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EKTENHX ITEPIAHYH XTA EAAHNIKA

AAeEavopa ITihaiidov tov AAEEavopov ko g BoaAevtivng. Msc, Tunquatog
[Minpopopikng Iavemomjuo Iooavvivev, Ioviog 2010. Online negotiation for
privacy preserving data publishing.

EmBrénovrag: ITdvog Baoiledong.

To wpéPAnua g mpootaciag TG WIMTIKAG TOV Oed0UEVOV TTOV dNUOGLEVOVTOL
opileton ¢ mPOPANUA ™G OMuOcLag TaPoVsiaong JEdOUEVOV YOP® Omd  TIG
dpacnponteg M 115 mPdEelg amd £€vo oOVOAO  aTOU®V, TPOKEYEVOL Vo
e&umnpemBolv ot akdlovbol 600 avtaymviotikol otoyol. (o) va emtpéyovpe o€ €va,
OUVOAO KOAOTPOUUPET®V YPNOT®OV Vo €QopUOlovy d1dpopovg aryopiBuovg e£6pvéng
dedopévmv Le oKomd TV eEaymyn YPNOYLMOV TANPOPOPIDV GTATIGTIKOD YOPOUKTNPO
Y. T0 6Ovoro dedouévov, kat, (B) va sumodicovpe Evav kakdéfovio sioforéa va
oLVOVAGEL KATOlES EEMTEPIKEG TANPOPOPIES TOV €xel (0T0 aicONoM TG TPOCOTIKNG
yvéong tov ewoforéa, OGAheg omuocto Swobéoipa GUVoro  dedopEVOV, KAT.),
TPOKELUEVOD VO GLVOIVAGEL TO GVYKEKPIUEVO TPOCHOTO GTOV TPAYUATIKO KOGHo (Kot
10ing TV gvaictntev TANPOEoPIOY YOp® 0md 0VTO TO TPOCMTO) UE AvVTIGTOLN
EYYPAPN TOV dNUOCLEVETAL 6TO VPV Kowo. H kbpla Tteyvikn Tov ypnoomoteitan yio
TNV TPOGTAGIO OVTMOV TOV dEJOUEVOV EIVOL 1] AVOVLLOTOINGT), 1] OO0 LETATPETEL TOL
OedOUEVO GE 0L GLYKEKPIUEVT] LOPON TPV OMpoctevdel. v mapodoa epyacio 1
TEXVIKN 1 OTO10L YPNCLUOTOUCALE Y10 VO, TETVYOVLE TNV OVOVLUOTOINGT ovopaletot
Kabolk1| kwdikomoinon, N onoia (o) eivor TOAD KOAN Yo THV xpHoN TOV aAydp1Oumy
e€OpuENG dedOUEVDV IOV YPNOLUOTOLEL 0 KaAoTpoaipeTog xpotg, (B) oAl ypriyopn
oe oyéon pe kamoleg aAdeg neBddovg mov vdpyovy oty Piploypagic, cuyxpPOVEOS
ouwmg, (y) vmdpyer 1o mTpdPANUa TG SLoypoeNC KATOIOV £YYPAPOV, UE GKOTO va
TETOYOVLE TO EMOLUNTO EMIMEDO YEVIKELONG.

2y gpyacio ot AVTIHETOTICOUE TO. 0kOAOVOO TPOPANLLOTA TOL JEV VANPYOV CTHV

oxetikn Pproypapioc. O TPOTOC GTOYOG NTOV VO, LEAETNGOVE TNV GUVOEST] TOV
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Exovv HETAED TOVG Ol TPELS TAPAUETPOL TOV TPOPANUATOG — ONANOY], TO GUVOAD TMV
EYYPOUPOV 7OV OYPAPOVE, TO EMMEOO YEVIKELONG KOl TEAOG TO KPUINPLO
avovoponoinong. O Pacikdg otdyog g epyasiog ivol va TapEyel 6To ¥PNoTN TV
duvatotnto g online dlmpayUdTevong TV TPLUOV TOPAUETPOV OV OVOPEPOLE
nhvw, dNradn, (o) to eminedo tng avwvoporoinong mov embouei, (B) To TANBog twv
SaypaPOUEVOV EYYPOUPOV TOV emTpénet, Kot (Y) o Pabud g avovvuonoinong mov
emBopet.

H mpot mpocéyyion mov éyovpe givar 0 TPoUTOAOYIGHOG TOV 1GTOYPAUUOTOS Yl
OAOVG TOVE JSLAPOPOVLE GLVIVAGUOVS AVOVVLOTOINGNG TOV UTOPEL VO KOATOOKEVACEL
po 1éEB0doc KaBoAMKNG KmOkomoinong. Avtd eMTPETEL TOV VIOAOYIGUO EMAKPPOV
Moewv eEapetikd ypryopa (o€ ypdvo pepikadv milliseconds)Ilapéyovpe oto ypnot
Ko emokpifeic amavtioelg (av pmopodv va vrap&ovv), oAAG Kol TPOTAGES Yio
TPOGEYYIOTIKEG AVCEIS LEGH ALTOV TOV 1oToypappdtov. [lap’ o6la avtd, n puéBodog
avt mpobimobétel €va xpOVO  TPO-EMEEEPYOACIOG YL TNV KOATOOKELN] T®V
IGTOYPOUUATOV, O OTOT0G aVEPYETOL GTNV TAEN UEYEBOVE LEPIKDV JEKAOMY AETTMOV —
€101, VITAPYEL XDPOS Yo TEPAUTEP® PeATidoels. o T0 oKomd avtd mpoteivovpe Kot
plo oevtepn péBodo, m omoio mpobmoroyiler povVo £va pKpO TOGOCTO TV
LOTOYPOUUATOV, e OKOTO va emttaybvOel o ypovog mpo-emeCepyaciog. Ta melpdpatd
Hog £3€1EAV YPOULIKY ETLTAYLVOT GTO YPOVO OVTO, PE TOAD KOAES 1) £0TM OMOOEKTEG
TIWES Yo TNV TOOTNTA TOV OMOTEAEGUOTOS, OVAAOYR UE TO €100G TG amdvTnomg.
TéNoG, Yo Vo avTIHETOTICOVE KOl TO TPOPANLOATO TOWOTNTOS TNG TEAIKNG OdvINoNmG
(kabmdg 1 Tponyobuevn pnéB0dog Tapovciace amokAMoELS 6€ dVO €0 TPOCEYYIOTIKMV
AMcE®V TOV TPOTEIVOVTOL GTO XPNOTH), EIGAYOLUE o Tpitn ekdoyn g HeBdSov,
oV omoio VIOAOYILOVHE TO 10TOYPApO TOV VYNAGTEPA amodekToy KOpPov (o€
OYEON WE TOLG TEPLOPICUOVG TTOL OETEL 0 YPHOTNGC) GTO YPOVO eKTEAEONG. AVLTI 1M
pébooog kootiler 0.1-0.30evteporenta Yoo KAOe aitnuo evog ypMotn, aArd kepoilet
e€apetikn TooTNTO TEAMKNG AVGELS Yo OAa Ta €10 amoavimoewv. Etot, umopovpe va
EMTPEYOVUE GTOV OAYEPIOTH VO SOTPOYUATEDETOL TNV TOWOTNTO. TNG AVONG, TO

xpOvo Tov Ba mhpet Yo va v AAPEl KaBMOS Kot TG TOPAUETPOVS TOV OUTHHOTOS TOV

xpNoT.
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ABSTRACT IN ENGLISH

Alexandra Pilalidou, MSc, Computer Science Depantmé&niversity of loannina
Greece. July, 2010 Online Negotiation for Privaogserving data Publishing.

Thesis Supervisor: Panos Vassiliadis.

The problem ofprivacy preserving data publishing defined as the problem of
publicly presenting a data set with the structuredords around the activities or
transactions of a set of persons, in order to accodate the following two
antagonistic goals: (a) allow a set of well-intethtt@owledge workers to execute data
mining algorithms over the public data set in ortkeextract useful information of
statistical nature for this data set, and, (b) en¢\a malicious attacker to combine
these publicly available data with background kremlgle (in the sense of personal
knowledge of the attacker, other publicly availabla sets, etc) in ordéw link a
specific person in the real world (and in particidansitiveinformation around this
person) with its corresponding record in the publita set. The main technique that
data curators undergo is theonymizatiorof data, which involves transforming the
data (in one of many ways that the research comminais come up with) before
presenting them for public use. In our setting, fweus on the global recoding
approach which is a method for data anonymizatidah (&) high utility for the data
mining tools of the well-intended users, (b) fadteres than the alternative methods
(although not fast enough for an online environesmd, at the same time, (c) the
problem of having to delete (a.k.a., suppress)i@ugroups to attain an acceptable
level of generalization.

In this thesis we attack the following goals, no#yiously explored by the research
community. The first goal of this thesis is to stuithe interplay of suppression,
generalization and privacy criterion and record hokanges to one of these
parameters affect the two others. The main goalieler, of this thesis is to provide
the means to negotiate the configuration of thengmization of a data set, by



XV

allowing a target group of known well-meaning usarsl the data curator who is
responsible for the anonymization of data to agrekne on (a) the level of data
generalization (and thus, the incurred informatioss for the well-meaning users),
(b) the number of tuples that can be omitted frown published data set and (c) the
privacy criterion that the data curator imposes.

Our first approach involves precomputing suitabistdgrams for all the different
anonymization schemes that a global recoding mettend follow. This allows
computing exact answers extremely fact (in the omfefew milliseconds). We
provide both exact answers, if they exist, and satigns for approximate answers by
exploiting these histograms. However, this appraacfuires a pre-processing time in
the orders of few dozens of minutes; whenever thiiot feasible, alternative
approaches must be explored. To this end, we peopasethod that precomputes a
small subset of the histograms in order to speedheppre-processing time. Our
experiments indicate a linear speedup along witly geod or acceptable values for
the quality of the proposed solutions, dependinghentype of answer. Finally, to
alleviate the problems of deviations from the opiinsolution for two cases of
approximation suggestions, we introduce a thirdaveyy where the histogram of the
top acceptable node (in terms of height constrasnglso computed at runtime. This
method pays the price of 0.1-0.3 seconds to gatelknt quality of solution for all
kinds of answers. This way, the data curator ispmpd with alternative tools that he

can use depending on the constraints in termsesftumse and quality of solution.
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CHAPTER 1. INTRODUCTION

It is Monday morning and the deputy minister of Miaistry of Health and Insurance
arrives at his office. In the corridor, he findsréle angry people quarrelling: the
Chief Information Technology (CIT) officer, his &gcouncillor and his strategic
planning advisor.

Advisor: Ah, you came! Please tell them | must ithese hospital data for the new
Insurance law...

Lawyer: No, you can't! It is against the law to leaaccess to the data unless they are

appropriately anonymized! Individuals must be hidde the crowdbefore you can

have access to their health data.

CIT: But we have anonymized the data and he dokka’'them!

Advisor: You call these ‘data’? Not only did youngealizethe details of the records,
but you have suppress&@% of the data set!

Minister: Is this right? Can’t you give him at lgahe full data set, without deleting
records?

CIT: We did! Twice! The first time, we used a teghe called full-domain
generalization and he complained the data weremioch generalized...

Advisor: .. you bet they were...

CIT: and the second time, we used a more elabdeatenique called local recoding,
and he complained that the data were not suitadoldaiim

Advisor: You IT people you are always giving medaeaes. We have spent zillions
of hours in meetings with all the 5 departmentthefministry trying to ‘reconcile the
warehouse dimensions’ as you said, because yowique warehouse wouldn’t work
otherwise. And now you ‘re telling me that aftdrthis effort, these ‘dimensions’ and
their hierarchies are no good because you had toh@local recoding of yours and

give me age groups of 17 — 32 that you think hawyenaeaning to anybody!
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Minister (holding the CIT’s hands --who is makingheeatening move-- before he
punches the advisor): Isn’t there any other way?

CIT: Well, his majesty refuses to take data witls@@r any perturbation of values
and we showed him a preview of a technique cald dnatomization and he says
that the utility of data is zero for him...

Minister: OK, | got it. | am a politician and | kmo it when | see it: you have to
negotiateyour demands and seek for a compronf@ethe antagonistic demands of
information utility, hiding in the crowd, suppressj and generalization...

CIT: Yeah, right,_if we could do this interactivelye wouldn’t be here on Monday

morning shouting outside your office...

Privacy preserving data publishing is the problenpublicly presenting a data set
that includes information around the activitiest@nsactions of a set of persons, in
the form of structured records in order to accomate@dhe following two antagonistic
goals: (a) allow a set of well-intended knowledgerkers to execute data mining
algorithms in order to extract useful informatiohstatistical nature around the data
set, and, (b) prevent a malicious attacker to cambiese publicly available data with
background knowledge (in the sense of personal ledye of the attacker, other
publicly available data sets, etc) in orderlink a specific person in the real world
(and in particularsensitiveinformation around this person) with its corresgiog
record in the public data set. The main techni@paé¢ data curators undergo in order to
process the available data before making them @ubltheanonymizatiorof data,
which involves transforming the data (in one ofigas ways that the research
community has come up with) before presenting them.

To give a simple example, assume that the dataacuoh a hospital wants to make
patient records publicly available to knowledge kews without allowing malicious
users understand which records corresponds to wd@cdon in the real world. In the
case of the patient records of our example, theadis, symptoms and treatment of
each patient are examples of such sensitive valieeachieve that, a set mfentifier
attributes of data are removed (in the case okeptti example, this would be the
name, SSN, tax-agency-id, or other similar attesitHowever, this is not enough: as

the bibliography has characteristically shown foe tase of Massachusetts’ governor
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[Swee023] it is still possible to identify to whaarecord corresponds via a set of so-
called quasi identifier attributes (for example, here: zipcode, age, sekpse
combination might uniquely characterize a persan.our example, a patient’s
neighbor who knows (a) the zip code, sex and agepaitient, and (b)the fact that the
patient was hospitalized on a specific date, casae on the patient’s disease if there
are no other patients with similar characteristite. attack this vulnerability, the
research community has come up with a variety dirigues that aim to abstract the
detailed values of the original records with mgemeralizedvalues in the published
data set: so, instead of publishing the exact agect5110, a generalized version of it
might be published: 4511*, or 451**. Similarly, tesad of publishing that the age
attribute has the value of 35 for a certain recamk might publish that the age
belongs to the range [31, 40]. A published datassketanonymousf every record in
the published data shares the same quasi ident#flae with at least k-1 other tuples.
Sometimes, a generalization scheme (i.e., a decmiothe level of abstraction for
each of the quasi-identifiers) produces nice grouipis the exception of some outlier
groups that violate the k-anonymity criterion. Somh¢he published approaches allow
the deletion of these tuples, which is known aspsegsion in the literature. As we
shall see in the sequel, the management of suppnassa non-trivial problem for the

data curator.

The research community has provided several methodsstatistical tests to allow
the effective publishing of private data. One loferesearch deals with thgivacy
criterion: any privacy criterion (like the abovementionederion of k-anonymity)
suffers from vulnerabilities of statistical naturberefore different privacy criteria
have been developed over time, each covering weakseof the previous (with the
computational complexity and the possibility of ptgssing the whole data set in the
end being the main drawbacks of more and more stgdiied privacy criteria).
Another line of research deals with the nature rafrggmization process: instead of
generalizing the data set it is also possible tmduce noise or destroy the linkage of
guasi-identifiers to sensitive values. However, arfiethe criticisms against these
approaches is that although each of these methemlnssto perform quite well in
terms of the privacy offered for the individuals agle records are in the public data

set, it also appears to annoy the knowledge workarse the “world’s truth”
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presented by the data set is either false, oraesdrin terms of utility. Even the area
of generalization has several possible approaclidgnwt: for example, why do we
have to generalize uniformly all postal codes? emgraphical region is densely
represented in the data set, then the need to ajemeeit at the same level of
abstraction with a region which is sparsely repmese is not directly obvious (since
the former can easily reach groups of the desire@qy criterion at lower levels of
abstraction than the latter). Therefore, approathascustomize the partition of data
to groups in non-uniform ways (also known as loeabding of values, as opposed to
the global recoding of values alternatively sugegsthave been proposed in the
literature. Despite their obvious advantage, wiigctihe minimization (or actually, the
elimination) of suppression, it has also been atghat these approaches are slow,
make it extremely difficult for the data mining tedo extract useful knowledge and

present the users with unnatural groupings of RAt4CY 10].

Despite all this activity, there are several issued covered by the research
community so far, that we try to address in thissth. To the best of our knowledge,
this is the first time that these issues are ewgldn a systematic waylhe first
problem involves the systematic study of the mstiip between suppression,
generalization, and privacy criterionin other words, what is the amount of
generalization that appears to be necessary be@mestrict suppression to tolerable
ranges? What is the role of the value of the pgiveriterion in this relationshipA
second problem that this thesis addresses is thpgsal of efficient ways that allow
the user achieve an anonymous data set with canttraver the generalization
height, the amount of suppression and the tunahleevof the privacy criterionA
third, related problem involves the ability to prd® suggestions to the user that are
close to his original desideratum around generdl@a suppression and privacy.
The desideratum is that the user negotiates irtteefic with an anonymization
system the properties of an anonymized data seforlfexample, the user sets a
suppression threshold too low for the anonymizatwrattain the privacy criterion
that he also sets, then the system should idesdlyand very quickly with a negative
answer to the user, along with a set of proposalsvbat possible generalizations,
close to the one that he originally submitted, atainable with the specific data set.

This practically requires the ability to providesarers to the user in user time.
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Problem statement The main goal of this paper is to provide the mse®@ negotiate
the configuration of the anonymization of a datg bg allowing a target group of
known well-meaning users and the data curator wkordsponsible for the
anonymization of data to agree on (a) the levalaih generalization (and thus, the
incurred information loss for the well-meaning &3eKb) the number of tuples that
can be omitted from the published data set andhé)privacy criterion that the data

curator imposes.

We make the followingissumptions

e We assume that the end users require that datablished with respect to a set of
generalization hierarchies whose members and streiare predetermined. To put
this in context, we assume that the users have wegang with the dimensions of
a data warehouse for some time and have a stranggioview on how they want
information presented to them. Therefore, they quige reluctant to work with
automatically computed intervals of values thattgpecally produced by local or
multidimensional recoding methods.

e Moreover, we assume that the data curator hasge refinacceptable values for the
privacy preservation criterion (e.g., for the paesenl of |-diversity) and, despite
the fact that he starts with a preferred valueddes not set a strict constraint on a
specific value.

e Another assumption has to do with the possibilifyomitting (“suppressing”)
tuples from the published data set. The omissiortupfes clearly results in
(sometimes high) information loss; however, sometintemoving a set of outlier
tuples can allow the generalization of the datateet much lower level of
abstraction, thus resulting to a published datals#tis more rich in information
rather than if the tuples were retained. We allttwis, the suppression of tuples;
however we impose the reasonable constraint thahaaimum number of
suppressed tuples is acceptable by the end users.

Furthermore, we operate on the basis of the follgwoft-constraints

e Among several possible anonymization schemes tosime data sets, we need to
discover the one that best fits the user’s neegpicdlly, a decision criterion, in

the form of autility functionis employed for the assessment of the quality of a
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candidate solution. In the rest of our deliberajowe use a simple decision
criterion by default, concerning the height of asgible solution in the
anonymization hierarchies, since it is very intgtior the user and possesses nice
monotonicity properties.

e Finally, we pose as a soft-constraint the desiderabf a non-strict privacy
criterion. We want our method of privacy presematito be pluggable to the
proposed framework and retain the possibility obaging among alternative
methods for privacy preservation (e.g., k-anonypiugiversity, t-closeness, X, Y
anonymity etc). In our deliberations we will focas two practically attainable
criteria, specifically k-anonymity and I-diversithjowever other criteria are also

applicable to our method.

In summary, we can state the problem we are attgas follows:

Given

() a data sefl, comprising an identifier attributéD, a set of quasi-identifier
attributesQl = {Ay, ..., Ay}, and a sensitive attributg

(b) a set of generalization hierarchids= {hs, ..., hp}, one for each quasi-identifier
attribute,

(c) a privacy constraint (e.danonymity,l-diversity, ...),

(d) fixed constraints for (d1) the maximum height pettrileute that the
anonymization method can attdin= [h,5, ..., h,], (d2) the lowest value for the
privacy constraint (e.gk for k-anonymity) and (d3) the maximum number of
suppressed tuples that the user is willing to &éviaxSupp,

(e) a quality criterion functionQoS) for the assessment of the best possible
anonymization when more than one answers are alaifa.g., the solution with
the lowest height, and possibly the less suppredsptes, or maximum
discernibility, as another example).

Produce
0] An anonymized data s&t such that

e T*is a generalization of,
e T* fulfils the abovementioned privacy constraintd e (d3), and,
e T* minimizes the quality criterion functioQoJT*),

if such ar* can be attained,
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or,

(i) A set of alternative generalizations that are @eneralizations of and
each of them minimizes the deviation for one of ga@ameters of the
problem, specifically, (a) the acceptable geneasibn heights, (b) the
minimum acceptable value for the privacy constramd (c) the number of

suppressed tuples.

—T— Global recoding T~ k-anonymity —T— Height
——  Local recoding —  I-diversity —— Discernibility (Gom)
T~ Multidim. recoding ] t-closeness T Classification (Gwm)
—— Anatomization - .. —— Avg Class size (&)
T~ Perturbation T .. T~ NCPA
Tuple anonymization Privacy criterion Quality assessme
method method

Figure 1.1 Problem Parameters

The possible values for different parameters ofptfudlem are depicted in Figure 1.1.
The anonymization method can be any of global alldmultidimensional recoding
[LeDRO5], [LeDRO06], [Xu+06], [LWFP08], [GhKMO09], fple perturbation
[AgSTO5], [ZKSYO07], anonymization [XiTa06] or otheFhe privacy criterion can be
any of k-anonymity [Swee02a], I-diversity (in any s forms) [MaGKO06], t-
closeness [LILVO7], or other. The function thatessses the quality (or penalty) of a
candidate solution can be the height of the salyt8ama01], the discernibility metric
[BaAg05], the average class size [LeDRO06], or ather
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Our approach. In our case, we start with a simple setting, cosnpy k-anonymity

and I-diversity, global generalization and solutienght as the choices of preference.

The first method proposed in this thesis involvescpmputing statistical information

for several possible generalization scheme. A gdization scheme is determined by

deciding the level of generalization for every qudsentifier — in other words a

generalization scheme is a vector characterizimgyeguasi-identifier with its level of

generalization. To efficiently compute the amouhsappression for a given pair of

(i) value for the privacy criterion and (ii) a geakzation scheme, we resort to the

precalculation of a histogram per generalizatidmegte that allow us to calculate the

necessary statistical information. For examplethm case of k-anonymity we group
the data by the quasi identifier set of attributetheir generalized form and we count
how many groups have size 1, 2, ... etc. So, givapexific value of k, we can
compute how many tuples will be suppressed for geweralization scheme.

Similarly, in the case of I-diversity, we count thember of different sensitive values

per group along with the size of the group per grou

We organize generalization schemes in a latticaodev is lower than a node in

the lattice ifu has at least one level of generalization highanthfor a certain quasi-

identifier and the rest of the quasi-identifiers hiigher or equal levels. Once the
histogram is computed for every node in the laftidee main algorithm checks
whether there exists a possible solution to thev@me@ntioned problem that satisfies
all criteria. This is performed by first checkiniget solutions in theéop-acceptable-
nodevnax defined with generalization levelk,] ..., hy]. If a solution exists then we
exploit a simple monotonicity property and look fpossible answers in quasi
identifiers with less or equal generalization lsviédlan the ones of the top acceptable
node. In the case that no solution exists in the d&oceptable node, the algorithm
provides the user with 3 complementary suggestgranswers:

— The first suggested alternative satisflesandh but not MaxSupp In fact, we
search the space under the top acceptable noderavide the solution with the
minimum number of suppressed tuples. In typicalasibns, we can guarantee
that the answer is already in found in the top ptad#@e node and by exploiting
the original search of the top acceptable node,cam provide the answer

immediately.
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— The second suggested alternative is a solutionfitidd the maximum possible
for which h and MaxSuppare respected for the quasi identifiers of the top
acceptable node. Again, this is an answer thatbeaprovided immediately by
exploiting the search of the top acceptable node.

— Finally, the third alternative is a solution thatisfiesk andMaxSuppbut violates
h. This means that we have to explore the spaceasiddentifiers that are found
in generalization levels higher or equal than the dcceptable node. We exploit
some monotonicity properties already discussed éarthe literature [Sama01]
to avoid unnecessary checks and utilize a binaaycheexploration of heights on
the lattice.

The proposed method is guaranteed to provide thepossible answers for the given

user requests. Our experiments indicate that thiparformed in less than 10

milliseconds for typical data sets used in theaedeliterature.

However, the method comes at a price, and spelyfied the price of precomputing
the histograms for all the nodes of the latticeisTgrecomputation requires several
minutes (e.g., our experiments gave 20-40 minubesttfe largest quasi-identifier
sets). If one is to avoid the cost of full precotagbon, we need to devise an
alternative approach. So, in this thesis, we expbrsecond approach that tries to
precompute a small subset of the lattice’s nod#is thieir histogram. The goal is to
carefully select the generated nodes in order tonfaimize the deviation from the
optimal solution and (b) precompute the necessalpget of the lattice in times that
are tolerable by the users. Our approach is basetthe ranking of generalization
levels with respect to their grouping power (sintbe, larger the groups, the less the
suppression). Then, we try to rank the combinatiohtevels for all the possible
generalization schemes and pick a fixed subseharht(e.g., 5%). Our experiments
demonstrate a linear speedup of the precomputdtmoa with the approximation
factor, very good performance for the provision @fact answers and level
relaxations, as well as certain deviations in teahthe approximate generalization

heights and suppressions.

Finally, by observing that the two out of the thraléernatives suggested in the

absence of an exact answer are due to the toptabtemode, we propose a third
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method that computes the histogram of this nodeuatime. Our experiments
demonstrate that the time penalty for this extmmmatation is in the order of 0.1 —
0.3 sec and the two relaxations that suffered enptievious approach demonstrated
an identical behavior to the case of the full tattitherefore, if this time overhead can
be tolerated in terms of user time (and for theeaafsour experiments we believe it

does), then the quality of solution improves dizly.

— Roadmap. In Chapter 2, we discuss the fundamental concejptheoproblem
under investigation. In Chapter 3, we explore theerplay of the problem’s
parameters, specifically, the size of the quasiifier set, and the values for the
privacy criterion and the acceptable suppressionChapter 4, we discuss the
proposed method with a full precomputation of thttide of generalization
schemes. In Chapter 5, we discuss alternativesisoftll precomputation. In
Chapter 6, we discuss related work. Finally, in @ba7, we conclude with our

findings and present insights for future work.
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CHAPTER 2. FUNDAMENTAL CONCEPTS AND
TERMINOLOGY

2.1 Motivating Example
2.2 Background and Terminology

2.3 The annotated lattice of generalization Schemes

2.1. Motivating Example

Assume that a trusted data curator has collectedntitrodata table displayed in
Figure 2.1. The microdata comprise (a) an idemtifigribute, Name (b) a set of
quasi-identifier attributes, specificallpge Work Class and Education and (c) a
sensitive attribute, Working Hours per WeekEach attribute is accompanied by
value hierarchies, pretty much in the way OLAP disiens are organized in value
hierarchies. So, for example, tBelucationof a person who has attended school till
the 11" grade, is characterized with respect to diffelenels of abstraction as (a)
Detailed: 11-grade, (b) Level 1: Senior secondary, (c) LeveS&condary, and (d)
Level 3: Without Post Secondary. As another exanfae can be organized in terms
of years, 5-year intervals, 10-year intervals, &id-igure 3.1, the hierarchies for the
attributeswork ClassandEducationcan be inspected in detail.
We want to publish the data under the followindisgt
(a) every tuple belongs to a group of tuples with thme quasi identifiers, with
size at least 3 (i.e., the privacy constraint anlonymity, withk = 3)
(b) no tuples are suppressed (iMaxSupp=0)
(c) Age andWork Classcan be generalized at most 1 level, wheledgcation
can be generalized at most 3 levels up fe.[1, 1, 3]).
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Name ‘ Age ‘ Work_class Education |Hours/week
Thales 39 Private Hs-grad 40
Anaximander 38 Private Hs-grad 50
Anaximenes 37 Private Hs-grad 40
Pythagoras 38 Private 11th 45
Gorgias 28 Loc-gov Bachelors 30
Heraclitus 31 Federal-gov Master 50
Empedocles 30 State-gov Bachelors 60
Leucippus 32 Self-emp-not-inc ~ Bachelors 50
Democritus 35 Self-emp-inc Prof-school 54
Protagoras 33 Selt-emp-inc Assoc-acd 40

Figure 2.1Microdata table (Based on Adult data set)

As one can see in Figure 2.2 this setting is féasithe microdata table is partitioned

in three groups, each having at least 3 tuples.tifddes are suppressed and the

generalization is respected in all three quasititiers. The color and format of the

tuples in Figure 2.2 suggests the group to whiaty thelong to. The identifier

attributeNameis not published and presented here for intuiteasons only.

Name Age | Work_class Education Hours/week
Thales 37-41 Private Without-post-secondary 40
Anaximander 37-41 Private Without-post-secondary 50
Anaximenes 37-41 Private Without-post-secondary 40
Pythagoras 37-41 Private Without-post-secondary 45
Gorgias 27-31 Gov Post-secondary 30
Heraclitus 27-31 Gov Post-secondary 50
Empedocles 27-31 Gov Post-secondary 60
Leucippus 32-36 Self-emp Post-secondary 50
Democritus 32-36 Self-emp Post-secondary 54
Protagoras 32-36 Self-emp Post-secondary 40

Figure 2.2 Generalized data set (3-anonymous, ppression, h=[1,1,3]).

Assume now that we want to achieve a 4-anonymonsrgkzation of the microdata,

still retaining the constraints for no suppressemd generalization heights (i.e.,
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MaxSupp= 0 andh=[1,1,3]). One can see that we cannot attain suséttang (only

one group has size 4, the rest comprise of onlgethuples). Then, we need to

perform some relaxation to our constraints. Seva&reh relaxations can be suggested

to the user:

— The first suggested alternative satisfieandh but notMaxSupp We see that a
possible solution suppresses all the groups wih tean 4 tuples, thus removing

6 tuples. Then, the resulting data set is depiciédgure 2.3.

Name Age | Work_class Education Hours/week
Thales 37-41 Private Without-post-secondary 40
Anaximander 37-41 Private Without-post-secondary 50
Anaximenes 37-41 Private Without-post-secondary 40
Pythagoras 37-41 Private Without-post-secondary 45

Figure 2.3 Generalized data set with suppressienead (4-anonymous, h=[1,1,3],
but 6 tuples suppressed).

— The second suggested alternative is a solutionfitidd the maximum possible
for which h and MaxSuppare respected for the quasi identifiers of the top
acceptable node. Clearly this is the generalizatibfrigure 2.1 (since it only
suffices to reduck = 4 by one to achieve it).

— Finally, the third alternative that can be suggestea solution that satisfiésand
MaxSuppbut violatesh. We can try to ascend the hierarchy for every iquas
identifier attribute by one level, until the desirsuppression is achieved. So, we
ascend attributédge by one level and present ages in intervals of é@rs
However, we still have the same three groups abigure 2.2 (albeit, with
different values in the age field). Then, we ascatidbuteWork Classby one
level, to a level that comprises two values onlyked and never worked). These
two transitions manage to merge the second and ¢gnoup of Figure 2.2 into a
single group comprising 6 tuples. This way, bothstmints regarding group size
and suppressiork = 4 andMaxSupp= 0, are supported and the result is the one

depicted in Figure 2.4.
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Name Age | Work_ class Education Hours/week
Thales 37-46 Worked  Without-post-secondary 40
Anaximander 37-46 Worked Without-post-secondary 50
Anaximenes 37-46 Worked Without-post-secondary 40
Pythagoras 37-46 Worked  Without-post-secondary 45
Gorgias 27-36 Worked Post-secondary 30
Heraclitus 27-36 Worked Post-secondary 50
Empedocles 27-36 Worked Post-secondary 60
Leucippus 27-36 Worked Post-secondary 50
Democritus 27-36 Worked Post-secondary 54
Protagoras 27-36 Worked Post-secondary 40

Figure 2.4 Generalized data set with generalizaigght relaxed (4-anonymous, no
suppression, but h=[2,2,3]).

2.2.Background and Terminology

In this section, we will formally introduce the fd@amental concepts around the issues
of anonymization that we will address in this papafe distill several well-known
concepts in the related literature; consequertky,interested reader can also refer to
[Sama0l, LeDRO05, MaGKO06, LWFPO08] for alternativeegantations of these
concepts.

We start by assuming ricrodatarelationR containing all the detailed information.
We have three categories of users. First, we astiuene is a trusted data curator with
full access to the detailed information whose jesatiption includes the publishing
of data without sacrificing the privacy of the pmrs to whom the data correspond.
We assume that the data curator is trusted. We ledse a set ofvell-meaning
analystswho apply data mining algorithms over the publgldata whose aim is to
find statistically important information about th#ata set, but not anything in
particular for specific individuals. Finally, wesal have a set @ttackerswhose aim

is to discover the correct values for one or moeesgns in the real world, by
exploiting any published information available (andt necessarily the published
version ofR).

The attributes oR can be divided in the following categories:
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¢ |dentifiers: these are attributes allow anybodyhvéitcess to the microdata of R to
relate a tuple oR with a person in the real world. For example, espe’s name, or
SSN belong to the identifier class of attributeshe¥V publishing data, identifiers
are removed from the published data set.

e Quasi-identifiers: A set of attributes is called Quasi-ldentifier Set if the
combination of these attributes allows a persor \&itcess to the published data
set to relate a tuple of this data set to its hadidientifier (and consequently, to a
person in the real world). In the example of Figl assuming that the attacker
knows that Heraclitus is working for the federavgmment and has a bachelors
degree, even if the name is projected out of tH#ighed relation, a quick glance
at the remaining columns quickly reveals that thisrenly one person with the
characteristics of Heraclitus in the data set. &fwee, even if the name is removed,
the combination o¥WWork ClassandEducationis sufficient for an attacker to relate
the respective tuple to the hidden identifier (iagtributeNamg. The set of quasi-
identifier attributes of a relation will frequentbe referred to a®l as a shorthand
An attribute that is member of the quasi-identiet is called a quasi-identifier.

e Sensitive attributes: A sensitive attribute is @mnitaute whose value must not be
linked to a hidden identifier value by an attack€he core of the private data
publishing problem is to alter the original dataisesuch a way that the published
data set restricts the probability of relating theblished value of a sensitive
attribute to the hidden identifier of a tuple. FExample, in a patients’ data set, the
name of the patient and disease that she suffevst mot be linked by an attacker.
In our example, it is the task of the data curtagorevent an attacker from relating
a (hiddenNameidentifier (e.g., Heraclitus) to the valuetléburs per Weekhat he
works (here: 50).

¢ Indifferent attributes: these are any other attebwf the data set that we do not
care if they can be linked to a hidden identifier.

As typically happens in the literature, we will as® that there is one sensitive

attribute in the microdata and that no indifferatitibutes are present in the data set,

unless this is explicitly stated. So, without lagfsgenerality, we assume thRtis
defined aR (Ap, A1, A, ..., Ay, S), WhereAp is an identifier Aq, Ay, ..., A, is the

guasi-identifier set an8lis the sensitive value.



32

The quasi identifier attributes are accompaniedvalye hierarchies in a way that
resembles a lot the way OLAP dimensions organieg@ thalues in hierarchies. We
assume the following setting for quasi-identifigributes and their domains.

e Every attributeA is accompanied by a domain of valugsm(A)that is isomorphic
to the integers. Typically, attributes can be eitheminal or arithmetical. The
isomorphism to the integers is not obvious for tloeninal values; however, an
artificial ordering can be imposed to the domaiswéh attributes (especially, if, as
typically happens, the microdata table has a foréigy to a lookup table for the
guasi identifier).

e Every quasi-identifier attribute is part of hieraycof attributes. A hierarchy of
attributesH is a finite list of attributes, whose first membsrthe most detailed
level of values (the one that belongs to the miatadable too) and the last
member is the leveH.All: H={Ao, A1, Az ..., Ay, H.AII}. The attributes that
participate in a hierarchy are calladonymization levelor simplylevelsof the
hierarchy (in correspondence to thggregation levelsn an OLAP context). The
higher an attribute is in the hierarchy, the coatise level of semantic abstraction
its values have. The level All stands for compkatenymization of the values for
this attribute; to this end, its only member isirgke value, *. For example, the
guasi-identifier attribute Age can belong to a &iehy with values at the year
level, 5-year intervals, and 10-year intervaisge = {AQ8eas AJ&-yeas AJE0-yeas
AgeAll}. Whenever an attributénign is at a higher level in a hierarchy than an
attribute Aow, we denote this by the notatidaw — Anigh. We will frequently reuse
terminology from the domain of OLAP and refer thiararchy of attributes as a
dimensionwhose attributes will also be callvels(of detail).

e We assume a full mapping between the domains ohttnbutes of a hierarchy,

denoted aSanc:‘. Formally, given two attributegy,y and Anigh, Aow —> Anigh,

A =an02‘ (v) is a total functionanc:“: dom(Aow) — dom(Anign) returning a value

vy at a coarser level for a value at a lower level. In other words, for every
detailed value (e.g., Age 37 years at the detddeel) there is a single value at the

coarser level (e.g., the interval [31-40] yearsytoch it corresponds. We reuse the
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notationv; — v, for the values of the respective domains. 'E\he':1 function is

defined as the identity functionAfow = Anign.
e An extra well-formedness constraint involves themposition of ancestor

functions. For any values of any three lew&sA,, As, such thaih; —> A, — Ag,

the following property must hold: isz=an02(V1) and v3=anc":j(v2), then

Vy = anc';S (vy) too.

e We call a hierarchyaggedif the mapping of values in not full for all themains
of all attributes. For example, observe the val¥@hout pay’ in the third level of
the hierarchy for the quasi-identifié&f/ork class The value ‘Without pay’ does not
have any descendants mapped to it at the ldw@lsndL1, thus violating the
definition of a hierarchy. Ragged hierarchies amsyeto compensate by adding
artificial representatives of coarse values at tleailed levels where such
representatives are missing. For example, in tee o&the value ‘Without pay’ in
L2, we introduce two artificial values ‘W/O pay LHt level L1 and ‘W/O
pay_ L1’ at levelLO, and update the ancestor function appropriateip¢orporate
all these three values. Therefore, in the sequel, do not consider ragged

hierarchies at all.

A full domain, or global, generalization of a relationR(Ap, A1, Az, ..., Ar, S Is a
new relationP that is produced by (a) the projection of the raemntifier attributes
and (b) the replacement of the values of a quasitifier attribute with their
respective ancestor values on the basis of thearol@es previously defined.
Naturally, the ancestor function that is employed dn attribute can be the identity

function.

Formally, we say that a relatidR (Ap, A1, Ay, ..., Ay, S is fully generalized to a
relationP (Qq, Q2, ...,Qn, S, or, equivalently, thaP is afull domain generalization,
or, global generalizationof R, if

(a) at the schema leve&), = angA), for alli =1, ..,n, and,
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(b) for every tuplet in R, we introduce a tupl& in P, such that[§ = t[Y, and, for
every attributedi of R, the value[A] is replaced by a valu§Qj].

A generalization schemeof a relationR (Ap, A1, Az, ..., Ay, S is a set of quasi
identifiersQIl= {Qq, Q2, ..., Qn} that produce a full domain generalizatidh (Q1, Q2,
..., Qn, S of R. Given a specific generalization scheme as abweeagfer to the level

Qi as thegeneralization levedf attributeA;.

k-anonymity [MaGKO06]. A relationT (be it microdata or a generalized relation) is
said to be k-anonymous with respect to a set afdgdized or not) quasi-identifier
attributesQI= {Qq, Q2, ...,Qn}, if every tuplet in T, there exist at lea&t1 other tuples
te, 2, ..., k1IN T such that @] = t4[Q] = tx[Q] = - - - = k-1[Q] for all quasi-
identifiersQ in Ql.

Blocks (equivalence classesYVe will refer to a set of tuples of a relatidrunder a
generalization schem&l with the same values of quasi identifiers (again,
independently of their level of generalization) adlock or equivalence class for

relation T and its generalization scheme.

Observe that a full domain generalization produaepartition of the published
relation T to blocks/partitions/equivalence classes on thesbaf the generalization
scheme. In other words, all tuples belonging téogkbform an equivalence class. By
definition, these partitions are disjoint, and thénis the union of these disjoint

partitions.

Clearly, k-anonymity is the first attempt to hidelividual tuples in the crowd. A k-
anonymous generalization protects a tuple fromteacleer by placing it in a block of
at least k tuples with the same quasi identifidues. This way, if an attacker knows
the quasi-identifier values for a person in a reatld, the tuple that corresponds to
the victim is ‘hidden’ in the crowd of its respeiblock and it is harder for an
attacker to relate the hidden identifier to thereor sensitive value via the quasi
identifier. There are several weaknesses of k-amdyy(see, for example [MaGKO06])

and so several extensions are constantly beingamaa by the research community.
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In the context of this paper, we restrict ourseliethe simplest —yet quite powerful-
extension of simple I-diversity [MaGKO06] that triés address the problem on non-
diversity of the sensitive values within a blockall (or a significant fraction of) the
tuples of a block have the same sensitive valuen tihe block gives away (with
certainty or high probability) the sensitive vahfethe victim. So, the sensitive values
of the tuples of the same group must be quite devéfwell represented” in the
[MaGKO06] terminology). The simplest (and most p@vulway to do this is to ensure
that every block possesses at léastinct sensitive values.

Simple |-diversity. A generalization T satisfies simple I-diversitfyin every blockq,

no more thari} of the tuples have the same sensitive value.

2.3.The annotated lattice of generalization schemes

2.3.1.The lattice of generalization schemes

The possible generalization schemes that can ocegar a combination of
anonymization levels for different quasi identifiezan be organized in a lattice. In
this section, we will formally introduce the latiicdiscuss how it can be produced and

what its properties are. A first discussion of ld#ice is in [SamaO01, Incognito].

Lemma. A hierarchy forms a total order at the intentideael and a partial order at
the extensional level.

Proof.

At the intentional level, by definition we assunmattthe anonymization levels of a
hierarchy form a line. Thus, for any two levéisandA,, one must precede the other
(eitherAy — Ay, or Ay —» A)) with the— function being the ordering function of the
total order.

At the intentional level, it is easy to show thia¢ tvalues of a hierarchy form a tree:
there is a single value (*) at the top level of therarchy, and every value has a single
ancestor value at the preceding anonymization lg@eshember, thenc function is
both total and a function). Thus, the resultingdnehy of values can form a tree with
the values as nodes and an edge between two \Jéltlesy belong to consecutive

levels and they are related viaamcfunction.
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A partial order for a set of valug® and an ordering functior, imposes three
constraints: reflexivity (Xx), antisymmetry (Xy and ¥x imply x=y) and transitivity
(x<y and ¥z imply x<z). Assuming the set of all the values of the unadrthe

domains of the attributes of a hierarchy as thePsaind theanc function as the
ordering function, we can conclude that all thregpprties hold. QED

Definition. Given a set of hierarchidd=[H3, ..., Hy] that constitute a set of quasi
identifier dimensions, thanonymization lattice L is the Cartesian product of the
hierarchies at the intentional level.

Remember that given a set of ordered Bgfs.., P, their Cartesian produ& = P; x

.. x P, is also an ordered set with the following consirai
(X1, -y %) < (Y1, ..., Yn) < for eachi, x, <y; in Pi

In other words, every member of the Cartesian pmbEus annotated by one level per
guasi-identifier dimension and a membefollows a membey if all the individual
levels ofx are lower or equal to the respective levely,dbr all the quasi identifier

dimensions.

Take for example the hierarchies for the quasitifien set [Age WorkClass Racé
as depicted in Figure 3.1. We will assume that Age five levels of anonymization
{Ao, A1, A, Az, A=A.All}, Workclass has four levels\Wh, Wi, W, We=W.All}, and
Race has 3 levels of anonymization, té%,{R;, R=R.All}. In all our deliberations in
the sequel, we will assume that the order of gitssitifiers is fixed; for example, in
this case, we will always list the attribuAgefirst, Workclasssecond andRacethird.
Consequently, when we refer to the node with led@lsW3, RO we can refer to it as
230 for shorthand. The lattice for the quasi idestset is depicted in Figure 2.5.



37

432

@@@
O.@..@

@@O @@@.@.
.Q@@@..@@..
. .O@..@....

Q..Q Q@..
..@.QO
@.O

000

Figure 2.5 A lattice for the three quasi identsief the reference example Age, Work
class and Race.

So far, we refer to the result of the Cartesiandpod of the quasi identifiers as a
lattice, but we have not proved that it is indedattice.

Lemma. The ordered set that results as a Cartesian gréda H; x ... x H, over a

set of anonymization hierarchies is a lattice.

Proof. For an ordered set to be a lattice, two condsamust hold, for any two

members of the set x and y:

e x and y have a supremum or join or least upper tqua., there always exists a
member z such that botkz and ¥z) — we denote this as/x

e x and y have a infimum or meet or greatest lowemido(i.e., there always exists a
member z such that botkbzand xy) — we denote this as\y

It is easy to see that the Cartesian Product Pahasque bottom element (typically

denoted asl) which isHj.Lo, Hz.Lo, ..., Hh1.Lo, Hn.Lo @and a unique top element

(typically denoted a3) which isHj.Lay, Ho.Lan, ..., Hna.Lan, He.Lan. Therefore, any
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two members of the lattice will at least have thege as supremum and infimum

(although not necessarily them). QED.

Discussion for the extensional levelSimilarly to the intentional level, one can
explore the Cartesian product at the extensional.léNe will not delve in the

particularities of this aspect, since we will hadeuthe Cartesian product of the
hierarchies at the extensional level. Notice howelat the result is not a lattice (in
contrast to the intentional level having a singlenmber at the bottom of the list, the
extensional level has several members at the bottothe tree; thus, the resulting

partial order does not have a unique bottom eleynent

How big is the latticé? Assumen dimensions D1, ..., Dn] , each with levels
levelgDi) levels (including the top and bottom element®)e total number of nodes
in the lattice is

IL| = levelsD1) x levelsD2) x ... x levelsDn)
Assuming levels per dimension on average, this quantigpisroximated by".

2.3.2.Annotation of the Lattice with histograms

Each node of the lattice corresponds to a genataliz scheme. Thus, it can be
annotated with information concerning the geneadilin scheme, the anonymization
method, the number of suppressed tuples and atfeegmation related to the status of

the generalization scheme represented by the node.

KA-histogram. The k-anonymity histogram for a generalizationesneQIl= {Q1, Qz,
..., Qn} over an original microdata relatioR is a finite list of pairKA= [py, p2, ...,
Pm] of the formp (size blockCoun} computed as follows:
1. The original microdata relatioRR is generalized according tQl and its
accompanying hierarchies to a generalized reld&tion
2. We compute all the equivalence classe3 afccording toQl and count their
sizes in terms of tuples (to be reused in the grsim as the attributgze
3. For every possible size that appears, we countrhany blocks lflockCoun}
are of this size. The result of this is a set ofrpaf the form §ize
blockCoun}.
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Take for example the microdata taliteof the reference example (depicted in Fig.
2.1) and its generalizatiohaccording to the generalization sche@ie[A.L1, W.L1,
E.L3] (depicted in Fig. 2.2). We observe that thare two blocks of size 3 and one
block of size 4. The resulting KA-histogram fbis depicted in Figure 2.6.

size | blockCount
3 2
4 1

Figure 2.6 KA-histogram

Observe that the histogram does not trace whicbkblare formed (although each
pair can be annotated with the pairs that corresgont). However, the histogram
allows us to quickly compute the relationship af/acy to suppression. For example,
given the histogram of Figure 2.6, if one wantgnipose a constraint of 4-anonymity,
then 6 tuples (2 groups of size 3) have to be sgyed for the corresponding
generalization scheme.

Similarly to the histogram for k-anonymity one aampute the respective histogram
for simple I-diversity by counting the number oftilnct sensitive values that appear
in a group.
SLD-histogram. The simple I-diversity histogram for a generdi@a schemeQI=
{Q1, Q2, ..., Qn} over an original microdata relatioR is a finite list of triplets
SLD=[p1, p2, ..., pm] Of the form p(distinctSCount blockCount sumTupleCout
computed as follows:
1. The original microdata relatioRR is generalized according tQl and its
accompanying hierarchies to a generalized rel&tion
2. We compute all the equivalence classed @ccording toQl and count the
number of distinct values in the sensitive attrébutithin each equivalence
class (to be reused in the histogram as the atrihistinctSCountas well as
the number of tuples for each equivalence class
3. For every possibla@istinctSCountthat appears, we count how many blocks

(blockCouny are of this size as well as the overall numbertupies that
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belong to these blocksymTupleCount The result of this is a set of triplets

of the form @listinctSCountblockCountsumTupleCoumnt
Again, take for example the microdata taBl®f the reference example (depicted in
Figure 2.1) and its generalizatidraccording to the generalization sche@ie[A.L2,
W.L2, E.L3] (depicted in Figure 2.4). We observe that ¢hare two blocks, the first
having three distinct sensitive values among its faples and the second having five
distinct values among its six tuples. If we had entiran one blocks with the same
distinctSCountalue, we would sum the number of tuples thatrglo each of them
and obtain the overalumTupleCountor this value ofdistinctSCountThe resulting

SLD-histogram foiT is depicted in Figure 2.7

distinctSCount blockCount | sumTupleCount
3 1 4
5 1 6

Figure 2.7 SLD-histogram

Cumulative KA-histogram. Apart from the simple KA-histogram, a very coniesm
tool that we will employ when relating suppressiaith privacy is the cumulative KA
histogram, which, for every size k of the KA histaigh measures the number of tuples
in groups with smaller size than k.

CUMKAK) = Zgize=1. k-1(Siz€" blockCounfsizg) = cumKAK-1) + (k-1)* blockCountk-1)

Cumulative SLD-histogram. Similar to the cumulative KA histogram we canidef
a cumulative SLD histogram for the case of simgleversity. The cumSLD explains
the need for the sumTupleCount measurement initheles SLD histogram, as it is
exactly this value that is summed in order to obtn exact measurement of how
many tuples need to be suppressed when a spemjfiest for a value dfis issued.
Specifically, for every possible value bfi.e., of distinct number of sensitive values
within a group), the cumSLD histogram measures tibial number of tuples
belonging to groups with a smaller valuedigtinctSCounthan |.

cumSLOl) = Zgsc=1.1-1(SumTupleCourisg)
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Usage To see how the histograms facilitate the taskdetermining appropriate
anonymization schemes, take for example the fdgbdirs of the KA and the cumKA
histogram from the Adult data set with quasi idestiset {Age Work class Racé
and generalization scheme A.L1, W.L1, R.LO depidatelligure 2.8.

size | KA- cumKA
histogram | histogram

1 26 0
2 16 26
3 10 58
4 5 88
5 8 108
6 6 148
7 4 184
9 5 212
10 4 257
11 1 297

Figure 2.8 The 10 first pairs for the KA and cumKiistogram over the Adult data set
with quasi identifier set {Age, Work class, Racejdageneralization scheme A.L1,
W.L1, R.LO.

350

300 +

250 +

1 CumKA

1 hist.
200 — MaxSupp

150 + —

100 +
50 +
0 } I:l } } } }
1 2 3 4 5

Figure 2.9 CKAb. The 10 first pairs for cumKA higtam depicted as graph along
with aMaxSuppthreshold of 200 tuples.
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Observe the graphical representation of Fig. 2h#& depicted histogram is the one of
Figure 2.8. Along with it, suppression maximum #ireld of 200 is also depicted in
the figure. Then, the figure tells us that if wenivan anonymization setting where no
more than 200 tuples are suppressed, we cannat ualele of k higher than 7. If we
want to use a value of k = 8, 9, 10, etc, then wstrsuppress at least 212, 212, 257,
etc tuples, thus violating the constraint on MaxSupp Therefore, it is evident, that
given a fixed generalization scheme and maximurarable number of suppressed
tuples, we cannot achieve any value of k that watwan the contrary, there is an
upper bound to the anonymization that we can perfas expressed by the value of
k.

Discussion To compute the size of the lattice with histogsafim bytes), one has to

multiply the lattice size |L| with the average sidehe histogram per node.
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CHAPTER 3. VALIDITY OF THE PROBLEM:
EARLY FINDINGS

3.1 Working With Adult data set

3.2 K-anonymity for Adult data set

3.3 L- diversity for Adult data set

3.4 K-anonymity and-diversity for IPUMS
3.5 The price of histograms

3.6 Summary of Findings

Is suppression really a problem for the well inthdend users? What is the

interrelationship between suppression, generatizatnd anonymity parameters?

So far, related research in the area of generaizahas mainly followed a

suppression-agnostic approach. Apart from few epdpers [Sama0l, Swee02a,
BayardoO5] that deal with suppression issues, sulesd¢ research was primarily
targeted to local or multidimensional recoding t@ghes where suppression is not an
issue. Despite the obvious benefits of these appes it is quite possible that the
well-meaning end-users cannot utilize the ad-hooedizations of the quasi

identifier data to perform their data analysis a@piens and might demand the
presentation of data in generalization hierarchiest have been constructed in
advance, taking into account the mappings of valliasare intuitive to the users. In
this case, we lose one of the good properties dficimensional and local recoding

which is the fitting of outliers in convenient ased he presence of outliers demands

either high generalization abstractions or supjoass
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The goal of this section is to fill the aforemen&d gap and assess how suppression,
generalization and anonymity criteria are relatetihe main desideratum is the
answer to the questions: “how high should we gdh@ hierarchies to achieve low
suppression?”, or, “how is the anonymity criteri¢e.g., k in k-anonymity) affecting
the percentage of suppressed tuples#?”“assuming that we have a strict anonymity
criterion (e.g., a high value of k)t and signifitaascending in the hierarchy, what
percentage of the data set is eventually suppré&ssetlhe answers to these questions
are important, since (a) they reveal some knowlettgg¢ the current body of
knowledge has not addressed and (b) they can gusdéhrough the subsequent

negotiation process towards acceptable solutions.

To assess how suppression, generalization and amiyngriteria are related, we start
with a simple, but illustrative test. We chose #gimplest anonymity criterion, k-
anonymity, as our privacy criterion. The criteriohk-anonymity has a simple test: it
requires that every group formed by a combinatibmatues by the quasi-identifiers
contains at least k tuples. So, if we want to mesathe extent of suppression in a data
set, for a given generalization scheme, we neethd¢asure the tuples that fall in
groups with size smaller than k. Again, this is siraplest test that can be performed
for generalization techniques; out of the more @late tests (like I-diversity, t-
closeness or other) that require extra constraintshe statistical properties of the
sensitive values of each group, we also work widiversity, too. L-diversity comes
in several flavours of increasing complexity; itmglest variants require that every
sensitive value in a group is repeated no less tirae a certain percentage; or else,
that there are at ledstlistinct values in the group.

For our experiments, we work with (a) the Adultalaet [UCI] and (b) the PUMS
data set [IPUMS].

The goal of the experiments was to measure the auwibsuppressed tuples as we

increase (a) the generalization height and (byithe of the quasi identifier.
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3.1.Working with the Adult data set

The first data set that we consider is the Adutadset [UCI] (a.k.a census income
dataset), which the most common data set useckirethted literature. The dataset in
its cleansed version (after uncertain and NULL galare removed) comprises 30162
tuples of the 1994 USA census. Since we requireldewf generalization for the
guasi-identifiers, we assigned hierarchies detegthinn advance to the quasi
identifiers of the data set. We reused the hieraschf [FUWYO05] which we found
reasonable. The hierarchies for the fieEducation Occupation Marital status
Work classandRaceare depicted in Figure 3.1-Figure 3.5. AttribAtgeis organized
in years, 5-year intervals, 10-years intervalsy@@r intervals and *. We have used
the attributeHours per Weelas the sensitive attribute. Attribut€genderandSalary
were not used due to their very small domain otieal(Salary has only two values,
higher or lower than 50K). Attributdative Countryis also not used, since out of the
30162 tuples of the Adult data set, the 27625 tplave a value of USA, which

practically means that the attribute is pretty miilcé being at levedll.

An interesting experimental parameter was the ehoicattributes for each quasi-
identifier size. Since we need to experiment wiffecent sizes of the quasi-identifier

set of attributes, we needed to test the attribotegsheir grouping power If an

attribute tends to drive an anonymization schenth l@rge equivalence classes, this

means that the possibilities for suppression arallemthan with the case of an

attribute that drives the anonymization towards e with small equivalence
classes So, we have sorted the attributes according @ tjrouping power via the
following procedure.

e For every attribute, we fix all other attributesletel all and keep this attribute at
the most detailed level.

e Then, for every value of this attribute, we cour@ humber of tuples that have this
value and group the results per group size. Fomelg Table 3.1ists attribute
Marital Statusat the most detailed level, as well as the fistrdws for attribute
Agethat gave the following histograms:

Clearly, attribute Age drives the anonymization &oels many small-sized

equivalence classes compared to attribute Mart&uS. Practically, this is due to
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the fact that the domain of attribute Age is muafgér, thus resulting in many
small groups. We considered the smallest of thedees (which gives us the
smaller group that can be formed) as our discritonyacriterion. This is an
approximate estimation for the grouping power ad #itribute. We avoided the
average value of the first few results, since tlais be misleading (as for example,
in the aforementioned case of attribative Country.

e Then, we sort the attributes with respected to stz of smallest group in

ascending order.

Table 3.1 Histograms for attribut®arital StatusandAge

Marital_status levelO, Number of groups Age levelO, Number of groups
size of group with this size size of group with this size
21 1 1 1
370 1 3 2
827 1 5 1
939 1 7 1
4214 1 8 1
9726 1 13 1
14065 1 14 1

15 1
16 1
20 1

The resulting order of attributes wasgewith a smallest group size of @ccupation
with a smallest group size of Work Classwith a smallest group size of 1Miarital
statuswith a smallest group size of 2Educationwith a smallest group size of 45,
and, finally,Racewith a smallest group size of 231. We decided itoattributes with
high and low grouping power as much as possibleumexperiments, thus resulting
in the final order of attributes which Agye Work classRace Occupation Education
Marital status Native Country So, for example, when we say that the quasi-ifient
size is 3, the quasi-identifier attributes &ge Work class Race when we say that
the quasi-identifier size is 6, the quasi-identi¢tributes arédge Work classRace

Occupation Education Marital status

3.2.K-anonymity for the Adult data set

In this subsection, we report on our findings foe telationship of maximum allowed

suppression, privacy preservation (expressed bk-dm@onymity criterion) and level



49

of generalization over the Adult data set. In oxpeziments, we measure the number
of suppressed tuples per node of the lattice ofAithélt set. We have conducted this
experiment for all the possible values of QI betw2eand 7. We discuss the cases of
QI = 3 and 5 that are the most characteristic -ré¢ise of the case behave similarly to

the observations we make here.

AOWORO A1W1R1
2500 a0
° . 80
T 2000 £ 7
2 2 60
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#suppressed tuple

5000 A

© (d)

Figure 3.6 Cumulative histograms for different llsvef generalization for |Ql| size of
3 (a,b) and 5(c,d).

Figures 3.6a,b depict the cumKA histograms — itee number of tuples to be
suppressed per value of k for two different lexa#lgeneralization. The size of the QI
is 3 and comprises the attributége, Work ClassandRace(in this order). In Figure

3.7a we depict the histogram for the case whereg@eralization takes place
(denoted as AOWORO0) and Figure 3.7b depicts thdmnam for the case where all
attributes are generalized by one level (denoteA1B&1R1). We observe that (a)
there is a practically linear increment of suppeestuples per value of k (i.e., the
suppression increases rather slowly with k) and dbge we generalize all the
dimensions by one level, the suppression is redige@ orders of magnitude. In
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Figures Figure 3.6c,d we can see the cumKA histogréor size of QI equal to 5;
specifically, the attributes considered age, Work class, Race, Occupation and
Education. It is worth noting that the increase of the QI slkae 2 dramatically
increases the amount of suppression by one orderaghitude. Interestingly, on the
case where QI=5 and no generalization takes pldme,amount of suppression
surpasses 50% of the data set for a value of kh6.vRse where all dimensions are
generalized by one level presents a more lineaease of the suppression with the
increase of k and demonstrates amounts of suppredswer by one order of
magnitude than the case of no suppression.

Figures 3.7a,b depict the KA histograms — i.e.,thmber of groups per group size
for two different levels of generalization. In Frgu3.7a we depict the histogram for
the case where no generalization takes place (eerast AOWORO) and Figure 3.7b
depicts the histogram for the case where all atte are generalized by one level
(denoted as A1W1R1). We observe that there is goreantial reduction in the
number of groups per group size within each histegrMost importantly, however,
if one compares the two generalization levels,ahgm reduction by a scale factor of
30 for the number of groups of the same size betleetwo generalization schemes!
The same applies for the cumulative behavior eftitstogram too. For example, if
we want to achieve 3-anonymity, we have to suppbédstuples (1*296+2*129) for
the case of AOWORO and 17 tuples (1*11+2*3) for¢hse of AIWI1R.
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Figure 3.7 Numbeof groups per group size for different levels ofgelization for

|Ql| size of 3 (a,b) and 5(c,d).

In Figure 3.7c,d we can see the KA histograms ifce ef QI equal to 5; specifically,

the attributes considered adge, Work class, Race, Occupation and Educatire

can observe the following:

The exponential decrease of number of groups asitieeof group increases is

retained

This phenomenon applies to both cases of no geratiah and generalization by

one level

Most importantly, one can observe a significantréase in the number of

suppressed tuples between the cases of (a)-(b)@iih3 and (c)-(d) with |QI|=5.

For example, achieving 3-anonymity in the latteseceequires suppressing 10458
tuples (1*6920+2*1769) for AOWOROOOEO and 1619 éspfor (1*887+2*366)

level A1 W1R1O1EL1.

In Figure 3.9 we can see the full lattice for tlase of Q=3 Age Work classRacg.

The numbers that annotate each node show the nuwibeauppressed tuples

introduced by the node’s generalization scheme&fanonymity. Figure 3.10 depicts
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the respective information for QI = SAde, Work class, Race, Occupation and

Educatior) for a subset of the full latticend specifically, for the lattice between the

generalization schemes 00000 and 11111.

The case of the partial lattice Before proceeding, we would like to justify the
introduction of the partial lattice as one of theans of our experimental method.
One of the problems we have faced when companmtinfgs for different sizes of the
quasi identifier set is that the results are noeéaly comparable. This is due to two
main reasons: (a) the size of the lattice diffagnificantly and (b) the reported
numbers of suppressed tuples also differ signiflgasiue to the fact that as the QI
size grows, the number of groups formed grows @od, each group shrinks in size as
a result (thus, for a fixed k, the number of suppeel tuples grows as the |QI|
increases). Although this is a clear and well etgubcesult, we would like to be able
to compare the two cases to the extent that thwssible. We observed that if we
would focus on the sublattice between 00...0 and 11wé& had a lattice of
comparable size to the lattice of QI = 3 and aejgbod approximation of the
behavior of the suppression process for the futic In Fig. 3.8 we depict the
average number of suppressed tuples per levehéofull and partial lattice; as one
can see the difference is significant only for tdase of H5 (where the partial lattice

has only one node).
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Figure 3.8 Average number of suppressed tuplesdifferent heights for 3-
anonymity and QI size of 5 for (a) the fidktice and (b) the partiddttice of the data

set.
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identifier set of size 5. The QI Age, Work Class, Race, Occupation, Education
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3.2.1.Comparison of different levels of generalizatiothwixed k and QI size

Observe Table 3.2 that compares the two latticesl lby level. For each layer of

nodes we list the minimum, average and maximum reusbf nodes suppressed, the
fractional decrease over the non-generalized dataasd the decrease in the
suppression with respect to the previous layemrdei@.11 depicts the average number

of suppressed tuples per level graphically.

Table 3.2 Number of suppressed values for 3-andyyemsi(a) the height of the
generalization increases and (b) the size of tlasigdentifier set increases (for |Ql| =

3 andb)
QI =3 QI =5
Min Avg Max Avg % % over Min Avg Max Avg % over
over previous % previous
full over
full
HO] 554 554 | 554 1,83 - 10458( 10458 10458| 34,67 -

H1| 125 207| 295 0,69| 62,33] 4514 7795 9879| 25,84| 34,15

H2| 28 56 69 0,19| 72,92] 2169| 5459( 8913| 18,10| 42,80

H3| 12 24 54 0,08| 57,52] 1619| 3472| 7398 11,51| 57,22

H4 4 8 15 0,03| 64,79] 1051( 1881| 3353 6,24 84,53
H5 1 4 7 0,01 52,66] 773 733 733| 2,43| 156,67
H6 0 2 4 0,01 58,50 - - - - -

For each row of Table 3.2, we denote widtvg % over full’ the fraction of the
average number of suppressed tuples of the spéaight (listed in column ‘Avg’)
over the number of tuples of the whole data sets fieasure allows us to see the
gradual degradation of the number of suppressdds@s we ascend the lattice.
Also, we denote witto over previous’ the fraction:
X@aipal
This measure allows us to see the gain from asegrate level up in the lattice each
time.
The study of Table 3.2 presents the following obsgons:
- Comparison of different levels for the same @lis clear that as the height
increases the number of suppressed tuples dropsanhtigh rate (observe also
Figure 3.11 where this is graphically depicted)edtly, there is a point after
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which the climbing of the lattice is not furthemgtered; this practically happens
little after the middle of the lattice’s height (aight 4 for the 7 levels of QI=3
and height 8 for the 14 levels of QI = 5 — see g8 for the latter.

Comparison of different QI size$ one compares the average and the minimum
numbers of suppressed tuples per height, one oarthsg the case of QI=5
presents numbers that are between 18 and 262 Y)nmégiter for levels HO to
H4. For this range of levels, the higher the letleé higher the suppression for
QI=5. Remember that Figure 3.8 also depicts theltsefor the full lattice; with
the exception of level H5 which has an average rundh suppressed tuples
twice the size of the partial lattice, the obseoret are practically similar.

Not all attributes are born equalFinally, observe that the range of values
between minimum, maximum and average suppressiotepel is quite wide.
Interestingly, in the low levels of generalizatiqwhich are much more
interesting, because this is where we really wamtsolutions to be found), the
careful choice of generalization scheme can yiefgpraximately half the
suppressed tuples than the average case. As tljiet In@treases, the importance
of this choice remains significant albeit of lessportance. The fact that the
generalization of some attributes leads to a highduction of the number of
suppressed tuples is due to the fact that a geretrah over an attribute with a
large domain reduces main small groups at thelddtiavel to coarser groups at
the generalized level, producing, thus, higher opmities for the reduction of
suppression.

- Observe, for example, level H3 for QI=3. Node 10&s lthe smallest
number of suppressed tuples (12). It is interestingotice its parents at
level H2: node 002 suppressed 69 tuples (much ritae node 102),
whereas node 101 suppressed 28. In other wordgeitenode is produced
by (a) generalizing attributége (b) not touching attributé/ork Classand
(c) slightly ascending over attribuRace At the same time, the maximum
number of suppressed tuples at level H3 is attayeabde 030, which does
the exact opposite of node 102: it only general{adst, at level 3) attribute
Work Class

- At the same time, at level H3 for QI=Bde Work classRace Occupation
Education) we can observe that (again) the nodes with thge&t and

smallest number of suppressed tuples are pragticathplementary: node
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01101 yields a suppression of 7398 tuples and nbH&l0 yields a
suppression of 1619 tuples. Observe also what mspphen we generalize
attributeWork Class very small reductions to suppression are produced
almost all occasions when we move from a node witlgeneralization of
Work classto a node that generaliz€ccupation(except in the case of the
combination ofOccupationwith WorkClas$ for practically all the levels.
This is mainly due to the fact that moving from io0L1 for Work Clasga)
does not involve the values: Private, (b) has laerasmall grouping for the
values under Self-Employed and, thus, (c) ultinyatedduces to grouping
the government jobs under value ‘Gov’ at L1.

Also, observe the behavior of attribu@ecupation(4™ in the numbering of
attributes). Apparently, it pays off to ascend fréit to H1, but not really
to ascend from H1 to H2, unless in combination vaittnibuteAge At the
same time, ascending from the nodes of H2 with apegnlization for
Occupationto H3 at nodes that do general@ecupationpractically reduce
suppression in half(!). In other words, it appeidua Age is the dominant
attribute to consider for suppression reduction ahdt Occupation
demonstrates different behavior at different leveépending on the rest of

the generalized attributes.
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Figure 3.11 Average number of suppressed tuplesdifferent heights for 3-
anonymity. The QI size of 3 refers to the fialitice and the QI size of 5 to the partial

lattice of Figure 3.2.4.
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In this subsection, we report on our findings wkemparing different values of k for

the privacy criterion of k-anonymity for their effeon the number of suppressed

tuples. For each layer of nodes we list the minimawerage and maximum numbers

of suppressed tuples, for a height up to H6, fosi@és of 3 (Table 3.3) and 5 (Table

3.4). The results are also graphically depicteBigure 3.12 and Figure 3.13.

Table 3.3 Minimum, maximum and average number ppsessed tuples for
k=3,10,25 and QI size of 3 over the fidttice.

|QI1|=3 (lattice up to height H6)

k=3 k=10 k=25

Min avg max min avg max min avg max
HO 554 554 5541 1921 1921 1921) 4578| 4578 4578
H1 125 209 295 522 1030, 1357 1184 2546 3573
H2 28 57 69 170 352 508 610| 1153| 1926
H3 12 24 54 51 148 484 195 419 1236
H4 4 15 28 45 94 56 127 222
H5 19 37 14 48 105
H6 0 4 0 9 23 14 21 40

Table 3.4 Minimum, maximum and average number ppsessed tuples for
k=3,10,25 and QI size of 5 over the partatice.

|QI|=5 (PARTIAL lattice)

k=3 k=10 k=25

Min avg max min avg max min avg max
HO | 10458 10458 10458] 18916| 18916  18916] 25945| 25945 25945
H1| 4514 7795| 9879| 10944| 15974| 18801| 16492| 22282 25945
H2 ]| 2169 5459| 8913| 6151| 12684 18325| 10655| 18624 25945
H3 | 1619 3472 7398| 4824| 9291 17359 8516| 14867 25084
H4] 1051 1881 3353] 3990 6049 10141] 7520| 10923 16818
H5 773 733 733|] 3259 3259 3259| 6712, 6712 6712
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Figure 3.12 Average and minimum number of suppregaes over different heights
for a QI size of 3 and different k for k-anonymifyhe reported numbers refer to the
full lattice.
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Figure 3.13 Average and minimum number of suppresgaes over different heights
for a QI size of 5 and different k for k-anonymifyhe reported numbers refer to the

partiallattice.

Our observations can be summarized as follows:

- The effect of k to the suppressi@y comparing the same lines of the two

tables over different values of k, one can cleag that the effect of the

privacy criterion (here: k for k-anonymity) to thenount of suppressed tuples

is practically analogous to the amount of suppoesperformed.

As the height is small and the number of suppretgads significant (in fact,
higher than the value of k, i.e., till height H3cluded), the ratio of the

minimum number of suppressed tuples between k=3 kaid), as well as
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k=10 and k=25 increases slowly (we chose the mimnsince it is the value

of the best solution) and remains close to theifraof the two k’s.

Table 3.5 Ratio of minimum values for differentwes of k, QI size and height

Q=3 |Ql]=4 Q=5 [Q1]=6
min(k=10) | min(k=25) min(k=10) | min(k=25) | min(k=10) [ min(k=25) | min(k=10) | min(k=25) /
/ min (k=3) | / min(k=10) | / min (k=3) | / min(k=10) | / min (k=3) | / min(k=10) | / min (k=3) | min(k=10)
HO 3,47 2,38 2,86 1,56 1,81 1,37 1,57 1,18
H1 4,18 2,27 3,14 2,02 2,42 1,51 1,91 1,34
H2 6,07 3,59 3,97 2,28 2,84 1,73 2,17 1,47
H3 4,25 3,82 4,75 2,27 2,98 1,77 2,49 1,64
H4 7 2 6,07 3,59 3,8 1,88 2,61 1,68
H5 2 4,25 3,12 4,22 2,06 3,03 1,71

The effect of height increase over the number ppssed tuples is the same
for different k's Observe Figure 3.12 and Figure 3.13. All theedirare
practically parallel; in other words, independentty k, the trend of
suppression and the height increases is the salmgerg@ also, that when
minimum values are concerned, the changes aretlgligteeper than in the
case of average values; however this observatiohgscondary importance.
Computing the fraction between minimum and averagaber of suppressed
tuples Concerning QI=3, the fraction of the average bemof suppressed
tuples over the minimum number of suppressed tumespproximately
around 2 — and, in a couple of cases it raise® Wgtimes. When we move to
QI=5, the respective fraction ranges on averagedsst 1.8 to 1.5 — dropping
as k increases. In other words, it is still impottéo carefully pick a good
solution with a price of 50% — 100% with respecthe average cost. Still, as
QI and k increase, the importance of this decisliomnishes.

For completeness, we also list the average ancththenumbers of suppressed tuples

for the

full lattice of QI=5 in Table 3.6, Figureld and Figure 3.15.
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Table 3.6 Average number of suppressed tuples$8y10,25 and QI size of 5 over
the full lattice

|QI|=5 (FULL lattice). avg and min #suppressed tugs per level
k=3 k=10 k=25
avg min avg min avg min

HO 10458.00 10458, 18916.00 18916, 25945.00 25945
H1 7795.20 4514| 15973.80 10944, 22282.00 16492
H2 5537.07 2169 12734.20 6151 18954.20 10655
H3 3711.88 1123 9652.73 3468 15463.70 6599
H4 2296.34 716 6804.24 2065 11929.88 4247
HS 1295.15 322 4400.43 1160 8539.00 2471
H6 644.26 108 2551.32 578 5524.31 1257
H7 282.98 41 1288.55 230 3173.08 648
H8 110.42 8 554.97 60 1535.83 263
H9 40.52 2 212.72 14 631.24 26
H10 14.16 0 72.94 0 223.06 12
H11 4.92 0 25.14 0 78.46 0
H12 1.42 0 10.09 0 26.30 0
H13 0.27 0 2.87 0 6.27 0
H14 0.00 0 0.00 0 0.00 0
H15 0.00 0 0.00 0 0.00 0
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Figure 3.14 Average number of suppressed tuplesdifferent heights for a QI size
of 5 and different k for k-anonymity. The reportaaimbers refer to the fullttice.
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Figure 3.15 Min number of suppressed tuples ov&rdnt heights for a QI size of 5
and different k for k-anonymity. The reported numsbefer to the fullattice.

3.2.3.Comparison of different QI sizes (over differenels) with a fixed value of k

In this subsection, we focus our observations & dffect of increasing the QI size
over the amount of suppressed tuples. We fix tlel lef k-anonymity to k = 3 and
present our results per different levels of geneatibn and QI size.

Our observations can be summarized as follows:

- Clearly, different QI sizes at the same level haneaverage an increase of the
scale of 2 -3 times, for large volumes of supprédseles. This scale factor
changes as the volume of suppressed tuples drops

- Moreover, it is clear that statistically toleratdenounts of suppressed tuples
are attained slower as the size of QI grows. F@ngple, the suppression
percentage falls under 1% of the total volume dé&aa height H1 for QI = 3,
H3 for QI = 4, H6 for QI =5 and after H8 for Ql6=

- The most important observation is that a QI of sizérops to the levels of
suppression of the QI of size n-1 around 3-4 levélgeneralization later for

smaller QI's and 1-2evels for larger QI's
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Table 3.7 Average number of suppressed tuples arwéptage over the full data set
for 3-anonymity for different QI sizes over the fparlattice.

|QI|=3 |QI|=4 |QI|=5 |QI|=6
Avg Avg % Avg Avg % Avg Avg % Avg Avg %
over full over full over over full
full
HO 554 1,836] 3297,0 10,91 10458,0 34,7] 15318,0 50,8
H1 208,66 0,691] 1847,8 6,1] 7795,2 25,8] 12808,7 42 1
H2 48,5 0,160 803,3 2,71 5458,8 18,11 10342,5 34,9
H3 17 0,056 2175 0,7] 3471,9 11,51 7958,4 26,4
H4 - - 47,0 0,2] 1881,4 6,2 5740,1 19,0
60
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Figure 3.16 Percentage of suppressed tuples offeratit heights for 3-anonymity.
The reported numbers refer to the pata#tices for all QI sizes.

Table 3.8 Min number of suppressed tuples ovefulhéata set for 3-anonymity for
different QI sizes over the partiialttice.

min
Q=3 | Q=4 | |QI|=5 | [Ql|=6
HO 554 3297| 10458 15318
H1 125 1042 4514 8304
H2 28 318 2169 4901
H3 12 110 1619 4023
H4 4 47 1051 3155
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Figure 3.17 Min suppressed tuples over differemglte for 3-anonymity. The
reported numbers refer to the partatices for all QI sizes.

3.2.3.2.Full lattices

Table 3.9 Average number of suppressed tuples argptage over the full data set
for 3-anonymity for different QI sizes over thelfittice.

Q=3 |Ql|=4 Q=5 |QI|=6
Avg Avg % Avg Avg % Avg Avg % Avg Avg %

over over over over

full full full full
HO| 554,0 1,8 3297,0 10,9] 10458,0 34,7] 15318,0 50,8
H1| 208,7 0,7| 18478 6,1| 7795,2 25,8] 12808,7 42,5
H2 56,5 0,2 868,6 29 5537,1 18,4 10369,3 34,4
H3 24,0 0,1 354,3 1,2 3711,9 12,3 8105,1 26,9
H4 8,5 0,0 121,0 04| 2296,3 7,6 6036,7 20,0
H5 4,0 0,0 42,9 0,1] 12951 43| 42552 14,1
H6 1,7 0,0 15,1 0,0 644,3 2,1 2803,0 9,3
H7 0,7 0,0 6,1 0,0 283,0 0,9 1703,8 5,6
H8 0,0 0,0 2,1 0,0 110,4 0,4 941,1 3,1
H9 0,0 0,0 0,4 0,0 40,5 0,1 465,5 1,5
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Figure 3.18 Percentage of suppressed tuples offeratit heights for 3-anonymity.

The reported numbers refer to the fattices for all QI sizes.
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Table 3.10 Average number of suppressed tupleparmntage over the full data set
for 3-anonymity for different QI sizes over thelfigttice.

Min # of suppressed tuples
|QI=3 | |QI|=4 | [QI]=5| |Ql|=6

HO 554 3297 10458 15318

H1 125 1042 4514 8304

H2 28 318 2169 4901

H3 12 110 1123 2867

H4 4 28 716 1941

H5 1 12 322 1177

H6 0 4 108 629

H7 0 0 41 354

H8 0 0 8 155

H9 0 0 2 33

18000

o 16000 \
2 14000
2 12000 \\
8 10000 — \ |Ql|=3
5 5000 AN — Q=4
= 6000 C
£ 4000 [Ql]=5
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o —_—— — | Ql|=6
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Height

Figure 3.19 Min suppressed tuples over differemgltse for 3-anonymity. The
reported numbers refer to the flattices for all QI sizes.

3.2.3.3.Selected nodes

Observe alsdable 3.11 where we compare “homologous” nodes. Since tlasigu

identifier size is different, one might possiblygae that the abovementioned

comparison is unfair. So, we compare the followgages:

— both configurations have a single attribute geneed (QI=3 with nodes 001,
010, 100 vs. QI=5 with nodes 00001, ..., 100@bserve how the ranges for QI
=3 are all below 1%, whereas the smallest supmedsir QI =5 is practically
15%(!)
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Table 3.11 Comparison of homologous nodes: (a)latessoumbers and (b)
percentage of suppressed tuples over the fullgitéor 3-anonymity.

001 | 010 | 100 avg 0000L 00010 001p0 01000 10000 ag

# tuples
206 | 295| 125| 208,64 9879 9017 9544 60R2 4514  77P5,2
suppressed

% vs 0 0,68 | 097 041 0,69 35,76 29,89 31,64 19/96 14,985,842

— both configurations have three levels generalizZ@d< 3 with node 111 vs. QI=5
with nodes 00111, ..., 11100)o matter which node of QI=5 we pick, with a
generalization of three levels, it is clear tha #ffect of the size of QI is very
important: the best possible suppression of thesedth QI=5 is 95 times larger
than the respective suppression of node 111. AtsHrae time, in order to
highlight that almost all of these nodes are imgartnodes in the lattice, we
extendTable 3.12with the last column which shows that each of ¢heedes
(with the exception of 00111) provides a significaeduction of the amount of
suppressed tuples with respect to the average afdteprevious level (i.e., apart
from node 00111, all the other nodes would be wocdndidates to consider as

generalization schemes if necessary).

Table 3.12 Comparison of homologous nodes: (a)latessoumbers, (b) percentage of
suppressed tuples over the full data set for 3-gmdy and (c) improvement over the
average of the previous level

Num. % over level | % improvement over the
suppressed 0 avg previous level
111 17 0,056 69,9115
00111 7398 24,527 - 35,519
01011 4042 13,400 25,957
01101 4705 15,599 13,812
01110 4105 13,609 24,803
10011 2917 9,671 46,565
10101 3390 11,239 37,900
10110 3118 10,337 42,883
11001 1629 5,400 70,159
11010 1619 5,367 70,342
11100 1796 5,954 67,100
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— QI =3 with node 111 vs. QI = 5 with node 11111 Thible 3.13, we can see that
the top of the “diamond” of the partial lattice, i is the best that the partial
lattice can do, is quite low, in both cases -- edtegpite the fact that a difference
of two attributes in the QI size results in a s¢atdor of 45(!!) for the suppressed
tuples. This is an important observation, since omght “safely” restrict the
search within the partial lattice for a quick gealization which is not necessarily

the optimal.

Table 3.13 Comparison of homologous nodes: (a)latessoumbers and (b)
percentage of suppressed tuples over the fullsitior 3-anonymity.

111,Q1=3 11111,Ql =5
# tuples suppressed 17 773
% vs 0 0,056 2,56

3.2.4.Big picture

In the sequel we provide a combined view of allrdgults of this subsection. We use
a diagrammatic technique that combined QI sizeghte and different values of k
and depicts the number of suppressed tuples fory gmessible combination in a

single figure.

mQl=6
<I> Ql=5

- || Ql=4
NS LN E ...

k=14k=25 <=3

k=14k=25

~

k=3 |k=10k=25 k=3

k=14k=25 <=3

=14k=25 <=3

HO H1 H2 H3 H4 H5

Figure 3.20 Relative volume of suppressed tupleslifterent combinations of
generalization height, k and QI size (each subdegicts theavgnumber of
suppressed tupldslly —i.e., not as a differential over the previous-bar; thus, it is
meaningless to add the different values of sub-wétsn a bar). Each vertical
interval between horizontal lines corresponds t®Q0 tuples.
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Figure 3.21 Relative volume of suppressed tuplesdifterent combinations of
generalization height, k and QI size (each subdegicts theavg number of
suppressed tuplescrementally- i.e., with each bar as a differential over thevpus

sub-bar; thus, it makes sense to add the differ@nes of sub-bars within a bar).
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Figure 3.22 Relative volume of suppressed tupleslifterent combinations of
generalization height, k and QI size (each subdegicts thenin number of
suppressed tupléslly —i.e., not as a differential over the previoul-bar; thus, it is
meaningless to add the different values of sub-wétsn a bar). Each vertical
interval between horizontal lines corresponds t®Q0 tuples.
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Figure 3.23 Relative volume of suppressed tupleslifferent combinations of
generalization height, k and QI size (each subdegicts thenin number of
suppressed tuplescrementally- i.e., with each bar as a differential over thevpus

sub-bar; thus, it makes sense to add the diffet&nes of sub-bars within a bar).

Our observations can be summarized as follows:

e A first observation (see for example Figure 3.Z3)hat all QI sizes have the
same behavior: for low generalization levels thegdpce high numbers of
suppressions and as the generalization level rikeshumber of suppressed
tuples drops gracefully. This is clearly depictedrigures 3.20 for the average
values and Figures 3.22 for the minimum values -bath these charts the
absolute values of each QI size are depicted.

e The larger the QI size, the slower this drop isisTik evident as (a) in small
heights, one can see QI=3 which quickly disappdas; (b) the increase to
the suppressed tuples due to QI=6 is quite smafipeoed, e.g., to QI=5 at
lower levels; at higher levels however, the conitiin of QI=5 drops whereas
QI=6 that drops slower practically retains its cdmition to suppression. See
also Fig. 3.9 which clearly depicts the phenomenon.

e The increase of suppression due to the increakarmireases slowly with the
height for as long as this has a meaning (see Tablewithin each column, as
the height increases, the ratio of best solutioraftjacent k's increases t00).
Interestingly, all k’s fall with similar, but nodentical speed as the height

increases; see also Fig. 3.15 which clearly degietgphenomenon.
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e When comparing average to minimum values it appé#aas the average
values on suppression are practically 2,5 timeBigls as the minimum ones
(observe Table 3.14). Again, this demonstratesrlgi¢hat it is worth paying
the price to explore thoroughly the search spacpostible solutions for a

user’s request.

As already mentioned, another result not clearpjicted in Figures 3.20 — 3.23 has to
do with the particularities of each of the quasntifier attributes. Different attributes
have different impacts to suppression; this wildeg¢ailed further in Section 5.

Table 3.14 Ratio of average number of suppressgdgwver minimum number of
suppressed tuples for different QI sizes, valuds (@i k-anonymity) and height.

|QI|=3 |QI|=4 |Q1|=5 |QI|=6 avg
avg/min | k=3 | K=10| k=25] k=3 | k=10 | k=25| k=3 | k=10 | k=25| k=3 | k=10 | k=25

HO 1 1 1 1 1 1 1 1 1 1 1 1| 100
H1 1.7 2.0 22| 18 1.8 17| 17 1.5 14| 15 1.4 12| 166
H2 2.0 2.1 19| 27 2.6 25| 26 2.1 18] 21 1.8 15| 214
H3 2.0 2.9 21| 3.2 3.1 35] 33 2.8 23| 28 2.3 19| 268
H4 2.1 1.6 23| 43 3.8 31| 32 3.3 28| 31 2.6 22| 287
H5 4.0 9.5 35] 36 4.5 471 40 3.8 35] 36 2.9 2.6 | 418
H6 15| 38 2.6 85| 6.0 4.4 44| 45 4.2 35| 434
avg 2.13 318 | 207 291 277 357[ 311 270 246 266 231 199 2.66
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3.3.L-diversity for the Adult data set

AOWORO ALWIR1
€000 350
300
250
200
100

5000
4000
2000
2000
1000 50

# suppressed tuples
#suppressed tuples

(@) (b)
AOWOROOOEO A1WI1R101E1
, 30000 8000
2 ., 7000
H 25000 g
= 20000 2 o
% 15000 - % 100
5 10000 | £ 30m0
% % 2000
3 5000 | 3
= 1000 -
o 4]
12 3 4 5 & 7 8 9 10 L2 s 4 s s 1 8 s 10
I I
() (d)

Figure 3.24 Cumulative histogray I-diversity

3.3.1.Comparison of different levels of generalizatiothwixed k and QI size

As one can clearly see in all the charts and tabfethis section, as the height
increases, the number of suppressed tuples drapsanhigh rate — after a certain
level, it becomes meaningless to climb further hup lattice. The same phenomenon

has been observed in the case of k-anonymity, too.
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Figure 3.26 Full lattice with suppressed tuplesgoasi identifier set of size 5. The QI
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Not all attributes are born equalAgain, as in the case of k-anonymity, it is clea

that the careful choice of generalization scheme significantly improve the

number of suppressed tuples — especially at theri@arts of the lattices (that

present the most important regions too).

Observe, for example, level H3 for QI=3. Node 10&s lthe smallest
number of suppressed tuples (1R)is interesting to notice its parents at
level H2: node 002 suppressed 123 tuples (much r@e node 102),
whereas node 101 suppressedlbMther words, the best node is produced
by (a) generalizing attributége (b) not touching attributé/ork Classand

(c) slightly ascending over attribuRace At the same time, the maximum
number of suppressed tuples at level H3 is attanyeabde 030, which does
the exact opposite of node 102: it only general{zdst, at level 3) attribute
Work Class

At the same time, at level H3 for the partial lztiof QI=5 Age Work
class Race Occupation Educatior) we can observe that (again) the nodes
with the largest and smallest number of suppresgelés are practically
complementary: node 01101 yields a suppressio®47atuples and node
11010 yields a suppression of 2476 tuples. Therlast produced by the
node 10010 at H2 which is also the one with the llestaamount of
suppressed tuples at its level. Clearly, the coatlmn of the generalization
of Age and Occupationminimize the suppression (see also the rest of the
nodes of H3 that are produced by 10010: they hawdas amounts of
suppressed tuples and they are significantly loivan the other nodes of
the level). Interestingly, the best generalizatssheme at level H3, is not
depicted in the partial lattice and it is 10020 ighhpractically says that

occupation is fully generalized at its topmost lve

3.3.2.Comparison of different values of | and height vaitfixed QI size

In this subsection, we report on our findings wkkemparing different values ¢ffor
the privacy criterion of I-diversity for their effeon the number of suppressed tuples.
For each layer of nodes we list the minimum andraye numbers of suppressed

tuples, for QI sizes of 3 (Table 3.16) and 5. Fa fatter we explore the case of full
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lattice (Table 3.17). The results are also graplyicdepicted in Figure 3.27 and
Figure 3.28 for QI=3 and Figures 3.29 and FiguB® 3or QI=5.

Our observations follow closely the respective obestgons for k-anonymity and can
be summarized as follows:

- As | increases, so does the amount of suppressed (&wmdbe same height
and QI size). The amount of suppression is noctlyranalogous to the value
of I, however the scaling of the suppression is qudsecto the scaling of the
value ofl.

- All the lines in all the charts of this subsectiexpose the same trend: as the
height increases, the number of suppressed tupbes duite quickly

- Asin the case of k-anonymity, the ratio of minimtoraverage value is higher
than 50% (Table 3.15) (in fact it rises to quitegi&values at big heights; if
one removes the outliers the average ratio of geeta minimum value is

around 3).

Table 3.15 Ratio of average number of suppresggdswver minimum number of
suppressed tuples for different QI sizes, heightleh

avg/min (I-3)
[Q1=3 |IQI=4 | |QI=5 | |QI=6
HO 1 1 1 1
H1 1,94 1,58 1,59 1,44
H2 2,27 2,58 2,29 1,92
H3 3,6 3,12 3,07 2,49
H4 1,9 5,29 3,17 2,83
H5 4,5 7,41 3,73 3,28
H6 6,17 4,78 4,03
H7 8,3 10,9 4,40
H8 2,1 10,69 5,61
H9 0,4 37,35 11,38
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Table 3.16 Average and minimum number of suppretgads pre level for QI=3
over the full lattice for different values of |

|QI|=3 (full lattice)
-3 -6 -9
min avg min avg min avg
HO 1033 1033| 2476 2476] 4251 4251
H1 240 468 788 1430] 1258| 2356
H2 50 114 357 535 680 1160
H3 12 43 54 182 104 377
H4 6 11 22 50 29 99
H5 1 5 2 19 2 28
H6 0 2 0 10 0 11
H7 0 1 0 2 0 3
H8 0 0 0 0 0 0
H9 0 0 0 0 0 0
4500
4000 —
3500
o 3000
2 2000 1\ —i3
g 1500 \\ =6
« 1000 AN =9
£ 500
€ o NN —
HO H1 H2 H3 H4 H5 H6 H7 H8 H9
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Figure 3.27 Minimum number of suppressed tupledgwel for QI=3 over the full
lattice for different values of |
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Figure 3.28 Minimum number of suppressed tupledgwel for QI=3 over the full

lattice for different values df
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Table 3.17 Average and minimum number of suppressgl@s pre level for QI=5
over the full lattice for different values of |

[Q1|=5 (full lattice)
-3 -6 -9
min avg min avg min avg
HO 13167| 13167] 20261 20261] 25901| 25901
H1 6463| 10301] 11971| 17150f 15624| 22002
H2 3347 7694| 6923| 13890 10027| 18551
H3 1774 5458] 4043| 10705 6392| 15042
H4 1132 3594] 2668| 7738] 4173| 11506
H5 581 2172 1463| 5180 2573| 8181
H6 244 1168 689 3130] 1241| 5259
H7 50 545 302 1670 675 3015
H8 20 214 63 741 250 1466
H9 2 75 7 272 63 587
H10 0 23 0 85 14 196
H11 0 7 0 26 0 57
H12 0 2 0 9 0 15
H13 0 0 0 2 0 4
H14 0 0 0 0 0 0
H15 0 0 0 0 0 0
30000
25000
%_ 20000 -
2
% 15000 X s
£ 10000 \\ -6
€
5000 \\ 9
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Figure 3.29 Minimum number of suppressed tupledgwel for QI=5 over the full
latticefor different values of |
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Figure 3.30 Averageumber of suppressed tuples pre level for QI=5 twverfull
latticefor different values of |

3.3.3.Comparison of different QI sizes (over differenelg) with a fixed value of |

In this subsection, we focus our observations e dffect of increasing the QI size
over the amount of suppressed tuples. We fix thel lef I-diversity tol = 3 and
present our results per different levels of geneatibn and QI size.

Our observations can be summarized as follows:

- Clearly, different QI sizes at the same level haagy/ing levels of increase to
the minimum number of suppressed tuples. This sgalean range from 5 to
2 and systematically decreases as QI increasesewowas in the case of k-
anonymity, it is clear again that the size of Qths determining factor for the
amount of suppression that can take place.

- Moreover, it is clear that statistically toleratdenounts of suppressed tuples
are attained slower as the size of QI grows. Famgte, the suppression
percentage falls under 1% of the total volume d&aa height H1 for QI = 3,
H3 for QI = 4, H6 for QI = 5 and after H8 for QI6=(all at the same level with
k-anonymity).

As in the case of k-anonymity, we also observeal@itof size n drops to the levels of

suppression of the QI of size n-1 around 2-3 levkfgeneralization later
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Table 3.18 Average and minimum number of suppretsgads per level for all QI

sizes and 1=3 over the full lattice

|QI|=3 |QI]=4 |QI]=5 |QI|=6
avg min avg min avg min avg min
HO 1033,0/ 1033} 5116,0f 5116]13167,0 13167]17871,0f 17871
H1 467,7 240] 3118,0| 1972]10300,6] 6463] 15405,8] 10671
H2 113,7 50| 1644.,4 637| 7694,4| 3347]12928,4| 6719
H3 43,2 12] 750,1 240| 5457,6| 1774]10518,6] 4210
H4 11,4 6 264,8 50| 3593,5| 1132] 8200,0f] 2894
H5 4,5 1 89,0 12] 21719 581] 6079,5| 1848
H6 1,7 0 24,7 41 1168,2 2441 4236,2] 1049
H7 0,7 0 8,3 0 545,0 50| 2740,5 622
H8 0,0 0 2,1 0 213,9 20| 1617,6 288
H9 0,0 0 0,4 0 74,7 2 854,0 75
20000
18000 \
16000
3 14000 \
g 12000 \
2 10000 \ — =3
E 8000 \ |Ql|=4
E 6000 \\ |Ql|=5
4000 \\ \ ——|al|=6
2000
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Figure 3.31 Minimum number of suppressed tupledeyai for all QI sizes and 1=3
over the full lattice
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Figure 3.32 Average number of suppressed tuplekeperfor all QI sizes and 1=3
over the full lattice

3.4.K-anonymity and L-diversity for the PUMS data set

In this subsection, we report on our findings vittk PUMS data set [IPUMS]. The
PUMS data set comprises 600000 records of the USBus. The attributes of the
PUMS data set arage, birthplace, education, gendefhe hierarchies of these
attributes are the same for the same with Adultttier attributesage, education and
genderbut different for thebirthplace (we can see birthplace hierarchy in Figure

3.33).We have useatcupationas the sensitive attribute for this data set.
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Figure 3.33 The hierarchy for tirthplacedimension
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K-anonymity. Although the data set size is significantly lartiean the one of Adult,
the quasi-identifier size of the PUMS data set nsal§ as it comprises only 4
attributes. Therefore we have not experimented whth quasi-identifier size, but
rather we have explored the interrelationship ofith the different heights of the
lattice. In Table 3.19 and Figure 3.34 we depi& #verage number of suppressed
tuples per height and in Figure 3.35 and Table @/2@epict the minimum number of
suppressed tuples per level.

Our observations can be summarized as follows:

- The general trend of suppression as the height¢ases is quite similar with
the one discovered at the Adult data set: the gggpn levels are high for
small heights and quickly drop to small amountsppressed tuples. This
holds for all the values of k that we have tesiesl,(k=3, 10, 50, 100, 150).
Interestingly, all the values of k demonstrate #tus-off behavior within the
range of two heights (H3 and H4) when the minimwmber of suppressed

tuples is concerned (see Figure 3.4.2).

Table 3.19 Average number of suppressed tupledifferent values of k for the
PUMS data set

Average # of suppressed tuples
k=3 k=10 k=50 k=100 k=150
HO 31933.0[ 128493.0| 369177.0, 490040.0| 539066.0
H1 12020.3| 57561.5| 220812.5| 330966.5| 396465.0
H2 5071.2| 25413.6| 124158.2| 204604.8 260322.4
H3 1790.9] 9873.9| 59787.8| 115041.2| 158743.6
H4 530.4| 3197.8| 23421.8| 50488.1| 77780.2
H5 149.4| 1028.2| 7789.6| 17577.8| 28101.9|
H6 31.8 290.3| 2307.0f 5288.1| 8920.8
H7 4.5 54.9 679.8| 1534.8| 2667.9
H8 0.6 6.3 147.9 402.4 663.5
H9 0.0 0.0 9.4 79.9 156.5
H10 0.0 0.0 0.0 0.0 15.4
H11 0.0 0.0 0.0 0.0 0.0
H12 0.0 0.0 0.0 0.0 0.0
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Figure 3.34 Average number of suppressed tupledifierent values of k for the
PUMS data set

- The relationship between minimum and average sspptketuples is quite
different than the case of the Adult data set. firfieimum values drop very
quickly with the increase of the height, whereads fall is much slower than
the case of the average suppression: in other wdéhndschoice of a good
anonymization scheme is much more important incteee of the PUMS data

set.
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Table 3.20 Minimum number of suppressed tupleslififerent values of k for the
PUMS data set

min # of suppressed tuples

k=3 k=10 k=50 k=100| k=150
HO 31933| 128493| 369177 490040| 539066
H1 4462| 27036| 140719| 226622| 288288
H2 570 3778| 30578| 64388| 95620
H3 169 1370 11141 27287 42793
H4 3 197 2037 4775 7705
H5 0 18 527 1193 2482
H6 0 0 95 391 779
H7 0 0 0 0 0
H8 0 0 0 0 0
H9 0 0 0 0 0
H10 0 0 0 0 0
H11 0 0 0 0 0
H12 0 0 0 0 0
600000

500000 \
400000 \
\\ — k=3
300000 +— \\ —_—e10
200000 k=50
\\ —— k=100
100000 +—\
\\~‘ ——k=150
0 oS——
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# suppressed tuples

height

Figure 3.35 Minimum number of suppressed tuplesliiberent values of k for the
PUMS data set

L-diversity. We have tested the PUMS data set for its behawouacerning the
suppression of tuples in the casd-diversity for different values df(specifically, 3,

6, 9). The choice of values fdrwas such that the data set was not massively
suppressed for reasonable heights (observe Takk ®here H2 still holds around

1% of suppression for the best possible solutioe depict our findings in Table
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3.21 and Figure 3.36 for the average number ofregspd tuples per height and value
of | as well as in Table 3.22 and Figure 3.37 for theimiim number of suppressed

tuples — i.e., the best possible solution—per Heagi value of.

Table 3.21 Average number of suppressed tupledifferent values of | for the
PUMS data set

avg # of suppressed tuples

=3 |=6 |=9
HO 37187.0] 96136.0| 147964.0
H1 14255.8| 41891.5] 71999.5
H2 6136.4| 18788.9] 33843.0]
H3 2177.5] 7380.6] 14116.6
H4 630.1] 2329.0| 4849.2
H5 178.1| 721.6] 15245
H6 38.1] 183.8 438.3
H7 5.0 28.7 84.0
H8 0.6 2.8 9.4
H9 0.0 0.0 0.9
H10 0.0 0.0 0.0
H11 0.0 0.0 0.0
H12 0.0 0.0 0.0

160000,0
140000,0 +—

120000,0 —

100000,0

80000,0 \\ —_—=3

60000,0 \
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Figure 3.36 Average number of suppressed tupledifierent values of | for the
PUMS data set
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Table 3.22 Minimum number of suppressed tupleslififerent values of | for the

PUMS data set

min # of suppressed tuples

=3 I=6 =9
HO 37187| 96136| 147964
H1 5333| 20837 40589
H2 701 2779 6129
H3 204 927 2026
H4 3 89 332
H5 0 7 41
H6 0 0 0
H7 0 0 0
H8 0 0 0
H9 0 0 0
H10 0 0 0
H11 0 0 0
H12 0 0 0

160000

140000 —

120000 +—

\ .

100000

80000
\ .
60000
\ =9
40000

20000\\

HO H1 H2 H3 H4 H5 H6 H7 H8 HY9 H10H11 H12

Figure 3.37 Minimum number of suppressed tuplesliiberent values of | for the
PUMS data set
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Our findings can be summarized as follows:

- The general tendency for the drop of suppressdddgs the height increases
is verified once again: there is an exponentiapdrbthe suppression as the
height increases, for all valueslof

- The cut-off point, whereas suppression becomesptaigle low for the best
possible anonymization scheme (Figure 3.37) iseqoitv (around H1 and H2
for all values of 1), whereas this picture is quiiferent for the average case
(Figure 3.36) where it is found approximately tweoéls higher.

- The comparison of k-anonymity antidiversity shows a remarkable
resemblance for the general trend and the behaviothe amount of
suppressed tuples as the height or the privacgriomnt increase their value.
Again, we can think of k-anonymity as a good estaonaf |-diversity.

3.5.The price of histograms

The lattice of generalization schemes and most itapty, the histograms with
which the lattice is annotated come with a pricgthlin terms of space and in terms
of construction time. In this section, we discubsst preprocessing and storage
prices.

K-anonymity. In Figure 3.38 we depict the time needed to cansthe full lattice
and to annotate it with the necessary histogramsttie case of k-anonymity.
Naturally, the latter task takes up practically thié necessary time. As the QI size
increases the time also increases exponentiallyeder, for all the QI sizes that we

have considered, the time ranges from few secanliss$ than 20 minutes.

20

15

=
=]

w

time (min)

=]
-

a4
[l

Figure 3.38 Construction time for the full lattiaed its k-anonymity histograms for
the Adult data set.
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Clearly, the size of the data set influences tineetineeded to construct the full
lattice’s histograms. Remember that the histogram dach node in the lattice
practically requires two aggregate queries ovethaldata set (one that constructs the
groups and another that counts the group sizesidremes). This does not explain,
however, the exponential delay with the increaseQobfsize; the reason for this
phenomenon is depicted in Figure 3.39, where weenitethe lattice size in terms of

nodes and edges.

Number of lattice nodes Number of lattice edges
4000 3600 20000

15960

3000 16000

12000 7
2000 -

900 8000 7
1000 +

60 180 4000 3315
0 — : 133 i

3 4 5 6 lai 3 4 5 6 lal

Figure 3.39 Lattice size in terms of nodes and sdgethe k-anonymity lattice of the
Adult data set.

Again, we can observe the same exponential incieage, in the case of edges).

Although the time spent to construct the latticsignificant, the amount of memory
that is needed to keep the histograms in main memaguite small. Observe Figure
3.40, where we depict the amount of main memorytsgeretain the histograms for
all the nodes of the lattice in the case of k-amoityy Remember that the lattice size
is dependent only upon the number of dimensionsthechumber of levels of each
dimension and not upon the size of the data séaéin the data set influences the size
of the histogram only with respect to the numbegmups produced — however for
each group we only need two integers, so this ostot so important after all).
Again, the increase is exponential in terms of @le(which is clearly due to the

exponential increase in the number of lattice nhdes
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Figure 3.40 Main memory spent to retain the k-amaibyhistograms for the Adult
data set (KB).

L-diversity . In our experimentation with the Adult data se¢, mave also explored the
case of L-diversity. Specifically, in Figure 3.4®wepict the construction time for the
I-diversity histograms, and in Figure 3.42 we depihe memory cost for retaining
these histograms. The observed phenomena are cathctthe same as with k-
anonymity; however observe that the number of miistvalues thak can take (the x-
axis of the histogram, in other words) is much lkss) the respective values for the
case of k-anonymity; therefore, the size neededbvger for I-diversity than k-

anonymity.
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Figure 3.41 Construction time for the full lattiaed its |-diversity histograms for the
Adult data set.
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Figure 3.42 Main memory spent to retain the |-dsugrhistograms for the Adult data
set (KB).

IPUMS. Apart from the Adult data set, the observed valaee also consistent with

the case of the IPUMS data set (see Figure 3.43wé\ have already mentioned, the
lattice size is practically independent from theéadsize and dependent mainly upon
the lattice’s hierarchies; therefore the histogisames are comparable for Adult with

QI=5 and IPUMS (the hierarchies are slightly diéet). The construction time,

however is quite different and this is clearly daghe fact that the size of IPUMS is
50 times the size of the Adult data set. This @rpléhe difference in time costs.

k-anonymity I-diversity
Average time (minutes) 10,5 38,087
Histo size(Kbytes) 530,688 58,424

Figure 3.43 Construction time (min) and main menspgnt (KB) for the IPUMS
data set.

3.6. Summary of findings

The goal of this chapter has been to study thetioakhip of suppression,
generalization height and privacy criterion and th@é study, to characterize the
importance of the problenOverall, we can safely claim that the problem ikdsand

important. Low generalization heights (that aremsbre interest to us due to their
information utility), or large values for the prieg criterion (which is of more interest
to us due to the increased privacy it offers toivitilals), or erroneous choice of

generalization scheme can result in large amouhtsuppressed data, quite possibly
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much higher as compared to more careful choicesc@&ming the generalization

scheme

Our detailed findings concerning the relationshighe involved parameters can be

summarized as follows:

As the generalization height increases, the supjmnesirops quickly at small
heights; the drop in suppression is less impoitahigher heights, where the
number of suppressed tuples becomes statisticaiBll sand drops slowly.
Interestingly, the overall trend for the decrealssuppression is practically the
same for different values & or | — of course, with different amounts of
suppressed tuples.

As the value for the privacy criterion (e.§.jn k-anonymity) increases, the
suppression increases too. This is especially itapbrin lower heights of
generalization that are both important due to theformation utility and
demonstrate high volumes of suppression.

As the size of the quasi identifier set increasks, effect to suppression is
significant, as suppression increases too — sorastigirastically. Some
guantitative evaluations around this theme sugtest (a) given a specific
height and k an increase in QI size by one inceedlse suppression by a
factor of 2 — 3; (b) to attain the same supprestioeshold an increase in QI
size by one, requires ascending 1-2 levels fordagmity and 2-3 levels fdr
diversity.

Not all attributes, generalization levels and, emueently, generalization
schemes have the same effect to suppressionndttésvorthy that within the
same height, the minimum possible suppression pgoapnately 2.5 times
lower than the average for k-anonymity and 3 tirtmsers for I-diversity.
This is especially evident in cases where the ®gswn has high values or
values that cannot really be tolerated; on therdihad, for too large values of
suppression (e.g., too large QIs lgrthe relationship between average and
minimum value does not follow this rule.

Based on the above, it is important that for cas¢ do matter, and where we
can really attain good amounts for tuple suppresstas really important to
carefully pick the generalization scheme that wilhimize this suppression.
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The faster we identify these generalization schethesfaster the process
completes.

We should also note that the above findings seemsist@nt with both k-anonymity
and I-diversity over two data sets — with slightiaaons of course. Also, we should
mention here that the effect of QI size to latlicgeally important (of exponential
nature) and this mainly affects the constructiometiof the lattice’s histograms (which
is also affected by the database size, of coureseever with lesser degree of
importance)
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CHAPTER 4. ONLINE NEGOTIATION
ALGORITHMS FOR PUBLISHING PRIVATE
DATA

4.1 Simple negotiation for k-anonymity (as privacy erion) and the height (as
the criterion for the quality of solution)

4.2 Theoretical guarantees on the correctness of thygoped algorithm

4.3 Experimental Method

4.4Finding for k-anonymity over the Adult data set

4.5Finding for I-diversity over the Adult data set

4.6 Finding over the IPUMS data set

4.7 Summary of findings

In this section, we explore a reference algoritton the on-line negotiation over
antagonistic privacy criteria. The general ideahef algorithm is based on two steps:
(a) an off-line, preprocessing step, where theogistm lattice is built and (b) an on-
line step, where the users pose requests for arieagjons over different

combinations of criteria and the algorithm retuertber exact results or suggestions.
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Preprocessing step

Input:

e a data set, comprising an identifier attribut®,

¢ a set of quasi-identifier attribut€d = {A,, ..., A},
e a sensitive attribut8,

e a set of generalization hierarchids= {h, ..., hy}, one for each quasi-identifig

-

attribute

e a privacy constraint (e.ganonymity,l-diversity, m-uniqueness, ...),

Output:

e a histogram lattice L(V,E) such that: (a) a nagdabelled [3, ..., I] exists for
every combination of hierarchy levdjsover all quasi identifier hierarchies, (b) a
set of edges stemming from every node [l4, ... lk,..., In] to nodes u, with y
being nodes of the formy| ... lx+1,..., I5], forall k = 1, ..., n, (c) a histogra@
with pairs of the formdgtatProp countef annotates every node v, wisitatProp
being the statistical property of a group that deiees the privacy level and

counter being the number of groups with sigeoupSizein the result of this

grouping query.

Figure 4.1 Off-line preprocessing step

The generic pre-processing step, where the lai$ideuilt and each of its nodes is
annotated with the appropriate histogram is degiateFigure 4.1. The only unclear
point to the above definition is the statisticabperty parameter, which we clarify
right away. The problem is defined for privacy ernia that can be defined as
properties of each group. Remember that given & mddh, ..., |], its groups are
formed when we group by the values ofl{, ..., I]]. Then, a statistical property is
tested for every group, depending on the privadgroon. For example, the privacy
criterion of k-anonymity requires that each of gegoups accounts for at least k
tuples; the criterion of-diversity requires at leastdifferent sensitive values in the
group, and so on. This statistical property is ¢ednin each histogram. So, for
example, a value of <45, 67> irdiversity means that there are 67 groups with 45
different sensitive values for a certain generdilira scheme. Other statistical

properties of this nature include the entropy gfr@eup (in entropy-baseddiversity)



97

of the distance of the distribution of the sensitivalues of the group to the

distribution of the sensitive values of the datia(set-closeness).

The “pluggable” parameters of the problem of omliprivacy negotiation can be

summarized as follows:

Parameters
Table 4.1 Problem parameters and possible examples
Lattice Possible values
Lattice extent Full or Partial lattice

Lattice construction| Offline or on-line

Lattice contents Depends on the privacy cons{sisupported.
Example: histogram’s <X-value, Y-value> are <grouzg$S counter> for k-

anonymity

Algorithm

Privacy constraint k-anonymity, I-diversity, t-ceygess, m-uniqueness, ...

QoS() A utility function that determines the besiusion (including tie-breakers).

Examples: Height of a solution, discernibility, ...

Once the offline, pre-processing step, is completieeh we are ready to exploit the
lattice in order to devise anonymization schemeahiron-line fashion. The problem
specification as a set of input/output specifiqatior the generic case is depicted in

Figure 4.2.
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On-line step
Input
e a histogram lattice L(V,E) over a data $&ind a set of hierarchiésas before
e a privacy constraint (e.g;anonymity,l-diversity, m-uniqueness, ...),
e fixed constraints for
e (d1) the maximum height per attribute that the gnumation method can atta
h=T[hS ..., hl,
¢ (d2) the lowest value for the privacy constraing (& for k-anonymity) and
e (d3) the maximum number of suppressed tuples thatuser is willing tag
tolerateMaxSupp,

e a quality criterion functionQoS) for the assessment of the best poss

anonymization when more than one answers are alai(a.g., the solution with

the lowest height, and possibly the less suppredsgies, or maximum

discernibility, as another example).

Output
e An anonymized data sé&t such that
e T* is a generalization off, T* fulfils the abovementioned privag
constraints (d1) — (d3), and¥ minimizes the quality criterion functio

QogT*), if such aT* can be attained,

or,

¢ A set of alternative generalizations that are gksoeralizations of and
each of them minimizes the deviation for one of plagameters of th
problem, specifically, (a) the acceptable geneasibn heights, (b) the
minimum acceptable value for the privacy constramd (c) the numbe

of suppressed tuples.

ible

Yy

=)

1Y%}

-

Figure 4.2 Problem specification for the generigecaf on-line privacy negotiation
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4.1.Simple negotiation for k-anonymity (as privacy critrion) and height (as the
criterion for the quality of the solution)

In the sequel we present a simple algorithm toqgoerfon-line negotiation over

conflicting privacy requirements. The following takshows how the parameters of

the generic problem are instantiated for the probleder consideration.

Table 4.2 Parameters of the Algorithm

Offline Used value

Lattice Full lattice construction

<X-value, Y-value> | groupSize for k-anonymity, coemnt

On-line

Privacy constraint k-anonymity
QoS() Height of a solution

Algorithm SimpleAnonymiyNegotiatiooperates over a relatiddwith a hierarchyH
that results in a lattice annotated with histogramis the rest of our deliberations we
will focus on the case of k-anonymity, however slaene algorithm applies to the case
of I-diversity, with the histograms of the lattiteand the constraints checking for
determining whether a candidate node of the laiScactually a solution being the
only differences among the two cases. The propakgatithm takes as input a table
to be generalized, a set of hierarchies for thesigidantifier attributes, the histogram
lattice for all possible combinations of the gelfizedion levels, and the requirements
for the maximum desirable generalization level peasi-identifier, the maximum
tolerable number of tuples to be suppressed andets size of a groufk, as the
privacy constraint. The output of the algorithm either
(@) an node of the lattice (i.e., a generalization sejethat provides the best
possible exact solution to the user requirements (with best pbssbeing
interpreted as the one with the lowest height, andjore than one candidate
solutions have this lowest height, the one withrtiieimum suppression), or,
(b) three suggestions for approximate answers to the negjuest, the first relaxing
the number of suppressed tuples, the second reflageonstraints on the heights
per dimension and the third relaxing the minimursegtable privacy criterion

(e.g.,k in k-anonymity).
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The algorithm proceeds as follows:

Algorithm SimpleAnonymityNegotiation(L,k,h,MaxSupp)

In: Lattice L with the histograms for R,H, constraints for k, h, MaxSupp

Out: an exact solution s[v,k,h,supp] or s1,s2,s3, si=[v_i,k_i,h_i,supp_i]

Var: a 2D vector of candidate solutions Candidates[hmax][]

Begin

Let v_max be the node that corresponds to the constraint h;

if v_max is visited then exit;

mark v_max as visited;

if (checkExactSolution(v_max,L,k,h,MaxSupp) == true){
Candidates[height(v_max)] = Candidates[height(v_max)] u {v_max};
for all v_c in lower(v_max)

ExactSublatticeSearch(v_c,L,k,h,MaxSupp,Candidates);
//when the recursion is over, the Candidates has the full list of nodes
//that can serve as candidate solutions
minHeight = minimum height having Candidates[minHeight] != {};
v_win = v in Candidates[minHeight] with the lowest possible suppression for k;
return(v_win,k,minHeight,suppressed(v_win,k));

}

else{
approxSol_1 = ApproximateMaxSupp(L,v_max,k,h,MaxSupp);
approxSol_2=ApproximateH(L,v_max,height(v_max),height(top),k,h,MaxSupp);
approxSol_3 = ApproximateK(L,v_max,k,h,MaxSupp);
return approxSol_1, approxSol_2, approxSol_3;

}

End.

Figure 4.3 Algorithm Simple Anonymity Negotiation

First the algorithm identifies a reference nodéhm lattice, to which we refer\g,ax.
The nodevna IS the node that satisfies all the constraintshofor the quasi-
identifiers, at the topmost level; in other words,x is the highest possible node that
can obtain an exact answer to the user’'s requestwW also refer tovmnax as the
highest conforming candidateode. Then, two cases can hold: Ya)« is able to
provide an exact solution (Lines 4 - 13), or (bhkihot, and thus we have to resort to
approximate suggestions to the user (Lines 14 TR check on whether a node

can provide an exact solution is given by funciiyieckExactSolutiothat looks up

the histogram of a node and performs the appropriate check depending en th
privacy criterion (k-anonymity, I-diversity, ...)Note that this is the only part of the
algorithm that needs to be customized accordirigggrivacy criterion.

When the former case is concerned and an exacteansam be provided by the

highest conforming candidate nodga., then we can be sure that the sublattice
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induced bymax CONtains an exact answer; however, we need towksthe one with
the minimum possible height and, therefore, we rteedescend down the lattice to
discover it. For the case where the lowest posgiblght that contains a node that
can return an answer that respects the constsghtsy the user, we resolve the tie by
choosing the node with the least suppression. Thaliary variable Candidates
holds all the nodes that conform to the user reigueganized per height. Each time
such a node is found, it is addedGandidatesat the appropriate level (Line 5) and
its descendants (returned via the functiower()) are recursively explored via the

call of function_ExactSublatticeSeardWhen the lattice is appropriately explored we

need to find lowest level with a solution in thdtitee (Line 10) and, among the
(several possible) solutions of this level we mpstk the one with the least

suppression (Line 11).

ExactSublatticeSearch(v,L,k,h,MaxSupp,Candidates){
if v is visited then exit;
mark v as visited;
if (checkExactSolution(v,L,k,h,MaxSupp) == true){
Candidates[height(v)] = Candidates[height(v)] U {v};
for all v_c in lower(v)
ExactSublatticeSearch(v_c,L,k,h,MaxSupp,Candidates);

Figure 4.4 Function Exact Sub lattice Search

checkExactSolution(v,L,k,h,MaxSupp){
lookup histogram of vin L;
if suppressed(v,k) <= MaxSupp && height(v) <= h return true;
else return false;

Figure 4.5 Function check Exact Solution

If the highest candidate noglg.y fails to provide an answer that conforms to therus
request, then we are certain that it is imposdiblderive such a conforming answer
from our lattice and we need to search for appraxioms. So, we provide the users
with suggestions on the possible relaxations thatlwe made to his criteria. In this
context, three suggestions are considered:

The first suggestion, provided by the invocatiorfwofction ApproximateMaxSupp

retains the privacy criterion k and the max tolédieight h fixed and tries to find
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the best possible solution with respect to the rematb suppressed tuples. Since h is
to be respected, again we are restricted in thdadtibe induced bymax SiNnC€Vmax
has failed to provide a conforming answer, no nadée sublattice can provide such
an answer, either. So, we assess the number ekttt have to be suppressed if we
retain k fixed and stay at the highest candidatdeng.. Observe that any node in
the sublattice ofvyax Will result in higher or equal number of supprestgples (see
the next section for a proof) — remember that tiveel we go, the smaller the groups
are and the higher the suppression. In other wardsl| either bevnax that will give
the answer or one of its descendants in the rae ttet the groups of the descendant
are mapped one to one to the groupg.fthus resulting in exactly the same number
of suppressed tuples.

The third suggestion is quite similar to the fidtis time, function ApproximateK

retains the height constraints (again) and the maximum tolerable number of
suppressed tupleBlaxSuppand tries to determine what is the highest k taat
provide this approximation. Again, for the samesoees as in the case of the
approximation of suppression, we restrict our e« (Or any of its descendants
that has a 1:1 mapping of groups to the ones,gJ.

ApproximateMaxSupp(L,v,k,h,MaxSupp){
find the minimum amount of suppressed tuples, approxSupp, s.t.
checkExactSolution(v,L,k,h,approxSupp) returns true;
if no such value exists, return {};
else{
for all v_c in sublattice(v) (recursively){
checkExactSolution(v_c,L,k,h,approxSupp)
break when a whole level fails to produce a solution;
}
let v_win be the node with the lowest height that satisfies k,h,approxSupp
(with arbitrary tie resolution)
return v_win,kh,approxSupp;

}

Figure 4.6 Function ApproximateMaxSupp
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ApproximateK(L,v,k,h,MaxSupp){
find the maximum value of k, approxK, s.t. checkExactSolution(v,L,approxK,h,maxSupp)
returns true;
if no such value exists, return {};
else{
for all v_c in sublattice(v) (recursively){
checkExactSolution(v_c,L,approxK,h,maxSupp)
break when a whole level fails to produce a solution;
}

let v_win be the node with the lowest height that satisfies approxK,h,maxSupp
(with arbitrary tie resolution)
return v_win,approxKh,maxSupp;

Figure 4.7 Function ApproximateK

Finally, the second suggestion, provided by fumctipproximateH retains the

maximum tolerable number of suppressed tuMesSuppand the privacy criterion
of k and tries to determine what is the lowest heigtitah can provide an answer for
these constraints. This time, we operate outsidebtirders of the sublattice @f.y

sinceh is not to be respected. The function Approximapetforms a binary search

on the height between the heightwgfx and the upper possible height (the top of the
lattice). Every time a level is chosen, we starthieck its nodes for possible solutions

via the function checkIfNoSolutioninCurrentHeightthe function explores a height

fully and fails to find an answer, this is an iration that we should not search lower
than this height (remember: failure to find a solutsignals for ascending in the
lattice). Every time the function finds a node tbah answer, then we must search in
the lower heights for possibly lower solutions.tA¢ end, the binary search stops and
the valuecurrentMinHeightsignifies the lowest possible height where a smtuts
found. Then, we explore this height fully to deterenthe node with the minimum

suppression.
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ApproximateH(L,v,h_low,h_high,k,h,MaxSupp){
while(h_low <= h_high){
h_current = middle between h_low and h_high;
flag = checkIfNoSolutionInCurrentHeight(L,h_current,k,MaxSupp);
if (flag == true){
low = current + 1;
}
else{
currentMinHeight = current;
high = current - 1;
}
}

for all v_c in currentMinHeight, find the one v_win, with the minimum suppressed(v_c,k);
//exception: this fails only if k > [R/, else top of the lattice always answers
return v_win,k,height(v_win),MaxSupp;

checklIfNoSolutionInCurrentHeight(L,h_current,k,MaxSupp){
for all v_c in h_current
if suppressed(v_c,k) <= MaxSupp return false;
return true;

Figure 4.8 Function Approximate H

4.2.Theoretical guarantees on the correctness of the gposed algorithm

In this subsection, we will discuss properties lé histogram-annotated lattice of

generalization schemes and prove that our algorisheorrect.

Notation. We will employ the following notation:

lower(v) the set of nodes who are connected to nodesia a node |,v) —i.e.,
the nodes whose generalization scheme is equalstowith the
exception of exactly one dimension wharis one level lower than

desqv) the set of nodes for whom a path exists towards

L(v) the sublattice induced by a nodé.e., the subset of the lattice whose
nodes are either, or, descendants gj

cumKAV[k) the number of suppressed tuples (y-value of theutative histogram)
for nodev when the cut-off constraint for k-anonymity (x-wralof the
cumulative histogram) ik.

cumSLv|) the number of suppressed tuples (y-value of theutatnae histogram)
for nodev when the cut-off constraint for |-diversity (x-ua of the

cumulative histogram) is
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Theorem 1 Assume a constraint on the height of hierarchigshy, ..., h;]. Assume
also the nod&/max = [hy, ..., hy]. All the nodes of the full lattice that respdctare
within the sub-lattice induced byax and there is no node outside the lattice induced
by vmax that respecth.

Proof. Sincevmax is the top element of the lattice, all nodes of thttice have
dimension heights lower or equal to the dimensieiglits ofvnha. Consequently, all
nodes of the lattice induced By, respecth by definition. For a node not to belong

in the lattice, there must be at least one dimensibose height is higher than the

respective height of,ax Thenu does not respect the constrainhofQED

Given a nodevmax that induces a sub-lattice, the groupsvgix are produced by
aggregating the groups of its descendants in thdagtice. Then, for any value the
cumulative histogram formax has a smaller or equal value than the cumulative
histogram for any node in the descendants @f.. This holds both for k-anonymity
and I-diversity. Formally:
Theorem 2 Given a nodena.x and an integer any value the following hold:
CUMKAVmaxe) < cumKAV|a), vedes€Vmay)
cumMSLOVmado) < cumSLv|a), vedes§Vmay)
Proof. This is almost direct consequence of the Rolligperty introduced in
[LeDRO5]. Assume the situation depicted in thedwaiing figure. LetL(vmay be the
lattice betweernvyax as the top element and as the lowest element. Assume nede
has a generalization schenhg [, ..., lh-1,1* n] While vimax has a scheméy[ |5, ..., 111,10
andl, = I*, + 1 (without loss of generality, we can assume tha differs fromv
only by one level in one dimension, whereas alldtieer dimensions are exactly the

same; this practically works as the minimum possibistance between the two

)

Then (Rollup-property), there existiNal mapping of values df,, overl,, f: don(I*))

nodes).
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— don(ly). f is a total function. A 1:1 mapping is also accbfgaas a rare, special
case in this setting. AsM1 function, we know that for evety, there exists exactly
one value i, (but not obligatorily the inverse).

So, for every group*[xi, X, ..., Xn-1, Xo*, count] that appears irv, there exists a

groupx[Xa, X2, ..., Xn-1, Xn, cOUN{ IN Vnax and due td, many groups of (and, at least

one) are potentially mapped to groupsvekx (but not vice versa). Therefore, for
every such paix, x*, such thatf(x*)= x, x*.count < x.count Similarly, the same

holds for the number of distinct sensitive values.

Remember now that the cumulative histogram recadhnds tuples that are to be
suppressed whenever a constraint on the minimuopgize is given. There are three
cases that concern us here:

(i) a<x*.count < x.count in this case, neithee* nor x would be suppressed with
a request fos.
(i) x*.count < x.count<a: bothx* andx would be suppressed with a requestifor
-- i.e., both would beounted incumKAV|«) andcumKAvmada), respectively.
(iif) x*.count <a < x.count in this casex* would be counted itumKAV|a) andx
would not be counted iocUMKAVmayo)
For all these cases, it is impossible that a gisupunted incuMKAVmade) and its

respective groups are not counted in the appr@pciatnKAV|a), vedesVmay. ON
the other hand, unless a 1:1 mapping exists, @ergroups counted icumKAV|e)
but not incuMKAVmada).

Exactly the same holds foumSLD QED

Corollary 2.1. Assume a user request= [k,h,maxSuppover a lattice£ annotated
with the cumulative histograms for a data Betf all the nodes at heigltt violateq
then it is impossible to find a nodeat a height lower or equal tharthat respects.

Proof. Obvious.

Observation. Observe that the simple histograms, &d\(v|k) demonstrate arbitrary

relationships for nodes and their descendants. ekample, assume the following
table T with a Ql={date item}, and the corresponding histograms at two differen
levels of the date dimension. The table has thestians. In the first section at the

left, we depict 4 rows and their quasi-identifiatues. The second section of the table
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in the middle, contains the counts per group af tteg;, itenm} level. The third section,

at the right, contains the counts per group af thenth item} level.

Microdata Counts per QI group at | Counts per QI group att
day level month level
Ql value Count() Ql value Count()
1/Jan/2010| Cold .. 1/Jan/2010 Cala 2 Jan/2010 Cola 3
1/Jan/2010| Colg .. 2/Jan/2010 Milk 1 Jan/2010 Milk
2/Jan/2010[ Milk| ... 3/Jan/201p Cola 1
3/Jan/2010| Colg

Here are also the histograms for the nodks/{tem} and {month itemy}:

k=1 k=2 k=3
Day 2 1 0
Month 1 0 1

Observe that for valuk=2, the histogram of the lower-level node has ddigralue
than the histogram of the higher-level node. Thigypical for small values d&fwhich
appear in the histograms of lower level nodes mdppear at higher levels, since the
small groups of the lower level are merged in lagyeups of the higher level,
resulting in the absence of small sized groupseatigh level. At the same time, for
valuek=3 the opposite phenomenon is observed. Therafasenot possible to derive

any theoretical guarantees for the simple histogram

The following set of theorems guarantees that tegsed algorithm is correct. First

we prove that once a node provides a solution (espects the three criteria posed by
the user), we need to search its descendantsddowest possible node that returns
an answer, too.

Then, we deal with the case where the top-acceptabtle fails to meet the user

constraints and thus, we need to search for appegions.

Theorem 3 Assume a user request [k,h,maxSuppover a latticef annotated with
the cumulative histograms for a data BetAssume the top-acceptable noggy that
hash as its generalization scheme.vif.xx respects, then the node with the lowest

height that respectsis in L(Vinay)-
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Proof. Obvious, due to Theorem 1 and Theorem 2: Allribdes that respect g are
obligatorily in L(Vmay) and there is at least one solution to the usprast (the one of
Vmax)- Theorem 2 does not disqualify the possibilitgtta node with lower height than
Vmax respects the constraints of q; therefore, we rieexkarch for the best possible
answer inL(Vmay. QED.

Once the exact answering is covered, we need teidemthe cases of the relaxations
and answer the question: where should we searcpofsible relaxations if an exact
answer is not there? So, assume the case whereritbea set by the user fdr
highlight nodevmax Which is unable to fulfill all three conditions &nwe decide that
the first approximation we want to explore involvedaxing k, respecting —at the

same timemaxSupgandh.

Since we want to respelef we must search for solutions within the lattieduced by
Vmax Assume that.x violatesk, h, maxSuppTo relax theorivacy criterion we need
to find a smaller value thak which will have the property thahaxSuppwill be
respected. Of course, we want to give the maximossiple privacy, so we need to
find the maximum possible such value. We will uee hotationk; (standing for
“relaxed k"), k; <k, for the largest value that respektsh, MaxSuppwithin the node
Vmax HOwever, there is a catch in the situation: nas always possible to find such a
valuek;. A clear (and actually, frequent at small heiglgsample for this situation is
when the number of groups of size 1vabx is larger thanmaxSupp Then, it is

impossible to find a lowek that respectsmaxSupp

In Theorem 4 we will show that, if a solution egisthen, in any of the nodes of the
sublattice induced bynax there is no valu&* which is larger thark. and suppresses
the same amount of tuples — in other words, it jdies better k-anonymity with the
sacrifice of the same amount of tuples. In Theobene will deal with the case where

no solution can be found anyway.

Theorem 4 Assume a user request [k,h,maxSuppover a latticef annotated with
the cumulative histograms for a data BetAssume that the top-acceptable nogsg
which hash as its generalization scheme fails to respe@&ssume the largest value

ki, kr <k, such thavmax respectsy=[k,h,maxSupp Then, there is no node v#vmax
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vel(Vmay, such that] =[K ,h,maxSupp k >k, is respected at

Proof. If vmax fails to meefy, then no node ih(vmay can respeat. This holds for an
query g=[k.,h,maxSupp ki<k, too. If this did not hold, and there existed al@g,
VAVmax VeL(Vmay Such thak;, h, MaxSuppis respected at and thencumKAvlk) <
cumMKAVmaxki). Absurd by Theorem.2ED.

Observation. What this theorem says is that the maximum ptessidiue that we can
get for the approximation of k ls. So, should we take,.x as the node that gives the
solution? Practically, the answer is positive; hegre theoretically, we need to
perform an extra test. Observe that it is posdiblbave a situation where there is a
1:1 mapping between the groups of the higher leegle vhax and the lower level
nodev (i.e., for every group of the ancestor node thsrexactly one group of the
descendant node). In this case, their histogragxastly the same andis a better
solution tharnvnax (due to its lower height). This means that thecdedants o¥/max
must be recursively searched for this possibilityew we want to relak. However,
the search can be made in a breadth-first waygcértain level does not have a node
with the property of the 1.1 mapping, no furthemarsd should be performed.

Moreover, this is a property that can be knownirdfl in advance.

Theorem 5 Assume a user request [k,h,maxSuppover a lattice€ annotated with
the cumulative histograms for a data BetAssume that the top-acceptable nogsg
which hash as its generalization scheme fails to respeéssume there is no value
ki, ke <k, such thavma respects=[k,h,maxSupp Then, there is no nodeg V£Vmax
veL(Vmay, such that] =[K ,h,maxSupp k >k, is respected at for any value .

Proof. If there is no valud; at vmax that respects, this means that the cumulative
histogram atmax at positiork;, has already too many tuples to be suppressedhén
words, cUmKAVmaxks) > maxSupp However,cumKAVvmadk:) is the smallest amount
of tuples to be suppressed foradL (Vmay. Consequently, iWmax fails to provide any

valuek, that respectq’, then no other node I(Vmay) can. QED

The easiest case is the case when we want to tletaamount of suppressed tuples.

Observation. Observe that for any nodethere is always a y-value (i.e., a number of
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suppressed tuples) for a fixédat the cumulative histogram; this can be 0 if we a
lucky and all groups are of size larger thanor P| if we are unlucky ank' is larger

that the larger possiblethe node can sustain.

Based on the above observation, when we deal wi#txing the suppression, there is
only one issue, specifically, which is the nodet tioa a fixedk, h will produce the
minimum suppression. Not surprisingly, it turns that this node is eithef,.x Or one

if its descendants that has a 1:1 mapping of groumsvyax

Theorem 6 Assume a user request [k,h,maxSuppover a latticef annotated with
the cumulative histograms for a data BetAssume that the top-acceptable nogsg
which hash as its generalization scheme fails to respeétssume the smallest value
M, M > maxSupp such thatvnha respects g=[kh,M]; actually, this is
M=cumKAVmnaxK). Then, there is no node VAVmax VeL(Vmay), such thaq*:[k,h,M*],

M" <M,, is respected at v.

Proof. Since M=cumKAVma{k), by Theorem 2 this is the smallest possible
cumKAV[k) for anyvel (Vmay)- QED

Observation. If vynax does not resped}, then there is no information we can exploit
concerning the height relaxation. The lowest pdssblution that respects bdttand
maxSuppif such a solution exists, is outsi@/may, but it can be found in any other
node, at any height. So, we must search the dattiee for the relaxation df except
for L(Vmax)-

Theorem 7. Assume a user request [k,h,maxSuppover a latticef annotated with
the cumulative histograms for a data BetAssume that the top-acceptable nogsg
which hash as its generalization scheme. Then, the followioigl:
— If vmax respectg, then the lowest node that can answvex in L(Vmay)-
— If vinax does not respecty then (i) the relaxation df and the relaxation of
maxSuppare provided bywmax (i) we must search the entire lattice for the
relaxation ofh.

Proof. Directly from the above.
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Observation. Based on all the above, the algorithm Simple Amaity Negotiation is

correct.

4.3. Experimental method

Goals Our experiments are oriented towards assessafpllowing properties.

Effectiveness Given an initial request by the user with thréddeoon the
maximum tolerable amount of suppressed tuples, rtteximum level of
generalization per quasi-identifier attribute ahe minimum acceptable value for
the privacy criterion (either k for k-anonymity,, drfor simple I-diversity), how
likely is it to obtain a completely acceptable o for a given setup of data set,
guasi-identifier set and sensitive attribute? Téteo$ experiments aim to discover
the effect of all the problem parameters to theslifood of achieving an
acceptable solution as opposed to the probabilineeding to resort to an answer
that relaxes one of the above constraints. We dmgratically depict answers to
gueries with successful answer with light color amtswers to queries that
needed relaxation with blue (dark) color.

Efficiency Given the full lattice that is derived from thearchies of the quasi-
identifier attributes and the full histogram forethprivacy criterion under
consideration, how fast can we obtain an answérdaser’s request (either fully
compliant with the user criteria, or a relaxed oifiehis is not possible)? To
assess the efficiency of the method, in every exmt we measure (a) the
number of visited nodesf the lattice and (b) the totakecution timeneeded to
produce an answer (in msec). In all occasionsyeperted execution times are
the average of 5 executions of the same requesfloafest-acceptable-k,
maxSupp, topmost node = constraint on all dimerssitur the top tolerable
level). Naturally, the number of visited nodes lisays the same and the varying

guantity is the time needed to retrieve an answearset of 3 possible relaxations.

Data sets The data sets we have used are: (a) the Adultenie data set from the
UCI repository [UCI], (b) the IPUMS - data set ddweded from [IPUMS].

Parameters We have tested algorithn®imple anonymity Negotiatiorfor its

efficiency and effectiveness over different dates squasi-identifier sizes, values for
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the privacy criterion for both k-anonymity and kdrsity, maximum allowed
suppression levels and maximum allowed generabrzatieights per quasi-identifier
attribute. For each data set and privacy critenas employ different values for these
parameters, thus, we refer the reader to the subséqubsections for more details on

specific values.

Implementation specific data structures and databas schema

In our implementation we retain the lattice in aatb@se at the hard disk as a relation
Nodeand a relatioriedges.The relation edges are straightforwadtgegStart End).
The relation Nodes varies with the size of quasniidier set, as we retain two
attributes per quasi-identifier dimension: (a) atmilzute dim with the name of the
dimension and an attributedex with the level of the dimension that the node [sxs.
relationNodesis as follows:Nodegid,dimy,index,..... dimyindex). A value [25age
2,race 1,work_classl] indicates the node with level 2 for age, levdbr race and

level 1 for work_class.

At the same time, in main memory we implement tillowing data structures:

- For each node of the lattice, we retain two libtt thold the histogram: the first
list keeps the number of tuples and the secon#éisps the number of tuples that
pertain to every value of the histogram (i.e., posii in the list refers to value
for the x-axis of the histogram)

- We retain a collection of nodes that practicallydscall the information for the
nodes in main memory. In other words, we keep thethe levels and the
abovementioned histogram for every member of tHieamn that represents a
node of the lattice. Also, we use an attribute Brkmodes as visited or not. We
opted for a hash-based dictionary implementatiothefcollection, with id being
the hash-value, in order to allow efficient lookoypid (remember that the edges
hold id’s of nodes, so whenever we move up or ddvam a node this

implementation comes handy).

Of course, apart from the above, we also keep tita dets in the appropriate
databases. In the following, we list the datababemata for each of the two data sets
we have employed. We depict the sensitive attributeletype letters.

Database schema for the Adult data set
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Adult(ld,Age,Gender,Race,Marital_Status,Native_éguwork Class,Occupation,Sa

lary,Hours per week)

Age(leveb, level, level, leves, level)
Race(leve) level, leve})
Marital_status(leve), level, level, levek)
Education(leve), level, leveb, levek, level)
Occupation(level level, leveb)

Work Class(levg] level, level, levek)

Database schema for the Ipums dataset

Adult(id, age, education, birthplace, gendstcupat i on)
Age(leveb, level, level, leves, level)

Education(leve) level, leveb, levek, level)
Birthplace(level, level, leve}, levek)

Gender(leve) leveh)

Configuration. In all our experiments we have used a Core DGGRz server with
3GB of memory and 300GB (7200 RPM) hard disk. Thperating system was
Ubuntu 8.10 and the database server was MySQLA.Ulte code is written in Java

in Eclipse IDE.

4.4.Findings for k-anonymity over the Adult data set

In this subsection, we discuss our experimentalifigs when working with the Adult

data set and k-anonymity as our privacy criterion.
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Table 4.3 Experimental parameters and possibleegalu

|QII=3 |QI|=4 |QII=5 |QI|=6

Generalization level 101, 211/ 1001, 2011) 11001, 21012 111001, 211017
(default), 212 (default), 2112| (default), 22112| (default), 222112

constraints

For all QI's, we have used three configuration}:a(éow one,
with all levels constrained low in their hierarchieg(b) a
middle-low (default) with some constraints placedevels in
the middle of their hierarchies and (c) middle,hnéidl levels

constrained at the middle in their hierarchies

k 3, 10 (default), 50
MaxSupp 32, 321 (default), 3216 (approx. 0.1%, 1% of the data
set)

4 .4.1.Effect of k over time costs

In this sequence of experiments we modify the vablieninimum tolerable k and
assess its impact to the number of visited noddseaecution time. All experiments
operate with a fixed set of values for the reghefparameters, and specifically:

- Maximum allowed number of suppressed tuples = 321

- The constraint on the uppermost tolerable levellis, 2011, 21012, 212012
for |QI|=3, ..., 6 —i.e., in every dimension, wage a constraint approximately
up to the middle of its hierarchy.

When |QI] is small (|QI|=3), the maximum numbersoppressed tuples pushes the
solution lower than the starting level (which i€ titmaximum tolerable level). So, the

algorithm recursively descends towards 0,0,..,0kAscreases, the solution is found

earlier.

In all other cases, the cost in terms of visitedamincreases sub-linearly with k

There is a single exception to the sublinear irsgeand this is the case of k = 50 and
QI = 6, where the number of visited nodes dropss Ehdue to the fact that the binary

search over the height was successful quick enanghgave a quick correct answer

(you can see an example of such a binary sear€lgure 4.9).
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Parameters:10 32 211012

Parameters10 321 211012

Parameters10 3216 211012

Start: low:7 high:18
Current: 12

Find, and check 34 nodes
Current: 9

Don't find, check 496 nodes
Current: 10

Don't find, check 469 nodes
Current: 11

Find, and check 286 nodes
Solution at level:11

Check 396 nodes

Start: low: 7 high: 18
Current: 12

Find, and check 2 nodes
Current: 9

Find, and check 416 nodes
Current: 7

Don't find, check 396 nodes
Current: 8

Don't find, check 469 nodej
Solution at level:9
Check 495 nodes

Start: low: 7 high: 18

Current: 12

Find, and check 1 nodes

Current: 9

Find, and check 4 nodes

Current: 7

5 Find, and check 116 nodes
Solution at level:7

5 Check 395 nodes

Figure 4.9 Example of binary search for Variant reagp (QI-6) that detects a
solution early enough

The important observation here is that the numbemades visited increases
dramatically with |QI| with a scale factor of 5 apximately) for every extra attribute
added to the QI set (i.e., the values of QI=5 aten®&s greater than the respective
values of QI = 4; the same approximately happensmwilie increase QI to 6). In
terms of time, the experiments do not take more & msec for QI=4,5. Ql = 3
takes longer (between 5 and 1 msec) due to thesigelcall to search in lower levels

of the hierarchy. QI = 6 makes between 6 and 8 rwseall three values of k.

There are certain cases, where the relaxatiorh®odécreasing of k does not return a
result. These cases do not induce a significantheael, since the search is locally

performed in the topmost node.

4.4.2.Effect of height constraints over time costs

In this sequence of experiments we modify the caimgs over the maximum
tolerable generalization heights per attribute assess the impact of these heights to
the number of visited nodes and execution time.e&fleriments operate with a fixed
set of values for the rest of the parameters, pediscally:

- Lowest tolerable k = 10

- Maximum allowed number of suppressed tuples = 321
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We employ three variants for the topmost node, dach Ql. The three variants
involve constraints in all the dimensions of the €@t (and thus, a respective a
topmost node) in the following 3 fashions:

(a) every dimension is constrained by a level thabvs ih the hierarchy,

(b) some dimensions are constrained low in the hieyaackl some are
constrained in the middle

(c) all dimensions are constrained in the middle oirthierarchy

Specifically, the constraints employed are as ¥adio

Table 4.4 Constrains for the Experiment
Low | Low-middle| Middle
QI=3| 101 211 212

4 1001 2011 2112

5 11001 21012 221172
6 111001 211012 222112

The findings for the effect of the constraintshe hierarchy are as follows:

- The lower the constraint is, the more search fudifig adequate relaxation is
required. In other words, when the constraintssatelow, it is impossible to
obtain an answer at the topmost acceptable nod¢hasdwe need to climb a
lot in the lattice until we reach a tolerable redxsolution. On the contrary,
when the constraint is in the middle, the requaoikeabing is less.

- The time required for the operation to completéyscally analogous to the
number of visited nodes. All experiments for QI add 5 run between 2 and
6 msec. The case of QI = 6 induces an extra ovdrivgh times between 5
and 8 msec.

- An exception to all the above findings is the cakere the Ql is small (|QI| =
3). In this case, the topmost node is adequatarfanswer and the algorithm
recursively descends towards the best possibleanswhe times needed are
in the range of 1 and 6 msec.

- Another observation here is that when the topmodens low in the lattice, it
is quite frequent that the relaxation of k (keepihg topmost node and the
maxSupp fixed) fails. This is due to the fact thdten we are low in the
lattice, the suppressed tuples are too many andilpppseven k=2 is not
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sufficient to fulfill the requirements for maxSugpn the other hand, when the
topmost node is relatively higher in the latticke thumber of suppressed
tuples is lower; thus, finding a relaxed answdeasible.
Again, the important finding is that, ultimatelpet dominating factor in terms of time
and number of visited nodes is the size of theTQé rule of the scale factor of 5 for
every extra attribute in the QI seems to be preskfgee Figure 4.10; the shaded
areas in Fig. 4.10 depict cases where the searshdivacted downwards in the
sublattice ofvnax and a drop in the values is observed as QI inesedbe cells not

defined are cases where we move from a downwaedstsé an upwards search).

Height 34 45 556
Low - 5,91 4,75
Low-middle - 5,78 6,20
Middle 0,90 6,00 3,31

Figure 4.10 Scale up in number of visited node®@lesize increases for different

values of the height constraint

4.4.3.Effect of maxSupp over time costs

In this sequence of experiments we modify the valumaximum tolerable amount of
suppressed tuples and assess its impact to theemwhbisited nodes and execution
time. All experiments operate with a fixed set afues for the rest of the parameters,
and specifically:

- Lowest tolerable k = 10

- The constraint on the uppermost tolerable levellis, 2011, 21012, 212012
for |QI|=3, ..., 6 —i.e., in every dimension, wage a constraint approximately
up to the middle of its hierarchy.

The maximum allowed number of suppressed tuplesstétke following values: 32,
321, 3216.

Typically, the number of visited nodes logarithntigadecreases as the value of
maxSupp increases (each time by a factor of 10jis iB clearly due to the fact that
the higher the number of tolerable number of susgeé tuples is, the easier it is to
find a solution. In fact, when the experiments apeion the largest possible value of

maxSupp (i.e., 3216 suppressed tuples), all Qlfgeeifor the case of QI = 6 achieve
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an acceptable solution in the topmost node and ndovenwards to obtain a better
solution. The times needed for the cases of Ql5; 8,range between 1 and 8 msecs.
There are exceptions to the above general obsenvathich we list:

- The case of QI=3 has the peculiarity that the togimmode achieves an
acceptable solution for a maxSupp of 321. In tlise¢ we observe that the
higher the maxSupp, the more time it takes to &ingbod solution, since too
many nodes qualify for acceptable solutions. Incalies, the recursive search
for a better solution is much costlier than therdedor an approximate
solution of maxSupp = 32 in QI = 3. The time rangetveen 2 msecs for the

approximate search and 5msecs for the costliest sgarch.

- The case of maxSupp =321 and QI = 6 breaks therglende, as it is costlier
than the case of maxSupp = 32 in terms of visitedEB.

Again, the dominating factor in terms of cost is #ize of the QI. The rule of scale-up
in terms of 5 is broken: the increase for everyraxttribute in the QI results in
approximately 3 to 6 times more visited nodes. igufe 4.11, we can observe this
scaling up on the upper left part of the figures®lthe shaded areas in Figure 4.11
depict cases where the search was directed dowswatbe sublattice of,ax (Where

a drop in the values is observed as QI increases)lae cells not defined are cases

where we move from a downwards search to an upveaash.

maxSupp 34 45 56
32 3,20 6,10 3,47

321 - 5,78 6,20

3216 0,86 0,26 -

Figure 4.11 Scale up in number of visited node®@lesize increases for different

values of maxSupp
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k
Parameters: 3,321, 211 Parameters: 3, 321, 2011 Parameters: 3,321, 21012 Parameters: 3,321, 211012
Solution: Move down find, id: 4 supp tuples: | Solution: Move down find, id: 56 supp | Solution: Solution:
125 level:100 tuples:283 level:1011 RIx1:id:551 supp tuples:656 1v:21012 RIx1:id:2591 supp tpls:1611 1vl:211012
Parameters: 10,321,211 Parameters: 10, 321, 2011 RIx2 id:503 supp tuples:108 1v:10212 RIx2 id:763 supp tpls:155 1v1:400202
Solution: Move down find, id: 5 supp | Solution: RIx3:No solution. RIx3: No solution.
tuples:170 level:110 Rlx1:1d:65 supp tuples:655 level:2011 Parameters:: 10, 321, 21012 Parameters: 10,321, 211012
Parameters: 50, 321, 211 RIx2 id:17 supp tuples:170 level:1210 Solution: Solution:
Solution: Move down find, id: 23 supp | RIx3id:65 k:5 Supp_tupp:301 Rlx1:1d:551 supp tuples:2533 1vl:21012 Rlx1:1d:2591 supp tpls:5362 1v1:211012
tuples:251 level:211 Parameters: 50,321, 2011 Rlx2:1d:504 supp tuples:230 1vl:10222 RIx2 id:2171 supp tpls:2851v1:401211
Solution: RIx3: No solution. RIx3: No solution.
RlIx1:id:65 supp tuples:4077 level:2011 Parameters: 50,321, 21012 Parameters: 50,321, 211012
RIx2 id:107 supp tuples:137 level:1212 Solution: Solution:
RIx3 id:65 k:5 Supp tpls:301 RlIx1:id:551 supp tuples:9214 1vl:21012 RIx1id:2591 supp tpls:15106 1v:211012
RIx2 id:636 supp tuples:169 1v1:40122 RIx2 id:2812 supp tpls:137 1v1:401222
Relaxation3 : No solution. RIx3: No solution.
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Variant constraint on upper levels

|Ql|=3 |Qll=4 |Qll=5 |Ql|=6
9
: 6 6 3
5 g 7
5 w 6
4 -4 5
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s =, =0 0
Low- middle oy Lowi- middle Lowi- middle Low-middle  middle
middle middle middle level
level level level
35 70 400
a0 0 350 w 2000
@ 5 60 8300 3
- g 20 350 S 1500
o 20 Lo c c
= 15 o a0 < 200 < 1000
o c 2150 2
£ 3 2 100 @ 500 ]
[ 2 = =
S g 3 %0 # o0 # 0
H > ] 0
[y Low- middle # oy Low- middle ) Low-  middle
middle middle low Low-  middle middle
level level middle level
level
Parameters: 10,321, 101 Parameters: 10, 321, 1001 Solution: Parameters: 10,321, 11001, Solution Parameters: 10,321, 111001 Solution:
Solution: Move down find, id: 19 supp | Rlx1:id:55 supp tuples:2349 1vl:1001 Rlx1:1d:280 supp tpls:8169 1vl:11001 Rlx1:1d:336 supp tpls:12823 1vl:111001
tuples:257 level:101 RIx2 id:17 supp tuples:170 1vl:1210 RIx2 id:504 supp tuples:230 1v1:10222 RIx2 id:2171 supp tpls:2851v1:401211
Parameters: 10,321, 211 RIx3: No solution RIx3: No solution. RIx3: No solution.
Solution: Move down find, id: 5 supp | Parameters:: 10,321, 2011 Solution: Parameters:: 10,321, 21012 Solution: Parameters: 10,321, 211012 Solution:
tuples:170 level:110 RIx1:id:65 supp tuples:655 1v1:2011 RIx1:id:551 supp tuples:2533 lvl:21012 RlIx1:id:2591 supp tpls:5362 1v1:211012
Parameters: 10, 321, 212 RIx2 id:17 supp tuples:170 1vl:1210 RIx2:id:504 supp tuples:230 lvl:10222 RIx2 id:2171 supp tpls:2851v1:401211
Solution: Move down find, id: 5 supp | RIx3id:65 k:5 Supp_tupp:301 RIx3: No solution. RIx3: No solution.

tuples:170 level:110

Parameters: 10, 321, 2112 Solution:
Move down find, id: 59 supp tuples:285
level:1111

Parameters: 10,321, 22112 Solution:
Rlx1:1d:563 supp tpls:369 lvl:22112
RIx2 id:635 supp tpls:60 lvl:40112
RIx3 id:563 k:9 Supp tpls:315

Parameters: 10,321, 222112 Solution:
Rlx1:1d:2623 supp tpls:712 1v1:222112
RIx2 id:2811 supp tpls:54 lvl:401212
RIx3 id:2623 k:5 Supp tpls:298
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Variant max_supp

|Ql|=3 |Ql|=4 |Ql|=5 |Ql|=6

6 3.5 5

5 3 10
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3216 321 3216 max_supp
max_supp max_supp max_supp
30 a0 600 o 2000
2 500 o
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820 g 50 5 400 =
o 15 c 40 © 300 g 1000
E 10 o %8 ’—‘ E @ 500 .
g 0 2 = 100 .
= i > 0
a # 3216 * 321 3216
32 321 32186 32 n 3218 max_supp
max_supp max_supp max_supp

Parameters: 10, 32, 211Solution:

RIx1:1d:23 supp tuples:55 level:211

RIx2 id:11 supp tuples:28 level:310

RIx3 id:23 k:7 Supp_tupp:31

Parameters: 10, 321, 211Solution:

Move down find, id: 5 supp tuples:170 level:1
10

Parameters:: 10, 3216, 211Solution:

Move down find, id: 1 supp tuples:1921
level:000

Parameters: 10, 32, 2011 Solution:
RIx1:id:65 supp tuples:655 1v1:2011
RIx2 id:35 supp tuples:28 Ivl:3210

RIx3 No solution

Parameters: 10, 321, 2011 Solution:
Rlx1:id:65 supp tuples:655 1vl:2011
RIx2:1d:17 supp tuples:170 lvl:1210
RIx3:1d:65 k:5 Supp_tupp:301
Parameters: 10,3216, 2011 Solution:
Move down find, id: 19 supp tuples:2110
level:2000

Parameters: 10, 32, 21012 Solution:
RIx1:id:551 supp tpls:2533 1vl:21012
RIx2:id:638 supp tpls:14 1v1:40212

RIx3: No solution

Parameters: 10,321, 21012 Solution:
Rlx1:1d:551 supp tpls:2533 1v1:21012
RIx2:1d:504 supp tpls:230 lvl:10222
RIx3: No solution

Parameters: 10, 3216, 21012 Solution:
Move down find, id: 551 supp tuples:2533
level:21012

Parameters: 10,32, 211012 Solution:
RlIx1:id:2591 supp tpls:5362 1vl:211012
RIx2:id:2812 supp tpls:21 Iv1:401222
RIx3: No solution

Parameters: 10, 321, 211012 Solution:
Rlx1:1d:2591 supp tpls:5362 1v1:211012
RIx2:1d:2171 supp tpls:285 1v1:401211
RIx3: No solution

Parameters: 10,3216, 211012 Solution:

RIx1:1d:2591 supp tpls:5362 1v1:211012
RIx2:id:1525 supp tpls:1222 1v1:400210
RIx3:id:2591 k:5 Supp tpls:2915
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4.5.Findings for I-diversity over the Adult data set

In this subsection, we discuss our experimentalirigs when working with the Adult
data set and I-diversity as our privacy criteriofhe assessed measures and
parameters are the same with the ones discussaat iexperimental method section
and section 4.3 (for k-anonymity over the Adultadaet). The only difference, of

course, concerns the values we have used for ¢hndre summarized as follows:

Table 4.5 Parameters of the Algorithm and expertséar I-diversity

Offline Used value

Lattice Full lattice construction

<X-value, Y-value> | groupSize for l-anonymity, coent

On-line

Privacy constraint [-diversity

QoS() Height of a solution

Experiments

L 3, 6 (default), 9

4 .5.1.Effect of | over time costs

In this sequence of experiments we modify the valfieninimum tolerabld and
assess its impact to the number of visited noddseaecution time. All experiments
operate with a fixed set of values for the reghefparameters, and specifically:
- Maximum allowed number of suppressed tuples = 321
- The constraint on the uppermost tolerable levellis, 2011, 21012, 212012
for |QI|=3, .., 6 —i.e., in every dimension, waqa a constraint approximately
up to the middle of its hierarchy.
As with the case of k-anonymity, we can observe dlshincreases, the cost scales up
very slowly with the increase of . One might blathe choice of the values fbfi.e.,
we could have picked significantly larger valuesljobut this is not correct: a value
of I=9 at the bottom level introduces a suppressiot5% (for QI = 3) to 93% (for QI
= 6) at the bottom node of the lattice and 0.6% @=3) to 38% for 11...1 (for

QI=6). The times are always very small and ranggveen 1 and 8 ms. The times
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reported are subject to phenomena of DBMS cachintjthus are not in complete
accordance to the numbers of visited nodes; howeher fluctuations in the time
needed for the execution of the algorithm are uwoitgmt and due to the few 10’s
incurred in our implementation as well as DBMS eaghRemember that the lattice
is small and in general, it can fit in main memduoy: QI = 6 we have 3600 nodes and
15960 edges. Also remember that in our experimdotsthe sake or program
simplicity, we keep the edges in a relation athbed disk, while we keep the nodes

with their histograms in main memory.

At the same time, the cost increases dramaticatly thre increase of QI.

Observe also that for a small QI (and small l)e ifor the cases with small numbers
of suppressed tuples-- the possibility of finding @cceptable solution within the
constraints expressed by the user is significamtf@ QIl=3 as well as for QI=4 and
I=3, the algorithm found an acceptable solutiortheg topmost node of the user’s
constraint and recursively climbed down the lattedind a better solution. For the
rest of the cases, the algorithm produced appradeima@iutions; interestingly for high
values of QI and I, the algorithm could not proviale approximation for a lesser

value ofl (depicted as RIx3 in the detailed results).

4.5.2.Effect of height constraints over time costs

In this sequence of experiments we modify the gamgs on the maximum possible
height for the quasi-identifier attributes and assene impact of the height vector to
the number of visited nodes and execution time efAfleriments operate with a fixed

set of values for the rest of the parameters, pediscally:

All experiments operate with:

- Lowest tolerable |I= 6
- Maximum allowed number of suppressed tuples = 321

Again, as in the case of k-anonymity we fix threembinations of values for the
height constraints: (a) all quasi-identifiers aomstrained low in their hierarchy; (b)
some quasi-identifiers are constrained low and sontee middle of the hierarchies
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and (c) all quasi-identifiers are constrained ie thiddle of their hierarchies. The
specific values for these constraints are the ossrted in section 4.3.2.

The findings for the effect of the constraints hie thierarchy are practically the same
with k-anonymity and can be summarized as follows:

- Exactly as in the case of k-anonymity, the lowes tonstraint is, the more
search (both in terms of number of nodes visited thime spent) for finding
adequate relaxation is required, since the solutiat satisfies both and
maxSupp is found further up in the lattice. Whaa QI size is small (QI=3 or
4), it is possible that middle and low-middle coastts result in exact answers
(which, in turns, are produced by a recursive deisgdewn the lattice from the
topmost node of the specified constraints).

- All the times needed to provide the user with aacexr approximate answer
fall between 2 and 6 msec. Interestingly, the nundbenodes visited and the
required times are also very similar to the onds-ahonymity.

- Again, as in the case of k-anonymity, the relaxatwd | frequently fails to
deliver a solution.

- Again, as in the case of k-anonymity, the sizeh&f QI is the dominating
factor for the cost; every extra attribute in theifgurs a scale up of 3 -5 in

terms of both visited nodes and time spent.

4.5.3.Effect of maxSupp over time costs

In this sequence of experiments we modify the caimdton the maximum possible
amount of suppressed tuples and assess its imp#ot humber of visited nodes and
execution time. All experiments operate with a fixeet of values for the rest of the
parameters, and specifically:
- The maximum tolerable amount of suppressed tuplesstthe values: 32, 321,
3216

- Lowest tolerablé = 6

- The constraint on the uppermost tolerable lev&dlls, 2011, 21012, 212012
for |QI|=3, .., 6 —i.e., in every dimension, waqa a constraint approximately
up to the middle of its hierarchy

As in the case of the other experiments, hereleadsults are remarkably similar to

the ones of k-anonymity.
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- The higher the maximum tolerable number of supgtssples is, the faster
we get a solution when the result is approximates Ts due to the fact that
the answer is found lower in the lattice. The ojeosolds when the answer
is exact (e.g., in the case of QI=3, where it isgide to attain an exact
answer); in this case, the first possible answattaned at the topmost node
and then the algorithm descends to find the bessiple answer, resulting in
higher execution times.

- The costs in terms of time and visited nodes aite @imilar to ones of k-
anonymity. The time costs range between 1 and €.mse

- The size of the QI is once again the dominant faabaol each extra attribute in

the quasi-identifier set incurs a scale up of #¥tes more visited nodes.
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Parameters:3, 321, 211

Solution: Move down find, id: 4 supp tpls:240
1v1:100

Parameters:6,321, 211

Solution: Move down find, id: 20 supp
tpls:70 Ivl:111

Parameters:9, 321, 211

Solution: Move down find, id: 20 supp
tpls:186 1vl:111

Parameters:3,321, 2011
Solution: Move down find, id: 65 supp
tpls:319 Iv1:2011
Parameters:6,321, 2011
Solution:

RIx1:id:65 supp tpls:1013 1v1:2011
RIx2 id:18 supp tpls:54 v1:1220
RIx3 id:65 1:3 Supp tpls:319
Parameters:9,321, 2011
Solution:

RlIx1:id:65 supp tpls:20051vl:2 01 1
RIx2 id:18 supp tpls:104 Ivl:122 0
RIx3 id:65 1:3 Supp_tupp:319

Parameters:3,321, 21012
RIx1:1d:551 supp tpls:11391vl:2101 2
RIx2 id:503 supp tpls:244 1vl:1 021 2
RIx3 No solution

Parameters:6,321, 21012
Solution:

RlIx1:id:551 supp tpls:3205 Ivl:21012
RIx2 id:504 supp tpls:302 lvl:10222
RIx3 No solution

Parameters:9,321, 21012
Solution:

RIx1:1d:551 supp tpls:5418 Ivl:21012
RIx2 id:635 supp tpls:250 lvl:40112
RIx: No solution

Parameters:3,321, 211012
Solution:

RIx1:1d:2591 sup tpls:2715 1vl:211012
RIx2 id:2452 sup tpls:288 1v1:101222
RIx3 No solution

Parameters:6,321, 211012
Solution:

RlIx1:id:2591 sup tpls:6602 1vl:211012
RIx2 id:2811 sup tpls:90 1vl:401212
RIx3 No solution

Parameters:9,321, 211012
Solution:

RIx1:1d:2591sup tpls:10139 1v1:21101 2
RIx2 id:2811 supp tpls:206 Iv1:401212
RIx3 No solution
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Parameters:6,321, 101 Parameters:6,321, 1001 Parameters:6,321, 11001 Parameters:6,321, 111001
Solution: Solution: Solution: Solution:

RIx1:1d:19 supp tpls:368 1vl:1 0 1

RIx2 id:6 supp tpls:54 1vl:1 2 0

RIx3 id:19 1:5 Supp_tupp:266
Parameters:6,321, 211

Solution:

Move down find, id: 20 supp tpls:70 Ivl:111
Parameters:6, 321, 212

Solution:

Move down find, id: 34 supp tpls:64 1vl:102

RIx1:1id:55 supp tpls:30811v1:1 00 1
RIx2 id:18 supp tpls:54 Ivl:122 0
RlIx3 No Solution
Parameters:6,321, 2011
Solution:

RIx1:1id:65 supp tpls:1013Ivl:201 1
RIx2 id:18 supp tpls:54 Ivl:122 0
RIx3 id:65 1:3 Supp_tupp:319
Parameters:6,321, 2112
Solution:

Move down find, id: 104 supp tpls:61 Ivl:1112

RIx1:id:280 supp tpls:9444 lvl:11001
RIx2 id:504 supp tpls:302 lvl:10222
RIx3 No Solution

Parameters:6,321, 21012
Solution:

RIx1:id:551 supp tpls:3205 vl:21012
RIx2 id:504 supp tpls:302 lvl:10222
RIx3 No solution

Parameters:6,321, 22112
Solution:

Rlx1:id:563 supp tpls:434 1vl:22112
RIx2 id:635 supp tpls:63 1vl:40112
RIx3 id:563 1:5 Supp_tupp:282

Rlx1:id:336sup tpl:14076 v1:111001
RIx2 id:2811 supp tpls:90 lv1:401212
RIx3 No Solution
Parameters:6,321, 211012
Solution:

Rlx1:id:2591suptpl:6602 Ivl:211012
RIx2 id:2811 supp tpls:90 v1:401212
RIx3 No Solution
Parameters:6,321, 222112
Solution:

Rlx1:id:2623 sup tpl:857 Ivl:222112
RIx2 id:2811 supp tpl:90 Ivl:401212
RIx3id:2623 1:3 Supp_tupp:253
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max supp max supp max supp max supp
Parameters:6,32, 211 Parameters:6,32, 2011 Parameters:6,32, 21012 Parameters:6,32, 211012
Solution: Solution: Solution: Solution:

Rlx1:id:23 supp tpls:57 lvl:i2 1 1

Rlx2 id:35 supp tpls:22Ivl:11 2

RIx3 id:23 k:4 Supp_tupp:25
Parameters:6,321, 211

Solution:

Move down find, id: 20 sup tpls:70 lvl:111
Parameters:6, 3216, 211

Solution:

Move down find, id: 1 sup tls:2476 1v1:000

RIx1:id:65 supp tpls:10131vl:201 1
RIx2 id:41 supp tpls:121vl:4 110
RIx3 No Solution
Parameters:6,321, 2011
Solution:

RIx1:id:65 supp tpls:10131vl:201 1
RIx2 id:18 supp tpls:54 1vl:122 0
RIx3 id:65 1:3 Supp_tupp:319
Parameters:6,3216, 2011
Solution:

Move down find, id: 19 supp tpls:2826 1v1:20 0 0

RIx1:1id:551 supp tpls:3205 Ivl:21012
RIx2 id:638 supp tpls:7 lvl:4 021 2
RIx3 No Solution

Parameters:6,321, 21012
Solution:

RIx1:1id:551 supp tpls:3205 Ivl:21012
RIx2 id:504 supp tpls:302 1vl:10222
RIx3 No Solution

Parameters:6,3216, 21012
Solution:
Move down find, id: 551 supp tpls:3205 1vl:21012

RIx1:1d:2591 sup tpl:6602 1v1:211012
RIx2 id:2823 supp tpls:7 1v1:403212
RIx3 No Solution

Parameters:6,321, 211012
Solution:

RIx1:1d:2591 sup tpl:6602 1v1:211012
RIx2 id:2811 supp tpls:90 1v1:401212
RIx3 No Solution
Parameters:6,3216, 211012
Solution:

RIx1:1d:2591 sup tpl:6602 1v1:211012
RIx2 id:503 sup tpl:1583 1v1:400201
RIx3 id:2591 1:3 Supp_tupp:2715
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4.6.Findings over the IPUMS data set

In this subsection, we discuss our experimentalifigs when working with the
IPUMS data set and both k-anonymity and I|-diversisyour privacy criterion. As
already mentioned, the PUMS data set has a quasidHier size QI=4. The

parameters we have used are as follows:

Table 4.6 Parameters for IPUMS experiments

k 3,30,50,100,150

I 3,6,10

Topmost node low (1010), middle-low (2110), mid@&20)
MaxSupp 600, 6000, 60000

Unless otherwise stated when we vary a paramdterrdst of the parameters are

pinned to the middle of the above values.

Our findings are qualitatively the same as with¢hse of the Adult data set when the
QI is small both in terms of time and visited naddsre, we should point out again
that: it is the lattice that matters and not theaddze.

k-anonymity. As k increases there is a certain limit abovecWhi is not possible to
obtain exact answers. For small k’s, where an eaaswer is possible, the higher the
value of k, the faster this solution is computegir(ember: the algorithm is driven
downwards the lattice recursively; a higher valfi& stops the descent earlier). For
higher values of k where we seek an approximatpwands in the lattice, the number
of visited nodes increases as the need for a higlaeives the solution higher in the
lattice.

As the height of the topmost acceptable node isegahe solution is found faster for
the case of rather low topmost nodes (where apmrabe answers are required).
When the topmost node is set in the middle of #teck, the exact solution is found
fast (the search is downwards the lattice and cetaplquickly). As the maximum
tolerable number of suppressed values increases,sdime phenomenon is also
observed: the higher the value, the easier to mkasolution — for large values of

maxSuppwe can even attain an exact answer quite easily.
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All the above results are very similar to the olsd¢ions we have done for the Adult

data set too

I-diversity. The case of |-diversity demonstrates a completdfgrent picture than k-

anonymity. Apart from a couple of cases, all theeotattempts for a solution lead to

exact answers. First, let us state that things apjoeoperate as expected when exact

answers are attained:

- As the value of increases, the determination of a solution compl&dster as a
large value of is prohibitive for several of the low-level solut®

- As the height of the topmost node increases, thdiso is computed slower (as
the beginning of the descent starts higher)

- As the maximum tolerable number of suppressed suplereases, the solution is
also slower since the search can go to higher depitine lattice.

The interesting part is that the data set behauéé glose to the case of QI=3 of the

Adult data set (and, thus, differently from thetrekthe QI sizes of the Adult data

set). Clearly this is due to the valuelofs the data size increases and the domains

are comparable, the groups are larger and, mosbrtangly, the possibilities for

different sensitive values within a group are highe

4.7.Summary of findings

We have experimented with algorithm Simple AnonyniNiegotiation over two data
sets and with two privacy criteria: k-anonymity drdlversity. We have assessed the
performance in terms of time and visited nodes as/ary the value for the privacy
criterion, the maximum tolerable generalizationghéiand the maximum tolerable
amount of suppressed tuples. Our findings can bersarized as follows:

— The increase of the privacy criterion has divergeffagcts. When QI is small,
there is an exact answer and the search is dirg¢otedrds lower heights.
Consequently, as k increases the solution is faantler. On the contrary, for
larger QI sizes and relaxations to user request,rtbrease of k sublinearly
increases the search space.

— The increase of the maximum tolerable height hadlai behavior. When the
QI size is small, we can have exact solutions aedheight increase increases
the search space. In all other occasions wheratams are sought, the

higher the constraint, the faster a solution isithu
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The constraint on the maximum tolerable amounuppsessed tuples has also
a similar behavior: the higher the constraint i e faster an approximate
solution is found (except for low QI sizes whereaexanswers are possible
and the behavior is inverse)

In all experiments, it is clear that the costsdominated by the QI size.
Finally, in all experiments, the times ranged beme and 8 msec, thus
facilitating the online, interactive negotiationmivacy with the user.

The experiments with I-diversity demonstrate a Emibehavior as the
experiments of k-anonymity. Similarly, the IPUMStalaet presents similar
behavior as compared to the Adult data ke only exception is the case of I-
diversity, where the IPUMS offered exact answerseginequently compared
to their frequency in the case of the Adult data Bewever, the behavior of
the algorithm is identical to the one in the cabéhe Adult data set both for

exact and approximate answers.
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Variant k Variant level Variant max_supp
g 4,5 5
4 -
4 3,5 4 -
T 3 = 3 n
E — E 25 - E 3 - —
> -
E 2 £ g, | —
= =15 — =
1 il I
o5 L] -
0 b ' o . . ] 0 - . .
3 10 50 100 150 . g :
lows middle-low micdle 600 €000 50000
k level
max supp
a0 70 100
30
60 -
g 70 » g 80
B 50 5 50 4 o
g ° g S 60
= 350 - 40 1 K
£ i 2 =
z 40 Z 30 2 40
H
Z 30 2 2
2 - = 20 =
10 + 10
[ ] 0 .
0 T T 0 A T T |
3 10 50 10C 150 low middle-low middle 600 6000 60000
k level max supp

Parametres:3, 6000, 2110 Solution:

Move down find, id: 6 supp tuples:4462 1vl:0100
Parametres:10, 6000, 2110

Move down find, id: 26 supp tpls:3778 lvl:1100
Parametres:50, 6000, 2 1 1 0 Solution:
RlIx1:id:47 supp tuples:9476 level:21 1 0

RIx2: id:36 supp tuples:2037 level:13 0 0
RIx3:id:47 k:34 supp tpls:5948
Parametres:100, 6000, 2 1 1 0 Solution:
RIx1:1d:47 supp tuples:19968 level:211 0
RIx2:1d:36 supp tuples:4775 level:1 3 0 0
Rlx3:id:47 k:34 Supp_tupp:5948
Parametres:150, 6000, 2 1 1 0 Solution:
RIx1:1d:47 supp tuples:32572level:2110
RIx2:1d:86 supp tuples:2482 level:4 1 0 0
Rlx3:id:47 k:34 Supp_tupp:5948

Parameters:50, 6000, 1010

Solution:

RIx1:id:22 supp tuples:110173 level:1 01 0
RIx2 id:36 supp tuples:2037 level:13 0 0
RIx3 id:22 k:3 Supp_tupp:4146
Parameters:50, 6000, 2110

Solution:

RIx1:id:47 supp tuples:9476 level:21 1 0
RIx2: id:36 supp tuples:2037 level:13 0 0
Rlx3:1d:47 k:34 Supp_tupp:5948
Parameters:50, 6000, 2220

Solution:

Move down find, id: 51 supp tuples:4742 level:22 0 0

Parameters:50,600, 2110

Solution:

RIx1:1d:47 supp tuples:9476 level:21 1 0
RIx2: id:86 supp tuples:527 level:4 1 0 0
RIx3:id:47 k:5 Supp_tupp:470
Parameters:50, 6000, 2110

Solution:

RlIx1:id:47 supp tuples:9476 level:21 1 0
RIx2: id:36 supp tuples:2037 level:13 0 0
Rlx3:id:47 k:34 Supp_tupp:5948
Parameters:50, 60000, 2110
Solution:

Move down find, id: 26 supp tuples:30578 level:1 100




I-diversity IPUMS (| Ql|=4)

Variant | Variant level Variant max_supp
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Parametres:3, 6000, 2110

Solution:

Move down find, id: 6 supp tpls:5333 level:0 1 0 0
Parametres:6, 6000, 2110

Solution:

Move down find, id: 26 supp tpls:2779 level:1100
Parametres:9, 6000, 2110

Solution:

Move down find, id: 46 supp tpls:2492 level:2 100

Parametres:6, 6000, 1010

Solution:

RIx1:id:22 supp tpls:15973 level:1 01 0

RIx2: id:26 supp tpls:2779 level:1 10 0
RlIx3:1id:22 k:3 supp tpls:5151

Parametres:6, 6000, 2110

Solution:

Move down find, id: 26 supp tpls:2779 level:1100
Parametres:6, 6000, 2220

Solution:

Move down find, id: 26 supp tpls:2779 level:1100

Parametres:6,600, 2110

Solution:

RlIxt1:id:47 supp tpls:1055 level:211 0

RIx2: id:36 supp tpls:89 level:13 0 0

RIx3:id:47 k:4 supp tpls:427

Parametres:6, 6000, 2110

Solution:

Move down find, id: 26 supp tpls:2779 level:1100
Parametres:6, 60000, 2110

Solution:

Move down find, id: 6 supp tpls:20837 level:0100
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CHAPTER 5. PARTIAL LATTICE
CONSTRUCTION

5.1 Partial lattice construction and the grouping poafegeneralization levels
5.2The grouping power of hierarchy levels and its @fte suppression

5.3 The grouping power of lattice nodes and its effecuppression

5.4 Preprocessing time

5.5 Quality of solution

5.6 Performance of Algorithm PartialLatticeNegotiation

5.7 The effect of the number of selected nodes

5.8 Extending the partial lattice at runtime

5.9 Summary of findings

So far, we have seen that the on-line part of thgerchination of an exact or
approximate anonymization scheme is completed withiliseconds for all possible
combinations of quasi-identifier size, data sizé/gry criterion and so on. This way
is it is clear that the user can interact in r@aktwith a negotiation system that (a)
answers anonymization requests and (b) guidesdhieta different alternatives if the
exact answer to his request is not feasible.
At the same time, the precomputation of the latdtdull scale, comprising all the
histograms for every node of the lattice preseeweal problems as:

— It requires a non-negligible amount of space

— It requires a non-negligible amount of time to benputed

— It has to be fully recomputed when updates occume@s auxiliary data

structures are also kept)
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— It scales up exponentially with the number of qudsntifier attributes and
their hierarchies.

One could possibly argue that space is not realprablem in the sense that the
lattice’s size is dependent on the size of the dyidg data, but on the size of the
guasi-identifier set and the accompanying hierashiThe computation of the
histograms for each node, on the other hand, iaspect that deserves attention. In
our experiments, we have observed that the constnutmes for the full lattices
annotated with histograms take up time in the omfehalf an hour for a quasi-
identifier size of up to 6 and simple privacy anigelike k-anonymity and I-diversity.
Clearly, this can be tolerated in certain applmadi however, it is possible that some
applications may not tolerate even this amountroét To address this problem, in
this section we explore different variants of thie-processing step, where instead of
generating the full lattice, we either opt to pmapute a part of the lattice’s
histograms, or we generate the histogram of ordynitde that we visit in each move
we make over the lattice. We refer to these alteresias (apartial, or, (b)on-line
computation of the lattice Of course, in these cases, we pay the price of no
necessarily obtaining the optimal answer. In tist of this section, we explore these
alternatives and assess their impact on the effswiss (quality of solution) and

efficiency (time to build and explore the lattic#)the respective algorithms.

5.1.Partial lattice construction and the grouping powerof generalization levels

The first possibility that we can explore is th&rtial computation of the lattice which
has to be based on carefully selecting which nadegenerate This is done on the
basis of the effect that different attributes hawehe relationship of suppression and
privacy criterion. Overall, our method proceedsdadisws:

1. An estimation of the effect that different levelavk to suppression is made;
on the basis of this estimation, each node in &tiécé is also ranked with
respect to the possible effect it can have to saggon.

2. The histograms for a specific percentgdé of the nodes of the lattice are
computed.

3. Once this preprocessing is completed, the paridicé is ready for usage;
then, a modified version of the algorithms of satt is used to address user

requests.
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As we have already seen, not all dimensions andalhdévels are equally affecting
the amount of suppression we need to perform. [gleans desirable that our node
selection process picks lattice nodes that redueeamount of suppression. Since we
want to avoid generating all the lattice’s histogsa we have to resort to prediction /
estimation methods for the suppression power oéradidate node. To this end, a
possible alternative to explore is the estimatibthe importance of attributes to the
suppression process. In the first of the followsupsections we discuss the metrics
we use for estimating the grouping powelefels in the subsequent subsection we
discuss how we exploit these metrics in order thiea® the desirable, i.e., the

prediction of the grouping power (and thus, iteeffto suppression) fdattice nodes

Before proceeding we would like to remind the redtat relations involve identifier
attributes that are removed, quasi-identifier lties that are candidates for
generalization, sensitive attributes that are tgptmected and indifferent attributes
that play no role in the generalization procesgydneral, we assume that a relation
is defined afRk(Ap, A4, ..., Ao, X1, ..., Xm, S), wWhereAp is an identifierAy, ..., Ay is
the quasi-identifier sels, ..., Xy are the indifferent attributes ai&is the sensitive

value.

5.2.The grouping power of hierarchy levels and its effet to suppression

Both the case of k-anonymity and the case of l1ditye suggest that the larger the
groups are, the less suppression we need to periidrerefore, it would be desirable
to be able to identify levels that produce largeugrs and promote them against levels
that do not have this property. We use two fundaalenetrics, the first concerning
the average group size produced by a level anddgbend concerning the importance
of a level as compared to its previous level ingame hierarchy.

Average Group Size We estimate the effect that a generalizatioa tevel A" will
have to suppression via the average group sizéhifotevel. To compute the average
group size we perform a simple query where (a) e the relation R by the quasi-
identifier set at the detailed level for all theagitidentifiers but the one into
investigation who is generalized to level h, andwke compute the average group size

for this generalization scheme by diving the siz&avith the number of groups that
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are formed in the previous step. Technically, € tjuasi-identifier set &, ..., A, ...,

An, then the group by clause of the query that ne#sehe number of groups is set to
Ay, ...,A" ..., A. Bearin mind that this is quite different thamgly grouping byA".
The former produces the groups and their cardinddt all the combination of
dimension A with the rest of the dimensions whernaslatter will only produce a
number of tuples per value of the domainABf This way we can also get reasonable
estimations for the topmost level of a hierarcly, tas opposed to the production of a
single group that grouping b would produce). Observe also the role of the
indifferent attributes here: the primary key of thalation does not obligatorily
comprise only quasi-identifiers; however our methwaorks for any configuration
with or without indifferent attributes (in the lattcase, the average group size of the

lowest level is 1).

Relative Importance of Generalization LevelsThe average group size of a level is
a quite powerful indicator of the effect a levetha the suppression; however it is not
the only one. Whenever a certain dimension (ehg. dimensiomrAge as we shall see
in the examples for the Adult data set) consisyeptbduces large group sizes, it
dominates the decisions on the possible generialiathat we should consider. It is
possible, for example, that both levalgeé andAge’ produce good large group sizes,
but the benefit from moving from level 2 to levelirBthe age dimension might be
small (i.e.,Age® does a pretty good job, and despite the factAbaf produces larger
groups it would be better to generalize anotheredgision one level up; unfortunately,
average group size does not give us this informati8o, we need to introduce a
metric that captures the relative importance oéwel within its dimension — i.e., as
compared to levels of the same dimension. To thid, eve define theelative
importance of a generalization lew&l, i.e., of an attribute in dimensignat heighth

as the fraction

([ avgGroupSigA")

— ——, for all heightshin All, ..., 1, or
avgGroupStgA™ )

relimp (A") = <

1

—————, forh=0
| power(A%)
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A first comment on the internals of the relativepmntance measure, observe the
recursion in the definition: we can define the tiglaimportance of a level as the
increase in group size with respect to its lowgeleof course, this is impossible for
the lowest, most detailed level of a hierarchydééine the relative importance of this
lowest level, we could choose among alternativerescoWe avoided the lowest
possible score of 0, since setting the value toQlevbe unfair for nodes of the form
400000 (that would score much lower than they desBr We also avoided setting
the score to 1 (as one would normally expect) asase of 1 is too close to several
scores of middle-height levels (as we observednduour experiments) and this
would result again in unfair rankings. Finally, egted for fine-tuning the importance
of the lowest level of each hierarchy to the ineen$ the importance of level 1 as (a)
it makes sense in terms of intuition and (b) itege to work fine in practice. In terms
of the introduced recursion, it is clear that wa eéways perform the computation of

rellimp(A") for all possible values df

Experimental findings. To illustrate the concept of the relative impoda of each
level, we list the measurements for the Adult da¢d. Remember that in our
experiments we have usedige, Work Class, Race, Occupation, Education and
Marital Status as the quasi-identifierGender and NativeCountry as indifferent
attributes (the former because it only has two esland the second because it is too
biased for the value USA, thus, they both tenddagbneralized always) amtburs
per Weekas the sensitive attribute. In Table 5.1, we predmth the relative
importance of attributes organized per hierarchywal as the total ordering of
attributes by their importance.

The results are not surprising at all: as alredaeoved in the previous experiments,
the age hierarchy presents remarkable improvemehen we chose to use it for
generalization. This is due to the vast domaint®flevels, compared to the other
attributes (observe thage is the most strong attribute and the best chaicgirect
efforts for generalization that minimize suppressimd, not surprisinglyage is the
weakest attribute to keep at a generalization selhes mentioned early in this
paper,ageandoccupationappear to be the attributes where generalizappeas to
pay off, the former due to its domain and the betaof the mappings among different

levels) and the latter due to the structure ofiitt level that comprises three values
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only along with a nice balance to the lower-levaliues, too. The rest of the attributes

rise to significant heights before being comparatite ageandoccupation

Table 5.1 Relative Importance of generalizatiorelsyor the Adult data set. Left:
number of groups and average group size per |&ght: total order of all the levels
by relative importance (descending)

level num Avg group rellmp() Level rellmp()
groups size
age 400000 3455 8.73 1.56 agel 1.)70
300000 5380 5.61 1.30 age4d 1.66
200000 7015 4.30 1.30 occupationl 1|42
100000 9117, 3.31 1.70 occupation?2 1{38
000000 15537 1.94 0.59 age3 1.30
education 040000 8247 3.66 1.26 education3 1]30
030000 10407 2.90 1.30 age2 1.30
020000 13526 2.23 1.09 education4 1{26
010000 14796 2.04 1.05 work_class2 1{24
000000 15537 1.94 0.95 marital_status3 14.16
marital_status 003000 11190 2.70 1.16 marital_status?2| 1.14
002000 13018 2.32 1.14 race2 113
001000 14855 2.03 1.05 education2 1{09
000000 15537 1.94 0.96 work_classl 1{06
occupation 000200 7932 3.80 1.38 educationl 105
000100 10975 2.75 1.42 marital_status]| 1.05
000000 15537 1.94 0.71 racel 1,02
race 000020 13478 2.24 1.13 work_class3 1{00
000010 15210 1.98 1.02 race0 0,98
000000 15537 1.94 0.98 marital_status0 0.96
work_class 000003 11790 2.56 1.00 education0 0{95
000002 11798 2.56 1.24 work_class0 0}94
000001 14668 2.06 1.06 occupation0 0{71
000000 15537 1.94 0.94 age0 0,59

5.3.The grouping power of lattice nodes and its effedb suppression

Having defined the grouping power and the relatmportance of a generalization
level, we can now proceed to define the estimatgubitance of a node. Assuming a
nodev, defined by its quasi-identifier levels &A™ A,...A™, we exploit the
individual metrics of each level and combine thenoider to predict the importance
of a node in the lattice with respect to its apilib provide as low suppression as
possible, if chosen as the elected generalizatbarse.
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Early failures and level metrics that we have usedin our deliberations, we first
started by using the average group size metribesneasure for each level. We tried
to provide an estimation of the group size of eactle by multiplying the shrinking
power of each of its levels and assessed how welptoduced metric approximated
the actual order of nodes per height with respec¢heir suppression. This approach
did not work very well as the levels with very largroup sizes dominated the
outcome; so, we decided to change the way we cadlime individual metrics and
opted for simple summation. Here, observe thattmbined metric tries to estimate
the goodness of each node as compared to theraitles in a very efficient way; so,
the actual meaning of the produced score is nohportant.
The problem with the domination of the scores lsjgdagroups came again when we
tried to combine the average group size and tlaivelimportance of each node in its
hierarchy as the product of these two metrics.vi&decided to use the logarithm of
the group size as a useful indication. Overall |&vel metrics we have used are:

e Average group size)

e Relative importance of a leval)

e The producy*pn

e The product log(y)*n
Estimated node importance Given these individual metrics, we define thenested
importance of a node (with respect to its powereduce suppression) as the sum of
the metrics of each of the levels that define theen

e I'(v)=Z(y)

e M(V)=Z (1)

o IM(V)=Z (vi* )

o A(V)=Z(log(y)* w)

For example, assume the case of QI=3 for the Adatb set, withAge Race
WorkClass as the quasi-identifier set, and the noA8R2W2 (Age, Racé,
WorkClas®) of the resulting lattice. Then, according to trues of Table 5.1, the
estimated importance of the no88R2W2 with thep metric is 1.30+1.13+1.24=3.67.

Experimental method and findings We measured the estimated importance of all
nodes of the lattice for Q1=3,4,5,6 for the Adudital set. For each of the estimator



142

measures, we have measured the 5% top nodes is térattual suppression for the
case of k-anonymity with k = 3, 10, 50. For heighith too few nodes, we kept at
least 2 nodes. The goal of the experiment is tatifje which of our prediction
metrics provides the best possible approximationht exact results that the full
lattice would give.

For every heighh, we compare the case of the full lattice and #®eoof our node
selection according to each of the four metricscokding to the nodes selected, we
pick the one with the least actual suppressionclwviae call the winner node for the
metric under inspection. Then, we compare this beslie per metric with the best
actual node and we count the misses we get asawehlie deviation of the winner’'s

node suppression against the best possible suppréss$the full lattice).

k=3 Till 30 tuples Overall
#dev(l') | Err(I') | #dev(A) | Err(A) #dev(l') | Err(I') | #dev(A) | Err(A)
QI=3 0 0,00% 0 0,00% 3 28,21% 4 26,67%
Ql=4 2 21,96% 1 3,41% 5 29,64% 5 11,85%
QI=5 2 2,86% 2 2,35% 4 1,43% 6 7,42%
QI=6 1 0,60% 1 1,31% 4 8,21% 6 8,59%
k=10 Till 30 tuples Overall
#dev(l') | Err(I') | #dev(A) | Err(A) #dev(l') | Err(I') | #dev(A) | Err(A)
QI=3 2 52,99% 0 0% 3 22,27% 2 0,36%
Ql=4 3 57,87% 1 8,53% 4 29,83% 5 54,56%
QI=5 3 6,84% 2 4,51% 5 3,85% 6 2,54%
QI=6 0 0,00% 2 1,85% 2 527% 7 6,34%
k=50 Till 30 tuples Overall
#dev(l') | Err(I') | #dev(A) | Err(A) #dev(l') | Err(I') | #dev(A) | Err(A)
QI=3 2 33,20% 2 12,30% 2 116,60% 4 44,01%
Ql=4 4 38,38% 1 0,61% 51 22,39% 3 0,36%
QI=5 1 0,05% 1 1,30% 2| 0,04% 3 0,90%
QI=6 0 0,00% 2 1,00% 3 | 24,44% 7 25,08%

Figure 5.1 Number of deviations and accuracy ferdbtimator functionsandA

To forestall any possible criticism on the evaloatof selected nodes with respect to
their actual suppression, we would like to remind the readet tiia underlying idea
here is as follows: had we used the estimation imétr practice, we would have
picked these particular nodes via the metric undspection and we would have
calculated their histogram. Then, a simple exhaestigorithm could go through all
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these histograms (that are too few to present algmg and find the winner per
height.

Since the error is the percentage of the differdreteveen the best solutions between
full and partial lattice construction over the fidttice’s value, we had to handle the
cases where the actual suppression was zerosledke, each extra tuple was given a
penalty P[!, with D| being the size of the data set. Again, this doets cover
adequately all cases as there exist cases wheezti@ suppression was very small
(less than 0.1% of the overall data set) and smiffiérences in the amount of
suppression resulted in large errors. So, wheniwe @pnsolidate results we present
one report for the overall experiment and anotbetHe subset of the lattice’s heights
where the best solution is larger than 0.1% ofdat set (in the case of the Adult
data set, 30 tuples).

The results are depicted in consolidated form gufgé 5.1 and in detailed form in
Figures 5.2-5.13. The consolidated results per awatibn ofk and QI size report the
number of times that the estimator missed the pessible node (#dev) and the

average of the error made by the estimator.

In Figure 5.1 we present the two best estimatohous, the average group siZ@ (
and product of the group size’s logarithm with redative importance X). The
former, I', presents very good results for the largest (@ §& and a large range of
results for the other QI sizes. The latt&r, retains a very good estimation range for
all occurrences. It is true, however, that its perfance drops at the higher level of
the lattice, where the best possible suppressiod; i these cases\ frequently
misses this possibility, although the selected sodeproximate the best possible
solution with very low numbers of suppressed tupfes completeness, it should be
also noted that the relative importance of lev8g produces frequent misses of the
best possible solution, sometimes with significdetiations, whereas the behavior of
I'M follows the one of" quite closely — sometimes, with even better result

Overall, based on all the above, we findto be the estimator of choice for the

subsequent experiments
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QI 3.k 3
height | actual T Err(I) M Err(M) I'M | Err(I'M) A Err(A)
0 554 554 0% 554 0% 554 0% 554 0%
1 125 125 0% 125 0% 125 0% 125 0%
2 28 58 |107,14% | 28 0% 28 0% 28 0%
3 12 21 75,00% 17 41,67% 18 50,00% 17 41,67%
4 4 4 0% 9 125,00% 4 0% 9 125,00%
5 1 2 100,00% 1 0% 2 100,00% 2 100,00%
6 0 0 0% 0 0% 0 0% 2 0,01%
7 0 0 0% 0 0% 0 0% 0 0%
8 0 0 0% 0 0% 0 0% 0 0%
9 0 0 0% 0 0% 0 0% 0 0%
#dev | avg(err) | #dev | avg(err) | #dev | avg(err) | #dev | avg(err)
Till 30 tuples 0| 0,00% 0] 0,00% 0] 0,00% 0 0,00%
Overall 3| 28,21% 2] 16,67% 2 | 15,00% 41 26,67%
Figure 5.2 Detailed table of deviation for |QI|F8I&=3
QL4k3
height | actual T Err(I) M Err(M) I'M | Err(I’'M) A Err(A)
0 3297 3297 0% | 3297 0% | 3297 0% | 3297 0%
1 1042 1042 0% [ 1042 0% [ 1042 0% [ 1042 0%
2 318 554 74,21% 318 0% 318 0% 318 0%
3 110 125 13,64% 110 0% 125 13,64% 125 13,64%
4 28 89 | 217,86% 47 67,86% 58 | 107,14% 50 78,57%
5 12 18 50,00% 19 58,33% 18 50,00% 18 50,00%
6 4 4 0% 11| 175,00% 4 0% 4 0%
7 0 2 0,01% 2 0,01% 2 0,01% 4 0,01%
8 0 0 0% 0 0% 0 0% 2 0,01%
9 0 0 0% 0 0% 0 0% 0 0%
10 0 0 0% 0 0% 0 0% 0 0%
11 0 0 0% 0 0% 0 0% 0 0%
#dev | avg(err) | #dev | avg(err) | #dev | avg(err) | #dev | avg(err)
Till 30 tuples 2| 21,96% 0] 0,00% 1] 3,41% 1 3,41%
Overall 5| 29,64% 4 | 25,10% 4 | 14,23% 5 11,85%

Figure 5.3 Detailed table of deviation for |QI|=t&=3
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QI_5 k. 3

height | actual r Err(I) M Err(M) 'M Err(I'M) A Err(A)
0 10458 | 10458 0% | 10458 0% | 10458 0% | 10458 0%
1 4514 4514 0% 4514 0% 4514 0% 4514 0%
2 2169 2169 0% 2169 0% 2169 0% 2169 0%
3 1123 1123 0% 1619 44,17% 1123 0% 1123 0,00%
4 716 716 0% 753 5,17% 731 2,09% 731 2,09%
5 322 342 6,21% 377 17,08% 342 6,21% 322 0%
6 108 126 16,67% 164 51,85% 126 16,67% 126 16,67%
7 41 41 0% 47 14,63% 41 0% 41 0%
8 8 8 0% 31| 287,50% 8 0% 8 0%
9 2 2 0% 16 | 700,00% 2 0% 4 | 100,00%
10 0 2 0,01% 9 0,03% 2 0,01% 2 0,01%
11 0 2 0,01% 0 0% 2 0,01% 2 0,01%
12 0 0 0% 2 0,01% 0 0% 2 0,01%
13 0 0 0% 0 0% 0 0% 0 0%
14 0 0 0% 0 0% 0 0% 0 0%
15 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 2,86% 5116,61% 3,12% 2,35%
Overall 4] 1,43% 91 70,03% 51 1,56% 7,42%

Figure 5.4 Detailed table of deviation for |QI|Ftl&k=3
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QI 6 k 3

height | actual r Err(I') M Err(M) I'M Err(I'M) A Err(A)
0 15318 | 15318 0% [ 15318 0% | 15318 0% [ 15318 0%
1 8304 8304 0% 8304 0% 8304 0% 8304 0%
2 4901 4901 0% 4901 0% 4901 0% 4901 0%
3 2867 2867 0% 4023 40,32% 2867 0% 2867 0%
4 1941 1941 0% 2446 26,02% 2196 13,14% 2196 13,14%
5 1177 1248 6,03% 1177 0% 1177 0% 1177 0%
6 629 629 0% 752 19,55% 629 0% 629 0%
7 354 354 0% 524 48,02% 354 0% 354 0%
8 155 155 0% 243 56,77% 155 0% 155 0%
9 33 33 0% 78 | 136,36% 33 0% 33 0%
10 9 9 0% 33 | 266,67% 9 0% 9 0%
11 2 5| 150,00% 17 | 750,00% 5| 150,00% 5| 150,00%
12 0 1 0,003% 10 0,03% 2 0,01% 4 0,01%
13 0 1 0,003% 2 0,01% 2 0,01% 2 0,01%
14 0 0 0% 0 0% 0 0% 2 0,01%
15 0 0 0% 0 0% 2 0,01% 2 0,01%
16 0 0 0% 0 0% 0 0% 0 0%
17 0 0 0% 0 0% 0 0% 0 0%
18 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 0,60% 6 32,71% 1 1,31% 1,31%
Overall 8,21% 10 70,72% 5 8,59% 8,59%

Figure 5.5 Detailed table of deviation for |QI|F@l&k=3
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height | actual r Err(I) M Err(M) I'™M Err(I'M) A Err(A)
0 1921 1921 0% | 1921 0% | 1921 0% | 1921 0%
1 522 522 0% 522 0% 522 0% 522 0%
2 170 257 51,18% 170 0% 170 0% 170 0%
3 51 133 | 160,78% 51 0% 51 0% 51 0%
4 28 31 10,71% 29 3,57% 31 10,71% 29 3,57%
5 5 2 0% 14 | 600,00% 2 0% 2 0%
6 0 0 0% 0 0% 0 0% 2 0,01%
7 0 0 0% 0 0% 0 0% 0 0%
g 0 0 0% 0 0% 0 0% 0 0%
9 0 0 0% 0 0% 0 0% 0 0%
#dev | avg(err) | #dev | avg(err) | #dev | avg(err) | #dev | avg(err)
Till 30 tuples 2 52,99% 0 0% 0 0% 0 0%
Overall 3 22,27% 2 60,36% 1 1,07% 2 0,36%

Figure 5.6 Detailed table of deviation for |Ql|F®I&k=10

height | actual T Err(I) M Err(M) '™M Err(I'M) A Err(A)
0 9416 | 9416 0% | 9416 0% | 9416 0% | 9416 0%
1 3273 | 3273 0% | 3273 0% | 3273 0% | 3273 0%
2 1261 | 1921 52,34% | 1261 0% | 1261 0% | 1261 0%
3 522 522 0% 752 44,06% 522 0% 522 0%
4 170 378 | 122,35% 285 67,65% 257 51,18% 257 51,18%
5 51 139 | 172,55% 61 19,61% 139 | 172,55% 51 0%
6 28 31 10,71% 29 3,57% 31 10,71% 29 3,57%
7 2 2 0% 14 | 600,00% 2 0% 14 | 600,00%
8 0 0 0% 0 0% 0 0% 2 0,01%
9 0 0 0% 2 0,01% 0 0% 2 0,01%
10 0 0 0% 0 0% 0 0% 0 0%
11 0 0 0% 0 0% 0 0% 0 0%
#dev | avg(err) | #dev | avg(err) | #dev | avg(err) | #dev | avg(err)
Till 30 tuples 3 [57,87% 31 21,89% 2| 37,29% 1 8,53%
Overall 4| 29,83% 6 | 61,24% 3| 19,54% 5 54,56%

Figure 5.7 Detailed table of deviation for |Ql|#tl&=10
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height | actual r Err(I') M Err(M) I'M Err(I'M) A Err(A)
0 18916 | 18916 0% [ 18916 0% [ 18916 0% [ 18916 0%
1 10944 | 10944 0% [ 10944 0% [ 10944 0% [ 10944 0%
2 6151 6151 0% 6151 0% 6151 0% 6151 0%
3 3468 3468 0% 4824 39,10% 3468 0% 3468 0%
4 2065 2065 0% 2868 38,89% 2508 21,45% 2508 21,45%
5 1160 1207 4,05% 2007 73,02% 1207 4,05% 1160 0%
6 578 578 0% 1004 73,70% 578 0% 578 0%
7 230 274 19,13% 230 0% 274 19,13% 274 19,13%
8 60 83 38,33% 141 | 135,00% 83 38,33% 60 0%
9 14 14 0% 41| 192,86% 14 0% 14 0%
10 0 14 0,05% 22 0,07% 14 0,05% 14 0,05%
11 0 2 0,01% 8 0,03% 2 0,01% 2 0,01%
12 0 0 0% 14 0,05% 0 0% 2 0,01%
13 0 0 0% 4 0,01% 2 0,01% 2 0,01%
14 0 0 0% 0 0% 0 0% 0 0%
15 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 3 6,84% 5 39,97% 4 9,22% 2 4,51%
Overall 5 3,85% 10 34,55% 7 5,19% 6 2,54%

Figure 5.8 Detailed table of deviation for |QI|Fl&=10
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height | actual r Err(I) M Err(M) I'™M Err(I'M) A Err(A)
0 24040 | 24040 0% 24040 0% 24040 0% 24040 0%
1 15836 | 15836 0% 15836 0% 15836 0% 15836 0%
2 10649 | 10649 0% 10649 0% 10649 0% 10649 0%
3 7153 7153 0% 9200 28,62% 7153 0% 7153 0%
4 5063 5063 0% 6236 23,17% 5827 15,09% 5827 15,09%
5 3562 3562 0% 3616 1,52% 3562 0% 3562 0%
6 1823 1823 0% 2660 45,91% 1823 0% 1823 0%
7 1222 1222 0% 1895 55,07% 1222 0% 1222 0%
8 639 639 0% 970 51,80% 639 0% 639 0%
9 285 285 0% 493 72,98% 285 0% 300 5,26%
10 54 54 0% 188 248,15% 54 0% 54 0%
11 21 21 0% 73 247,62% 21 0% 21 0%
12 7 14 100,00% 29 314,29% 14 100,00% 14 100,00%
13 0 14 0,05% 14 0,05% 14 0,05% 14 0,05%
14 0 0 0% 8 0,03% 2 0,01% 14 0,05%
15 0 0 0% 14 0,05% 2 0,01% 2 0,01%
16 0 0 0% 4 0,01% 2 0,01% 2 0,01%
17 0 0 0% 0 0% 0 0% 0 0%
18 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 0 0,00% 8 47,93% 1 1,37% 2 1,85%
Overall 2 5,27% 14 57,33% 6 6,06% 7 6,34%
Figure 5.9 Detailed table of deviation for |QI|F@&l&=10
QI_3_k 50
height | actual r Err(T) M Err(M) I'M [ Err(I'm) A Err(A)
0 8297 | 8297 0% 8297 0% 8297 0% 8297 0%
1 2123 | 2123 0% 2123 0% 2123 0% 2123 0%
2 1345 | 1345 0% 1402 | 4,24% | 1402 | 4,24% | 1402 [ 4,24%
3 428 698 | 63,08% | 673 | 57,24% | 698 | 63,08% | 673 | 57,24%
4 137 278 1102,92% [ 137 0% 278 1102,92% | 137 0%
5 14 14 0% 76 | 442,86% | 14 0% 67 | 378,57%
6 14 14 0% 14 0% 14 0% 14 0%
7 0 0 0% 14 0,05% 14 0,05% 14 0,05%
8 0 0 0% 0 0% 0 0% 0 0%
9 0 0 0% 0 0% 0 0% 0 0%
#dev | avg(err) | #dev | avg(err) | #dev | avg(err) | #dev | avg(err)
Till 30 tuples 2] 3320% 2112,30% 3] 34,05% 2] 12,30%
Overall 2] 16,60% 4| 50,44% 41 17,03% 4 44,01%

Figure 5.10 Detailed table of deviation for |QI&l k=50
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Q1 4.k 50
height | actual T Err(I) M Err(M) '™M Err(I'M) A Err(A)
0 20066 | 20066 0% 20066 0% 20066 0,00% 20066 0%
1 10053 | 10053 0% 10053 0% 10053 0,00% 10053 0%
2 4612 7036 52,56% 4612 0% 4612 0,00% 4612 0%
3 2123 2123 0% 3217 51,53% 2123 0,00% 2123 0%
4 1345 1848 37,40% 1555 15,61% 1402 4,24% 1402 4,24%
5 359 631 75,77% 359 0,00% 631 75,77% 359 0%
6 137 278 102,92% 137 0,00% 278 102,92% 137 0%
7 14 14 0% 76 442,86% 14 0,00% 14 0%
8 0 14 0% 14 0,05% 14 0,05% 14 0,05%
9 0 0 0% 14 0,05% 14 0,05% 14 0,05%
10 0 0 0% 0 0% 0 0% 0 0%
11 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 4 38,38% 2 9,59% 3 26,13% 1 0,61%
Overall 5 22,39% 5 42,51% 5 15,25% 3 0,36%
Figure 5.11 Detailed table of deviation for |QIp# k=50
QI_5_k 50
height | actual r Err(T) M Err(M) '™M Err(I'M) A Err(A)
0 29650 | 29650 0% 29650 0% 29650 0% 29650 0%
1 19750 | 19750 0% 19750 0% 19750 0% 19750 0%
2 14575 | 14575 0% 14575 0% 14575 0% 14575 0%
3 10546 | 10546 0% 12933 22,63% 10546 0% 10546 0%
4 6954 6954 0% 8073 16,09% 7328 5,38% 7947 14,28%
5 4336 4336 0% 6870 58,44% 4336 0% 4336 0%
6 2002 2002 0% 5014 150,45% 2002 0% 2002 0%
7 1366 1366 0% 2243 64,20% 1366 0% 1366 0%
8 613 613 0% 1068 74,23% 613 0% 613 0%
9 169 170 0,59% 234 38,46% 170 0,59% 169 0%
10 59 59 0% 137 132,20% 59 0% 59 0%
11 14 14 0% 14 0% 14 0% 14 0%
12 0 14 0,05% 14 0,05% 14 0,05% 14 0,05%
13 0 0 0% 14 0,05% 14 0,05% 14 0,05%
14 0 0 0% 0 0% 0 0% 0 0%
15 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 1 0,05% 8 50,61% 2 0,54% 1 1,30%
Overall 2 0,04% 10 34,80% 4 0,38% 3 0,90%

Figure 5.12 Detailed table of deviation for |QIp%d k=50
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QL6_k_50
height | actual T Err(I) M Err(M) I'™M Err(I'M) A Err(A)
0 29868 | 29868 0% 29868 0% 29868 0% 29868 0%
1 24626 | 24626 0% 24626 0% 24626 0% 24626 0%
2 19084 | 19084 0% 19084 0% 19084 0% 19084 0%
3 15380 | 15380 0% 18364 19,40% 15380 0% 15380 0%
4 12278 | 12278 0% 13893 13,15% 13156 7,15% 13630 | 11,01%
5 9088 9088 0% 9855 8,44% 9088 0% 9176 0,97%
6 5515 5515 0% 8444 53,11% 5515 0% 5515 0%
7 4360 4360 0% 6684 53,30% 4360 0% 4360 0%
8 2482 2482 0% 3959 59,51% 2482 0% 2482 0%
9 1786 1786 0% 2449 37,12% 1786 0% 1786 0%
10 869 869 0% 1169 34,52% 869 0% 869 0%
11 137 137 0% 515 275,91% 137 0% 137 0%
12 14 79 464,29% 234 1571,43% 79 464,29% 79 464,29%
13 0 14 0,05% 14 0,05% 14 0,05% 14 0,05%
14 0 0 0% 14 0,05% 14 0,05% 14 0,05%
15 0 14 0,05% 14 0,05% 14 0,05% 14 0,05%
16 0 0 0% 14 0,05% 14 0,05% 14 0,05%
17 0 0 0% 0 0% 0 0% 0 0%
18 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 0] 0,00% 9 | 46,21% 1] 0,60% 2 1,00%
Overall 3 | 24,44% 14 | 111,90% 6 | 24,82% 7 25,08%

Figure 5.13 Detailed table of deviation for |QIp&l k=50

5.4.Preprocessing time

The time to complete the preprocessing time fordifierent QI sizes of the Adult

data set is depicted in Fig. 5.14. We observettiatime falls to approximately one

minute for QI = 6 (remember that it used to be agpnately 20 minutes for the full

lattice, which demonstrates a linear speedup Withejpproximation factor.
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Figure 5.14 Total constuction time for the partice of the Adult data set

We can observe the exponential curve in the coctsdrutime as QI increases. This is
clearly due to the nature of the problem: as wepkbe percentage of nodes fixed
(here: 5%) every extra attribute in the QI scaleshe number of nodes by the size of

its levels.

The breakdown of the lattice and histogram congirutime is as listed in Table 5.2
for the Adult data set and Table 5.3 for the IPUMSa set.

Table 5.2 Breakdown of construction time (sec)artipl lattice for the Adult data set

Q=3 | Q=4 | QI=5 | QI=6
Level importance
comp. 1.15 1.8 3.27 5.24
Node importance
comp. 0.05 0.18 0.40 0.99
Histogram computation  , o, 425 1332  584f
Overall 3.72 6.24 1700  64.70

We observe that, as expected, the interaction with database is the one that
consumes most of the time.The first of these icteyas, specifically the computation
of level importance requires one aggregate queryepel and does not take too much
time. At the same time, the computation of histoggais largely affected by the

number of nodes selected to be part of the pdettite; since our rule indicates a
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fixed percentage, the exponential nature of tha cemains, albeit significantly

reduced.

Table 5.3 Breakdown of construction time (mse@antial lattice for the IPUMS data

set
Ql=4
Level importance comp 31.64
Node importance comp 0.18
Histogram computation 77.65
Overall 109,47

5.4.1.Answering user requests via the partial lattice

The method for answering a request by the usemisdified variant of the algorithm

of the full lattice.

Algorithm PartialLatticeAnonymityNegotiation(L,k,h,MaxSupp)

In: Partial lattice L with the histograms for R,H, constraints for k, h, MaxSupp
Out: an exact solution s[v,k,h,supp] or s1,s2,s3, si=[v_i,k_i,h_i,supp_i]

Begin

N AW

15. else{
16. Appr: for every height h, in height(v_max) down to 0{

17. for every node v in desc(v_max) in h {
18. check suppressed(v,k);
19. keep v_optM the node with the least suppression, k respected;
20. check max k for v, s.t., MaxSupp is respected;
21. keep v_optk the node with the max k that respects MaxSupp;
22. }
23. }
24. approxSol_1=solution(v_optk)
25. approxSol_3=solution(v_opt™)
26. approxSol_2=ApproximateH(L,v_max,height(v_max),height(top),k,h,MaxSupp);
27. return approxSol_1, approxSol_2, approxSol_3;
28. }
End.

Let v_max be the node that corresponds to the constrainth;
if v_max is part of L{

}
for every height h, in height(v_max)-1, down to 0{

}
13. if an exact answer is found,

Check v_max for an exact answer;
if no such answer exists, goto Appr;

for every node v in h, v in descendants(v_max), {
if an exact answer is given by v
keep the v with the minimum suppression as v_opt;
(break ties by h)
1//observe: all descendants of v_max must be checked in all levels

return v_opt with its answer;

Figure 5.15 Algorithm for Partial lattice Anonymilyegotiation

The algorithm starts with a quick check: if thetegt node of the sublattice of valid

answers, v_max, cannot return an exact answer,ithemrlear that no other node in
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the sub-lattice can; therefore the search is dicedowards finding a set of
approximate answers (Line 15-28). If however, tloelenv_max is not part of the
partial lattice or, it is part of the partial la# and gives an exact answer, then, the
sublattice must be checked. Due to the small siz¢he sublattice, it is quite
reasonable to explore it via a practically exhagssearch (Lines 6-12). So, we
search all levels and keep the answer with the mim suppression (ties over
suppression are broken by picking the solution withleast height). Here, due to the
fact that the lattice is partial, we must note thatcannot rely on any pruning criteria:
if a node fails to give an exact answer at helglihis does not mean that there are no
nodes in heights lower thdmthat can answer. Therefore, the entire sublattiost be
searched. Observe also, that due to the consthaihat least two nodes per level are
computed, the bottom node is always computed; Iseretis always at least one
descendant of v_max in the partial lattice

If an exact answer is not found, we must searclapproximate answers. The two of
the three approximations are performed in a sinn@g: we search all nodes in the
heights from v_max to O to find (a) the node thaeg the least suppression, keeping
k fixed, and (b) the node that gives the maximurkdeping MaxSupp fixed. This is
shown in lines 16 — 23. Apart from these two sutiges, we need to find the node
with the least height that respects both k and M@pSThis is done the same way as
in the full lattice (Line 26) --see also functidypproximateH which we summarize
here: we search the upper part of the lattice Wwittary search; if a node answers
positively we search downwards for lower nodes taat answer too; else we search

upwards and check if the level under investigatsonnable to provide a solution.

5.5. Quality of solution

Having explained the method via which user requastsanswered, we can now
proceed to discuss our findings concerning theityuaf answers returned by the
algorithm of the previous subsection. Figures 5:818 depict the detailed results of

the workloads of section 4 when the partial latitcased instead of the full one.
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Parameters Actual solution Aproximate solution QoS
k su height ]| k su height d(k) | d(su d(h
3,321,211 3 125 1 3 125 1 0 0 0
10,321, 211 10 170 2 10 170 2 0 0 0
50,321,211 No exact answer. Approx:
50 673 3
50 251 41| 50 137 4 0 114 0
31 314 3
3,321, 2011 No exact answer. Approx:
3 635 2
3 283 3 3 50 4 0 233 1
10,321, 2011 10 655 41| 10 2349 2 0 1694 -2
10 170 41| 10 257 4 0 87 0
5 301 4 No solution
50,321, 2011 50 4077 41| 50 7669 2 0 3592 -2
50 137 6|l 50 137 6 0 0 0
5 301 4 No solution
3,321,21012 3 656 6 3 3639 2 0 2983 -4
3 108 6 3 126 6 0 18 0
No solution No solution
10,321, 21012 10 2533 6|l 10 9223 2 0 6690 -4
10 230 71| 10 274 7 0 44 0
No solution No solution
50,321, 21012 50 9214 6|l 50 19324 2 0 10110 -4
50 169 91| 50 169 9 0 0 0

No solution

No solution

3,321,211012 3 1611 7 3 7226 2 0 5615 -5
3 155 8 3 155 8 0 0 0

No solution No solution
10,321, 211012 | 10) 5362 711 10 14627 2 0 9265 -5
10 285 9|l 10 300 9 0 15 0

No solution No solution
50,321, 211012 | 50]) 15106 71| 50 24558 2 0 9452 -5
50 137 11| 50 137 11 0 0 0

No solution

No solution

Figure 5.16 Qos in details for Variant k
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Aproximate
Parameters Actual solution solution QoS
k su height ]| k su height || d(k) | d(su d(h

10,321,101 10 257 21l 10 257 2 0 0 0
10,321, 211 10 170 21l 10 170 2 0 0 0
10,321, 212 10 170 21l 10 170 2 0 0 0
10,321,1001 10 2349 2|l 10 2349 2 0 0 0
10 170 41110 257 4 0 87 0

No solution No solution
10,321, 2011 10 655 41|55 10 2349 0 1694 -2
10 170 411 61 10 257 0 87 0
5 301 4 No solution 5 301 -4
10,321, 2112 10 285 41110 285 4 0 0 0
10,321,11001 10 8169 3|[10 9223 2 0 1054 -1
10 230 71110 274 7 0 44 0

No solution No solution
10,321, 21012 10 2533 6|[10 9223 2 0 6690 -4
10 230 71110 274 7 0 44 0

No solution No solution
10,321, 22112 10 369 8|[10 2250 5 0 1881 -3
10 60 8||10 60 8 0 0 0
9 315 8 No solution 9 315 -8

10,321,111001 10 | 12823 41110 | 14627 2 0 1804 -2
10 285 9](10 300 9 0 15 0

No solution No solution
10,321,211012 10 5262 71110 | 14627 2 0 9365 -5
10 285 9](10 300 9 0 15 0

No solution No solution
10,321,222112 10 712 10]| 10 3971 6 0 3259 -4
10 54 10]| 10 54 10 0 0 0
5 298 10 No solution 5 298 | -10

Figure 5.17 Qos in details for Variant level
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Parameters Actual solution Aproximate solution QoS
k su height ||k su height d(k) | d(su d(h
10,32, 211 10 55 41| 10 77 3 0 22 -1
10 28 41| 10 29 4 0 1 0
7 31 4 5 32 3 -2 1 -1
10,321, 211 10| 170 21| 10 170 2 0 0 0
10,3216, 211 10 | 1921 0] 10 1921 0 0 0 0
10,32, 2011 65 10 655]| 10 2349 2 0 1694 -2
35 10 28] 10 29 6 0 1 0
No Solution No Solution
10,321, 2011 10 | 655 41| 10 2349 2 0 1694 -2
10| 170 41| 10 257 4 0 87 0
5] 301 4 No Solution 5 301 -4
10,3216, 2011 10 | 2110 21| 10 | 2349 | 2 0 239 0
10,32, 21012 10 | 2533 6] 10 9223 2 0 6690 -4
10 14 91| 10 14 9 0 0 0
No Solution No Solution
10,321, 21012 10 | 2533 6] 10 9223 2 0 6690 -4
10 | 230 71 10 274 7 0 44 0
No Solution No Solution
10,3216, 21012 No exact answer. Approx:
10 9223 2
551 10 | 2533]| 10 578 6 0 1955 0
2 2211 2

10,32,211012 10 | 5362 71| 10 14627 2 0 9265 -5
10 21 11][ 10 21 11 0 0 0

No Solution No Solution
10,321, 211012 10 | 5362 71| 10 14627 2 0 9265 -5
10| 285 91| 10 300 9 0 15 0

No Solution No Solution
10,3216, 211012 10 | 5362 71| 10 14627 2 0 9265 -5
10 | 1222 71| 10 1222 7 0 0 0
51 2915 7 No Solution 5 2915 -7

Figure 5.18 Qos in details for Variant max supp
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The detailed Tables do not reveal too much pewsecomplement them with Tables

5.19 -

5.21 where we discuss each answering méilgodexact answers along with

the 3 relaxations) in isolation. In all these Tablne cells with grey background are

the ones where the full lattice allowed the deroratof an exact solution and the

partial lattice failed. The cells with the blue kgmwund are the ones where the

respective phenomenon occurred for relaxation gddaber that:

Approximation 1 keep k and h fixed and tries to find the closest possible
suppression that the data set can provide

Approximation 2 keepk and maxSuppfixed and tries to find the lowest
possible level where both these values are regpecte

Approximation 3 keepsnaxSuppand h fixed and tries to find the closest

possiblek to the original one that the data set can support

The overall performance of the partial lattice wjtlst a 5% support of the full

lattice’s nodes seems quite satisfactory.

Approximation 1 has the tendency to move downwérddattice, until a node
that is within the sublattice of vmax is found. &dl, the solutions are quite
lower than the height constraint (with a differemarging between -1 and -5)
and therefore provide significantly larger suppi@ss than the one suggested
by the full lattice. Remember, however that thigust a suggestion in the
context of an interactive user session.

Approximation 2 tries to minimize the height thabyides a solution that
respects both k and maxSupp and apparently it dgagtty good job in all
occasions (see all three tables for colustm@ight and section Approximation
2 in all three tables) with small deviations foe tbuppressed tuples (but still,
within the user’s threshold) and no deviationskfavith respect to the answer
of the full lattice. Remember that this is the mosmplicated search as it
travels throughout the whole lattice in searchaioanswer.

Approximation 3 fails frequently in both the fullhé the partial lattice.
Unfortunately, the partial lattice fails to suppthris approximation. Out of the
36 possible value combinations, 9 had an exacte@ngnboth the full and the
partial lattice(so the approximation never firedhe first place) and out of the

27 remaining cases, (a) 17 cases presented noosointneither the full nor
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the partial lattice, (b) 6 cases had an exact answéhe full lattice and no
solution in the partial lattice, (c) 3 cases hadaaswer in the full lattice and
an approximation in the partial lattice, and (d)lyori case had an
approximation in the both lattices.
Overall, we practically had three occurrences wrtbee full lattice gives an exact
answer and the partial lattice fails: (i) QI=3, Ks5(i)) QI=4, k=3 (iii) QI=5,
maxSupp=3126. We find this performance quite sadtsty.
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Exact k=3 | k=10 k=50 Exact k=3 k=10 k=50 Exact k=3 k=10 k=50
QI=3 0 0 251 QI=3 0 0 4 QI=3 0 0 50
QI=4 283 - QI=4 3 - - QI=4 3 - -
QI=5 - - QI=5 - - QI=5 - i
QI=6 - - QI=6 - - QI=6 - -
Approx 1 k=3 | k=10 k=50 Approx 1 k=3 k=10 k=50 Approx 1 k=3 k=10 k=50
QI=3 - - 422 QI=3 - -1 QI=3 - 0
QI=4 352 | 1694 3592 QI=4 -1 -2 -2 QI=4 0
QI=5 2983 | 6690 10110 QI=5 4 4 4 QI=5 0
QI=6 5615 | 9265 9452 QI=6 -5 -5 -5 QI=6 0
Approx 2 k=3 | k=10 k=50 Approx 2 k=3 k=10 k=50 Approx 2 k=3 k=10 k=50
QI=3 - - -114 QI=3 - 0 QI=3 - 0
QI=4 -233 87 0 QI=4 1 0 0 QI=4 0 0 0
QI=5 18 44 0 QI=5 0 0 0 QI=5 0 0 0
QI=6 0 15 0 QI=6 0 0 0 QI=6 0 0 0
Approx 3 =3 | k=10 k=50 Approx 3 =3 k=10 k=50 Approx 3 k=3 k=10 k=50
QI=3 - - 63 QI=3 - -1 QI=3 - -19
QI=4 263 [INSOL|TTS00] [ o1=4 s ] [oi=s s s s
QI=5 - - - QI=5 - - QI=5 - -
QI=6 - - QI=6 - - QI=6 - -

Figure 5.19 Summary of QoS deterioration for varlkan



Exact low | low-middle | middle Exact low | low-middle | middle Exact low | low-middle | middle
QI=3 0 0 0 QI=3 0 0 0 QI=3 0 0 0
QI=4 - - 0 QI=4 - - 0 QI=4 - - 0
QI=5 - - - QI=5 - - - QI=5 - - -
QI=6 - - - QI=6 - - - QI=6 - - -
Approx 1 low | low-middle | middle Approx 1 low | low-middle | middle Approx 1 low | low-middle | middle
QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 0 1694 - QI=4 0 -2 - QI=4 0 0 -
QI=5 1054 6690 1881 QI=5 -1 -4 -3 QI=5 0 0 0
QI=6 1804 9365 3259 QI=6 -2 -5 -4 QI=6 0 0 0
Approx 2 low | low-middle | middle Approx 2 low | low-middle | middle Approx 2 low | low-middle | middle
QI=3 - - - QI=3 - - - QI=3 - -
QI=4 87 87 - QI=4 0 0 - QI=4 0 0 -
QI=5 44 44 0 QI=5 0 0 0 QI=5 0 0 0
QI=6 15 15 0 QI=6 0 0 0 QI=6 0 0 0
Approx 3 low | low-middle | middle Approx 3 low | low-middle | middle Approx 3 low | low-middle | middle
QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 - - - QI=4 - - - QI=4 - - -
QI=5 - - QI=5 - - QI=5 - -

QI=6 - - QI=6 - - QI=6 - -

Figure 5.20 Summary of QoS deterioration for varfaight
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Exact 32 321 3216 Exact 32 321 3216 Exact 32 321 3216
QI=3 - 0 0 QI=3 0 0 QI=3 0 0
QI=4 - - 239 QI=4 0 QI=4 0
QI=5 - - 2533 QI=5 -6 QI=5 10
QI=6 - - - QI=6 - QI=6 -
Approx 1 32 321 3216 Approx 1 32 321 3216 Approx 1 32 321 3216
QI=3 22 - - QI=3 -1 - QI=3 0 -
QI=4 1694 | 1694 - QI=4 -2 -2 - QI=4 0 0 -
QI=5 6690 | 6690 6690 QI=5 -4 -4 -4 QI=5 0 0 0
QI=6 9265 | 9265 9265 QI=6 -5 -5 -5 QI=6 0 0 0
Approx 2 32 321 3216 Approx 2 32 321 3216 Approx 2 32 321 3216
QI=3 1 - - QI=3 0 - QI=3 0 -
QI=4 1 87 - QI=4 0 0 - QI=4 0 0 -
QI=5 0 44 -1955 QI=5 0 0 0 QI=5 0 0 0
QI=6 0 15 0 QI=6 0 0 0 QI=6 0 0 0
Approx 3 32 321 3216 Approx 3 32 321 3216 Approx 3 32 321 3216
Q=3 QI=3 QI=3

QI=4 - QI=4 QI=4

QI=5 - QI=5 QI=5

QI=6 - QI=6 QI=6

Figure 5.21 Summary of QoS deterioration for varrmaxSupp
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5.6.Performance of Algorithm PartialLatticeNegotiation

In this subsection we discuss the performance ofe tlalgorithm
PartialLatticeNegotiation in terms of time and tasi nodes. Our findings are as
follows:

— The full lattice was already a fast answering madma for the QI sizes that
we have explored. In all occasions, the time toigate over the full lattice
before returning an answer was between 0.66 — &.nisethe case of the
partial lattice, the times range between 0.33 tmszcs, due to the reduced
“lattice” size. In cases where time is really cdti then this scaling down with
a scale factor between 2 and 8 can be useful.

— Exactly as in the case of the full lattice, thergase of k results in an increase
in the number of visited nodes for the case wheeer@gort to relaxations.
Concerning the case of exact answers, althouglexqeriment does not give
conclusive answers on the behavior of the algoritiiis noteworthy that out
of the 3 cases in QI=3 where the full lattice gaveexact solution, the two
were retained in the partial lattice too.

— The behavior of the algorithm over the full latt@e the height of the allowed
exact solution rises is retained. As the heightstamts are put higher, there
are more nodes to be visited for exact solutioomfthis height downwards.
On the contrary, when we have to resort to relaratithings remain quite
stable. Here, it is noteworthy to discuss the waflehe top acceptable node
Vmax If Vmax IS present we can have a very quick test on whetleewill need
relations (in most case we will), or an exact ansg/@ossible (this happens in
the case of QI=4, height=low, for example). In gahéhowever, this luxury is
not always available in the partial lattice, and thcreases the search space.

— The behavior of the algorithm over the full lattaemaxSuppncreases is also
retained: time drops as maxSupp increases, sincendea desired solution
faster.

— In all cases, the dominant factor for the perforogaaf the algorithm is again
QI size; naturally the effect is scaled down asl#tgce size is scaled down

too. Interestingly, it is worth noting that the nraxxm number of nodes visited
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by the algorithm over the partial lattice is 94 wehiis the 5.2% of the

maximum number of visited nodes in the case ofléatlice (1792).
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Parameters:3, 321, 2 1 1 Solution:

Move down find, id:4 supp tuple:1251vl: 1 0 0
Parameters:10, 321, 2 1 1 Solution:

Move down find, id:5 supp tuple:1701vl: 11 0
Parameters:50, 321, 2 1 1 Solution:
RIx1:id:20 supp:6731Ivl: 111

RIx2: id:35 supp tpls:137 lvl: 112
RIx3:id:20 k:31 supp:3141Ivl: 111

Parameters:3, 321, 2 0 1 1 Solution:
RIx1:id:55 supp:6351vl: 100 1
RIx2:id:103 supp tpls:50 lvl: 110 2
RIx3: No solution

Parameters:10, 321, 2 0 1 1 Solution:

RIx1: id:55 supp:23491vl: 100 1
RIx2:id:61 supp tpls:257 Ivl: 1201
RIx3: No solution

Parameters:50, 321, 2 0 1 1 Solution:

RIx1: id:55 supp:76691vl: 100 1
RIx2:id:107 supp tpls:137 lvl: 1212
RIx3: No solution

Parameters:3, 321, 21 0 1 2 Solution:
RIx1:id:271 supp:36391vl: 1000 1
RIx2:id:187 supp tpls:126 vl: 40200
RIx3: No solution

Parameters:10, 321, 21 0 1 2 Solution:

RIx1:id:271 supp:92231vl: 1000 1
RIx2:id:188 supp tpls:274 lvl: 40210
RIx3: No solution

Parameters:50, 321, 21 0 1 2 Solution:

RIx1:id:271 supp:193241v: 1000 1
RIx2:id:636 supp tpls:169 lvl: 40122
RIx3: No solution

Parameters:3,321, 21101 2 Solution:
RIx1:id:321 supp:72261vl: 10000 1
RIx2:id:763 supp tpls:155 vl: 400202
RIx3: No solution

Parameters:10, 321, 21 1 0 1 2 Solution:

RIx1:id:321 supp:146271v: 10000 1
RIx2:id:2805 supp tpls:3001vl: 40021 2
RIx3: No solution

Parameters:50, 321, 2110 1 2 Solution:

RIx1:id:321 supp:245581v: 10000 1
RIx2:id:2812 supp tpls:1371v1: 40122 2
RIx3: No solution
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low  Low-midde midde Law-middle  midcle low Low-riddls  middle low-middle  middle
level level level
level
9 14 3 100
a an 7]
12 [
0 810 2 $ @
3 3 6 8 g 2 &0
[t c 6 < 15 )
_g 3 T 4 2 0 o 40
[} 2 -'2 2 E 5 w
= 1 w0 > 5 20
% 0 > # 0 #* 0
# lowy Low-middle — mmiddle # Loremiddle  middle Low-midds  middle
lavel ful Low-middle  middle
level level level

Parameters:10, 321, 1 0 1 Solution:
Move down find id19 supp tpl:257 lvl: 10 1
Parameters:10, 321, 2 1 1 Solution:
Move down find, id:5 supp tpl:170 lvl: 110
Parameters:10, 321, 2 1 2 Solution:
Move down find, id:5 supp tpl:170 lvl: 110

Parameters:10, 321, 1 0 0 1 Solution:
RIx1:id:55 supp:23491vl: 1 001
RIx2:id:61 supp tpls:257 lvl: 1 201
RIx3: No solution

Parameters:10, 321, 2 0 1 1 Solution:
RIx1:id:55 supp:23491vl: 1 001
RIx2:id:61 supp tpls:257 Ivl: 1 201
RIx3: No solution

Parameters:10, 321, 2 1 1 2 Solution:
Move down find, id:103 supp tuple:285 1vl: 1
102

Parameters:10, 321, 11 0 0 1 Solution:
RIx1:id:271 supp:92231vl: 1 0 001
RIx2:id:188 supp tpls:274 Ivl: 4 0 210
RIx3: No solution

Parameters:10, 321, 21 0 1 2 Solution:
RIx1:id:271 supp:92231vl: 1 0 001
RIx2:id:188 supp tpls:274 lvl: 4 0 210
RIx3: No solution

Parameters:10, 321, 22 1 1 2 Solution:
RIx1:id:508 supp:22501vl: 1 1 102
RIx2: id:635 supp tpls:60 Ivl: 4 0 112
RIx3: No solution

Parameters:10,321, 1110 0 1 Solution:
RIx1:id:321 supp:146271vl: 1 0 0 001
RIx2:id:2805 supp tpls:300 Ivl: 4 0 0 212
RIx3: No solution

Parameters:10, 321, 21 1 0 1 2 Solution:
RIx1:id:321 supp:146271vl: 1 0 0 001
RIx2:id:2805 supp tpls:300 vl: 4 0 0 212
RIx3: No solution

Parameters:10, 321, 22 21 1 2 Solution:
RIx1:id:588 supp:39711vl: 1 0 2 102
RIx2:id:2811 supp tpls:54 lvl: 4 01 212
RIx3: No solution
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|QI|=3 |QI|=4 |QI|=5 |QI|=6
o7 o '
05 08 0 ‘?
—_— PR 7
5 02 Py 8% W03 Eos
é o é o1 é 02 D4
0 ' Q £
0 2 01 =072
. 321 416 ” 131 1315 £ 0 0
max_supp max_supp 32 3 3218 W 41 218
max_supp max_supp
g o ;o .
3P E 10 3 2 g &
1 =] g g 20 E G0
3 2 5 15 £ a0
2 s ’* G 2 1 $ 10
= S 2 ,—l = s
'; 0 = 1Lt # 0 — = g ¥ o .
. . #*
32 i 3216 37 kal 316 - - 216 12 371 26
max_supp max_supp
max_supp max_supp

Parameters:10, 32, 2 1 1 Solution:
RIx1:id:20 supp:771lvl: 111

RIx2: id:35 supp tpls:29 lvl: 112
RIx3:id:20 k:5 supp:321vl: 111
Parameters:10, 321, 2 1 1 Solution:

Move down find, id:5 supp tpl:170 Ivl: 110
Parameters:10, 3216, 2 1 1 Solution:
Move down find, id:1 supptpl:1921 1vl: 00 0

Parameters:10, 32, 2 0 1 1 Solution:
RIx1:id:55 supp:23491vl: 100 1
RIx2:id:107 supp tpls:29 Ivl: 121 2
RIx3: No solution

Parameters:10, 321, 2 0 1 1 Solution:
RIx1:id:55 supp:23491vl: 100 1
RIx2:id:61 supp tpls:257 vl: 1201
RIx3: No solution

Parameters:10, 3216, 2 0 1 1 Solution:
Move down find, id:55 supp tuple:2349 1vl: 1
001

Parameters:10, 32, 21 01 2 Solution:
RIx1:id:271 supp:92231vl: 10001
RIx2:id:638 supp tpls:14 lvl: 4021 2
RIx3: No solution

Parameters:10, 321, 21 0 1 2 Solution:
RIx1:id:271 supp:92231vl: 10001
RIx2:id:188 supp tpls:274 vl: 40210
RIx3: No solution

Parameters:10, 3216, 21 0 1 2 Solution:

RIx1:id:271 supp:92231vl: 10001
RIx2:id:187 supp tpls:578 vl: 40200
RIx3:id:271 k:2 supp:22111v: 1000 1

Parameters:10,32, 2110 1 2 Solution:
RIx1:id:321 supp:146271v: 10000 1
RIx2:id:2812 supp tpls:21 vl: 401222
RIx3: No solution

Parameters:10, 321, 2110 1 2 Solution:
RIx1:id:321 supp:146271v: 10000 1
RIx2:id:2805 supp tpls:300 Ivl: 400212
RIx3: No solution

Parameters:10, 3216, 211 0 1 2 Solution:
RIx1:id:321 supp:146271v: 10000 1
RIx2:id:1525 supp tpls:1222 lvl: 400210
RIx3: No solution

167



IPUMS k-anonymity (QI=4)

Variant k Variant level Variant max supp
5 2 1.2
1.5 —~ 15 !
) w U
g % 1 E 06
o U5 £0s g 0.
£ £ £ m
1]
3 10 50 100 150
Low-rmiddle middle 3z 321 3216
k level max_supp
20 20 20
0
@ w
5 15 § 1 3 15
o
S 10 e 10 £ 10
. T 5 ® =
‘» ! At =
@ = =
% O I:l D = =
H H
3 10 50 100 150 Low-middle middle 32 321 3216
k level max_supp
Parameters:3, 6000, 2 1 1 0 Solution Parameters:50, 6000, 1 0 1 0 Solution Parameters:50, 600, 2 1 1 0 Solution
Move down find, id:6 supp tuple:44621vl: 0100 RIx1:id:21 supp:1420781vl: 100 0 RIx1:id:27 supp:195991vl: 1110
Parameters:10, 6000, 2 1 1 0 Solution RIx2: id:36 supp_tuples:2037 level: 130 0 RIx2: id:86 supp_tuples:527 level: 41 0 0
Move down find, id:26 supp tuple:37781vl: 1100 RIx3:id:21 k:3 supp:56881vl: 100 0 RIx3:id:27 k:3 supp:4761vl: 1110
Parameters:50, 6000, 2 1 1 0 Solution Parameters:50, 6000, 2 1 1 0 Solution Parameters:50, 6000, 2 1 1 0 Solution
RIx1:id:27 supp:195991vl: 1110 RIx1:id:27 supp:195991vl: 1110 RIx1:id:27 supp:195991vl: 1110
RIx2: id:36 supp_tuples:2037 level: 130 0 RIx2: id:36 supp_tuples:2037 level: 130 0 RIx2: id:36 supp_tuples:2037 level: 130 0
RIx3:id:27 k:17 supp:57481vl: 1110 RIx3:id:27 k:17 supp:57481vl: 1110 RIx3:id:27 k:17 supp:57481vl: 1110
Parameters:100, 6000, 2 1 1 0 Solution Parameters:50, 6000, 2 2 2 0 Solution Parameters:50, 60000, 2 1 1 0 Solution
RIx1:id:27 supp:195991vl: 1110 Move down find, id:26 supp tuple:305781vl: 1100

RIx1:id:27 supp:418951vl: 1110

RIx2: id:36 supp_tuples:4775 level: 1300
RIx3:id:27 k:17 supp:57481vl: 1110
Parameters:150, 6000, 2 1 1 0 Solution
RIx1:id:27 supp:643891vl: 1110

RIx2: id:86 supp_tuples:2482 level: 41 0 0
RIx3:id:27 k:17 supp:57481vl: 1110

RIx2: id:186 supp_tuples:207 level: 410 1
RIx3:id:27 k:17 supp:57481vl: 1110
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5.7.The effect of the number of selected nodes

Insofar, we have explored the case where we restigcnumber of selected nodes to
5% of the full lattice (to be exact, to at leasbtwodes per height and 5% of the
height’s nodes otherwise). However, we have notaggd the case where we modify
this selectivity parameter to other values. To thigl, we have explored to other
values with a reasonable amount of selectivitycsigally 1% and 10%. We believe

that given the antagonizing goals of fast lattice-gomputation and reasonably
constraint deviation from the optimal solutionggl seem quite appropriate limits for

the selectivity factor.

We variedp% to the values 1%, 5%, 10% akitb the typically used valuds3,10,50
and observed the results. The results are astagishi

— The exact answers and the relaxationn@xSupp(approximation 1) ok
(approximation 3) are identical in all three valoép%, for all values ok.

— The relaxation of height (Approximation 2), whickpéores all the available
lattice, was slightly better wheplo was raised to 10% and slightly worse
when p%=1%. In Fig. 5.22, we depict the differences of a#id 10% with
respect to 10% with dark background and white font.

Based on the above, we can argue that a reasovalle for the selectivity factor
between 1% and 10% suffices to provide the samatsesithout further tuning.



170

p=1% k=3 | k=10 k=50 Approx 2 k=10 k=50 Approx 2 k=10 k=50
QI=3 -114 QI=3 - 0 QI=3 - 0
Ql=4 -233 87 0 QI=4 0 0 QI=4 0 0
QI=5 18 D 81 QI=5 1 QI=5 0 0
QI=6 0 15 -58 QI=6 0 QI=6 0 0
p=5% k=3 | k=10 k=50 Approx 2 k=10 k=50 Approx 2 k=10 k=50
QI=3 -114 QI=3 - 0 QI=3 - 0
QI=4 -233 87 0 QI=4 0 0 QI=4 0 0
QI=5 18 44 0 QI=5 0 0 QI=5 0 0
QI=6 0 15 0 QI=6 0 0 QI=6 0 0
p=10% =3 | k=10 k=50 Approx 2 k=10 k=50 Approx 2 k=10 k=50
-114 QI=3 - 0 QI=3 - 0

0 Ql=4 | o] 0 0 Ql=4 0 0

0 QI=5 0 0 QI=5 0 0

0 QI=6 0 0 QI=6 0 0

Figure 5.22 Differences for height relaxation (Amgmation 2) for different values of p%



171

5.8. Extending the partial lattice at runtime

A critical factor that differentiates the full-late and the partial lattice methods is the
existence of the histogram of the top-acceptablenéds we have seen, the partial
lattice methods approximates the full lattice mdtlyuite well when (a) an exact

answer can be found and (b) when we relax the heghstraint and the search is
expanded throughout all the available lattice. @& other hand, the partial-lattice
method suffers at the relaxationskofnd MaxSupp which are exactly the ones that
are executed over the top-acceptable node and mewelse.

Therefore, it is clear that the presence of théogram of the top-acceptable node
would ameliorate the quality of the provided rek#oas. Of course, this comes at the
price of constructing the node’s histogram at riamet How severely is performance
degraded if we pay the price of runtime constructio gain the high quality of

solutions?

We have experimented with this extension. The #lgorPartial Lattice Negotiation
is altered by adding the computation of the hisdogof the top-acceptable node as

the first step of the algorithm and restricting #pproximations 1 and 3 to this node.

Algorithm PartialLatticeWithTopAcceptableHisto(L,k,h,MaxSupp)
In: Partial lattice L with the histograms for R,H, constraints for k, h, MaxSupp
Out: an exact solution s[v,k,h,supp] or s1,s2,s3, si=[v_i,k_i,h_i,supp_i]
Begin

1. Compute the histogram of v_max if not already in L;

2. if v.max gives exact answer{

3. for every height h, in height(v_max)-1, down to 0{

4. for every node v in h, v in descendants(v_max), {

5. if an exact answer is given by v

6. keep the v with the minimum suppression as v_opt;

7. (break ties by h)

8. }

9. }

10. else{

11. approxSol_1 = ApproximateMaxSupp(L,v_max,k,h,MaxSupp);

12. approxSol_2=ApproximateH(L,v_max,height(v_max),height(top),k,h,MaxSupp);

13. approxSol_3 = ApproximateK(L,v_max,k,h,MaxSupp);

14.

15. return approxSol_1, approxSol_2, approxSol_3;

16. }
End.

Figure 5.23 Algorithm Partial Lattice With Top Agitable Histogram
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We have experimented by keepip¥% to 5%. The results of our experimentation are
very interesting. In a nutshell, the introductidrtfee computation of the histogram for
the top-acceptable node introduces a significaatleead compared to the simple case
of the partial lattice of the order of 140 — 335emsbut, all the solutions practically
coincide with the ones of the full lattice. Spezafly, our results are as follows:

- The cases where an exact answer was given by ltHatfice are all captured
(as opposed to the three misses of the simpleapéattice). Out of these 12
occasions, there are two occasions where thereadisceepancy between the
answer of the full lattice and the answer of theeeded partial lattice.

- The relaxation of height remains practically theneaas with the case of the
partial lattice; remember that this is the caseralad the available lattice is
explored for the lowest possible height where atsmh exists.

- The relaxation ofmaxSuppprovides significant improvements compared to
the case of the simple lattice. As expected, al deviations in terms of
suppressed tuples disappear (remember that theatielas ofmaxSupmndk
are performed at the top-acceptable node).

- Similarly, the deviations in terms of suppressioil k for the relaxation ok
also disappear. Most importantly, all the casesralige partial lattice failed
to follow the behavior of the full lattice have dpgpeared. Again, this is due to
the fact that the relaxation ktakes place on the top-acceptable node too.

- Interms of time, it is clear that the time is pieally stable and dominated by
the cost of the computation of the histogram fa tbp-acceptable node. In
Figures 5.24-5.26 we depict the time and the nunabevisited nodes for

different size of QI and differet, level of topmost, anMaxSupp.

Overall, one can argue with safety that if the titmecompute the histogram for the
top-acceptable node can be tolerated at runtime f@nthe case of our experiments

we believe it does), then the quality of solutioiproves drastically.



Time (msec)
k QI=3 QI=4 QI=5 QI=6
3 144,00 206,67 260,00 334,33
10 143,00 205,33 259,67 334,33
50 142,67 204,00 260,00 334,33
# visited nodes
3 7 4 10 47
10 7 6 19 74
50 7 7 25 88

Figure 5.24 Time and visited nodes for all QI aratigintk

Time (msec)
level QI=3 QI=4 QI=5 QI=6
Low 153,33 197 259,33 327,66
Low-middle 145,33 202,66 267,33 325,33
middle 144 206,66 262 310,66
# of visited nodes
Low 4 8 23 74
Low-middle 7 6 19 74
middle 9 9 11 27

Figure 5.25 Time and visited nodes for all QI aratigt level

Time(msec)
Max_supp QI=3 QI=4 QI=5 QI=6

32 142,33 193,33 270 333,66

321 139,66 193 269 333,33

3216 137,66 193 269 334

# visited nodes

32 5 7 26 88

321 7 6 19 74

3216 7 4 4 25

Figure 5.26 Time and visited nodes for all QI aratfight
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Exact =3 | k=10 | k=50 Exact =3 | k=10 | k=50 Exact k=3 | k=10 | k=50
QI=3 0 0 0 QI=3 0 0 0 QI=3 0 0 0
QI=4 -142 - - QI=4 1 - - Ql=4 0 - -
QI=5 - - - QI=5 - - - QI=5 - - -
QI=6 - - - QI=6 - - - QI=6 - - -
Approx1 | k=3 | k=10 | k=50 Approx1 | k=3 | k=10 | k=50 Approx1 | k=3 | k=10 | k=50
QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 - 0 0 QI=4 - 0 0 QI=4 -

QI=5 0 0 0 QI=5 0 0 0 QI=5

QI=6 0 0 0 QI=6 0 0 0 QI=6 0 0 0

Approx2 | k=3 | k=10 | k=50 Approx2 | k=3 | k=10 | k=50 Approx2 | k=3 | k=10 | k=50

QI=3 - - - QI=3 - - - QI=3 - . .
QI=4 - 87 o| | qQi=4 - 0 0| |oqi=4 - 0 0
QI=5 18 44 o| | qi=s 0 0 o| |aqI=s 0 0 0
QI=6 0 15 o| | qi=6 0 0 o| |qi=6 0 0 0

Approx3 | k=3 | k=10 | k=50 Approx 3 =3 | k=10 | k=50 Approx 3 | k=3 | k=10 | k=50

QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 - 0 0 Ql=4 - 0 0 QI=4 - 0 0
QI=5 - - - QI=5 - - - QI=5 - - -
QI=6 - - - QI=6 - - - QI=6 - - -

Figure 5.27 Summary of Qos deterioration for varkatwith vmax histogram
construction)
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low- low- low-
Exact low | middle | middle Exact low | middle | middle Exact low | middle | middle
QI=3 0 0 0 QI=3 0 0 0 QI=3 0 0 0
QI=4 - - 0 QI=4 - - 0 QI=4 - - 0
QI=5 - - - QI=5 - - - QI=5 - - -
QI=6 - - - QI=6 - - - QI=6 - - -
low- low- low-
Approx 1 | low | middle | middle Approx 1 | low | middle | middle Approx 1 | low | middle | middle
QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 0 0 - QI=4 0 0 - QI=4 0 0 -
QI=5 0 0 0 QI=5 0 0 0 QI=5 0 0 0
QI=6 0 0 0 QI=6 0 0 0 QI=6 0 0 0
low- low- low-
Approx 2 | low | middle | middle Approx 2 | low | middle | middle Approx 2 | low | middle | middle
QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 87 87 - QI=4 0 0 - QI=4 0 0 -
QI=5 44 44 0 QI=5 0 0 0 QI=5 0 0 0
QI=6 15 15 0 QI=6 0 0 0 QI=6 0 0 0
low- low- low-
Approx 3 | low | middle | middle Approx 3 | low | middle | middle Approx 3 | low | middle | middle
QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 - - - QI=4 - - - QI=4 - - -
QI=5 - - 0 QI=5 - - 0 QI=5 - - 0
QI=6 - - 0 QI=6 - - 0 QI=6 - - 0

Figure 5.28 Summary of Qos deterioration for varlaight (with vmax histogram

construction)
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Exact 32 | 321 | 3216 Exact 32 | 321 | 3216 Exact 32| 321 | 3216
QI=3 - 0 0 QI=3 - 0 0 QI=3 - 0 0
QI=4 - - 239 QIl=4 - - 0 QIl=4 - - 0
QI=5 - - 0 QI=5 - - 0 QI=5 - - 0
QI=6 - - - QI=6 - - - QI=6 - - -
Approx 1 32 | 321 3216 Approx 1 32 | 321 3216 Approx 1 32 | 321 3216
QI=3 0 - - QI=3 0 - - QI=3 0 - -
QI=4 0 0 - Ql=4 0 0 - QIl=4 0 0 -
QI=5 0 0 - QI=5 0 0 - QI=5 0 0 -
QI=6 0 0 0 QI=6 0 0 0 QI=6 0 0 0
Approx 2 32| 321 3216 Approx 2 32| 321 3216 Approx 2 32 | 321 3216
QI=3 1 - - QI=3 0 - - QI=3 0 - -
QI=4 1 87 - QIl=4 0 0 - QIl=4 0 0 -
QI=5 0 44 - QI=5 0 0 0 QI=5 0 0 -
QI=6 0 15 0 QI=6 0 0 0 QI=6 0 0 0
Approx 3 32 | 321 3216 Approx 3 32 | 321 3216 Approx 3 32 | 321 3216
QI=3 0 - QI=3 0 - - QI=3 0 - -
QI=4 - 0 - QIl=4 - 0 - QIl=4 - 0 -
QI=5 - - - QI=5 - - - QI=5 - - -
QI=6 - - 0 QI=6 - - 0 QI=6 - - 0

Figure 5.29 Summary of Qos deterioration for varrmaxSupp (with vmax histogram

construction)
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5.9. Summary of findings

We have experimented for the effectiveness andiefity of the proposed method
over two data sets, the Adult and the IPUMS dats, s@th the same parameters as
we have experimented in the full lattice approach.

In summary, we can state the following about tingpde partial lattice construction:

- The exact answering and the answering for the agilax of height (that explores
all the available lattice) provide very good appneations to the optimal
solutions provided by the exact lattice. Specifical

(a) Only 3 out of 10 exact answers are missed and cosaped by relaxations
(b) The height relaxation has very small, or zero dewig from the suggestions
of the full-lattice method.

- The relaxation of suppression provides answers dhatgravitated towards the
lower parts of the sublattice of the top-acceptatnde and, thus, result in high
values of suppression as compared to the onesdaa\by the top-acceptable
node in the full lattice approach.

- The relaxation of k was already having a hard tifimeling answers in the
full-lattice approach. This becomes worse in theigldattice approach and few
results are returned.

Concerning the rest of the problem’s parameters;amestate the following:

— The time needed to answer a user request rangesdre.33 — 2 msecs for
the case of simple partial lattice

— The increase ok increases the search space for the relaxatioessdme
happens as thmaxSupps decreased

— The size of QI is a determining factor for the bheba of the proposed
method. Observe that small QI sizes give exact arsvhAt the same time, the
size of the partial lattice, and consequently titme to construct its histograms
is proportional to the selectivity factor. For exae) in the case of QI=6 with
p = 5%, the lattice size is 94 —i.e., the 5.2%hef full lattice with 1792 nodes.

The extension that computes the histogram of thesébection node at runtime results
in
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- atime penalty of 0.1 — 0.3 sec;
- a drastic improvement of the two relaxations thaffesed in the previous
approach (identical behavior to the case of thiddittice);
— small improvement for the exact answers and no orgment for the relaxation
of height.
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CHAPTER 6. RELATED WORK

6.1 Alternative techniques
6.2 Generalization

6.3 Suppression without generalization

The problem of preserving data privacy has beeansktely studied both in the past

and in the recent literature. Previous to the ‘G0, largest part of research was
conducted in the context of statistical databaaes, several techniques have been
proposed that involve swapping values and addingerno the data in order to meet a
general statistical property [AdWo089]. During tHa9s, the area received a renewed
interest by the research community. In this sectiwa cover the most important

papers that are related to our approach; we reéemterested reader to the excellent

survey of Fung et al. [FWCY10] for further probing.

Privacy in the field of data management deals wita problem of concealing
sensitive information about individual records with destroying the data mining
utility of the published data set. Take for examible case of medical records of a
relation T(Name,Age,ZipCode,Diseasthat is to be exported to analysts for data
mining purposes. On the one hand, our aim is teigeothe analysts with as much
statistically important information as possible;tbe other hand, we want to hide the
relationship of individuals (identified by thelentifier attribute Nam¢g with the
sensitiveattribute Disease.This equilibrium among goals is primarily achievied
removing the statistically insignificant attribudamefrom the published version of
the relation. Unfortunately, it is still possible breach the individuals’ privacy via
guasi-identifier attributes (in our exampleAge and ZipCodg which can convey
contextual information to an attacker about theceafed identifier attributes and
their linkage to sensitive attributes (in our exdémp@ patient’s neighbor who knows
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the zip code and age of a patient can reason opdtient’s disease if there are no

other patients with similar characteristics). Foistpurpose three main families of

techniques has been presented to preserve data:

Domain generalization which is the main techniquel@ed by the research

literature with several sub-categories.

Perturbation and control introduction of noise

Anatomization of the published relation to separidte coexistence of quasi-

identifiers and sensitive values in the same phbtisrecord

6.1. Alterative techniques

The last of these methods (also latest in termwioén they were introduced), is

anatomization. Anatomization dictates that we should not seek talifg the quasi-

identifiers or the sensitive attribute, but, rathdrde-associates the relationship

between them. So, we organize records in groupgd) geoup with a variant set of

sensitive values and we publish two tables: oné whe sensitive values of each

group and another with the quasi-identifiers andraup id in the place of the

sensitive value. In Figure 6.1 we demonstrate ffectof anatomizing the data of

table in Figure 2.1. Unfortunately, the data préseérby anatomization are not very

helpful for the well-meaning users due to theirunat(remember that the published

data can have thousands of records).

Group
ID

Hours
per week

Count

1

40

1

50

45

30

50

60

54

[\SIN BN \CIN BN O B \O)

40

Age Work_class Education | Group ID
39 Private Hs-grad 1
38 Private Hs-grad 1
37 Private Hs-grad 1
38 Private 11th 1
28 Loc-gov Bachelors 1
31 Federal-gov Master 2
30 State-gov Bachelors 2
32 Self-emp-not-inc Bachelors 2
35 Self-emp-inc Prof-school 2
33 Self-emp-inc Assoc-acd 2

@)

(b)

Figure 6.1 Anatomization: (a) quasi identifier ®lkdnd, (b) sensitive attribute.
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A second method for the publishing of data involiresperturbationof tuples. These
means that we distort the sensitive values of tiidighed tuples while keeping the
statistical properties of the published data setlase as possible to the ones of the
original data set. We refer the interested rean@F¥WCY10] for a detailed survey of
the works in this area. The main problems withyrbdtion are that (a) the published
data contain noise (sometimes statistically sigaiit) and it is possible that the well-
meaning data analysts are annoyed by its presertéba the noise introduction is
performed in a way that retains a specific sta@stiproperty, thus resulting in
sometimes significant deviations for any otheristiaal measure of the published

data set.

6.2.Generalization

The third area, provides a privacy-preserving wersf original data by replacing the
values of the original table with abstractions (eajvalue of 451** for zip code
instead of 45110). The ultimate goal in terms a¥gmy is to conceal each individual
tuple into an appropriately constructed group dadan a way that an attacker cannot
easily reason about the participation of individuato the group.

This method is calledjeneralizationas it iteratively generalizes the values of the
published data set in higher levels of abstractiotl the desired level of privacy is
attained. In every step of this process, each iddal tuple becomes a member of a
larger group of tuples that all share the sameiqdastifier values (‘hidden in the
crowd). If the data set is almost capturing thiz’gey criterion for most of its groups
and there are only few groups that violate it, east of generalizing again, it is
possible to resort in the removal of the tupleshefse outlier groups. This process is
calledsuppressionThe area of generalization is organized in tistdeareas.

— Full-domain generalization, or global recoding

— Multidimensional recoding

— Local recoding

The three main classes of works to which the rdlditerature around data
generalization is classified, all have their owmrtteristics, along with advantages
and disadvantages. Full domain generalization @bajlrecoding assumes a fixed set
of anonymization levels to which values are gemszdl Each quasi identifier comes

with its own hierarchy of anonymization levels andppings of values. For example,
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ages can come in years, 5 year periods, 10 ye&dgerin accordance to this scheme
at the schema level, age 23 at the year level gethto the interval [21,25] at the 5-
year level and the interval [21,30] at the 10-ydewel. On the other hand,
multidimensional and local recoding instead ofrigyito create groups according to
these hierarchies, they work in the opposite divectthey exploit the distribution of
data in the multidimensional space in order toteréae groups.

Formally, assume a relatiohthat is to be published as a transformed relafibn
The semanticf the generalization process can be regardetieasxecution of two
steps:

(a) First, the employed method partitiomdo a set of disjoint group®, = {P; U
P, U ... Py}, such that the privacy constraint holds for egobup.

(b) Then,T* is produced by removing the identifier attribditem T and replacing
the values of the quasi identifier attributes watbharacteristic representation;
this is typically the generalized variants of theenodata values (e.g., replace
zip code 45110 with 451**).

Note that this is the fundamental intuition of ghecess and not necessarily the
algorithmic steps to be followed

The different categories of the generalization farof algorithms are distinguished
mainly by the way they partition data. Global reogdreplaces values independently
of their group, whereas local as well as multidisienal recoding replace values with
respect to the contents of the group. The diffezenf multidimensional from local
recoding is that the former groups tuples in digjoegions of the multidimensional
space, whereas local recoding allows dense regmotiend” data to sparse regions so
that every group satisfies the privacy constraliite replacement is typically done
either by using a predefined hierarchy or by takimgminimum bounding boaf the
region in the multidimensional space; however, ofresentation methods can be
devised too (such as the choice of representatges from each group). Observe
that in terms of our formal definition, the constied groups are not necessarily
equivalence classes: in local recoding, two tuplgh same quasi identifier values
may end up in different groups and different rephaent (i.e., anonymization)

method.
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Full-domain generalization is supported by quitBcefnt algorithms. The problem
with full-domain generalization is that it generak sparse and dense regions of the
multidimensional space in the same way. So, it ggizes all the data set to the
generalization scheme needed by the weakest gfatgps. To avoid this, suppression
can be used, but then, the utility of the publistath set diminishes as a (sometimes
large) part of it is removed. On the contrary, nduthensional and local recoding
avoid suppression and instead of aligning the ggafguples to the level hierarchies,
they align the bounds of the groups to the distidou of tuples in the
multidimensional space. This is not so efficienirashe case of global recoding but
provides higher utility for the detailed inspectiofithe tuples. Unfortunately, the data
mining tools suffer since the data are not in a bgemeous level of abstraction and
therefore the classification or association ruked aire extracted miss information. At
the same time, the users are not always happytiétigrouping of tuples given by the
local recoding algorithms, as they are accustonoethé semantically meaningful

hierarchies that are used in the case of globaldiag.

6.2.1.Full-domain generalization

Full domain generalization is quite fast, since toenplexity of the anonymization
process mainly depends on the combinations of de\@ie per quasi identifier that
must be tested. Here, we cover the (rather strfaigtdrd) case of k-anonymity

quickly, and expand the case of |-diversity more.

K-anonymity. In [Sama0l, Swee02] the fundamental notion ofndrymity is
introduced along with the techniques of generabratand suppression that are
mainly used in order to transform the initial data® an anonymized one that meets
the k-anonymity principle. From that time, theres geen a large body of work that
contributes to data privacy using several k-anomgtion algorithms. In [BaAg05],
the authors introduce an algorithm that providesanonymization of the data set
based on the total ordering of the domains of ftsbates. The idea is that even
categorical domains are mapped to integers anteeative process examines all the
possibilities of grouping these values in abstoacgroups (via an enumeration tree).

Every anonymization scheme is accompanied by teeioderms of information loss;
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due to monotonicity reasons, a node can be pruniesidescendants cannot meet the
optimal cost. LeFevre et.al [LeDRO05] have proposedear way to describe full-
domain generalization and introduce Incognito, ansoand complete algorithm for
producing k-anonymous full domain generalizatiorssng bottom-up aggregation
along generalization dimensions and a-priori compor [AgSr94]; we discuss
Incognito in more detail later in this section @nit has been the basis for the

recursive construction of our lattices and theplesation.

L-diversity. The achievement of k-anonymity alone does not guaeaimmunity to
attacks: the authors of [MaGK06, MKGVO07] presentgsosevere privacy problems
that can occur in a k-anonymized dataset when tbieildition of values for the
sensitive attribute within a group is small (a $ngalue in the worst case); to
alleviate the problem, the authors introduce |-tiitg as a new privacy-aware
principle. The main idea of the paper is to go Imely&-anonymity in ensuring that
identifier attributes are not linked to their sén& counterparts via background
knowledge of the attacker. The two highlighted enéibilities of k-anonymity are (a)
the possibility of a whole group to have the sameesgive value and (b) the
possibility of having too few sensitive values imetsame group. In both cases, the
individuals are not ‘hidden in the crowd’ of thgroup since all (or, a large humber
of) the members of the group have the same seasitilue. If this is the case, if an
attacker relates an individual with a certain grotlen he can confer with high
probability the sensitive values of the hidden vidiial.
L-diversity is a criterion that tells us whethegmup is versatile enough in order to
effectively hide its members by exploiting bothaage number of members and a
large number of ‘well-represented’ values. The psgis that the probability of
relating an individual with its sensitive valuesl@sv, even in the case where the
attacker can identify the individual’s group. Theleors of [MaGKO06] propose three
ways to implement the term ‘well-represented’:

(1) the distinct number of sensitive values in a grshipuld be higher than

(i) the entropy of each group should be higher thg()

(i)  recursive I-diversity is achieved for each grougséme that we sort the

values of an sensitive attribute by their frequeimcthe group; lety, ro, ...,

rm be the respective frequencies. In this case, \gaine that the highest
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frequency (1) is not greater than the sum of the lowéstn] frequenciesr,
..., 'm), multiplied by a scale factar. (In other words, the frequent values

are not too frequent and the infrequent valuesiaté¢oo infrequent).

Incognito. The Incognito algorithm [LeDRO5] is an efficientgalithm for the
extraction of all the possible generalizations oflata set in order to achieve the
criterion of k-anonymity or I-diversity.
PropertiesThe pillars of the algorithm are three importarggerties that characterize
the nodes of the lattice and exploit the monotoyicf the hierarchies and the
resulting groupings that derive from it. Specifigalassuming a node of the lattice
that is found to be k-anonymoulese properties are:
- Generalization Nodes found higher in the lattice that are derivexnf this
node, are also k-anonymous
- Rollup property Frequency sets of higher nodes can be computed fhe
current ones via the ancestor relationships ofitivelved values in their
domain hierarchies
- Subset propertyNodes with fewer QI attributes are also anonymous
Specifically, the Generalization property dictatieat if a relationT is k-anonymous
over a set of quasi-identifier attributPs thenT is also k-anonymous over a set of
quasi-identifier attribute§) that are ancestors of the attributedPah the respective
a solution, then, its ancestors also qualify astgmis. This is a simple outcome of the
fact that the groups of the higher level node acelpced by mergers of the groups at
the lower level node; this results in fewer groaptarger cardinality.
The Rollup property states that once an ancestde r®oa candidate solution, we can
also compute its groups by exploiting the grouparof of the lower level nodes that
are its descendants. Specifically, this is donenigpping the QI values of the
descendant’s groups to their respective valueshef dncestor level; then, the
frequency sets of all the descendant’'s groups al@atmapped to the same ancestor
group are summed to compute its frequency set. @b$egure 6.2, where the values
for the quasi-identifieAge(A), Sex(S), Country(Z) are rolled-up from the exact level
of age (on the left of the figure) to the age levieb-year intervals (on the right of the

figure): the new frequency sets are simple sunteefespective frequency sets at the
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detailed level. The same applies again when wéduranonymized the data set as

depicted at the bottom of Figure 6.2.

4Age ;Iex ICtZlLil::try co;mt 1._, Age Sex | Country | count
47 | F Greece 4 40-44 | M [talia 6
TRREYERETI ; > 4549 |F  Greece | 11
49 | F Greece 7 1

L

Age Sex | Country | count
40-49 | * Europe | 17

Figure 6.2 Incognito’s Rollup Property

Finally, the Subset property dictates that if yopand the quasi-identifier set with a
new member (i.e., add an extra attribute to thes€}), then the groups are de-
aggregated. The inverse is also useful, sincedimmval of an attribute from the QlI,
results in the merging of groups. Therefore, ibdais k-anonymous when the QI-set
identifier set. More importantly, in a manner thesembles Apriori pruning a lot, if a
node is not k-anonymous when it is tested urdl@ttributes as the quasi-identifier
set, then there is no need to test it for k-anotyrfor any superset of thegg¢
attributes, either.

Algorithm. Like all anonymization algorithms, Incognito usas input the original
data set (denoted a3, the set of attributes that constitute the qudesitifier set
(denoted axQl) along with their domain hierarchies and a valoe the privacy
criterion — here we udefor k-anonymity. The output of the algorithm igi@ph that

is a subset of the lattice formed by the Cartepraaduct of the domain hierarchies of
the quasi-identifier set and contains all the galngations that fulfill the input privacy
criterion.

The crux of the algorithm is the stepwise expansibthe quasi-identifier set and the
exploration of the respective intermediate lattigeserated each time. The algorithm
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starts with all the possible Ql-sets of size one ,(checks each attribute in isolation).
Every intermediate lattice is visited via a breafiltht search, starting from the bottom
all the way to the top. During this traversal, gatieations that fail to fulfill the k-
anonymity criterion are pruned. This check is gagérformed by counting the
number of records per frequency set. Once allckstiof quasi-identifier sizd have

been explored, their subsets that survive the pgurmprocess are combined to

and joins them. An interesting, Apriori-like, opiation is also the fact that for a
node of QI-sizeN to be consideredll its generating nodes of QI-sikel must have
survived the process. This process terminates wedesignated quasi-identifier set
of attributes is explored.

Within this process, the aforementioned propesiesexploited: if a lower-level node
is found to be k-anonymous, all the nodes at hidgwezls of generalization that can
be derived from it are marked as k-anonymous tooteldver, the groups of higher-

level nodes are produced by the groups of loweslleades whenever this is possible.

The authors prove that the algorithm is sound ¢ihletion generated is correct and
does not violate the consistency constraints tisatiation to the problem described is
required to have) and complete (all correct sohgdiare returned).

Moreover, two extensions are also suggested:

(a) Due to the pruning process, some low level nodesat part of the solution;
however they can be reused to generate the resedurviving nodes. So, it
is possible to pre-compute these ‘super-root’ naesd avoid computing the
lower parts of the output lattice all the way frtime base relation.

(b) All possible subsets of the quasi-identifier sizéhe base-level generalization
are pre-computed and re-used to avoid computingidewel solutions from
the base relation.

6.2.2.Multidimensional and local recoding

Multidimensional recoding. Multidimensional recoding can be achieved via the
Mondrian algorithm [LeDRO06] which appears to beica#int and produces results
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with “more information at the browsing level” thgtobal generalization. However, if

one wishes to work with predetermined hierarchiésndrian is not suitable.

Local recoding Fast algorithms for local recoding do exist [Gh8®]; however,
they do suffer from the same problem as Mondriley tproduce arbitrary (and, in
fact, overlapping) regions for the grouping of smudata. Algorithms performing
local recoding with hierarchies are also availalju+06]; however, their
performance is very slow for an on-line setting if@@a mentions that the Top-Down
method of Xu et al takes around 2 hours for seitimtpere the Hilbert Method of
Ghinita et al., and the Mondrian method of Lefeeteal., take between 10 to 60
seconds; Xu et al in their KDD’'06 paper mention: the runtime of the top-down
approach is just less than 6 times slower thanahtite MultiDim method.”).

k-anonymity as spatial indexing.lwuchukwu and Naughton [IwNaO7] utilize an R-
tree to speed up the anonymization process. Tleigdthat the internal nodes of the
R-tree can be tuned in order to guarantee thaléseendants of an internal node can
always operate in groups of tuples of size no nlea@k. Once this is achieved, the
anonymization process is very fast; in fact, it e#so be easily tuned to the valuekof
the user desires for k-anonymity. The method operatell when an intuitive
ordering of the detailed values can be achievedther words, whenever the domain
of an attribute can be isomorphically mapped tostteof integers in an intuitive way,
the R-tree approach is a very good solution. Theeeseveral benefits from the R-tree
approach: it can be incrementally updated, it cartumed to accommodate specific
workloads fast, it can provide the aforementiomealti-granular anonymity and it
provides good anonymizations very fast. At the saime, it is not straightforward
how the method operates in categorical domainsnaganied by hierarchies. In this
case (which is also the case that we explore inpagper), it is not obvious that an
internal node can always have a bounded numbeesdethdants within the ranges

required by the R-tree.
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6.3. Suppression without generalization

Finally, despite the fact that the bulk of the e#sb has been focused on various
privacy criteria beyond k-anonymity and I|-diversitgs well as towards efficient

algorithms, mainly for local recoding, there exmime papers that explore the
theoretical limits of optimal anonymization withspect to suppression and provide
algorithms for its approximation. In this sectioe wresent these works as they seem

to be the closest to our case.

Optimality and Approximate Algorithms for k-anonymi ty. The problem of finding
the best possible anonymization scheme is in gri@cNP-hard. The theoretical
foundations of the problem are given in [MeWiO4heT problem investigated in
[MeWi04] is based on the idea of locally recodindada set without reference to any
hierarchies of values for the quasi-identifierse@fically, the problem is to try to
minimize the number of cells (attention: cells, maples) that are suppressed (i.e.,
they take a value of) in order to achieve k-anonymity. The authors MEWi0O4]
prove that the problem is NP-hard and provide agpration bounds for it, based on
the idea of theliameterof a set (which measures the maximum distancedsstvany
two tuples of the set, measured as the numberlisfinewhich they differ). It is also
interesting to note that the groups of the partitivat are generated can be of bounded
size: they are —of course- larger or equal thasut they need not be larger thdal2
The authors provide an algorithm for the problemadjusting a well-known greedy
algorithm for the set cover problem to the settofgthe problem. The set to be
covered is the set of tuples of the table to bengmized, sayl, and therefore, the
input to the algorithm is the set of all sets oplés that are subsets &f whose
cardinality is in the range ofk[ 2k-1]. The greedy algorithm requires a penalty
measure for each of these subsets that is seleatddtime and this is the diameter of
the subset. The greedy algorithm results in a @etrcof the original tabld@; since a
cover is not a partition (i.e., a member of thegimal data set may be assigned to
more than one of the covering sets) an adjustmeist le made in order to turn the
cover to a partition. The adjustment is simple,tapplied repeatedly until no tuple

belongs to two sets: if a tuple belongs to two,sete of which is larger thag then,
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it is removed from this set; if there are two getsvhich the tuple belongs and they
are both of siz&, they are merged in one set.

Park and Shim in [PaSh07] extend the fundamentaroagmation approach of
[MeWi04] with different levels of approximation. €hauthors still operate in the
same setting as [MeWi04] — i.e., local recodinghwib hierarchies and counting of
suppressed cells— and start by changing the pemaityhe greedy algorithm to
operate on the basis of tiseippression lengtlof a set, which is the number of
attributes where a value efmust be assigned, in any of the tuples of theStdt,. the
previous approach suffers from the problem of hgnantoo large input to generate.
So, the authors of [PaSh07] extend this approacloliserving that the frequent
itemsets of the tabl€ can serve as good starting point for identifying input. The
idea is that if a tuplé contains a frequent itemset that spans some dttitoutes
(which are called the representativeg)pit is possibly a good choice to leave them
intact and consider the rest of the values as dates for suppression. For each
frequent itemset (frequent being the itemset withpert larger thark in this paper)
we compute the set of all tuples Bfthat contain it; this set is added to a Bgd
which is inserted as input to the proposed algoritiseveral adjustments are also
made in the algorithm, since it is possible thahs®f these sets are too large (larger
than %-1) than what is necessary. Moreover, the authoowepthat instead of
frequent itemsets, it is also possible to operatk wlosed frequent itemsets with the
same approximation factor. In fact, the authorswshbat it is also possible to
constrain the size of the suppression length bgctof of # with a bounded scale
factor of f to the approximation factor. Finally, the authgeovide a greedy
algorithm that takes as input the subsetd dhat are based on the closed frequent
itemsets ofT and sorts them with respect to their suppresseoigth in increasing
order. Then, the algorithm each time picks the sextof tuples and retains only its
tuples not already covered; this new set is consttlas a possible group of the final
partition if its size is larger or equal thenThe authors have experimented with data
sets of varying size; these experiments demonstizdé this last algorithm is
significantly faster and provides a very good amairsuppression to the data set.

Curse of dimensionality on k-anonymity.In [Agg05] the author tries to prove that

the amount of suppressed data increases more amne asothe number of the
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attributes that can act as quasi-identifiers iresa The author starts with a
theoretical analysis of how achieving k-anonymitg generalization relates to the
probability that k-anonymity is violated for an dréry record in a data set. The
author assumes that every attribute in the dataseserve as a quasi-identifier. Also,
the author assumes an identical normal distribufimna set ofd independent
dimensions of quantitative (i.e., not categoricadture. Moreover, the method of
generalization is reduced to replacing a tuple W#hth range of a surrounding “cell”
around it (practically assigning a range of valt@severy dimension). Then, the
author proves that the probability of achievingncaymity tends to zero as the
number of dimensions rises to infinite. This preaily means that since no data point
in the data set can achieve k-anonymity at highedsionalities, all the data set will
have to be suppressed. Similarly, the second resulthe paper relates to
anonymization via clustering and demonstrates #sathe number of dimensions
tends to infinite, the replacement of a value Byappropriate cluster is meaningless,
as the highest possible distance of two pointsachecluster in the high-dimensional
space is practically the same with the maximumadis® of any two points in the
whole data set. Finally, the author performs a fatmn study for the aforementioned
results and works with two data sets: (a) a syitltgta set containing 10000 points
and 50 dimensions, generated in a way that the aumibclusters can be regulated
and (b) a market basket data set generated viBMeaenerator, which contains data
with higher skew. In both cases, the amount of segg®ed tuples quickly rose from
0% in low dimensionalities to 80-90% in high dimemslities for the simple case of
2-anonymity.

This is one the few papers dealing with the probt#mnsuppression in k-anonymity.
The paper is focused to the theoretical study efeifiect of high dimensionality to the
suppression; since these theoretical results demadeshat high dimensionalities are
rather prohibitive for anonymization, we have coaisied ourselves to more practical
settings that we have explored thoroughly. So, um approach, we explore the
problem taking into account various other paranset¢hierarchies for the
generalization, different values of k, differeniviacy criteria, and a more constrained
approach to the dimensionality of the data setgoaspared to the theoretical limits
of [Agg05]).
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CHAPTER 7. CONCLUSIONS

The goal of this thesis has been to extend ourrmdeated knowledge and proposed
on-line methods for the problem of privacy presegvdata publishing. The ultimate
goal pursuded by this thesis is to equip the datatar with the means to fine-tune
several parameters around the privacy-preservirgighing of his data with other

stakeholders by negotiating the values of supprasgyeneralization and privacy
criterion in user-time, in order to quickly reachcansensus on the anonymization
scheme among all interested stakeholders. Spdbjificathis thesis we have attacked

the following problems, not previously exploredthg research community.

The first goal of this thesis has been to study itterplay of suppression,
generalization and privacy criterion and record hoshanges to one of these
parameters affect the two othefBhis would also determine whether the problem is
worth investigating or not. We have worked with ttréteria of k-anonymity and
simple I-diversity over two data sets, the Aduldahe IPUMS data set and our
findings can be summarized as follows:
Overall, we can safely claim that the problem islidvaand important. Low
generalization heights (that are of more interest$ due to their information utility),
or large values for the privacy criterion (which e more interest to us due to the
increased privacy it offers to individuals), or eneous choice of generalization
scheme can result in large amounts of suppresstd daite possibly much higher as
compared to more careful choices concerning theegsization scheme
Our detailed findings concerning the relationshighe involved parameters can be
summarized as follows:

— As the generalization height increases, the suppesirops quickly at small

heights; the drop in suppression is less impoitahigher heights, where the
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number of suppressed tuples becomes statisticaibll sand drops slowly.
Interestingly, the overall trend for the decreakssuppression is practically the
same for different values & or | — of course, with different amounts of
suppressed tuples.

— As the value for the privacy criterion (e.§.jn k-anonymity) increases, the
suppression increases too. This is especially itapbrin lower heights of
generalization that are both important due to theformation utility and
demonstrate high volumes of suppression.

— As the size of the quasi identifier set increasks, effect to suppression is
significant, as suppression increases too — sorastigirastically. Some
guantitative evaluations around this theme sugtest (a) given a specific
height and k an increase in QI size by one inceedlse suppression by a
factor of 2 — 3; (b) to attain the same suppres#ioeshold an increase in QI
size by one, requires ascending 1-2 levels fordagmity and 2-3 levels for |-
diversity.

— Not all attributes, generalization levels and, ®mngently, generalization
schemes have the same effect to suppressionndttésvorthy that within the
same height, the minimum possible suppression pgoapnately 2.5 times
lower than the average for k-anonymity and 3 tirmsers for I-diversity.
This is especially evident in cases where the sgswn has high values or
values that cannot really be tolerated; on therdthead, for too large values of
suppression (e.g., too large QIls lgrthe relationship between average and
minimum value does not follow this rule.

— Based on the above, it is important that for cas¢ do matter, and where we
can really attain good amounts for tuple suppresstas really important to
carefully pick the generalization scheme that wilhimize this suppression.
The faster we identify these generalization schethesfaster the process

completes.

A second goal of this thesis was to provide efficivays that allow the user achieve
an anonymous data set with constraints over thegdization height, the amount of

suppression and the tunable value of the privaderon. A third, related goal has
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been the ability to provide suggestions to the ubet are close to his original
desideratum around generalization, suppression@ndcy.

We have attacked the above two goals via threeadstiBoth methods are based on
precomputing statistical information for severakgible generalization schemes (i.e.,
triplets of values for the minimum allowed valuer fthe privacy criterion, the
maximum allowed value for the generalization hesghgr attribute and the maximum
tolerable amount of suppression). We organize gdimation schemes in a lattice and
compute histograms (appropriate to the employedapyi criterion) for the nodes of
the lattice.

The first method we have employed pays the priggrécompute the histograms for
all the nodes in the lattice. Then, at runtime, uker gives as input three values, one
for each of the abovementioned criteria as a dasireonstraint. The algorithm we
have introduced checks whether there exists algessolution to the that satisfies all
criteria and outputs either the scheme of lowesghtethat can respect all three
criteria or, alternative schemes that provide rafiaxs to the user input. The three
relaxations are based on the idea of keeping tloeofwthe three values of the user
input fixed and finding the closest possible appr@tion for the third parameter. We
have proved that the proposed method is guararitegaovide the best possible
answers for the given user requests. Our expersnedicate that this is performed in
less than 10 milliseconds for typical data setsluise¢he research literature.

However, the method comes at a price, and speltyficd the price of precomputing
the histograms for all the nodes of the latticeisTprecomputation requires several
minutes (e.g., our experiments gave 20-40 minubestife largest quasi-identifier
sets). In one wishes to avoid this precomputatienpnovide a second method that
precomputes only a small subset of the latticedesowith their histogram. To this
end, we have also addressed the problem of whidesof the lattice to select. Our
approach is based on the ranking of generalizalémels with respect to their
grouping power (since, the larger the groups, ¢ise the suppression). Then, we try to
rank the combinations of levels for all the possipéneralization schemes and pick a
fixed subset of them (e.g., 5%). Our experimentaaestrate a linear speedup of the
precomputation time with the approximation factbine on-line answering has been

sped up (due to the significantly smaller size had tattice) and remain within few
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milliseconds per user request. At the same time gtinality of solution is quite good
for (a) the case where an exact answer existskgrti€ relaxation requires exploring
the full lattice. The price to pay however, is leghin a couple of relaxations where
the proposed solution is either gravitated towdmiger nodes in the lattice (and

provides, thus, solutions with high suppressioos)fails to give an answer at all.

Finally, by observing that the two out of the theggroximations are due to the top-
acceptable node, we have proposed a third metldaddmputes the histogram of this
node at runtime. Based on our experiments, the tpeealty for this extra
computation is in the order of 0.1 — 0.3 sec ardiwo relaxations that suffered in the
previous approach demonstrated an identical beh&vithe case of the full lattice;
therefore, if this time overhead can be toleratetéims of user time (and for the case
of our experiments we believe it does), then thalityu of solution improves

drastically.

Future work can take up on our results and expatternative directions. A first
possible way to go is the attempt to come up witmes deeper understanding of the
laws connecting the problem parameters and the urmas effects. So,
experimentations over different data sets are requb observe the interrelationships
of the parameters and how they affect the amoustippression needed.

Second, we could extend the negotiation to othexctions that could serve user
needs. Maybe a user decided that some of thewddshmake the negotiation difficult
and wants to get rid of them. Or maybe, a userdascithat the full domain
generalization method that we support is not gawchim and he would like to work
with an alternative anonymization method. Maybeuker would like to have a quick
preview on what results data mining tools can gorehe anonymization scheme that
our method proposes. All these possible user ngamasjde unexplored turf for

subsequent research
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