
Onl ine Soc ia l Bo ok St o re A ppl ic at io n

Gui de l i ne s a nd Hi nts for the

de ve lopme nt of t he p ro jec t

 Page 2

 Page 3

1 Introduction

This document provides some basic but important guidelines for the development of the project. We

begin with general development tips that should be followed. Then, we provide design directions

concerning the project.

2 General Guidelines - DOs and DON'Ts

 Classes

 Make classes small and cohesive - A single well-defined responsibility for a class

 Don’t break encapsulation by making the data representation public

 Class names are important – use descriptive names for the concepts represented by the

classes

 Use Noun & Noun phrases for class names

 See here for more - http://www.cs.uoi.gr/~zarras/soft-devII.htm

 Methods

 Make methods small – A method must do one thing

 Method names are important – use descriptive names for the concepts represented by

the methods

 Use Verb & Verb phrases for method names

 See here for more - http://www.cs.uoi.gr/~zarras/soft-devII.htm

 Fields

 Make fields private – A method must do one thing

 Field names are important – use descriptive names for the concepts represented by

the fields

 Use Noun & Noun phrases for field names

 Follow the standard Java Coding Style http://www.cs.uoi.gr/~zarras/soft-devII-notes/java-

programming-style.pdf

 Page 4

3 Application Design and Related Des ign Patterns

3.1 Architecture

IMPORTANT NOTICE: the design that is given here is a draft/incomplete version of a social bookstore

application prototype that relies on the Spring Boot framework. You can use it as a starting point and

follow it to a certain degree. Feel free to adapt what is described in this document to your needs and

vision.

To facilitate the maintenance and enable future extensions of the application we assume an architecture

that relies on Martin Fowler's catalog of Enterprise Application Architecture (EAA) patterns (see

https://martinfowler.com/eaaCatalog/). Maintainability and extensibility are further promoted by the

fact that the Spring Boot framework heavily relies on the Model View Controller (MVC) pattern (see

the lecture slides on Software Design) for the development of Web applications. MVC allows the clear

separation of three different concerns: the view of the application that is responsible for the user

interaction (UI) with the application, the domain model that represents the data handled by the

application and the business logic, and the controller that takes user input, manipulates the domain

model data and updates the view.

FIGURE 1 APPLICATION ARCHITECTURE.

Figure 1, illustrates a draft architecture for the application. The following list describes briefly the basic

components of the architecture (Figure 1):

 The views package realizes the user interaction (UI) with the application in collaboration with

the Controller layer. Typically, this layer consists of a set of static and dynamic Web pages. The

 Page 5

dynamic Web pages are also known as template views (see Template View pattern from Martin

Fowler's catalog of EAA patterns). A dynamic HTML page renders data from domain model

objects into HTML based on embedded markers. The application controllers is are responsible

for passing the appropriate domain model objects to the view layer.

 The controllers package consists of controller classes which take user input from the views of

the application, perform certain service operations (see next) to manipulate domain model

objects, and update the views of the application.

 The formsdata package comprises classes that are used for transferring data to/from the views

from/to the back end of the application. Having such classes, isolates the views from the model

(see next) and the business logic of the application. Moreover, it eases the manipulation of the

data from the template engine that is responsible for the views’ generation.

 The services package defines a set of services provided by the application to the users and

coordinates the application's response in each service operation. Essentially, here we apply the

Service Layer pattern from Martin Fowler's catalog of EAA patterns.

 The mappers package consists of classes that perform basic database operations which map the

application data, stored in the table rows of the database to corresponding in memory objects

of the domain model classes. Basically, here we apply the Data Mapper pattern from Martin

Fowler's catalog of EAA patterns.

 The backbone of the architecture is the domain model package. The domain model consists of

the basic classes that define the representation of the data handled by the application and the

domain logic that is needed for the data manipulation. All the different layers of the application

rely on the data model.

3.2 Domain Model

The domain model that we assume in this draft prototype is given in Figure 2. User and Role are specific

classes we must implement for the realization of the user registration and login actions in Spring Boot.

User should implement the Spring UserDetails interface for this reason 1.

1 https://github.com/zarras/myy803_springboot_web_app_tutorials/tree/master/sb_tutorial_7_signup_signin

 Page 6

FIGURE 2 DOMAIN MODEL.

UserProfile is responsible for the management of the users’ profiles. Specifically, the class fields include

the username the full name of the user the age of the user, a list of books offered by the user, a list of

books requested by the user, a list of favorite book authors and a list of favorite book categories. The

relation between UserProfile and BookAuthor is many to many, the relation between UserProfile and

BookCategory is also many to many. The requestedBooks relation is also many to many, while the

bookOffers relation is one to many. The relation between Book and BookAuthor is many to many, while

the relation between Book and BookCategory is many to one. The database schema of the application

defines corresponding tables for the classes of the application with foreign keys that correspond to the

 Page 7

class associations. In Spring Boot the SQL schema can be automatically generated from the domain

model with the appropriate JPA annotations 2.

3.3 Data Mappers

The mappers package consists of several interface definitions derived from the general JpaRepository

interface that is provided by Spring Boot. Specifically, the contents of the package are given in Figure 2.

FIGURE 3 DATA MAPPERS.

3.4 Services

The first service that is provided by the online social bookstore application is responsible for the user

registration and login (Figure 4). The service provides the UserService interface that is implemented by

2 https://github.com/zarras/myy803_springboot_web_app_tutorials, https://github.com/zarras/myy803_springboot_jpa_tutorials,

https://www.baeldung.com/jpa-many-to-many

 Page 8

the UserServiceImpl class. The service further implements the UserDetailsService interface, as required

by the Spring Security framework.

FIGURE 4 USER SERVICE.

FIGURE 5 USER PROFILE SERVICE.

The second service of the online social bookstore application is responsible for the rest of the user

stories, i.e., the user profile management, the book offers, the book requests, the search and the

 Page 9

recommendation of book offers (Figure 6). The key elements of this service are the UserProfileService

interface and the respective implementation UserProfileServiceImpl class. Alternatively, this service can

be split into multiple smaller more cohesive services that assume the different responsibilities.

FIGURE 6 BOOK OFFERS SEARCH STRATEGIES.

For the realization of the book offers search and recommendation we rely on the GoF strategy pattern

and the GoF template method pattern (Figure 6). The basic reason for these design choices is the

maintainability requirements given in the application requirements document for the easy extension of

the application with new strategies in the future.

Specifically, the idea is to define a common SearchStrategy interface for the different search strategies

(see GoF strategy pattern). Moreover, we assume an abstract class TemplateSearchStrategy that

implements the common interface and realizes the basic search algorithm. The steps of the search

algorithm that differ from strategy to strategy are defined as abstract methods, implemented by

respective subclasses, ApproximateSearchStrategy, ExactSearchStrategy (see GoF template method

pattern). The design of the book offer recommendations strategies can rely on the same ideas and is

not further discussed here.

3.5 MVC- Controllers, Views, and Form Data

The controllers package comprises two different controllers. The AuthController is responsible for the

user registration and login. The UserProfileController is responsible for the rest of the user stories.

Alternatively, the UserProfileController can be split into a number of smaller more cohesive controllers

that assume the different responsibilities. The controllers rely on the respective services of the services

package for the manipulation of domain objects and the update of the views. The views are based on

the Thymeleaf template engine. Data transfer between the views, the controllers and the services is

 Page 10

done via objects that belong to the classes of the formsdata package. In particular, the

UserProfileFromData, the BookFormData, the SearchFormData and the RecommendationsFormData are

used for transferring data that concern user profiles, books, search and recommendation requests,

respectively.

FIGURE 7 CONTROLLERS

4 Tests

Concerning the tests of the application logic we need to develop tests for the different packages of the

application (mappers, services, controllers, model). For the development of the tests we can rely on the

SpringBoot testing and mocking facilities.

