
Fitness Workout for Fat Interfaces:
Be Slim, Clean, and Flexible
Spyros Kranas∗, Apostolos V. Zarras∗ and Panos Vassiliadis∗

∗Dept. of Computer Science and Engineering, Univ. Ioannina, Greece
Email: {skranas, zarras, pvassil}@cs.uoi.gr

Abstract—A class that provides a fat interface violates the
interface segregation principle, which states that the clients of
the class should not be coupled with methods that they do not
need. Coping with this problem involves extracting interfaces
that satisfy the needs of the clients. In this paper, we envision
an interface extraction method that serves a combination of four
principles: (1) fitness, as the extracted interfaces have to fit the
needs of the clients, (2) clarity, as the interfaces should not be
cluttered with duplicated methods declarations due to the clients’
similar needs, (3) flexibility, as it should be easy to maintain the
extracted interfaces to cope with client changes, without affecting
parts of the software that are not concerned by the changes,
and (4) practicality, as the interface extraction should account
for practical issues like the number of extracted interfaces,
domain/developer specific constraints on what to include in the
interfaces, etc. Our preliminary results show that it is feasible
to extract interfaces by respecting the aforementioned principles.
Moreover, our results reveal a number of open issues around the
trading between fitness, clarity, flexibility and practicality.

Index Terms—Refactoring, interface segregation, extract inter-
face

I. INTRODUCTION

Fat interfaces & interface segregation. In the Object-
Oriented paradigm, the interface segregation principle states
that the clients of a class should not be forced to depend upon
methods that they do not use [1]. Empirical studies highlighted
the practical benefits of the interface segregation principle [2]
and empirical evidence showed that its violation leads to time
consuming, costly, and error-prone maintenance [3]. A class
provides a fat interface if its clients use subsets of the class’
instance methods [4]. Classes with fat interfaces violate the
interface segregation principle.

Problem. Dealing with classes that provide fat interfaces
amounts to employing the Extract Interface refactoring [5].
The rationale behind this refactoring is to define a set of
interfaces that satisfy the needs of the clients’ of a given
class. Although this seems a simple idea, in practice interface
extraction is not an easy problem because it involves a number
of conflicting concerns that the developer must take into
account. More specifically:
• We have to extract interfaces that fit the needs of the

clients (i.e., they provide the methods invoked by the
clients).

• As the clients’ needs are typically similar, the extracted
interfaces become cluttered with duplicated method dec-
larations. Hence, we must maintain the conceptual clarity
of the extracted interfaces.

• Software evolves over time; new clients may be added,
clients may be removed, the methods invoked by the
clients may change. We must extract flexible interfaces
that can be seamlessly maintained to cope with such
changes, without affecting parts of the software that are
not concerned by the changes.

• We must consider further practical issues, like the num-
ber of interfaces that are extracted, which should be
reasonable, domain or developer specific concerns that
impose constraints on what to include (resp. exclude) in
(resp. from) a particular interface, etc.

State of the art: In well known IDEs, like Eclipse1,
Netbeans2, and IntelliJ IDEA3, a developer extracts interfaces
for a particular class by manually selecting the methods
to be included in the extracted interfaces. Then, the IDEs
provide automated means that modify the clients of the class
towards using the extracted interfaces. The method proposed
in [6] starts from a class that provides a fat interface and
automatically extracts interfaces that fit the needs of the
clients. However, the clarity of the interfaces is not considered.
Specifically, if the clients use similar subsets of methods,
the extracted interfaces are overlapping. In [7] and [8], the
extraction of interfaces is handled as a search-based problem.
These approaches start from a class that provides a fat interface
and extract a set of interfaces based on the way that the fat
interface is used by the clients. The extraction process tries to
maximize the degree to which the interfaces fit the needs of the
clients, while minimizing the number of extracted interfaces;
[7] employs agglomerative clustering, while [8] relies on
genetic algorithm. Hence, [7] and [8] do not guarantee that
the extracted interfaces would fit the needs of the clients. The
other problem with [7] and [8] is rigidity4, in the sense that the
extracted interfaces cannot be incrementally updated to cope
with client additions, removals, or updates. On the contrary, to
deal with such changes, the interface extraction should start all
over again with different input (i.e., the changed clients) and
output (i.e., the extracted interfaces). Using an entirely new
set of interfaces produced by the interface extraction process,
requires changing all the clients of the class.

1eclipse.org/
2netbeans.org
3jetbrains.com/idea/
4In general, we say that a software system is rigid if it is hard to change

because every change affects too many parts of the system [1].



Contribution. We believe that the interface extraction prob-
lem should be handled with a fresh and broader look that
considers the fitness, clarity, and flexibility of the extracted
interfaces, along with, practical issues like the number of
extracted interfaces, domain/developer specific constraints and
so on. In this paper, we propose an interface extraction method,
which starts from a class that provides a fat interface and
produces a hierarchy of interfaces that has the following
properties:

• Fitness: For each client there is an interface that provides
exactly the methods the client needs.

• Clarity: The extracted interfaces are exempt from dupli-
cated methods declarations due to the clients’ similar
needs. At the same time, the interfaces highlight the
similarity between the clients’ needs via generalization
relations, which form the hierarchical structure of the
extracted interfaces.

• Flexibility: The extracted hierarchy of interfaces can
be incrementally updated to cope with client changes,
without affecting parts that are not concerned by the
changes.

• Practicality: The number of extracted interfaces is reason-
able - typically quite lower than the number of clients.

To assess the effectiveness and the practicality of the
proposed method we report the preliminary results of an
empirical study, performed over six open-source projects. Our
results show that it is feasible to extract fit, clean, and flexible
hierarchies that consist of a resonable number of interfaces,
with respect to the number of clients a class has. Moreover, our
results reveal a number of open issues when trading between
fitness, clarity, flexibility and practicality.

II. APPROACH

In this section, we briefly sketch the main concepts of the
proposed method.

Fitness. For a given class c that provides a fat interface and
the set of clients C that use c, the proposed method extracts a
flexible hierarchy of interfaces I. Initially, the method iterates
over the set of the clients C that use c. For each client, it
constructs an interface that declares exactly the methods used
by the client.

To illustrate the interface extraction method we employ a
real world example that involves the RunNotifier class5 of
the JUnit testing framework. RunNotifier is a key element
of JUnit’s notification mechanism that allows listeners to
receive feedback about the progress of tests. RunNotifier
has a fat interface that declares 11 methods. The class has
12 clients c1, c2, . . . c12 that use different subsets of the
class’ methods. Consequently, the initialization phase of the
extraction method produces 12 interfaces i1, i2, . . . i12 that fit
the needs of c1, c2, . . . c12, respectively. The initial interfaces
are refined in the next phases of the proposed approach as
discussed below. For simplicity reasons in our example, we

5junit.sourceforge.net/javadoc/org/junit/runner/notification/RunNotifier.html

focus on a subset of the extracted interfaces that is given in
Figure 1(a).

Fig. 1. Illustrating example: Hierarchy of interfaces for the RunNotifier
class.

Clarity. The initial distribution of methods to interfaces



ensures that the extracted interfaces satisfy the needs of
the clients. Nevertheless, if clients have similar needs, the
extracted interfaces may be overlapping, or even equivalent.
The proposed method proceeds with an iterative process that
improves the clarity of the interfaces. Each iteration, looks for
the most similar pair of interfaces, imax

1 , imax
2 . To measure in-

terface similarity, we employ the Jaccard similarity coefficient
[9], i.e., the similarity between imax

1 , imax
2 , is the cardinality

of the intersection of the methods declared in the interfaces,
divided by the cardinality of the union of the methods declared
in the interfaces. Then, clarity is improved as follows:

• Dealing with equivalence between imax
1 , imax

2 : If imax
1

and imax
2 provide the same methods6, only one of the two

interfaces is retained.
• Setting a generalization relation between imax

1 , imax
2 : If

the set of methods provided7 by imax
1 is a subset of

the methods provided by imax
2 , the method declarations

of imax
1 are removed from imax

2 and imax
2 becomes an

extension of imax
1 . The case where imax

2 is more general
than imax

1 is treated in the same way.
• Extracting of a more general interface for imax

1 , imax
2 :

If there is no equivalence or generalization relation be-
tween imax

1 and imax
2 , a more general interface, imax

1,2 ,
is extracted. In particular, imax

1,2 declares the methods
that are common in imax

1 and imax
2 . Following, gener-

alization relations are set between imax
1,2 , imax

1 and imax
1,2 ,

imax
2 . Specifically, the common method declarations are

removed from imax
1 and imax

2 ; imax
1 and imax

2 become
extensions of imax

1,2 .

In our example, the first two iterations (Figure 1(b)) discard
i2 and i3 because they are equivalent with i1. In the third
iteration the most similar pair of interfaces is i1, i6. The
methods provided by i1 are a subset of the methods provided
by i6. Hence, a generalization relation is detected and i6
becomes an extension of i1. Similarly, in the fourth iteration,
a generalization relation is set between i1 and i4. Figure 1(c)
gives the results of the fifth iteration. The most similar pair of
interfaces is i1, i5. None of these interfaces is a generalization
of the other. Therefore, a more general interface i1,5, is
extracted. The interface contains the fireTestStarted
method that is common in i1 and i5; i1 and i5, become
extensions of i1,5. Finally, Figure 1(d) depicts two more
generalization relations, set in the last two iterations; the first
one between i9 and i7, and the second one between i9 and i8.

Flexibility. Fitness and clarity, enable flexibility, i.e., deal-
ing with changes to clients without affecting parts of the
software that are not concerned by the changes.

More specifically, given the hierarchy of interfaces I that
is extracted for a class c, there are 3 main evolution scenarios
concerning the clients of c: addition of new clients, deletion
of clients, and update of the clients’ needs. Let A, D and U

6We assume that two methods are equal if the method prototypes are the
same, by definition in Java interfaces.

7We use the term provided to refer to the union of (a) the methods declared
in an interface and (b) the methods inherited from other interfaces.

Fig. 2. Illustrating example: Incremental update of the hierarchy.

denote the sets of clients that are added, deleted, and updated,
respectively. Then, the incremental update of I, with respect
to A, D and U takes place as follows:
• Based on the set of deleted clients D, update I by re-

moving interfaces that are no longer useful, i.e., interfaces
that do not serve any client.

• Client updates are handled as client deletions followed by
additions of new clients. Hence, I is further modified by
removing the interfaces that had been extracted for the
updated clients U .

• Extract interfaces for A∪U : (1) add to I, interfaces that
fit the needs of the added and the updated clients; (2)
improve the clarity of I.

In our example scenario, suppose that the needs of client
c6 change. To deal with this situation we remove i6 from
the hierarchy that is given in Figure 1(d). Then, an interface
inew6 that satisfies the new needs of client c6 is added in the
hierarchy (Figure 2(a)). Finally, two generalization relations
are established, one between inew6 and i1,5, and another
between inew6 and i7 (Figure 2(b)).

III. STATUS & EMERGING RESULTS

As a proof of concept for the proposed method we devel-
oped an Eclipse plugin. The plugin uses the Eclipse AST
facility to gather information (method declarations, method
invocations, etc.) about the classes of a given Java project.
Based on this information, it extracts interfaces by applying
the proposed method to classes with fat interfaces. At this



TABLE I
CASE STUDIES.

Case # of Classes URL
Study with fat interfaces
JUnit 44 junit.org
Concordion 15 www.concordion.org
JavaML 23 java-ml.sourceforge.net
JAGA 28 www.jaga.org/
JHotDraw 45 sourceforge.net/projects/jhotdraw
BlueJ 151 www.bluej.org

stage, the prototype does not directly refactor the code of the
classes. However, to facilitate the work of the developer, it
generates UML diagrams that specify the extracted interfaces
and their relations.

We performed a study over six open-source projects (Ta-
ble I) : we used two testing frameworks, JUnit v4.6 and
Concordion v1.4.2; JavaML v0.1.7 that offers a collection of
machine learning algorithms; JAGA v1.0 that provides a suite
of genetic algorithms; JHotDraw v7.0.6, an extensible drawing
tool that is based on design patterns; BlueJ v3.1.4, a popular
Java development environment designed for beginners. In the
case studies the number of classes with fat interfaces ranged
from 15 to 151. The average number of method declarations
for the classes, varied from 7.88 to 18.55, while the average
number of clients, ranged from 6.25 to 11.88.

Fitness, clarity, and flexibility. Fitness and clarity are
the key enablers of flexibility. Hence, the first issue of our
study was to assess the proposed method with respect to these
aspects. To this end, we measured the decoupling degree (DD)
that is achieved for the clients C of a class c, when using the
interfaces that are extracted for c. To measure the decoupling
degree for a client cj ∈ C, when using an interface icj ex-
tracted for c, instead of using c, we employ the Actual Context
Distance (ACD) introduced by Steimann [6]: ACD(icj , c) =
number of c methods − number of icj methods

number of c methods . The rationale
behind ACD is that the class provides methods that the
client does not need, while the interface provides exactly the
methods that the client needs. Hence, the difference between
the number of the class’ methods and the number of the
interface’s methods reflects the amount of decoupling that is
achieved. Then, the decoupling degree that is achieved for the
clients of c is: DD = avgcj∈CACD(icj , c). Moreover, we
measured the number of duplicated method declarations that
have been eliminated from the interfaces that we extracted for
the classes of the case studies.

Figure 3 gives the distribution of the decoupling degree
achieved for the case studies. The average decoupling degree
that we obtained was quite high, ranging from 69.97% (in
the case of JavaML) to 80.96% (in the case of JHotDraw). In
all case studies, we further observed a positive correlation
between the number of methods, declared by a class, and
the decoupling degree that is obtained for the clients of the
class. To statistically validate this observation, we calculated
the Spearman correlation coefficient, ρ, for these variables,
along with the corresponding p-values (Table II). All the ρ

Fig. 3. Distribution of the decoupling degree achieved for the case studies.

Fig. 4. Distribution of duplicated methods for the case studies.

values are positive, indicating that there is indeed a positive
correlation between the variables. Moreover, the values are
close to 1, indicating a strong correlation.

Figure 4, gives the distribution of the number of dupli-
cated methods that have been eliminated. Overall, the average
number of duplicated method declarations that have been
eliminated varied quite a lot, from 9.32 (in the case of JAGA)
to 32.56 (in the case of JHotDraw). In all case studies, we
also observed a positive correlation between the number of
duplicated methods that have been eliminated and the number
of clients a class has. Due to lack of space we omit these
findings.

Practicality. The second issue of the study was to assess
the price that we have to pay for fitness, clarity, and flexibility.
To address this issue, we measured the number of interfaces
that are extracted for the examined classes. The detailed results
that we obtained are given in Figure 5. For each case study,
a scatter plot relates the number of extracted interfaces for
each class, with the number of the class’ clients. Each scatter
plot further depicts a solid line that corresponds to the identity

TABLE II
SPEARMAN CORRELATION BETWEEN METHODS & DECOUPLING DEGREE.

Case Study ρ Sample size p-value
JUnit 0.86 44 3.26E-14
Concordion 0.80 15 1.13E-04
JavaML 0.83 23 1.92E-07
JAGA 0.91 28 1.65E-12
JHotDraw 0.83 45 5.95E-13
BlueJ 0.86 151 5.17E-47



Fig. 5. Extracted interfaces, with respect to the number of clients.

function (i.e., number of interfaces = number of clients). All
points that lie below the solid line correspond to classes for
which the number of extracted interfaces is less than the
number of clients. With the exception of BlueJ, the main
observation that comes out from the results is that typically
the number of interfaces that are extracted for a class is less
than the number of clients that depend on the class. Even in
the case of BlueJ, for most classes the number of extracted
interfaces is less than, or equal, to the number of clients. To
get more insight concerning the relation between the number
of extracted interfaces and the number of clients, we further
performed a linear regression analysis, which indicated a
linear relation between the number of clients that use a class
and the number of interfaces that are extracted for the class.
For most cases, the regression coefficients that we obtained
are medium-low (e.g., 0.48 in JUnit, 0.32 in JAGA, 0.33 in
JavaML), which again shows that the number of extracted
interfaces is usually lower than the number of clients. For
BlueJ, the regression coefficient is close to, but still less than
1.

IV. NEXT STEPS

To sum up, our preliminary results ascertain that it is feasi-
ble to extract fit, clean, and flexible hierarchies of interfaces,
which consist of a reasonable number of interfaces, with
respect to the number of clients a class has.

Nevertheless, especially from the perspective of trading
between fitness, clarity, flexibility, and practicality, there is still
room for further research. In particular, extracting interfaces
for every class that provides a fat interface may still clutter
a particular software with a large number of interfaces. At
the same time, there may be classes with fat interfaces, for
which the extraction of interfaces that fit exactly the needs of
the clients does not make much sense, or interfaces for which
a degree of unclarity may be bearable, reasonable, or even
desirable due to certain domain or developer specific concerns.
An automated interface extraction approach must account for

such issues that can emerge in real-world situations. Hence,
a first objective of our future research agenda is to enhance
the proposed approach with means that would allow the
developers to focus the interface extraction method to the right
classes by analyzing potential tradeoffs between the interface
extraction benefits and costs. A second objective of our future
research agenda is to enhance the proposed approach with
means that would allow to customize the interface extraction
process with domain and developer specific constraints (e.g.,
preferences/limits for the desired number of interfaces, meth-
ods per interface).

REFERENCES

[1] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall, 2002.

[2] H. Abdeen, H. A. Sahraoui, and O. Shata, “How We Design Interfaces,
and How to Assess It,” in Proceedings of the 29th IEEE International
Conference on Software Maintenance, 2013, pp. 80–89.

[3] A. F. Yamashita and L. Moonen, “Exploring the Impact of Inter-Smell Re-
lations on Software Maintainability: an Empirical Study,” in Proceedings
of the 35th International Conference on Software Engineering (ICSE),
2013, pp. 682–691.

[4] D. Romano and M. Pinzger, “Using Source Code Metrics to Predict
Change-Prone Java Interfaces,” in Proceedings of the 27th IEEE Interna-
tional Conference on Software Maintenance (ICSM), 2011, pp. 303–312.

[5] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2000.

[6] F. Steimann, “The Infer Type Refactoring and its Use for Interface-Based
Programming,” Journal of Object Technology, vol. 6, no. 2, pp. 99–120,
2007.

[7] R. Adnan, B. Graaf, A. A. van Deursen, and J. Zonneveld, “Using Cluster
Analysis to Improve the Design of Component Interfaces,” in Proceedings
of the 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2008, pp. 383–386.

[8] D. Romano, S. Raemaekers, and M. Pinzger, “Refactoring Fat Interfaces
Using a Genetic Algorithm,” in Proceedings of the 30th IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
2014, pp. 351–360.

[9] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Addison Wesley, 2005.


