

highway functions δAnc that is expressed in regards to the ancestor xy and δH,Desc that is

expressed by selecting the representative from a descendant.

The second user study we conducted, took into account the results of the first user

study analysis. Specifically, the second user study analysis aimed in discovering

which distance function (the closest relative or the Hausdorff distance function) from

the category of distance function between two data cubes, users prefer. The findings

of this user study analysis indicated that the closest relative distance function was

rather preferred by users in contrast to the Hausdorff distance functions.

59

Future work can be pursued in various directions including (a) the deeper examination

of the presented families of functions with more complicated scenarios and (b) the

discovery of the foundational reasons for the observed user preferences.

60

REFERENCES

[Cou] The OLAP Council. The OLAP benchmark.
http://www.olapcouncil.org

[JB05] Cliff Joslyn and William J. Bruno. Weighted pseudo-distances for
categorization in semantic hierarchies. In ICCS, pages 381– 395, 2005.

[JK00] Jiawei Han, Micheline Kamber: Data Mining: Concepts and
Techniques Morgan Kaufmann 2000

[JO04] Cliff Joslyn. Poset Ontologies and Concept Lattices as Semantic
Hierarchies. In ICCS, pages 287-302, 2004

[JMFH04] Cliff Joslyn, Susan M. Mniszewski, Andy W. Fulmer, and Gary
Heaton. The gene ontology categorizer. In ISMB/ECCB (Sup- plement
of Bioinformatics), pages 169–177, 2004.

[LDH+08] Cindy Xide Lin, Bolin Ding, Jiawei Han, Feida Zhu, and Bo Zhao.
Text cube: Computing IR measures for multidimensional text database
analysis. In ICDM, pages 905–910, 2008. 2

[MI95] G.A. Miller. WordNet: A lexical Database for English. Comm. ACM ,
pages 39-41, 1995

[Mic98a] Microsoft corporation. Microsoft decision support services version 1.0,
1998

[MUFL06] Heiko Müller Johann-Christoph Freytag and Ulf Leser. Describing
differences between databases. In CIKM, pages 612-621, 2006

[PP03] Dennis Pedersen and Torben Bach Pedersen. Achieving adaptivity for
olap-xml federations. In DOLAP, pages 25–32, 2003.

[PRP02] Dennis Pedersen, Karsten Riis, and Torben Bach Pedersen. Xml-
extended olap querying. In SSDBM, pages 195–206, 2002.

[Sar99] Sunita Sarawagi. Explaining differences in multidimensional
aggregates. In VLDB, pages 42–53, 1999.

[Sar00] Sunita Sarawagi. User-adaptive exploration of multidimensional data.
In VLDB, pages 307–316, 2000.

[Sar01] Sunita Sarawagi. idiff: Informative summarization of differences in
multidimensional aggregates. Data Min. Knowl. Dis- cov., 5(4):255–
276, 2001.

[SaSc05] P. Sanders and D. Schultes. Highway Hierarchies Hasten Exact
Shortest PathQueries. In ESA, LNCS 3669, pages 568-579, Springer,
2005.

[SJ95] Simone Santini and Ramesh Jain. Similarity matching. In ACCV,
pages 571–580, 1995.

[SJ99] Simone Santini and Ramesh Jain. Similarity measures. IEEE Trans.
Pattern Anal. Mach. Intell., 21(9):871–883, 1999. 3

61

[SS01] Gayatri Sathe and Sunita Sarawagi. Intelligent rollups in
multidimensional olap data. In VLDB, pages 531–540, 2001.

[SS05] Peter Sanders, Dominik Schultes: Highway Hierarchies Hasten Exact
Shortest Path Queries. In ESA, pages 568-579, 2005

[TDP06] Igor Timko, Curtis E. Dyreson, and Torben Bach Pedersen. Pre-
aggregation with probability distributions. In DOLAP, pages 35–42,
2006.

[VS00] P. Vassiliadis, S. Skiadopoulos, “Modelling and Optimisation Issues
for Multidimensional Databases”, In CAiSE '00, pp. 482-497,
Stockholm, Sweden, 5-9 June 2000.

[XH07] Dong Xin and Jiawei Han. Integrating olap and ranking: The ranking-
cube methodology. In ICDE Workshops, pages 253– 256, 2007.

[YZM03] Yuhua Li, Zuhair Bandar and David McLean. An Approach for
Measuring Semantic Similarity between Words Using Multiple
Information Sources. In IEEE Trans. Knowl. Data Eng, pages 871-882,
2003

[YP04] Xuepeng Yin and Torben Bach Pedersen. Evaluating xmlextended
olap queries based on a physical algebra. In DOLAP, pages 73–82,
2004.

[ZADB06] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal and Michal Batko.
Similarity Search: The Metric Space Approach. Springer, 2006

62

APPENDIX

Scenarios of the 1st user study

Figure A.1 Cube scenario 1

63

Figure A.2 Cube scenario 2

Figure A.3 Cube scenario 3

64

Figure A.4 Cube scenario 4

65

Figure A.5 Cube scenario 5

Figure A.6 Cube scenario 6

66

Figure A.7 Cube scenario 7

67

Figure A.8 Cube scenario 8

68

Figure A.9 Cube scenario 9

69

Figure A.10 Cube scenario 10

70

Figure A.11 Cube scenario 11

71

Figure A.12 Cube scenario 12

Figure A.13 Cube scenario 13

72

Figure A.14 Cube scenario 14

Scenarios of the 2nd user study

Figure A.15 Scenario 1of the 2nd user study

73

Figure A.16 Scenario 2 of the 2nd user study

74

Figure A.17 Scenario 3 of the 2nd user study

75

Figure A.18 Scenario 4 of the 2nd user study

76

Figure A.19 Scenario 5 of the 2nd user study

Figure A.20 Scenario 6 of the 2nd user study

Figure A.21 Scenario 7 of the 2nd user study

77

Figure A.22 Scenario 8 of the 2nd user study

78

Figure A.23 Scenario 9 of the 2nd user study

Figure A.24 Scenario 10 of the 2nd user study

79

Figure A.25 Scenario 11 of the 2nd user study

80

Figure A.26 Scenario 12 of the 2nd user study

Figure A.27 Scenario 13 of the 2nd user study

Figure A.28 Scenario 14 of the 2nd user study

81

82

SHORT CV

Giorgos Rogkakos was born in Ioannina in 1986. He received his BSc degree in 2008
from the Department of Computer Science of the University of Ioannina in Greece.
Then, he entered the Graduate Program of the same institution under the supervision
of Panos Vassiliadis and he was a member of the Distributed Management of Data
(DMOD) laboratory. He has been also an instructor in the Epirus Institute of
Technology teaching the course of Data Mining. So far, his research is based on On-
Line Analytical Processing (OLAP) tools under the context of comparing and
exploring the similarity between OLAP Cubes.

