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ABSTRACT 

Maria Zerva. MSc in Computer Science, Department of Computer Science and 

Engineering, University of Ioannina, Greece, January 2018. 

Extraction and classification of phases in schema evolution histories 

Advisor: Panos Vassiliadis, Associate Professor. 

 

Software projects that are built on top of relational databases evolve over time just 

like any other software project. Bugs occur and user requirements change and in 

order to keep the users satisfied and provide consistent services, software projects 

have to adapt to the new requirements. The information capacity of a software 

project also needs to be aligned with these requirements resulting in the need to 

evolve the database schema along with the software. Schema evolution affects the 

surrounding applications in both a syntactic and semantic manner, thus making its 

understanding a topic of significance. 

Our fundamental research question is of investigative nature: are there phases in the 

lives of relational schemata? To support our study towards answering the above 

question, we have used 6 free open source software projects that include relational 

databases, whose evolution we have tracked and for which, we have identified the 

changes that took place in each committed version. Based on these data, this Thesis is 

structured along two parts: the first part is of explorative nature, and studies the 

collected data to manually extract phases and patterns in the tables’ lives, whereas the 

second part, proposes an automated method to algorithmically extract these phases. 

The first part of this Thesis addresses the following question: when are tables, attributes 

and foreign keys born and evicted in the life of a schema? Based on the information on 

table and attribute births, deaths and updates, along with the timeline of schema size, 

we have manually derived phases in the life of our 6 database schemata. Our 

characterizations are based on the demonstrated growth (increase of information 

capacity) or maintenance (containing deletions and updates in order to improve the 

quality of the schema). The most interesting finding in our study is that, with a single 

exception, the history of a database schema comes in two mega-phases: (a) a ‚hot‛ 

expansion mega-phase at the start of its life demonstrating growth of information 
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capacity, along with the necessary maintenance, and, (b) a ‚cooling‛ housekeeping 

mega-phase at its middle and later life where either maintenance actions or stillness 

dominate the update activity. We call this phenomenon progressive cooling of the 

schema heartbeat. Several observations support this finding. 

The second part of the Thesis addresses the following question: given the history and 

heartbeat of a schema, can we automatically extract phases in its evolution? Our algorithmic 

method includes four steps. The first step of our method, involves the 

characterization of the releases in terms of the two aforementioned change families, 

growth and maintenance. Based on these characterizations, the second step of the 

method splits the timeline of the schema’s life in phases, by applying a hierarchical 

agglomerative clustering, that clusters together consecutive releases. In the third step 

of our method, we use several measures of clustering quality, such as Silhouette, 

Cohesion and Separation to characterize the discriminating quality of each of the 

derived clusterings. Finally, the fourth step of the method classifies clusters, i.e. 

phases in the life of a schema, in terms of their nature, on the basis of a taxonomy of 

change profiles (e.g., Minor Activity, Restructuring, Intense Evolution, among others).  

The phase extraction and classification method introduced in the second part of this 

Thesis was evaluated with respect to clustering oriented measures and quality 

measures based on our golden standard. The findings of this evaluation show that 

our method performs fairly, having a small error rate and the solutions it produces 

are of significant quality. 
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ΕΚΣΕΣΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΑ ΕΛΛΗΝΙΚΑ 

Μαρία Ζέρβα, ΜΔΕ στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και 

Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Ιανουάριος 2018. 

Εξαγωγή και κατηγοριοποίηση φάσεων στην ιστορία της εξέλιξης σχημάτων 

βάσεων δεδομένων 

Επιβλέπων: Παναγιώτης Βασιλειάδης, Αναπληρωτής Καθηγητής. 

 

Το λογισμικό που είναι σχεδιασμένο βασισμένο σε μία σχεσιακή βάση 

εξελίσσεται με την πάροδο του χρόνου όπως οποιοδήποτε άλλο λογισμικό. 

Συχνά προκύπτουν λάθη ή οι χρήστες ανακαλύπτουν πώς θα ήθελαν επιπλέον 

λειτουργικότητες από το λογισμικό και για να είναι οι χρήστες ικανοποιημένοι 

και να παρέχονται συνεπείς υπηρεσίες, το λογισμικό θα πρέπει να 

προσαρμόζεται στις νέες απαιτήσεις. Η χωρητικότητα της πληροφορίας θα 

πρέπει να συμβαδίζει με τις νέες απαιτήσεις και γι' αυτό το λόγο η ανάγκη για 

εξέλιξη του σχήματος βάσης σε συγχρονισμό με την εξέλιξη του λογισμικού 

είναι ζήτημα μεγάλης σημασίας. Η εξέλιξη του σχήματος επηρεάζει σημαντικά 

τις εφαρμογές που βασίζονται σε αυτό και σε επίπεδο συντακτικό αλλά και σε 

επίπεδο σημασιολογικό. Συνεπώς, η κατανόηση της εξέλιξης του σχήματος 

χρήζει μεγάλης προσοχής. 

Το βασικό ερώτημα που θέλουμε να απαντήσουμε στην παρούσα εργασία είναι 

διερευνητικής φύσεως: υπάρχουν φάσεις στη ζωή των σχεσιακών βάσεων; Για την 

διεκπεραίωση της έρευνας με στόχο την απάντηση του εν λόγω ερωτήματος, 

χρησιμοποιήσαμε έξι συστήματα λογισμικού ανοικτού κώδικα τα οποία 

εμπεριέχουν σχεσιακές βάσεις δεδομένων. Παρακολουθήσαμε την εξέλιξη 

αυτών των βάσεων και εντοπίσαμε τις αλλαγές που έλαβαν χώρα σε κάθε 

δημόσια καταχωρημένη έκδοση του λογισμικού. Με βάση αυτά τα δεδομένα, η 

παρούσα εργασία είναι δομημένη σε δύο μέρη: το πρώτο μέρος είναι 

διερευνητικής φύσεως και μελετά τα συλλεγμένα δεδομένα με στόχο την 

χειροκίνητη εξαγωγή φάσεων και προτύπων συμπεριφοράς στις ζωές των 

πινάκων, ενώ το δεύτερο μέρος, προτείνει μία αυτοματοποιημένη μέθοδο για την 

εξαγωγή των φάσεων με τη χρήση ενός αλγορίθμου που προτείνουμε. 
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Το πρώτο μέρος της εργασίας ασχολείται με την ακόλουθη ερώτηση: πότε  

γεννιούνται και πεθαίνουν οι πίνακες, τα πεδία και τα ξένα κλειδιά στη ζωή ενός 

σχήματος; Βασισμένοι στις πληροφορίες για τις γεννήσεις, θανάτους και 

ενημερώσεις πινάκων και πεδίων, μαζί με την εξέλιξη του μεγέθους του 

σχήματος, εξάγαμε χειροκίνητα φάσεις της ζωής των έξι συνόλων δεδομένων. Οι 

χαρακτηρισμοί μας βασίζονται στην ύπαρξη ανάπτυξης (αύξησης της 

χωρητικότητας της πληροφορίας) ή συντήρησης (περιεκτικότητας σε διαγραφές 

και ενημερώσεις με σκοπό τη βελτίωση του σχήματος της βάσης). Το πιο 

ενδιαφέρον εύρημα της έρευνάς μας είναι, ότι με μία μεμονωμένη εξαίρεση, η 

ιστορία του σχήματος της βάσης αποτελείται από δύο υπέρ-φάσεις: (α) μία 

επεκτατική υπερ-φάση στην αρχή της ζωής του σχήματος, η οποία επιδεικνύει 

αύξηση στη χωρητικότητα της πληροφορίας, και, (β) μία υπέρ-φάση συντήρησης 

στη μέση ή στο τέλος της ζωής του σχήματος, όπου κυριαρχούν είτε εργασίες 

συντηρήσης είτε ηρεμία στην δραστηριότητα ενημέρωσης. Ονομάζουμε αυτό το 

φαινόμενο βαθμιαία ψύξη του παλμού του σχήματος. Πολλές παρατηρήσεις 

υποστηρίζουν το εν λόγω εύρημα. 

Το δεύτερο μέρος της εργασίας ασχολείται με την ακόλουθη ερώτηση: δοθείσης 

της ιστορίας και του παλμού ενός σχήματος, μπορούμε να εξάγουμε φάσεις της 

εξέλιξής του με αυτοματοποιημένο τρόπο? Η αλγοριθμική μας μέθοδος 

αποτελείται από τέσσερα βήματα. Το πρώτο μέρος της μεθόδου μας 

περιλαμβάνει το χαρακτηρισμό των δημοσίων releases του λογισμικού σε σχέση 

με τις δύο προαναφερθείσες οικογένειες αλλαγών, ανάπτυξη και συντήρηση. 

Βασισμένοι σε αυτούς τους χαρακτηρισμούς, το δεύτερο βήμα της μεθόδου σπάει 

το χρονοδιάγραμμα της ζωής του σχήματος σε φάσεις, εφαρμόζοντας μία 

ιεραρχική αθροιστική μέθοδο συσταδοποίησης, η οποία συσπειρώνει διαδοχικές 

releases. Στο τρίτο βήμα της μεθόδου μας, χρησιμοποιούμε μετρικές της 

ποιότητας συσταδοποίδησης, όπως  Silhouette, Cohesion και Separation για να 

χαρακτηρίσουμε την ποιότητα κάθε πιθανής συσταδοποίησης. Το τέταρτο και 

τελικό βήμα της μεθόδου, κατατάσσει τις συστάδες, δηλαδή τις φάσεις της ζωής 

του σχήματος, σε σχέση με τη φύση τους, με βάση την ταξινόμηση των προφίλ 

αλλαγών. (δηλαδή Ασήμαντη Δραστηριότητα, Αναδιάρθρωση, Έντονη Εξέλιξη, 

μεταξύ άλλων). 

Η μέθοδος εξαγωγής και χαρακτηρισμού φάσεων που παρουσιάστηκε στο 

δεύτερο μέρος της εργασίας, αξιολογήθηκε με μετρικές βασισμένες στην 

ποιότητα της συσταδοποίησης, αλλά και στην αναμενόμενη εξαγωγή φάσεων. 

Τα ευρήματα της αξιολόγησης έδειξαν ότι η μέθοδος μας έχει ικανοποιητική  

απόδοση, έχοντας ένα μικρό ποσοστό λαθών και οι λύσεις που παράγει είναι 

σημαντικά ποιοτικές. 
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CHAPTER 1.  

INTRODUCTION 

1.1 

 

1.2 

Scope 

 

Roadmap 

1.1 Scope 

It is well-known that software projects evolve as the time passes. It is common 

for software developers to face the need to modify a project, because the 

specifications changed, an error was found, or simply because they want to 

add more functionalities to an existing project. Just like every software project 

evolves over time, so do data intensive software projects that are built on top 

of relational databases.  

When a database has an application built around it, it needs to follow the 

evolution of the software in order to be consistent and fully functional. The 

information capacity needs to be aligned with the user requirements. When 

the schema evolution is not in sync with the software evolution there is a high 

risk of errors, as both the syntactic correctness and the semantic validity of all 

the surrounding applications can be significantly affected. In the former case, 

due the syntactic incorrectness the queries as well as their host code crash. In 

the latter case, the applications can suffer from loss of information, or even 

incorrect answers, risking the possibilities of producing results that may be 

misleading and inconsistent.  

To understand and study schema evolution is of great importance, because 

exploring patterns that apply for databases can help us predict future 

changes. These predictions can be great help both for (a) the database design 

part, as we can design schemata that minimize the impact on the surrounding 
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software, and, (b) for the software development, as we can locate parts that 

need more attention by predicting future maintaining problems. It is well 

known that the majority of a project’s resources is spend in maintenance and 

any knowledge that can help make this difficult procedure easier by taking 

the right precautions from the start is very important. 

Our fundamental research question is of investigative nature and asks: ‚are 

there phases in the lives of relational schemata?‛ 

To support our study towards answering the above question, we have 

basically used 6 free open source software projects that included relational 

databases. We have tracked the change history of these schemata from their 

public repositories, and collected information that concerns the public 

releases of the projects’ schemata as well as their heartbeat. The heartbeat of 

change is a vector with information about addition and deletions in tables and 

attributes and type or key participation updates for each release. 

The rest of the study is mainly based on this information and concerns two 

parts: the first part is of explorative nature, and studies the collected data to 

manually extract phases and patterns in the tables’ lives, whereas the second 

part, proposed an automated method to algorithmically extract these phases. 

The first part of this Thesis addresses the following question: ‚When are 

tables, attributes and foreign keys born, updated and evicted in the life of a 

schema?‛  

For each data set, and for each release, we have measured (a) the births and 

deaths of tables, (b) the injection of attributes to existing tables and the 

ejection of attributes from tables that continue to exist after the ejection and (c) 

the update of attribute data types and keys. We combined this information 

with the timeline of schema size, as it evolves over the different releases. 

Based on all this data, we manually derive phases in the life of our 6 database 

schemata. Our characterizations are based on the demonstrated growth 

(increase of information capacity) or maintenance (containing deletions and 

updates in order to improve the quality of the schema). Along with them, we 

highlight spikes, single releases of high change intensity, which are 

idiosyncratic characteristic of how schemata seem to evolve. 

 The most interesting finding in our study is that, with the single 

exception of Typo3, the history of a database schema comes in two 

mega-phases: (a) a ‚hot‛ expansion mega-phase at the start of its life 

demonstrating growth of information capacity, along with the 

necessary maintenance and (b) a ‚cooling‛ housekeeping mega-phase at 
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its middle and later life where either maintenance actions or stillness 

dominate the update activity. We call this phenomenon progressive 

cooling of the schema heartbeat. 

 In the same spirit, we can also observe that Growth mainly takes place 

at the beginning of a schema’s life and can be either the main focus of 

the developers’ activity, or combined with maintenance. Maintenance, 

at the same time, takes place in all stages of the schema’s life and is 

frequently combined with phases of minor activity, either preceding or 

following it. 

 A third testimony of progressive cooling, comes with the observation 

that minor (or even zero) activity periods frequently take up long 

periods in time, especially at the end of the schema history 

Apart from this main topic of research, we have also studied side problems. 

The first problem studied has to do with zombie tables, i.e., tables that are 

deleted at some point and later re-instated in the schema. Interestingly, after 

that, we observe that the majority of zombie tables tend to survive. A second 

question studied has to do with the period of a table’s life during which 

injections and ejections of attributes take place. As a demonstration of the 

progressive cooling phenomenon, we observe that injections and ejections of 

attributes mostly happen at the start or mid of a table’s life and rarely in the 

end. Moreover, we have studied how foreign keys evolve during schema 

evolution. Typically, the individual changes of the foreign keys are small in 

volume. Yet, one can observe two modes operandi for the overall treatment of 

foreign keys by developers, specifically, (a) foreign keys are treated as integral 

parts of the schema and they get born and evicted along with their tables, or 

(b) frequently, foreign keys are treated as second-class add-ons with small 

table participation in foreign keys and ad hoc foreign key births and deaths. 

We have witnessed the extreme case of total removal of foreign keys in two 

CMSs. 

The second part of the Thesis addresses the following question: “given the 

history and heartbeat of a schema, can we automatically extract phases in its 

evolution?” 

Our algorithmic method of Phase Extraction and Classification is structured 

along four steps. We start with the heartbeat of a schema summarized at the 

release level and containing the sum of births and deaths of tables and 

attributes as well as any data type or key alterations. The first step of our 

method, involves the characterization of the releases in terms of two change 

families: growth and maintenance. Each release is characterized with respect to 
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the extent that the information capacity of the schema grows (growth) and to 

the extent that the internal quality of the schema is maintained (maintenance). 

A quantitative assessment of the amount of change per family is also 

produced. Based on these characterizations, the second step of the method 

splits the timeline of the schema’s life in phases, by applying a hierarchical 

agglomerative clustering, that clusters together consecutive releases. As the 

split is done in a hierarchical fashion, it is clear that the quality of each of the 

produced clusterings has to be assessed in order to be able to pick the best, or 

the set of top-k such clusterings. In the third step of our method, we use several 

measures of clustering quality, such as Silhouette, Cohesion and Separation to 

characterize the discriminating quality of each of the derived clusterings. The fourth 

step of the method classifies clusters, i.e. phases in the life of a schema, in terms of 

their nature. We provide a taxonomy of change profiles, based on the intensity 

of the growth and maintenance that a phase demonstrates. Then, each phase 

can be characterized with respect to our taxonomy. The classification is based 

on producing the histogram of the different intensities per family {zero, low, 

medium, high} × {growth, maintenance}. In order to classify a phase, we apply a 

set of rules, that annotate the phase with a label from our taxonomy (e.g., 

Minor Activity, Restructuring, Intense Evolution, among others). 

We have assessed our method over our test bed data sets. The results show 

that the top solutions produced by our algorithm are fairly similar to those of 

our golden standard, having an average misclassified release value smaller 

than 2. Considering the fact that we did not use any heuristics and the quality 

of our solutions, the method of phase extraction and classification introduced 

in this thesis performs well for its purpose. 

To facilitate this effort, we also designed a tool that allows the collection of 

information, the extraction of phases and the computation and visualization 

of the results. 

1.2 Roadmap 

This thesis is structured as follows. In chapter 2, we present related work that 

focuses on schema evolution. In chapter 3, we analyze the first part of this 

study that concerns the nature of births and deaths that occur in the evolution 

of a database schema. Chapter 4 describes the method of phase extraction and 

classification we propose. Chapter 5 concludes this thesis by summarizing our 

findings and presents potential future work.  
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CHAPTER 2.  

RELATED WORK 

2.1 Case Studies of Schema Evolution  

2.2 Comparison to the State of the Art 

 

In this Chapter, we present the state of the art in the related literature on the 

topic of this Thesis. First we present case studies previously published in the 

field of schema evolution and then we compare our work to the 

aforementioned studies.  

2.1  Case studies of Schema Evolution 

[Sjob93] was the first to publish the findings of a study concerning the 

changes of a database schema over time and how those changes affect any 

software built around it. The author presents a method for measuring the 

modifications of database schemata and their consequences by using a 

thesaurus tool. The main findings of this study are: 

 Additions in databases are the most common change 

 Deletions are also quite common 

 Renamings do not happen that much 

 The automation of the handling of problems related to deletion is 

feasible 
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 The automation of the handling of problems related to additions is not 

that easy, as there are too many changes that need to be done by hand 

In 2008, C. Curino, H.J. Moon, L. Tanca and C. Zaniolo[CMTZ08] published a 

study aboutMediawiki, the content management system (CMS) of Wikipedia. 

The problem of evolving a database schema in web information systems can 

be very difficult as it has a large group of contributors. The authors provide a 

conceptual representation for complex schema changes and software tools 

that help automating the analysis process. Curino et al. came to the conclusion 

that there is great need for better developing methods and tools to achieve 

schema changes with the minimum loss. The main findings of this study are: 

 In Mediawiki only a small percentage (order of 20%) of the queries, 

that were constructed depending on the old database schema, are still 

valid after schema evolution. 

 The tables and attributes are divided into two categories: 

o Tables of small duration, which is a result of their recent 

creation 

o Tables of long duration, as the cores of the schema tend to be 

stable throughout the whole history of the database 

In 2009, Dien-Yen Lin and IulianNeamtiu [LiNe09] published the findings of a 

study of the co-evolution of applications and databases. The authors shed 

light to the well-known problem that the separation of the evolution of 

software and its corresponding data can lead to collateral damage. This 

damage may include information loss, system failure or decreasing efficiency. 

The main findings of this study include the following: 

 The applications used to be designed based on a stable schema, 

something that nowadays does not happen 

 The biggest problem when a system depends on a database is that it 

usually is considered that the version of the software is the same as the 

version of the database schema, while in reality the two versions are 

not in sync 

 If the evolution of the software is not in sync with the evolution of the 

database schema, this will lead on an untrustworthy system 

In [WuNe11], an effort to understand how dynamic updating solutions can 

support changes to embedded database schemas is presented. The authors 
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automatically extracted the schemas from software projects and also 

automatically computed how these schemas evolve as the applications evolve. 

During this study, the tool SCVD was developed, that takes the source code of 

all the releases, extracts their schemas, compares them and presents the 

results in a way that is easy to understand. The main findings include: 

 Frequently, after an update has been made, the queries refer to the old 

schema, so we have loss of information and runtime errors 

 Embedded databases have significantly less changes than large, 

enterprise-class databases and significantly more deletion occurrences 

 Database schemas tend to change more in the initial stages of the 

application and progressively become stable over time 

In 2012, G. Papastefanatos, P. Vassiliadis, A. Simitsis and Y. Vassiliou 

[PVSV12] published the findings of their study about the impact that 

evolution has on ETL ecosystems. The authors presented graph-theoretic 

metrics that help predict the effort of the ETL workflow and techniques that 

assess the quality of their design in terms of evolution. The software tool 

Hecateus was developed, that allows the monitoring of the evolution in 

database related environments. Since 60% of the resources of a data 

warehouse project is spent on maintenance, the significance of creating 

systems that are easy to maintain is quite obvious. The main findings of this 

study include: 

 The size of the schema and the complexity of its parts are factors that 

make the system vulnerable to changes 

 A good design pattern is one with tables of a small schema with few 

attributes, because the more the attributes the more the levels of 

vulnerability 

 If these metrics are applied by the ETL designers the maintaining 

process will become significantly easier 

D. Qiu, B. Li and Z. Su in [QiLS13] study the co-evolution of database 

schemas and code in ten open-source database applications. One of the main 

research questions of this study concerned the frequency and extent of 

database schema evolution. By examining the occurrences of schema changes 

the authors concluded that schemas evolve frequently. The authors also 

studied the nature of database schema evolution and to do so they 

categorized the atomic schema changes. They found that the main high-level 

schema changes are transformations, structure refactorings and data quality 
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refactorings, while architectural refactorings took place relatively 

infrequently. The low-level most frequent atomic change types were add table, 

add column and change column datatype. The authors also observed that 

referential integrity constraints and procedures are rarely used in practice, 

while additions and changes were the most common cases of schema 

evolution. Finally, an additional research question that the authors answer, 

investigates how the code co-changes with a schema change. The 

corresponding findings show that more than 70% of all valid DB revisions 

contained effective co-change information, schema changes impact code 

greatly and the changes that show more significant impact on application 

code are transformations and structure refactorings. 

I.Skoulis, P. Vassiliadis and A. V. Zarras in 2014 [SkVZ14] published their 

findings of an open-source relational database evolution study. The authors 

performed a thorough study on the evolution of database schemas of publicly 

available projects and used Lehman’s Laws of software evolution as a 

guideline for the schema evolution. Even though Lehman’s laws cannot be 

entirely matched to databases, their significance is of the same importance 

and they are very helpful in monitoring schema evolution. The main findings 

of this study are: 

 Schemas evolve in bursts, in grouped periods of evolving activities and 

not in a continuous process, which means that the first law of Lehman 

can be partly applied to databases 

 The second law of increasing complexity seems to be quite applicable 

to databases too 

 The third law of self-regulation also applies for databases, except for 

the fact that changes do not follow a smooth evolution pattern, but the 

presence of feedback is obvious  

 Evolution of databases, even in phases, is not stable so the law of 

conservation of organizational stability does not apply to databases 

 Even though the conservation of familiarity is significant, it does not 

guarantee incremental growth, so this law is possible but not 

confirmed 

 The law of continuing growth, when it is adapted to the particularities 

of database schemas, applies to databases 

 The law of declining quality is uncertain 
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 The law of feedback system applies, as the evolution of a schema obeys 

the behavior of such a mechanism 

P. Vassiliadis, A. V. Zarras and I. Skoulis in 2015 [SkVZ15] performed a study 

that focuses on the behavior of tables during the evolution of a database 

schema. The authors studied whether table characteristics, like number of 

attributes or time of birth can be related to chances of deletion, amount of 

changes etc. The main findings of this study include: 

 Thin tables with small schema size have unspecified life duration 

 Wide tables with larger schema size tend to live longer 

 The tables that are removed are mostly newborns, that get deleted 

quickly, with few or no updates 

 Tables of medium or big duration do not get deleted that often 

 The rest of the tables live a quite calm life 

P. Vassiliadis, A. V. Zarras and I.Skoulis in [VaZa17] published their findings 

on the categories of tables that evolve as the schema evolves and the nature of 

this evolution. The authors’ findings relate to the relevance of table properties 

to evolution related ones. More specifically they categorized the tables 

according to their survival or death in three main categories. The first one is 

‛wide survivors‛, that includes tables with large size that tend to live longer 

and survive. This behavior was introduced by the authors as the Γ pattern, 

that concerns the relation of schema size with duration. The second category 

is ‛entry level removals‛, that includes newly born tables, quickly removed, 

or/and with no or few updates. The last category is ‛old timers‛, which 

includes the tables with long duration that rarely are deleted. The relation of 

duration and birth can be described by the ‛Empty triancle‛ pattern, which 

means that there are very few cases of tables not born from the start that do 

not survive or have a long duration. As far as the tables that are prone to 

updates are concerned, the authors observed two different patterns. The first 

one is called the ‛inverse Γ‛ pattern and states that the duration of the lifetime 

of a table is not proportional to the amount of updates that the table endures. 

The second one, the ‛Comet‛ pattern was revealed due to the correlation of 

schema size at the birth of a table with its update profile and states that most 

small-sized tables have few to none changes, some medium-sized tables have 

many changes and wide tables have medium amount of updates. Finally, the 

main finding of this study was the gravitation to rigidity in database schemas, 

which is a tendency to avoid change and evolution. 
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P.Vassiliadis et al., in [VKZZ17], published the findings of a schema evolution 

study focused on foreign key evolution, in the broader context of schema 

evolution for relational databases. The authors explored the nature of growth 

and heartbeat of foreign keys and designed a software tool that represents, 

visualizes and measures the foreign key evolution. The findings of this study 

show that foreign keys are in some cases an integral part of the system, at 

least in the cases of scientific nature projects, where they use to be born and 

removed along with their tables. The authors also observed cases of projects 

with foreign keys that seem to be unwanted and removed mostly not in the 

same time with their corresponding tables. The datasets collected for this 

study contained two cases of Content Management Systems and in both of 

these cases the foreign keys were completely removed from them in the last 

known to the authors’ version of the schema. This behavior seems to be a 

result of difficulty of managing technical issues with foreign keys.  Finally the 

authors observed that changes in foreign keys are not so common and when 

they do exist, they are mostly small in volume.  

 

2.2 Comparison to the state of the art 

Despite the achievements of the previous efforts, currently, we have no 

structured and well-founded knowledge of integration and organization of 

the heartbeat of a database schema in a principled way. To the best of our 

knowledge no other study has explored thoroughly the nature of births and 

deaths of tables and attributes in the life of a relational database schema. 

Furthermore, the organization of a schema’s life into phases that are based on 

the changes the schema undergoes has not been studied in the literature. 
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CHAPTER 3.  

BIRTH AND DEATH IN SCHEMA EVOLUTION 

3.1 

 

 

3.2 

Experimental Setup 

 

 

Births, Deaths and Updates 

3.3 

 

 

3.4 

Special Topics 

 

 

Conclusions 

 

In this chapter, we present the first part of this study that explores the births 

and deaths that occur in a database schema. In the first section we describe 

the experimental setup in which this study has taken place. The second 

section explores the nature of births, deaths and updates that occur in a 

schema’s life. In the third section we present some special topics and more 

specifically) the results that concern the tables that get deleted sometime in 

the evolution and later on they get reborn, b) the time period in a table’s life 

when most attributes get injected or ejected and finally, c) a study of the 

commit histories of six open source projects that contain foreign keys and 

explores their nature and behavior. The last section presents the conclusions 

of this part of the study. 



 

 

22 

 

3.1 Experimental Setup 

In this study twelve different open source projects were used.  These datasets 

are: Atlas, Biosql, Castor, Coppermine, Egee, Ensembl, Mediawiki, Opencart, 

Phpbb, Slashcode, Typo3 and Zabbix. Three of the databases, Atlas, Castor 

and Egee are hosted by CERN, the European Organization for Nuclear 

Research based on Geneva. Biosql and Ensembl contain medical information, 

while all the others are part of a Content Management System (CMS). Each 

part of the study uses the datasets that have the needed features. For example, 

of all the datasets Castor, Ensembl, Opencart, Slashcode and Phpbb were the 

only ones that had over 10 tables that get deleted and reborn, so the respective 

section describes the behavior of these datasets. The last part of this chapter 

that studies the foreign keys takes place for the six datasets that contain 

foreign keys. When it is feasible, in terms of the nature of the study, we take 

all datasets into consideration (for example attribute injections and ejections 

in time).Several basic statistics for each dataset are shown in Figure 1. 

All the statistics and numbers we use concerning releases/commits, we got by 

the differences in the schemas between every two consecutive 

commits/releases. 

 

Figure 1 Table with statistics for all datasets. 

3.2 Births, Deaths and Updates 

In this section we explore the nature of births, deaths and updates that occur 

during the evolution of the schema of six open source software projects. In 

this specific part of the study we use the information that concerns the public 

releases of the projects’ schemata collected in [Papp17]. 
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To explore the nature of the evolution we study the heartbeat of change of 

each dataset. The heartbeat of change is a vector with information about 

addition and deletions in tables and attributes and type or key participation 

updates for each release. In the following charts we visualize the heartbeat via 

a combination of barchart, linechart and scatterchart that depicts the amount 

of births, deaths and alternations in schema size that a schema’s releases 

undergo through time. 

Figures 3-14 show the heartbeat of change in terms of table birth and death, 

attribute injection and ejection, type and key participation updates and 

schema size in number of tables and attributes for each one of the studied 

datasets. The x-axis of the figures represents the name of the schema’s release 

or the date of the last commit of the corresponding release. 

Terminology. Studying these figures we try to observe the phases that each 

dataset undergoes. We characterize these phases with the following 

terminology.  

- A phase of growth shows increase in the schema size and its heartbeat 

mainly concerns additions to information capacity. 

- A phase of maintenance contains deletions and updates and does not 

really increase information capacity.  

- We characterize a phase as a minor activity phase when there is zero or 

low activity and there are no significant increases or decreases in 

schema size in tables and attributes. 

- The combination of growth and maintenance concerns the demonstration 

of both kinds of activity in a phase, and sometimes it comes with a 

renaming or restructuring manner.  

- A phase of intense evolution is actually a growth + maintenance phase 

with very high volume of change in number of attributes. 

- Finally, it should be noted that when we refer to the notion spike we 

mean a phase that contains mostly one single release of very high 

volume of change, which could be considered a phase by itself. 

As mentioned above, the main purpose of this study is to explore the nature 

of evolution of the studied schemata. We proceed in detailing the 

observations around the evolution of each data set. 
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Biosql. As we can see from Figures 3 and 4 Biosql, in the 10 years that we 

have available for study, seems to have a very quiet and almost non-existent 

evolution. Studying the changes Biosql undergoes in terms of table birth and 

death, attribute injections and ejections and attribute type or key participation 

updates, we assume that the history of Biosql could be divided in three 

phases. There is the first phase of maintenance, where the administrators 

deleted tables and injected attributes and altered others. Then there is the 

second phase that could be considered as a single spike where there was clear 

effort from the administrator’s/developer’s point where we have all kinds of 

changes in a single release and in significant volume, thus we have a phase of 

intense evolution. Finally, in the last phase, which is almost ten years nothing 

happens except from some attribute type update and the phase is 

characterized as minor activity. 

Ensembl. For Ensembl, this is clearly not the case. Ensembl, in the 17 years of 

evolution that we have available, is clearly a more vivid and intense dataset in 

terms of evolution. As we can see from Figures 5 and 6, taking into 

consideration all the kinds of changes depicted in the aforementioned charts, 

we assume that a possible segmentation of Ensembl’s history in phases could 

consist of eight discrete phases. The first phase is clearly a case of growth with 

maintenance, as it shows high growth effort both in tables and attributes, while 

it also contains a few deletions and a significant amount of updates. The 

second phase shows intense evolution with significant additions and deletions. 

Then, we notice a short period of minor to none activity, which is followed by 

an intense evolution phase with attribute deletions and updates and high 

growth in tables and attributes. The fifth phase is considered as a medium 

growth period with some deletions of maintenance, while the sixth phase only 

shows minor activity. Then, we notice a period of maintenance with medium 

volume with some deletions and updates and finally the last phase shows 

quiet behavior with very few updates and is quite long in time and is 

characterized as minor activity. 

Mediawiki. The next dataset, Mediawiki, has an evolution of 13 years and is 

also quite intense with no significant periods of calmness. As seen in Figures 7 

and 8, we assume that Mediawiki’s history could be divided in seven phases. 

First we have a period of growth, which is quite common in the start of 

projects, both in terms of tables and attributes. The second phase is a period of 

maintenance with a significant amount of both additions and deletions. Then, 

we notice a long period of slow growth with some spikes of updates. The 

fourth phase shows intense maintenance with a lot of additions and deletions 

depicted by the spikes in the aforementioned figures. After this intense 
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maintaining period, there is a period of minor activity where nothing 

significant occurs and right after that, a phase of maintenance appears. Finally, 

there is a period of minor activity, with very few changes in the schema. 

Opencart. For Opencart we have less than 4 years of releases available and it 

is one of the quietest of our datasets. As it is depicted in Figures 9 and 10, 

Opencart’s history can be divided in 4 phases. The first phase is considered 

the first release alone, which contains a huge amount of births deaths and 

updates and it is the only one with this kind of volume in the whole life of 

Opencart and it is characterized as maintenance. The second phase is a minor 

activity phase and it is quite short period, where almost nothing happens and 

right after that we have a maintenance phase with a quite significant amount of 

additions and some deletions. Finally, the last phase is of minor activity and is 

very long in terms of time and number of releases and it consists of only 

minor updates. 

Phpbb. The next dataset, Phpbb, in the 11 years of releases available to us, 

seems to be a calm dataset with a significant amount of spikes. In Figures 11 

and 12, we see that its history can be divided in five phases. The releases of 

the first phase are considered as minor activity and have zero activity and in 

the second phase we have a spike with all kinds of changes and the phase is 

characterized as growth with maintenance. The third period has a maintenance 

nature and contains two intense spikes of additions and deletions and quite a 

few spikes of updates. In the fourth minor activity phase we notice only a few 

changes, it is a three year period of calmness and right after that, we have a 

period of maintenance with significant amount of all possible updates.  

Typo3. Our last dataset, Typo3, has an evolution of circa ten years. As seen in 

Figures 13 and 14, we assume a segmentation of its history that consists of six 

phases. As usual, the first phase contains releases with growth nature in tables 

and attributes and releases with a lot of updates. The second phase is a minor 

activity phase and it is a quite long period of calmness. Then, we notice a short 

growth period and right after that a period of minor activity again. The fifth 

phase consists of releases with intense maintenance behavior with a lot of 

deletions and a few updates. Finally, we notice a period of intense evolution 

with a lot of additions and deletions both in terms of tables and attributes and 

also a few updates. 
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 BioSQL Ensembl Mediawiki Opencart Phpbb Typo3 

1 Maintenance 
Growth+ 

Maintenance 
Growth 

Maintenance 

(spike) 

Minor 

Activity 
Growth 

2 

Intense 

Evolution 

(spike) 

Intense 

Evolution 
Maintenance 

Minor 

Activity 

Growth+ 

Maintenance 

(spike) 

Minor 

Activity 

3 
Minor 

Activity 

Minor 

Activity 
Growth 

Maintenance 

(spike) 
Maintenance Growth 

4  
Intense 

Evolution 
Maintenance 

Minor 

Activity 

Minor 

Activity 

Minor 

Activity 

5  
Growth+ 

Maintenance 

Minor 

Activity 
 Maintenance Maintenance 

6  
Minor 

Activity 
Maintenance   

Intense 

Evolution 

7  Maintenance 
Minor 

Activity 
   

8  
Minor 

Activity 
    

Figure 2 Table of the phases of all datasets. 

As discussed above and seen in Figure 2, common patterns are noticeable and 

seem to occur for most of the datasets. Those patterns are: 

 Growth(colored green in Figure 2) mainly happens in the start of a 

dataset’s life for most of the cases (with the single exception of 

Ensembl, having a growth phase in its mid-life).Growth can come 

wither solo (as the main content of update activity – colored as solid 

green background in Figure 2) or it can also be accompanied by 

maintenance. 

 Maintenance (denoted as text in blue font in Figure 2) can be found in 

all possible stages of schema’s life, in practically all data sets. 

 Maintenance followed or preceded by minor activity (the combination 

coming as mid-intensity blue background in Figure 2) seems to be the 

most common pattern, whose occurrences are overwhelmingly located 
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in the end of a schema’s life and accompanied with low or zero growth 

in information capacity. 

 Practically, with the single exception of Typo3, we can safely argue that 

the history of a database schema comes in two mega-phases: (a) a ‚hot‛ 

expansion mega-phase at the start of its life demonstrating growth of 

information capacity, along with the necessary maintenance and (b) a 

‚cooling‛ housekeeping mega-phase at its middle and later life where either 

maintenance actions or stillness dominate the update activity. 

 For the majority of the datasets, minor (or even zero) activity periods 

frequently take up long periods in time, especially at the end of their 

history 

 A few datasets though, have intense evolution with changes of 

significant volume 
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Figure 3 Biosql :Heartbeat of change in time. 
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Figure 4 Biosql : Heartbeat of change per release. 
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Figure 5 Ensembl : Heartbeat of change in time. 
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Figure 6 Ensembl : Heartbeat of change per release. 
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Figure 7 Mediawiki : Heartbeat of change in time. 



 

 

33 

 

 

Figure 8 Mediawiki : Heartbeat of change per release. 
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Figure 9 Opencart : Heartbeat of change in time. 
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Figure 10 Opencart : Heartbeat of change per release. 
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Figure 11 Phpbb : Heartbeat of change in time. 
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Figure 12 Phpbb : Heartbeat of change per release. 
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Figure 13 Typo3 : Heartbeat of change in time. 
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Figure 14 Typo3 : Heartbeat of change per release. 
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3.3 Special Topics 

In this section, we explore three special topics in the context of studying the 

occurrence of birth and death in evolution of database schemata of open 

source software projects. Specifically, the first subsection presents the results 

of our study considering zombie tables that are originally deleted and later 

reborn in a different version. In the second subsection, we try to understand 

how injections and ejections of attributes are spread in the different periods of 

a table’s life. Finally, in the last subsection, we present a study of the commit 

histories of six open source projects that contain foreign keys and study their 

nature and behavior. 

3.3.1 Zombie tables : death and rebirth 

This part of the study focuses on the existence and behavior of zombie tables in 

the evolution of a database schema. A zombie table is defined as the table that 

at some version of the schema gets deleted and later on another version gets 

recreated.  

A zombie table is considered as a part of a group, when it is born, gets deleted, 

or both at the exact same versions as one or more other zombie tables. This 

notion is important, as it helps us realize with more ease if there exists a mass 

deletion and re-addition as a part of maintenance procedure, or if the deletion 

and re-addition is an individual and more explicit occurrence. 

In order to explore the existence and behavior of zombie tables there was a 

need for information like specific periods of life for each table, death duration, 

survival until the last known version and many more. This information was 

retrieved using the output file of Hecate containing information about the life 

and size of each table, as input. From the twelve initial datasets, four had no 

zombie tables, three had below six and five had over ten zombie tables. This 

study took place for the five abovementioned datasets, each of them having 

more than ten zombies.  

As we can see in Figure 15, over 25% of three datasets’ tables were zombies 

(one even had 70% zombie tables) and the other two contained a little less than 

20% zombies.  
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Figure 15 Percentages of zombie/not zombie tables for each dataset. 

Apart from the existence of zombie tables, the survival of these tables until the 

last known schema version was studied. Figure 16 shows the percentages of 

dead and survivor zombies. The findings concerning the survival of the zombie 

tables, show that the majority of zombies finally survive, which is an indication of 

deletions due to maintenance or perfective procedures. This is the case for four out 

of five datasets, with Opencart having slightly more dead zombies than 

survivors. 

As previously mentioned, a zombie table can be a part of a group depending 

on the versions it died or was born. Figure 17 shows the percentages of zombie 

tables that belong (or do not belong) to groups, for each dataset. For most of 

the datasets, four out of five, the vast majority of zombie tables are part of 

groups. This probably means that, their deletions and re-additions were part 

of a larger, coordinated maintenance activity. Though phpbb has equal 

number of zombie tables in groups and zombie tables not in groups, due to its 

small amount of zombies (12), phpbb is probably not quite representative. 
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Figure 16 Percentages of dead/survivor zombie tables for each dataset. 

 

Figure 17 Percentages of zombies in groups/not in groups for each dataset. 
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Figures 18 and 19 show general statistics of zombie tables in absolute numbers 

and percentages respectively. 

 

Figure 18 General statistics of zombie tables in absolute numbers. 

 

Figure 19 General Statistics of zombie tables in percentages. 

Figures 20 contains statistics of death duration in terms of number of schema 

versions in which the tables were dead in absolute numbers and percentages 

respectively. 

 

Figure 20 Death duration statistics of zombie tables in absolute numbers. 

Figure 21 shows statistics of occurrences of birth and death of ‛zombie‛ tables 

in groups. The number of birth groups represents the occurrences of ‚zombie‛ 

tables being reborn in the same schema version, while death groups the 

occurrences of ‚zombie‛ tables being removed in the same schema version. 

Finally both groups are occurrences of ‚zombie‛ tables being both reborn and 
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removed in the same schema versions. These statistics imply large 

coordinated activities and not intentional targeted table removals. 

 

 

Figure 21 Group statistics of zombie tables in absolute numbers. 

3.3.2 Period of attribute injections and ejections 

This part of the study focuses on the injections and ejections of attributes in a 

table and more specifically, the period of the corresponding table’s lifetime, 

that these actions took place. We treat that the lifetime of a table as a list that 

contains the schema versions, in which the specific table exists, in ascending 

chronological order. This ordered set of versions is equally divided in three 

parts. In the rest of the study when we refer to an attribute as added@start or 

deleted@start, we mean that this injection or ejection took place in the first of 

the three parts of the table’s lifetime. Added/Deleted@mid and added/deleted@end 

mean injection or ejection at the second and third part of a table’s lifetime 

respectively.  

It should be noted that we do not focus on the attributes that are born along with their 

table or die with it, but we focus on the attributes that are added later on the table’s 

life. The same applies for attribute deletions.  

To explore the attribute injections and find when these actions take place, we 

retrieved the number of attributes added@start, mid or end of each table by 

using information about the attribute additions per table and per version 

retrieved by Hecate. As we can see in Figure 22 the injections of attributes 

took place mainly at the start or mid of a table’s life for the majority of the 

datasets. This means that any attribute injections that may occur are rarely 

during the end of a table’s life. There are datasets that have these injections 

divided almost equally into the three parts of the lifetime though. Those three 

datasets are Slashcode, Typo3 and Zabbix.  
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As far as the attribute ejections are concerned, we used a similar procedure as 

before with the information about attribute deletions per table and per 

version retrieved with Hecate. As we can see from Figure 23 the ejections of 

attributes also happen mostly at the start or mid of a table’s lifetime for the 

majority of the datasets. Similarly to injections, Slashcode, Typo3 and Zabbix 

have deviant behaviors and the ejections there happen mainly at the end of a 

table’s lifetime. 

 

Figure 22 Percentages of attribute injections to existing tables. 

 

Figure 23 Percentages of attribute ejections from tables. 
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Figures 24 and 25 contain the statistics of attribute ejections and injections for 

all twelve datasets in absolute numbers and percentages respectively. It 

should be noted that the absolute numbers are the aggregations of the 

corresponding numbers of all the tables of each dataset. 

 

 

 

Figure 24 Statistics of attribute injections and ejections in absolute numbers. 

 

 

Figure 25 Statistics of attribute injections and ejections in percentages. 

3.3.3 Foreign Key birth and death 

This part of the study focuses on the way that foreign keys are added or 

deleted during the evolution of a schema. At first we analyze the behavior of 

foreign keys for each dataset and in the end we present all the statistics 

gathered. 
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Terminology 

The additions and deletions of the foreign keys were categorized into ‛born 

with table‛, ‛explicit addition‛, ‛died with table‛ or ‛explicit deletion‛. An 

addition of a foreign key is considered as ‛born with table‛, when either the 

source or the target table is born along with the foreign key, while an ‛explicit 

addition‛ happens, when a foreign key is added to existing tables.  

Respectively, in the case of deletions, a deletion of a foreign key is considered 

as ‛died with table‛, when either the source or the target table is removed 

along with the foreign key, while an ‛explicit deletion‛ happens when neither 

of the source or target table gets deleted and only the foreign key is removed. 

This study took place for six different datasets. Three of the databases, Atlas, 

Castor and Egee are hosted by CERN, the European Organization for Nuclear 

Research based on Geneva. Two databases, Slashcode and Zabbix are content 

management systems (CMS), while the last database, Biosql, stores genomic 

data. 

Atlas 

Atlas has the highest number of foreign keys among the studied datasets. 

Over the 85 versions of Atlas’ schema there were numerous events of both 

additions and deletions of foreign keys. In version 1177518923, an entire 

‛neighborhood‛ of 8 tables was deleted, along with their foreign keys and in 

version 1215283813, an entire ‛neighborhood‛ of 6 tables was added with 

foreign keys among  them. Also, in versions 1207729000 and 1217322513, both 

additions and deletions of foreign keys of previous versions, were reversed. 

In Figure 26 we  can see the changes that happened over the versions in terms 

of foreign key additions and deletions in Atlas’ schema. The horizontal axis 

represents the schema’s version id, while the vertical axis represents the 

number of foreign keys, additions, or deletions of foreign keys respectively. 

During the evolution of Atlas’ schema, the additions of foreign keys took 

place mostly along with a table addition and not to existing tables (for over 

90% of the time). The deletions of the foreign keys took also place along with 

a table change (here the deletion of the table) for the majority (almost 70% of 

the time). Figure 27 depicts the way that foreign keys are added or removed. 

The horizontal axis represents the name of the schema’s version, while the 

vertical axis represents the number of the corresponding foreign key change. 
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Figure 26 Foreign key changes in the 85 versions of Atlas. 

Figure 27 Foreign key type of changes in Atlas. 

Biosql 

Over the 47 versions of Biosql’s schema, there were 127 additions and 

deletions of foreign keys. Biosql’s evolution contained 4 renaming cases in 
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versions 1031817528, 1045618809, 1047465289 and 1047466335 respectively. A 

renaming case is considered as the action of deleting a table with its foreign 

keys and recreating it in the same version, to change the table’s or table’s 

attribute’s name. Figure 28 shows the foreign key additions and deletions that 

took place in the evolution of Biosql’s schema. The horizontal axis represents 

the schema’s version id, while the vertical axis represents the number of 

foreign keys, additions, or deletions of foreign keys respectively. 

The additions of foreign keys in Biosql follow the same behavior as Atlas. 

Almost 90% of the time, the additions happened along with the addition of a 

table. The deletions of foreign keys, also for over 90% of the time, happened 

when a table was deleted and not as an explicit deletion of the foreign key. In 

Figure 29, we can see the type of foreign key changes that took place in the  

evolution of Biosql. The horizontal axis represents the name of the schema’s 

version, while the vertical axis represents the number of the corresponding 

foreign key change. 

 

 

Figure 28 Foreign key changes in the 47 versions of Biosql. 
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Figure 29 Foreign key type of changes in Biosql. 

 

Castor 

For the study of Castor, 194 versions of its schema were available. During 

those 194 versions though, there were very few changes, under 10 additions 

and under 10 deletions of foreign keys, while in the level of tables the changes 

were significantly more. This probably happened, because the dataset itself 

had very few foreign keys to begin with. Among these few changes, in 

version rev 1.051 a foreign key is added, then this action is reversed in version 

rev 1.103 and then the same foreign key is re-added in version rev 1.104. 

Figure 30 shows the additions and deletions of foreign keys that happened 

during the 194 versions of Castor’s schema. The horizontal axis represents the 

schema’s version id, while the vertical axis represents the number of foreign 

keys, additions, or deletions of foreign keys respectively. 

Because of the small number of foreign key changes that happened during the 

evolution of Castor, the percentages of the causes of additions and deletions 

are not very similar to the previous ones. Most of the additions here 
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happened to existing tables, while the deletions are equally divided into 

removal of foreign key along with the table deletion, and removal of foreign 

key with no table deletion. Figure 31 depicts the type of foreign key changes 

that took place in Castor. The horizontal axis represents the name of the 

schema’s version, while the vertical axis represents the number of the 

corresponding foreign key change. 

 

Figure 30 Foreign key changes in the 194 versions of Castor. 

 

Figure 31 Foreign key type of changes in Castor. 
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Egee 

During the study of Egee’s evolution, there were only 17 versions of its 

schema available. This database has very few foreign keys, very few changes 

happened and none of those was quite interesting. In Figure 32 we can see the 

foreign key changes that took place during the evolution of Egee. The 

horizontal axis represents the schema’s version id, while the vertical axis 

represents the number of foreign keys, additions, or deletions of foreign keys 

respectively. 

 

Figure 32 Foreign key changes in the 17 versions of Egee. 

Similarly with Castor, Egee’s percentages of additions’ and deletions’ causes 

cannot be representative, because of the small amount of changes that took 

place. Most of the additions happened with a table addition, while all of the 

deletions happened along with the table deletion. Figure 33 depicts the type 

of foreign key changes that took place in Egee. The horizontal axis represents 

the name of the schema’s version, while the vertical axis represents the 

number of the corresponding foreign key change. 
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Figure 33 Foreign key type of changes in Egee. 

Slashcode 

Slashcode’s schema evolution consists of 399 different versions. Slashcode has 

a lot of foreign key changes, both additions and deletions and a lot of 

interesting cases. There were two cases where the actions were reversed in the 

next versions and also a renaming case. The most interesting part of 

Slashcode’s evolution though, is that after a certain version all its foreign keys 

are gradually deleted. In the first occurrence of massive foreign key removals 

(at version rev 1.120), 23 foreign keys were deleted. This mass removal took 

place due to a problem with the compatibility of the attribute types that the 

foreign keys referred to. The Data Definition file contains an explanatory 

comment for this removal: 

”Commented-out foreign keys are ones which currently cannot be used because they 

refer to a primary key which is NOT NULL AUTO INCREMENT and the child’s 

key either has a default value which would be invalid for an aut increment field, 

typically NOT NULL DEFAULT ’0’. Or, in some cases, the primary key is e.g. 

VARCHAR(20) NOT NULL and the child’s key will be VARCHAR(20). The 

possibility of NULLs negates the ability to add a foreign key. ⇐ That’s my current 

theory, but it doesn’t explain why discussions.topic SMALLINT UNSIGNED NOT 

NULL DEFAULT ’0’ is able to be foreign-keyed to topics.tid SMALLINT 

UNSIGNED NOT NULL AUTO  NCREMENT”. 

In the second deletion (at version rev 1.151), 12 foreign keys were removed, 

because some tables changed their storage engine to Innodb from Myisam. 

There was also an explanatory comment inside the corresponding sql file:  

”Stories is now InnoDB and these other tables are still MyISAM, so no foreign keys 

between them.”. 
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The rest of the deletions happened because the foreign keys caused too many 

problems to the system that could not debugged, resulting in the decision to 

leave the schema without any foreign keys. We have retrieved several 

comments for these removals. At version re 1.174, where 3 foreign keys were 

deleted the following comment was found:  

”This doesn’t work, makes createStory die. These don’t work, should check why...” 

At version’s rev 1.189 file the comments mention:  

”This doesn’t work, since in the install pollquestions is populated before users, 

alphabetically” 

Finally, at version rev 1.201 the following comment was found: 

“This doesn’t work, since discussion may be 0.” 

At the end of this process, the schema is left with zero foreign keys. 

Interestingly enough, the schema also contained no foreign keys at its start. 

Figure 34 shows the foreign key changes that took place during the evolution 

of Slashcode. The horizontal axis represents the schema’s version id, while the 

vertical axis represents the number of foreign keys, additions, or deletions of 

foreign keys respectively. 

As it was mentioned above, Slashcode had a huge amount of deletions, 

caused by system problems and in those deletions the foreign keys were 

deleted explicitly, without any of the tables being removed. Slashcode has a 

behavior different than all the other studied datasets. It is the dataset, that the 

additions and the deletions happened mostly explicitly. Figure 35 depicts the 

type of foreign key changes that took place. The horizontal axis represents the 

name of the schema’s version, while the vertical axis represents the number of 

the corresponding foreign key change. 
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Figure 34 Foreign key changes in the 399 versions of Slashcode. 

 

 

Figure 35 Foreign key type of changes in Slashcode. 
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Zabbix 

During the study of Zabbix, 160 versions of its schema were available. Like 

Slashcode, Zabbix is also a CMS and has a lot of changes to its foreign key 

state and a lot of interesting cases. There were two cases of renaming, in 

versions 1.041 and 1.135, but the most interesting case of all, is that in version 

1.151 all but two of the foreign keys are commented out of the schema. We 

could not find an explanation as to why this removal took place inside the 

mysql Data Definition files. Figure 36 depicts the foreign key changes that 

took place in Zabbix. The horizontal axis represents the schema’s version id, 

while the vertical axis represents the number of foreign keys, additions, or 

deletions of foreign keys respectively. 

The addition of foreign keys in Zabbix, follows the behavior of most of the 

datasets. Circa 85% of the additions of foreign keys happened along with a 

table addition. Because of the abrupt removal of foreign keys that was 

described above most of the deletions took place explicitly, without any table 

removal. In figure 37 we can see the types of foreign key changes that took 

place in Zabbix. The horizontal axis represents the name of the schema’s 

version, while the vertical axis represents the number of the corresponding 

foreign key change. 

 

 

Figure 36 Foreign key changes in the 160 versions of Zabbix. 
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Figure 37 Foreign key type of changes in Zabbix. 

The main findings of this study are summarized as follows. Foreign keys are 

sometimes treated as an integral part of the system, mainly in scientific 

projects. In those cases the foreign keys are born and evicted along with table 

birth and eviction. There are cases though, that foreign keys seem to be a 

second-class add-on, where the foreign keys seem to be removed mostly not 

along with their table. The two cases of CMSs, that were available to us, show 

a disinclination towards having foreign keys as part of the schema. Both of 

these cases ended up, to the best of our knowledge, with no foreign keys in 

their schema. These removals seem to be a result of difficulty of managing 

technical issues with foreign keys. In the studied data sets, the mere existence 

of foreign keys is too scarce. The foreign key changes found in this study are 

mainly small in volume. 

Figure 38 shows the total numbers and percentages of foreign key statistics 

for all the studied databases. 



 

 

58 

 

 
Figure 38 Tables with foreign key statistics for all the studied datasets. 
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3.4 Conclusions 

The purpose of this part of the study was to explore the nature of births and 

deaths in schema evolution and to search for possible representative 

segmentations of the schema that can characterize the nature of change of 

their evolution. The conclusions we reached during this study are as follows. 

 The most interesting finding in our study is that, with the single 

exception of Typo3, the history of a database schema comes in two 

mega-phases: (a) a ‚hot‛ expansion mega-phase at the start of its life 

demonstrating growth of information capacity, along with the 

necessary maintenance and (b) a ‚cooling‛ housekeeping mega-phase at 

its middle and later life where either maintenance actions or stillness 

dominate the update activity. 

 Growth in schemata is mainly located in the start of their life, either 

alone or accompanied by maintenance 

 Maintenance can be found in all the possible stages of a schema’s life 

 Maintenance is frequently followed or preceded by minor activity 

periods with occurrences of this combination overwhelmingly found 

towards the end of the schema’s life 

 For the majority of the datasets, minor (or even zero) activity periods 

frequently take up long periods in time, especially at the end of their 

history 

 A few datasets though, have intense evolution with changes of 

significant volume 

To study in detail all the changes that schemata undergo during their 

evolution and extract phases that are representative and can fairly be 

characterized by their nature is a manual, and potentially exhaustive and 

difficult procedure. Naturally, then, the question arises is: Is there a way we can 

fully automate the segmentation of the history of a schema in phases that represent the 

essence of the changes that it undergoes in a meaningful manner? In the next 

chapter, we propose such a method that aims to fully automate the phase 

extraction and classification of a schema’s life. 

The study of the special topics left us with a few auxiliary conclusions that are 

as follows. 

 The majority of zombie tables tend to survive 
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 Injections and ejections of attributes mostly happen at the start or mid 

of a table’s life and rarely in the end 

 Foreign keys, come in two fashions (a)foreign keys are treated as 

integral parts of the schema and they get born and evicted along with 

their tables, mostly in scientific projects, and (b) foreign keys are 

treated as second-class add-ons, that get removed not along with their 

table, especially in CMSs 

 Foreign key changes for the studied datasets are small in volume 
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CHAPTER 4.  

PHASE EXTRACTION & CLASSIFICATION 

4.1 Release Characterization 

4.2 Release Clustering 

4.3  Clustering Evaluation 

4.4 Phase Classification 

 

In this chapter, we present the second part of this thesis that aims in 

extracting patterns and motifs that apply to database evolution in order to 

generate a model of evolution.  

To do so we apply an algorithmic procedure that uses the history of schema 

releases and their characteristics as input and gives a set of phases, with each 

phase labeled with respect to its evolution profile as output. Each subsection 

of this chapter analyzes a step of this procedure. 

The first step of our Phase Extraction & Classification method is the 

characterization of the releases in terms of a concise vocabulary of 

characterizations for the nature of the maintenance process that took place 

during the release. We introduce the notion of change family and restrict the 

vocabulary of change families to two members: (a) growth, meaning that 

during the release under consideration, the aim of the maintainers was to 

augment the information capacity of the schema and (b) maintenance, 

meaning that the maintainers’ aim was to improve the internal quality of the 
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existing schema structures rather than augment its information capacity. 

Apart from deriving a characterization for each release with respect to the 

aforementioned change families, we also measure the intensity of change for 

that family, too. The change family of a release is computed by the taking into 

consideration all types of change that took place during the release (table and 

attribute additions and deletions, data type changes, etc.), all measured in 

attributes as units. More details about this step of our method can be found in 

subsection 4.1.   

The second step iteratively groups consecutive releases in clusters via 

hierarchical cluster analysis using an Agglomerative algorithm we 

implemented. Each such cluster of consecutive releases is considered as a 

phase of the schema’s evolution. More details about this step can be found in 

4.2. 

The third step aims in evaluating the clustering procedure of the previous 

step. Since we are employing a hierarchical agglomerative clustering 

algorithm, the algorithm produces a sequence of solutions, i.e., segmentation 

of the history of the schema in phases, that starts from the most detailed 

solution with each release as a different cluster and ends with all the lifetime 

of the schema being considered one, single phase. Assuming we want to fully 

automate the segmentation of the schema history in phases, which of the 

produced solutions is the ‚best‛? To address this problem, we need to 

evaluate the quality of the clustering and select the best –or the top-k- solution 

in terms of clustering quality. For each iteration of the clustering algorithm, 

we use a set of methods that evaluate the consistency within our clusters. 

Using these methods we pick the optimal clustering sets as our sets of phases. 

This procedure will be described in more detail in subsection 4.3. 

The fourth and final step classifies each phase of the schema’s evolution. 

Practically, the question answered in this step is: ‚assume any segmentation 

of the history in phases; can we characterize each phase with respect to the 

contents and aim of its updates?‛ The goal is different from the one of the first 

step, because we characterize the evolution of an entire phase and not each 

release separately. To achieve the final characterization, we calculate two 

histograms based on the change families’ metrics of each phase’s releases and 

compute the winner of each histogram. Then, based on the two histogram 

winners we use a set of rules based, and produce a classification that is 

representative of each phase’s nature of evolution. This process is analyzed in 

subsection 4.4. 

The entire process is presented as an algorithm in Figure 39. 
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Figure 39 Phase Extraction and Classification Algorithm 

4.1 Release Characterization 

In order to study the releases we reuse information about their database 

schema gathered by [Papp17]. This information, which is used as the input for 

our method consists of a list of releases for each dataset and for each release a 

vector that contains information about the following measurements: 

- attribute births  

- attribute deaths  

- attribute injections  

- attribute ejections  

- attribute data type updates 

- attribute key participation updates 

Our goal is to translate this numbers into a characterization that represents 

the evolution profile of each release and a corresponding metric that will be 

used for the following step’s clustering procedure. 
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We aim to use this input data to characterize each release in terms of (a) the 

nature of the changes performed and (b) the intensity of the evolution 

activity. To achieve this, we proceed as follows: 

1. First, we organize the aforementioned input in three categories 

depending on whether they modify (a) the information capacity of the 

schema (in terms of new or deleted tables), (b) the information capacity of 

tables (in terms of new or deleted attributes inside tables), or, (c) the 

typing constraints of the attributes themselves. We discuss this labeling in 

Sections 4.1.1 and 4.1.2. 

2. Second, we use this labeling to label the releases in more coarse grained 

categories, which we call change families and we also measure the extent 

that the evolution effort within each release aimed to provide Growth of 

information capacity of the schema, or Maintenance of the structure of the 

database. We discuss this labeling and measuring in Section 4.1.3. In 

Section 4.1.4, we also discuss how we quantize the intensity measurement 

in a small vocabulary of values for each change family that will also allow 

us to provide classifications later. 

The final outcome of the entire process is two two-dimensional vectors for 

each release. The first vector contains the intensity label of the two change 

families Growth and Maintenance , while the second one represents the metrics 

of the abovementioned families. 

4.1.1 Activity Characterization 

The activity characterization of a release works at three levels. The first one is 

the inter table change level that concerns table births and deaths and is 

measured by the number of attributes that are born with or die with their 

tables (we use attributes as the unit of measurement for uniformity with the 

other categories). The second level refers to intra table change concerning the 

number of attribute injections (attributes that are added after the birth of their 

table) and ejections (attributes removed while their table survives). Finally, 

the last activity level is amendment that measures updates to the attribute data 

type and key participation of attributes. For all the levels, the activity is 

measured by the number of attributes involved in the respective type of 

change. 

It should be noted that from now on attributes born with their table will be 

referred as table_born, attributes removed with the death of their table as 
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table_gone, while attributes that are added after the birth of their table or 

removed while their table survives will be referred to as injected and ejected 

respectively. 

The following cases are counted in number of attributes and we use a 

threshold set to 0.3.The purpose of this threshold was to avoid cases where 

we have both births and deaths in the same release that indicate a renaming 

or restructuring case, rather than expansion or shrinking. 

Inter-Table Change 

 Characterization: Table Expansion 

Condition: 

#table_born - #table_gone> threshold(#table_born + #table_gone) 

Metric (in number of attributes): 

#table_born - #table_gone 

 Characterization: Table Shrinking 

Condition: 

#table_gone - #table_born> threshold(#table_born + #table_gone) 

Metric (in number of attributes): 

#table_gone - #table_born 

 Characterization: Table Restructuring 

Condition: 

Both table expansion and table shrinking checks fail 

Metric (in number of attributes): 

|#table_born - #table_gone| 

Intra-Table Change 

 Characterization: Intra Table Expansion 

Condition: 

#injected - #ejected > threshold(#injected + #ejected) 
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Metric (in number of attributes): 

#injected - #ejected 

 Characterization: Intra Table Shrinking 

Condition: 

#ejected - #injected > threshold(#injected + #ejected) 

Metric (in number of attributes): 

#ejected - #injected 

 Characterization: Intra Table Restructuring 

Condition: 

Both intra table expansion and intra table shrinking checks fail 

 Metric (in number of attributes): 

 |#injected - #ejected| 

Amendments 

 Characterization: Intra Table Amendment 

Condition: 

#data_type_updated + #key_updated>0 

 Metric (in number of attributes): 

#data_type_updated + #key_updated 

 

Each release can have at most one activity characterization per level. When a 

release does not have any of the activity characterizations above, its activity 

characterization is No Change.  

4.1.2 Intensity of Activity Characterization 

Each characterization (except for No Change)is defined by its metric and is 

given an intensity characterization according to it. We assume three intensity 

levels: Low, Medium and High. We also assume that each characterization has a 
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list, containing the values that the releases have for its corresponding metric, 

in ascending order. 

A release’s activity characterization intensity is characterized as 

 Low : 

If its value for the characterization’s metric is lower than the value of 

the same metric of the release indexed in the 80% of the corresponding 

list. 

 Medium: 

If its value for the characterization’s metric is equal or higher than the 

value of the same metric of the release indexed in the 80% and lower 

than the 95% of the corresponding list. 

 High: 

If its value for the characterization’s metric is equal or higher than the 

value of the same metric of the release indexed in the 95% of the 

corresponding list. 

4.1.3 Change Families 

The first levels of characterizations provide a fairly detailed labeling of 

releases, with a vocabulary that is quite voluminous for being able to 

automatically derive classifications in the sequel. Thus, we have resorted to 

reducing this labeling vocabulary by grouping activity characterizations to 

two change families. The first family refers to the cases of inter or intra table 

expansion, where clearly the nature of the changes of the schema were related 

to its Growth, since the number of attribute additions in those cases is 

significant. The second family refers to inter or intra table shrinking, 

restructuring or intra table amendment, which indicate a Maintenance nature. 

Maintenance 

 Case: 

Table Shrinking or Table Restructuring 

Metric (in number of attributes):  

#table_born + #table_gone 
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 Case: 

Intra-Table Shrinking or Intra-Table Restructuring  

Metric (in number of attributes): 

#injected + #ejected  

 Case: 

Intra-Table Amendment 

Metric (in number of attributes): 

#data_type_updated + #key_updated 

Growth 

 Case: 

Table Expansion  

Metric (in number of attributes):  

#table_born - #table_gone 

 Case: 

Intra-Table Expansion 

Metric (in number of attributes): 

#injected - #ejected 

We assume that a release is characterized with respect to both the Growth and 

Maintenance families. The value of the family metric of a release is the 

aggregation of the metrics of the activity characterizations it has (analyzed in 

4.1.1). 

4.1.4 Intensity of Change Family 

Each release’s growth and maintenance can be labeled with its intensity level. 

So, each of the two families can also be labeled as Zero, Low, Medium or High. 

Of course, the problem is how to compute the thresholds that differentiate 

subsequent intensity levels – e.g., at which amount of change do we stop 

labeling activity as Low and start labeling it Medium? 
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Our approach to the problem is based on the distribution of the values for the 

entire list of releases, for each of the two families. Take for example, the 

Growth family. We take all the values of the Growth family for all the releases 

of the data set and sort them in ascending order. Then, we cut this series in 

two places, one for the border between Low and Medium and another for the 

border between Medium and High. Figure 40 depicts the intensity levels for 

both Growth and Maintenance based on the index of the sorted release list for 

all the datasets. Observe the universality of the pattern of the lines; thus, we 

can uniformly apply the same rules for all data sets. Specifically, a release’s 

family intensity is characterized by the following rules: 

 Zero: 

 The value for the family’s metric is zero.  

 Low: 

The value for the family’s metric is lower than the value of the same 

metric of the release indexed in the 80% of the corresponding list. 

 Medium: 

The value for the family’s metric is equal or higher than the value of 

the same metric of the release indexed in the 80% and lower than the 

95% of the corresponding list. 

 High: 

The value for the family’s metric is equal or higher than the value of 

the same metric of the release indexed in the 95% of the corresponding 

list. 

 

We normalize the Growth and Maintenance metric values with respect to the 

max value of each metric in order to use these normalized values in the next 

step of the release clustering. Figure 41 depicts via scatter charts the values of 

normalized Growth and Maintenance metrics for all datasets. For the largest 

datasets we provide zoomed-in areas of these scatter charts. 
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Figure 40 Intensity Levels of Change Families 
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Figure 41 Normalized Growth and Maintenance scatter charts for all datasets 
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The characterization rules can be summarized as shown in Figure 42. 

 

Figure 42 Release Characterization Rules 

4.2 Release Clustering 

The second step of our algorithm performs hierarchical agglomerative 

clustering using the vectors produced by the previous step. The main goal of 

this step is to merge similar consecutive releases to clusters in order to create 

candidate phases and calculate evaluation measures for each candidate 

segmentation of the schema, which are needed for the next step of our 

method. 

We implemented a Hierarchical Agglomerative Clustering algorithm that 

takes as input the releases of the schema and their Change Family metrics’ 

values [4.1.3]. As it is known, an agglomerative clustering algorithm starts 

with each point (here a release) as a different cluster and, progressively, at 

each step, merges the two closest clusters until only one cluster (or k clusters 

if accordingly set) remains. In our setting, the proximity matrix of the 

Agglomerative algorithm is updated in each step using the average-linkage 

distance method. 

To calculate the distance that two releases have with each other we use the 

Maintenance and Growth metrics described in 4.1.3. For each release we 

normalize the values of the maintenance and growth metric with respect to 

the maximum value of the corresponding metric. We define the distance 

between two releases as the Euclidean distance of the normalized growth and 

maintenance values. 

Notation: we denote the normalized maintenance score of a release Ri with 𝑀𝑖
∗, 

the normalized growth score with 𝐺𝑖
∗ and the distance of two releases via .  

𝛿(𝑅1, 𝑅2)  =  (𝑀1
∗  − 𝑀2

∗)2 +  (𝐺1
∗  − 𝐺2

∗)2 
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One of the distinctive characteristics of our method is the need to customize 

the agglomerative clustering algorithm to our setting. Our intention is to 

cluster together adjacent releases, so as to construct contiguous phases. Thus, 

there is no need to attempt assessing the distance (and thus, to possibly 

merge) phases that are not adjacent. Thus, our implementation only merges 

clusters/releases that are consecutive in time. 

The entire process is presented as an algorithm in Figure 43. 

 

Figure 43 Algorithm : Candidate Phase Extraction via Agglomerative 

Clustering  

4.3 Clustering Evaluation 

After the clustering procedure of each dataset is done, we need to evaluate 

each step of the agglomerative algorithm in order to decide which clustering 

step is the best and should be used as a guide to extract phases of the 

schema’s life. In order to decide which solution should be considered as the 

best one, we need to ensure the quality of the solution both based on 

clustering evaluating measures and the similarity with our ground truth. Both 

types of measures used will be described in this subsection. 
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Silhouette. The first of these methods is Silhouette[Rous87], a method of 

interpretation and validation of consistency within clusters of data. This 

method shows how well a point (here a release) is matched with its cluster. It 

uses the average dissimilarity that a certain point has with every point in the 

same cluster and the average dissimilarity it has with every point in every 

cluster it is not a part of. The original Silhouette type for a data point pi is as 

follows: 

𝑠(𝑝𝑖)  =  
𝑏(𝑝𝑖) −𝑎(𝑝𝑖)

𝑚𝑎𝑥  𝑏(𝑝𝑖) ,𝑎(𝑝𝑖) 
 , with 

b(pi) the lowest average dissimilarity of pi to any other clusters to which 

it does not belong to, and  

a(pi) the average dissimilarity of pi to the rest of the points within the 

cluster to which pi currently belongs to 

The lowest value Silhouette can have is -1, while the highest is 1. In order to 

say that we have a well clustered dataset we want a Silhouette value that is 

very close to 1. Typically, Silhouette values in the range of 0.2 to 0.5 are 

considered to be fair. 

Because our clustering implementation only considers merging consecutive 

clusters in time, for our purposes we modified the original Silhouette type so 

that the lowest average dissimilarity (b(i)) is computed only for adjacent 

clusters. 

Assume a cluster set C = {C1, …,Cn} which is a possible clustering of the 

history of a schema in phases. Then, we define the adjacency clustering 

silhouette value, denoted as sadj for an arbitrary release Ri is defined as  

𝑠𝑎𝑑𝑗 (𝑅𝑖)  =  
𝑏𝑎𝑑𝑗 (𝑅𝑖) −𝑎(𝑅𝑖)

𝑚𝑎𝑥  𝑏𝑎𝑑𝑗 (𝑅𝑖) ,𝑎(𝑅𝑖) 
 , with 

badj(Ri) the lowest average dissimilarity of Ri to the clusters adjacent to 

the one Ri currently belongs to, and  

a(Ri) the average dissimilarity of Ri to the rest of the releases in the 

cluster to which Ri currently belongs to 

Finally, the adjacency clustering silhouette value for a cluster set is the average 

value of the respective adjacency clustering silhouette values of all the 

clusters belonging to the cluster set. 

sadj(C) = avg{sadj(C1), …, sadj(Cn)} 
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Figure 44 shows the Silhouette value of each merging step of the 

Agglomerative algorithm, for every dataset. 

 

Figure 44 Silhouette values for each merging step of the Agglomerative 

algorithm and Silhouette distances for every transition of merging steps. 

Cohesion and Separation. The second set of evaluation methods we use 

includes the combination of two metrics, namely cohesion and separation. 

Cohesion and separation in [TaSK05] are defined as the following two 

formulae: 

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝐶𝑖 =  𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑥, 𝑦)
𝑥𝜖𝐶𝑖
𝑦𝜖𝐶𝑖

 

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑖 , 𝐶𝑗  =  𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑥, 𝑦)
𝑥𝜖𝐶𝑖
𝑦𝜖𝐶𝑗

 

We decided to intervene in the definition of the two measures. The reason lies 

in the fact that our clustering implementation is a modification of the original 

Agglomerative algorithm (it only considers consecutive clusters for merging), 

so we modified the two formulae in an appropriate manner with respect to 

out implementation. We define the cohesion value of a cluster as the opposite 
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of the average distance that every release has with all releases in the same 

cluster.  

We assume a schema history including n releases and a cluster set C = {c1, 

…,cm} containing m possible segmentations of the schema history. We also 

define dist(ri,rj) the distance that two of those releases have with each other. 

Assume a release ri belonging to cluster c. We define the ClusterFitness of  ri as  

follows: 

ClusterFitness(ri) = - avg{ dist(ri,rj) }, ri≠rj and ri,rj∊ c 

We assume a cluster set C over {r1, …,rn} with n releases. The cohesion value of 

C is defined as follows:  

Cohesion(C) = avg{ ClusterFitness(ri) }, foreach ri ∊ C 

The lowest value cohesion can have is the opposite of the largest distance 

there is for each dataset, while the highest is 0, where all releases in the same 

cluster have 0 distance. The higher the cohesion value, the better the 

clustering step, as we want each point to have the smallest distance possible 

with all the other points in the same cluster. 

We define the separation of a cluster as the average distance that every release 

has with all releases in adjacent clusters. 

We define a cluster set C = {C1, …,Cn} with n clusters, a cluster Ci= {r1, …,rm} 

with m releases and dist(ri,rj) the distance that two of those releases have with 

each other. Each release ri has a separation value as follows: 

Separation(ri) = avg{ dist(ri,rj) }, ri≠rj ,ri∊ Ci , rj∊ Cj with Ci≠ Cj and Ci and Cj are 

adjacent 

We assume a cluster set C = {r1, …,rn} with n releases. The separation value of C 

is defined as follows:  

Separation(C) = avg{ Separation(ri) }, foreach ri ∊ C 

The lowest value separation can have is0, while the highest is the largest 

distance there is for each dataset. The higher the separation value, the better 

the clustering step, as we want each point of each cluster to have the highest 

distance possible with all points from other clusters. 

We normalize the average separation and cohesion values of each cluster set 

with respect to the min and max corresponding values as follows: 
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NormalizedCohesion: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛(𝐶𝑖)  =  
𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛(𝐶𝑖) – minC𝑜ℎ𝑒𝑠𝑖𝑜𝑛

max𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 –  minC𝑜ℎ𝑒𝑠𝑖𝑜𝑛
 

NormalizedSeparation: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝐶𝑖)  =  
𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝐶𝑖) – minS𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

max𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 –  minS𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛
 

We can combine these two values in a single metric Normalized Clustering 

Quality (NCQ) 

 NCQ(Ci) = normalizedSeparation(Ci) + normalizedCohesion(Ci) 

Figure 45 depicts the normalized cohesion and normalized separation values, 

while Figure 46 depicts the sum of the two normalized metrics. Both figures 

show the corresponding values for each Agglomerative step and for each 

dataset. 

In order to extract the best phases, we considered all the possible evaluation 

metrics presented in figures 44, 45 and 46. The Silhouette metric for the 

majority of the datasets has its highest values for cluster sets with quite high 

number of clusters in the orders of half the number of releases (practically, 

average cluster size is about 2 in these solutions). Having empirically 

evaluated the phases of each dataset in Section 3.2, we consider such solutions 

not desired.  

When considering the sum of Normalized Cohesion and Normalized 

Separation, however (Figure 46), we observe that there is a critical area of 

approximately 10 or less clusters (practically the area of solutions at the 

rightmost part of the respective plots in Figure 46) where (a) the combination 

of the two measures gives a satisfactory compromise, (b) the number of 

clusters is close to the golden standard of Section 3.2, (c) the sum is 

maximized, and (d) the value of the measure reaches fairly higher values than 

the rest of the plot, for several points in this critical area.  

Our analysis is thus, restricted to this critical area of potential solutions; as we 

shall see, the most compatible solution with respect to the golden standard is 

also found in it. We have also observed that this area has the second best (or 

even best for Typo3) silhouette values.  
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Figure 45 Normalized Cohesion-Separation values for each Agglomerative 

iteration step for all datasets 

A final evaluation procedure we considered was to compare the differences 

(in phases) of our golden standard with the phase extraction of the top points 

of NCQ (seen in Figure 46). To do so, we calculated a new measure, Lag, that 

is defined as follows. We assume a set H = {r1, …,rn} with n releases. We label 

each release with a schema history including the phase to which it belongs 

and denote this labeling as phase(ri) ∊ N. Each phase(ri) is a number with the 

phase ri belongs to, e.g., if phase(r3) =1, this means that r3 belongs to phase 1. 

Assume now two different segmentations of the history, for example a 

manual golden standard T={phaseT(r1),…., phaseT(tn)} and an algorithmically 

produced segmentation A={phaseA(r1),…., phaseA(tn)}. Then the Lag between the 

two clusterings is the average difference of phase id, over all releases, for the 

two labeling. Lag is defined as follows: 

𝐿𝑎𝑔(𝐴, 𝑇) =
 𝑎𝑏𝑠 𝑝ℎ𝑎𝑠𝑒𝐴(𝑟𝑖) − 𝑝ℎ𝑎𝑠𝑒𝑇(𝑟𝑖)  𝑛

𝑖=1

𝑛
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Figure 46 Sum of Normalized Cohesion and Normalized Separation values 

for each Agglomerative iteration step for all datasets. The critical area of 

candidate final clusterings is depicted in the orange box for each data set. 

Figure 47 depicts the top candidate algorithmically produced solution per 

dataset. We examine the top solutions based on NCQ, find the Lag value of 

misclassified releases per solution and rank them with respect to both Lag and 

NCQ.

 

Figure 47 Top candidate algorithmically produced solutions per dataset 
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We observe that the value of misclassified releases for the top NCQ solutions 

mainly ranges from 0 to 2. This means that our algorithm performs well, as 

the top solutions of NCQ that our method produces, are very similar with 

those of Section’s 3.2 golden standard. We additionally see that, the solution 

with the minimum Lag value, for every single one of the studied datasets, lies 

within the top-3 solutions with respect to NCQ, thus making NCQ the best 

possible measure for evaluating the solutions.  

The details of the algorithmically produced best solutions, along with the 

classification of their phases, are presented in 4.5. Before that, though, in 

Section 4.4, we present the method that produces these classifications. 

4.4 Phase Classification 

Once the third step of clustering evaluation and phase extraction is completed 

and we have the winner solution for each dataset, we now must classify each 

release with respect to its evolution profile. The release characterizations we 

produced during the first step of our method are not enough, as we want the 

characterization of a phase to be representative of the evolution activity as a 

group and not based on each release’s individual evolution. For this reason, 

we continue with the next step of phase classification. The procedure of phase 

classification consists of two steps.  

The first step is the computation of histograms for each phase of the schema’s 

life. We compute one histogram for the intensity of Growth and another for 

the intensity of Maintenance, for each phase (i.e., cluster of contiguous 

releases) of a candidate segmentation of the history of a schema.  The second 

step is a rule-based classification method based on these histograms and 

ultimately labeling a phase with respect to the nature and intensity of the 

changes it performs. 

4.4.1 Histogram Computation 

Each phase is a set of consecutive releases of a schema’s life. Each release as 

mentioned above has been labeled with change families and the intensity of 

these families. 

A release has a measure for the Growth family, and another for the 

Maintenance family. This means that each release is considered as a two 



 

 

81 

 

dimensional (Growth, Maintenance) vector. Based on this measure, each of 

these families is labeled with a Zero, Low, Medium, or High intensity.  

For each phase of the schema, which is ultimately a list of adjacent releases, 

we compute the histogram for Growth and Maintenance. For each of these 

two dimensions we count how many releases had a Zero, Low, Medium, and 

High value, thus producing four buckets for the histogram. Then, the 

histogram of the corresponding phase for the corresponding change family is 

computed as the percentage of releases in the phase that have the 

corresponding dimension value. 

Figure 48 shows an example of the Agglomerative clustering of Mediawiki 

with 5 clusters. Each color represents a cluster. The x axis represents the date 

of the latest commit of each release; the positive numbers of the y axis show 

the normalized growth and the negative numbers the normalized 

maintenance. It should be noted that the chart of Figure 48 has an offset of 

0.05 for both the normalized Growth and Maintenance values in order to be 

able to visually depict the Zero values in a distinctive way. Figure 49 shows 

the growth and maintenance histograms computed for each cluster shown in 

Figure 48. 

 

Figure 48 Agglomerative clustering example of Mediawiki with 4 clusters 
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Figure 49 Growth and Maintenance histograms of the clusters of Mediawiki 

shown in Figure 48 

4.4.2 Classification 

After having computed the Growth and Maintenance histograms of the 

corresponding phases, the remaining step is their classification. For the 

classification process we follow a rule-based procedure with respect to the 

possible values of the two dimensions of the winner release. As already 

mentioned each phase consists of a list of adjacent releases and has two 

histograms, one for each of the two change families.  

A phase will be characterized according to the value of the winner of each histogram. 

The Zero and Low intensities dominate the histograms most of the times as the 

calmness seems to be the default state of the schema. Figure 50 depicts the 

detailed percentages of Growth and Maintenance intensity percentages for all 

6 datasets. More specifically, the percentage of releases that have Zero or Low 

Growth for our datasets is between 83% and 89% and the percentage of 

releases that have Zero or Low Maintenance is between 82% and 87%.  Thus, 

the importance of having Zero or Low intensity is small and the occurrences of 

Medium or High intensities have greater significance. 
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On the contrary, High intensities are very infrequent and are the most 

important ones. High Growth and High Maintenance percentages both range 

from 4% to 8%. Medium intensities, although not so rare as High, are also quite 

infrequent. Medium Growth percentages are between 7% and 12% for our 

datasets, and Medium Maintenance between 8% and 13%. 

Keeping these facts in mind, higher intensities take precedence on lower ones. 

This does not mean that if we have a phase of several Low intensity releases 

and only one High intensity release the entire phase will be characterized by a 

single release. We consider the duration of a phase in number of releases. A 

set of high intensity releases of a phase will characterize it only if it is at least 

the one quarter of the phase’s population. The rules of the winner selection 

for both histograms are as follows: 

 If High%>threshold then winner=High 

 Else if Medium%>threshold then winner=Medium 

 Else if Low%>threshold then winner=Low 

 Else winner=Zero 

The threshold is empirically set to 0.25 to honor the one quarter of the 

population rule we discussed above. Different thresholds were tested and due 

to this empirical study we consider the 0.25 threshold as the best possible. 

 

 

Figure 50 Growth/Maintenance intensity percentages 
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Based on the winner values of each dimension and each phase we define the 

following phase classification rules: 

1. Class: 

Minor Activity ( with growth/maintenance spike(s) ) 

Condition: 

{(Low or Zero) Growth, (Low or Zero) Maintenance}  

2. Class: 

(Medium or High) Maintenance 

Condition: 

{(Low or Zero) Growth, (Medium or High) Maintenance}  

3. Class: 

(Medium or High) Growth 

Condition: 

{(Medium or High) Growth, (Low or Zero) Maintenance}  

4. Class: 

High Maintenance – Medium Growth 

Condition: 

{Medium Growth, High Maintenance}  

5. Class: 

High Growth – Medium Maintenance  

Condition: 

{High Growth, Medium Maintenance}  

6. Class: 

Restructuring 
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Condition: 

{Medium Growth, Medium Maintenance}  

7. Class: 

Intense Evolution 

Condition: 

{High Growth, High Maintenance}  

 

Figure 51 depicts a mapping of the aforementioned phase classification rules. 

 

Figure 51 Mapping of Phase Characterization Rules 

4.5 Top Phase Extractions 

As described in 4.3 and seen in Figures 46, 47 we present the best phase 

extractions for the studied datasets along with their classification based on the 

rules of 4.4.2 

All the Figures of this subsection show a table with the basic statistics of each 

phase extraction solution (growth, maintenance winners, percentages of each 

intensity, classification etc.) and each phase is colored the same color as it is 

shown in the chart below the statistics table. All charts’ x-axis’ points 

represent the date the last commit of each release was made. Y-axis’ positive 

numbers represent the normalized growth value of each release and Y-axis’ 

negative numbers represent the normalized maintenance values. It should be 

noted that each release point has an offset of 0.05.  
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Biosql.  Biosql is a set with a small number of releases (12) and an easy 

dataset to perform phase extraction to. Our golden standard totally agrees 

with the top solution our method produced. There are zero misclassified 

releases and the phase extraction and classification of Biosql consists of 3 

phases and is presented in Figure 52.  

 

Figure 52 Phase Extraction and Classification of Biosql with 3 phases 

For Biosql there was a phase of Minor Activity with some growth and 

maintenance spikes then a huge spike of Intense Evolution and then finally a 

long period of Minor Activity. 

Ensembl. Ensembl is the dataset with the largest amount of releases and 

based on the best possible phase extraction of our method contains 7 phases 

and is presented in Figure 53. Other possible extractions based on our 

evaluation are presented in Figures 54, 55 and 56 with 9, 11 and 13 phases 

respectively. 

Ensembl’s first phase is classified as a period of Medium Maintenance followed 

by a spike of High Growth – Medium Maintenance. The third phase is classified 

as a Medium Growth period and then a spike of High Maintenance appears. 

Then we have a phase of Medium Growth again followed by a spike of High 
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Maintenance. Finally, again we have a last long phase of Minor Activity with 

several growth and maintenance spikes.  

 

Figure 53 Phase Extraction and Classification of Ensembl with 7 phases 
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Figure 54 Phase Extraction and Classification of Ensembl with 9 phases 
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Figure 55 Phase Extraction and Classification of Ensembl with 11 phases 
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Figure 56 Phase Extraction and Classification of Ensembl with 13 phases 
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Mediawiki. Mediawiki also consists of a large number of releases and the top 

solution our method produces consists of 5 phases and is presented in Figure 

57. Another fair possible extraction is presented in Figure 58 and consists of 12 

phases. 

Mediawiki’s first phase is a long period that is mostly Minor Activity but 

contains a lot of big growth and maintenance spikes. Then we have a phase 

(spike) of Medium Growth – High Maintenance followed by a long phase of 

Minor Activity that contains spikes of growth and maintenance. The fourth 

phase of Mediawiki is a spike of High Growth – Medium Maintenance followed 

by a long period of Minor Activity with some maintenance spikes. 

 

Figure 57 Phase Extraction and Classification of Mediawiki with 5 phases 
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Figure 58 Phase extraction and Classification of Mediawiki with 12 phases 

Opencart. Opencart is the second smallest dataset and the top solution 

produced by our method consists of 4 phases and is presented in Figure 59. 

Other fair possible phase extractions of Opencart are depicted in Figures 60 

and 61 and consist of 7 and 11 phases respectively. 

Opencart’s first phase is a spike of High Maintenance and then it is followed by 

a long period of Minor Activity with some spikes of growth and maintenance 

nature. Then there is a phase of High Growth followed by a last Minor Activity 

phase. 
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Figure 59 Phase Extraction and Classification of Opencart with 4 phases 

 
Figure 60 Phase Extraction and Classification of Opencart with 7 phases 
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Figure 61 Phase Extraction and Classification of Opencart with 11 phases 

Phpbb. Phpbb is one of the medium sized datasets in terms of releases and 

our top solution consists of 5 phases and is depicted in Figure 62. Figures 63 

and 64 represent two alternative fair solutions of phase extraction and consist 

of 3 and 7 phases respectively. 

Phpbb’s first phase is quite long in time consists of only 2 releases and is 

classified as Minor Activity. The second phase is a spike of High Growth 

followed by a very long Minor Activity phase containing some spikes. The 

next phase is a spike of High Maintenance that is followed by a Minor Activity 

phase with small volume spikes. 
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Figure 62 Phase Extraction and Classification of Phpbb with 5 phases 

 

Figure 63 Phase Extraction and Classification of Phpbb with 3 phases 
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Figure 64 Phase Extraction and Classification of Phpbb with 7 phases 

Typo3.  Typo3 is also a medium sized dataset in terms of releases and the top 

algorithmically produced solution consists of 4 phases and is presented in 

Figure 65. In Figures 66 and 67 we can see additional fair alternatives of the 

phase extraction of Figure 65 consisting of 6 and 7 phases respectively. 

Typo3’s first phase is a very long period of Minor Activity with growth and 

maintenance spikes. The phase that follows is a spike of High Maintenance 

followed by a phase (spike) of High Growth – Medium Maintenance. Finally, the 

last phase of Typo3 is a period of calmness, thus classified as Minor Activity.  
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Figure 65 Phase Extraction and Classification of Typo3 with 4 phases 

Figure 66 Phase Extraction and Classification of Typo3 with 6 phases 
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Figure 67 Phase Extraction and Classification of Typo3 with 7 phases 

 

4.6 Conclusions 

The goal of this part of the study was to introduce a new method that 

automatically extracts phases of a schema’s life and classifies each one of 

them with respect to their evolution profile.  

We evaluated our method via a set of measures that take into consideration 

both the quality of the clustering procedure based on the distance of the 

releases, but also the resemblance of the algorithmically produced top 

solutions with our golden standard. The top solutions of our NCQ metric 

(which we consider as winners) have a Lag value of misclassified releases that 

is typically less than 2. This means that our algorithm shows a fair 

performance with a small error rate and that for the purpose it serves, 

considering no heuristics were used, is a significantly decent method for 

automatically extracting and classifying schema releases. 

Figure 68 depicts the phases of the top algorithmically produced solutions 

along with their classifications. We observe several similarities with Figure 2 
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of Section 3.2, where our golden standard was depicted and a similar amount 

of phases for each dataset. Furthermore, the cooling period in the end of each 

schema’s life with a domination of Maintenance - Minor Activity ending phases 

is also present for this set of solutions. Additionally, Maintenance is still 

observed to be located anywhere in the history of a schema and finally, Minor 

Activity phases are still usually long periods of calmness.  

The main difference that our algorithmically produced solution has with the 

golden standard is the relocation of Growth classified phases to slightly 

posterior phases than before. We address this issue to the fact that an 

Agglomerative implementation for the purposes of our problem, tends to 

isolate spikes as single phases and not merge them with their adjacent 

releases. 

 

 BioSQL Ensembl Mediawiki Opencart Phpbb Typo3 

1 

Minor 

Activity 

(w/ spikes) 

 

(w/ spikes) 

Maintenance 

Minor 

Activity 

(w/ spikes) 
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(spike) 

Minor 

Activity 

Minor 

Activity 
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Maintenance 

Growth+ 

Maintenance 

Minor 

Activity 
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Growth 
Maintenance 

3 
Minor 

Activity 
Growth 

Minor 

Activity 

(w/ spikes) 

 

 

 

 

 

Minor 

Activity 
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(spike) 

Minor 

Activity 
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Maintenance 

4  Maintenance 
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Maintenance 

Minor 

Activity 
Maintenance 
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Activity 

5  Growth 

Minor 

Activity 

(w/ spikes) 

 

Minor 

Activity 

(w/ spikes) 

 

6  Maintenance     

7  

Minor 

Activity 

(w/ spikes) 

   

 

 

 

Figure 68 Phase Extraction and Classification of Top Algorithmically 

Produced Solutions 
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CHAPTER 5.  

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

5.2 Future work 

 

In this final chapter, we will first start with a summary of our findings and 

answer on our initial research questions and then we will discuss issues of 

future work. 

5.1 Conclusions 

The main goal of this thesis was to research the existence of phases in the lives 

of relational databases. To do so, we first studied the periods when tables, 

attributes and foreign keys are born, updated or evicted in a schema’s life by 

studying the heartbeat of changes.  

The most interesting finding in our study was that, with the single exception 

of one dataset, the history of a database schema comes in two mega-phases: (a) 

a ‚hot‛ expansion mega-phase at the start of its life demonstrating growth of 

information capacity, along with the necessary maintenance and (b) a 

‚cooling‛ housekeeping mega-phase at its middle and later life where either 

maintenance actions or stillness dominate the update activity. We called this 

phenomenon progressive cooling of the heartbeat.  

Some additional findings concerning the first part of this study showed that 

the majority of zombie tables tend to survive and injections and ejections of 
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attributes mostly happen at the start or mid of a table’s life and rarely in the 

end.  

As long as the foreign keys are concerned, we found that they come in two 

fashions (a) they are either treated as integral parts of the schema and get 

born and evicted along with their tables, mostly in scientific projects and (b) 

they are treated as second-class add-ons that get removed not along with their 

table, especially in CMSs.  

The second part of this Thesis presented an automatic method for phase 

extraction and classification, given the history and the heartbeat of a schema, 

that consists of four main steps. The evaluation procedure we followed, 

showed that our method has a significantly decent performance in terms of 

misclassified releases, especially considering the fact that we did not use any 

heuristics. 

5.2 Future work 

More research can be done in the phase extraction and classification field. The 

clustering procedure could be implemented with another clustering 

algorithm, other than Agglomerative. In our implementation we used the 

Euclidean distance function, but one can try a different definition of distance 

between releases. Furthermore, the distance was calculated via our Growth – 

Maintenance metric values, but another direction would be to use the labels 

we produced with our release characterization step. Another possible 

modification would be to change the way we evaluate the clustering 

procedure by removing spikes considering them as noise. 

A different direction of the one we followed during our phase extraction and 

classification algorithm, would be to treat the data as sets and not timeseries. 

In this direction one could cluster the points as sets and then label them with 

the cluster they belong to. This would result in a timeseries of clustering 

labels and one can treat this problem as a change detection problem. 
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