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ABSTRACT

Zaher Owda, MSc, Computer Science Department, University of Ioannina,Greece.

February, 2010. High Performance Dynamic Designs Of Arithmetic Circuits.
Thesis Supervisor: Tsiatouhas Yiorgos.

A desirable characteristic of VLSI circuits is high speed operation. The use of
dynamic circuit design techniques can provide high speed operation at lower silicon
area requirements, compared to full static CMOS designs. Another common design
technique in order to achieve high operating speed is the use of pipeline schemes.
However, the higher the required operating frequency, the higher the number of stages
we must implement in the pipeline. In addition, a limiting factor in cases with a large
number of stages, are the restrictions imposed from the required memory elements.
These memory elements not only increase the silicon area of the implementation but
also restrict the maximum achievable frequency due to their internal delays. In this
Thesis, a memory-less pipeline design style is proposed, where the combinational part
is implemented with dynamic circuits that offer the desirable high speed operation
while the memory elements are eliminated due to an intelligent clocking scheme.
Thus, the proposed design technique provide the advantage of high performance
operation and at the same time compares favourably to pre-existing approaches with
respect to silicon overhead and power requirements. According to the experimental
results on dynamic designs of the Kogge-Stone carry-lookahead adder topology, the
proposed technique can improve the propagation delay of the evaluation phase up to

76.96% and 59.11% over the pertinent Domino and Wave Domino dynamic designs.

Furthermore, an efficient implementation of an 8-bit Manchester carry chain adder in
multi-output domino CMOS logic is introduced in this work. The carries of this adder
are computed in parallel by two independent 4-bit carry chains, one for the odd and

one for the even carries respectively. This adder module can be used for the



X1

implementation of wider adders leading to significant operating speed improvement
compared to the corresponding adders based on alternative Manchester carry chain
adder modules proposed in the open literature. The simulation results on a 64-bit
Manchester adder provided propagation delay improvements up to 35.08% over

earlier designs.
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EKTETAMENH ITEPIAHYH

Zaher Owda, MSc, Tpipa [TAnpogopikng, [Havemoto loavvivov, lodiog 2010.
Yyming Andédoong Avvapukn Zyedioon Apduntikov Kvklopdtov.

Emprénov : Towatovyag I'edpytoc.

"Eva, emBountd yopaxtnpiotiko tov VLSI kuklopdtov gival n Aeitovpyia pe vyniég
tayvmtes. H ypnon Odvvopikov teqvikdv oyedloopod KUKAOUAT®V UTopel va
TOPEXOVV VYTANG TayOTNTOG AEITOLPYio, EKLOEDOVTOG LKPOTEPT] EMPAVELY TUPLTIOV,
o ovykpion pe v wpn otatikn CMOS teyvikn oyedicong. Mo GAAN Kovn
TEYVIKY GYESOOUOD MOTE VO EMTEVYOOOV LVYNAEG TOVTNTEG Asttovpyiog €ival m
ypNoM Sop®mV droyETevong. 26Tdc60, OG0 LEYUAVTEPT EIVOL 1) ATOLTOVUEVT] GUYVOTITO
Aertovpyiog, 1060 pHeyoAOTEPOG €lvar o apBudg tov otadiov mov  Bo mpémer va
epappocove oty doun doyétevone. Emumiéov, €vog meploploTikodg Tapayovtag o
VAOTOMOELS UE PEYGAo apOud otadiov, gival ol meplopiopol mov emPdiioviar and
TO. OTOUTOVHEVA GTOLYEID LVAUNG. AVTA T oToryEia PvAuNG 0ev aw&dvouy povo v
EMPAVELD, TOV TVPITIOL TNG LAOTOOVUEVNG OOUNG, AALG emiong meplopilovv kon TV
HEYLOTY EPIKTT] GLYVOTNTO AELITOVPYING, AOY® TOV ECMTEPIKMOV TOVS KAOVOTEPTGEMV.
Xe autn Vv epyacio, TPoTeiveTal o TEXVIKN oyediaomng dopdv d1oyETevons xwpig
TNV XPNo1N OTOYEI®V UVUNG, OOV TO CLUVOLAGCTIKO UEPOG VAOTOLEITOL e duvapKd
KUKADUOTO OV TPOGPEPOVY VYNAT TOOTNTO AEITOLPYING, EVED TO GTOLXEID LVAUNG
&yovv efarerpfel pe v ypnom &vog €uPLOVG GLOTNUATOG Ypovicuov. 'Etot, 1
TPOTEWVOLEVT] TEYVIKT] TOPEYEL TO TAEOVEKTNLO TNG VYNANG amddoong Aettovpyiag Kot
TOVTOYPOVO. LUKPOTEPT KATAVAANDOT 10YVOG Kol LEI®OT NG EMPAVEING TUPLTIOV GF
GUYKPIOT UE TPODTAPYOVGEC VYNADY EMOOCEMY TEXVIKEG.

Apycog 6Komdg Lag givar 1 SnUovpyio Hog SUVOULIKNG AOYIKNG OIKOYEVELNG, OTTOV GE
KkéOe TOAN Ba evompatdveTol 1) SuvaToTNTO AgtTOVPYiag TG Kot g pviuns. [a va o

EMTOYOVUE AVTO EIGAYOVLLE EVa OEVTEPO POLOL TNV AELTOVPYIO LI0G SUVOLIKNAG TOANG
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Katd Tpomo tétolo ®ote 10 PMOS tpaviictop mpogoptiong kot 1o NMOS tpaviictop
VTOAOYIGUOD VO 0dNyovvTol omd SlaPopeTIkd onua poroylov. O véog TpoOTOG
Aertovpyiog dev amoutel TNV TOPOLGIC TOL OVTIGTPOEEN, KOBOTL EMTLYYAVETOL 1)
egdhetym TtV ocuvOnNKoOV avioyoviopol (race conditions), TOL TAACITOPOLV TNV
TUTTIKT SVVOUIKT AOYIKT]. £TO GYMU0 TOV aKoAoLOEL, Tapovstalovtal | ToroAoyia Tng
TPOTEWOUEVNG SVVOLIKIG AOYIKNAG KOl Ol KUUOTOHOPPEG TV VO CTUATOV POAOYIO0
HE TIG OTOIEG KOATAPEPVOVUE VO EIGAYOYOLUE TNV EMTALDV (PACT HVAUNG OTN

Aettovpyio TG TOANG.

memory \precharge |evaluate

precharge | evaluate

Clk,

Clk, |

Shase time

H tomoloyio ™G TpoTeEvOLEVIG SUVOLIKNG AOYIKNG KOl 01 TPEIS PAGEIS AELTOVPYING LE
™ xpnon dvo onpdtwv poroytov.

H mpotewvopevn duvopkn Aoyikr] oyedlaong epopuootnke omnv oyediaon 1ng
Babuidag mpdPreyng kpatovpévov evog 16-bit Kogge-Stone, abpoiotn pe ypnon &6t
@AacE®V poroylov (tpic poAdylo. Kol To cLUTANPOUATd Tovg). H véa oyedioom
TPOCPEPEL CUUPOVO, LE TO OTOTEAECLATO TMV TPOCOUOIDGEWV, PeAtioon otnv
ovyvotnta Asttovpyiog pexpt Kot 76.96% ce oyéom pe v tomik) Domino oyedioon
ko péypt 59,11% oe oyxéon pe v moAd vyniov emddcewv Wave Domino teyvikn
oyxediaons. H Pektioon oty toydmnto Agttovpyiog €xel €va KOGTOG oTNV HEOT|
Katavaimon evépyelag péyptl 28.49% wc mpog v tumik] Domino kot peiowon oty
Katavimon katd 29,54% mg mpo g Wave Domino, OU®C TO YIVOUEVO EVEPYELL X
KOUKAOG poAoyloh PeAtidvetor kol oTlg 0V0 TEPTOCE; Thveo amd 70%. Ot
TPOTYOVUEVEG EMOOCEIS AMAITNOAV EMPAVELD TLUPITIOL aVENUEVT Katd 8,7% wg Tpog

v Tomki] Domino kot peiopévn katd 9% wg npog ™ Wave Domino teyvicn.
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Axoro0Bwg oV gpyocio, TapoVoIAlETOL U0 OTOTEAEGUOTIKT] SUVOUIKT] DAOTOING
tov Manchester afpoioti pe ypnomn norranidv e£60wv Domino CMOS Aoywmg. Ta
Kpatovpevo Tov afpolotn vmoAioyilovtal mopdAANAc kol amd 600 aveEdpTnTeg
OAVCI0EG KPOTOLUEVODL. AVTO  EmQEEPEL  ONUOVTIKY Peitioon g  TaydTNTOg
Aertovpylog o€ GUYKPION LE TIG AVTIGTOUEG TOMOAOYiEG VAOToinomMg afpoilotadv ot
omoieg Pacifoviar otn Manchetser dop.

H xowvodpla wpotevouevn tomoroyio Pacileton otig eélomoelc tov Manchester
afpotot|] petaoynuatilovidg teg £To1 OGTE Vo diveTal 1 SLVOTOTNTO VTOAOYIGLOV
TOV 4PTIOV KPATOVUEVOV TOPAAANAL LE TO TEPITTA. AVTOC O SUYOPIGHOG EMTPETEL
7.Y. TNV viomoinor tov 8-bit Manchester abpoiot pe dvo ave&dptnteg mapdAAnAeg
oAvoideg tv 4-bit, 6mov N TPOTN 0ALGIdA VTOAOYILEL TO. APTLOL KPATOVUEVE KOL ™)
devtepn vroAoyiler ta meprrtd. [ivetanr ovepd TG 0 VIOAOYIGUOG TOV KPUTOVUEV®V
EMTAYOVETOL CMUAVTIKA LE TN YPNON TNG VENS TEYVIKNG. ZTO GYNHO Tov akoAovBel
napovstaloviat ot dvo oAvoideg evog 8-bit Manchester afpoitoti yio TOV VTOAOYIGUO

TV VE®V Kpatovuevev hy-he kot Tov TedkoD Kpatodpevov e£060v c.
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o) H advoida tov dptiov kpatoduevov. B) H alvcido Tov Teptttdv KpaTovpeEVmV

Ta amotelécpata TV TPOGOUOIOGE®V TV Manchester oyedl0GU®Y COLEOVA LE TNV
TPOTEWVOLEVT TEYVIKN NTAV EVIVTIMOGIOKG € 0Tl 0popd TNV Tayvtntae. H xabvotépnon
duadoong petwvetan émg kot 35,08% ce oyéon pe ™ ovpPotiki Tomoroyia evog 64-bit
Manchester aBpoiotr). H véa tomoloyia emttuyydvel VYnAEC EMSOCELS GTIV TOYVTNTO
Aertovpyiog, TANPOVOVIOS MCGTOGO TO OAMOITOVUEVO KOOGTOC GE KOTOVOAMGOKOUEVT
EVEPYELD VO KDKAO pOA0Y10D, TO 0moio peToppdleton e avénon 44.29% cuykpiiikd
pe to ovpPatikd 64-bit Manchester afpoiotr]. Opmg 10 yvopevo evépyela X KOKAO
poroylov gival ovénuévo uovo katd 14,37% pe taoelg peiowong 66o av&avouv ta bit

ToV abpoloTy.
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CHAPTER 1. INTRODUCTION

1.1. Scope

1.2. Manuscript organization

1.1. Scope

Over decades, the semiconductor industry is continuously increasing its research
efforts to provide higher performance microelectronic circuits and systems.
Dynamic circuit design techniques can provide the desirable high speed operation
at lower silicon area requirements compared to other CMOS design techniques.

The scope in this thesis is to present new high performance dynamic design
techniques suitable for the implementation of high speed arithmetic circuits, where
the pertinent demands are crucial, and to compare them with existing solutions in

the open literature.

1.2. Manuscript organization

This manuscript is organized as follows. In chapter 2 an introduction to the CMOS
logic design is provided, where the complementary static CMOS logic and the

common dynamic and Domino CMOS logic design styles are discussed.

Next, in chapter 3 an introduction to the theory of CMOS adders design is given,

that is followed by a detailed presentation of the Carry Lookahead adder



topologies, especially focusing on the Kooge-Stone Lookahead adder as well as on

the Manchester Carry Chain adder.

A new dynamic design technique and its enhanced performance version is
introduced and analyzed in chapter 4. This technique is applied on a Kooge-Stone
adder design and simulation results are provided in comparison to the

corresponding Domino and Wave Domino designs.

Next, in chapter 5, the architecture of a new high performance double carry chain
Manchester adder is presented, which is based on a multi output Domino topology.
Comparisons among the proposed Manchester carry chain design and earlier
Manchester topologies in the open literature are discussed. Finally, the conclusions

are drawn in chapter 6.



CHAPTER 2. CMOS LOGIC
DESIGN

2.1. Introduction to CMOS

2.2. Complementary Static CMOS logic
2.3. Dynamic CMOS logic

2.3.1. Signal Integrity

2.3.2. Cascading Dynamic Gates

2.3.3. Domino Logic

2.3.4. Domino Circuits Operation

2.1. Introduction to CMOS

Complementary Metal Oxide Semiconductor (CMOS) is a technology for
integrated circuits construction; CMOS technology is used in a wide range of
circuit designs such as microcontrollers, microprocessors, static RAM, and digital
logic design [3-7]. An important characteristic of this technology is the low static
power consumption, compared to earlier technologies, since power is mainly
drown only when the internal circuit nodes are changing state. Moreover, CMOS

technology permits the implementation of high density logic functions in a chip.



CMOS circuits use both types of semiconductor field effect transistors, the PMOS
(positive polarity) and the NMOS (negative polarity) transistors, in order to
implement logic gates and consequently digital circuits. The most common
measures to evaluate a circuit design are: the surface, the speed (performance), the
energy consumption, the reliability and the generated noise [1]. Considering the
above measures, static CMOS design offers low noise sensitivity and high

reliability at acceptable speeds and relatively low power consumption.

2.2. Complementary Static CMOS logic

The circuits that are designed using CMOS technology are separated into two
categories depending on whether they store or not a previous response of the
circuit as a subsequent input: the combinational logic circuits, and the sequential
logic circuits [1]. In combinational logic the output is defined by the current input
signals, without any type of feedback from the output to the circuit input. On the
contrary, the output of the sequential circuits depends on both the current input and
the pervious response of the circuit (which is called “circuit state”). Consequently,
the circuit consists of a combinational logic part and a register which holds the

circuit state.

A static CMOS gate is a combination of two networks, the pull up network that
consists of pMOS transistors and it is called pMOS network and the pull down
network which is composed of nMOS transistors and is called nMOS network, as
it is shown in Fig. 2.1. These two networks are structured in a mutually executive
fashion such that one and only one of the networks is conducting in steady state. In
this way, once the transients have settled, a path always exists between Vg4 and the
output F for a high output “1”, or between Gnd (ground) and F for a low output
“0”. This is equivalent to stating that the output node is always a low-impedance

node in steady state.
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Figure 2.1 Static CMOS gate

2.3. Dynamic CMOS logic

An alternative use of CMOS technology in digital circuit design, targeting to
provide increased performance, is the dynamic logic [1], [2]. According to the
typical dynamic design style, the gate output is periodically precharged to high
through a single pMOS control transistor (precharge transistor). This phase in the
circuit operation is called precharge phase. Then, in-between the precharge phases,
an nMOS network is exploited to calculate the gate response according to the input
data. In case that a logic low value is required at the output an active path in the
nMOS network discharges the output while in case that a logic high value is
required no path is formed in the nMOS network to discharge the output which

simply remains charged to Vpp. This phase in the circuit operation is called



evaluation phase. An additional nMOS control transistor (evaluation transistor)
isolates the nMOS network from the ground and ensures that no discharge path is
formed through the nMOS network during the precharge phase. During the
evaluation phase the pMOS precharge transistor is inactive. Thus, during this
phase, no low to high transitions can take place at the output. This implies that
during the evaluation phase if an input combination discharges the output, the
latter will remain discharged regardless of the input combinations that may follow
during the same evaluation phase. Consequently, we must ensure that only a single
and valid input combination is applied during each evaluation phase. A clock
signal is used to drive the control transistors and form the two circuit operating

phases.

In Fig. 2.2 the topology of a dynamic gate is presented. During the precharge
phase, CLK value becomes “0” and so the output is precharged to Vgqg
independently of the input values, because the evaluation transistor is turned off.
When the CLK turned to “1” during the evaluation, a conducting path is created
between the output and the Gnd (ground) ground if the function that has been
implemented in the nMOS network is true. Otherwise, the output remains at the

precharged state of Vgq.
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Figure 2.2 Dynamic CMOS gate

Next, the main attributes of the dynamic gates are discussed:

The logical function is realised by the pull down network, which is designed the

same way as in the static CMOS.

The number of transistors is almost half the corresponding number in static

CMOS.

The size of the PMOS device is not important for the functionality of the gate.
High dynamic power consumption is reported, due to the clock signal CLK
switching activity.

Faster switching speed is observed due to the decreased gate capacitance as a
result of the small number of transistors (low input load) and the absence of short
circuit current, because all the current that goes through the nMOS network mainly

concerns the discharge of the output.



Consequently, the basic advantages of the dynamic logic are the increased speed
and the reduced silicon area requirements with respect to the static CMOS logic
[9], [10]. However the speed is affected by the presence of the evaluation

transistor, which is used to prevent short-circuit power consumption.

2.3.1. Signal Integrity

Aiming to exploit the high performance efficiency of dynamic logic we have to
consider a number of critical design issues, like leakage currents, charge sharing,
capacitive coupling and clock power consumption, in order to ensure that the

dynamic logic operates properly [1].

2.3.1.1. Leakage Current

The operation of a dynamic gate is based on the dynamic storing of the output
value in a capacitor. Consequently, if the nMOS network isn’t conductive in an
ideal circuit the output must retain the precharge value during the evaluation
phase. However, the normal transistor leakage current may lead to an erroneous
circuit operation. The charge that is stored at the output capacitance leaks due to
the various leakage current mechanisms, like the parasitic diode reverse current or
the subthreshold leakage current of the transistors in the nMOS network.
Consequently, a minimum clock rate must be guaranteed although this could not
be characterized as a robust design. The problem worsens in the modern CMOS

nanotechnologies.
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Figure 2.3 Adding a keeper to face leakage current

In order to confront the leak problem, a reduction of the output impedance, in the
output node is suggested, during the evaluation. This is achieved by adding a
feeder transistor (see Fig. 2.3). Its operation is to compensate for the charge loss
due to the pull down leakage paths. To avoid the pull-up and pull-down network
ratio problems associated with this style of circuits and the associated static power
consumption, the keeper’s resistance is made high (use of a high L). This allows
the pull down devices to discharge the output node substantially below the

switching threshold of the NOT gate and switch off the keeper.

2.3.1.2. Charge sharing

A subject of major importance concerning the design of dynamic logic is the
charge redistribution (sharing). During the precharge phase the output node is set

to high. Next assume that during the evaluation phase no conducting path is form



in the nMOS network from the output node to the ground. However, many paths
may be formed from the output node to internal nodes of the nMOS network,
depending on the input values. This may lead to charge redistribution between the
parasitic capacitance of the output node and the internal parasitic capacitances of
the nMOS network, which will reduce the voltage of the output node and cause
reliability problems in the circuit operation. The most effective way to confront
this situation is to precharge (during the precharge phase) important (high
capacitance) internal nodes in order to prevent charge redistribution, although this
will increase the cost and power consumption and will decrease the circuit

performance.

2.3.1.3. Capacitive coupling

The rather high impedance of the output node exposes the circuit to the influence
of capacitive coupling. Capacitive coupling appears when a capacitance exists
between two signal lines. In dynamic logic serious capacity coupling can occur
between the dynamic node and a wire routed over or next to the dynamic node.
This may corrupt the logic state of the dynamic node especially when it is in a

floating condition.

2.3.1.4. Clock Feedthrough

The feedthrough of the clock signal is a special case of capacitive coupling, which
is related to the parasitic capacitance between the gate of the precharge transistor,
which is fed by the clock signal, and the dynamic output node. This capacitive
coupling makes the output signal of the dynamic node to rise above the value of
Vpp during a low to high transition of the clock (Fig. 2.4), when the nMOS
network is not in a conducting state. Consequently, the fast rising and falling edges

of the clock couple onto the signal node, as it is shown in the simulation graph of

10
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Fig. 2.4. The danger of the clock feedthrough is that it may force the normally
reverse-biased junction diodes of the pMOS precharge transistor to become
forward biased causing the injection of charges from the floating drain node to the

substrate. This reduces the noise margins and may lead the circuit to an erroneous

operation.
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Figure 2.4 Demonstrating clock feedthrough effect

2.3.2. Cascading dynamic gates

Besides the signal integrity issues, there is a major problem that complicate the
design of the dynamic circuits: straightforward cascading of dynamic gates to

create multilevel logic structures does not work.



This problem exists because the output of the each gate of a level (and thus the
input of the next level) is precharged to high. This may result to the unintended
discharge of the output at the beginning of the evaluation cycle due to race
conditions. Changing all the input values to “0” during the precharge phase solves
this issue. In this way we deactivate the transistors of the nMOS network after the
precharge and we avoid the unintended discharge of the output node during the
evaluation phase. The conclusion is that the input can make only one transition
from “0” to “1” during the phase of evaluation in order to ensure the correct

operation of the circuit.

Race conditions during the evaluation phase, when a dynamic gate drives another
dynamic gate, are a known problem of dynamic logic. In that case the precharged
node of the first gate can discharge the output of the following gate before the first
gate is correctly evaluated [1]. In order to overcome this problem, the most

common design technique is the Domino logic family.

2.3.3. Domino logic

Domino logic gates are composed of a dynamic gate which is followed by a static
inverter, as it is shown in Fig. 2.5 [17]. As in any dynamic logic there are two

phases in the Domino CMOS circuits operation:

Precharge phase: When the clock CLK signal is low, the PMOS precharge
transistor is conductive and charges the dynamic node, which gives a logical “0” at

the output of the inverter.

Evaluation phase: When the clock CLK signal is high, the PMOS transistor isn’t
conductive, while the NMOS evaluation transistor is conductive. This transistor
allows the discharge or not of the dynamic node depending on the input values of

the NMOS network. As a result the output turns to high.
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Figure 2.5 Domino CMOS logic

After evaluation, a Domino gate must be precharged before it can be used for a
subsequent evaluation in the next clock cycle. According to the above discussion,
all Domino gates in a circuit are precharged simultaneously. During the precharge
phase the circuit wastes time since not useful computation takes place. Therefore,
the operation of a Domino circuit is conventionally divided into two blocks with
complementary clocks, so that when the first block evaluates the second block is in
the precharge phase, while when the first block precharges the second is in the

evaluation phase (see Fig. 2.7).

Let’s consider a circuit consisting of cascaded Domino gates, where all gate input
and output lines are set to low during the precharge. Then, during the evaluation
phase the output of the first gate either remains “0” or makes a transition to “1”,
activating the next gate. This high value may continue its propagation along the
gate chain, like the falling of the tiles in the well known structure of the domino

game, so that’s why this logic design style is called Domino logic.

A basic restriction of Domino logic is that we can only implement non-inverted

logic since each dynamic gate is followed by a static inverter. However, there are

13



few solutions to this problem: a) the reorganization of the logic using simple
Boolean transformations, like De Morgan’s law, b) the use of Differential Domino
Logic (DDL) as in Fig. 2.6 where the function F and its complement are realized,
although this is design approach is characterized by increased cost, and c) the use
of the NORA logic [36] which is an alternative dynamic design style where
subsequent gates are realized using successionally pMOS and nMOS networks in
the dynamic part without the insertion of the NOT gate at the output node. In that

case the complement of the clock is also required.

3 JLl

— il

Figure 2.6 Differential Domino Logic (DDL)

2.3.4. Domino Circuits Operation

Designers are increasingly interested in faster circuit families, like Domino logic
[12], [14]. Domino is a tempting choice because of the high speeds it achieves due
to the decrease of the logical effort, which is a result of the standard pMOS
network elimination. This is the reason it is used in critical sections of processing
units like the arithmetic and logic units. The main disadvantage of the Domino
logic is the high dynamic energy consumption due to the frequent alternations of

the output values.
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A real pipeline like that shown in Fig. 2.7 experiences clock skew. In the worst
case, the dynamic gate and latch may have greatly skewed clocks. Therefore, the
dynamic gate may not begin evaluation until the latest skewed clock, while the
latch must set up before the earliest skewed clock. Hence, clock skew must be
subtracted not just from each cycle, as it was in the case of a flip-flop based

design, but from each half-cycle.

CLK B

Figure 2.7 Classic domino including clock skew

Available Time for Logical Evaluation:
Tlogic — TCLK e th—q _2tskew
Traditional Domino pipelines also suffer from imbalanced logic. In summary,

classic Domino circuits lose efficiency because they pay overhead for latch delay,

clock skew and imbalanced logic [13].
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2.3.4.1. Wave pipeline Domino logic

Wave pipelining is a technique to construct high-performance circuit designs
which implements pipelining in logic without the use of intermediate latches or
flip-flops. Wave pipelining can increase the clock frequency of practical circuits
without increasing the number of internal storage elements. Using this technique,
new set of input data can be applied to a combinational block before the previous
responses are available at the output. In this way, pipelining of combinational logic
blocks has been used effectively to maximize the utilization of the logic without
inserting internal registers. This concept is applicable for single stage as well as for

multi stage circuits [11], [13].

The basic problem with traditional Domino circuits is that data must arrive by the
end of one half-cycle but will not depart until the beginning of the next half-cycle.
Therefore, the circuits are infected by skew between the clocks and cannot borrow
time. We can overcome this problem by using overlapping clocks, as shown in
Figure 2.8. This figure presents a wave pipeline Domino clocking scheme with two
overlapping clock phases. Instead of using one clock and its complement, we now
use overlapping clocks CLK1 and CLK2 and we partition the logic into phases
instead of half-cycles because in general we will allow more than two overlapping

phases.
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Figure 2.8 Wave pipeline Domino design

The clocks overlap enough so that even under worst-case clock skews, providing a
minimum overlap, the first gate in the second phase has time to evaluate before the
last gate in the first phase begins to precharge. As with static latches, the gates are
guaranteed to be ready to operate when the data arrives even if skews cause
modest variation in the arrival time of the clock. Therefore, the circuit is not
affected by clock skew in the cycle time. Another advantage of wave pipeline
Domino circuits is that latches are not necessary within the Domino pipeline. We
ordinarily need latches to hold the result of the first phase's evaluation for use by
the second phase when the first phase precharges. In wave pipeline domino, the
overlapping clocks insure that the first gate in the second phase has enough time to
evaluate before CLK1 falls and the first phase begins precharge. When the first
phase precharges, the dynamic gates will pull high and therefore the static gates
will fall low. This means that the input to the second phase falls low. The first gate
of the second phase will remain at whatever value it evaluated to, based on the

results of the first half-cycle, when its inputs fall low because both the nMOS

17



network and the precharge transistor will be off. Finally, wave pipeline domino
circuits can allow time borrowing if the overlap between clock phases is larger
than the clock skew. The guaranteed overlap is the nominal overlap minus
uncertainty due to the clock skew. Gates in either Phase 1 or Phase 2 may evaluate
during the overlap period, allowing time borrowing by letting gates that nominally

evaluate during Phase 1 to run late into the second phase.
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CHAPTER 3. ADDER CIRCUITS

2.1. Introduction to CMOS Adders’ Design
2.2. Adder Types

2.3. Multiple-bit Adders

2.3.1. Ripple Carry Adder

2.3.1. Carry Look-Ahead Adder

2.4. Kogge-Stone Lookahead Adder

2.5. Manchester Carry Chains

2.5.1 Carry Bypass MCC Adder Design

3.1. Introduction to CMOS Adders’ Design

An adder is a digital circuit that executes addition of numbers in many numerical
representations, such as Binary-code, decimal e.t.c.. Manly, this circuit resides in
the arithmetic logic unit where other operations are performed. The most common
adders operate on binary numbers. The main requirement of digital computers is
the ability to use logical functions to perform arithmetic operations. The basis of
this is addition; if we can add two binary numbers, we can just as easily subtract

them, or get a little further and perform multiplication and division.

19



3.2. Adder Types

Let's start by adding two binary bits. Since each bit has only two possible values, 0
or 1, there are only four possible combinations of inputs. These four possibilities,

and the resulting sums, are shown in Table 3.1:

Table 3.1 Adding two binary bits

A B Carry Sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Circuits that perform this kind of addition on two one-bit binary numbers often
written as A and B, are called Half Adders. As we can see in Fig. 2.1, a Half Adder
can be built with the use of an XOR and an AND gate.

A

B

Figure 3.1 Half adder using an XOR and an AND gate.
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The second adder type called Full Adder and is a logical circuit that performs an
addition on three one-bit binary numbers. A full adder can be implemented in
many different ways either at transistor level or gate level. An implementation,

which is based on the next equations, is shown in Fig. 3.2:
S=(A®B) @G,

Cou=(A*B)+(Cin* (ADB))

where @ is the XOR operation.

In this implementation, the final OR gate before the carry-out (Co,y) output may be

replaced by an XOR gate without altering the resulting operation.

out

25
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Figure 3.2 Schematic symbol for a 1-bit full adder and its gate level design
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A full adder can be constructed from two half adders by connecting A and B to the
input of one half adder, connecting the sum from that adder to an input of the
second adder, connecting C; to the other input with the sum output of the second
half adder be the final sum and OR the two carry outputs to provide the final carry.
Equivalently, S could be realized by a three-bit XOR of A, B, and C;, and C, could
be realized by the three-bit majority function of A, B, and C; [1].

3.3. Multiple-bit adders

High speed adder architectures include the ripple carry adders, carry look-ahead
(CLA) adders, carry-skip adders, carry-select adders, conditional sum adders, and
combinations of these structures presented in [19-22]. High speed adders based on
the CLA principle remain dominant, since the carry delay can be improved by

calculating each stage in parallel.

3.3.1. Ripple Carry Adder

It is possible to create a logical circuit using multiple full adders to add N-bit
numbers. Each full adder inputs a C;,, which is the C,,, of the previous adder. This
kind of adder is the ripple carry adder, since each carry bit "ripples”" to the next
full adder. We have to note that the first (and only the first) full adder may be

replaced by a half adder.

22



Co,l
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Figure 3.3 Four-bit ripple-carry adder topology

An N-bit adder can be constructed by cascading N full-adder circuits in series [17],
by connecting Cox.; to Cjx for k=1 to N-1, and setting the first carry-in Cjy to 0
(see Fig. 3.3). The delay through the circuit depends upon the number of the logic
stages that must be traversed and is a function of the applied input signals. For
some input signals, no rippling effect occurs at all, while for others, the carry has
to ripple all the way from the least significant bit to the most significant bit. The
propagation delay of each a structure is defined as the worst-case delay over all

possible input patterns, also called the critical path.

The layout of ripple carry adder is simple, which allows for fast design time;
however, the ripple carry adder is relatively slow, since each full adder must wait
for the carry bit to be calculated from the previous full adder. The overall delay
depends on the characteristics of the full-adders circuits; different CMOS
implementation will produce different worst-case delay paths. The gate delay can
easily be calculated by inspection of the full adder circuit. Each full adder requires

three levels of logic.
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In the case of ripple carry adder, the worst-case delay happens when a carry
generated at the least significant bit position propagates all the way to the most
significant bit position. This carry is finally consumed in the last stage to produce
the sum. The delay is then proportional to the number of bits in the input words N

and is approximated by:
Tadder ~ (N - l)tcarry + tsum

where teary and tem equal the propagation delays from C; to Cp and S, respectively

[1].

3.3.2. Carry Look-Ahead Adders

A carry look-ahead adder improves speed by reducing the amount of time required
to calculate carry bits [23]. The carry look-ahead adder calculates one or more
carry bits before the sum, which reduces the wait time to calculate the result of the
larger value bits. The Kogge-Stone adder and Brent-Kung adder are examples of

this type of adder [17].

As mentioned above, carry look-ahead (CLA) adders are designed to overcome the
latency introduced by the rippling effect of the carry bits. The CLA algorithm is

based on the origin of the carry-out in the equation
Cii=Ai*Bi+Ci* (A®B)

For the cases that gives Ci;; = 1, since either term may cause this output, we treat
each one separately. First, if A; ® B; =1, then C;,; = 1. We define the generate term
(Gi = A; * By), since the inputs are viewed as “generating” the carry-out bit. If G;
=1, then we must have A; = B; = 1. The second term represents the case where
inputs carry C;= 1 may be “propagated” through the full-adder. This will happened
if the propagate term (P; = A; @ B)) is equal to ‘1’: if P;=1 then Gj = 0 since the
XOR operation produces a ‘1’ iff the inputs are not equal. With these definitions,

the equation for the carry-out bit is:
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C=Gi+Pi G

Table 3.2 The basis of the carry look-ahead algorithm

G =Ai*B; P, = A ®B;
Ai=Bi=0 0 0
Ai=Bi=1 1 0
A; #B;i 0 1

Table 3.2 shows the behaviour of the generate and propagate terms. The main idea
of the CLA is to first calculate the values of P; and G;j for every bit, then use them
to find the carry bits Cj,;. Once these are found, the sum bits are given by S; = P; ®

Cifor every i. This avoids the need to ripple the carry bits serially down the chain.

Implementation Details

For each bit in a binary sequence to be added, the CLA logic will determine
whether that bit pair will generate a carry or propagate a carry. This allows the
circuit to "pre-process” the two numbers being added to determine the carry ahead
of time. Then, when the actual addition is performed, there is no delay from
waiting for the ripple carry effect. Below is a simple 4-bit generalized CLA circuit

is discussed.

For the example provided, the logic for the generate (G) and propagate (P) values
are given below. Note that the numeric value determines the signal, starting from 0

on the far left to 3 on the far right:
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Ci=Go+Pye*Cy
C,=G;+P;*C
C=G+P* G,
Ci=G3+P;3°C;

Substituting C; into C,, then C, into Cs, then C; into C4 yields the expanded

equations:

Ci=Go+Py*Cy

Cr =G+ Gy Py + Cy PPy

Cs = Gz + G1P2 + GoP P> +CoPyP, P>

C4 = G3 + GoP; + GP,P5 + GyP,P,P5 + CoPyP,P,P3

These equations show that every carry bit can be found from the generate and
propagate terms. Moreover, the algorithm yields nested expressions. The Carry
CLA 4-bit adder can also be used in a higher-level circuit by having each CLA
Logic circuit produce a propagate and generate signal to a higher-level CLA Logic
circuit (see Fig. 3.4). The group propagate (PG) and group generate (GG) for a 4-
bit CLA are:

PG =Py P, P, P3

GG = G3+ G2P3 +G1P3P2 +GOP3P2P1
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Figure 3.4 4-bit adder with Carry Look Ahead

3.4. Kogge-Stone Lookahead Adder

The Kogge-Stone adder is a parallel prefix form CLA adder. It has been developed
by Peter M. Kogge and Harold S. Stone, which they published their work in 1973
[16]. It generates the carry signals in O(log n) time, and is widely considered the
fastest adder design possible. It is the common design for high-performance adders

in industry. Wiring congestion is often a problem for Kogge-Stone adders [17].

In order to build this adder, it is necessary to organize carry propagation and
generation into recursive trees, by hierarchically decomposing the -carry

propagation into sub-groups of N bits:
Coo=Go + PoCip
Co.1= G1 + P1Go +P1PoCi = (G1 + P1Go) + (P1Po)Cio= G0+ P19Cip

Co.2= G2+ P2G1+ P2P1Go+P2P1PoCio = G2 + P2Co,1



C0’3 = G3 + P3G2 +P3P2G1 + P3P2P1G() +P3P2P1P()Ci,()
=(G3+ P3G2) + (P3P2)Co.1 = G322+ P32Co.1

G ; and P;;; denote the generate and propagate functions, respectively, for a group
of bits (from bit position i to j). G j;j equals “1” if the group generates carry,
independent of the incoming carry. The block propagate P;; is true if an incoming
carry propagate through the complete group. For example, Gz, is equal to 1 when
a carry either is equivalent to the bit position 3 or is generated at position 2 and
propagated through position 3. In Fig. 3.5 an example of the structure of a 16-bit
Kogge-Stone adder is provided, where carry at position 15 is computed by
combining the results of blocks (0:7) and (8:15). Each of these, in turn, is
composed hierarchically. For instance, (0:7) is the composition of (0:3) and (4:7),
while (0:3) consists of (0:1) and (2:3), etc. The circuit of the 16-bit Kogge-Stone
adder consists of three structural units. The first one is denoetd by the square
symbol (0) and produces the generate and propagate signals, from the values of

input signals according to the following equations:

P,=A;+B;

Q
I
>
=

Figure 3.5 Structure of a 16-bit Kogge-Stone adder
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The second structural unit, that is denoted by a black dot (e), is presented in Fig.
3.7 and represents two gates (AND, AND-OR), which calculate the block-level
propagate and generate signals. This unit is used from second up to the fifth level.
In the fifth level, the OR gate is not need. Since these gates are not located at the
primary inputs side, the evaluation transistor is optional. During the precharge
phase, all the outputs of the domino gate are guaranteed to be low, turning off any
discharge path in the succeeding domino stage. Elimination of the foot switch in
stages other than the first lowers effort of the gates and speed up the evaluation but
increases power consumption. The transistor level implementations of the

propagate and generate signals in Domino logic are given in Fig. 3.6

V

DD VDD

Figure 3.6 The Domino gate design of the first structural unit (AND, OR)
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Figure 3.7 The Domino gate design of the second structural unit (AND, AND-OR)

Finally the third structural unit that is symbolized by a diamond (©) is shown in the
Fig. 3.8. This unit realizes the XOR gate that is required for the calculation of the
final sum.. An additional XOR gate is used for each pair of inputs (a;, b;), which

produces the propagate signal P; for the calculation of the final sum.



out

=

Figure 3.8 The XOR gate of third
structural unit

3.5. Manchester Carry Chains (MCC)

The Manchester carry chain is a variation of the carry look-ahead adder that uses
shared logic to lower the transistor count. As we know the logic for generating
each carry contains all of the logic used to generate the previous carries [1], [18].
A Manchester carry chain generates the intermediate carries by tapping off nodes
in the gate that calculates the most significant carry value. Not all logic families
have these internal nodes, however, CMOS being a major example. Dynamic logic
can support shared logic, as can transmission gate logic. One of the major
drawbacks of the Manchester carry chain is that the capacitive load of all of these
outputs, together with the resistance of the transistors causes the propagation delay
to increase much more quickly than a regular carry look-ahead.Thus, a Manchester

carry chain section generally won't exceed 4-bits [24].

The Manchester carry topology is based on building a switch-logic network for the

basic equation:

Ci+1 = &i + Pi Ci
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That can be cascaded to feed to successively stages. Consider a full adder with
inputs a;, b; and c;. We will use the generate and propagate expressions g; = a;b;, pi
= a; @ b; to introduce the term carry-kill that gets its name from the fact that if k; =
1, then p; = g = 0 so that ¢;4; =0 ; k; = 1 thus “kills” the carry-out bit. This can be

verified from the table below.

Table 3.3 Propagate, generate and carry-kill values

a b pi gi ki
0 0 0 0 1
0 1 1 0 0
1 0 1 0 0
1 1 0 1 0

The Manchester carry topology is based on realized exploiting the behaviour
described in Table 3.3. Since only one of the three quantities p;, g and k; can be
high each time, we can construct the switch-level circuit using such a way so that

one transistor is on (in conducting state) at a time as it is shown in Fig. 3.9.



b s

« Ci+1

gnd

Figure 3.9 Switching network for the carry-out equation

Two of several different Manchester carry circuit implementations are shown in

Fig. 3.10. The operation of the static logic gate is much complicated than the
dynamic circuit.

Vbo Voo
Mj] |D_-| Mj] Io_CLK
Pj Pi
— 1 - -1 _
C Citg G o » Cit1
M1 M1
vz |=Pi @ M2 |5
R o CLK
Mal:l P M?I—
gn_d

gnd

Figure 3.10 (a) Static circuit, (b) Dynamic circuit
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The logic of the dynamic circuit is similar to the static except that the evaluation
nMOS M3 in Fig. 3.11(b) replaces a logic transistor. During the precharge (CLK =
0), the output node is brought to the logic “1”. Evaluation takes place when the
clock switches to “0”. A carry propagation occurs if p; = 1, while the node
discharges to “0” if g; =1. This circuit can be use to build the Manchester carry
chain shown in Fig. 3.11. Every stage undergoes precharge when CLK = “0”. The

carry bits are available during the evaluation time with the longest delay time for

Cq.
Vi Vo Vi A Voo
F i 4f I [
il L
o= |o— |ae=  |e= |
C A g g g
—L HLN LS LN L
1 1 % 1 G .

In binary addition the computation of the carry signals is based on the following

recursive formula:

¢, =8tz ¢y

Figure 3.11 Conventional domino 4-bit MCC

ey

Generate signal

Propagate signals
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Where g; and z; are the carry generate and the carry propagate terms respectively.

In Fig. 3.12, the implementation of the generate and the two types of propagate

signals (inclusive and exclusive) in Domino CMOS logic is shown.

= (a) Voo (k)
CLK_G| c'LI{_al
| I:: 4 |

CLK_' p; =2, ®b;

— Gnd
Figure 3.12 Domino implementation for the inclusive propagate (a), generate (b),

and exclusive propagate (c) signals.
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Expanding relations in (1) each carry bit ¢, can be expressed as:

C; =8 12,84 %t2248 % t2,2-- 2180, 2i - Z0C 4

4

The sum bits of the adder are defined as s, = p, ©®c, ,, where c¢_, is the input
carry.

For the implementation of the sum signals the Domino chain is terminated and the
sum bits of the Manchester Carry Chain adder are implemented using static CMOS
XOR gates [17], the design of which is shown in Fig. 3.13.

s b g
.

B N =
A -2

Figure 3.13 Static CMOS implementation of the XOR gate for the sum calculation.

3.5.1. Carry Bypass in MCC Adder
Several variations of the MCC adder in Domino CMOS logic have been proposed
in the literature [17], [24-29]. Moreover, static CMOS MCC implementations are

also available [30]-[31]. All these works, aimed to speed up the addition operation



using different techniques. In the following paragraph we will introduce the Carry

Bypass technique.

Voo

CLK

P1 P2 P3 _Ol I:

1 1 | _
i i — {>oi3

Po
CLK I::—’_\
— Gnd
Figure 3.14 MCC implementation of the bypass adder

Fig. 3.14 demonstrates the bypass MCC adder design that can speed up the
addition, where the carry propagates either through the bypass path or generated
somewhere in the chain. In both cases, the delay is smaller than the normal ripple

configuration.

A high speed design has been proposed in [29], where the MCC is supported by
the carry-skip capability to improve performance. Each m-bit block has two carry
skip pull-down transistors controlled by a skip signal. This skip signal (sk;) is
generated by ANDing all m carry propagate signals, where:

Skj = ij ij+1 ij+2 cees ij+m-l

The carry skip pull-down transistor speed up the generation of the m™ carry bit of
the block and restore signal strength at this node, eliminating the need for

intermediate buffers between the blocks nodes.

In Fig. 3.15, an 8-bit adder is designed using this technique. We have to notice that

the implementation of n-bit adder we need n/m blocks.
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Figure 3.15 First and Second 4bit Manchester chains using SK signals
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CHAPTER 4. MEMORY-LESS
PIPELINE DYNAMIC
CIRCUIT DESIGN
TECHNIQUE

4.1 Introduction
4.2 The Pipeline Dynamic Technique
4.3 Enhanced Performance Pipeline Dynamic Design

4.4 Kogge-Stone Adder Design and Simulation Results

4.1. Introduction

In this chapter we present a new dynamic circuit design techniques that allow the
implementation of pipeline structures without the need of memory elements;
instead they exploit a three phase clocking design style. The pipeline operation
along with the memory elements elimination provides very high speed circuit

realizations. Their efficiency is demonstrated on Kogge-Stone adder designs.

4.2. The Pipeline Dynamic Technique

The proposed logic family is a three phase dynamic logic design style that
overcomes the inherent race condition problems of the conventional dynamic

logic. As in the case of conventional dynamic logic, a gate consists of two control
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transistors, one nMOS that is active (in conducting state) during the evaluation
phase (evaluation transistor) and one pMOS that is active in the precharge phase
(precharge transistor), as it is shown in Fig. 4.1(a), and an nMOS network that its

structure depends on the gate functionality (see the NAND gate of Fig. 4.1(b)).

The nMOS network is the same as the corresponding nMOS network of the full
CMOS gate design for the same function. The gate version with a keeper included
is illustrated in Fig. 4.1(c). Two clock signals (CLK1 and CLK2) of equal period
are used to drive each one of the two control transistors and provide the three
operating phases, of equal time duration (called phase time), as it is shown in Fig.

4.2. The three operating phases are the precharge, evaluation and memory phases.

The precharge phase of the proposed design style is exactly the same as the
precharge phase in a dynamic design. The pMOS precharge transistor of the gate is
activated and the output is precharged to high. The nMOS evaluation transistor is
inactive and ensures that there is not any discharging path though the nMOS
network. The precharge operation does not depend on the input values of the

nMOS network and can be completed regardless of these values.

The evaluation phase is analogous to the evaluation phase in a dynamic design.
The pMOS precharge transistor is inactive and the nMOS evaluation transistor is
active. Depending on the inputs combination and the realized function by the gate,
either a conducting path is formed through nMOS network (active path) and the
output (Out) is discharged to low, or there is not any active path through nMOS
network and the output remains charged to high. Thus, the input values of the
nMOS network during this phase, actually determine the response value of the gate
at the end of this phase. According to the proposed design style, a high value at the
output of the gate at the beginning of the evaluation phase is required, while valid
and stable values are assumed at the inputs of the nMOS network during the whole

phase time. Note that input transitions or glitches during the evaluation phase may
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discharge the output resulting to an erroneous response since it is not possible to

charge the output in any other phase except the precharge phase.

Voo Voo

pMOS Precharge CLKZ _4

Transistor
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pMOS Precharge
Transistor keeper

CLK,—4 },_QQ_

Qut

nMQS Evaluation
Transistor

Figure 4.1 a) The proposed dynamic gate, b) The NAND gate c) The proposed
dynamic gate with keeper
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Finally in the memory phase both pMOS and nMOS control transistors are inactive
and the output will retain the state (logic low or high). This phase does not
normally exist in typical dynamic gates. During the memory phase the input values

of the nMOS network should not affect the output of the gate.

evaluate | memory \precharge |evaluate
|

precharge memory

Clk,

——)

Clk, ‘| ;
.

Ehase time

Figure 4.2 Clock signals’ waveforms

For the proper operation of the proposed scheme as a pipeline, each gate level
(pipeline stage) is passing continuously through the three phases precharge,
evaluate and memory in that order, as shown in Fig. 4.2. The existence of the
precharge phase before the evaluation phase ensures that the requirement for a
high value at the output of a dynamic gate at the beginning of the evaluation phase
is fulfilled. The memory phase is after the evaluation phase and ensures that for a

phase time the values calculated during the evaluation phase will remain stable.

The relation of the operating phases in a specific level of the pipeline with the
operating phases of the preceding and the following levels is shown in the example
of Table 4.1. This refers to a four levels design and the evaluation of three sets of
input data. We denote as e; the evaluation of the data set (j) at a level while mj
denotes the memory phase holding these data; finally p denotes a precharge phase.
A phase time duration corresponds to a cycle in the pipeline operation. With this

arrangement we guarantee that during an evaluation phase in a level the preceding



level is at the memory phase. This ensures that during the evaluation phase, the
inputs of the gate are stable since they are outputs of a level in the memory phase.
In addition during the precharge or evaluation phases of a level (where its outputs
may change) the following level in the pipeline is at the memory or precharge
phases respectively where there is not any constraint on the inputs’ status (to be

stable or not).

Table 4.1 The pipeline operation of the proposed dynamic logic.
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The above arrangement also ensures the proper operation of the pipeline. The

evaluated response at level L; of the pipeline during the n cycle are retained at the
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outputs of this level during the (n+1) cycle time (level L; is at the memory phase

during (n+1) cycle) and are used as inputs at level L;,; during the (n+1) cycle.

CLK,

CLK,

CLK,
CLK,

I
CLK, :
I

CLK,

Figure 4.3 The three phases clocking scheme

In order to achieve the above pipeline operation, appropriate clock signals are
required at each level. Three clock signals (CLK1, CLK2 and CLK3) and their
complements (CLK2, CLK4 and CLK®6) are used as shown in Fig. 4.3. The clock
distribution arrangement is presented at Table 4.2 and ensures that the two clock
signals used at level Li,; are the clock signals used at level L delayed by one third
of the clock period (or equivalently a phase time). The pipeline construction along
with the selection of the appropriate clock signals for each gate, according to its

level in the design, is demonstrated in Fig. 4.4.

Table 4.2 Clock signal selection according to the level of the gate.

Level nMOS pMOS
Lmod3=1 Clk1 Clk2
L mod3=2 CIk3 Clk4
Lmod3=0 CIk5 Clk6
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Figure 4.4 Pipeline structure.

An inherent problem in dynamic logic is charge sharing that may lead to erroneous
output values during the evaluation. Common solutions to overcome this problem
are the use of extra precharge transistors (to precharge the internal nodes of the
nMOS network during the precharge phase) or the use of keepers as shown in Fig.
4.1(c). The proposed design technique provides an advantage with regard to the
charge sharing problem. When a gate G (lets say at level L=i) is at the precharge
phase its predecessor gates (at level L=i-1) are in the evaluation phase and their
outputs are settling to the final value that will serve as input for the subsequent
evaluation of gate G. Thus, in the nMOS network of gate G the final conducting
paths are activated during its precharge phase so that the pertinent internal nodes
can be precharged to Vpp—V, (Where Vy, is the nMOS threshold voltage). Given
that the precharge time is enough the paths will be fully formed and the internal

nodes will be precherged. Consequently, the charge sharing problem is alleviated
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and no internal node precharging is required for these nodes as in the design of

complex (high internal parasitic capacitance) Domino gates.

The proposed design technique enables the implementation of both inverting and
non-inverting gates compared to the limitation of non-inverting gate
implementations in the standard Domino logic. However, its main advantage is the
ability to implement pipelines without the need of memory elements. For high
performance applications the use of pipelines is highly desirable but the additional
memory elements require more hardware and introduce extra delays in each

pipeline stage.

\w
Y| Y
:

Dynamic
NOT gate

Dynamic
Buifer

1
H Dynarmic
vVONMOT gates

Five stages pipeline

Figure 4.5 Circuit design example: a) function to be realized, b) CMOS design and

¢) memory-less pipeline dynamic design
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A characteristic of any pipeline design is that the inputs at level L=i+1 are the
outputs of level L=I, while the outputs of any level before L=i cannot be used
without the addition of cascaded memory elements in-between that their number is
equal to the number of intermediate levels. This increases the hardware cost of a
circuit design. However, using the proposed design technique the above restriction
can be easily fulfilled at a very low cost. In case that we need to connect the output
of a gate at level L=i as input to a gate at level L=i+k we have to add k levels in-
between. In case that k is even, the solution is to use a dynamic NOT gate for each
one of the k intermediate levels. Since the number of the added NOT gates is even
we do not alter the functionality of the circuit. In case that k is odd, the solution is
to use a dynamic NOT gate for each one of the k-/ intermediate levels plus a
dynamic buffer (dynamic NOT gate followed by a static NOT gate). Once again,
since the number of the added NOT gates is even we do not alter the functionality

of the circuit. An example of the proposed design approach is shown at Fig. 4.5.

4.3. Enhanced Performance Pipeline Dynamic Design

In order to improve further the performance of the proposed pipeline dynamic
design style a modification in the topology of the dynamic gates is introduced. The
tail nMOS evaluation transistor that lies between the nMOS network and the
ground is moved up between the output and the nMOS network, as it is shown in
Fig 4.6. The new topology provides the ability to exploit the precharge phase of a
gate as a pre-evaluation phase, where part of the evaluation operation is hidden

inside the precharge phase as it is analyzed next.
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Figure 4.6 Enhanced performance pipeline dynamic design style

When a gate G (lets say at level L=i) is at the precharge phase its predecessor gates
(at level L=i-1) are in the evaluation phase and their outputs are settling to the final
value that will serve as input for the subsequent evaluation of gate G. Thus, in the
nMOS network of gate G the final conducting paths, if any, are activated during its
precharge phase so that the pertinent internal nodes can be discharged (pre-
evaluation). Consequently, during the evaluation phase of gate G only its output
node (Out) remains to be discharged. Obviously this operation will be completed
faster than in the initial topology where all internal nodes as well as the output
node of gate G are discharged during the evaluation phase with the output node

last.

Although a keeper circuit can be also used in the new topology, a complex gate
with a deep nMOS network, of high parasitic capacitance, may suffer by charge
sharing phenomena between the output node and the nMOS network that may lead

in reliability loss. Since the internal nodes of the nMOS network is not possible to



be precharged during the precharge phase of the actual gate due to the pre-
evaluation of the this network, deep nMOS networks may not be feasible to be
realized according to the enhanced dynamic design approach. To overcome this
problem, complex gates can be split in to two or more simple gates composed of
shallow nMOS networks. Alternatively, complex gates can be designed according

to the initial dynamic design approach presented in section 4.2.

4.4. Kogge-Stone Adder Design and Simulation Results

16-bit Kogge-Stone adders [1], [16] have been designed in a standard 180nm
CMOS technology (Vpp=1.8V) using the proposed dynamic design techniques for
the implementation of their carry look-ahead (CLA) units. Their architecture is
shown in Fig. 4.7. In addition, the corresponding CLA unit has been also designed

using the standard Domino design style.

Each line inside the CLA unit of Fig. 4.7 (except the primary inputs) carries a pair
of generate/propagate signals (G;, P;). The square symbol at the first level in Fig.
4.7 represents the calculation of the generation/propagation signals by the primary
inputs. Moreover, each circle in Fig. 4.7 represents a “dot” operation between two

pairs of generate/propagate signals (G;, Pj) (Gs, Ps).
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Figure 4.7 The 16-bit Kogge-Stone adder architecture

The above operations are defined as follows [1] for each level in the design:

G,=A-B and P,=A+B for the 1* level
G, =G; (P, +G,) and P, =P +P, for the 2" and 4™ levels
G_,; =G;+(P;-G,) and E =P; P for the 3™ and 5" levels

In the proposed design of Fig. 4.7, each gate level is fed by the same pair of clock
signals, while levels that are fed by the same clock signals are denoted with the
same greyscale color. For each gate level the corresponding dynamic gates are
presented in Fig. 4.8, where the enhanced design approach presented in section 4.3
has been used. It is easy to derive the initially proposed dynamic design of these

gates by removing the clocked nMOS evaluation transistor and adding it as the tail

transistor of the nMOS network.
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Figure 4.8 Enhanced dynamic gates

In Figure 4.8 the enhanced dynamic gates for the CLA unit design of the Kogge-
Stone adder is used as follow: a) first level gates (o symbol) for
generate/propagate signals calculation, b) second and fourth levels (o symbol) dot

operation gates and c) third and fifth levels (o symbol) dot operation gates.

According to the simulation results, the worst case propagation delay in the
evaluation phase for the first one of the proposed dynamic designs is 63.36ps,
while the corresponding delay of the second enhanced dynamic design is 44.80ps,
which results in a delay reduction of 29.3% for second design approach. Note that
considering the corresponding Domino design of the CLA unit for this Kogge-
Stone adder, the worst case propagation delay in the evaluation phase is 291.69ps,
which results in a delay reduction of 78.28% and 84.64% for the initial proposed
and the enhanced proposed dynamic designs respectively. In addition, the worst
case propagation delay in the evaluation phase of the CLA unit for the same

Kogge-Stone adder using a five stages, four phases, Wave Domino design style is



164.345ps (see chapter 2.3.4.1), which results in a delay reduction of 61.45% and
72.74% with respect to the proposed designs.

Tirme {jps)

Kogge-Stone impiementations

M Enhanced Proposed Dynamic M Proposed Dynamic M Standard Domino  ® Wave Domino

Figure 4.9 Best clock cycle of Kooge-Stone implementations

Since the above worst case evaluation times are at least equal or higher than the
pertinent worst case precharge times, it is implied that clock signals with periods
of at least 190.08ps (3x63.36ps) and 134.40ps (3x44.8ps) for the initial and the
enhanced proposed designs are required, that results in 67.42% and 76.42%
reduction with the respect of the standard Domino where is the clock period must
be at least 583.38ps (2x291.69ps). The initial and the enhanced designs have as
clock cycle reduction of 42.17% and 59.11% respectively with respect to the Wave
Domino design where a clock signal period of at least 328.7ps (2x164.35ps) is

required. The above comparison results are shown in Fig. 4.9.

The mean energy consumption per cycle is 3.98pJ and 3.50pJ for the initial
proposed and the enhanced proposed dynamic designs respectively, which results

in consumption decrease of 12.06% for second design approach. This energy
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consumption improvement is related to the reduced energy requirements during the
precharge phase, since the internal nodes of the nMOS network are not precharged
in the enhanced dynamic design as it is the case in the initial dynamic design. The
mean energy consumption of the standard Domino design is 2.725pJ, which results
in energy consumption increase by 46.10% and 28.49% for the initial proposed,
the enhanced proposed dynamic designs respectively. In the Wave Domino design
the mean energy consumption is 4.97pJ per cycle. Thus, the initial proposed and
the enhanced proposed dynamic designs reduce the energy consumption by
19.88% and 29.54% over the Wave Domino design respectively. The above

comparisons are shown in Fig 4.10.
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Figure 4.10 Energy consumption per cycle of Kooge-Stone implementations

The energy consumption increment of the proposed approach over the standard
Domino design is related to the addition of the extra dynamic NOT gates, in order
to maintain the pipeline operation. Due to the construction of the Kogge-Stone
CLA unit, the number of these gates is rather high (a situation which is not the

typical case in a general circuit design).
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Figure 4.11 Energy-Clock cycle product of Kooge-Stone implementations

The energy-clock cycle products of the proposed dynamic designs (initial and
enhanced) are 756.73 pJxps and 470.58 pJxps for the initial proposed and the
enhanced proposed dynamic designs respectively, which results in energy-clock
cycle product reduction by 52.40% and 70.40% respectively over the Standard
Domino design where the product is 1589.66 pJxps. In addition, the energy-clock
cycle products are reduced by 53.67% and 71.19% for the initial proposed and the
enhanced proposed dynamic designs respectively over the Wave Domino design,
in which the energy-clock cycle product is 1633.28 pJxps. Graphical comparisons

are shown in Fig 4.11.

The internal nodes precharging capability of the nMOS networks during the
precharge phase of the first proposed dynamic design has been verified by the
simulations. Next in Fig. 4.12, the precharging of the internal node in the OR-
NAND complex gate used in the design of the CLA unit according to the proposed

design technique is presented. Note, that these waveforms correspond to the worst
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case scenario and that this gate has the highest nMOS network parasitic

capacitance in the design.

i
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Figure 4.12 Internal node precharging during the precharge phase

Finally, the silicon area, estimated by the sum of the transistor widths in each
design, is increased by 8.02% for both proposed dynamic designs with respect to

the Standard Domino design and it is reduced by 9.9% with respect to the Wave

Domino design, as it shown in Fig. 4.13.
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Figure 4.13 Silicon area comparisons.
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CHAPTER 5. NEW HIGH SPEED
MANCHESTER CARRY
CHAIN ADDERS

5.1 Introduction
5.2 Preliminary Concepts and Previous Work
5.3 New High-Speed Double Carry Chain Adders

5.4 Manchester Carry Chain Design Issues and Comparisons

5.1. Introdution

In this chapter, an efficient implementation of a new dynamic topology of the
Manchester carry chain adder in multi-output domino CMOS logic is proposed.
The carries of this adder are computed in parallel by two independent carry chains.
Due to its limited carry chain length the use of the proposed adder module for the
implementation of wider adders leads to significant operating speed improvement
compared to the corresponding adders based on the standard Manchester carry

chain adder module.
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5.2. New High-Speed Double Carry Chain Adders

Manchester Carry Chain adders can efficiently be designed in CMOS logic. As
mentioned previously, due to technological constraints the length of their carry
chains is limited to 4 bits. However, these 4-bit adder blocks are used extensively
in the literature [18], [20], [28] in the design of wider adders.

In the following we propose the design of an 8-bit adder module which is
composed of two independent carry chains which have the same length (measured
as the maximum number of series connected transistors) as the 4-bit Manchester
Carry Chain adders. According to our simulation results, the use of the proposed
adder as the basic block, instead of the 4-bit Manchester Carry Chain adder, can
lead to high-speed adder implementations.

The derived here carry equations are similar to those for the Ling carries proposed
in [32]-[34]. The derived carry equations allow the even carries to be computed
separately of the odd ones. This separation allows the implementation of the
carries by two independent 4-bit carry chains; one chain computes the even carries,
while the other chain computes the odd carries. In the following the design of the
proposed 8-bit Manchester Carry Chain adder is analytically presented.

As we mentioned in section 3.5, the computation of the carry signals is based on

the following recursive formula:

;=8 1tz ¢y (1)
;=8 T8 T%Zu8iat -+ 5% - 51804 T+ 2004 (@3]
Where,
g =a; b Generate signal

Propagate signals
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A. Even carry computation

For i=0 and z,=t,, from relation (1) we get that ¢, = g, +1,-c_,. Since the
relation g, = g, -, holds, we get that ¢, =1, -(g, +c_,)=t, - h,, where

hy, = g, +c_, is the new carry.

From relation (2), for i =2 and z;, = p,, we get that

C, =8, P28+ DD 80t P2P1PoCy

Since g, +p,-g,, =8, +t,-g,, and p, = p,-t, we have

C; =1,(8, + 8+ PaP180+ PaPi Do) = 1,(8,+ & + Papito (8o +c )=ty hy,
where

h,=g,+g8 +p,pt,(8g,+c_) is the new carry.

In the same way the new carries for i =4, 6 are computed as

hy =84 +85+P,Pi1,(8, + 8 + P11t (8, +¢,)), and

he =8¢+ &8s+ PePsty (84 + 85+ p,031,(8, + & + PPt (8 +¢)))

B. Odd carry computation
The new carries for the odd values of i are computed according to the methodology

proposed for the even carries as follows:

hy =g +8+ PPy,

hy =85+ 8, +pspat (g +80+ PPyCy)

hs =85+ 84+ PsPits(85+ 8, + P3Pat (8 + 8o + PiPoC 1))

hy =87+ 86+ P7Psla(8s5 + 84+ PsPyt3(85 + &> + P3Poti (81 + 80 + P1PoC-1))

Let G,=g,+g,, and P =p,-p, -t,, are the new generate and propagate
signals respectively, where g =c_, ¢, =1. Then, the following equations are

derived for the new carries for even values of i:

h, =G, + P,G,



h, =G, +P,G, + P,P,G,

hy =G, + PG, + P,P,G, + P,P,P,G,

while for odd values of i, the equations for the new carries are rewritten as follows:
h =G, +Pc_,

h, =G, + PG, + P,Pc_,

hy =G, + P,G,+ P,P,G, + P,P,Pc_,

h, =G, + PG, + P,P.G, + P,P.P,G, + P,P,P,Pc_,

From the above equations it is evident that the groups of even and odd new carries

can be computed in parallel by different carry chains in multi-output domino

CMOS logic as shown in Fig. 5.1.

\;DD 1g""'Y]Z)D 1g""'Y]Z)D V'DD
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Figure 5.1 Proposed carries implementation the even carry chain (a), odd carry
chain (b)

The new generate and propagate signals G,, P. can be easily proven that are

mutually exclusive, avoiding false node discharges. Their domino CMOS

implementation is shown in Fig. 5.3.

a
(o)

Figure 5.2 The new generate (a) and propagate (b) signals implemented in domino
CMOS logic.



Between the new and the conventional carries holds that ¢, =t -h,_,, therefore
the sum bits are computed as s, = p, ® (¢, -h,_,). According to [17], [18] the
computation of the sum bits can be performed as follows:

s.=hy pith(p @) 3)
for i>0, while s, = p, @ c_,.

Relation (3) can be implemented using a 2—1 multiplexer that selects either p, or

p; @t according to the value of h,_, as shown in Fig. 5.3.

Pi
ty —7

hi—‘l H

Figure 5.3 Sum bit implementation

Taking into account that an XOR gate introduces equal delay with a 2—1
multiplexer and both terms p, and p, @¢,, are computed faster than #,, then no
extra delay is introduced by the use of the proposed carries for the computation of

the sum bits according to (3).

For the implementation of the sum signals the domino chain is terminated and
static CMOS logic is used for the p, ®¢,_, gate and the final 2—1 multiplexer.
The design of the XOR gate is shown in Fig. 3.13. An efficient static CMOS

implementation of the 2— 1 multiplexer is shown in Fig. 5.4.
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DD

Figure 5.4 Static CMOS implementation of the 2—1 multiplexer

5.3. Manchester Carry Chain Design Issues and Comparisons

To evaluate the speed performance of the Proposed design over the Conventional
one and the Proposed design over the Amin’s design (see chapter 3.5.1), multi-bit
adders have been designed according to the carry chain principle given in Fig.
5.5(a) and 5.5(b) respectively and simulated using SPECTRE in a standard 90nm
CMOS technology (Vpp=1V). The conventional 8-bit Manchester Carry Chain
adder is designed by cascading two 4-bit Manchester Carry Chain modules, while
the 16-bit Manchester Carry Chain adder by cascading four 4-bit Manchester
Carry Chain adder modules and so on. The proposed 16-bit Manchester Carry
Chain adder is designed by cascading two of the proposed 8-bit Manchester Carry
Chain adder modules and so on. Amin’s 8-bit adder is designed by cascading two

4-bit Chains that contain the required (sk) signal generation gate, and so on.
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Figure 5.5 Ripple carry chains based on k-bit MCC adder modules

The performance improvement provided by the proposed design approach can be
easily understood by considering the simplified timeslot diagram presented in Fig.
5.6. The various computations are grouped by the timeslots they require in the
whole process. Each group is represented by a rectangle which in the x-axes
expresses the time duration that is needed for the completion of the pertinent
calculation. The time needed to create the propagation (p) and generation (g)
signals is equal in both techniques. However, in the proposed design technique a
small extra time is required for the computation of the new generate (G) and
propagate (P) signals but after that the odd and the even carries are calculated
simultaneously. This parallel calculation is responsible for the performance

improvements achieved by the new design approach.
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Figure 5.6 Propagation delay timeslots for the 16-bit adder PROP vs. CONV

The simulation results for the best clock cycle period achieved in the 8-bit and 16-
bit implementations according to the carry propagation delays of the proposed, the
conventional and the Amin’s designs are presented in Fig. 5.7. The clock period
for the proposed 8-bit design should be at least 431ps, which provides a
performance improvement of 4.73% over the conventional design, where the clock
period should be at least 452.42ps, while the proposed design is improved by
7.18% with the respect to the simulation results on the Amin’s design where the
clock period should be at least 464.36ps. Moreover, in the case of 16-bit adders,
the clock period of the proposed design should be at least 704.8ps and it is
increased by 23.08% with respect to the conventional design where the pertinent
time duration should be at least 916.3ps. Moreover, the proposed design
outperforms by 11.8% over the Amin’s design where the clock period should be at
least 799.02ps.
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Figure 5.7 Best clock cycle period for the implementations of the 8-bit and 16-bit
adders

The mean energy consumption per cycle of the proposed 8-bit design is
2.93x107"J, which results in a consumption increment by 44.75% over the
conventional design, where the mean energy is 1.62x107") per cycle. Moreover,
the mean energy consumption of the proposed design is increased by 42.02% with
respect to the pertinent results on the Amin’s design, where the mean energy
consumption is 1.7x107"°J. Considering the 16-bit adders, the mean energy
consumption of the proposed design is 5.62x107"°J and it is increased by 42.53%
over the conventional design where the energy consumption is 3.23x107".
Moreover, the consumption of the proposed design increases by 45.2% over the
energy consumption of the Amin’s design which is 3.08x107"°J. The above

comparison results are presented in Fig. 5.8.

This energy consumption increment of the proposed design is mainly related to the

additional gates used to generate the new generate and propagate signalsG,, P..
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Figure5.8 Energy consumption per cycle for the implementations of the 8-bit and
16-bit adders

The energyxclock cycle product of the proposed 8-bit design is 1.26x10™"°Txps,
which results in an increment of 42.00% over the conventional design, where this
product is 7.33x10_“prs. Moreover, the energyxclock cycle product of the
proposed design is increased by 37.53% over the Amin’s design where this
product is 7.89x107'1y xps. In addition, in the case of the 16-bit adders, the
energyxclock cycle product of the proposed design is 3.96x10_1°prs, which
results in an increment of 25.28% over the conventional design, where this product
is 2.96x107"%Ixps. The energyxclock cycle product of the proposed design is
increased by 37.87% over the Amin’s design where this product is 2.46x107"%)

xps. The above comparisons are shown in Fig. 5.9.
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Figure 5.9 Energy-Clock Cycle product for the 8-bit and 16-bit adders

Extending the Amin’s technique for higher number of bits does not provide better
results over the standard Manchester design. Therefore, we exclude Amin’s design

in the rest of the document.
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Figure 5.10 Best clock cycle period of the various adder implementations



Next, considering wider adders, the clock period of the proposed 32-bit design
should be at least 1.23ns, which provides a performance improvement of 30.05%
over the conventional design where the clock period should be at least 1.76ns. In
addition, the clock period for the proposed 64-bit design is improved by 35.08%
with the respect to the corresponding simulation results on the conventional
design, where the clock period should be at least 3.44ns. The performance

comparisons are shown in Fig. 5.10.
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Figure 5.11 Energy consumption of the various adder implementations

The mean energy consumption per cycle of the proposed 32-bit design is
1.1x107"%J, which results in a consumption increment of 44.75% over the
conventional design where the energy consumption is 6.43x107"%J. Moreover, the
energy consumption per cycle of the proposed 64-bit design is 2.19x107'*J and it is
increased by 44.29% with the respect to the conventional design, where the mean

energy consumption is 1.22x107"%J. The comparisons are shown in Fig. 5.11.
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Figure 5.12 Energy x clock cycle product of the various adder implementations

The energyxclock cycle product of the proposed 32-bit adder is 1.36x10_9prs,
which results in a 16.44% increment over the conventional design, where the
energyxclock cycle product is 1.13x10 °Jxps. In addition, the energyxclock cycle
product of the proposed 64-bit adder is 4.89x10_9prs and it increases by 14.19%
with the respect to the conventional design, where the energyxclock cycle product

is 4.19x10"°Ixps. The comparisons are shown in Fig. 5.12.

Tables 5.1, 5.2 and 5.3 summarize the above experimental results on performance,

energy consumption and energyxclock cycle product, respectively.



Table 5.1 Simulation results on the best clock cycle period.

Clock Cycle

Table 5.2 Energy consumption simulation results.

Energy (p]) 8-bit 16-bit 32-bit 64-bit
Conventional 1.62x10-13 3.23x10-13 6.43x10-13 1.22x10-12
Proposed 2.93x1013 5.62x10-13 1.1x10-12 2.19%10-12
Amin’s 1.7x10-13 3.08x10-13
Proposed vs. -44.75% -42.53% -41.55% -44.29%
Conventional
Proposed vs. -42.02% -45.20%
Amin’s
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Table 5.3 Energy x clock cycle product simulation results.

Energyx
Clock Cycle 8-bit 16-bit 32-bit 64-bit

Conventional
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CHAPTER 6. CONCLUSIONS

We proposed new dynamic design techniques for the implementation of high
performance arithmetic circuits like the well known Kogge-Stone adders.
According to these design approaches, a three-phase clocking scheme is used that
provides the ability to design high performance pipeline structures without the
need to use memory elements. Furthermore, a pre-evaluation operation is
introduced, which is hidden inside the precharge phase of each gate and provides
significant speed improvements. Simulation results on Kogge-Stone adder

implementations verified the expected gains.

A disadvantage of the proposed approaches is the need of additional clock signals.
However the generation of these clock signals is a one-time cost that does not
increase with circuit complexity. Moreover, in a pipeline design fashion where
each stage is fed with a dedicated clock signal(s), the clock signals distribution is
not a hard design task of increased cost. Especially, in structured circuits, like
arithmetic ones, this cost is quite small. Finally, in order to cope with possible
skew related problems among the clock signals, commonly used skew hardened

dynamic design techniques proposed in the open literature can be adopted [15].
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A second research activity in this thesis is related to the dynamic design of
Manchester adders. The Manchester carry chain is an efficient and widely adopted
design approach to construct carry look-ahead adders. We present a new
Manchester design style that is based on two independent carry chains. Each chain
computes, in parallel with the other, half of the carries. This way the speed
performance is significantly improved with respect to earlier Manchester carry
chain topologies. On the other hand, the energy consumption is getting worse and
the same stands for the energyxclock cycle product. However, the latter is
improved as the number of bits is increased. The proposed design technique has
been applied for the implementation of 8-bit, 16-bit, 32-bit and 64-bit adders in
multi-output Domino logic and the simulation results verified its performance

efficiency.
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