Online Social Book Store Application

Guidelines and Hints for the
development of the project

I SEE YOU'VE USED
GQUITE FREQUENTLY
A VERY FAMOLUS
DESIGN PATTERN IN
YOUR CODE

geek & poke

DO YOU MEAN THE
"STEAMING-PILE-OF-
CRAP-PATTERN"?

>

THE HYFE IS LONG GONE BUT
DESIGN PATTERNS ARE STILL USEFLIL

Page 2

1 Introduction

This document provides some basic but important guidelines for the development of the project. We
begin with general development tips that should be followed. Then, we provide design directions
concerning the project.

2 General Guidelines - DOs and DON'Ts

= (Classes

v

v

v

v

Make classes small and cohesive - A single well-defined responsibility for a class
Don’t break encapsulation by making the data representation public

Class names are important — use descriptive names for the concepts represented by the
classes

Use Noun & Noun phrases for class names

See here for more - http://www.cs.uoi.gr/~zarras/soft-devil.htm

= Methods

v

v

= Fields

Make methods small — A method must do one thing

Method names are important — use descriptive names for the concepts represented by
the methods

Use Verb & Verb phrases for method names

See here for more - http://www.cs.uoi.gr/~zarras/soft-devil.htm

v' Make fields private — A method must do one thing

v’ Field names are important — use descriptive names for the concepts represented by
the fields

v Use Noun & Noun phrases for field names

» Follow the standard Java Coding Style http://www.cs.uoi.gr/~zarras/soft-devll-notes/java-
programming-style.pdf

Page 3

3 Application Design and Related Design Patterns

3.1 Architecture

IMPORTANT NOTICE: the design that is given here is a draft/incomplete version of a social bookstore
application prototype that relies on the Spring Boot framework. You can use it as a starting point and
follow it to a certain degree. Feel free to adapt what is described in this document to your needs and
vision.

To facilitate the maintenance and enable future extensions of the application we assume an architecture
that relies on Martin Fowler's catalog of Enterprise Application Architecture (EAA) patterns (see
https://martinfowler.com/eaaCatalog/). Maintainability and extensibility are further promoted by the
fact that the Spring Boot framework heavily relies on the Model View Controller (MVC) pattern (see
the lecture slides on Software Design) for the development of Web applications. MVC allows the clear
separation of three different concerns: the view of the application that is responsible for the user
interaction (Ul) with the application, the domain model that represents the data handled by the
application and the business logic, and the controller that takes user input, manipulates the domain
model data and updates the view.

‘ socialbookstore.views

! i) A
| o |
! ‘ socialbookstore.controllers ‘ ‘ socialbookstore.config
\
\ U N P
\ ! \ ,
\ ! " ’
\ 1 \ 4
\ ! LN e
\ |l.l __x ys
\ - -
v N ‘ socialbookstore.services ‘
A i
\ | o ~
\ ! . 4 Y N
\ I s RS
\ f p r i .
Y ' . L
4 4 ¥ ik LA

‘ socialbookstore.formsdata ‘

- &

s N
- ~

-, 4

| ¥ £ - -
‘ socialbookstore.domainmodel ‘ | so_qialhookstore.data!:_ase

FIGURE 1 APPLICATION ARCHITECTURE.

Figure 1, illustrates a draft architecture for the application. The following list describes briefly the basic
components of the architecture (Figure 1):

= The views package realizes the user interaction (Ul) with the application in collaboration with
the Controller layer. Typically, this layer consists of a set of static and dynamic Web pages. The

Page 4

dynamic Web pages are also known as template views (see Template View pattern from Martin
Fowler's catalog of EAA patterns). A dynamic HTML page renders data from domain model
objects into HTML based on embedded markers. The application controllers is are responsible
for passing the appropriate domain model objects to the view layer.

= The controllers package consists of controller classes which take user input from the views of
the application, perform certain service operations (see next) to manipulate domain model
objects, and update the views of the application.

= The formsdata package comprises classes that are used for transferring data to/from the views
from/to the back end of the application. Having such classes, isolates the views from the model
(see next) and the business logic of the application. Moreover, it eases the manipulation of the
data from the template engine that is responsible for the views’ generation.

= The services package defines a set of services provided by the application to the users and
coordinates the application's response in each service operation. Essentially, here we apply the
Service Layer pattern from Martin Fowler's catalog of EAA patterns.

= The mappers package consists of classes that perform basic database operations which map the
application data, stored in the table rows of the database to corresponding in memory objects
of the domain model classes. Basically, here we apply the Data Mapper pattern from Martin
Fowler's catalog of EAA patterns.

= The backbone of the architecture is the domain model package. The domain model consists of
the basic classes that define the representation of the data handled by the application and the
domain logic that is needed for the data manipulation. All the different layers of the application
rely on the data model.

3.2 Domain Model

The domain model that we assume in this draft prototype is given in Figure 2. User and Role are specific
classes we must implement for the realization of the user registration and login actions in Spring Boot.
User should implement the Spring UserDetails interface for this reason *.

1https://c]ithub.oom/zarras/mvv803 springboot_web_app_tutorials/tree/master/sb_tutorial 7_signup_signin

Page 5

‘EI) UserDEtalIsl

77‘7
\
y \
i \
' \
‘ v
/ \
/ \
; \
’ N
/ \
v
@ User v
5
o String username “
o String password \
o Role role 3
\
@ Collection<? extends GrantedAuthority> getAuthorities() 41
o boolean isAccountNonExpired() [P
» boolean isAccountNonLocked() |(®U58f[’ﬂt5”5m)tg
o isCredentialsNonExpired() —
© boolean isEnabled()
= String getPassword()
o void setPassword(String encodedPassword)
o String getUsernamel()
o void setUsername(String username)
e Role getRole()
o void setRole(Role role)
0.1
1
‘. Ru\e|
t 1
@ UserProfile

o String username

o String fullName

o int age

o List<BookAuthor= favouriteBookAuthors

o List<BookCategory> favouriteBookCategories
o List <Book> bookOffers

getters/setters, methods, etc. ..

(—

bookoffers requestedBooks

4

@ Book

o int bookld
o String title
favouriteAuthers | 5 List<BookAuthor> bookAuthors favouriteCategories
o BookCategory bookCategory

o List<UserProfile requestingUsers

getters/setters, methods, etc. .

\ O\

@ BookAuthor © BookCategory
o int authorld o int categoryld
o String name o String name
o List<Book> books o List<Book> books
getters/setters, methods, etc. ... getters/setters, methods, etc. ...

FIGURE 2 DOMAIN MODEL.

UserProfile is responsible for the management of the users’ profiles. Specifically, the class fields include
the username the full name of the user the age of the user, a list of books offered by the user, a list of
books requested by the user, a list of favorite book authors and a list of favorite book categories. The
relation between UserProfile and BookAuthor is many to many, the relation between UserProfile and
BookCategory is also many to many. The requestedBooks relation is also many to many, while the
bookOffers relation is one to many. The relation between Book and BookAuthor is many to many, while
the relation between Book and BookCategory is many to one. The database schema of the application
defines corresponding tables for the classes of the application with foreign keys that correspond to the

Page 6

class associations. In Spring Boot the SQL schema can be automatically generated from the domain
model with the appropriate JPA annotations 2.

3.3 Data Mappers

The mappers package consists of several interface definitions derived from the general JpaRepository
interface that is provided by Spring Boot. Specifically, the contents of the package are given in Figure 2.

«/paRepository» @ «|paRepository»
UserMapper UserProfileMapper
o User findByUsername(String username) @ UserProfile findByUsername(String username)
T T
| |
| |
| [
N ¥
@User @Useerﬂle
«/paRepository» = z
<|paRepository»
@ HaakMapper @ BookCategoryMapper

o List<Book= findByTitle(String title)
o List<=Book= findByTitleContaining(String title)
T

o List<BookCategory= findByName(String name)
T

|
|
! |
v v
Book @ BookCategory

«/paRepositary»
BookAuthorMapper

o List<BookAuthor= findByName(String Name)
T

|
|
|
¥
@BookAuthor

FIGURE 3 DATA MAPPERS.

3.4 Services

The first service that is provided by the online social bookstore application is responsible for the user
registration and login (Figure 4). The service provides the UserService interface that is implemented by

https://github.com/zarras/myy803 springboot web app_tutorials, https://github.com/zarras/myy803 springboot_jpa_tutorials,
https://www.baeldung.com/jpa-many-to-many

Page 7

the UserServicelmpl class. The service further implements the UserDetailsService interface, as required
by the Spring Security framework.

@ UserService

@ UserDetailsService

e void saveUser{User user)

e boolean isUserPresent(User user) o UserDetails loadUserByUsername(String username)
e User findByld(String username) ﬁ
oY R
Y # 4
b -

@ UserServicelmpl

o @Autowired BCryptPasswordEncoder bCryptPasswordEncoder
o @Autowired UserMapper userDAO

e void saveUser{User user)

e boolean isUserPresent(User user)

o UserDetails loadUserByUsername(String username)
o User findByld(5tring username)

FIGURE 4 USER SERVICE.

@ UserProfileService

e UserProfileFormData retrieveProfile{String username)

e void save(UserProfileFormData userProfileFormData)

e List<BookFormData=> retrieveBookOffers(String username)

o void addBookOffer{String username, BookFormData bookFormData)
o List<BookFormData=> searchBooks(SearchFormData searchFormData)
o List<BookFormData= recommendBooks(String username, RecommendationsFormData recomFormData)
e void requestBook(int bookid, String username)

o List<BookFormData> retrieveBookRequests(String username)

o List<UserProfileFormData= retrieveRequestingUsers(int bookid)

o void deleteBookOffer(String username, int booklid)

e void deleteBookRequest(String username, int bookid)

-

@ UserProfileServicelmpl!

o @Autowired UserProfileMapper userProfileMapper

o @Autowired BookAuthorMapper bookAuthorMapper

o @Autowired BookCategoryMapper bookCategoriesMapper

o @Autowired BookMapper bookMapper

o @Autowired SearchFactory searchFactory

o @Autowired RecommendationsFactory recommendationsFactory

o UserProfileFormData retrieveProfile(String username)

o void save(UserProfileFormData userProfileFormData)

o List<BookFormData= retrieveBookOffers(String username)

o void addBookOffer{String username, BookFormData bookFormData)
o List<BookFormData> searchBooks(SearchFormData searchFormData)
o List<BookFormData> recommendBooks(String username, RecommendationsFormData recomFormData)
e void requestBook(int bookld, String username)

o List<BookFormData> retrieveBookRequests(String username)

e List<UserProfileFormData= retrieveRequestingUsers(int bookid)

o void deleteBookOffer(String username, int booklid)

e void deleteBookRequest(String username, int bookid)

@Searchstrategy ©Recommendat<onsstrategy

FIGURE 5 USER PROFILE SERVICE.

The second service of the online social bookstore application is responsible for the rest of the user
stories, i.e., the user profile management, the book offers, the book requests, the search and the

Page 8

recommendation of book offers (Figure 6). The key elements of this service are the UserProfileService
interface and the respective implementation UserProfileServicelmpl class. Alternatively, this service can
be split into multiple smaller more cohesive services that assume the different responsibilities.

‘@ UserProfileService

‘@ UserProfileServicelmpl!

@ SearchStrategy

ArrayList<BookFormData> search(SearchFormData bookFormData, BookMapper bookMapper);

4

@ TemplateSearchStrategy

@Autowired BookMapper bookMapper

o List<BookFormData> search(SearchFormData searchFormData, BookMapper bookMapper)
abstract List<Book> makelnitialListOfBooks(SearchFormData searchDto)
abstract boolean checkifAuthorsMatch(SearchFormData searchFormData, Book book)

_— .

(©) ApproximateSearchstrategy (€) Exactsearchstrategy
abstract List<Book> makelnitialListOfBooks(SearchFormData searchDto) List<Book> makelnitialListOfBooks(SearchFormData searchDto)
abstract boolean checkifAuthorsMatch(SearchFormData searchFormData, Book book) boolean checklfAuthorsMatch{SearchFormData searchFormData, Book book)

FIGURE 6 BOOK OFFERS SEARCH STRATEGIES.

For the realization of the book offers search and recommendation we rely on the GoF strategy pattern
and the GoF template method pattern (Figure 6). The basic reason for these design choices is the
maintainability requirements given in the application requirements document for the easy extension of
the application with new strategies in the future.

Specifically, the idea is to define a common SearchStrategy interface for the different search strategies
(see GoF strategy pattern). Moreover, we assume an abstract class TemplateSearchStrategy that
implements the common interface and realizes the basic search algorithm. The steps of the search
algorithm that differ from strategy to strategy are defined as abstract methods, implemented by
respective subclasses, ApproximateSearchStrategy, ExactSearchStrategy (see GoF template method
pattern). The design of the book offer recommendations strategies can rely on the same ideas and is
not further discussed here.

3.5 MVC- Controllers, Views, and Form Data

The controllers package comprises two different controllers. The AuthController is responsible for the
user registration and login. The UserProfileController is responsible for the rest of the user stories.
Alternatively, the UserProfileController can be split into a number of smaller more cohesive controllers
that assume the different responsibilities. The controllers rely on the respective services of the services
package for the manipulation of domain objects and the update of the views. The views are based on
the Thymeleaf template engine. Data transfer between the views, the controllers and the services is
Page 9

done via objects that belong to the classes of the formsdata package. In particular, the
UserProfileFromData, the BookFormData, the SearchFormData and the RecommendationsFormData are
used for transferring data that concern user profiles, books, search and recommendation requests,
respectively.

@ UserController

o @Autowired UserService userservice
o @Autowired UserProfileService userProfileService

@ String getUserMainMe nu()

@ String retrieveProfile(Model model)

@ String saveProfile(UserProfileFormData userProfileFormData, Model theModel)
© AuthController @ String listBookOffers(Model model)

@ String showOfferForm(Model model)

@ String saveOffer(BookFormData bookFormData, Model model)

o @Autowired UserService userservice

@ String login() & String showSearchForm(Model model)
e String register{Model model) @ String search(SearchFormData searchFormData, Model model)
o String registerUser{User user, Model model) o String showRecommendationsForm(Model model)

@ String recommendBooks(RecommendationsFormData recomFormData, Model model)
@ String requestBook(int bookid, Model model)

@ String showUserBookRequests(Model model)

e String showRequestingUsersForBookOffer{int bookid, Model model)

@ String acceptRequest(String username, int bookld, Model model)

@ String deleteBookQffer(String username, int bookld, Model model)

@ String deleteBookRequest(String username, int bookld, Model model)

. - : | 4‘;
User| | Userservice UseerfMeSer\:ice‘
© @uersenie @uertiesenice
—————— L]

FIGURE 7 CONTROLLERS

4 Tests

Concerning the tests of the application logic we need to develop tests for the different packages of the
application (mappers, services, controllers, model). For the development of the tests we can rely on the
SpringBoot testing and mocking facilities.

Page 10

