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Abstract: In this paper, we prove that the harmonious coloring problem is NP-complete
for connected interval and permutation graphs. Given a simple graph G, a harmonious
coloring of GG is a proper vertex coloring such that each pair of colors appears together on at
most one edge. The harmonious chromatic number is the least integer k& for which G admits
a harmonious coloring with & colors. Extending previous work on the NP-completeness
of the harmonious coloring problem when restricted to the class of disconnected graphs
which are simultaneously cographs and interval graphs, we prove that the problem is also
NP-complete for connected interval and permutation graphs.
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1 Introduction

Many NP-complete problems on arbitrary graphs admit polynomial time algorithms when restricted to
the classes of interval graphs and cographs; NP-complete problems for these two classes of graphs that
become solvable in polynomial time can be found in [1, 2, 5, 10, 13, 14]. However, the pair-complete
coloring problem, which is NP-hard on arbitrary graphs [15], remains NP-complete when restricted to
graphs that are simultaneously interval and cographs [3]. A pair-complete coloring of a simple graph
G is a proper vertex coloring such that each pair of colors appears together on at least one edge, while
the achromatic number (G) is the largest integer k for which G admits a pair-complete coloring with
k colors. The achromatic number was introduced in [11, 12].

Bodlaender [3] provides a proof for the NP-completeness of the pair-complete coloring problem for
disconnected cographs and interval graphs and extends his results for connected such graphs. His proof
also establishes the NP-hardness of the harmonious coloring problem for disconnected interval graphs
and cographs; a harmonious coloring of a simple graph G is a proper vertex coloring such that each
pair of colors appears together on at most one edge, while the harmonious chromatic number h(G) is
the least integer k for which G admits a harmonious coloring with & colors [4]. Note that the problem
of determining the harmonious chromatic number of connected cographs is trivial, since in such a
graph each vertex must receive a distinct color as it is at distance at most 2 from all other vertices [4].
On the contrary, although the harmonious coloring problem is NP-complete for disconnected interval
graphs, the complexity of the problem for connected interval graphs is not straightforward. Moreover,



the NP-hardness of the pair-complete coloring problem for cographs also establishes the NP-hardness
of the pair-complete coloring problem for the class of permutation graphs, and, also, the NP-hardness
of the harmonious coloring problem when restricted to disconnected permutation graphs. However,
the complexity of the harmonious coloring problem for connected permutation graphs has not been
studied. Motivated by these issues we prove that the harmonious coloring problem is also NP-complete
for connected interval and permutation graphs.

2 NP-completeness Results

The formulation of the harmonious coloring problem in [4] is equivalent to the following formulation.

Harmonious Coloring Problem

Instance: Graph G = (V, E), positive integer K < |V].

Question: Is there a positive integer £ < K and a proper coloring using k£ colors such that each pair
of colors appears together on at most one edge?

We next prove our main result, that is, harmonious coloring is NP-complete for connected interval
graphs; a graph G is an interval graph if its vertices can be put in one-to-one correspondence with
a family of intervals on the real line such that two vertices are adjacent in G if and only if their
corresponding intervals intersect.

Theorem 2.1. Harmonious coloring is NP-complete when restricted to connected interval graphs.

Proof. Harmonious coloring is obviously in NP. In order to prove NP-hardness, we use a transformation
from 3-PARTITION.

Let aset A = {a1,...,asm} of 3m elements, a positive integer B and let positive integer sizes s(a;)
for each a; € A be given, such that B < s(a;) < 3B, and such that Yaeasla) =mB, 1 <i<3m.
We may suppose that, for each a; € A, s(a;) > m (if not, then we can multiply all s(a;) and B with
m+1).

Extending the result of Bodlaender [3], we construct the following connected graph which is an
interval and a permutation graph: Consider a clique with m vertices, a clique with B vertices, and add
a vertex v that is connected to every vertex in the two cliques; let G; be the resulting graph. Next
we construct for every a; € A a tree T; of depth one with s(a;) leaves and root x;, that is, every leaf
is adjacent to the root; note that there are 3m such trees 73,75, ...,7T5,,. Then we construct a path
P = [v1,v2,...,03y,] of 3m vertices, and we connect each vertex v; of the path P to all the vertices
of the tree T;, 1 < i < 3m. Additionally, for each vertex v; € P, we add m — 1+ B — s(a;) +i—1
vertices and connect them to vertex v;; let G2 be the resulting graph. Note that the graph G; U G4 is
disconnected. Finally, we add an edge to the graph G; UG5 connecting vertices v; and v and let G be
the resulting graph. The graph G is a connected graph and it is illustrated in Fig. 1.

One can easily verify that G is an interval graph. A clique can be represented as a number of
intervals that share at least one point in common. Two cliques sharing a vertex u can be represented
as a number of intervals such that one of them, which corresponds to u, shares at least one point
with the intervals corresponding to the vertices of each clique. Thus, the vertices of G can be put in
one-to-one correspondence with a family of intervals on the real line such that two vertices are adjacent
in G if and only if their corresponding intervals intersect.

It is easy to see that the total number of edges in G is
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Figure 1: Illustrating the constructed connected interval and permutation graph G.

For every harmonious coloring of G and every pair of distinct colors i, j, ¢ # j, there must be at most
one edge with its endpoints colored with ¢ and j. Thus, it follows that the harmonious chromatic
number cannot be less than 4m + B + 1, and if it is equal to 4m + B + 1 then we have, for every pair
of distinct colors 4,5, 1 < 4,5 < 4m + B + 1, a unique edge with its end-points colored with 7 and j.
Thus, we have an exact coloring of G; an ezxact coloring of G with k colors is a harmonious coloring of
G with k colors in which, for each pair of colors i, j, there is exactly one edge (a,b) such that a has
color ¢ and b has color j.

We now claim that the harmonious chromatic number of G is (less or equal to) 4m + B + 1 if and
only if A can be partitioned in m sets Ay,..., A,, such that ZaeAj s(a) = B, forall j,1<j <m.

(«<=) Suppose now a 3-partition of A in A;,..., A, such that Vj : ZaeAj s(a) = B exists. We
show how to find a harmonious coloring of G using 4m + B + 1 colors. We color the vertices of the
first clique with colors 1,2, ..., m, the vertices of the second clique with m+1,m+2,...,m+ B, and
vertex v with m + B + 1. For convenience and ease of presentation, let M be the set containing colors
1,2,...,m, let B be the set containing colors m+1,m+2,...,m+ B, and let K be the set containing
colorsm+B+2,m+B+3,...,4m+ B+ 1. If a; € A; then we color the vertex corresponding to a;
with color j. Each color j € M is assigned to the three vertices corresponding to three a; that have
together exactly B neighbors of degree 2. We assign to each one of these B neighbors a different color
from B, and next we assign to each vertex v; of the path P a distinct color from K. Recall that each
vertex v;, 1 < i < 3m, is connected to two other vertices of P, i.e., v;_1 and v;11, and m+ B +i —1
more vertices, vertex vy is connected to vs, v and m + B other vertices, while vertex vs,, is connected
to v3m—1 and m + B + 3m — 1 more vertices (see Fig. 1).

Next, we color the rest m — 1+ B — s(a;) + 4 — 1 neighbors of each v;. We assign a distinct color
from the set M\¢; to m — 1 neighbors of v;, where ¢; is the color previously assigned to the vertex
corresponding to a,. We next assign a distinct color from the set B\C; to B — s(a;) neighbors of v;,
where C; is the set of the colors previously assigned to s(a;) neighbors of the vertex corresponding
to a;. Finally, we assign a different color to the rest ¢ — 1 neighbors of v;, 3 < i < 3m, using color
m + b+ 1 and the colors assigned to the vertices v;, 1 < j <7 — 2. Note that, in order to color the
m + B — s(az2) neighbors of v, we only need to use color m + B 4+ 1 and colors from M and B, while
for the m — 1+ B — s(a1) neighbors of v; we only use colors from M and B. A harmonious coloring of
G using 4m + B + 1 colors results, and thus, the harmonious chromatic number of G is 4m + B + 1.



(=) We next suppose that the harmonious chromatic number of G is (less or equal to) 4m+ B +1.
Consider a harmonious coloring of G' using 4m + B + 1 colors. Without loss of generality we may
suppose that the m vertices of the first clique have distinct colors from M, while the B vertices of the
second clique have distinct colors from B. Also, without loss of generality, we color vertex v with color
m + B + 1 since v is adjacent to all the vertices of the two cliques. Since vs,, is the vertex having the
maximum degree, that is, 4m + B, it has to take a color from K. Indeed, if it takes a color from M,
then none of its neighbors can take a color from M and we cannot color 4m + B vertices using only
4m+ B+1—m colors. Using similar arguments, we cannot color vertex vs,, using a color from B or the
color m + B + 1. Thus, without loss of generality, we assign to vs,, the color 4m + B 4+ 1. We color all
its neighbors with distinct colors from MUBU{m+ B+1}UK\{4m+ B+1}. Note that, vertex vs,,_1
takes a color from K\{4m+ B+ 1}; let 4m+ B be this color. Indeed, using similar arguments, it cannot
take a color from MUBU{m+ B+1}U{4m+ B+1}. Note that, color 4m+ B+ 1 cannot be assigned
to any other vertex of G since any pair of colors (4m + B +1,5), 1 < j < 4m + B, already appears
in the harmonious coloring. Recall that, for every pair of distinct colors 4,5, 1 < 4,5 < 4dm + B + 1,
there is a unique edge with its end-points colored with ¢ and j. Recursively, as can easily be proved
by induction on i, the same holds for all v; € P, 1 < i < 3m — 2, that is, v; takes a color from IC\L,
where L is the set containing colors m+B+1+i+1,m+B+1+i+2,...,4m+ B+ 1, which are
the colors already assigned to vertices v;, i < j < 3m.

Note that pairs (u,v), g € M, v € B, have not appeared yet. Since every pair of colors must
appear, we assign these pairs to the mB edges that have both endpoints uncolored. Note that these
edges are the edges (z;, y;:), 1<i<3m,1<j<s(a;), where x; corresponds to a; and y; corresponds
to the j-th neighbor of x; having degree 2. The vertices z; cannot take a color from B, otherwise its
s(a;) > m uncolored neighbors y; cannot be colored with m colors from M. Thus, vertices xz; are
assigned a color from M and vertices y} are assigned a color from B (recall that B < s(a;) < ). Note
that the only uncolored vertices are m — 1+ B — s(a;) +i— 1 neighbors of each v;, 1 < i < 3m. In order
to color m—1+B—s(a;) of the uncolored neighbors of v;, we use distinct colors from (MUB)\F, where
F is the set containing all colors already assigned to the s(a;) + 1 neighbors of v;. In order to color the
last 4 — 1 uncolored neighbors of v;, ¢ > 1, we can only use colors from K\L\{m+ B+1+i,m+ B+i}
because the only unused pairs are (m + B+ 1+14,j), where m+ B+1<j<m+B+1+i—2.

Finally, let a; € A; if and only if the vertex z; (with neighbors y;) is colored with color j € M.
We claim that for all j, ZaeAj s(a) = B. Indeed, each color j must be adjacent to some colors from
B, and each color from B is assigned to exactly one vertex which is adjacent to all z; colored with j.
Hence, a correct 3-partition exists.

The theorem follows from the strong NP-completeness of 3-PARTITION, since the transformation
can be done easily in polynomial time. 1

We can easily show that the interval graph G illustrated in Fig. 1 is also a permutation graph. The
graph G is an interval graph if and only if it is a chordal graph and the graph G is a comparability
graph [9]. Moreover, one can easily verify that G admits an acyclic transitive orientation and, thus, it
is a comparability graph. Since G and G are comparability graphs, it follows that G is a permutation
graph [9]. Consequently, we can state the following theorem.

Theorem 2.2. Harmonious coloring is NP-complete when restricted to connected permutation graphs.



3 Concluding Remarks

We have shown that the connected interval graph G presented in this paper, which is also a permutation

graph, has <4m +2B + 1> edges and h(G) = 4m+ B+ 1. In [6] it was shown that if G is a graph with
exactly (;) edges, then a proper vertex coloring of G with k colors is pair-complete if and only if it is

a harmonious coloring. Thus, if G is a graph with (g) edges, then ¢(G) = k if and only if h(G) =k

[4]. Consequently, for the graph G, which is simultaneously an interval and a permutation graph, we
have that ¢¥(G) = 4m + B + 1 and, thus, our results could be also used to prove that the achromatic
number is NP-complete for connected interval and permutation graphs.
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