

Extraction and classification of phases in schema evolution

histories

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Maria Zerva

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

January 2018

Examining Committee:

 Panos Vassiliadis, Associate Professor, Department of Computer Science and

Engineering, University of Ioannina (Supervisor)

 Aristidis Likas, Professor, Department of Computer Science and Engineering,

University of Ioannina

 Apostolos Zarras, Associate Professor, Department of Computer Science and

Engineering, University of Ioannina

DEDICATION

To my beloved grandfather.

ACKNOWLEDGMENTS

To my family, that raised me and believed in me all these years, my friends that

supported all my efforts and finally my supervisor Panos Vassiliadis, for the huge

inspiration and support in both my undergraduate and postgraduate studies. Thank

you all very much.

i

TABLE OF CONTENTS

Dedication v

Acknowledgments vii

Table of Contents i

List of Figures iii

Abstract vii

Εκτεταμένη Περίληψη στα Ελληνικά ix

CHAPTER 1. Introduction 11

1.1 Scope 11

1.2 Roadmap 14

CHAPTER 2. Related Work 15

2.1 Case studies of Schema Evolution 15

2.2 Comparison to the state of the art 20

CHAPTER 3. Birth and Death In Schema Evolution 21

3.1 Experimental Setup 22

3.2 Births, Deaths and Updates 22

3.3 Special Topics 40

3.3.1 Zombie tables : death and rebirth 40

3.3.2 Period of attribute injections and ejections 44

3.3.3 Foreign Key birth and death 46

ii

3.4 Conclusions 59

CHAPTER 4. Phase Extraction & Classification 61

4.1 Release Characterization 63

4.1.1 Activity Characterization 64

4.1.2 Intensity of Activity Characterization 66

4.1.3 Change Families 67

4.1.4 Intensity of Change Family 68

4.2 Release Clustering 72

4.3 Clustering Evaluation 73

4.4 Phase Classification 80

4.4.1 Histogram Computation 80

4.4.2 Classification 82

4.5 Top Phase Extractions 85

4.6 Conclusions 98

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 101

5.1 Conclusions 101

5.2 Future work 102

Bibliography 103

Short CV 105

iii

LIST OF FIGURES

Figure 1 Table with statistics for all datasets. 22

Figure 2 Table of the phases of all datasets. 26

Figure 3 Biosql :Heartbeat of change in time. 28

Figure 4 Biosql : Heartbeat of change per release. 29

Figure 5 Ensembl : Heartbeat of change in time. 30

Figure 6 Ensembl : Heartbeat of change per release. 31

Figure 7 Mediawiki : Heartbeat of change in time. 32

Figure 8 Mediawiki : Heartbeat of change per release. 33

Figure 9 Opencart : Heartbeat of change in time. 34

Figure 10 Opencart : Heartbeat of change per release. 35

Figure 11 Phpbb : Heartbeat of change in time. 36

Figure 12 Phpbb : Heartbeat of change per release. 37

Figure 13 Typo3 : Heartbeat of change in time. 38

Figure 14 Typo3 : Heartbeat of change per release. 39

Figure 15 Percentages of zombie/not zombie tables for each dataset. 41

Figure 16 Percentages of dead/survivor zombie tables for each dataset. 42

Figure 17 Percentages of zombies in groups/not in groups for each dataset. 42

Figure 18 General statistics of zombie tables in absolute numbers. 43

Figure 19 General Statistics of zombie tables in percentages. 43

Figure 20 Death duration statistics of zombie tables in absolute numbers. 43

Figure 21 Group statistics of zombie tables in absolute numbers. 44

iv

Figure 22 Percentages of attribute injections to existing tables. 45

Figure 23 Percentages of attribute ejections from tables. 45

Figure 24 Statistics of attribute injections and ejections in absolute numbers. 46

Figure 25 Statistics of attribute injections and ejections in percentages. 46

Figure 26 Foreign key changes in the 85 versions of Atlas. 48

Figure 27 Foreign key type of changes in Atlas. 48

Figure 28 Foreign key changes in the 47 versions of Biosql. 49

Figure 29 Foreign key type of changes in Biosql. 50

Figure 30 Foreign key changes in the 194 versions of Castor. 51

Figure 31 Foreign key type of changes in Castor. 51

Figure 32 Foreign key changes in the 17 versions of Egee. 52

Figure 33 Foreign key type of changes in Egee. 53

Figure 34 Foreign key changes in the 399 versions of Slashcode. 55

Figure 35 Foreign key type of changes in Slashcode. 55

Figure 36 Foreign key changes in the 160 versions of Zabbix. 56

Figure 37 Foreign key type of changes in Zabbix. 57

Figure 38 Tables with foreign key statistics for all the studied datasets. 58

Figure 39 Phase Extraction and Classification Algorithm 63

Figure 40 Intensity Levels of Change Families 70

Figure 41 Normalized Growth and Maintenance scatter charts for all

datasets 71

Figure 42 Release Characterization Rules 72

Figure 43 Algorithm : Candidate Phase Extraction via Agglomerative

Clustering 73

Figure 44 Silhouette values for each merging step of the Agglomerative

algorithm and Silhouette distances for every transition of merging

steps. 75

v

Figure 45 Normalized Cohesion-Separation values for each Agglomerative

iteration step for all datasets 78

Figure 46 Sum of Normalized Cohesion and Normalized Separation values

for each Agglomerative iteration step for all datasets. The critical

area of candidate final clusterings is depicted in the orange box

for each data set. 79

Figure 47 Top candidate algorithmically produced solutions per dataset 79

Figure 48 Agglomerative clustering example of Mediawiki with 4 clusters 81

Figure 49 Growth and Maintenance histograms of the clusters of Mediawiki

shown in Figure 48 82

Figure 50 Growth/Maintenance intensity percentages 83

Figure 51 Mapping of Phase Characterization Rules 85

Figure 52 Phase Extraction and Classification of Biosql with 3 phases 86

Figure 53 Phase Extraction and Classification of Ensembl with 7 phases 87

Figure 54 Phase Extraction and Classification of Ensembl with 9 phases 88

Figure 55 Phase Extraction and Classification of Ensembl with 11 phases 89

Figure 56 Phase Extraction and Classification of Ensembl with 13 phases 90

Figure 57 Phase Extraction and Classification of Mediawiki with 5 phases 91

Figure 58 Phase extraction and Classification of Mediawiki with 12 phases 92

Figure 59 Phase Extraction and Classification of Opencart with 4 phases 93

Figure 60 Phase Extraction and Classification of Opencart with 7 phases 93

Figure 61 Phase Extraction and Classification of Opencart with 11 phases 94

Figure 62 Phase Extraction and Classification of Phpbb with 5 phases 95

Figure 63 Phase Extraction and Classification of Phpbb with 3 phases 95

Figure 64 Phase Extraction and Classification of Phpbb with 7 phases 96

Figure 65 Phase Extraction and Classification of Typo3 with 4 phases 97

Figure 66 Phase Extraction and Classification of Typo3 with 6 phases 97

Figure 67 Phase Extraction and Classification of Typo3 with 7 phases 98

vi

Figure 68 Phase Extraction and Classification of Top Algorithmically

Produced Solutions 99

vii

ABSTRACT

Maria Zerva. MSc in Computer Science, Department of Computer Science and

Engineering, University of Ioannina, Greece, January 2018.

Extraction and classification of phases in schema evolution histories

Advisor: Panos Vassiliadis, Associate Professor.

Software projects that are built on top of relational databases evolve over time just

like any other software project. Bugs occur and user requirements change and in

order to keep the users satisfied and provide consistent services, software projects

have to adapt to the new requirements. The information capacity of a software

project also needs to be aligned with these requirements resulting in the need to

evolve the database schema along with the software. Schema evolution affects the

surrounding applications in both a syntactic and semantic manner, thus making its

understanding a topic of significance.

Our fundamental research question is of investigative nature: are there phases in the

lives of relational schemata? To support our study towards answering the above

question, we have used 6 free open source software projects that include relational

databases, whose evolution we have tracked and for which, we have identified the

changes that took place in each committed version. Based on these data, this Thesis is

structured along two parts: the first part is of explorative nature, and studies the

collected data to manually extract phases and patterns in the tables’ lives, whereas the

second part, proposes an automated method to algorithmically extract these phases.

The first part of this Thesis addresses the following question: when are tables, attributes

and foreign keys born and evicted in the life of a schema? Based on the information on

table and attribute births, deaths and updates, along with the timeline of schema size,

we have manually derived phases in the life of our 6 database schemata. Our

characterizations are based on the demonstrated growth (increase of information

capacity) or maintenance (containing deletions and updates in order to improve the

quality of the schema). The most interesting finding in our study is that, with a single

exception, the history of a database schema comes in two mega-phases: (a) a ‚hot‛

expansion mega-phase at the start of its life demonstrating growth of information

viii

capacity, along with the necessary maintenance, and, (b) a ‚cooling‛ housekeeping

mega-phase at its middle and later life where either maintenance actions or stillness

dominate the update activity. We call this phenomenon progressive cooling of the

schema heartbeat. Several observations support this finding.

The second part of the Thesis addresses the following question: given the history and

heartbeat of a schema, can we automatically extract phases in its evolution? Our algorithmic

method includes four steps. The first step of our method, involves the

characterization of the releases in terms of the two aforementioned change families,

growth and maintenance. Based on these characterizations, the second step of the

method splits the timeline of the schema’s life in phases, by applying a hierarchical

agglomerative clustering, that clusters together consecutive releases. In the third step

of our method, we use several measures of clustering quality, such as Silhouette,

Cohesion and Separation to characterize the discriminating quality of each of the

derived clusterings. Finally, the fourth step of the method classifies clusters, i.e.

phases in the life of a schema, in terms of their nature, on the basis of a taxonomy of

change profiles (e.g., Minor Activity, Restructuring, Intense Evolution, among others).

The phase extraction and classification method introduced in the second part of this

Thesis was evaluated with respect to clustering oriented measures and quality

measures based on our golden standard. The findings of this evaluation show that

our method performs fairly, having a small error rate and the solutions it produces

are of significant quality.

ix

ΕΚΣΕΣΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΑ ΕΛΛΗΝΙΚΑ

Μαρία Ζέρβα, ΜΔΕ στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και

Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Ιανουάριος 2018.

Εξαγωγή και κατηγοριοποίηση φάσεων στην ιστορία της εξέλιξης σχημάτων

βάσεων δεδομένων

Επιβλέπων: Παναγιώτης Βασιλειάδης, Αναπληρωτής Καθηγητής.

Το λογισμικό που είναι σχεδιασμένο βασισμένο σε μία σχεσιακή βάση

εξελίσσεται με την πάροδο του χρόνου όπως οποιοδήποτε άλλο λογισμικό.

Συχνά προκύπτουν λάθη ή οι χρήστες ανακαλύπτουν πώς θα ήθελαν επιπλέον

λειτουργικότητες από το λογισμικό και για να είναι οι χρήστες ικανοποιημένοι

και να παρέχονται συνεπείς υπηρεσίες, το λογισμικό θα πρέπει να

προσαρμόζεται στις νέες απαιτήσεις. Η χωρητικότητα της πληροφορίας θα

πρέπει να συμβαδίζει με τις νέες απαιτήσεις και γι' αυτό το λόγο η ανάγκη για

εξέλιξη του σχήματος βάσης σε συγχρονισμό με την εξέλιξη του λογισμικού

είναι ζήτημα μεγάλης σημασίας. Η εξέλιξη του σχήματος επηρεάζει σημαντικά

τις εφαρμογές που βασίζονται σε αυτό και σε επίπεδο συντακτικό αλλά και σε

επίπεδο σημασιολογικό. Συνεπώς, η κατανόηση της εξέλιξης του σχήματος

χρήζει μεγάλης προσοχής.

Το βασικό ερώτημα που θέλουμε να απαντήσουμε στην παρούσα εργασία είναι

διερευνητικής φύσεως: υπάρχουν φάσεις στη ζωή των σχεσιακών βάσεων; Για την

διεκπεραίωση της έρευνας με στόχο την απάντηση του εν λόγω ερωτήματος,

χρησιμοποιήσαμε έξι συστήματα λογισμικού ανοικτού κώδικα τα οποία

εμπεριέχουν σχεσιακές βάσεις δεδομένων. Παρακολουθήσαμε την εξέλιξη

αυτών των βάσεων και εντοπίσαμε τις αλλαγές που έλαβαν χώρα σε κάθε

δημόσια καταχωρημένη έκδοση του λογισμικού. Με βάση αυτά τα δεδομένα, η

παρούσα εργασία είναι δομημένη σε δύο μέρη: το πρώτο μέρος είναι

διερευνητικής φύσεως και μελετά τα συλλεγμένα δεδομένα με στόχο την

χειροκίνητη εξαγωγή φάσεων και προτύπων συμπεριφοράς στις ζωές των

πινάκων, ενώ το δεύτερο μέρος, προτείνει μία αυτοματοποιημένη μέθοδο για την

εξαγωγή των φάσεων με τη χρήση ενός αλγορίθμου που προτείνουμε.

x

Το πρώτο μέρος της εργασίας ασχολείται με την ακόλουθη ερώτηση: πότε

γεννιούνται και πεθαίνουν οι πίνακες, τα πεδία και τα ξένα κλειδιά στη ζωή ενός

σχήματος; Βασισμένοι στις πληροφορίες για τις γεννήσεις, θανάτους και

ενημερώσεις πινάκων και πεδίων, μαζί με την εξέλιξη του μεγέθους του

σχήματος, εξάγαμε χειροκίνητα φάσεις της ζωής των έξι συνόλων δεδομένων. Οι

χαρακτηρισμοί μας βασίζονται στην ύπαρξη ανάπτυξης (αύξησης της

χωρητικότητας της πληροφορίας) ή συντήρησης (περιεκτικότητας σε διαγραφές

και ενημερώσεις με σκοπό τη βελτίωση του σχήματος της βάσης). Το πιο

ενδιαφέρον εύρημα της έρευνάς μας είναι, ότι με μία μεμονωμένη εξαίρεση, η

ιστορία του σχήματος της βάσης αποτελείται από δύο υπέρ-φάσεις: (α) μία

επεκτατική υπερ-φάση στην αρχή της ζωής του σχήματος, η οποία επιδεικνύει

αύξηση στη χωρητικότητα της πληροφορίας, και, (β) μία υπέρ-φάση συντήρησης

στη μέση ή στο τέλος της ζωής του σχήματος, όπου κυριαρχούν είτε εργασίες

συντηρήσης είτε ηρεμία στην δραστηριότητα ενημέρωσης. Ονομάζουμε αυτό το

φαινόμενο βαθμιαία ψύξη του παλμού του σχήματος. Πολλές παρατηρήσεις

υποστηρίζουν το εν λόγω εύρημα.

Το δεύτερο μέρος της εργασίας ασχολείται με την ακόλουθη ερώτηση: δοθείσης

της ιστορίας και του παλμού ενός σχήματος, μπορούμε να εξάγουμε φάσεις της

εξέλιξής του με αυτοματοποιημένο τρόπο? Η αλγοριθμική μας μέθοδος

αποτελείται από τέσσερα βήματα. Το πρώτο μέρος της μεθόδου μας

περιλαμβάνει το χαρακτηρισμό των δημοσίων releases του λογισμικού σε σχέση

με τις δύο προαναφερθείσες οικογένειες αλλαγών, ανάπτυξη και συντήρηση.

Βασισμένοι σε αυτούς τους χαρακτηρισμούς, το δεύτερο βήμα της μεθόδου σπάει

το χρονοδιάγραμμα της ζωής του σχήματος σε φάσεις, εφαρμόζοντας μία

ιεραρχική αθροιστική μέθοδο συσταδοποίησης, η οποία συσπειρώνει διαδοχικές

releases. Στο τρίτο βήμα της μεθόδου μας, χρησιμοποιούμε μετρικές της

ποιότητας συσταδοποίδησης, όπως Silhouette, Cohesion και Separation για να

χαρακτηρίσουμε την ποιότητα κάθε πιθανής συσταδοποίησης. Το τέταρτο και

τελικό βήμα της μεθόδου, κατατάσσει τις συστάδες, δηλαδή τις φάσεις της ζωής

του σχήματος, σε σχέση με τη φύση τους, με βάση την ταξινόμηση των προφίλ

αλλαγών. (δηλαδή Ασήμαντη Δραστηριότητα, Αναδιάρθρωση, Έντονη Εξέλιξη,

μεταξύ άλλων).

Η μέθοδος εξαγωγής και χαρακτηρισμού φάσεων που παρουσιάστηκε στο

δεύτερο μέρος της εργασίας, αξιολογήθηκε με μετρικές βασισμένες στην

ποιότητα της συσταδοποίησης, αλλά και στην αναμενόμενη εξαγωγή φάσεων.

Τα ευρήματα της αξιολόγησης έδειξαν ότι η μέθοδος μας έχει ικανοποιητική

απόδοση, έχοντας ένα μικρό ποσοστό λαθών και οι λύσεις που παράγει είναι

σημαντικά ποιοτικές.

11

CHAPTER 1.

INTRODUCTION

1.1

1.2

Scope

Roadmap

1.1 Scope

It is well-known that software projects evolve as the time passes. It is common

for software developers to face the need to modify a project, because the

specifications changed, an error was found, or simply because they want to

add more functionalities to an existing project. Just like every software project

evolves over time, so do data intensive software projects that are built on top

of relational databases.

When a database has an application built around it, it needs to follow the

evolution of the software in order to be consistent and fully functional. The

information capacity needs to be aligned with the user requirements. When

the schema evolution is not in sync with the software evolution there is a high

risk of errors, as both the syntactic correctness and the semantic validity of all

the surrounding applications can be significantly affected. In the former case,

due the syntactic incorrectness the queries as well as their host code crash. In

the latter case, the applications can suffer from loss of information, or even

incorrect answers, risking the possibilities of producing results that may be

misleading and inconsistent.

To understand and study schema evolution is of great importance, because

exploring patterns that apply for databases can help us predict future

changes. These predictions can be great help both for (a) the database design

part, as we can design schemata that minimize the impact on the surrounding

12

software, and, (b) for the software development, as we can locate parts that

need more attention by predicting future maintaining problems. It is well

known that the majority of a project’s resources is spend in maintenance and

any knowledge that can help make this difficult procedure easier by taking

the right precautions from the start is very important.

Our fundamental research question is of investigative nature and asks: ‚are

there phases in the lives of relational schemata?‛

To support our study towards answering the above question, we have

basically used 6 free open source software projects that included relational

databases. We have tracked the change history of these schemata from their

public repositories, and collected information that concerns the public

releases of the projects’ schemata as well as their heartbeat. The heartbeat of

change is a vector with information about addition and deletions in tables and

attributes and type or key participation updates for each release.

The rest of the study is mainly based on this information and concerns two

parts: the first part is of explorative nature, and studies the collected data to

manually extract phases and patterns in the tables’ lives, whereas the second

part, proposed an automated method to algorithmically extract these phases.

The first part of this Thesis addresses the following question: ‚When are

tables, attributes and foreign keys born, updated and evicted in the life of a

schema?‛

For each data set, and for each release, we have measured (a) the births and

deaths of tables, (b) the injection of attributes to existing tables and the

ejection of attributes from tables that continue to exist after the ejection and (c)

the update of attribute data types and keys. We combined this information

with the timeline of schema size, as it evolves over the different releases.

Based on all this data, we manually derive phases in the life of our 6 database

schemata. Our characterizations are based on the demonstrated growth

(increase of information capacity) or maintenance (containing deletions and

updates in order to improve the quality of the schema). Along with them, we

highlight spikes, single releases of high change intensity, which are

idiosyncratic characteristic of how schemata seem to evolve.

 The most interesting finding in our study is that, with the single

exception of Typo3, the history of a database schema comes in two

mega-phases: (a) a ‚hot‛ expansion mega-phase at the start of its life

demonstrating growth of information capacity, along with the

necessary maintenance and (b) a ‚cooling‛ housekeeping mega-phase at

13

its middle and later life where either maintenance actions or stillness

dominate the update activity. We call this phenomenon progressive

cooling of the schema heartbeat.

 In the same spirit, we can also observe that Growth mainly takes place

at the beginning of a schema’s life and can be either the main focus of

the developers’ activity, or combined with maintenance. Maintenance,

at the same time, takes place in all stages of the schema’s life and is

frequently combined with phases of minor activity, either preceding or

following it.

 A third testimony of progressive cooling, comes with the observation

that minor (or even zero) activity periods frequently take up long

periods in time, especially at the end of the schema history

Apart from this main topic of research, we have also studied side problems.

The first problem studied has to do with zombie tables, i.e., tables that are

deleted at some point and later re-instated in the schema. Interestingly, after

that, we observe that the majority of zombie tables tend to survive. A second

question studied has to do with the period of a table’s life during which

injections and ejections of attributes take place. As a demonstration of the

progressive cooling phenomenon, we observe that injections and ejections of

attributes mostly happen at the start or mid of a table’s life and rarely in the

end. Moreover, we have studied how foreign keys evolve during schema

evolution. Typically, the individual changes of the foreign keys are small in

volume. Yet, one can observe two modes operandi for the overall treatment of

foreign keys by developers, specifically, (a) foreign keys are treated as integral

parts of the schema and they get born and evicted along with their tables, or

(b) frequently, foreign keys are treated as second-class add-ons with small

table participation in foreign keys and ad hoc foreign key births and deaths.

We have witnessed the extreme case of total removal of foreign keys in two

CMSs.

The second part of the Thesis addresses the following question: “given the

history and heartbeat of a schema, can we automatically extract phases in its

evolution?”

Our algorithmic method of Phase Extraction and Classification is structured

along four steps. We start with the heartbeat of a schema summarized at the

release level and containing the sum of births and deaths of tables and

attributes as well as any data type or key alterations. The first step of our

method, involves the characterization of the releases in terms of two change

families: growth and maintenance. Each release is characterized with respect to

14

the extent that the information capacity of the schema grows (growth) and to

the extent that the internal quality of the schema is maintained (maintenance).

A quantitative assessment of the amount of change per family is also

produced. Based on these characterizations, the second step of the method

splits the timeline of the schema’s life in phases, by applying a hierarchical

agglomerative clustering, that clusters together consecutive releases. As the

split is done in a hierarchical fashion, it is clear that the quality of each of the

produced clusterings has to be assessed in order to be able to pick the best, or

the set of top-k such clusterings. In the third step of our method, we use several

measures of clustering quality, such as Silhouette, Cohesion and Separation to

characterize the discriminating quality of each of the derived clusterings. The fourth

step of the method classifies clusters, i.e. phases in the life of a schema, in terms of

their nature. We provide a taxonomy of change profiles, based on the intensity

of the growth and maintenance that a phase demonstrates. Then, each phase

can be characterized with respect to our taxonomy. The classification is based

on producing the histogram of the different intensities per family {zero, low,

medium, high} × {growth, maintenance}. In order to classify a phase, we apply a

set of rules, that annotate the phase with a label from our taxonomy (e.g.,

Minor Activity, Restructuring, Intense Evolution, among others).

We have assessed our method over our test bed data sets. The results show

that the top solutions produced by our algorithm are fairly similar to those of

our golden standard, having an average misclassified release value smaller

than 2. Considering the fact that we did not use any heuristics and the quality

of our solutions, the method of phase extraction and classification introduced

in this thesis performs well for its purpose.

To facilitate this effort, we also designed a tool that allows the collection of

information, the extraction of phases and the computation and visualization

of the results.

1.2 Roadmap

This thesis is structured as follows. In chapter 2, we present related work that

focuses on schema evolution. In chapter 3, we analyze the first part of this

study that concerns the nature of births and deaths that occur in the evolution

of a database schema. Chapter 4 describes the method of phase extraction and

classification we propose. Chapter 5 concludes this thesis by summarizing our

findings and presents potential future work.

15

CHAPTER 2.

RELATED WORK

2.1 Case Studies of Schema Evolution

2.2 Comparison to the State of the Art

In this Chapter, we present the state of the art in the related literature on the

topic of this Thesis. First we present case studies previously published in the

field of schema evolution and then we compare our work to the

aforementioned studies.

2.1 Case studies of Schema Evolution

[Sjob93] was the first to publish the findings of a study concerning the

changes of a database schema over time and how those changes affect any

software built around it. The author presents a method for measuring the

modifications of database schemata and their consequences by using a

thesaurus tool. The main findings of this study are:

 Additions in databases are the most common change

 Deletions are also quite common

 Renamings do not happen that much

 The automation of the handling of problems related to deletion is

feasible

16

 The automation of the handling of problems related to additions is not

that easy, as there are too many changes that need to be done by hand

In 2008, C. Curino, H.J. Moon, L. Tanca and C. Zaniolo[CMTZ08] published a

study aboutMediawiki, the content management system (CMS) of Wikipedia.

The problem of evolving a database schema in web information systems can

be very difficult as it has a large group of contributors. The authors provide a

conceptual representation for complex schema changes and software tools

that help automating the analysis process. Curino et al. came to the conclusion

that there is great need for better developing methods and tools to achieve

schema changes with the minimum loss. The main findings of this study are:

 In Mediawiki only a small percentage (order of 20%) of the queries,

that were constructed depending on the old database schema, are still

valid after schema evolution.

 The tables and attributes are divided into two categories:

o Tables of small duration, which is a result of their recent

creation

o Tables of long duration, as the cores of the schema tend to be

stable throughout the whole history of the database

In 2009, Dien-Yen Lin and IulianNeamtiu [LiNe09] published the findings of a

study of the co-evolution of applications and databases. The authors shed

light to the well-known problem that the separation of the evolution of

software and its corresponding data can lead to collateral damage. This

damage may include information loss, system failure or decreasing efficiency.

The main findings of this study include the following:

 The applications used to be designed based on a stable schema,

something that nowadays does not happen

 The biggest problem when a system depends on a database is that it

usually is considered that the version of the software is the same as the

version of the database schema, while in reality the two versions are

not in sync

 If the evolution of the software is not in sync with the evolution of the

database schema, this will lead on an untrustworthy system

In [WuNe11], an effort to understand how dynamic updating solutions can

support changes to embedded database schemas is presented. The authors

17

automatically extracted the schemas from software projects and also

automatically computed how these schemas evolve as the applications evolve.

During this study, the tool SCVD was developed, that takes the source code of

all the releases, extracts their schemas, compares them and presents the

results in a way that is easy to understand. The main findings include:

 Frequently, after an update has been made, the queries refer to the old

schema, so we have loss of information and runtime errors

 Embedded databases have significantly less changes than large,

enterprise-class databases and significantly more deletion occurrences

 Database schemas tend to change more in the initial stages of the

application and progressively become stable over time

In 2012, G. Papastefanatos, P. Vassiliadis, A. Simitsis and Y. Vassiliou

[PVSV12] published the findings of their study about the impact that

evolution has on ETL ecosystems. The authors presented graph-theoretic

metrics that help predict the effort of the ETL workflow and techniques that

assess the quality of their design in terms of evolution. The software tool

Hecateus was developed, that allows the monitoring of the evolution in

database related environments. Since 60% of the resources of a data

warehouse project is spent on maintenance, the significance of creating

systems that are easy to maintain is quite obvious. The main findings of this

study include:

 The size of the schema and the complexity of its parts are factors that

make the system vulnerable to changes

 A good design pattern is one with tables of a small schema with few

attributes, because the more the attributes the more the levels of

vulnerability

 If these metrics are applied by the ETL designers the maintaining

process will become significantly easier

D. Qiu, B. Li and Z. Su in [QiLS13] study the co-evolution of database

schemas and code in ten open-source database applications. One of the main

research questions of this study concerned the frequency and extent of

database schema evolution. By examining the occurrences of schema changes

the authors concluded that schemas evolve frequently. The authors also

studied the nature of database schema evolution and to do so they

categorized the atomic schema changes. They found that the main high-level

schema changes are transformations, structure refactorings and data quality

18

refactorings, while architectural refactorings took place relatively

infrequently. The low-level most frequent atomic change types were add table,

add column and change column datatype. The authors also observed that

referential integrity constraints and procedures are rarely used in practice,

while additions and changes were the most common cases of schema

evolution. Finally, an additional research question that the authors answer,

investigates how the code co-changes with a schema change. The

corresponding findings show that more than 70% of all valid DB revisions

contained effective co-change information, schema changes impact code

greatly and the changes that show more significant impact on application

code are transformations and structure refactorings.

I.Skoulis, P. Vassiliadis and A. V. Zarras in 2014 [SkVZ14] published their

findings of an open-source relational database evolution study. The authors

performed a thorough study on the evolution of database schemas of publicly

available projects and used Lehman’s Laws of software evolution as a

guideline for the schema evolution. Even though Lehman’s laws cannot be

entirely matched to databases, their significance is of the same importance

and they are very helpful in monitoring schema evolution. The main findings

of this study are:

 Schemas evolve in bursts, in grouped periods of evolving activities and

not in a continuous process, which means that the first law of Lehman

can be partly applied to databases

 The second law of increasing complexity seems to be quite applicable

to databases too

 The third law of self-regulation also applies for databases, except for

the fact that changes do not follow a smooth evolution pattern, but the

presence of feedback is obvious

 Evolution of databases, even in phases, is not stable so the law of

conservation of organizational stability does not apply to databases

 Even though the conservation of familiarity is significant, it does not

guarantee incremental growth, so this law is possible but not

confirmed

 The law of continuing growth, when it is adapted to the particularities

of database schemas, applies to databases

 The law of declining quality is uncertain

19

 The law of feedback system applies, as the evolution of a schema obeys

the behavior of such a mechanism

P. Vassiliadis, A. V. Zarras and I. Skoulis in 2015 [SkVZ15] performed a study

that focuses on the behavior of tables during the evolution of a database

schema. The authors studied whether table characteristics, like number of

attributes or time of birth can be related to chances of deletion, amount of

changes etc. The main findings of this study include:

 Thin tables with small schema size have unspecified life duration

 Wide tables with larger schema size tend to live longer

 The tables that are removed are mostly newborns, that get deleted

quickly, with few or no updates

 Tables of medium or big duration do not get deleted that often

 The rest of the tables live a quite calm life

P. Vassiliadis, A. V. Zarras and I.Skoulis in [VaZa17] published their findings

on the categories of tables that evolve as the schema evolves and the nature of

this evolution. The authors’ findings relate to the relevance of table properties

to evolution related ones. More specifically they categorized the tables

according to their survival or death in three main categories. The first one is

‛wide survivors‛, that includes tables with large size that tend to live longer

and survive. This behavior was introduced by the authors as the Γ pattern,

that concerns the relation of schema size with duration. The second category

is ‛entry level removals‛, that includes newly born tables, quickly removed,

or/and with no or few updates. The last category is ‛old timers‛, which

includes the tables with long duration that rarely are deleted. The relation of

duration and birth can be described by the ‛Empty triancle‛ pattern, which

means that there are very few cases of tables not born from the start that do

not survive or have a long duration. As far as the tables that are prone to

updates are concerned, the authors observed two different patterns. The first

one is called the ‛inverse Γ‛ pattern and states that the duration of the lifetime

of a table is not proportional to the amount of updates that the table endures.

The second one, the ‛Comet‛ pattern was revealed due to the correlation of

schema size at the birth of a table with its update profile and states that most

small-sized tables have few to none changes, some medium-sized tables have

many changes and wide tables have medium amount of updates. Finally, the

main finding of this study was the gravitation to rigidity in database schemas,

which is a tendency to avoid change and evolution.

20

P.Vassiliadis et al., in [VKZZ17], published the findings of a schema evolution

study focused on foreign key evolution, in the broader context of schema

evolution for relational databases. The authors explored the nature of growth

and heartbeat of foreign keys and designed a software tool that represents,

visualizes and measures the foreign key evolution. The findings of this study

show that foreign keys are in some cases an integral part of the system, at

least in the cases of scientific nature projects, where they use to be born and

removed along with their tables. The authors also observed cases of projects

with foreign keys that seem to be unwanted and removed mostly not in the

same time with their corresponding tables. The datasets collected for this

study contained two cases of Content Management Systems and in both of

these cases the foreign keys were completely removed from them in the last

known to the authors’ version of the schema. This behavior seems to be a

result of difficulty of managing technical issues with foreign keys. Finally the

authors observed that changes in foreign keys are not so common and when

they do exist, they are mostly small in volume.

2.2 Comparison to the state of the art

Despite the achievements of the previous efforts, currently, we have no

structured and well-founded knowledge of integration and organization of

the heartbeat of a database schema in a principled way. To the best of our

knowledge no other study has explored thoroughly the nature of births and

deaths of tables and attributes in the life of a relational database schema.

Furthermore, the organization of a schema’s life into phases that are based on

the changes the schema undergoes has not been studied in the literature.

21

CHAPTER 3.

BIRTH AND DEATH IN SCHEMA EVOLUTION

3.1

3.2

Experimental Setup

Births, Deaths and Updates

3.3

3.4

Special Topics

Conclusions

In this chapter, we present the first part of this study that explores the births

and deaths that occur in a database schema. In the first section we describe

the experimental setup in which this study has taken place. The second

section explores the nature of births, deaths and updates that occur in a

schema’s life. In the third section we present some special topics and more

specifically) the results that concern the tables that get deleted sometime in

the evolution and later on they get reborn, b) the time period in a table’s life

when most attributes get injected or ejected and finally, c) a study of the

commit histories of six open source projects that contain foreign keys and

explores their nature and behavior. The last section presents the conclusions

of this part of the study.

22

3.1 Experimental Setup

In this study twelve different open source projects were used. These datasets

are: Atlas, Biosql, Castor, Coppermine, Egee, Ensembl, Mediawiki, Opencart,

Phpbb, Slashcode, Typo3 and Zabbix. Three of the databases, Atlas, Castor

and Egee are hosted by CERN, the European Organization for Nuclear

Research based on Geneva. Biosql and Ensembl contain medical information,

while all the others are part of a Content Management System (CMS). Each

part of the study uses the datasets that have the needed features. For example,

of all the datasets Castor, Ensembl, Opencart, Slashcode and Phpbb were the

only ones that had over 10 tables that get deleted and reborn, so the respective

section describes the behavior of these datasets. The last part of this chapter

that studies the foreign keys takes place for the six datasets that contain

foreign keys. When it is feasible, in terms of the nature of the study, we take

all datasets into consideration (for example attribute injections and ejections

in time).Several basic statistics for each dataset are shown in Figure 1.

All the statistics and numbers we use concerning releases/commits, we got by

the differences in the schemas between every two consecutive

commits/releases.

Figure 1 Table with statistics for all datasets.

3.2 Births, Deaths and Updates

In this section we explore the nature of births, deaths and updates that occur

during the evolution of the schema of six open source software projects. In

this specific part of the study we use the information that concerns the public

releases of the projects’ schemata collected in [Papp17].

23

To explore the nature of the evolution we study the heartbeat of change of

each dataset. The heartbeat of change is a vector with information about

addition and deletions in tables and attributes and type or key participation

updates for each release. In the following charts we visualize the heartbeat via

a combination of barchart, linechart and scatterchart that depicts the amount

of births, deaths and alternations in schema size that a schema’s releases

undergo through time.

Figures 3-14 show the heartbeat of change in terms of table birth and death,

attribute injection and ejection, type and key participation updates and

schema size in number of tables and attributes for each one of the studied

datasets. The x-axis of the figures represents the name of the schema’s release

or the date of the last commit of the corresponding release.

Terminology. Studying these figures we try to observe the phases that each

dataset undergoes. We characterize these phases with the following

terminology.

- A phase of growth shows increase in the schema size and its heartbeat

mainly concerns additions to information capacity.

- A phase of maintenance contains deletions and updates and does not

really increase information capacity.

- We characterize a phase as a minor activity phase when there is zero or

low activity and there are no significant increases or decreases in

schema size in tables and attributes.

- The combination of growth and maintenance concerns the demonstration

of both kinds of activity in a phase, and sometimes it comes with a

renaming or restructuring manner.

- A phase of intense evolution is actually a growth + maintenance phase

with very high volume of change in number of attributes.

- Finally, it should be noted that when we refer to the notion spike we

mean a phase that contains mostly one single release of very high

volume of change, which could be considered a phase by itself.

As mentioned above, the main purpose of this study is to explore the nature

of evolution of the studied schemata. We proceed in detailing the

observations around the evolution of each data set.

24

Biosql. As we can see from Figures 3 and 4 Biosql, in the 10 years that we

have available for study, seems to have a very quiet and almost non-existent

evolution. Studying the changes Biosql undergoes in terms of table birth and

death, attribute injections and ejections and attribute type or key participation

updates, we assume that the history of Biosql could be divided in three

phases. There is the first phase of maintenance, where the administrators

deleted tables and injected attributes and altered others. Then there is the

second phase that could be considered as a single spike where there was clear

effort from the administrator’s/developer’s point where we have all kinds of

changes in a single release and in significant volume, thus we have a phase of

intense evolution. Finally, in the last phase, which is almost ten years nothing

happens except from some attribute type update and the phase is

characterized as minor activity.

Ensembl. For Ensembl, this is clearly not the case. Ensembl, in the 17 years of

evolution that we have available, is clearly a more vivid and intense dataset in

terms of evolution. As we can see from Figures 5 and 6, taking into

consideration all the kinds of changes depicted in the aforementioned charts,

we assume that a possible segmentation of Ensembl’s history in phases could

consist of eight discrete phases. The first phase is clearly a case of growth with

maintenance, as it shows high growth effort both in tables and attributes, while

it also contains a few deletions and a significant amount of updates. The

second phase shows intense evolution with significant additions and deletions.

Then, we notice a short period of minor to none activity, which is followed by

an intense evolution phase with attribute deletions and updates and high

growth in tables and attributes. The fifth phase is considered as a medium

growth period with some deletions of maintenance, while the sixth phase only

shows minor activity. Then, we notice a period of maintenance with medium

volume with some deletions and updates and finally the last phase shows

quiet behavior with very few updates and is quite long in time and is

characterized as minor activity.

Mediawiki. The next dataset, Mediawiki, has an evolution of 13 years and is

also quite intense with no significant periods of calmness. As seen in Figures 7

and 8, we assume that Mediawiki’s history could be divided in seven phases.

First we have a period of growth, which is quite common in the start of

projects, both in terms of tables and attributes. The second phase is a period of

maintenance with a significant amount of both additions and deletions. Then,

we notice a long period of slow growth with some spikes of updates. The

fourth phase shows intense maintenance with a lot of additions and deletions

depicted by the spikes in the aforementioned figures. After this intense

25

maintaining period, there is a period of minor activity where nothing

significant occurs and right after that, a phase of maintenance appears. Finally,

there is a period of minor activity, with very few changes in the schema.

Opencart. For Opencart we have less than 4 years of releases available and it

is one of the quietest of our datasets. As it is depicted in Figures 9 and 10,

Opencart’s history can be divided in 4 phases. The first phase is considered

the first release alone, which contains a huge amount of births deaths and

updates and it is the only one with this kind of volume in the whole life of

Opencart and it is characterized as maintenance. The second phase is a minor

activity phase and it is quite short period, where almost nothing happens and

right after that we have a maintenance phase with a quite significant amount of

additions and some deletions. Finally, the last phase is of minor activity and is

very long in terms of time and number of releases and it consists of only

minor updates.

Phpbb. The next dataset, Phpbb, in the 11 years of releases available to us,

seems to be a calm dataset with a significant amount of spikes. In Figures 11

and 12, we see that its history can be divided in five phases. The releases of

the first phase are considered as minor activity and have zero activity and in

the second phase we have a spike with all kinds of changes and the phase is

characterized as growth with maintenance. The third period has a maintenance

nature and contains two intense spikes of additions and deletions and quite a

few spikes of updates. In the fourth minor activity phase we notice only a few

changes, it is a three year period of calmness and right after that, we have a

period of maintenance with significant amount of all possible updates.

Typo3. Our last dataset, Typo3, has an evolution of circa ten years. As seen in

Figures 13 and 14, we assume a segmentation of its history that consists of six

phases. As usual, the first phase contains releases with growth nature in tables

and attributes and releases with a lot of updates. The second phase is a minor

activity phase and it is a quite long period of calmness. Then, we notice a short

growth period and right after that a period of minor activity again. The fifth

phase consists of releases with intense maintenance behavior with a lot of

deletions and a few updates. Finally, we notice a period of intense evolution

with a lot of additions and deletions both in terms of tables and attributes and

also a few updates.

26

 BioSQL Ensembl Mediawiki Opencart Phpbb Typo3

1 Maintenance
Growth+

Maintenance
Growth

Maintenance

(spike)

Minor

Activity
Growth

2

Intense

Evolution

(spike)

Intense

Evolution
Maintenance

Minor

Activity

Growth+

Maintenance

(spike)

Minor

Activity

3
Minor

Activity

Minor

Activity
Growth

Maintenance

(spike)
Maintenance Growth

4
Intense

Evolution
Maintenance

Minor

Activity

Minor

Activity

Minor

Activity

5
Growth+

Maintenance

Minor

Activity
 Maintenance Maintenance

6
Minor

Activity
Maintenance

Intense

Evolution

7 Maintenance
Minor

Activity

8
Minor

Activity

Figure 2 Table of the phases of all datasets.

As discussed above and seen in Figure 2, common patterns are noticeable and

seem to occur for most of the datasets. Those patterns are:

 Growth(colored green in Figure 2) mainly happens in the start of a

dataset’s life for most of the cases (with the single exception of

Ensembl, having a growth phase in its mid-life).Growth can come

wither solo (as the main content of update activity – colored as solid

green background in Figure 2) or it can also be accompanied by

maintenance.

 Maintenance (denoted as text in blue font in Figure 2) can be found in

all possible stages of schema’s life, in practically all data sets.

 Maintenance followed or preceded by minor activity (the combination

coming as mid-intensity blue background in Figure 2) seems to be the

most common pattern, whose occurrences are overwhelmingly located

27

in the end of a schema’s life and accompanied with low or zero growth

in information capacity.

 Practically, with the single exception of Typo3, we can safely argue that

the history of a database schema comes in two mega-phases: (a) a ‚hot‛

expansion mega-phase at the start of its life demonstrating growth of

information capacity, along with the necessary maintenance and (b) a

‚cooling‛ housekeeping mega-phase at its middle and later life where either

maintenance actions or stillness dominate the update activity.

 For the majority of the datasets, minor (or even zero) activity periods

frequently take up long periods in time, especially at the end of their

history

 A few datasets though, have intense evolution with changes of

significant volume

28

Figure 3 Biosql :Heartbeat of change in time.

29

Figure 4 Biosql : Heartbeat of change per release.

30

Figure 5 Ensembl : Heartbeat of change in time.

31

Figure 6 Ensembl : Heartbeat of change per release.

32

Figure 7 Mediawiki : Heartbeat of change in time.

33

Figure 8 Mediawiki : Heartbeat of change per release.

34

Figure 9 Opencart : Heartbeat of change in time.

35

Figure 10 Opencart : Heartbeat of change per release.

36

Figure 11 Phpbb : Heartbeat of change in time.

37

Figure 12 Phpbb : Heartbeat of change per release.

38

Figure 13 Typo3 : Heartbeat of change in time.

39

Figure 14 Typo3 : Heartbeat of change per release.

40

3.3 Special Topics

In this section, we explore three special topics in the context of studying the

occurrence of birth and death in evolution of database schemata of open

source software projects. Specifically, the first subsection presents the results

of our study considering zombie tables that are originally deleted and later

reborn in a different version. In the second subsection, we try to understand

how injections and ejections of attributes are spread in the different periods of

a table’s life. Finally, in the last subsection, we present a study of the commit

histories of six open source projects that contain foreign keys and study their

nature and behavior.

3.3.1 Zombie tables : death and rebirth

This part of the study focuses on the existence and behavior of zombie tables in

the evolution of a database schema. A zombie table is defined as the table that

at some version of the schema gets deleted and later on another version gets

recreated.

A zombie table is considered as a part of a group, when it is born, gets deleted,

or both at the exact same versions as one or more other zombie tables. This

notion is important, as it helps us realize with more ease if there exists a mass

deletion and re-addition as a part of maintenance procedure, or if the deletion

and re-addition is an individual and more explicit occurrence.

In order to explore the existence and behavior of zombie tables there was a

need for information like specific periods of life for each table, death duration,

survival until the last known version and many more. This information was

retrieved using the output file of Hecate containing information about the life

and size of each table, as input. From the twelve initial datasets, four had no

zombie tables, three had below six and five had over ten zombie tables. This

study took place for the five abovementioned datasets, each of them having

more than ten zombies.

As we can see in Figure 15, over 25% of three datasets’ tables were zombies

(one even had 70% zombie tables) and the other two contained a little less than

20% zombies.

41

Figure 15 Percentages of zombie/not zombie tables for each dataset.

Apart from the existence of zombie tables, the survival of these tables until the

last known schema version was studied. Figure 16 shows the percentages of

dead and survivor zombies. The findings concerning the survival of the zombie

tables, show that the majority of zombies finally survive, which is an indication of

deletions due to maintenance or perfective procedures. This is the case for four out

of five datasets, with Opencart having slightly more dead zombies than

survivors.

As previously mentioned, a zombie table can be a part of a group depending

on the versions it died or was born. Figure 17 shows the percentages of zombie

tables that belong (or do not belong) to groups, for each dataset. For most of

the datasets, four out of five, the vast majority of zombie tables are part of

groups. This probably means that, their deletions and re-additions were part

of a larger, coordinated maintenance activity. Though phpbb has equal

number of zombie tables in groups and zombie tables not in groups, due to its

small amount of zombies (12), phpbb is probably not quite representative.

42

Figure 16 Percentages of dead/survivor zombie tables for each dataset.

Figure 17 Percentages of zombies in groups/not in groups for each dataset.

43

Figures 18 and 19 show general statistics of zombie tables in absolute numbers

and percentages respectively.

Figure 18 General statistics of zombie tables in absolute numbers.

Figure 19 General Statistics of zombie tables in percentages.

Figures 20 contains statistics of death duration in terms of number of schema

versions in which the tables were dead in absolute numbers and percentages

respectively.

Figure 20 Death duration statistics of zombie tables in absolute numbers.

Figure 21 shows statistics of occurrences of birth and death of ‛zombie‛ tables

in groups. The number of birth groups represents the occurrences of ‚zombie‛

tables being reborn in the same schema version, while death groups the

occurrences of ‚zombie‛ tables being removed in the same schema version.

Finally both groups are occurrences of ‚zombie‛ tables being both reborn and

44

removed in the same schema versions. These statistics imply large

coordinated activities and not intentional targeted table removals.

Figure 21 Group statistics of zombie tables in absolute numbers.

3.3.2 Period of attribute injections and ejections

This part of the study focuses on the injections and ejections of attributes in a

table and more specifically, the period of the corresponding table’s lifetime,

that these actions took place. We treat that the lifetime of a table as a list that

contains the schema versions, in which the specific table exists, in ascending

chronological order. This ordered set of versions is equally divided in three

parts. In the rest of the study when we refer to an attribute as added@start or

deleted@start, we mean that this injection or ejection took place in the first of

the three parts of the table’s lifetime. Added/Deleted@mid and added/deleted@end

mean injection or ejection at the second and third part of a table’s lifetime

respectively.

It should be noted that we do not focus on the attributes that are born along with their

table or die with it, but we focus on the attributes that are added later on the table’s

life. The same applies for attribute deletions.

To explore the attribute injections and find when these actions take place, we

retrieved the number of attributes added@start, mid or end of each table by

using information about the attribute additions per table and per version

retrieved by Hecate. As we can see in Figure 22 the injections of attributes

took place mainly at the start or mid of a table’s life for the majority of the

datasets. This means that any attribute injections that may occur are rarely

during the end of a table’s life. There are datasets that have these injections

divided almost equally into the three parts of the lifetime though. Those three

datasets are Slashcode, Typo3 and Zabbix.

45

As far as the attribute ejections are concerned, we used a similar procedure as

before with the information about attribute deletions per table and per

version retrieved with Hecate. As we can see from Figure 23 the ejections of

attributes also happen mostly at the start or mid of a table’s lifetime for the

majority of the datasets. Similarly to injections, Slashcode, Typo3 and Zabbix

have deviant behaviors and the ejections there happen mainly at the end of a

table’s lifetime.

Figure 22 Percentages of attribute injections to existing tables.

Figure 23 Percentages of attribute ejections from tables.

46

Figures 24 and 25 contain the statistics of attribute ejections and injections for

all twelve datasets in absolute numbers and percentages respectively. It

should be noted that the absolute numbers are the aggregations of the

corresponding numbers of all the tables of each dataset.

Figure 24 Statistics of attribute injections and ejections in absolute numbers.

Figure 25 Statistics of attribute injections and ejections in percentages.

3.3.3 Foreign Key birth and death

This part of the study focuses on the way that foreign keys are added or

deleted during the evolution of a schema. At first we analyze the behavior of

foreign keys for each dataset and in the end we present all the statistics

gathered.

47

Terminology

The additions and deletions of the foreign keys were categorized into ‛born

with table‛, ‛explicit addition‛, ‛died with table‛ or ‛explicit deletion‛. An

addition of a foreign key is considered as ‛born with table‛, when either the

source or the target table is born along with the foreign key, while an ‛explicit

addition‛ happens, when a foreign key is added to existing tables.

Respectively, in the case of deletions, a deletion of a foreign key is considered

as ‛died with table‛, when either the source or the target table is removed

along with the foreign key, while an ‛explicit deletion‛ happens when neither

of the source or target table gets deleted and only the foreign key is removed.

This study took place for six different datasets. Three of the databases, Atlas,

Castor and Egee are hosted by CERN, the European Organization for Nuclear

Research based on Geneva. Two databases, Slashcode and Zabbix are content

management systems (CMS), while the last database, Biosql, stores genomic

data.

Atlas

Atlas has the highest number of foreign keys among the studied datasets.

Over the 85 versions of Atlas’ schema there were numerous events of both

additions and deletions of foreign keys. In version 1177518923, an entire

‛neighborhood‛ of 8 tables was deleted, along with their foreign keys and in

version 1215283813, an entire ‛neighborhood‛ of 6 tables was added with

foreign keys among them. Also, in versions 1207729000 and 1217322513, both

additions and deletions of foreign keys of previous versions, were reversed.

In Figure 26 we can see the changes that happened over the versions in terms

of foreign key additions and deletions in Atlas’ schema. The horizontal axis

represents the schema’s version id, while the vertical axis represents the

number of foreign keys, additions, or deletions of foreign keys respectively.

During the evolution of Atlas’ schema, the additions of foreign keys took

place mostly along with a table addition and not to existing tables (for over

90% of the time). The deletions of the foreign keys took also place along with

a table change (here the deletion of the table) for the majority (almost 70% of

the time). Figure 27 depicts the way that foreign keys are added or removed.

The horizontal axis represents the name of the schema’s version, while the

vertical axis represents the number of the corresponding foreign key change.

48

Figure 26 Foreign key changes in the 85 versions of Atlas.

Figure 27 Foreign key type of changes in Atlas.

Biosql

Over the 47 versions of Biosql’s schema, there were 127 additions and

deletions of foreign keys. Biosql’s evolution contained 4 renaming cases in

49

versions 1031817528, 1045618809, 1047465289 and 1047466335 respectively. A

renaming case is considered as the action of deleting a table with its foreign

keys and recreating it in the same version, to change the table’s or table’s

attribute’s name. Figure 28 shows the foreign key additions and deletions that

took place in the evolution of Biosql’s schema. The horizontal axis represents

the schema’s version id, while the vertical axis represents the number of

foreign keys, additions, or deletions of foreign keys respectively.

The additions of foreign keys in Biosql follow the same behavior as Atlas.

Almost 90% of the time, the additions happened along with the addition of a

table. The deletions of foreign keys, also for over 90% of the time, happened

when a table was deleted and not as an explicit deletion of the foreign key. In

Figure 29, we can see the type of foreign key changes that took place in the

evolution of Biosql. The horizontal axis represents the name of the schema’s

version, while the vertical axis represents the number of the corresponding

foreign key change.

Figure 28 Foreign key changes in the 47 versions of Biosql.

50

Figure 29 Foreign key type of changes in Biosql.

Castor

For the study of Castor, 194 versions of its schema were available. During

those 194 versions though, there were very few changes, under 10 additions

and under 10 deletions of foreign keys, while in the level of tables the changes

were significantly more. This probably happened, because the dataset itself

had very few foreign keys to begin with. Among these few changes, in

version rev 1.051 a foreign key is added, then this action is reversed in version

rev 1.103 and then the same foreign key is re-added in version rev 1.104.

Figure 30 shows the additions and deletions of foreign keys that happened

during the 194 versions of Castor’s schema. The horizontal axis represents the

schema’s version id, while the vertical axis represents the number of foreign

keys, additions, or deletions of foreign keys respectively.

Because of the small number of foreign key changes that happened during the

evolution of Castor, the percentages of the causes of additions and deletions

are not very similar to the previous ones. Most of the additions here

51

happened to existing tables, while the deletions are equally divided into

removal of foreign key along with the table deletion, and removal of foreign

key with no table deletion. Figure 31 depicts the type of foreign key changes

that took place in Castor. The horizontal axis represents the name of the

schema’s version, while the vertical axis represents the number of the

corresponding foreign key change.

Figure 30 Foreign key changes in the 194 versions of Castor.

Figure 31 Foreign key type of changes in Castor.

52

Egee

During the study of Egee’s evolution, there were only 17 versions of its

schema available. This database has very few foreign keys, very few changes

happened and none of those was quite interesting. In Figure 32 we can see the

foreign key changes that took place during the evolution of Egee. The

horizontal axis represents the schema’s version id, while the vertical axis

represents the number of foreign keys, additions, or deletions of foreign keys

respectively.

Figure 32 Foreign key changes in the 17 versions of Egee.

Similarly with Castor, Egee’s percentages of additions’ and deletions’ causes

cannot be representative, because of the small amount of changes that took

place. Most of the additions happened with a table addition, while all of the

deletions happened along with the table deletion. Figure 33 depicts the type

of foreign key changes that took place in Egee. The horizontal axis represents

the name of the schema’s version, while the vertical axis represents the

number of the corresponding foreign key change.

53

Figure 33 Foreign key type of changes in Egee.

Slashcode

Slashcode’s schema evolution consists of 399 different versions. Slashcode has

a lot of foreign key changes, both additions and deletions and a lot of

interesting cases. There were two cases where the actions were reversed in the

next versions and also a renaming case. The most interesting part of

Slashcode’s evolution though, is that after a certain version all its foreign keys

are gradually deleted. In the first occurrence of massive foreign key removals

(at version rev 1.120), 23 foreign keys were deleted. This mass removal took

place due to a problem with the compatibility of the attribute types that the

foreign keys referred to. The Data Definition file contains an explanatory

comment for this removal:

”Commented-out foreign keys are ones which currently cannot be used because they

refer to a primary key which is NOT NULL AUTO INCREMENT and the child’s

key either has a default value which would be invalid for an aut increment field,

typically NOT NULL DEFAULT ’0’. Or, in some cases, the primary key is e.g.

VARCHAR(20) NOT NULL and the child’s key will be VARCHAR(20). The

possibility of NULLs negates the ability to add a foreign key. ⇐ That’s my current

theory, but it doesn’t explain why discussions.topic SMALLINT UNSIGNED NOT

NULL DEFAULT ’0’ is able to be foreign-keyed to topics.tid SMALLINT

UNSIGNED NOT NULL AUTO NCREMENT”.

In the second deletion (at version rev 1.151), 12 foreign keys were removed,

because some tables changed their storage engine to Innodb from Myisam.

There was also an explanatory comment inside the corresponding sql file:

”Stories is now InnoDB and these other tables are still MyISAM, so no foreign keys

between them.”.

54

The rest of the deletions happened because the foreign keys caused too many

problems to the system that could not debugged, resulting in the decision to

leave the schema without any foreign keys. We have retrieved several

comments for these removals. At version re 1.174, where 3 foreign keys were

deleted the following comment was found:

”This doesn’t work, makes createStory die. These don’t work, should check why...”

At version’s rev 1.189 file the comments mention:

”This doesn’t work, since in the install pollquestions is populated before users,

alphabetically”

Finally, at version rev 1.201 the following comment was found:

“This doesn’t work, since discussion may be 0.”

At the end of this process, the schema is left with zero foreign keys.

Interestingly enough, the schema also contained no foreign keys at its start.

Figure 34 shows the foreign key changes that took place during the evolution

of Slashcode. The horizontal axis represents the schema’s version id, while the

vertical axis represents the number of foreign keys, additions, or deletions of

foreign keys respectively.

As it was mentioned above, Slashcode had a huge amount of deletions,

caused by system problems and in those deletions the foreign keys were

deleted explicitly, without any of the tables being removed. Slashcode has a

behavior different than all the other studied datasets. It is the dataset, that the

additions and the deletions happened mostly explicitly. Figure 35 depicts the

type of foreign key changes that took place. The horizontal axis represents the

name of the schema’s version, while the vertical axis represents the number of

the corresponding foreign key change.

55

Figure 34 Foreign key changes in the 399 versions of Slashcode.

Figure 35 Foreign key type of changes in Slashcode.

56

Zabbix

During the study of Zabbix, 160 versions of its schema were available. Like

Slashcode, Zabbix is also a CMS and has a lot of changes to its foreign key

state and a lot of interesting cases. There were two cases of renaming, in

versions 1.041 and 1.135, but the most interesting case of all, is that in version

1.151 all but two of the foreign keys are commented out of the schema. We

could not find an explanation as to why this removal took place inside the

mysql Data Definition files. Figure 36 depicts the foreign key changes that

took place in Zabbix. The horizontal axis represents the schema’s version id,

while the vertical axis represents the number of foreign keys, additions, or

deletions of foreign keys respectively.

The addition of foreign keys in Zabbix, follows the behavior of most of the

datasets. Circa 85% of the additions of foreign keys happened along with a

table addition. Because of the abrupt removal of foreign keys that was

described above most of the deletions took place explicitly, without any table

removal. In figure 37 we can see the types of foreign key changes that took

place in Zabbix. The horizontal axis represents the name of the schema’s

version, while the vertical axis represents the number of the corresponding

foreign key change.

Figure 36 Foreign key changes in the 160 versions of Zabbix.

57

Figure 37 Foreign key type of changes in Zabbix.

The main findings of this study are summarized as follows. Foreign keys are

sometimes treated as an integral part of the system, mainly in scientific

projects. In those cases the foreign keys are born and evicted along with table

birth and eviction. There are cases though, that foreign keys seem to be a

second-class add-on, where the foreign keys seem to be removed mostly not

along with their table. The two cases of CMSs, that were available to us, show

a disinclination towards having foreign keys as part of the schema. Both of

these cases ended up, to the best of our knowledge, with no foreign keys in

their schema. These removals seem to be a result of difficulty of managing

technical issues with foreign keys. In the studied data sets, the mere existence

of foreign keys is too scarce. The foreign key changes found in this study are

mainly small in volume.

Figure 38 shows the total numbers and percentages of foreign key statistics

for all the studied databases.

58

Figure 38 Tables with foreign key statistics for all the studied datasets.

59

3.4 Conclusions

The purpose of this part of the study was to explore the nature of births and

deaths in schema evolution and to search for possible representative

segmentations of the schema that can characterize the nature of change of

their evolution. The conclusions we reached during this study are as follows.

 The most interesting finding in our study is that, with the single

exception of Typo3, the history of a database schema comes in two

mega-phases: (a) a ‚hot‛ expansion mega-phase at the start of its life

demonstrating growth of information capacity, along with the

necessary maintenance and (b) a ‚cooling‛ housekeeping mega-phase at

its middle and later life where either maintenance actions or stillness

dominate the update activity.

 Growth in schemata is mainly located in the start of their life, either

alone or accompanied by maintenance

 Maintenance can be found in all the possible stages of a schema’s life

 Maintenance is frequently followed or preceded by minor activity

periods with occurrences of this combination overwhelmingly found

towards the end of the schema’s life

 For the majority of the datasets, minor (or even zero) activity periods

frequently take up long periods in time, especially at the end of their

history

 A few datasets though, have intense evolution with changes of

significant volume

To study in detail all the changes that schemata undergo during their

evolution and extract phases that are representative and can fairly be

characterized by their nature is a manual, and potentially exhaustive and

difficult procedure. Naturally, then, the question arises is: Is there a way we can

fully automate the segmentation of the history of a schema in phases that represent the

essence of the changes that it undergoes in a meaningful manner? In the next

chapter, we propose such a method that aims to fully automate the phase

extraction and classification of a schema’s life.

The study of the special topics left us with a few auxiliary conclusions that are

as follows.

 The majority of zombie tables tend to survive

60

 Injections and ejections of attributes mostly happen at the start or mid

of a table’s life and rarely in the end

 Foreign keys, come in two fashions (a)foreign keys are treated as

integral parts of the schema and they get born and evicted along with

their tables, mostly in scientific projects, and (b) foreign keys are

treated as second-class add-ons, that get removed not along with their

table, especially in CMSs

 Foreign key changes for the studied datasets are small in volume

61

CHAPTER 4.

PHASE EXTRACTION & CLASSIFICATION

4.1 Release Characterization

4.2 Release Clustering

4.3 Clustering Evaluation

4.4 Phase Classification

In this chapter, we present the second part of this thesis that aims in

extracting patterns and motifs that apply to database evolution in order to

generate a model of evolution.

To do so we apply an algorithmic procedure that uses the history of schema

releases and their characteristics as input and gives a set of phases, with each

phase labeled with respect to its evolution profile as output. Each subsection

of this chapter analyzes a step of this procedure.

The first step of our Phase Extraction & Classification method is the

characterization of the releases in terms of a concise vocabulary of

characterizations for the nature of the maintenance process that took place

during the release. We introduce the notion of change family and restrict the

vocabulary of change families to two members: (a) growth, meaning that

during the release under consideration, the aim of the maintainers was to

augment the information capacity of the schema and (b) maintenance,

meaning that the maintainers’ aim was to improve the internal quality of the

62

existing schema structures rather than augment its information capacity.

Apart from deriving a characterization for each release with respect to the

aforementioned change families, we also measure the intensity of change for

that family, too. The change family of a release is computed by the taking into

consideration all types of change that took place during the release (table and

attribute additions and deletions, data type changes, etc.), all measured in

attributes as units. More details about this step of our method can be found in

subsection 4.1.

The second step iteratively groups consecutive releases in clusters via

hierarchical cluster analysis using an Agglomerative algorithm we

implemented. Each such cluster of consecutive releases is considered as a

phase of the schema’s evolution. More details about this step can be found in

4.2.

The third step aims in evaluating the clustering procedure of the previous

step. Since we are employing a hierarchical agglomerative clustering

algorithm, the algorithm produces a sequence of solutions, i.e., segmentation

of the history of the schema in phases, that starts from the most detailed

solution with each release as a different cluster and ends with all the lifetime

of the schema being considered one, single phase. Assuming we want to fully

automate the segmentation of the schema history in phases, which of the

produced solutions is the ‚best‛? To address this problem, we need to

evaluate the quality of the clustering and select the best –or the top-k- solution

in terms of clustering quality. For each iteration of the clustering algorithm,

we use a set of methods that evaluate the consistency within our clusters.

Using these methods we pick the optimal clustering sets as our sets of phases.

This procedure will be described in more detail in subsection 4.3.

The fourth and final step classifies each phase of the schema’s evolution.

Practically, the question answered in this step is: ‚assume any segmentation

of the history in phases; can we characterize each phase with respect to the

contents and aim of its updates?‛ The goal is different from the one of the first

step, because we characterize the evolution of an entire phase and not each

release separately. To achieve the final characterization, we calculate two

histograms based on the change families’ metrics of each phase’s releases and

compute the winner of each histogram. Then, based on the two histogram

winners we use a set of rules based, and produce a classification that is

representative of each phase’s nature of evolution. This process is analyzed in

subsection 4.4.

The entire process is presented as an algorithm in Figure 39.

63

Figure 39 Phase Extraction and Classification Algorithm

4.1 Release Characterization

In order to study the releases we reuse information about their database

schema gathered by [Papp17]. This information, which is used as the input for

our method consists of a list of releases for each dataset and for each release a

vector that contains information about the following measurements:

- attribute births

- attribute deaths

- attribute injections

- attribute ejections

- attribute data type updates

- attribute key participation updates

Our goal is to translate this numbers into a characterization that represents

the evolution profile of each release and a corresponding metric that will be

used for the following step’s clustering procedure.

64

We aim to use this input data to characterize each release in terms of (a) the

nature of the changes performed and (b) the intensity of the evolution

activity. To achieve this, we proceed as follows:

1. First, we organize the aforementioned input in three categories

depending on whether they modify (a) the information capacity of the

schema (in terms of new or deleted tables), (b) the information capacity of

tables (in terms of new or deleted attributes inside tables), or, (c) the

typing constraints of the attributes themselves. We discuss this labeling in

Sections 4.1.1 and 4.1.2.

2. Second, we use this labeling to label the releases in more coarse grained

categories, which we call change families and we also measure the extent

that the evolution effort within each release aimed to provide Growth of

information capacity of the schema, or Maintenance of the structure of the

database. We discuss this labeling and measuring in Section 4.1.3. In

Section 4.1.4, we also discuss how we quantize the intensity measurement

in a small vocabulary of values for each change family that will also allow

us to provide classifications later.

The final outcome of the entire process is two two-dimensional vectors for

each release. The first vector contains the intensity label of the two change

families Growth and Maintenance , while the second one represents the metrics

of the abovementioned families.

4.1.1 Activity Characterization

The activity characterization of a release works at three levels. The first one is

the inter table change level that concerns table births and deaths and is

measured by the number of attributes that are born with or die with their

tables (we use attributes as the unit of measurement for uniformity with the

other categories). The second level refers to intra table change concerning the

number of attribute injections (attributes that are added after the birth of their

table) and ejections (attributes removed while their table survives). Finally,

the last activity level is amendment that measures updates to the attribute data

type and key participation of attributes. For all the levels, the activity is

measured by the number of attributes involved in the respective type of

change.

It should be noted that from now on attributes born with their table will be

referred as table_born, attributes removed with the death of their table as

65

table_gone, while attributes that are added after the birth of their table or

removed while their table survives will be referred to as injected and ejected

respectively.

The following cases are counted in number of attributes and we use a

threshold set to 0.3.The purpose of this threshold was to avoid cases where

we have both births and deaths in the same release that indicate a renaming

or restructuring case, rather than expansion or shrinking.

Inter-Table Change

 Characterization: Table Expansion

Condition:

#table_born - #table_gone> threshold(#table_born + #table_gone)

Metric (in number of attributes):

#table_born - #table_gone

 Characterization: Table Shrinking

Condition:

#table_gone - #table_born> threshold(#table_born + #table_gone)

Metric (in number of attributes):

#table_gone - #table_born

 Characterization: Table Restructuring

Condition:

Both table expansion and table shrinking checks fail

Metric (in number of attributes):

|#table_born - #table_gone|

Intra-Table Change

 Characterization: Intra Table Expansion

Condition:

#injected - #ejected > threshold(#injected + #ejected)

66

Metric (in number of attributes):

#injected - #ejected

 Characterization: Intra Table Shrinking

Condition:

#ejected - #injected > threshold(#injected + #ejected)

Metric (in number of attributes):

#ejected - #injected

 Characterization: Intra Table Restructuring

Condition:

Both intra table expansion and intra table shrinking checks fail

 Metric (in number of attributes):

 |#injected - #ejected|

Amendments

 Characterization: Intra Table Amendment

Condition:

#data_type_updated + #key_updated>0

 Metric (in number of attributes):

#data_type_updated + #key_updated

Each release can have at most one activity characterization per level. When a

release does not have any of the activity characterizations above, its activity

characterization is No Change.

4.1.2 Intensity of Activity Characterization

Each characterization (except for No Change)is defined by its metric and is

given an intensity characterization according to it. We assume three intensity

levels: Low, Medium and High. We also assume that each characterization has a

67

list, containing the values that the releases have for its corresponding metric,

in ascending order.

A release’s activity characterization intensity is characterized as

 Low :

If its value for the characterization’s metric is lower than the value of

the same metric of the release indexed in the 80% of the corresponding

list.

 Medium:

If its value for the characterization’s metric is equal or higher than the

value of the same metric of the release indexed in the 80% and lower

than the 95% of the corresponding list.

 High:

If its value for the characterization’s metric is equal or higher than the

value of the same metric of the release indexed in the 95% of the

corresponding list.

4.1.3 Change Families

The first levels of characterizations provide a fairly detailed labeling of

releases, with a vocabulary that is quite voluminous for being able to

automatically derive classifications in the sequel. Thus, we have resorted to

reducing this labeling vocabulary by grouping activity characterizations to

two change families. The first family refers to the cases of inter or intra table

expansion, where clearly the nature of the changes of the schema were related

to its Growth, since the number of attribute additions in those cases is

significant. The second family refers to inter or intra table shrinking,

restructuring or intra table amendment, which indicate a Maintenance nature.

Maintenance

 Case:

Table Shrinking or Table Restructuring

Metric (in number of attributes):

#table_born + #table_gone

68

 Case:

Intra-Table Shrinking or Intra-Table Restructuring

Metric (in number of attributes):

#injected + #ejected

 Case:

Intra-Table Amendment

Metric (in number of attributes):

#data_type_updated + #key_updated

Growth

 Case:

Table Expansion

Metric (in number of attributes):

#table_born - #table_gone

 Case:

Intra-Table Expansion

Metric (in number of attributes):

#injected - #ejected

We assume that a release is characterized with respect to both the Growth and

Maintenance families. The value of the family metric of a release is the

aggregation of the metrics of the activity characterizations it has (analyzed in

4.1.1).

4.1.4 Intensity of Change Family

Each release’s growth and maintenance can be labeled with its intensity level.

So, each of the two families can also be labeled as Zero, Low, Medium or High.

Of course, the problem is how to compute the thresholds that differentiate

subsequent intensity levels – e.g., at which amount of change do we stop

labeling activity as Low and start labeling it Medium?

69

Our approach to the problem is based on the distribution of the values for the

entire list of releases, for each of the two families. Take for example, the

Growth family. We take all the values of the Growth family for all the releases

of the data set and sort them in ascending order. Then, we cut this series in

two places, one for the border between Low and Medium and another for the

border between Medium and High. Figure 40 depicts the intensity levels for

both Growth and Maintenance based on the index of the sorted release list for

all the datasets. Observe the universality of the pattern of the lines; thus, we

can uniformly apply the same rules for all data sets. Specifically, a release’s

family intensity is characterized by the following rules:

 Zero:

 The value for the family’s metric is zero.

 Low:

The value for the family’s metric is lower than the value of the same

metric of the release indexed in the 80% of the corresponding list.

 Medium:

The value for the family’s metric is equal or higher than the value of

the same metric of the release indexed in the 80% and lower than the

95% of the corresponding list.

 High:

The value for the family’s metric is equal or higher than the value of

the same metric of the release indexed in the 95% of the corresponding

list.

We normalize the Growth and Maintenance metric values with respect to the

max value of each metric in order to use these normalized values in the next

step of the release clustering. Figure 41 depicts via scatter charts the values of

normalized Growth and Maintenance metrics for all datasets. For the largest

datasets we provide zoomed-in areas of these scatter charts.

70

Figure 40 Intensity Levels of Change Families

71

Figure 41 Normalized Growth and Maintenance scatter charts for all datasets

72

The characterization rules can be summarized as shown in Figure 42.

Figure 42 Release Characterization Rules

4.2 Release Clustering

The second step of our algorithm performs hierarchical agglomerative

clustering using the vectors produced by the previous step. The main goal of

this step is to merge similar consecutive releases to clusters in order to create

candidate phases and calculate evaluation measures for each candidate

segmentation of the schema, which are needed for the next step of our

method.

We implemented a Hierarchical Agglomerative Clustering algorithm that

takes as input the releases of the schema and their Change Family metrics’

values [4.1.3]. As it is known, an agglomerative clustering algorithm starts

with each point (here a release) as a different cluster and, progressively, at

each step, merges the two closest clusters until only one cluster (or k clusters

if accordingly set) remains. In our setting, the proximity matrix of the

Agglomerative algorithm is updated in each step using the average-linkage

distance method.

To calculate the distance that two releases have with each other we use the

Maintenance and Growth metrics described in 4.1.3. For each release we

normalize the values of the maintenance and growth metric with respect to

the maximum value of the corresponding metric. We define the distance

between two releases as the Euclidean distance of the normalized growth and

maintenance values.

Notation: we denote the normalized maintenance score of a release Ri with 𝑀𝑖
∗,

the normalized growth score with 𝐺𝑖
∗ and the distance of two releases via .

𝛿(𝑅1, 𝑅2) = (𝑀1
∗ − 𝑀2

∗)2 + (𝐺1
∗ − 𝐺2

∗)2

73

One of the distinctive characteristics of our method is the need to customize

the agglomerative clustering algorithm to our setting. Our intention is to

cluster together adjacent releases, so as to construct contiguous phases. Thus,

there is no need to attempt assessing the distance (and thus, to possibly

merge) phases that are not adjacent. Thus, our implementation only merges

clusters/releases that are consecutive in time.

The entire process is presented as an algorithm in Figure 43.

Figure 43 Algorithm : Candidate Phase Extraction via Agglomerative

Clustering

4.3 Clustering Evaluation

After the clustering procedure of each dataset is done, we need to evaluate

each step of the agglomerative algorithm in order to decide which clustering

step is the best and should be used as a guide to extract phases of the

schema’s life. In order to decide which solution should be considered as the

best one, we need to ensure the quality of the solution both based on

clustering evaluating measures and the similarity with our ground truth. Both

types of measures used will be described in this subsection.

74

Silhouette. The first of these methods is Silhouette[Rous87], a method of

interpretation and validation of consistency within clusters of data. This

method shows how well a point (here a release) is matched with its cluster. It

uses the average dissimilarity that a certain point has with every point in the

same cluster and the average dissimilarity it has with every point in every

cluster it is not a part of. The original Silhouette type for a data point pi is as

follows:

𝑠(𝑝𝑖) =
𝑏(𝑝𝑖) −𝑎(𝑝𝑖)

𝑚𝑎𝑥 𝑏(𝑝𝑖) ,𝑎(𝑝𝑖)
 , with

b(pi) the lowest average dissimilarity of pi to any other clusters to which

it does not belong to, and

a(pi) the average dissimilarity of pi to the rest of the points within the

cluster to which pi currently belongs to

The lowest value Silhouette can have is -1, while the highest is 1. In order to

say that we have a well clustered dataset we want a Silhouette value that is

very close to 1. Typically, Silhouette values in the range of 0.2 to 0.5 are

considered to be fair.

Because our clustering implementation only considers merging consecutive

clusters in time, for our purposes we modified the original Silhouette type so

that the lowest average dissimilarity (b(i)) is computed only for adjacent

clusters.

Assume a cluster set C = {C1, …,Cn} which is a possible clustering of the

history of a schema in phases. Then, we define the adjacency clustering

silhouette value, denoted as sadj for an arbitrary release Ri is defined as

𝑠𝑎𝑑𝑗 (𝑅𝑖) =
𝑏𝑎𝑑𝑗 (𝑅𝑖) −𝑎(𝑅𝑖)

𝑚𝑎𝑥 𝑏𝑎𝑑𝑗 (𝑅𝑖) ,𝑎(𝑅𝑖)
 , with

badj(Ri) the lowest average dissimilarity of Ri to the clusters adjacent to

the one Ri currently belongs to, and

a(Ri) the average dissimilarity of Ri to the rest of the releases in the

cluster to which Ri currently belongs to

Finally, the adjacency clustering silhouette value for a cluster set is the average

value of the respective adjacency clustering silhouette values of all the

clusters belonging to the cluster set.

sadj(C) = avg{sadj(C1), …, sadj(Cn)}

75

Figure 44 shows the Silhouette value of each merging step of the

Agglomerative algorithm, for every dataset.

Figure 44 Silhouette values for each merging step of the Agglomerative

algorithm and Silhouette distances for every transition of merging steps.

Cohesion and Separation. The second set of evaluation methods we use

includes the combination of two metrics, namely cohesion and separation.

Cohesion and separation in [TaSK05] are defined as the following two

formulae:

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝐶𝑖 = 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑥, 𝑦)
𝑥𝜖𝐶𝑖
𝑦𝜖𝐶𝑖

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑖 , 𝐶𝑗 = 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑥, 𝑦)
𝑥𝜖𝐶𝑖
𝑦𝜖𝐶𝑗

We decided to intervene in the definition of the two measures. The reason lies

in the fact that our clustering implementation is a modification of the original

Agglomerative algorithm (it only considers consecutive clusters for merging),

so we modified the two formulae in an appropriate manner with respect to

out implementation. We define the cohesion value of a cluster as the opposite

76

of the average distance that every release has with all releases in the same

cluster.

We assume a schema history including n releases and a cluster set C = {c1,

…,cm} containing m possible segmentations of the schema history. We also

define dist(ri,rj) the distance that two of those releases have with each other.

Assume a release ri belonging to cluster c. We define the ClusterFitness of ri as

follows:

ClusterFitness(ri) = - avg{ dist(ri,rj) }, ri≠rj and ri,rj∊ c

We assume a cluster set C over {r1, …,rn} with n releases. The cohesion value of

C is defined as follows:

Cohesion(C) = avg{ ClusterFitness(ri) }, foreach ri ∊ C

The lowest value cohesion can have is the opposite of the largest distance

there is for each dataset, while the highest is 0, where all releases in the same

cluster have 0 distance. The higher the cohesion value, the better the

clustering step, as we want each point to have the smallest distance possible

with all the other points in the same cluster.

We define the separation of a cluster as the average distance that every release

has with all releases in adjacent clusters.

We define a cluster set C = {C1, …,Cn} with n clusters, a cluster Ci= {r1, …,rm}

with m releases and dist(ri,rj) the distance that two of those releases have with

each other. Each release ri has a separation value as follows:

Separation(ri) = avg{ dist(ri,rj) }, ri≠rj ,ri∊ Ci , rj∊ Cj with Ci≠ Cj and Ci and Cj are

adjacent

We assume a cluster set C = {r1, …,rn} with n releases. The separation value of C

is defined as follows:

Separation(C) = avg{ Separation(ri) }, foreach ri ∊ C

The lowest value separation can have is0, while the highest is the largest

distance there is for each dataset. The higher the separation value, the better

the clustering step, as we want each point of each cluster to have the highest

distance possible with all points from other clusters.

We normalize the average separation and cohesion values of each cluster set

with respect to the min and max corresponding values as follows:

77

NormalizedCohesion:

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛(𝐶𝑖) =
𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛(𝐶𝑖) – minC𝑜ℎ𝑒𝑠𝑖𝑜𝑛

max𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 – minC𝑜ℎ𝑒𝑠𝑖𝑜𝑛

NormalizedSeparation:

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝐶𝑖) =
𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝐶𝑖) – minS𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

max𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 – minS𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

We can combine these two values in a single metric Normalized Clustering

Quality (NCQ)

 NCQ(Ci) = normalizedSeparation(Ci) + normalizedCohesion(Ci)

Figure 45 depicts the normalized cohesion and normalized separation values,

while Figure 46 depicts the sum of the two normalized metrics. Both figures

show the corresponding values for each Agglomerative step and for each

dataset.

In order to extract the best phases, we considered all the possible evaluation

metrics presented in figures 44, 45 and 46. The Silhouette metric for the

majority of the datasets has its highest values for cluster sets with quite high

number of clusters in the orders of half the number of releases (practically,

average cluster size is about 2 in these solutions). Having empirically

evaluated the phases of each dataset in Section 3.2, we consider such solutions

not desired.

When considering the sum of Normalized Cohesion and Normalized

Separation, however (Figure 46), we observe that there is a critical area of

approximately 10 or less clusters (practically the area of solutions at the

rightmost part of the respective plots in Figure 46) where (a) the combination

of the two measures gives a satisfactory compromise, (b) the number of

clusters is close to the golden standard of Section 3.2, (c) the sum is

maximized, and (d) the value of the measure reaches fairly higher values than

the rest of the plot, for several points in this critical area.

Our analysis is thus, restricted to this critical area of potential solutions; as we

shall see, the most compatible solution with respect to the golden standard is

also found in it. We have also observed that this area has the second best (or

even best for Typo3) silhouette values.

78

Figure 45 Normalized Cohesion-Separation values for each Agglomerative

iteration step for all datasets

A final evaluation procedure we considered was to compare the differences

(in phases) of our golden standard with the phase extraction of the top points

of NCQ (seen in Figure 46). To do so, we calculated a new measure, Lag, that

is defined as follows. We assume a set H = {r1, …,rn} with n releases. We label

each release with a schema history including the phase to which it belongs

and denote this labeling as phase(ri) ∊ N. Each phase(ri) is a number with the

phase ri belongs to, e.g., if phase(r3) =1, this means that r3 belongs to phase 1.

Assume now two different segmentations of the history, for example a

manual golden standard T={phaseT(r1),…., phaseT(tn)} and an algorithmically

produced segmentation A={phaseA(r1),…., phaseA(tn)}. Then the Lag between the

two clusterings is the average difference of phase id, over all releases, for the

two labeling. Lag is defined as follows:

𝐿𝑎𝑔(𝐴, 𝑇) =
 𝑎𝑏𝑠 𝑝ℎ𝑎𝑠𝑒𝐴(𝑟𝑖) − 𝑝ℎ𝑎𝑠𝑒𝑇(𝑟𝑖) 𝑛

𝑖=1

𝑛

79

Figure 46 Sum of Normalized Cohesion and Normalized Separation values

for each Agglomerative iteration step for all datasets. The critical area of

candidate final clusterings is depicted in the orange box for each data set.

Figure 47 depicts the top candidate algorithmically produced solution per

dataset. We examine the top solutions based on NCQ, find the Lag value of

misclassified releases per solution and rank them with respect to both Lag and

NCQ.

Figure 47 Top candidate algorithmically produced solutions per dataset

80

We observe that the value of misclassified releases for the top NCQ solutions

mainly ranges from 0 to 2. This means that our algorithm performs well, as

the top solutions of NCQ that our method produces, are very similar with

those of Section’s 3.2 golden standard. We additionally see that, the solution

with the minimum Lag value, for every single one of the studied datasets, lies

within the top-3 solutions with respect to NCQ, thus making NCQ the best

possible measure for evaluating the solutions.

The details of the algorithmically produced best solutions, along with the

classification of their phases, are presented in 4.5. Before that, though, in

Section 4.4, we present the method that produces these classifications.

4.4 Phase Classification

Once the third step of clustering evaluation and phase extraction is completed

and we have the winner solution for each dataset, we now must classify each

release with respect to its evolution profile. The release characterizations we

produced during the first step of our method are not enough, as we want the

characterization of a phase to be representative of the evolution activity as a

group and not based on each release’s individual evolution. For this reason,

we continue with the next step of phase classification. The procedure of phase

classification consists of two steps.

The first step is the computation of histograms for each phase of the schema’s

life. We compute one histogram for the intensity of Growth and another for

the intensity of Maintenance, for each phase (i.e., cluster of contiguous

releases) of a candidate segmentation of the history of a schema. The second

step is a rule-based classification method based on these histograms and

ultimately labeling a phase with respect to the nature and intensity of the

changes it performs.

4.4.1 Histogram Computation

Each phase is a set of consecutive releases of a schema’s life. Each release as

mentioned above has been labeled with change families and the intensity of

these families.

A release has a measure for the Growth family, and another for the

Maintenance family. This means that each release is considered as a two

81

dimensional (Growth, Maintenance) vector. Based on this measure, each of

these families is labeled with a Zero, Low, Medium, or High intensity.

For each phase of the schema, which is ultimately a list of adjacent releases,

we compute the histogram for Growth and Maintenance. For each of these

two dimensions we count how many releases had a Zero, Low, Medium, and

High value, thus producing four buckets for the histogram. Then, the

histogram of the corresponding phase for the corresponding change family is

computed as the percentage of releases in the phase that have the

corresponding dimension value.

Figure 48 shows an example of the Agglomerative clustering of Mediawiki

with 5 clusters. Each color represents a cluster. The x axis represents the date

of the latest commit of each release; the positive numbers of the y axis show

the normalized growth and the negative numbers the normalized

maintenance. It should be noted that the chart of Figure 48 has an offset of

0.05 for both the normalized Growth and Maintenance values in order to be

able to visually depict the Zero values in a distinctive way. Figure 49 shows

the growth and maintenance histograms computed for each cluster shown in

Figure 48.

Figure 48 Agglomerative clustering example of Mediawiki with 4 clusters

82

Figure 49 Growth and Maintenance histograms of the clusters of Mediawiki

shown in Figure 48

4.4.2 Classification

After having computed the Growth and Maintenance histograms of the

corresponding phases, the remaining step is their classification. For the

classification process we follow a rule-based procedure with respect to the

possible values of the two dimensions of the winner release. As already

mentioned each phase consists of a list of adjacent releases and has two

histograms, one for each of the two change families.

A phase will be characterized according to the value of the winner of each histogram.

The Zero and Low intensities dominate the histograms most of the times as the

calmness seems to be the default state of the schema. Figure 50 depicts the

detailed percentages of Growth and Maintenance intensity percentages for all

6 datasets. More specifically, the percentage of releases that have Zero or Low

Growth for our datasets is between 83% and 89% and the percentage of

releases that have Zero or Low Maintenance is between 82% and 87%. Thus,

the importance of having Zero or Low intensity is small and the occurrences of

Medium or High intensities have greater significance.

83

On the contrary, High intensities are very infrequent and are the most

important ones. High Growth and High Maintenance percentages both range

from 4% to 8%. Medium intensities, although not so rare as High, are also quite

infrequent. Medium Growth percentages are between 7% and 12% for our

datasets, and Medium Maintenance between 8% and 13%.

Keeping these facts in mind, higher intensities take precedence on lower ones.

This does not mean that if we have a phase of several Low intensity releases

and only one High intensity release the entire phase will be characterized by a

single release. We consider the duration of a phase in number of releases. A

set of high intensity releases of a phase will characterize it only if it is at least

the one quarter of the phase’s population. The rules of the winner selection

for both histograms are as follows:

 If High%>threshold then winner=High

 Else if Medium%>threshold then winner=Medium

 Else if Low%>threshold then winner=Low

 Else winner=Zero

The threshold is empirically set to 0.25 to honor the one quarter of the

population rule we discussed above. Different thresholds were tested and due

to this empirical study we consider the 0.25 threshold as the best possible.

Figure 50 Growth/Maintenance intensity percentages

84

Based on the winner values of each dimension and each phase we define the

following phase classification rules:

1. Class:

Minor Activity (with growth/maintenance spike(s))

Condition:

{(Low or Zero) Growth, (Low or Zero) Maintenance}

2. Class:

(Medium or High) Maintenance

Condition:

{(Low or Zero) Growth, (Medium or High) Maintenance}

3. Class:

(Medium or High) Growth

Condition:

{(Medium or High) Growth, (Low or Zero) Maintenance}

4. Class:

High Maintenance – Medium Growth

Condition:

{Medium Growth, High Maintenance}

5. Class:

High Growth – Medium Maintenance

Condition:

{High Growth, Medium Maintenance}

6. Class:

Restructuring

85

Condition:

{Medium Growth, Medium Maintenance}

7. Class:

Intense Evolution

Condition:

{High Growth, High Maintenance}

Figure 51 depicts a mapping of the aforementioned phase classification rules.

Figure 51 Mapping of Phase Characterization Rules

4.5 Top Phase Extractions

As described in 4.3 and seen in Figures 46, 47 we present the best phase

extractions for the studied datasets along with their classification based on the

rules of 4.4.2

All the Figures of this subsection show a table with the basic statistics of each

phase extraction solution (growth, maintenance winners, percentages of each

intensity, classification etc.) and each phase is colored the same color as it is

shown in the chart below the statistics table. All charts’ x-axis’ points

represent the date the last commit of each release was made. Y-axis’ positive

numbers represent the normalized growth value of each release and Y-axis’

negative numbers represent the normalized maintenance values. It should be

noted that each release point has an offset of 0.05.

86

Biosql. Biosql is a set with a small number of releases (12) and an easy

dataset to perform phase extraction to. Our golden standard totally agrees

with the top solution our method produced. There are zero misclassified

releases and the phase extraction and classification of Biosql consists of 3

phases and is presented in Figure 52.

Figure 52 Phase Extraction and Classification of Biosql with 3 phases

For Biosql there was a phase of Minor Activity with some growth and

maintenance spikes then a huge spike of Intense Evolution and then finally a

long period of Minor Activity.

Ensembl. Ensembl is the dataset with the largest amount of releases and

based on the best possible phase extraction of our method contains 7 phases

and is presented in Figure 53. Other possible extractions based on our

evaluation are presented in Figures 54, 55 and 56 with 9, 11 and 13 phases

respectively.

Ensembl’s first phase is classified as a period of Medium Maintenance followed

by a spike of High Growth – Medium Maintenance. The third phase is classified

as a Medium Growth period and then a spike of High Maintenance appears.

Then we have a phase of Medium Growth again followed by a spike of High

87

Maintenance. Finally, again we have a last long phase of Minor Activity with

several growth and maintenance spikes.

Figure 53 Phase Extraction and Classification of Ensembl with 7 phases

88

Figure 54 Phase Extraction and Classification of Ensembl with 9 phases

89

Figure 55 Phase Extraction and Classification of Ensembl with 11 phases

90

Figure 56 Phase Extraction and Classification of Ensembl with 13 phases

91

Mediawiki. Mediawiki also consists of a large number of releases and the top

solution our method produces consists of 5 phases and is presented in Figure

57. Another fair possible extraction is presented in Figure 58 and consists of 12

phases.

Mediawiki’s first phase is a long period that is mostly Minor Activity but

contains a lot of big growth and maintenance spikes. Then we have a phase

(spike) of Medium Growth – High Maintenance followed by a long phase of

Minor Activity that contains spikes of growth and maintenance. The fourth

phase of Mediawiki is a spike of High Growth – Medium Maintenance followed

by a long period of Minor Activity with some maintenance spikes.

Figure 57 Phase Extraction and Classification of Mediawiki with 5 phases

92

Figure 58 Phase extraction and Classification of Mediawiki with 12 phases

Opencart. Opencart is the second smallest dataset and the top solution

produced by our method consists of 4 phases and is presented in Figure 59.

Other fair possible phase extractions of Opencart are depicted in Figures 60

and 61 and consist of 7 and 11 phases respectively.

Opencart’s first phase is a spike of High Maintenance and then it is followed by

a long period of Minor Activity with some spikes of growth and maintenance

nature. Then there is a phase of High Growth followed by a last Minor Activity

phase.

93

Figure 59 Phase Extraction and Classification of Opencart with 4 phases

Figure 60 Phase Extraction and Classification of Opencart with 7 phases

94

Figure 61 Phase Extraction and Classification of Opencart with 11 phases

Phpbb. Phpbb is one of the medium sized datasets in terms of releases and

our top solution consists of 5 phases and is depicted in Figure 62. Figures 63

and 64 represent two alternative fair solutions of phase extraction and consist

of 3 and 7 phases respectively.

Phpbb’s first phase is quite long in time consists of only 2 releases and is

classified as Minor Activity. The second phase is a spike of High Growth

followed by a very long Minor Activity phase containing some spikes. The

next phase is a spike of High Maintenance that is followed by a Minor Activity

phase with small volume spikes.

95

Figure 62 Phase Extraction and Classification of Phpbb with 5 phases

Figure 63 Phase Extraction and Classification of Phpbb with 3 phases

96

Figure 64 Phase Extraction and Classification of Phpbb with 7 phases

Typo3. Typo3 is also a medium sized dataset in terms of releases and the top

algorithmically produced solution consists of 4 phases and is presented in

Figure 65. In Figures 66 and 67 we can see additional fair alternatives of the

phase extraction of Figure 65 consisting of 6 and 7 phases respectively.

Typo3’s first phase is a very long period of Minor Activity with growth and

maintenance spikes. The phase that follows is a spike of High Maintenance

followed by a phase (spike) of High Growth – Medium Maintenance. Finally, the

last phase of Typo3 is a period of calmness, thus classified as Minor Activity.

97

Figure 65 Phase Extraction and Classification of Typo3 with 4 phases

Figure 66 Phase Extraction and Classification of Typo3 with 6 phases

98

Figure 67 Phase Extraction and Classification of Typo3 with 7 phases

4.6 Conclusions

The goal of this part of the study was to introduce a new method that

automatically extracts phases of a schema’s life and classifies each one of

them with respect to their evolution profile.

We evaluated our method via a set of measures that take into consideration

both the quality of the clustering procedure based on the distance of the

releases, but also the resemblance of the algorithmically produced top

solutions with our golden standard. The top solutions of our NCQ metric

(which we consider as winners) have a Lag value of misclassified releases that

is typically less than 2. This means that our algorithm shows a fair

performance with a small error rate and that for the purpose it serves,

considering no heuristics were used, is a significantly decent method for

automatically extracting and classifying schema releases.

Figure 68 depicts the phases of the top algorithmically produced solutions

along with their classifications. We observe several similarities with Figure 2

99

of Section 3.2, where our golden standard was depicted and a similar amount

of phases for each dataset. Furthermore, the cooling period in the end of each

schema’s life with a domination of Maintenance - Minor Activity ending phases

is also present for this set of solutions. Additionally, Maintenance is still

observed to be located anywhere in the history of a schema and finally, Minor

Activity phases are still usually long periods of calmness.

The main difference that our algorithmically produced solution has with the

golden standard is the relocation of Growth classified phases to slightly

posterior phases than before. We address this issue to the fact that an

Agglomerative implementation for the purposes of our problem, tends to

isolate spikes as single phases and not merge them with their adjacent

releases.

 BioSQL Ensembl Mediawiki Opencart Phpbb Typo3

1

Minor

Activity

(w/ spikes)

(w/ spikes)

Maintenance

Minor

Activity

(w/ spikes)

Minor

Activity

(w/ spikes)

Maintenance

(spike)

Minor

Activity

Minor

Activity

(w/ spikes)

2

Intense

Evolution

(spike)

Growth+

Maintenance

Growth+

Maintenance

Minor

Activity

(w/ spikes)

Growth
Maintenance

3
Minor

Activity
Growth

Minor

Activity

(w/ spikes)

Minor

Activity

(w/ spikes)

Growth

(spike)

Minor

Activity

(w/ spikes)

Growth+

Maintenance

4 Maintenance
Growth+

Maintenance

Minor

Activity
Maintenance

Minor

Activity

5 Growth

Minor

Activity

(w/ spikes)

Minor

Activity

(w/ spikes)

6 Maintenance

7

Minor

Activity

(w/ spikes)

Figure 68 Phase Extraction and Classification of Top Algorithmically

Produced Solutions

100

101

CHAPTER 5.

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

5.2 Future work

In this final chapter, we will first start with a summary of our findings and

answer on our initial research questions and then we will discuss issues of

future work.

5.1 Conclusions

The main goal of this thesis was to research the existence of phases in the lives

of relational databases. To do so, we first studied the periods when tables,

attributes and foreign keys are born, updated or evicted in a schema’s life by

studying the heartbeat of changes.

The most interesting finding in our study was that, with the single exception

of one dataset, the history of a database schema comes in two mega-phases: (a)

a ‚hot‛ expansion mega-phase at the start of its life demonstrating growth of

information capacity, along with the necessary maintenance and (b) a

‚cooling‛ housekeeping mega-phase at its middle and later life where either

maintenance actions or stillness dominate the update activity. We called this

phenomenon progressive cooling of the heartbeat.

Some additional findings concerning the first part of this study showed that

the majority of zombie tables tend to survive and injections and ejections of

102

attributes mostly happen at the start or mid of a table’s life and rarely in the

end.

As long as the foreign keys are concerned, we found that they come in two

fashions (a) they are either treated as integral parts of the schema and get

born and evicted along with their tables, mostly in scientific projects and (b)

they are treated as second-class add-ons that get removed not along with their

table, especially in CMSs.

The second part of this Thesis presented an automatic method for phase

extraction and classification, given the history and the heartbeat of a schema,

that consists of four main steps. The evaluation procedure we followed,

showed that our method has a significantly decent performance in terms of

misclassified releases, especially considering the fact that we did not use any

heuristics.

5.2 Future work

More research can be done in the phase extraction and classification field. The

clustering procedure could be implemented with another clustering

algorithm, other than Agglomerative. In our implementation we used the

Euclidean distance function, but one can try a different definition of distance

between releases. Furthermore, the distance was calculated via our Growth –

Maintenance metric values, but another direction would be to use the labels

we produced with our release characterization step. Another possible

modification would be to change the way we evaluate the clustering

procedure by removing spikes considering them as noise.

A different direction of the one we followed during our phase extraction and

classification algorithm, would be to treat the data as sets and not timeseries.

In this direction one could cluster the points as sets and then label them with

the cluster they belong to. This would result in a timeseries of clustering

labels and one can treat this problem as a change detection problem.

103

BIBLIOGRAPHY

[CMTZ08]

[LiNe09]

[Papp17]

[PVSV12]

[QiLS13]

[Rous87]

*Sjøb93+

[SkVZ14]

Carlo A. Curino, Hyun J. Moon, Letizia Tanca, Carlo Zaniolo. Schema

Evolution In Wikipedia toward a Web Information System

Benchmark. International Conference on Enterprise Information Systems

(ICEIS ‘08), pp. 323-332, 2008

Dien-Yen Lin and Iulian Neamtiu. Collateral Evolution of Applications and

Databases. In Proceedings of the Joint International and Annual ERCIM

Workshops on Principles of Software Evolution and Software Evolution

Workshops (IWPSE), pages 31-40, 2009.

Athanasios Pappas. Supporting exploratory analytics on repository-extracted

schema histories by integrating external contextual information. Master

Thesis University of Ioannina, June 2017.

George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis

Vassiliou. Metrics for the Prediction of Evolution Impact in ETL Ecosystems:

A Case Study. Journal on Data Semantics, 1(2):75-97, 2012.

Dong Qiu, Bixin Li, and Zhendong Su. An Empirical Analysis of the Co-

evolution of Schema and Code in Database Applications. In Proceedings of

the 9th Joint Meeting of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE), pages 125-135, 2013.

Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. In Journal of Computational and Applied

Mathematics, Volume 20, 1987, Pages 53-65

Dag Sjøberg. Quantifying Schema Evolution. Information and Software

Technology, Vol. 35, No. 1, pp. 35-44, January 1993

Ioannis Skoulis, Panos Vassiliadis, Apostolos Zarras. Open-Source

Databases: Within, Outside, or Beyond Lehman's Laws of Software

Evolution?. 26th International Conference on Advanced Information Systems

Engineering (CAiSE 2014), 16-20 June 2014, Thessaloniki, Hellas.

104

[SkVZ15]

[TaSK05]

[VaZa17]

[VKZZ17]

[WuNe11]

Ioannis Skoulis, Panos Vassiliadis, Apostolos Zarras. How is Life for a Table

in an Evolving Relational Schema? Birth, Death; Everything in Between. 34th

International Conference on Conceptual Modeling (ER 2015), 19-22 October

2015, Stockholm, Sweden.

Pang-Ning Tan, Michael Steinbach, Vipin Kumar. Introduction to Data

Mining. Addison-Wesley 2005, ISBN 0-321-32136-7Section 8.5.2.

Panos Vassiliadis, Apostolos Zarras. Survival in Schema Evolution: Putting

the Lives of Survivor and Dead Tables in Counterpoint. 29th International

Conference on Advanced Information Systems Engineering (CAiSE 2017),

12-16 June 2017, Essen, Germany.

Panos Vassiliadis, Michail-Romanos Kolozoff, Maria Zerva, Apostolos V.

Zarras. Schema Evolution and Foreign Keys: Birth, Eviction, Change and

Absence. 36th International Conference on Conceptual Modeling (ER 2017),

pp. 106-119, Nov. 6th-9th, 2017, Valencia Spain.

Shengfeng Wu and Iulian Neamtiu. Schema evolution analysis for

embedded databases. In Proceedings of the 27th IEEE International

Conference on Data Engineering Workshops (ICDEW), pages 151-156, 2011.

105

SHORT CV

Maria Zerva was born in Ioannina in 1992. She received her Bachelor’s degree

from the Department of Computer Science and Engineering of University of

Ioannina in 2016. At the same year she became a MSc student in the same

institution under the supervision of Associate Professor Panos Vassiliadis.

Her main interests are software development and relational databases.

