

Data Storytelling via Sibling Queries and Highlight Ex-

traction

A Thesis

submitted to the designated by the Assembly of the Depart-

ment of Computer Science and Engineering

Examination Committee

by

Aggeliki Dougia

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN ADVANCED COMPUTER SYSTEMS

University of Ioannina

School of Engineering

Ioannina 2024

Examining Committee:

• Panos Vassiliadis, Professor, Department of Computer Science and Engineering,

University of Ioannina (Advisor)

• Nikolaos Mamoulis, Professor, Department of Computer Science and Engineer-

ing, University of Ioannina

• Apostolos Zarras, Professor, Department of Computer Science and Engineering,

University of Ioannina

DEDICATION

To my family & my friends

ACKNOWLEDEGMENTS

First, I would love to thank the supervisor of my master thesis, Panos Vassiliadis.

He was always supportive, providing me with all possible assistance through his

knowledge. However, what I will always hold dear to my heart are his encouraging

words, his advice, and the kindness he showed, not only to me but to all the students

he supervises. It will be an honor for me to emulate even a fraction of these virtues.

Also, I would like to thank PhD candidate Dimos Gkitsakis, for all the help he

provided me during my master thesis.

I would also like to express my heartfelt gratitude to all my friends and especially

Aggeliki Kostadima and Konstantina Mylona. Their constant support, understand-

ing, and encouragement have been invaluable throughout this journey.

Finally, I want to extend my deepest thanks to my parents, Lazaros and Christina,

my sister, Anastasia, and my beloved uncle, Alexandros. Their love, patience, and

sacrifices have been the foundation upon which I have built my academic studies.

Without their belief in me, completing this thesis would not have been possible.

 Ioannina, June 2024

Aggeliki Dougia

i

CONTENTS

DEDICATION 2

ACKNOWLEDEGMENTS 3

CONTENTS I

LIST OF FIGURES III

ABSTRACT V

ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ VII

CHAPTER 1 INTRODUCTION 1
1 .1 Goals 1

1 .2 Thesis Structure 3

CHAPTER 2 RELATED WORK 5
2.1 Fundamental Concepts 5

2.1.1 Multi-Dimensional Data 5

2.1.2 OLAP Systems 6

2.1.3 OLAP Cube 6

2.1.4 EDA 9

2.1.5 Highlights 9

2.1.6 Interestingness of Highlights 10

2.1.7 KPIs 11

2.1.8 Data Storytelling 12

2.2 Related Work on Automatic Discovery of Knowledge and Interactive Learning 13

CHAPTER 3 DATA STORIES FOR CHART QUERIES 19
3.1 Problem Definition and Method Overview 19

3.1.1 The Delian Cubes Query Engine 19

3.1.2 Problem Definition 20

3.1.3 Method Overview 20

3.1.4 Queries and Models 21

3.1.5 Example of Usage 27

3.2 Extending Delian Cubes for Chart-Query Execution 33

ii

3.2.1 Necessary programming tools for deployment of DelianCubeEngine 33

3.2.2 Conversion of User Input to Chart Request Object 33

3.2.3 Architecture of Chart Request Object (chartRequestManagement package) 35

3.2.4 Method answerCubeQueryFromChartRequest in IMainEngine and

SessionQueryProcessorEngine. 37

3.2.5 Reporting of ChartQueries in File Chart_Queries_Report.md 37

3.2.6 Method answerCubeQueryFromChartRequestAndReturnAsChartResponse in

IMainEngine and SessionQueryProcessorEngine. 39

3.2.7 Computation And Reporting of Models for ChartQueries 40

3.2.8 Architecture of ChartManagement package 43

3.3 Validation of the System 46

Test for method constructQuery in the class ChartQueryEditor 46

Test for methods reportSiblingQuery and reportBaseQuery in the VisualizationManager. 46

Tests for method checkDateFormat in the VisualizationManager. 47

Test for method returnSiblingHeader in the VisualizationManager. 47

Test for methods readDataFromStringForBaseQuery and

readDataFromStringForSiblingQuery in the VisualizationManager 48

Test for method sortResults in the VisualizationManager 48

Test for method decideType in the VisualizationManager 48

Test for processResultsForVisualization in VisualizationManager 49

Test for returnModelList in the ModelManager 49

Test for findContributionInArray in ContributorModel 49

Test for findModalityInArray in ModalityModel 50

Test for findRegressionInArray in RegressionModel 50

CHAPTER 4 EXPERIMENTS 53
4.1 Experimental Setup 53

4.2 Impact of the number of filter values on execution time 54

4.3 Impact of number of Siblings in the Execution Time 56

CHAPTER 5 CONCLUSIONS 58
5.1 Summary of Results 58

5.2 Future Work 59

REFERENCES 60

SHORT BIOGRAPHICAL SKETCH 1

iii

LIST OF FIGURES

FIGURE 2.1 A THREE-DIMENSIONAL CUBE (DIMENSIONS: REGION,

MONTH, PRODUCT) 8

FIGURE 2.2 A DATABASE-SCHEMA FOR AN OLAP CUBE. 8

FIGURE 2.3 FACT-TABLE WITH SOME RECORDS. 9

FIGURE 3.1 METHOD OVERVIEW 21

FIGURE 3.2 CONFIGURATION FILE FOR A DATA CUBE 22

FIGURE 3.3 ADDITION OF “RUN CHART QUERY” IN INITIAL WINDOW

OF DELIANCUBE APPLICATION 27

FIGURE 3.4 CHART QUERY EDITOR WINDOW 28

FIGURE 3.5 WORKFLOW FOR HANDLING TIMESERIES TYPE. 29

FIGURE 3.6 EXAMPLE OF USER INPUT IN CHARTQUERYEDITOR

WINDOW 30

TABLE 3.1.5: BASE CUBE QUERY OF EXAMPLE 1 30

TABLE 3.1.6 SIBLING QUERIES OF EXAMPLE 1. 31

FIGURE 3.8 PREVIEW OF REPORT.HTML 32

FIGURE 3.7 CHART VISUALIZATIONS AND MODELS WINDOWS 32

TABLE 3.2.1 INPUT PARAMETERS OF CHARTQUERYEDITOR 34

FIGURE 3.9 OVERALL ARCHITECTURE OF

CHARTREQUESTMANAGEMENT 36

FIGURE 3.10 SUBPACKAGES OF CHARTMANAGEMENT 43

FIGURE 3.11 ARCHITECTURE OF PACKAGE MODELS. 44

FIGURE 3.12 CONNECTION BETWEEN MAIN CLASSES OF

CHARTMANAGEMENT PACKAGE. 45

FIGURE 3.11 TEST FOR CONSTRUCTQUERY IN

CHARTQUERYEDITORCONTROLLER CLASS. 46

FIGURE 3.12 TESTS FOR REPORTBASEQUERY AND

REPORTSIBLINGQUERY IN VISUALIZATIONMANAGER. 47

FIGURE 3.13 TESTS FOR DATEFORMAT IN VISUALIZATIONMANAGER.

 47

FIGURE 3.24 TEST FOR RETURNSIBLINGHEADER IN

VISUALIZATIONMANAGER. 47

FIGURE 3.15 TESTS FOR READDATAFROMSTRINGFORBASEQUERY AND

READDATAFROMSTRINGFORSIBLINGQUERY IN

VISUALIZATIONMANAGER. 48

iv

FIGURE 3.16TEST FOR SORTRESULTS IN VISUALIZATIONMANAGER. 48

FIGURE 3.17 TEST FOR DECIDETYPE IN VISUALIZATIONMANAGER. 49

FIGURE 3.18 TEST FOR PROCESSRESULTSFORVISUALIZATION IN

VISUALIZATIONMANAGER. 49

FIGURE 3.19 TEST FOR RETURNMODELLIST IN MODELMANAGER. 49

FIGURE 3.20 TEST FOR FINDCONTRIBUTIONINARRAY IN

CONTRIBUTORMODEL CLASS. 50

FIGURE 3.21 TEST FOR FINDMODALITYINARRAY IN MODALITYMODEL

CLASS. 50

FIGURE 3.22 TEST FOR FINDREGRESSIONINARRAY IN

REGRESSIONMODEL CLASS. 50

FIGURE 3.23 TEST FINDTRENDINARRAY IN TRENDMODEL CLASS. 51

TABLE 4.1 INDIVIDUAL EXECUTION STEPS FOR UNIQUE SERIES. 54

FIGURE 4.2 ΕXECUTION TIME IN MS FOR THE LAST TWO INDIVIDUAL

STEPS: 3) EXECUTION OF MODELS 4) CREATION OF DATASTORY (* THE

REAL TIME MEASUREMENT IS 95% SHORTER, BY ACCIDENT THE SAVE

OF CHART IMAGES HAS BEEN CALCULATED IN). 55

FIGURE 4.1 ΕXECUTION TIME IN MS FOR THE FIRST TWO INDIVIDUAL

STEPS: 1) CONVERSION OF USER INPUT TO CHARTREQUEST OBJECT

EXECUTION 2) EXECUTION OF QUERIES AND REPORT CHART. 55

FIGURE 4.3 TOTAL EXECUTION TIME FOR EACH FILTER AND

DATASET. 55

FIGURE 4.5 TOTAL EXECUTION TIME FOR DIFFERENT NUMBER OF

SIBLINGS. 57

FIGURE 4.4 EXECUTION TIME FOR DIFFERENT NUMBER OF SIBLINGS.

 57

v

ABSTRACT

Aggeliki Dougia, M.Sc. in Data and Computer Systems Engineering, Department of

Computer Science and Engineering, School of Engineering, University of Ioannina,

Greece, June 2024

Thesis Title: Data Storytelling via Sibling Queries and Highlight Extraction

Advisor: Panos Vassiliadis, Professor

Business Intelligence relies on (a) hierarchical multidimensional data, coming in the

form of data cubes and dimension hierarchies for the representation of information,

and (b) advanced querying operators for the extraction of interesting facts from the

available data.

In this Thesis, we propose a querying operator that takes a chart specification as its

input and produces a data story as its output. The motivation for this Query-As-A-

Chart operator lies in the observation that traditional queries, including Business

Intelligence ones, are inadequate to express the higher-level knowledge goals that

analysts currently have.

To the extent that query results are typically visualized, the operator takes this fact

as input, and complements its specification with the type of graphical representation

(chart) expected to be produced, in the form of a line-chart, bar-chart, or scatter plot.

Apart from this first extension to traditional querying, in the form of extending the

query specification, a second extension includes the extension of how query results

are handled. In the context of this Thesis, two extensions are added to the original

query execution. The first concerns complementing the original query with auxiliary,

sibling queries that provide results of similar subsets of the data space to the original

one. So, for example, if the original query concerns an atomic filter of the form “city

= Ioannina”, we want to automatically generate sibling queries for all the cities that

pertain to the same country as Ioannina, i.e., Greece, and contrast the results. A second

vi

extension has to do with the application of models to the resulting data. Assuming

one of the grouper dimensions is time, thus producing a timeseries as a result of the

query, models like trend, unimodality, bimodality, or dominance, can be applied over

the different timeseries produced for the different queries and compared for com-

monalities and exceptions. The extracted highlights are appropriately scored, ranked

and pruned on the basis of a simple rank-n-prune filter.

The result of the entire process is (a) a set of charts that visualize the results, but

most importantly, (b) a combined report, or data story, that combines the graphical

representations, along with a textual description of the detected highlights, to be

returned to the analyst.

vii

ΕΚΤΕΤΑΜΕΝΗ Π ΕΡΙΛΗΨΗ

Αγγελική Δούγια, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημά-

των, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο

Ιωαννίνων, Ιούνιος 2024

Τίτλος Διατριβής: Εξιστόρηση Δεδομένων με Όμορα Ερωτήματα και Εξαγωγή Δια-

κεκριμένων Ευρημάτων

Επιβλέπων: Βασιλειάδης Παναγιώτης, Καθηγητής

Η Επιχειρησιακή νοημοσύνη (Business Intelligence) στηρίζεται σε α) σε ιεραρχικά

πολυδιάστατα δεδομένα, που έρχονται με τη μορφή κύβων δεδομένων και διαστά-

σεων με ιεραρχίες για την αναπαράσταση πληροφοριών και β) προηγμένους τελε-

στές ερωτημάτων για την εξαγωγή ενδιαφέροντών φαινομένων από τα διαθέσιμα

δεδομένα.

Σε αυτή την εργασία, προτείνουμε έναν τελεστή ερωτήματος που παίρνει τον προσ-

διορισμό ενός γραφήματος ως είσοδο και παράγει μια ιστορία δεδομένων (data

story) ως έξοδο. Το κίνητρο για αυτόν τον τελεστή Query-As-A-Chart έγκειται στην

παρατήρηση ότι τα παραδοσιακά ερωτήματα, συμπεριλαμβανομένων αυτών της

επιχειρησιακής νοημοσύνης, είναι ανεπαρκή για να εκφράσουν τους στόχους γνώ-

σης υψηλότερου επιπέδου που έχουν επί του παρόντος οι αναλυτές.

Στην περίπτωση που τα αποτελέσματα του ερωτήματος μπορούν να οπτικοποιη-

θούν, ο τελεστής λαμβάνει το ερώτημα ως είσοδο μαζί με τον προσδιορισμό της

γραφικής παράστασης (γραφήματος) που επέλεξε ο αναλυτής για να δει. Οι δια-

θέσιμες επιλογές είναι γραμμικό γράφημα (line-chart), ραβδόγραμμα (bar-chart)

και γράφημα διασποράς (scatter-plot).

Εκτός από την πρώτη επέκταση στην παραδοσιακή αναζήτηση, με τον προσδιορι-

σμό γραφήματος μαζί με το ερώτημα, μια δεύτερη επέκταση περιλαμβάνει την

επέκταση του τρόπου χειρισμού των αποτελεσμάτων των ερωτημάτων. Στο πλαίσιο

viii

της εργασίας, προστίθενται δύο επεκτάσεις στην αρχική εκτέλεση ερωτήματος. Η

πρώτη αφορά του αρχικού ερωτήματος με βοηθητικά ερωτήματα, ονομαζόμενα

(sibling), τα οποία παρέχουν αποτελέσματα παρόμοιων υποσυνόλων του χώρου

δεδομένων με του αρχικού. Έτσι, για παράδειγμα, εάν το αρχικό ερώτημα αφορά

ένα ατομικό φίλτρο της μορφής «πόλη = Ιωάννινα», θέλουμε να δημιουργήσουμε

αυτόματα ερωτήματα sibling για όλες τις πόλεις που αφορούν την ίδια χώρα με τα

Ιωάννινα, δηλαδή την Ελλάδα, και να αντιπαραβάλουμε τα αποτελέσματα τους. Η

δεύτερη επέκταση, αφορά την εφαρμογή μοντέλων στα δεδομένα των αποτελεσμά-

των. Υποθέτοντας ότι μία από τις διαστάσεις ομαδοποίησης είναι ο χρόνος, δη-

μιουργώντας έτσι μια χρονοσειρά ως αποτέλεσμα του ερωτήματος, μοντέλα όπως

trend, unimodality, bimodality, or dominance, μπορούν να εφαρμόζονται σε διαφο-

ρετικές παραγόμενες χρονοσειρές για τα διάφορα ερωτήματα και συγκρίνοντας τα

μεταξύ τους για ομοιότητες και διαφορές. Τα εξαγόμενα highlight βαθμολογούνται,

ταξινομούνται και φιλτράρονται με ένα φίλτρο rank-n-prune.

Το αποτέλεσμα ολόκληρης της διαδικασίας είναι (α) ένα σύνολο γραφημάτων που

απεικονίζουν τα αποτελέσματα, αλλά το πιο σημαντικό, (β) μια συνδυασμένη ανα-

φορά ή ιστορία δεδομένων, που συνδυάζει τις γραφικές παραστάσεις, μαζί με μια

περιγραφή κειμένου των κυριότερων ανιχνευόμενων σημείων, για να επιστραφεί

στον αναλυτή.

 1

CHAPTER 1

INTRODUCTION

1.1 Goals

 1.2 Thesis Structure

In the first section of this chapter, we present a brief description of our work and

refer to the main directions and the main purpose of our research. In the second

section of this chapter, we refer to the structure of this Thesis.

1 .1 Goals

The advancement of technology and computer science has facilitated processes that

were once laborious and time-consuming. The evolution of databases and especially

the optimization of Relational Database Management Systems (RDBMS), played a

significant role in the advancement of computing technology. Over time, RDBMSs

have become established in a plethora of environments, notably in the business sec-

tor.

The increasing popularity of RDBMS in the business world has also created a de-

mand for familiarity with data handling tools. Data handling tools allow users to

query and retrieve data from an RDBMS without requiring the user to be proficient

in database concepts.

However, their advantage evolved over time into their disadvantage. The reason for

this, is that the need arose for further analysis of the data and not simply for

 2

retrieving the data. In the daily life of businesses, it is important to retrieve data,

analyze it, make decisions and query new or old data again and again.

This endless business cycle of data retrieval-analysis-and-finding needs to be auto-

mated and done as fast as possible. Furthermore, the available data is increased

daily making the process even more difficult. All these requirements have been a

challenge for the computer science sector in recent decades. What emerged through

the research was that the traditional database management systems and data han-

dling tools are not capable of solving all the above issues and that it is necessary to

evolve these systems into Business Intelligence systems, which process multidimen-

sional data located in data warehouses.

This master thesis provides the extension of a Business Intelligence system with a

new subsystem with which an analyst will be able to register a query that interests

him and receive graphical visualizations of the query that was performed, and for

auxiliary queries. Also, the system automatically passes the results of these queries

through extraction algorithms to extract highlights and produces a report with rank-

ings and comparisons between the results of the original query and the auxiliary,

and finally produces a report (data story).

Initially, the analyst completes the required text inputs from the GUI (cubeName,

groupers, selection filters, aggregation function and a measure) and selects his de-

sired graph visualization type {line-chart, bar-chart and scatterplot}. Supposing the

analyst has selected for grouper1 (x-axis) a valid time dimension, thus producing a

timeseries from the query results, the system responds with graph visualizations of

the original chart and the auxiliary queries, and if the results are of a unique time

series, it displays two extra windows, one containing the table with rankings of

models for the queries along with the comparisons (unique, common or nothing)

between original and auxiliary queries and one info table containing the name of

query, the type (basic or sibling) and the sql expression that corresponds to. Finally,

and most importantly, the system automatically produces an html report (data story)

containing images of charts along with a textual description of the detected and most

important highlights extracted from models.

The main contributions of this Thesis are as follows:

 3

• We propose a new querying operator, the Query-As-A-Chart operator, that

takes a chart specification (line-chart, bar-chart, or scatter plot) as its input

and produces a data story as its output.

• The operator includes the extension of the traditional single-query execution,

with a palette of related, automatically generated auxiliary queries that will

produce the data story. We utilize sibling queries that exploit selection filters

of the original query and automatically generate queries with similar selection

filters, in order to contrast the results of the original query to the results of its

similar siblings.

• The results of the queries are passed through models, like, for example, trend,

unimodality, bimodality, or dominance. Then, the models of the different que-

ries can be compared for commonalities and exceptions

• The query result is ultimately a data story, consisting of a fully automatically

generated page with graphical representations and textual descriptions of the

detected interesting findings.

1 .2 Thesis Structure

This Thesis consists of 5 sections. Its structure is as follows: In Section 2, we present

the necessary related work and the background of this Thesis. In Section 3, the

implementation details for the generation of graphs and extraction algorithms and

extraction of report is described along with the tests that were planned. In Section

4, we experimentally evaluate the proposed method, and report on our methodology

and the results of the experiments, as well as to the conclusions drawn from them.

In Section 5, we discuss the conclusions and the results of this Thesis and we refer

the reader to potential future work.

 4

 5

CHAPTER 2

RELATED WORK

2.1 Fundamental Concepts

2.2 Related work on Automatic Discovery of Knowledge and Interactive

 Learning

In this chapter, we review fundamental concepts that are necessary for the better

understanding of our work and related work. Moreover, we make a quick overview

of recent related work in the area of data exploration and knowledge discovery.

2.1 Fundamental Concepts

2.1.1 Multi-Dimensional Data

In the context of databases, "multi-dimensional data" refers to data that can be or-

ganized and analyzed across multiple dimensions or attributes simultaneously.

Briefly, multidimensional data is classified into two main types: (a) facts with asso-

ciated numerical measures and (b) dimensions that characterize the facts and are

more textual [JePT10]. Dimensions are used to group or filter records and the values

of dimensions are either categorical (e.g., "City") or temporal (e.g., "Month").

Measures are numerical columns (e.g., "Sales") where certain operations of aggrega-

tion (e.g., SUM) can be performed [MDHZ21].

Data models that are used to represent and process multidimensional data are char-

acterized Multidimensional. Multidimensional models have many important appli-

cation areas within data analysis. The 3 most significant application areas are data

warehousing, OLAP systems and data mining [JePT10].

 6

2.1.2 OLAP Systems

The term OLAP abbreviates On-Line Analytical Processing [JePT10]. OLAP systems

are systems that facilitate complex analysis of large volume of multi-dimensional

data. Furthermore, the analysis in these systems, occurs "On-Line", i.e., fast, "inter-

active" query response is implied [JePT10]. OLAP systems come in three broad cat-

egories: ROLAP systems, MOLAP systems, and HOLAP systems [JePT10].

ROLAP systems store data in traditional relational databases and generate SQL que-

ries on the fly to retrieve data. They provide flexibility and can handle larger datasets

but might have slower query performance compared to MOLAP systems. On the

other hand, MOLAP systems store data in a multidimensional array-type represen-

tation, providing fast query performance due to pre-aggregated data and efficient

indexing. Finally, HOLAP systems (hybrid systems) combine the technologies of both

MOLAP and ROLAP, allowing users to leverage the advantages of both approaches

[Mbaa21].

2.1.3 OLAP Cube

A cube generalizes the tabular spreadsheet such that there can be any number of

dimensions and not only two as in spreadsheets [JePT10]. Although instinctively one

would think that a cube can only have 3 dimensions, a cube can have any number

of dimensions. In this context, dimensions are used for two purposes: the selection

of data and the grouping of data at a desired level of detail. Furthermore, each

dimension is organized into a containment-like hierarchy composed of a number of

levels, each of which represents a level of detail that is of interest to analyses to be

performed [JePT10]. For that reason, the term hypercube is sometimes used instead

of cube [JePT10], underscoring the multidimensional and hierarchical nature of data

representation for advanced analytical purposes.

A cube consists of uniquely identifiable cells at each of the dimensions' intersections.

A non-empty cell is called a fact [JePT10]. Typically, a fact derives from the combi-

nation of two or more-dimension values. Facts usually have associated numerical

properties that are called measures [JePT10]. A measure consists of two parts: a

numeric property linked to a fact and a formula for aggregating multiple numeric

 7

values into one. For example, in Figure 2.1, there is a cell that expresses the fact that

the product juice was sold in quantity of 10 million for the north region of a country

and for month January. In this example, measure is the attribute of total sales, while

dimensions are the Region, Time, and Month. The type of product “Juice”, “the

North Region”, and the “January Month” are instances of dimensions and the value

of 10 million is the measure quantity.

However, a cell may also be empty, without any association with a measure, meaning

that there is no information to record for the given combination. Depending on the

percentage of the facts (non-empty cells) in cube, cubes are classified in two main

categories: dense cubes (higher percentage of cells that are facts) and sparse cubes

(lower percentage of facts). In general, increasing dimensions and determining finer

granularity of dimension values leads to sparse cubes.

Although there is no theoretical limit to the number of dimensions, typically most

cubes in real-world scenarios can have 4-12 dimensions [JePT10, KiRo02, Dyre96].

Generally, only 2 or 3 of the dimensions can be viewed at the same time and that

happens due to the inability of the human eye to perceive things larger in more than

three dimensional axes. Thus, the dimensionality of a cube is reduced at query time

by projecting it down to 2 or 3 dimensions and aggregating of the measure values

across the projected-out dimensions [JePT10].

For example, in Figure 2.2, we depict an OLAP cube for loans and orders, that is

illustrated through MySQL database-schema. Tables: account, payment_reason, date

and status are the dimensions of the OLAP cube, while tables orders and loans are

fact-tables. Fact-tables can have “independent” attributes (without any association

with other dimensions); for example, in the case of table orders: the “bank_to”,

“account_to” and “amount” are independent, and simultaneously an order is a fact

because is characterized by the intersection of “order_id” (primary key associated

with order dimension), an “account_id” (foreign key associated with account dimen-

sion) and a “reason_id” (foreign key associated with payment_reason). Moreover,

tables: account, payment_reason, date and status have the “All” attribute, which is

an aggregation of their measure values, used in query time. An example of how a

fact-table (orders) in tabular form(attributes) and data records (rows) is presented

in the Figure 2.3.

 8

Figure 2.1 A three-dimensional cube (dimensions: Region, Month, Product)

Figure 2.2 A database-schema for an OLAP cube.

 9

Figure 2.3 Fact-table with some records.

2.1.4 EDA

EDA stands for Exploratory Data Analysis, and is an essential step in the data anal-

ysis process that involves examining and understanding the data to uncover patterns,

relationships, and insights before proceeding to formal modeling or hypothesis test-

ing. EDA is primarily used in data analytics to gain a better understanding of the

dataset and to make informed decisions about data preprocessing and modeling

strategies. EDA is a tedious task, but it has attracted a lot of attention lately due to

its importance.

The current view on interactive visual data analysis has been primarily shaped by

John Tukey's emphasis on EDA, who considered data analysis in two stages: explor-

atory analysis and confirmatory analysis [GHG+22]. Exploratory analysis is the ini-

tial stage in which the primary goal is to understand the data, identify patterns,

detect anomalies, and generate hypotheses. Confirmatory analysis is the subsequent

stage that involves testing specific hypotheses based on prior knowledge or theories

performed in exploratory analysis stage.

Contemporary useful tools in the EDA are the EDA notebooks, interactive notebooks

that allow the visual and statistical exploration of datasets using deep learning which

supposes having access to lots of former analysis or pre-analyzing datasets for com-

puting so-called insights.

2.1.5 Highlights

There is no clear and typical definition for the term of highlights. However, in gen-

eral we use the term to refer to the significant and noteworthy insights or results

 10

that emerge during the process of examining and interpreting data. For example, in

the study [MDHZ21], the authors define highlights and they use the term MetaIn-

sights. In general, examples of significant and noteworthy insights can be various

patterns, trends, correlations, anomalies, or other statistical metrics that stand out

and are of particular importance. Graphically, these insights can be identified, for

example, as spikes or dips in data patterns, clusters of similar data points. Highlights

often revolve around KPIs (Key Performance Indicators) that provide a snapshot of

the overall health or success of a business or project [Twin23].

For example, a Sales Manager is analyzing the sales data for retail company and

notices that during a Black Friday sale event, the company experienced a 30% in-

crease in online sales compared to the previous year's Black Friday, resulting in

record-breaking revenue. Sales Manager wants to measure the online sales growth

and for this reason defines the following KPI:

• (Annual Online Sales Growth) =
(Total Online Sales for Current Year − Total Online Sales for Previous Year)

Total Online Sales for Previous Year

Moreover, Sales Manager sets the KPI to achieve a minimum of target to 20% annual

online sales growth. Achieving this KPI would be a critical performance measure for

the company.

In this example, the highlight is the significant increase in online sales during the

Black Friday sale event compared to the previous year, graphically identified as an

upward trend. The KPI: "Annual Online Sales Growth," aggregates Online Sales for

each day of the year, including Black Friday’s event, which serves as a highlight.

2.1.6 Interestingness of Highlights

The "interestingness of highlights" refers to the degree to which certain highlights

in data capture the attention of audience. In other words, it is the process of char-

acterizing the highlights meaningful. Often, this characterization takes the form of

interestingness scores [MaPV19] for retrieved data or patterns [GeHa06, Bie13]. Typ-

ically, a high interestingness score for a finding, expresses how interesting or im-

portant it is compared to other findings. Therefore, in most cases, the findings are

 11

classified by their interesting scores, rated by a human, system, or data metrics

[MaPV19].

2.1.7 KPIs

KPI stands for Key Performance Indicator, a quantifiable measure of performance

over time for a specific objective [Twin23]. Business users often make decisions to

achieve KPIs such as increasing customer retention or sales or decreasing costs. From

finance and HR to marketing and sales, key performance indicators help every area

of the business move forward at the strategic level.

Although it may at first sight appear that a KPI is just a metric, they are not the

same. KPIs are the key targets that business users should track to make the most

impact on their strategic business outcomes [Ruso23]. KPIs support business strategy

and help business teams focus on what’s important. An example of a KPI is, “tar-

geted new customers per month”. On the other hand, Metrics measure the success

of everyday business activities that support KPIs. While they impact the outcomes,

they’re not the most critical measures. For example, a metric is monthly store visits.

Analysis Services provide a framework for defining KPIs is provided, exploiting the

business data stored in cubes [VaZi14]. Each KPI uses a predefined set of properties.

The predefined set consists of 5 properties, which are MDX expressions (query lan-

guage used to retrieve and manipulate data from multidimensional databases) that

return numeric values from a cube. The properties are described next [VaZi14], using

as an example a KPI called "Online Sales Performance":

• Value, which returns the actual value of the KPI. Value is a mandatory charac-

teristic of a KPI. For example, the "Value" property of the KPI: "Online Sales

Performance", would return the actual value of online sales for a specific period,

such as $500,000 in online sales for current month.

• Goal, which returns the goal of the KPI. For example, the "Goal" property would

return the target the company has set for online sales during the same period.

Let's say the goal for the current month is $550,000 in online sales.

• Status, which returns the status of the KPI. To best represent the value graph-

ically, this expression should return a value between -1 and 1. For example, the

"Status" property would return a value that represents how close the company is

 12

to achieving its online sales goal. Status could be calculated as a ratio of actual

sales to the goal. If the status value is 0.91, it means the company has achieved

91% of its online sales target.

• Trend, which returns the trend of the KPI over time. As with Status, it should

return a value between -1 and 1. The "Trend" property would provide insight

into the direction of the online sales performance over time. It could be calculated

as the change in online sales compared to the previous period. If the trend value

is 0.05, it means online sales have increased by 5% compared to the previous

month.

• Weight, which returns the weight of the KPI. If a KPI has a parent KPI, we can

define weights to control the contribution of this KPI to its parent. Usually, busi-

ness enterprises have various KPIs related to the different strategies. If they have

a parent KPI that represents overall company performance, they can assign

weights to individual KPIs to control their contribution to the parent KPI. For

example, if "Online Sales Performance" is just one of several KPIs, its weight

could be set to 0.3, indicating that it contributes 30% to the overall company

performance KPI.

Overall, KPIs are important for organizations and businesses as they provide a meas-

urable way to assess success, support data-driven decision-making, and drive per-

formance improvement. By establishing specific metrics to evaluate achievements,

organizations gain a clear understanding of whether objectives are being met.

2.1.8 Data Storytelling

Data storytelling is a process for communicating information, tailored to a specific

audience, with a compelling narration. Data storytelling is the last “ten feet” of the

exploratory data analysis and arguably the most important aspect [Yeol20].

Data storytelling merges three key fields of expertise: Data science, Data visualization

and Data narration. Data science is the process of collecting, analyzing, and extracting

insights from data while Data visualization is the practice of representing data graph-

ically, often using charts, graphs, and visual elements. Data narration is the process

of telling stories with insights extracted from data science and data visualization

fields. Data narration is an instance of data science where the pipeline focuses on

 13

data collection and exploration, answering questions, structuring answers, and finally

presenting them to stakeholders [MaPA23]. Data narration is a way of making data

and information more engaging, relatable, and understandable for the audience. In-

stead of just presenting raw data and statistics, data narration uses storytelling ele-

ments to bring the data to life and create a meaningful context for the information

being shared.

2.2 Related Work on Automatic Discovery of Knowledge and In-

teractive Learning

Interactive visual data analysis systems have as a primary objective to help business

users to make data-driven decisions. However, there are many obstacles that the

current analysis process needs to override, especially challenges associated with an-

swering decision leading questions, in order to help business users refine validate

hypothesis. The main challenges that the current analysis process face are: the limi-

tation of human working memory and cognitive overload, the difficulty on the scale

of interactive exploratory analysis due to increased size and complexity of data, and

the fact that the business users may struggle with decision making questions because

the suggested solutions may not align with their intuitions.

To address these problems, the authors in [GHG+22] suggest that today's commercial

tools must provide four functionalities to enable business users to interactively learn

and reason about the relationships (functions) between sets of data attributes thereby

facilitating data-driven decision making. These four functionalities are named Driver

Importance Analysis, Sensitivity Analysis, Goal Inversion Analysis and Constrained

Analysis.

Driver Importance Analysis enables users to implicitly learn functions (models) al-

lowing them to understand the relationships between drivers (input) and KPIs (out-

put) along with the artifacts of these learned relationships. For example, let’s say a

Sales Manager (business user) cares about the Deal Closing rate (KPI) and has in

disposal a dataset with data performed in the past six months, containing columns

with information about activities such as making calls, starting chats, attending meet-

ings, opening marketing emails etc. from previous client-users. The forementioned

column-activities are the drivers (input), while there is a column named: Deal

 14

Closed? containing a Boolean value (yes or no), from which KPI (output) is derived.

Using the Driver Importance Analysis, the Sales Manager can implicitly learn rela-

tionships between the drivers (activities) and the KPI (Deal closed), such as what

are the top three drivers of deal closing goal. The Driver Importance Analysis is

performed by training machine learning models (from Scikit-learn library) to predict

KPI values. For continuous KPIs, the authors use linear regression models and for

discrete KPIs random forest classifiers. For the linear-regression coefficients and for

the random-forest feature importances, the authors choose the driver importance

values. To ensure that the model’s coefficients are not misleading, the authors verify

the importances using traditional measures such as Shapley, Pearson, and Spearman

rank. The importance values range between -1 and 1 with extremes showing high

negative and positive importance to the KPI respectively while closer to 0 shows low

importance to the KPI.

The second functionality, named Sensitivity Analysis, enables users to dynamically

evaluate relationships for arbitrary driver values and observe the changes in KPI

values. Sensitivity Analysis is performed by making perturbations in the original

dataset, such as setting absolute or percentage perturbation magnitudes, and then,

perturbated KPI is compared with the original KPI (KPI without perturbations). For

example, in continuation with the deal closing rate KPI forementioned scenario, the

Sales Manager found from driver importance analysis that the 3 important prospect

activities are opening marketing emails, renewing contracts and making calls. Now,

the Sales Manager can perform changes in these prospective activities and observe

the effects on deal closing rate. He observes that by increasing 100% the rate of open

marketing emails, the deal closing rate raises by 4.05%, while by increasing 300%

the rate of sending marketing emails, the deal closing rate raises by 5.35% (+1.3%).

Therefore, the company will benefit from encouraging activities that lead prospects

to open marketing emails instead of sending marketing emails.

The third functionality, named Goal Inversion Analysis, enables the users to inter-

actively set goals such as specific target values or optimization objectives (maximiza-

tion or minimization) for the KPIs and observe multiple scenarios on how the driver

values need to change to achieve the desired goals. Goal Inversion Analysis is per-

formed by setting a desired KPI value (maximum, minimum, or target) and running

Bayesian optimizer model (using Scikit-Optimizer’s Bayesian optimizer) to receive

 15

the driver values that will achieve the desired-specified KPI. For example, the Sales

Manager observes and sets multiple times what prospect activities will increase the

deal closing rate by 75%? So, optimizing the KPI ‘s driver to a 75% target gives

78.38 deal closing rate with high confidence and simultaneously receives the values

of prospect activities that will enable this goal to be achieved.

The fourth functionality, named Constrained Analysis, allows a user to interactively

set conditions over how the learned functions (models) are evaluated or inverted,

enabling users to incorporate their domain knowledge such as business constraints

and common sense to regulate these functions. For example, consider that the sales

manager is under a budget and cannot invest in increasing all the activity values to

optimal ones as proposed by Goal Inversion analysis functionality. So, the Sales

Manager sets constraints to the minimum and/or maximum value, constraining the

range value of some prospect activities, (let’s say: 5%-10% increasing on open mar-

keting emails) and perform goal inversion analysis that satisfy these constraints. On

specifying these constraints, and performing goal inversion analysis, the Sales Man-

ager finds that the maximal deal closing rate that can be achieved is about 46%

which is still an uplift of about 4 from the original deal closing rate and is feasible

for the company.

To this end, in the study [GHG+22], the authors created SYSTEMD, an interactive

visual data analysis system enabling business users to experiment with the data by

asking what-if questions (performing the forementioned functionalities). The authors

evaluated the system through three business use cases: marketing mix modeling,

customer retention analysis, and deal closing analysis, and report on feedback from

multiple business users. Overall, business users found the SYSTEMD functionalities

highly useful for quick testing and validation of their hypotheses around their KPIs

of interest, clearly addressing their unmet analysis needs.

Exploratory Data Analysis (EDA) emphasizes in gaining knowledge of data and is

a primary step in facilitating further in-depth analysis. In recent years, automatic

EDA, which focuses on automatically discovering pieces of knowledge in the form

of interesting data patterns, has been an emerging topic.

However, the knowledge conveyed by the suggested data patterns of EDA is dis-

jointed or lacks organization. Therefore, it is difficult for users to gain structured

 16

knowledge (i.e., knowledge of how facts or concepts are organized by certain rela-

tions). As the number of suggested patterns grows, these stand-alone patterns are

likely to motivate users to conduct follow-up analysis. This in turn hinders the sug-

gested patterns being effectively utilized to facilitate EDA.

In the study [MDHZ21], the authors propose a structured representation of

knowledge extracted from multidimensional data, named MetaInsight, which aims

to facilitate EDA effectively. Specifically, the authors propose a novel formulation of

basic data patterns to capture essential characteristics of raw data distribution for

knowledge extraction. For example, the “Outstand” data pattern is illustrated as a

subspace with the highest aggregate values, “Trend” as an upward or downward

trend, “Outlier” as position of outlier data points, “Seasonality” as length of season-

ality period and “Unimodality” as position of extreme point of a U-shaped valley or

peak shape, etc. Furthermore, because of the multiple data patterns that exist in data

science field, the authors provide in their proposed work the capability of addition

of custom-user data patterns in the basic data patterns.

For better understanding of their work, the authors in [MDHZ21] provide three basic

definitions for what is Subspace, Sibling group and Breakdown. The authors define

a subspace s = {s1, …, sd} as a size-d set of filters on each dimension of the multidi-

mensional dataset, where si ∈ dom(coli) ⋃ { ∗ }, where si = { ∗ } refers to “any” value in

dimension with index i of s (i.e., empty filter), and dom(coli) refers to available

values for column with index i. For example, a subspace can be {City: Los Angeles,

House Style: *, Month: *}. As a Sibling group, the authors define the subspaces that

differ from each other in one non-empty filter, for example {City: Los Angeles, April}

and {City: Yuba, April}. Last, the authors define a Breakdown dimension as the

dimension where group by operator is performed. The Result of the application of

a breakdown dimension in a subspace is the generation of a sibling group. For

example, when we break down {Los Angeles, Month: *} by dimension “Month”, we

obtain a sibling group like: {{Los Angeles, Jan}, {{Los Angeles, Feb}, …}.

Using the three above definitions, the authors define a Data Scope, ds, as a tuple

containing a subspace, a breakdown dimension, and a measure (= a numerical di-

mension of the dataset where an aggregation operator can be performed). To facili-

tate the data pattern generation of the MetaInsight Algorithm, first, a user must

provide a Data Scope from the dataset. For example, ds: {{Los Angeles, Month: *,

 17

…, Sales: *}, Month, SUM(Sales)}, is a data scope with subspace = {Los Angeles,

Month: *, …, Sales: *}, breakdown dimension = Month and a measure= SUM(Sales).

Then, based on the user’s determined data scope, a query is constructed internally.

For the above example: “SELECT Month, SUM(Sales) FROM DATASET WHERE

City= “Los Angeles” GROUP BY Month” is the constructed query. After the execu-

tion of the query, a sibling group is generated automatically. Then, follows the iden-

tification of basic predefined data patterns, constrained by the type of breakdown

dimension (for example for Month: Temporal), and a highlight or highlights are

generated. For the above example, let’s say the type of highlight that was discovered

is “Unimodality” and the point that was observed the extreme point is the month

“April”. The forementioned result can be interpreted in natural language as “Los

Angeles has minimum Sales in April”.

After the discovery of a highlight/basic data pattern for a given data scope, the next

step is the creation of Homogeneous Data Scope (HDS). An HDS for a given data

scope, is a set of data scopes and is generated through Subspace Extending or Meas-

ure Extending or Breakdown Extending strategy. For example, for the previous

scenario: “Sales in Los Angeles”, with Subspace Extending we obtain data scopes

that correspond to sales in different cities over months. With Measure Extending,

we have a set of data scopes with different measures (e.g., SUM(Sales), SUM(Profits),

AVG (Profit Rate)) in Los Angeles over Months. Finally, with Breakdown Extending,

we obtain a set of time series of sales in Los Angeles with different granularities

(e.g., “Day”, “Week”, “Month”).

After the generation of the Homogeneous Data Scope HDS, the next steps are the

generation of Homogenous Data Pattern within HDS and furthermore the categoriz-

ing of basic data patterns into commonness(es) and exceptions. Homogenous Data

Pattern is a set of type-induced data patterns derived from an HDS. For example,

let’s say by Subspace Extending, we obtain data patterns that are identical (Month

and SUM(Sales)) and only differ in the subspace (different city), so they form and

HDS but in addition to this fact, it seems from the charts, that all data patterns within

HDS also contain the same generated type of Highlight that is Unimodality. So fi-

nally, the form an HDP. After that, data patterns within the same HDP are catego-

rized into commonness sets, and exception set. Two data patterns or more, belong

to the same commonness set if they have the exact same highlight (meaning they

 18

have the same highlight type and the same value position of the highlight). For

example, let’s say that three cities of California, have minimum SUM(Sales) in April,

while two other cities of California, have minimum SUM(Sales) in October. Then, we

have two commonness sets, one with cardinality 3 and the other with cardinality 2.

Exceptions denote the data patterns that do not belong to any commonness set. For

example, we have only one city with minimum SUM(Sales) in July, then this data

pattern belongs to the exception set.

Finally, for the definition of a MetaInsight within the same HDP, the authors provide

the extracted commonness sets and the extracted exceptions set. This way, the Me-

taInsight concretizes knowledge obtained by induction and validation processes

which are typically performed in EDA.

Furthermore, the authors in order to automatically discover high-quality MetaIn-

sights, propose a novel scoring function to quantify the usefulness of MetaInsights,

as an effective mining procedure and a ranking algorithm. The evaluation of their

proposed work was conducted on both real-world datasets and user studies, demon-

strating the effectiveness and efficiency of MetaInsight in facilitating EDA.

 19

CHAPTER 3

DATA STORIES FOR CHART QUERIES

3.1 Problem Definition and Method Overview

3.2 Extending Delian Cubes for Chart-Query Execution

3.3 Validation of the System

In this chapter, we first address the problem definition and resolution by explaining

the purpose of the DelianCubeEngine software, the necessary programming tools for

its deployment, and presenting our new method overview. Next, we describe step-

by-step process for Chart-Query execution. Finally, we describe planned validation

tests for verifying the system's performance and accuracy.

3.1 Problem Definition and Method Overview

3.1.1 The Delian Cubes Query Engine

DelianCubeEngine [DeCe18] is an OLAP query answering system. More specifically,

the system provides a connection to a database, receives as input specially formatted

queries designed for the system, cube queries, and returns the query results in tab-

delimited text files.

The format of the input queries, can be either conventional query (queries defined

with CubeName, Name, Aggrfunc, Measure, Gamma and Sigma, standard words) or nat-

ural language query (queries expressed in a language that resembles the human

natural language, i.e., “Describe the avg of loan amount per account_dim.district_name

and date_dim.month for account_dim.region is 'north Moravia' as LoanQuery11_S1_CG-

Prtl”).

 20

In addition to the various forms that the system can receive as input query, it can

furthermore process the query results, producing statistical models (model package),

and furthermore analyze the query itself, producing additional relative queries that

may offer important insights for the analysis of the input data (analyze package).

We detail cube queries and models in Section 3.1.4 and the system architecture in

the subsequent sections.

3.1.2 Problem Definition

The goal of this Thesis is to explore the possibility of (a) defining a query as a chart

to be constructed, and (b) to enrich the result of the query with (b1) results of

auxiliary queries and (b2) highlights from model extraction algorithms, applied over

the query results. The entire result is wrapped as a data story composed of text and

graphical representations summarizing the phenomena that have been detected via

the model extraction algorithms.

A side effect of the effort is the addition of the graphical visualization via charts for

the results of the input query and for the results of the additional relative queries

produced in the DelianCubes query engine.

3.1.3 Method Overview

The main steps of the solution of the problem are the following:

1. First, the analyst specifies the intended cube query as a chart, which can be a

bar-chart, line-chart or scatter-plot. This means that practically, the query will

have two grouper attributes (dimension levels) that will be visualized in the

two axes of the chart, and, consequently an aggregated measure. Filters are

also parts of the specification

2. Second, in order to analyze the results of the original query, auxiliary queries

are automatically generated, in order to contextualize and assess the results of

the original query.

3. The queries are executed by Delian Cubes over the underlying data cube, and

their results are produced.

4. The results can be immediately visualized, but most importantly, they are

passed through a set of pattern checkers / highlight extractors where they are

checked for interesting properties that they might hold. Such highlights

 21

include the existence of trend, unimodality, bimodality in time-series query

results (where one grouper is time), the existence of a strong linearity in the

results as demonstrated by a strong linear regression score, and others.

5. The highlights of the original query are contrasted to the ones of the auxiliary

ones, to identify commonalities or exceptions in them.

6. A story maker combines charts, highlights and the text automatically gener-

ated for them in a data story presented to the user.

Figure 3.1 Method Overview

3.1.4 Queries and Models

A cube query is a type of query used in OLAP (Online Analytical Processing) systems

to retrieve and manipulate data stored in an OLAP data cube.

Before being able to handle queries, a query answering system must have the data

cubes registered by the analyst. In our Delian query server, a Data cube can be

parsed and defined via input files in the form of .ini file. However, to create a data

cube, we need to define the dimensions and the hierarchies of the cube following

 22

the Delian’s cube grammar and syntax (CubeSqlLexer, CubeSqParser and CubeSql.g).

An example of a valid .ini file is shown in Figure 3.2.

Figure 3.2 Configuration File for a data cube

A cube query in the Delian cube server is defined as follows:

 23

• CubeName: Name of the cube

• Name: Name for the cube query

• AggrFunc: Aggregation Function ∈ {SUM, COUNT, AVG, MIN, MAX}

• Measure: Measure, a fact column of the cube

• Gamma: Grouper levels -- columns used in GROUP BY SQL query

• Sigma: A conjunction of atomic filters of the form Level = value, mapped to

the respective atoms in the WHERE clause of an SQL query.

The notation that we use for cube queries is as follows

𝑞 = 𝛾
𝑎𝑔𝑔(𝑀)

𝐷1. 𝐿1, 𝐷2. 𝐿2
(𝜎𝜑(𝐶)) , 𝜑: ⋀ 𝐷𝑖 . 𝐿𝑖 = 𝑣𝑖

where C is the cube name, σφ is the sigma selection condition, M is the measure, agg

is the aggregate function applied to it, and γ is the group-by operator with the two

grouper levels as subscripts and the aggregated measure as superscript.

The semantics of a cube query in SQL are as follows:

SELECT D1.L1, D2.L2, Agg(M)

FROM C

WHERE 𝜎𝜑(𝐶)

GROUP BY 𝛾𝐷1.𝐿1,𝐷2.𝐿2

An example of a Delian cube query for the corresponding cube sales_cube:

CubeName: sales

Name: SalesQuery11_S1_CG-Prtl

AggrFunc: Avg

Measure: store_sales

Gamma: date_dim.lvl2, store_dim.lvl2

Sigma: date_dim.lvl3 = ‘1997’, store_dim.lvl3= ‘USA’.

A particularity of our chart-queries extension to Delian Cubes is that once a cube

query has been issued, we are interested to find auxiliary queries that contextualize

and assess the results of the original query. An auxiliary query is a query that is

semantically related to the original query, but comes with some planned mutation

that allows to complement the original results with similar data – for example, we

can retain the same Measure and aggregation function but change the filter condi-

tions to produce “peer” queries that cover different parts of the data space than the

 24

original one, or/and, to change the groupers in order to attain coarser or more de-

tailed information.

In the context of this master thesis, auxiliary queries are sibling queries, that derive

from the original with “relaxation” of its filter conditions. First, we formalize the

construction of sibling queries. A sibling query is produced in the following way:

For every atomic filter condition of the sigma selection condition say D.L = v, we

(a) change the filter to D.parent(L) = parent(v)

(b) replace one of the groupers with D.L

(c) keep the other conditions and the other grouper unchanged.

This practically means that for every atom, two sibling queries are generated, one

for each grouper that is replaced with D.L.

We give an example to illustrate the concept. Assume the original query with name

SalesQuery11_S1_CG-Prtl. The query has two atomic filter conditions: date_dim.lvl3

= ‘1997’ and store_dim.lvl2 = ‘USA’. The hierarchy of the dimension store_dim

(Figure 3.2) is defined as:

store_only > store_city > store_state > store_country > ALL.

The semantics behind the hierarchy is that a store_only belongs to a store_city, a

store_city belongs to a store_state and a store_state belongs to a store_country and a

store_country to all.

An example of auxiliary query produced from the original is depicted in the follow-

ing table. For date_dim, the level year is changed to the parent level that belongs to

“ALL” and simultaneously the grouper of date_dim becomes lvl3 = year, that was

the filter condition level from the original.

CubeName: sales

Name: SalesQuery11_S1_CG-Prtl

AggrFunc: Avg

Measure: store_sales

Gamma: date_dim.lvl2, store_dim.lvl2

Sigma: date_dim.lvl3 = ‘1 997 ’ ,

store_dim.lvl3= ‘USA’.

CubeName: sales

Name: SalesQuery12_S1_CG-Prtl

AggrFunc: Avg

Measure: store_sales

Gamma: date_dim.lvl3, store_dim.lvl2

Sigma: date_dim.lvl4 = ‘ALL’,

store_dim.lvl3= ‘USA’.

Original query Sibling Query

 25

We consider different query classes in our setup. Here we list the four more relevant

to this thesis:

• The most general query class concerns simple cube queries: Simple cube que-

ries are the most general case of cube queries with any levels of different

dimensions as groupers, and no particular relationship of filters with group-

ers.

• Time-series cube queries, also referred to as timeseries: for this query class,

the first grouper (obligatorily) concerns a level of a time-related dimension

(e.g., month, year, decade etc.). This allows the result to be a timeseries of

aggregate measurements for the second grouper (and, thus visualized as a

line-chart, with time in the horizontal axis). The relationship of groupers with

filters can be arbitrary.

𝑞 = 𝛾
𝑎𝑔𝑔(𝑀)

𝑇. 𝐿, 𝐷2. 𝐿2
(𝜎𝜑(𝐶)) , 𝜑: ⋀ 𝐷𝑖 . 𝐿𝑖 = 𝑣𝑖

• Single grouper pinned queries: in this case, the filter includes a selection filter

for a grouper. Thus, assuming a grouper of the form D.Lg, for dimension D

and level Lg, this query class also includes a filter of the form D.Ls = value,

for the same dimension and a level Ls which is higher or equal to Lg. If Ls is

identical to Lg, then the query produces a single value for the respective

grouper.

• A time-series where the second grouper has been pinned to a single value is

a Unique Time-series Query. In other words, the first grouper concerns time,

and the second grouper includes a filter at the same level as the grouper,

resulting in a single timeseries as the query result.

𝑞 = 𝛾
𝑎𝑔𝑔(𝑀)

𝑇. 𝐿, 𝐷2. 𝐿2
(𝜎𝜑(𝐶)) , 𝜑 ∋ 𝐷2.𝐿2 = 𝑣

Apart from query classes in our setup, we determine mathematical models that aim

to extract interesting phenomena found in results for both the original and auxiliary

queries. We have implemented the following models only for Time-series cube que-

ries presented above with their names in Delian:

• AbsoluteTrendModel: Model that finds if timeseries is absolutely monoton-

ically increasing (uptrend) or decreasing (downtrend) or none of them.

 26

• ContributorModel: Model that finds if timeseries has a time x-axis value that

contributes > 50% (Mega contributor) in the produced results.

• KendallBasedModel: Model that finds if timeseries is monotonically increas-

ing(uptrend) or decreasing(downtrend) based on the Kendall tau coefficient.

In this thesis, we use the Kendall coefficient from Apache Commons.

• ModalityModel: Unimodality or Bimodality finder for the timeseries. A

timeseries is considered unimodal when it forms a U-shaped valley or peak

shape. A timeseries is considered bimodal A when it has two distinct peaks

or modes in its distribution

• RegressionModel: Model that performs Linear Regression using Sim-

pleRegression provided by Apache Common library.

To determine the importance of results of the model we determined a score function

from each, producing a score in the range [-1,1]:

• AbsoluteTrendModel score:

score = {
−1, 𝑑𝑜𝑤𝑛𝑡𝑟𝑒𝑛𝑑
 0 , 𝑛𝑜 𝑡𝑟𝑒𝑛𝑑

 1 , 𝑢𝑝𝑡𝑟𝑒𝑛𝑑

• ContributorModel score: The score is computed as the ratio of the maximum

measure of grouper1 values to the sum of measures across all grouper1 in-

stances.

• KendallBasedModel score: score = abs(tau) where tau is Kendall’s coefficient.

• ModalityModel score:

To compute the score for the timeseries we follow the above steps:

o Divide the series into segments from the start to each point where the

sign of y changes.

o For each segment, if the initial or final y-values are negative, deter-

mine the offset by taking the absolute value of the minimum of the

initial and final y-values (score =
|𝒎𝒂𝒙𝑽𝒂𝒍𝒖𝒆|− |𝒎𝒊𝒏𝑽𝒂𝒍𝒖𝒆|

|𝒎𝒂𝒙𝑽𝒂𝒍𝒖𝒆|
).

o We adjust values by adding the offset plus one to both the initial and

final y-values to make them positive.

o Use the adjusted positive values to compute the score for segment us-

ing the standard formula applicable for positive values.

 27

o Finally, we compute the score for the timeseries by calculating the av-

erage of the scores from all segments:

(
1

𝑁−1
 ∑ 𝑠𝑐𝑜𝑟𝑒(𝑠𝑒𝑔𝑚𝑒𝑛𝑡), 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠𝑁−1

0).

• RegressionModel score: score = 1- MSE (Mean Square Error) produced from

Linear Regression provided by Simple Regression Apache Common Library.

Furthermore, some models may not offer some important info (highlights) that

shouldn’t be concluded to the final produced story. For that reason, we filter the

highlights according to their score. As it was mentioned before, the score range

between [-1,1]. Some negative scores are important (for example downtrend) and for

that reason we consider the absolute value of every score. We determined a thresh-

old θ (in our deliberations, θ = 0.5) above which a highlight is important.

The formula for highlight selection is described below:

 Highlight = {
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 , 𝑠𝑐𝑜𝑟𝑒 > 𝜃

𝑢𝑛𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 ≤ 𝜃

3.1.5 Example of Usage

The execution process of our work starts when a user selects from the MainApp

window, in the horizontal menu, the option “Work”. Then, the user selects the option

“Run Chart Query” from the window that appears (Figure 3.3).

Figure 3.3 Addition of “Run Chart Query” in initial window of DelianCube Appli-

cation

After clicking the option “Run Chart Query”, a new window pops up with name

“ChartQueryEditor”. The user may enter the necessary text fields (Cube name, Data

 28

series Grouper 1, Data series Grouper 2, Measure Column, Filter Column name and

Filter Column value), selects Aggregation Function and specify Chart (available op-

tions: Bar chart, Scatter Plot and Line Chart) and finally click the button “Run

Query” (Figure 3.4).

Figure 3.4 Chart Query Editor window

The process of executing the user request is as follows. First, the system converts the

user’s input (text fields and selected Aggregation Function) to an “analyze query”.

Then, the analyze query with the selected chart option are packed into a “chart

request object” and sent to the back end of the Delian Cubes system.

Subsequently, the chart request object is further processed in order to produce aux-

iliary queries (specifically sibling queries) via the ANALYZE package. Then, the

results of produced queries, are passed through model extraction algorithms to ex-

tract highlights from the data. Finally, (a) graphical visualizations of the original and

the auxiliary queries are returned to the user, (b) a report (datastory) is produced

in the folder OutputFiles of Delian project, containing produced charts along with

 29

extracted highlights and if the original query produced a Unique Time-series Query,

the report contains extra a comparison between the original query ‘s highlights and

its siblings. A very naïve workflow of how timeseries is processed and in the case

that is Time-series and in the case that is a unique Time-series is presented in Figure

3.5.

To make the execution process more understandable, the following example is pro-

vided [from now on will be referred as example 1]. Consider the following scenario,

that the user gives the following input in the ChartQueryEditor window (Figure

3.6):

Figure 3.5 Workflow for handling Timeseries type.

 30

Figure 3.6 Example of user Input in ChartQueryEditor window

The user’s input is converted to the following analyze query: “ANALYZE MIN

(amount) FROM loan FOR year = ‘1998’ AND FOR region = ‘Prague’ GROUP BY

month, district_name AS analyze_query”. This is extended with the visualization

type via the following chart request object: cr = < “ANALYZE MIN (amount) FROM

loan FOR year = ‘1998’ AND FOR region = ‘Prague’ GROUP BY month, dis-

trict_name AS analyze_query”, “Bar Chart”>.

cubeName Name ag-

grFunc

Meas-

ure

Gamma Sigma Chart

loan analyze_query-

AnalyzeBaseQuery

Min amount month,

district_name

Year

=’1998,

re-

gion=’Pra-

gue’

BarChart

Table 3.1.5: Base Cube Query of Example 1

 31

The queries that are produced through the analyze operator (package that already

exists in Delian) with the addition of chart specification are the following:

i. The basic cube query resulting from the direct translation.

ii. The sibling queries of the original one

cubeName Name ag-

grFunc

Meas-

ure

Gamma Sigma Chart

loan analyze_query-

AnalyzeSiblingQuery_

min amount month,

region

year =’1998’,

region=’ALL’

Bar-

Chart

loan Analyze_query-Ana-

lyzeSiblingQuery_

min amount year,

dis-

trict_name

Year =’ALL’,

Region=’Pra-

gue’

Bar-

Chart

Table 3.1.6 Sibling Queries of Example 1.

Afterwards, the results from the execution of the generated Cube Queries, as well as

details about their visualization as charts, are saved to a markdown file (.md) in the

OutputFiles folder with the name File-ChartQueries_Report.md.

After the creation of the file, we parse the file to take the results of the queries and

pass through model extraction algorithms to extract highlights. Then, the highlights

are reported to the File-ChartQueries_Report.md (as the result is a multiple series).

Finally, the report File-ChartQueries_Report.md is again parsed to create the graph

visualizations of the original and the auxiliary queries. Furthermore, a new window

with the models that take place and the extracted highlights from each model and

query is presented, and finally a report (datastory) with name report.html is created

automatically in outputFolder. The pop-up windows for chart queries for example

1 is presented (figure 3.7) and a preview of the report in figure 3.8.

 32

Figure 3.7 Chart Visualizations and models windows

Figure 3.8 Preview of Report.html

 33

3.2 Extending Delian Cubes for Chart-Query Execution

The implementation of the chart query in Delian is described below, based on each

stage of preprocessing and execution, until the extraction of the results.

3.2.1 Necessary programming tools for deployment of DelianCu-

beEngine

The project was developed within the Eclipse environment, with its core code written

in Java 1.8, while uses maven 3.8.1 as a building tool for its deployment. JavaFX

graphic packages are utilized for creating graphical interfaces and representations.

The system supports a MySQL 8.0.28 database.

3.2.2 Conversion of User Input to Chart Request Object

The class ChartQueryEditorController.java is responsible for handling the user ‘s

input fields and converting them into an expression that can be parsed and executed

from the AnalyzeOperator in the server. More specifically, method constructQuery

in the file ChartQueryEditorController.java constructs the following expression:

ANALYZE <aggrfunc>(<measure>) FROM <cubeName> FOR <list of atomic fil-

ters> GROUP BY <grouper1, grouper2> AS first_query

Below is described how the method works in reference to the figure 3.1.4:

The field aggrfunc, is the “Select Aggregation Function” option chooser with availa-

ble options {MIN, MAX, AVG, SUM}. The measure field is the text field “Measure

Column(y-axis)”, the cubeName is the text field “Cube Name”. The list of atomic

fields is created by determine the first atomic field in the input text fields “Filter

Column Name” and “Filter Column Value”. Any additional atomic field can be

added, by clicking the button “Add Additional Filter” and inserting input in the

fields “Additional Column Name” and “Additional Column Value”. The fields

grouper1, grouper2 are determined by the text fields “Data series grouper 1(x-axis)”

and the “Data series grouper 2”. Moreover, it is worth noting that the 'analyze'

package can compute an expression for more than 2 groupers. However, for chart

design purposes in the two-dimensional space, we are restricted to specifying only 2

groupers. Finally, the “Specify chart” radio button is used to save the selected option

 34

for chart with available options {Bar chart, Scatter plot, Line Chart} and handler

method is the plot Selected.

The number of input parameters in the Chart Query Editor window required to

execute a chart query is presented in the table below:

Input Parameter

Name

Corresponding

Analyze Expres-

sion Parameter

Number Of Input Pa-

rameter

Range Value of In-

put Parameter

‘Select Aggregation

Function’

aggrfunc 1 {AVG, MIN, MAX,

SUM}

‘Measure Column (y-

axis)’

measure 1 Any valid word (

numeric column in

DB)

‘Cube Name’ cubeName 1 Any valid word

(cube schema in

DB)

‘Filter Column Name’

‘Filter Column Value’

list of atomic

filters

1…* Any valid pair

field-value(column

and value contained

in column in DB)

‘Data Series Grouper

1 (x-axis)’

Data Series Grouper 2

list of groupers

(grouper1,

grouper2)

2 grouper1 (Date col-

umn)

grouper2 (Any col-

umn)

‘Specify chart’ - 1 {Bar chart, Scatter

plot, Line Chart }

Table 3.2.1 Input Parameters of ChartQueryEditor

For the creation of the chart and the computation of extracted models we need to

transfer the analyze expression and the chart selected option from client to server in

a more compact way. For this purpose, a new object “ChartRequest” has been cre-

ated.

 35

3.2.3 Architecture of Chart Request Object (chartRequestManage-

ment package)

As mentioned in the previous paragraph, the chart request object was created to

transfer information from the client package to the server package in a more compact

manner. In the future, the ability to create more complex chart requests could be

added, containing additional parameters beyond the currently provided chart selec-

tion and query (e.g., allowing users to select specific statistical models they want to

see). For this purpose, the architecture of chartRequestManagement package uses

the Builder design pattern. Secondarily, the Factory design pattern is used, to make

easier the addition of “new” chartRequestBuilders.

The chartRequestManagement package contains the classes ChartRequest, Char-

tRequestFactory, ChartRequestBuilderImpl and the interface IChartRequestBuilder.

The ChartRequest class is the object/entity that contains the user’ query and selected

chart option. Furthermore, it implements the Serializable Interface as the Delian

project uses RMI (Remote Method Invocation) server, and because of that it can send

and accept only serializable objects. The ChartRequestFactory creates IChartRequest-

Builder objects, practically is responsible for creating the different Builders that will

create differently the chart requests. The ChartRequestBuilderImpl is the concrete

and only one implementation of the IChartRequestBuilder for the time being. Finally,

the interface IChartRequestBuilder functions as a contract that all concrete Builders

must implement.

The overall architecture of chartRequestManagement package with the addition of

client’s class ChartQueryEditorController in the form of UML diagram is demon-

strated in Figure 3.9.

 36

Figure 3.9 Overall architecture of chartRequestManagement

 37

3.2.4 Method answerCubeQueryFromChartRequest in IMainEngine

and SessionQueryProcessorEngine.

From ChartQueryEditorController (client class) the ChartRequest object is transferred

via the call of method answerCubeQueryFromChartRequest. Like all existing meth-

ods that make a call from the client to server in Delian, the method answer-

CubeQueryFromChartRequest must also be declared in the interface IMainEngine,

while its implementation is found in the SessionQueryProcessorEngine, a class that

implements the interface IMainEngine. The method accepts a ChartRequest param-

eter and returns a ResultFileMetadata object (Delian ‘s exististing class that imple-

ments Serializable interface).

Practically, the method answerCubeQueryFromChartRequest sequentially performs

four tasks. At first, the method initializes a connection between SessionQueryProces-

sor and ChartManager. Secondly, initializes the connection between between Chart-

Manager and AnalyzeOperator. The connection with AnalyzeOperator is required,

because the AnalyzeOperator will process the analyze expression (query) and execute

to provide results. After that, the method initializes the ChartManager ‘s fields with

the necessary information (type and query) provided by ChartRequest parameter.

Finally, method generates and executes the chartQueries via the calls of ChartMan-

ager ‘s methods generateQueries and executeQueries.

3.2.5 Reporting of ChartQueries in File Chart_Queries_Report.md

With the completion of field initialization, all the information necessary to generate

and execute queries by the Analyzer is available. Subsequently, these queries can be

reported in the Chart_Queries_Report.md file. Initially ChartManager’s method gen-

erateQueries(), calls the method execute() of AnalyzeOperator that will parse the

expression-query and produce analyze-queries of 3 types basic, sibling and drill-

down. In the master thesis, we are only interested in the types basic and sibling. So,

we remove from ChartManager ‘s producedQueries list the drill-down queries. The

reason for that, is that we want to be able to extract conclusions for phenomena in

 38

the same level of detail with the original basic. The drill-down queries provide a

view to a more increased level of detail but not in the same level with the original.

After that, ChartManager calls the method reportChartQueriesDetails() of the Visu-

alizationManager class. Method reportChartQueriesDetails() is the main Method of

VisualizationManager, taking as parameters a list of ChartQueries (produced By An-

alyzer operator) and the user’s selected type chart, and is responsible for reporting

in file Chart_Queries_Report.md. The method starts with initializing a FileWriter

object (java.io.FileWriter) in order to print the results in a file. To initialize the

FileWritter, we must determine a filename and a filepath. For the time being, file-

name and filepath are fixed with values: File-ChartQueries_Report.md and Output-

Files.

For every query result produced we print in File-ChartQueries_Report.md the fol-

lowing info:

• Visualization: default or small multiplies.

• Type: Base or Sibling.

• Details: -/ what changed in comparison with the base query.

• An array with 3 columns: Grouper 1 , Grouper 2, Measure containing the

results.

• X_axis values: the distinct values for x_axis (date values of grouper 1).

• Series: the distinct categories from Grouper 2.

Next, we break down the utility of every piece of info in file:

Visualization with value default, means that for the different categories contained

in series, one chart will be created. Visualization with value small multiplies means

that will be created one figure with many small charts, one for each distinct category

containing in series. Method decideVisualizationType() of VisualizationManager is

responsible for determining the value(default or small multiplies). The method re-

turns “small multiplies” if the number of distinct categories in array is greater than

5, else “default”. The number 5 may seem arbitrary and is indeed, but it was decided

for the quicker and effective processing of results from human eye.

Type with value basic or sibling as these are the two types of analyze queries that

we process. The type is required for the title of every chart.

 39

Details with value an empty string for basic query or details for what changed in

filter value and grouper for the produced sibling query. Details are required for

determining for every additional chart query produced (sibling) what has changed

in conditions (filters and groupers), in comparison to basic query.

An array with 3 columns: Grouper 1 , Grouper 2, Measure with dimension (number

of results produced) X 3. The results produced for every query. Containing a point

represented in x-axis from value in Grouper1 column and in y-axis from Measure

column. The Grouper 2 is used for the group of values in a category.

X_axis values with value the distinct date values for Grouper 1. For laying the x-

axis values in graph.

Series: the distinct categories from Grouper 2. For keeping the info of how many

distinct categories has the produced chart.

3.2.6 Method answerCubeQueryFromChartRequestAndReturnAsChar-

tResponse in IMainEngine and SessionQueryProcessorEngine.

From ChartQueryEditorController (client class) the ChartRequest object is transferred

via the call of method answerCubeQueryFromChartRequestAndReturnAsChar-

tResponse in the case that the result is a unique time-series. Like the method an-

swerCubeQueryFromChartRequest must also be declared in the interface IMainEn-

gine, while its implementation is found in the SessionQueryProcessorEngine, a class

that implements the interface IMainEngine. The method accepts a ChartRequest pa-

rameter and returns a ChartResponse object (Delian ‘s new class that implements

Serializable interface and is saved under path chartManagement/utils).

Practically, the method answerCubeQueryFromChartRequestAndReturnAsChar-

tResponse sequentially performs the same four tasks with answerCubeQueryFrom-

ChartRequest. Their difference is that answerCubeQueryFromChartRequest reports

the necessary info for chart visualizations, models e.t.c into an .md file and returns

the ResultFileMetadata object, which contains the location and the name of the file,

to the client but answerCubeQueryFromChartRequestAndReturnAsChartResponse

returns immediately to the client a new serializable Object ChartResponse containing

the necessary info chart visualizations, models and scores of highlights.

Furthermore, ChartResponse class contains 2 fields:

 40

• List of ChartVisModel items

• List of ChartScoreModel items.

ChartVisModel class is a helper class, containing all the necessary info for the chart

visualization of the query in the client. More specifically:

• List of DataPoint items: helper class to hold the information of the triple

<grouper1, grouper2, measure> for every point of chart.

• ChartVisType: to hold the chart type that was selected in ChartQueryEditor

window

• QueryType: to hold the type of query Base or Siblingi (where i is index num-

ber in the list of siblings)

• List of x_axis_values: to hold the x_axis values

• SQLexpression: to hold the cube query’s corresponding sql expression

ChartScoreModel class is a helper class, containing all the necessary info for the score

of extraction algorithm model in the client. More specifically:

• Score: a double value showing how important a highlight is.

• Name: the name of the model

• ChartVisModel: The chartVisModel object that belongs to.

• Result: A string result that contains the result of the extraction algorithm

model.

3.2.7 Computation And Reporting of Models for ChartQueries

After reporting of chartQueries in the file File-ChartQueries_Report.md (for multiple

time-series) or creating the list of ChartVisModel via the call reportChartQue-

ryDetailsForChartResponse in VisualizationManager (for unique-timeseries), the

ChartManager calls the suitable method of ModelManager class.

For (multiple time-series) ChartManager calls the method reportModelsForChart-

Type. The method starts with initializing a FileWriter object to print the results

extracted from models in the file File-ChartQueries_Report.md. The result of every

model is computed with the call of compute method, that returns 0 if it has success-

fully parsed the results array from file File-ChartQueries_Report.md. After that, we

print the results as 2D string array that has 3 columns for each model executed for

every query with column names: Model, Type and Result.

 41

Briefly, every column in the array contains the following info:

• Model: containing the name of the model that was executed.

• Type: type of query (basic or sibling)

• Result: the result of the model for the query’ results.

For (unique time-series) ChartManager calls the method getScoreModelsFor-

ChartVisModels. The method takes as parameter the List of ChartVisModel items

and returns a list of ChartScoreModel items. For every new ChartScoreModel that is

created the 4 fields: score, name, chartVisModel and result are initialized accord-

ingly. The score is computed via the call of method computeScore of ChartModel

and returns a double value in the range [-1,1] as it was described for every model

in 3.1.4 Queries and Models.

Next, we describe how every model sets the result for the query:

ContributorModel: Initially, because the results for basic and sibling queries have

been saved in the same 2-dimensional array, we create a list containing smaller two-

dimensional arrays, one for every query. The small array contains the query’s results,

so we pass it from method findContributionInArray().

If the query’s results have only one distinct value for grouper 2 (one unique series)

then the result that is returned is: “Series has a mega contributor for x =’value of

the grouper_1 with greatest measure’. Else, for multiple series, we return the series

with the sum(max_measure) for every grouper_1 value.

AbsoluteTrendModel: Initially, as previously, we create a list containing smaller two-

dimensional arrays, one for every query. The small array contains the query’s results,

so we pass it from method findTrendInArray().

If the query’s results contain measures such that from older to newer date the meas-

ure is increasing, then we have an uptrend. The returned result is “Series has an

absolute uptrend.”. In the opposite case, that from older to newer date the measure

is decreasing then we have a downtrend. The returned result is “Series has an ab-

solute downtrend.”. If nothing from above facts is valid then the result that is re-

turned is “Series has not a clear trend.”.

 42

KendallBasedTrendModel: Likewise AbsoluteTrend model, but computes the corre-

lation between x_values and measures, using the Kendall’s coefficient. Then if Ken-

dall’s coefficient ≥ 0.5 and Kendall’s coefficient≺ 1 returns “Series name” has an

uptrend. Else if Kendall’s coefficient ≥ -0.5 and Kendall’s coefficient≺ 0.5 1 returns

“Series name” has no clear trend. Else “Series name” has a downtrend

ModalityModel: Initially, as previously, we create a list containing smaller two-di-

mensional arrays, one for every query. The small array contains the query’s results,

so we pass it from method findModalityInArray().

For every query list of measures, we create a new list that contains the differences

between sequential x-axis values. After that, we iterate through the list, and we

increment a counter if the product of two sequential differences is negative. The

reason for that action is that if two sequential differences have product negative, the

monotony of graph has changed (we had ascending order and instantly after de-

scending order or the opposite). In the end: if the number of changes equals 1 then

we Unimodality meaning that we had only one extreme point in graph, so we return

“has Unimodality”. Else if the number of changes equals 3, then we have Bimodality,

because we have detected two valleys or two peaks. In any other case we return

“has no clear modality”.

RegressionModel: Initially, as previously, we create a list containing smaller two-

dimensional arrays, one for every query. The small array contains the query’s results,

so we pass it from method findRegressionInArray().

For every query list of measures and for every series we perform linear regression

provided from Apache library [Apac99]. Apache Library provide the SimpleRegres-

sion class and via the method add() we can add every point (x,y) of the series.To

get the linear’s regression intercept we use method getIntercept() and for slope we

use method getSlope(). In the end, for every category it is returned as a result:

"Linear regression for series (series name) with intercept: regression’s intercept and

slope: regression’s slope."

 43

3.2.8 Architecture of ChartManagement package

The chartManagement package is designed to facilitate the creation of chart visuali-

zation in the client package and the computation of extracted phenomena from the

data. Internally contains the packages models and utils (demonstrated in Figure

3.10). Package utils has been created with purpose to contain helper classes, and for

the time being it only contains the class DataPoint, that is used for the representation

of a data point in the results array. The models package contains the forementioned

model classes and the classes ChartModel, ModelListFactory and ModelManager.

Figure 3.10 Subpackages of chartManagement

The architecture of the package models utilizes the Factory Method design pattern

to manage the creation of ChartModel objects. The abstract class ChartModel serves

as the base class, defining the common interface and behavior for all ChartModel

types. The concrete subclasses: ContributorModel, DominanceModel, ModalityModel,

RegressionModel and TrendModel, extend this abstract class, each providing specific

implementations of the required abstract methods with most important the abstract

compute() method. The ModelListFactory class encapsulates the instantiation logic

within its createModelsForChartType() method, which returns a list of ChartModel

objects. This method instantiates various subclasses of ChartModel and aggregates

them into a single collection. The single collection that is returned depends on the

method ‘s parameter (IChartQueryNModelGenerator object). The method call is

made by the ModelManager class, which acts as a coordinator for the package mod-

els. The architecture of models package is demonstrated in Figure 3.11.

 44

Figure 3.11 Architecture of package models.

Apart from the subpackages models and utils, the ChartManagement package con-

tains the classes: ChartManager, VisualizationManager, ChartQueryGeneratorFacade,

LinechartQueryGenerator, ScatterplotQueryGenerator and BarchartQueryGenerator

and the interface IChartQueryNModelGenerator.

The connection between classes leverages both the Factory Method and Strategy

design patterns. The IChartQueryNModelGenerator interface defines the contract for

the different types of charts, implemented by concrete classes LinechartQueryGener-

ator, ScatterplotQueryGenerator and BarchartQueryGenerator. The ChartQueryGen-

eratorFacade class encapsulates the creation logic, producing instances of the

IChartQueryNModelGenerator interface based on specified string type of chart. The

ChartManager class holds a reference to an IChartQueryNModelGenerator object and

delegates the execution of the methods to the IChartQueryNModelGenerator and

furthermore uses the ChartQueryGeneratorFacade to create the object in the first

place. Within the VisualizationManager class, the reportChartQueryDetails method

 45

is executed based on the selection of the appropriate IChartQueryNModelGenerator

object, provided by the ChartManager (Figure 3.12).

Figure 3.11 Test for constructQuery in ChartQueryEditorController class.

Figure 3.12 Connection between main classes of ChartManagement package.

 46

3.3 Validation of the System

The correctness of the main methods used in the package ChartManagement and

client’s package new file: ChartQueryEditor.java is verified through unit tests. The

unit tests are executed using JUnit 4, and Mockito and for the file ChartQueryEd-

itor.java that uses extensively the JavaFX library, TestFX is used for the testing of

the main method.

All the test cases use the structure Arrange-Act-Assert. In the Arrange phase, we set

up the preconditions and initialize the objects or resources that the test requires. In

the Act phase, we perform the actual action or behavior that we want to test, prac-

tically the execution of the method we want to test. In the last phase, the Assert we

verify that the action taken in the "Act" phase produces the expected results.

Test for method constructQuery in the class ChartQueryEditor

The method constructQuery is responsible for gathering the user's input and con-

verting it into an expression that is executable from the analyze operator. We tested

if we insert info in the different fields of the ChartQueryEditor window and after

call the method constructQuery if the returned constructed query is the same with

the expected query. The result of the test is demonstrated in the Figure 3.3.1.

Figure 3.11 Test for constructQuery in ChartQueryEditorController class.

Test for methods reportSiblingQuery and reportBaseQuery in the

VisualizationManager.

The methods reportSiblingQuery and reportBasicQuery are responsible for reporting

the results for a query of type Sibling and Basic, respectively. In tests testReport-

BaseQuery and testReportSiblingQuery, we test the scenario that given input in a

specific format and some grouper and sigma values as input, the reported String that

 47

is returned is the expected. The results of the tests are demonstrated in the Figure

3.11.

Figure 3.12 Tests for reportBaseQuery and reportSiblingQuery in VisualizationMan-

ager.

Tests for method checkDateFormat in the VisualizationManager.

The method checkDateFormat in VisualizationManager is responsible for returning

the format of the Date passed. Two formats are supported so far "yyyy-MM", "yyyy".

For the testing of the method, we pass as input to the method real Dates in the

specific format and check if the right form is returned from method. The results of

the tests are demonstrated in the Figure 3.12.

Figure 3.13 Tests for dateFormat in VisualizationManager.

Test for method returnSiblingHeader in the VisualizationManager.

The method returnSiblingHeader in VisualizationManager is responsible for return-

ing the header of a sibling query. The sibling header contains details about the

changes in the groupers and filters from the original "basic" query. In the test named

testReturnSiblingHeader we test if these changes are passed correctly. The result of

the test is demonstrated in the Figure 3.13

Figure 3.24 Test for returnSiblingHeader in VisualizationManager.

 48

Test for methods readDataFromStringForBaseQuery and readData-

FromStringForSiblingQuery in the VisualizationManager

The methods readDataFromStringForBaseQuery and readDataFromStringForSib-

lingQuery are responsible for reading the string results for Base and Sibling queries,

respectively and returning an array of DataPoints for their visualization. However,

the string results contain and other details and not only DataPoints. The tests

testReadDataFromStringForSiblingQuery, testReadDataFromStringForBaseQuery

check that the result array is the correct one and for both methods we skip the

correct number of lines. The result of the tests is demonstrated in the Figure 3.14

Figure 3.15 Tests for readDataFromStringForBaseQuery and readDataFromString-

ForSiblingQuery in VisualizationManager.

Test for method sortResults in the VisualizationManager

The method sortResults is responsible for sorting the input DataPoints in ascending

order according to grouper1 (x-axis). In test we give as input an array with arbitrary

order and we expect the method sortResults to sort the array in ascending order.

The result of the test is demonstrated in Figure 3.15.

Figure 3.16Test for sortResults in VisualizationManager.

Test for method decideType in the VisualizationManager

The method decideType is used to determine whether the visualization in a Barchart

will be "small multiplies" or "default". In the implementation code we have

 49

determine that if the series number is greater than 5, small multiplies is selected

otherwise default. The result of the test is demonstrated in Figure 3.16.

Figure 3.17 Test for decideType in VisualizationManager.

Test for processResultsForVisualization in VisualizationManager

Similarly, with the decideType, but it takes more parameters and calls internally the

decideType. The result of the test is demonstrated in Figure 3.17.

Figure 3.18 Test for processResultsForVisualization in VisualizationManager.

Test for returnModelList in the ModelManager

The method returnModelList is implemented in ModelManager class and returns a

list with models according to the field chartGenerator of type IChartQueryNMod-

elGenerator. In the test, we check if we set the field’s type: BarchartQueryGenerator

(concrete implementation of IChartQueryNModelGenerator) if the list will return the

models Dominance and Contributor, which are determined from the ModelListFac-

tory. The result of the test is demonstrated in 3.18.

Figure 3.19 Test for returnModelList in ModelManager.

Test for findContributionInArray in ContributorModel

The method findContributionInArray is implemented in ContributorModel class and

returns a String result that contains the percentage (%), for every category in series

 50

that contributes to the result. In the case, that a series contain only one category,

then we have 100% contribution to the result. In the test, we check for two different

query results, one with one category and one with two categories and a dominator

category, if method findContributionInArray will return the right percentage. The

result of the test is demonstrated in 3.19.

Figure 3.20 Test for findContributionInArray in ContributorModel class.

Test for findModalityInArray in ModalityModel

The method findModalityInArray is implemented in ModalityModel class and re-

turns a String result that informs if there is a Unimodality or Bimodality or no Clear

Modality in query’s results. In the test, we check for these three cases, if method will

return the right String result. The result of the test is demonstrated in 3.20.

Figure 3.21 Test for findModalityInArray in ModalityModel class.

Test for findRegressionInArray in RegressionModel

The method findRegressionInArray is implemented in RegressionModel class and

returns a String result that contains the linear regression coefficients: intercept and

slope. In the test, we insert specific points (dates,measure) in query’s result and we

check if linear ‘s regression coefficients returned from method are the expected ones.

The result of the test is demonstrated in 3.21.

Figure 3.22 Test for findRegressionInArray in RegressionModel class.

Test for findTrendInArray in TrendModel. The method findTrendInArray is imple-

mented in TrendModel class and returns a String result that informs if there is an

uptrend or downtrend or no clear trend in query’s results. In the test, we check for

 51

these three cases, if method will return the right String result. The result of the test

is demonstrated in 3.22.

 Figure 3.23 Test findTrendInArray in TrendModel class.

 52

 53

CHAPTER 4

EXPERIMENTS

4.1 Experimental Setup

4.2 Impact of the number of filter values on execution time.

4.3 Impact of number of Siblings in the Execution Time

In this Chapter, we experimentally evaluate the behavior of the constructed soft-

ware in relation to the parameters of the data that can affect this behavior.

4.1 Experimental Setup

The experimental objective concerns the study of the execution time of the Query-

As-A-Chart operator for different queries and data.

For the experimental evaluation of this thesis, three experiments were conducted for

three different parameters of the problem. The parameters evaluated are the size of

the data set, the number of selection levels of the query. The experiments measured

the execution time of the operator from start to finish, as well as the individual

execution steps, in order to determine which execution step causes the most delay.

The individual execution steps that were timed for result unique time series are

depicted in Figure 4.1.

 54

The execution times presented are the average of five measurements. The system on

which the experiments were conducted is Windows 10, with an AMD Ryzen 7 4800H

CPU @ 2.90 GHz, 8GB RAM, and a 490GB SSD.

The datasets that were used in the experimental process are the following:

Dataset Number of Dimen-

sions

Number of levels Number of Tu-

ples

Loan Cube (Data-

base

pkdd99_star_100K)

3 12 100.000

Loan Cube (Data-
base

pkdd99_star_1M)

3 12 1.000.000

Loan Cube (Data-
base

pkdd99_star_10M)

3 12 10.000.000

4.2 Impact of the number of filter values on execution time

We conducted three queries for this experiment, which have fixed structure in terms

of aggregate function, grouping levels (always 2) and type of chart but have one,

two and three levels of selection respectively. The goal is to understand the effect

that the number of selection levels may have on the execution time of the operator,

Execution Step Methods Delian Class
Conversion of User Input to

ChartRequest Object

convertUserInput2Char-

tRequest

ChartQueryEditorController

Execution of Queries and

Report Chart

reportChartQue-

ryDetailsForChar-

tResponse

VisualizationManager

Execution of Models getScoreModelsFor-

ChartVisModels

ModelManager

Creation of Datastory createDatastory ChartQueryEditorController

Table 4.1 Individual Execution Steps for Unique Series.

 55

keeping the structure of the rest of the query constant, which includes two levels of

grouping, type of query, a cube and an aggregate function.

Figure 4.1 Εxecution Time in ms for the first two individual steps: 1) Conversion of User Input to Char-

tRequest Object Execution 2) Execution Of Queries And Report Chart.

Figure 4.2 Εxecution Time in ms for the last two individual steps: 3) Execution of Models 4) Creation of

Datastory (* the real time measurement is 95% shorter, by accident the save of chart images has been calculated
in).

Figure 4.3 Total execution time for each filter and Dataset.

 56

Concerning the first two steps of the processing, it appears that the execution time is

pretty much around the same values as the number of filters varies (Figure 4.1)

However, for dataset with size 100K and 1M seems that the middle value for filters

(filters =2) succeeds the best execution time.

Observing the individual execution steps, we can comment that the conversion of

user input to ChartRequest object doesn’t seem to be affected from some logic factors

as the number of filters or the size of dataset. As for the execution step ‘Execution

of Queries and Report Chart’, seems that for every size of Dataset, the median value

for filters (filters=2) leads to smallest execution time. The fact that we always have

two groupers, and when we test for two filters, we determine filters that belong to

the same dimensions as groupers, leads to shortest execution time from package

analyzer.

With a close look at Figure 4.2, we can observe the same phenomenon we notice

and for the next execution step ‘Execution of Models’ which seems to be a logic

consequence of the previous execution step. Finally, observe that the creation of

Datastory for 10M takes a longer time in comparison with the time that takes for

100K and 1M, adding time to the total. It seems reasonable in a way, because it

writes more data in the html file and if the selection of the filter was successful,

succeeds to extract many matching results from the database.

4.3 Impact of number of Siblings in the Execution Time

For this experiment, we tried to set up queries with many sibling queries and observe

if the increase in number of siblings leads to important increase in execution of the

time. We conducted the experiment with fixed parameters, dataset size: 1M, number

of filters = 2, the same query parameters except the one filter condition that triggers

the analyzer to create siblings for a specific dimension. The values that we have

tested for number of siblings are {1, 8, 10, 11, 14}. As we see (in Figures 4.4 and

4.5), both for the individual executions steps and for the total execution process, the

increased number of siblings does not mean an increased execution time in general.

This occurs because the analyzer operator creates one sibling query for every

 57

different dimension and not for every different value in the dimension, resulting in

a quite stable execution time independently of the number of sibling queries.

Figure 4.4 Execution time for different number of siblings.

Figure 4.5 Total Execution time for different number of siblings.

 58

CHAPTER 5

CONCLUSIONS

5.1 Summary of Results

5.2 Future Work

5.1 Summary of Results

The aim of this Diploma Thesis has been to extend an Business Intelligence system,

specifically the Delian Cubes Engine, with a Query-As-A-Chart operator. The Query-

As-A-Chart operator allows to construct a query not via the typical SQL syntax but in

a friendlier way with the addition of specification of chart type. The result of the

operator is (a) a set of charts that visualize the results, but most importantly, (b) a

combined report in html, or data story. For the creation of the Query-As-A-Chart

operator, two new packages were added to the Delian: ChartManagement and Char-

tRequestManagement responsible for the server and the client respectively. For the

addition of new features in client (creation of query and display of charts), we used

the JavaFX library extensively.

Upon completion of the operator implementation, an experimental evaluation was

conducted as detailed in Chapter 4. This evaluation involved timing measurements

aimed at assessing the impact of variables such as number of filters and number of

siblings within the intentional query and dataset on the operator's execution time.

In conclusion, the execution time is largely influenced by the time required for result

completion and reporting, while extracting highlight models also play a significant

role.

 59

5.2 Future Work

The implementation of Query-As-A-Chart operator can be extensively optimized and

enabled with new features, but most importantly to be corrected in ambiguous

points.

First, for the time being, the system reads from serializable object the data for a

unique time-series, while for multiple time-series, it reads the data from the mark-

down file: File-ChartQueriesReport. In the future, the multiple series data can be

transferred through the same serializable object.

Furthermore, the ranking of highlights is available only for unique-timeseries and

not for multiple time-series and is something that can be implemented with a more

careful look.

Simultaneously, there is the need for models like mega contributor to take into con-

sideration the selected type of aggregation function of the chart query and change

the calculation of score accordingly.

Finally, it would be nice in the future, the Query-As-A-Chart operator to enable visu-

alizations for standard cube queries without the need for setting one time-dimension.

Also, the operator should be able to create a suitable visualization type if the user

does not specify a desired chart option.

 60

REFERENCES

[Apac99] The Apache Software foundation. Available at https://www.apache.org/

(1999).

[Bie13] T. D Bie: Subjective Interestingness in exploratory data mining. In:

Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds) Advances in Intelli-

gent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science,

vol 8207. Springer, Berlin, Heidelberg (2013).

[DeCE18] P. Vassiliadis. Delian Cube Engine. Available at

https://github.com/DAINTINESS-Group/DelianCubeEngine (2018).

[Dyre96] C. E. Dyreson. Information Retrieval from an Incomplete Data Cube.

In Proc. 22nd Int. Conf. on Very Large Data Bases (VLDB), pp.532-

543, Istanbul (Turkey), Morgan Kaufman Publishers, (1996).

[GeHa06] L. Geng, H.J. Hamilton: Interestingness measures for data mining: A

survey. In ACM TODS, Association for Computing Machinery New

York (USA), vol. 38(3), pp. 9-es, September (2006).

[GHG+22] S. Gathani, M. Hulsebos, J. Gale, P. Haas, C. Demiralp: Augmenting

Decision Making via Interactive What-If Analysis. In 12th Annual Con-

ference on Innovative Data Systems Research, (CIDR '22), Chaminade,

USA, 9-12 January (2022).

[JePT10] C. S. Jensen, T. B. Pedersen, C. Thomesen. Multidimensional Databases

and Data Warehousing. Morgan & Claypool, (2010).

[KiRo02] R. Kimball, M. Ross: The Data Warehouse Toolkit, 2nd Edition, John

Wiley & Sons, Chichester, (2002).

[MaPA23] P. Marcel, V. Peralta, S. Amer-Yahia. Data Narration for the People:

Challenges and Opportunities. In proceedings of the 26th International

Conference on Extending Database Technology (EDBT), Ioannina,

Greece 28th March-31st March, (2023).

https://www.apache.org/
https://github.com/DAINTINESS-Group/DelianCubeEngine

 61

[MaPV19] P. Marcel, V. Peralta, P. Vassiliadis. A Framework for Learning Cell

Interestingness from Cube Explorations. In: Welzer, T., Eder, J., Pod-

gorelec, V., Kamišalić Latifić, A. (eds) Advances in Databases and In-

formation Systems (ADBIS). Lecture Notes in Computer Science, vol

11695. Springer, Cham, (2019).

[Mbaa21] O. Mbaabu. MOLAP vs ROLAP vs HOLAP in Online Analytical Pro-

cessing (OLAP), Available at https://www.section.io/engineering-educa-

tion/molap-vs-rolap-vs-holap/ , January 24 (2021).

[MDHZ21] P. Ma, R. Ding, S. Han, D. Zhang. MetaInsight: Automatic Discovery

of Structured Knowledge for Exploratory Data Analysis. In Proceedings

of the 2021 International Conference on Management of Data (SIG-

MOD), June 20-25, Virtual Event, China (2021).

[Ruso23] C. Ruso. KPIs vs Metrics: Learn the Difference with Examples From

2023, Available at https://www.datapad.io/blog/kpis-vs-metrics, March

25 (2023).

[Twin23] A. Twin. Key Performance Indicator (KPI): Definition, Types, and Ex-

amples, Available at https://www.investopedia.com/terms/k/kpi.asp,

May 10 (2023).

[VaZi14] Alejandro Vaisman Esteban Zimányi Data Warehouse Systems Design

and Implementation. Springer-Verlag Berlin Heidelberg (2014).

[Vass21] Panos Vassiliadis. Delian Cubes (as of 2021 01 29). Available at

https://youtu.be/M4yulB2rHKQ?si=VQ1nWlO2H3-fN_sr, January 29

(2021)

[Yeol20] Y. Yeole. Data Storytelling-Basic Data Visualization in Excel, Available

at https://yogeshyeole1111.medium.com/data-storytelling-basic-data-

visualization-in-excel-8cd0ea52852a, October 5 (2020).

https://www.section.io/engineering-education/molap-vs-rolap-vs-holap/
https://www.section.io/engineering-education/molap-vs-rolap-vs-holap/
https://www.datapad.io/blog/kpis-vs-metrics
https://www.investopedia.com/terms/k/kpi.asp
https://youtu.be/M4yulB2rHKQ?si=VQ1nWlO2H3-fN_sr
https://yogeshyeole1111.medium.com/data-storytelling-basic-data-visualization-in-excel-8cd0ea52852a
https://yogeshyeole1111.medium.com/data-storytelling-basic-data-visualization-in-excel-8cd0ea52852a

SHORT BIOGRAPHICAL SKETCH

Aggeliki Dougia was born on May 5, 1999, in Ioannina but grew up in Igoumenitsa.

In September 2017, she was admitted to the Department of Computer Science and

Engineering at the University of Ioannina and completed her studies in October

2022. Her diploma thesis was titled: Implementation of Evolutionary Optimization

Methods for Association Rule Mining. In the same month, she began her studies in

the master's program of the Department of Computer Science and Engineering,

mainly choosing courses from the Advanced Computing Systems direction but and

from Data Science and Engineering. Since November 2023, she has been working as

a software engineer at P&I Hellas.

