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Abstract

A novel method for solving ordinary and partial differential equations,

based on grammatical evolution is presented. The method forms gener-

ations of trial solutions expressed in an analytical closed form. Several

examples are worked out and in most cases the exact solution is recov-

ered. When the solution cannot be expressed in a closed analytical form

then our method produces an approximation with a controlled level of

accuracy. We report results on several problems to illustrate the potential

of this approach.
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1 Introduction

A lot of problems in the fields of physics, chemistry, economics etc. can be
expressed in terms of ordinary differential equations(ODE’s) and partial dif-
ferential equations (PDE’s). Weather forecasting, quantum mechanics, wave
propagation and stock market dynamics are some examples. For that reason
many methods have been proposed for solving ODE’s and PDE’s such as Runge
Kutta, Predictor - Corrector [1], radial basis functions [4] and feedforward neural
networks [5]. Recently methods based on genetic programming have also been
proposed [6, 7]. Genetic programming [2], that is based on genetic algorithms is
an optimization process based on the evolution of a large number of candidate
solutions through genetic operations such as replication, crossover and mutation
[14]. In this article we propose a novel method based on genetic programming.
Our method attempts to solve ODE’s and PDE’s by generating solutions in
a closed analytical form. The generation is achieved with the help of gram-
matical evolution. Grammatical evolution is an evolutionary process that can
produce programs in an arbitrary language. The production is performed using
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a mapping process governed by a grammar in Backus Naur Form. Grammatical
evolution has been applied successfully to problems such as symbolic regression
[11], discovery of trigonometric identities [12], robot control [15], caching algo-
rithms [16], financial prediction [17] etc. The rest of this article is organized as
follows: in section 2 we give a brief presentation of grammatical evolution, in
section 3 we describe in detail the new algorithm, in section 4 we present several
experiments and in section 5 we present our conclusions and ideas for further
work.

2 Grammatical Evolution

Grammatical evolution is an evolutionary algorithm that can produce code in
any programming language. The algorithm requires the grammar of the tar-
get language in BNF syntax and the proper fitness function. Chromosomes
in grammatical evolution, in contrast to classical genetic programming [2], are
not expressed as parse trees, but as vectors of integers. Each integer denotes a
production rule from the BNF grammar. The algorithm starts from the start
symbol of the grammar and gradually creates the program string, by replacing
non terminal symbols with the right hand of the selected production rule. The
selection is performed in two steps:

• We read an element from the chromosome (with value V ).

• We select the rule according to the scheme

Rule = V mod NR (1)

where NR is the number of rules for the specific non-terminal symbol. The
process of replacing non terminal symbols with the right hand of production
rules is continued until either a full program has been generated or the end
of chromosome has been reached. In the latter case we can reject the entire
chromosome or we can start over (wrapping event) from the first element of the
chromosome. In our approach we allow at most two wrapping events to occur.

In our method we used a small part of the C programming language grammar
as we can see in figure 1. The numbers in parentheses denote the sequence num-
ber of the corresponding production rule to be used in the selection procedure
described above.
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Figure 1: The grammar of the proposed method

S::=<expr> (0)

<expr> ::= <expr> <op> <expr> (0)

| ( <expr> ) (1)

| <func> ( <expr> ) (2)

|<digit> (3)

|x (4)

|y (5)

|z (6)

<op> ::= + (0)

| - (1)

| * (2)

| / (3)

<func> ::= sin (0)

|cos (1)

|exp (2)

|log (3)

<digit> ::= 0 (0)

| 1 (1)

| 2 (2)

| 3 (3)

| 4 (4)

| 5 (5)

| 6 (6)

| 7 (7)

| 8 (8)

| 9 (9)

The symbol S in the grammar denotes the start symbol of the grammar. For
example, suppose we have the chromosome x = [16, 3, 4, 7, 10, 28, 24, 1, 2, 4]. In
table 1 we show how a valid function is produced from x. The resulting function
in the above example is f(x) = log(x2). Further details about grammatical
evolution can be found in [8, 9, 10, 11, 13]
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Table 1: Example of program construction

String Chromosome Operation

<expr> 16, 3, 7, 4, 10, 28, 24, 1,2,4 16 mod 7 =2
<func>(<expr>) 3, 7, 4, 10, 28, 24, 1, 2, 4 3 mod 4 = 3

log(<expr>) 7, 4, 10, 28, 24, 1, 2, 4 7 mod 7 =0
log(<expr><op><expr>) 4, 10, 28, 24, 1, 2, 4 4 mod 7 =4

log(x<op><expr>) 10, 28, 24, 1, 2, 4 10 mod 4 =2
log(x*<expr>) 28, 24, 1, 2, 4 28 mod 7 =0

log(x*<expr><op><expr>) 24, 1, 2, 4 24 mod 7=3
log(x*<digit><op><expr>) 1, 2, 4 1 mod 10=1

log(x*1<op><expr>) 2, 4 2 mod 4=2
log(x*1*<expr>) 4 4 mod 7=4

log(x*1*x)

3 Description of the algorithm

The algorithm has the following phases:

1. Initialization.

2. Fitness evaluation.

3. Genetic operations.

4. Termination control.

3.1 Initialization

In the initialization phase the values for mutation rate and selection rate are
set. The selection rate denotes the fraction of the number of chromosomes that
will go through unchanged to the next generation(replication). The mutation
rate controls the average number of changes inside a chromosome. Every chro-
mosome in the population is initialized at random. The initialization of every
chromosome is performed by randomly selecting an integer for every element of
the corresponding vector.

3.2 Fitness evaluation

3.2.1 ODE case

We express the ODE’s in the following form:

f
(

x, y, y(1), ..., y(n−1), y(n)
)

= 0, x ∈ [a, b] (2)
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where y(n) denotes the n-order derivative of y. Let the boundary or initial
conditions be given by:

gi

(

x, y, y(1), ..., y(n−1)
)

|x=ti

= 0, i = 1, ..., n

where ti is one of the two endpoints a or b. The steps for the fitness evaluation
of the population are the following:

1. Choose N equidistant points (x0, x1, ..., xN−1) in the relevant range.

2. For every chromosome i

(a) Construct the corresponding model Mi(x), expressed in the grammar
described earlier.

(b) Calculate the quantity

E(Mi) =

N−1
∑

j=0

(

f
(

xj , M
0
i (xj), .., M

(n)
i (xj)

))2

(3)

(c) Calculate an associated penalty P (Mi) as shown below.

(d) Calculate the fitness value of the chromosome as:

vi = E(Mi) + P (Mi) (4)

The penalty function P depends on the boundary conditions and it has the
form:

P (Mi) = λ

n
∑

k=1

g2
k

(

x, Mi, M
(1)
i , ..., M

(n−1)
i

)

|x=tk

(5)

where λ is a positive number.

3.2.2 PDE case

We only consider here elliptic PDE’s in two and three variables with Dirichlet
boundary conditions. The generalization of the process to other types of bound-
ary conditions and higher dimensions is straightforward. The PDE is expressed
in the form:

f

(

x, y, Ψ(x, y),
∂

∂x
Ψ(x, y),

∂

∂y
Ψ(x, y),

∂2

∂x2
Ψ(x, y),

∂2

∂y2
Ψ(x, y)

)

= 0 (6)

with x ∈ [x0, x1] and y ∈ [y0, y1]. The associated Dirichlet boundary condi-
tions are expressed as: Ψ(x0, y) = f0(y), Ψ(x1, y) = f1(y), Ψ(x, y0) = g0(x),
Ψ(x, y1) = g1(x).

The steps for the fitness evaluation of the population are given below:
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1. Choose N2 equidistant points in the box [x0, x1]× [y0, y1], Nx equidistant
points on the boundary at x = x0 and at x = x1, Ny equidistant points
on the boundary at y = y0 and at y = y1.

2. For every chromosome i

• Construct a trial solution Mi(x, y) expressed in the grammar de-
scribed earlier.

• Calculate the quantity

E(Mi) =
N2

X

j=1

f

„

xj , yj ,Mi(xj , yj),
∂

∂x
Mi(xj , yj),

∂

∂y
Mi(xj , yj),

∂2

∂x2
Mi(xj , yj),

∂2

∂y2
Mi(xj , yj)

«2

• Calculate the quantities

P1(Mi) =

Nx
∑

j=1

(Mi(x0, yj) − f0(yj))
2

P2(Mi) =

Nx
∑

j=1

(Mi(x1, yj) − f1(yj))
2

P3(Mi) =

Ny
∑

j=1

(Mi(xj , y0) − g0(xj))
2

P4(Mi) =

Ny
∑

j=1

(Mi(xj , y1) − g1(xj))
2

• Calculate the fitness of the chromosome as:

vi = E(Mi) + P1(Mi) + P2(Mi) + P3(Mi) + P4(Mi) (7)

3.3 Evaluation of derivatives

Derivatives are evaluated together with the corresponding functions using an
additional stack and the following differentiation elementary rules, adopted by
the various Automatic Differentiation Methods [21] and used in corresponding
tools [18, 19, 20]:

1. (f(x) + g(x))′ = f ′(x) + g′(x)

2. (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)

3.
(

f(x)
g(x)

)′

= f ′(x)g(x)−g′(x)f(x)
g2(x)

4. f(g(x))′ = g′(x)f ′(g(x))
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To find the first derivative of a function we use two different stacks, the first
is used for the function value and the second for the derivative value. For
instance consider that we want to estimate the derivative of the function f(x) =
sin(x) + log(x + 1). Suppose that S0 is the stack for the function’s value and
S1 is the stack for the derivative. The function f(x) in postfix order is written
as “x sin x 1 + log + ”. We begin to read from left to right, until we reach
the end of the string. The following calculations are performed in the stacks S0

and S1. We denote with (a0, a1, ..., an) the elements in a stack, an being the
element at the top.

1. S0 = (x), S1 = (1)

2. S0 = (sin(x)), S1 = (1 cos(x))

3. S0 = (sin(x), x), S1 = (1 cos(x), 1)

4. S0 = (sin(x), x, 1), S1 = (1 cos(x), 1, 0)

5. S0 = (sin(x), x + 1), S1 = (1 cos(x), 1 + 0)

6. S0 = (sin(x), log(x + 1)), S1 = (1 cos(x), 1+0
x+1 )

7. S0 = (sin(x) + log(x + 1)), S1 = (1 cos(x) + 1+0
x+1 )

The S1 stack contains the first derivative of f(x). To extend the above calcula-
tions for the second order derivative, a third stack must be employed.

3.4 Genetic operations

At first, we perform a sorting of chromosomes with respect to their fitness value,
in a way that the best chromosome is placed at the beginning of the population
and the worst at the end. After that, we produce c = (1−s)∗g new chromosomes,
where s is the selection rate of the model and g is the total number of individuals
in the population. The new individuals will replace the worst in the population
at the end of the crossover procedure. For every couple of children we select
two individuals from the current population with the method of tournament
selection, i.e.:

• A group of K ≥ 2 random individuals is created.

• The individual with the best fitness in the group is selected, the others
are discarded.

Having selected two individuals, we proceed with the one - point crossover. In
that procedure we cut the chromosomes at a randomly chosen point and we
exchange the right-hand-side sub-chromosomes, as shown in figure 2:
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Figure 2: One - Point crossover

After the crossover we proceed with mutation. For every chromosome in the
population (excluding those which have been selected for replication to the next
generation) and for every element in the chromosome we choose a random num-
ber in the range [0, 1]. If this number is less than or equal to the mutation rate
we change randomly the corresponding element in the chromosome, otherwise
we leave it intact.

3.5 Termination control

The genetic operators are applied to the population creating new generations,
until a maximum number of generations is reached or the best chromosome in
the population has fitness better than a preset threshold.

4 Experimental results

We describe several experiments performed on linear and non linear first and
second order ODE’s and systems and PDE’s with . In addition we applied
our method to ODE’s that do not posses an analytical closed form solution and
hence can not be represented exactly by the grammar. For the case of systems of
ODE’s, each chromosome is split in M parts, where M is the number of equations
in the system. Each part of the chromosome represents the solution of the
corresponding ODE. We used 10% for the selection rate and 5% for the mutation
rate. The population size was set to 1000 and the length of each chromosome
to 50. The experiments were performed on an AMD ATHLON 2400+ running
Slackware Linux 9.1 The penalty parameter λ in the penalty function was set to
100 in all runs. The maximum number of generations allowed was set to 2000
and the preset fitness target for the termination criteria was 10−7. The value
of N for ODE’s was between 10 and 20 depending on the problem. For PDE’s
N was set to 5 and Nx = Ny = 50. Also, for some problems we present graphs
of the intermediate trial solutions. The evaluation of the derived functions was
performed using the FunctionParser programming library [3].
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4.1 Linear ODE’s

First order ODE’s

In table 2 we list first order ODE’s that were solved exactly with the proposed
method. The columns ODE, x0, x1, y(x0), G and y(x) contain the equation
to be solved, the left and the right endpoints of the domain, the boundary
condition at x = x0, the number of the required generations for recovering the
exact solution and the exact solution.

Table 2: First order ODEs

ODE x0 xN−1 y(x0) G y(x)

y′ = 2x−y

x
0.1 1.0 20.1 241 x + 2

x

y′ = 1−y cos(x)
sin(x) 0.1 1.0 2.1

sin(0.1) 35 x+2
sin(x)

y′ = − 1
5y + exp

(

−x
5

)

cos(x) 0.0 1.0 0.0 108 exp
(

−x
5

)

sin(x)

Second order ODE’s

In table 3 we present second order ODE’s, with boundary conditions on the
left endpoint, that were solved with the proposed method. The name and the
meaning for the columns is the same as in table 2 with the addition of the
column y′(x0), which contains the value of first derivative on the left boundary.
Similarly, in table 4 we list second order ODE’s, with boundary conditions on
both of the endpoints. The column y(x1) contains the boundary condition on
the right endpoint.

Table 3: Second order ODE’s

ODE x0 xN−1 y(x0) y′(x0) G y(x)

y′′ = −100y 0.0 1.0 0.0 10.0 59 sin(10x)

y′′ = 6y′
− 9y 0.0 1.0 0.0 2.0 258 2x exp(3x)

y′′ = −
1
5
y′

− y −
1
5

exp(−x
5
) cos(x) 0.0 2.0 0.0 1.0 137 exp(− x

5
) sin(x)
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Table 4: Second order ODEs

ODE x0 xN−1 y(x0) y(x1) G y(x)

y′′ = −100y 0.0 1.0 0.0 sin(10.0) 76 sin(10x)

xy′′ + (1 − x)y′ + y = 0 0.0 1.0 1.0 0.0 15 1 − x

y′′ = −
y′

5
− y −

1
5

exp(−x
5
) cos(x) 0.0 1.0 0.0 sin(1)

exp(0.2)
110 exp(−x

5
) sin(x)

In figure 3 we can see plots of the evolving trial corresponding solution for
the first problem of table 3. At generation 22 the fitness value was 4200.5 and
the intermediate solution was:

y22(x) = sin((sin(− log(4)x((− cos(cos(exp(7))) exp(cos(6))) − 5))))

At generation 27 the fitness value was 517.17 and the corresponding candidate
solution was:

y27(x) = sin((sin(− log(4)x((− cos(cos(sin(7))) exp(cos(6))) − 5))))

Finally, at generation 59 the problem was solved exactly.

Figure 3: Evolving candidate solutions of y′ = −100y with boundary conditions
on the left
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Hermite Polynomials

The Hermite polynomials are solutions of the ordinary differential equation:

y′′ − 2xy′ + 2ny = 0

where n is an integer with the attribute n ≥ 0 . In table 5 we see some of the
Hermite polynomials that solved with the proposed method. The meaning of
the columns is the same as the previous tables.

Table 5: Hermite Polynomials

ODE x0 xN−1 y(x0) y′(x0) G y(x)

y′′ − 2xy′ = 0 0.0 1.0 1.0 0.0 10 1
y′′ − 2xy′ + 2y = 0 0.0 1.0 0.0 2.0 35 2x
y′′ − 2xy′ + 4y = 0 0.0 1.0 -2.0 0.0 105 4x2 − 2
y′′ − 2xy′ + 6y = 0 0.0 1.0 0.0 -12.0 350 8x3 − 12x

4.2 Non - linear ordinary differential equations

Example 1

y′ =
1

2y

with y(1) = 1 and x ∈ [1, 4]. The exact solution is y =
√

x. Note that
√

x does

not belong to the basis set. However the resulting solution y = exp
(

log(x)
2

)

is

identical to
√

x and was recovered in 122 generations.

Example 2

(y′)2 + log(y) − cos2(x) − 2 cos(x) − 1 − log(x + sin(x)) = 0

with y(1) = 1 + sin(1) and x ∈ [1, 2] The exact solution is y = x + sin(x),
recovered after 4 generations.

Example 3

y′′y′ = −
4

x3

with y(1) = 0 and x ∈ [1, 2]. The exact solution is y = log(x2). In figure 4 we
plot intermediate trial solutions.
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Figure 4: Candidate solutions of third non-linear equation
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At the second generation the trial solution had a fitness value of 73.512 and
it assumed the form:

y2(x) = log(x − exp(−x − 1)) − cos(5)

while at the fourth generation it had a fitness value of 48.96 and it became:

y4(x) = log(log(x + x))

Similarly at the 8th generation the fitness of the intermediate solution was 4.61
and its functional form was:

y8(x) = sin(log(x ∗ x))

The exact solution was obtained at the 9th generation.

Example 4

x2y′′ + (xy′)2 +
1

log(x)
= 0

with y(e) = 0, y′(e) = 1
e

and x ∈ [e, 2e]. The exact solution is y(x) = log(log(x))

and it was recovered at the 30th generation.
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4.3 Systems of ODE’s

Example 1

y′
1 = cos(x) + y2

1 + y2 − (x2 + sin2(x))
y′
2 = 2x − x2 sin(x) + y1y2

with y1(0) = 0, y2(0) = 0 and x ∈ [0, 1]. The exact solution is given by:

y1 = sin(x), y2 = x2 recovered at the 45th generation.

Example 2

y′′
1 − y′

1 − y′
2 = −1

y′
2 + 2y′

1 − y2 = 1 − x + 2 exp(x)

with y1(0) = 1, y′
1(0) = 1, y2(0) = 0 and x ∈ [0, 1]. The exact solution is

y1 = exp(x), y2 = x, recovered at the 23th generation.

Example 3

y′
1 = cos(x)−sin(x)

y2

y′
2 = y1y2 + exp(x) − sin(x)

with y1(0) = 0, y2(0) = 1 and x ∈ [0, 1]. The exact solution is y1 = sin(x)
exp(x) ,

y2 = exp(x), recovered at the 89th generation.

Example 4

y′
1 = y1

y′
2 = 1

2 exp(x) (y3 − y1)

y′
3 = 3y1

with y1(0) = 1, y2(0) = 0, y3(0) = 3 and x ∈ [0, 1]. The exact solution is

y1 = exp(x), y2 = x, y3 = 3 exp(x), recovered at the 167th generation.

Example 5

y′
1 = cos(x)

y′
2 = −y1

y′
3 = y2

y′
4 = −y3

y′
5 = y4

with y1(0) = 0, y2(0) = 1, y3(0) = 0,y4(0) = 1, y5(0) = 0 and x ∈ [0, 1]. The
exact solutions is y1 = sin(x), y2 = cos(x), y3 = sin(x), y4 = cos(x), y5 = sin(x),

recovered at the 825th generation.
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Example 6

y′
1 = − 1

y2

sin(exp(x))

y′
2 = −y2

with y1(0) = cos(1.0), y2(0) = 1.0 and x ∈ [0, 1]. The exact solution is

y1 = cos(exp(x)), y2 = exp(−x), recovered at the 119thgeneration.

4.4 ODE’s without an analytical closed form solution

Example 1

y′′ +
1

x
y′ − 1

x
cos(x) = 0

with x ∈ [0, 1] and y(0) = 0 and y′(0) = 1. With 20 points in [0,1] we find:

GP1(x) = x(cos(− sin(x/3 + exp(−5 + x − exp(cos(x)))))))

with fitness value 2.1 ∗ 10−6. The exact solution is :

y(x) =

∫ x

0

sin(t)

t
dt

In figure 5, we plot the two functions in the range [0,5]

Figure 5: Plot of GP1(x) and y(x) =
∫ x

0
sin(t)

t
dt
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Example 2

y′′ + 2xy = 0

with x ∈ [0, 1] and y(0) = 0 and y′(0) = 1. The exact solution is :

y(x) =

∫ x

0

exp(−t2)dt

With 20 points in [0,1] we find:

GP2(x) = sin(sin(x + exp(exp(x) log(9)/ exp(8 + cos(1))/(exp(7/ exp(x)) + 6)))

with fitness 1.7 ∗ 10−5. In figure 6 we the plot the two functions in the range
[0,5].

Figure 6: Plot of GP2(x) and y(x) =
∫ x

0 exp(−t2)dt
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Observe, that even though the equations in the above examples were solved
for x ∈ [0, 1], the approximation maintains its quality beyond that interval, a
fact that illustrates the unusual generalization ability.

4.5 A special case

Consider the ODE
y′′(x2 + 1) − 2xy − x2 − 1 = 0

in the range [0, 1] and with initial conditions y(0) = 0 and y′(0) = 1. The
analytical solution is y(x) = (x2 +1)atan(x). Note that atan(x) does not belong
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to the function repertoire of the method and this make the case special. The
solution reached is not exact but approximate given by:

GP(x) = x/ sin(exp(cos(5/4/ exp(x))−
exp((− exp(((−((− exp(cos(sin(2x))))))))))))

plotted in figure 7 with fitness 0.0059168.

Figure 7: GP(x) and y(x) = (x2 + 1)atan(x)
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4.6 PDE’s

Example 1

∇2Ψ(x, y) = exp(−x)(x − 2 + y3 + 6y)

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions:Ψ(0, y) = y3, Ψ(1, y) =
(1 + y3) exp(−1), Ψ(x, 0) = x exp(−x), Ψ(x, 1) = (x + 1) exp(−x). The exact

solution is Ψ(x, y) = (x + y3) exp(−x), recovered at the 821th generation.

Example 2

∇2Ψ(x, y) = −2Ψ(x, y)

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions: Ψ(0, y) = 0, Ψ(1, y) =
sin(1) cos(y), Ψ(x, 0) = sin(x), Ψ(x, 1) = sin(x) cos(1). The exact solution is

Ψ(x, y) = sin(x) cos(y), recovered at the 58th generation. At generation 1 the
trial solution was

GP1(x, y) =
x

7
with fitness value 8.14. The difference between the trial solution GP1(x, y) and

the exact solution Ψ(x, y) is shown in figure 8. At the 10thgeneration the trial
solution was

GP10(x, y) = sin(x/3 + x)
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with fitness value 3.56. The difference between the trial solution GP10(x, y)
and the exact solution Ψ(x, y) is shown in figure 9.

Figure 8: Difference between Ψ(x, y) = sin(x) cos(y) and GP1(x, y)
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Figure 9: Difference between Ψ(x, y) = sin(x) cos(y) and GP10(x, y)
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At the 40th generation the trial solution was

GP40(x) = sin(cos(y)x)

with fitness value 0.59. The difference between the trial solution GP40(x, y)
and the exact solution Ψ(x, y) is shown in figure 10.

Figure 10: Difference between Ψ(x, y) = sin(x) cos(y) and GP40(x, y)
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Example 3

∇2Ψ(x, y) = 4

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions:Ψ(0, y) = y2 + y + 1,
Ψ(1, y) = y2 + y + 3, Ψ(x, 0) = x2 + x + 1, Ψ(x, 1) = x2 + x + 3. The exact

solution is Ψ(x, y) = x2 + y2 + x + y + 1, recovered at the 124th generation.

Example 4

∇2Ψ(x, y) = −(x2 + y2)Ψ(x, y)

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions:Ψ(x, 0) = 0, Ψ(x, 1) =
sin(x), Ψ(0, y) = 0, Ψ(1, y) = sin(y). The exact solution is Ψ(x, y) = sin(xy),

recovered at the 10th generation.

Example 5

∇2Ψ(x, y) = (x − 2) exp(−x) + x exp(−y)
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with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions: Ψ(x, 0) = x(exp(−x) +
1), Ψ(x, 1) = x(exp(−x)+ exp(−1)), Ψ(0, y) = 0, Ψ(1, y) = exp(−y)+ exp(−1).

The exact solution is Ψ(x, y) = x(exp(−x) + exp(−y)), recovered at the 119th

generation.

Example 6

The following is a highly non - linear pde:

∇2Ψ(x, y) + exp(Ψ(x, y)) = 1 + x2 + y2 +
4

(1 + x2 + y2)2

with x ∈ [−1, 1] and y ∈ [−1, 1] and boundary conditions: f0(y) = log(1+ y2),
f1(y) = log(2 + y2), g0(x) = log(1 + x2) and g1(x) = log(2 + x2). The exact

solution is Ψ(x, y) = log(1 + x2 + y2), recovered at the 236th generation.

Example 7

∇2Ψ(x, y, z) = 6

with x ∈ [0, 1] and y ∈ [0, 1] and z ∈ [0, 1] and boundary conditions:
Ψ(0, y, z) = y2 + z2, Ψ(1, y, z) = y2 + z2 + 1, Ψ(x, 0, z) = x2 + z2, Ψ(x, 1, z) =
x2 + z2 + 1, Ψ(x, y, 0) = x2 + y2, Ψ(x, y, 1) = x2 + y2 + 1. The exact solution is

Ψ(x, y, z) = x2 + y2 + z2 + 1, recovered at the 1298th generation.

Example 8

∇2Ψ(x, y, z) = 2 cos(z) − Ψ(x, y, z)

with x ∈ [0, 1] and y ∈ [0, 1] and z ∈ [0, 1] and boundary conditions:
Ψ(0, y, z) = y2 cos(z), Ψ(1, y, z) = z sin(1) + y2 cos(z), Ψ(x, 0, z) = z sin(x),
Ψ(x, 1, z) = z sin(x)+cos(z), Ψ(x, y, 0) = y2 and Ψ(x, y, 1) = sin(x)+y2 cos(1).

The exact solution is Ψ(x, y, z) = z sin(x) + y2 cos(z), recovered at the 280th

generation.

Example 9

∇2Ψ(x, y) =

(

1

x
+

x

y2

)

sin(xy) +
2

y3
(cos(xy) − 1)

with x ∈ [0, 1] and y ∈ [0, 1] and the appropriate Dirichlet boundary conditions.
The exact solution is

Ψ(x, y) =

∫ y

0

(

1 − cos(xz)

z2

)

dz

The following approximate solution was found with fitness value 9.65× 10−4:

GP(x, y) = x sin(x/2)(log(exp(y − 5) + 1) + y))
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The difference between Ψ(x, y) and GP(x, y) is shown in figure 11.

Figure 11: Difference between Ψ(x, y) =
∫ y

0

(

1−cos(xz)
z2

)

dz and GP(x, y)
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5 Conclusions and further work

We presented a novel approach for solving ODE’s and PDE’s. The method is
based on grammatical evolution. This approach, similarly with others, creates
trial solutions and seeks to minimize an associated error. The advantage is that
grammatical evolution can produce trial solutions of high complexity and of a
very versatile functional form. Hence the trial solutions are not restricted to
a rather inflexible form that is imposed frequently by basis - set methods that
rely on completeness. If the grammar has a rich function repertoire, and the
differential equation has a closed form solution, it is very likely that our method
will recover it. If however the exact solution can not be represented in a closed
form, our method will produce a closed form approximant.

The grammar used in this article can be further developed and enhanced.
For instance it is straight forward to enrich the function depository or even to
allow for additional operations.

We applied the method to a set of problems to obtain an assessment for its
potential. Although the effort can be reduced from the number of generations
and the number of the training points, we quote CPU times for three examples,
in table 6.
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Table 6: CPU times

Section Problem Time

4.1 Table 2 - Problem 3 8.6
4.3 Example 5 170
4.6 Example 6 94

Non - linearity does not seem to require either special handling or extra ef-
fort. Note that PDE’s require significantly higher an effort to be solved. This is
to be expected since to cover higher dimension domains one needs correspond-
ingly more training points, a fact which in turn weighs on the computing time.
Treating different types of PDE’s with the appropriate boundary conditions is
a topic of current interest and is being investigated. Our preliminary results are
very encouraging.
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