
Applying Model-Driven Architecture to achieve

distribution transparencies

Apostolos Zarras*

Computer Science Department, University of Ioannina, P.O. Box 1186, GR 45110 Ioannina, Greece

Received 6 September 2004; revised 14 May 2005; accepted 31 May 2005

Available online 12 July 2005

Abstract

This paper proposes a principled methodology for the realization of distribution transparencies. The proposed methodology is placed

within the general context of Model-Driven Architecture (MDA) development. Specifically, it consists of a UML-based representation for

the specification of platform independent models of a system. Moreover, it comprises an automated aspect-oriented method for the

refinement of platform independent models into platform specific ones (i.e. models describing the realization of the system’s distribution

transparency requirements, based on a standard middleware platform like CORBA, J2EE, COMC, etc.). Finally, the proposed methodology

includes an aspect-oriented method for the generation of platform specific code from platform specific models.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Aspect-oriented modeling; Aspect-oriented programming; Refinement; Code generation; Middleware
1. Introduction

Middleware is the current practice in the development of

today’s software systems [1]. It provides reusable solutions

to pervasive software development problems like hetero-

geneity, interoperability, security, dependability, etc. These

solutions are offered either by the core of a middleware

platform (i.e. the middleware broker), or by complementary

services. The broker mediates the interaction between the

elements of a system and masks differences in data

representations and communication mechanisms to enable

their interoperation. In other words, it provides access

transparency [2]. The complementary middleware services

enable several other distribution transparencies like the

ones for location, persistence, failure, transaction, etc. [2].

Lately, there have been efforts to come up with standards

describing the semantics and the structure of middleware

platforms, capable of supporting a wide range of

distribution transparencies. The Common Object Request

Broker Architecture (CORBA) specification [3] is among
0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.05.010

* Tel.: C30 26510 98862.

E-mail address: zarras@cs.uoi.gr

URL: http://www.cs.uoi.gr/zarras.
the well-known results of these efforts. J2EE [4] and

COMC[5] are further widely used infrastructures in both

industry and academia.

Given this wide variety of solutions, what is still missing,

from an engineering point of view, is a principled

methodology that facilitates selecting and using the one

that better tackles the particular requirements of the system.

Recently, the OMG architecture board made a statement

concerning the coordinated use of existing standards

towards Model-Driven Architecture (MDA) development

[6]. MDA relies on early ideas, proposed by the software

architecture community [7]. More specifically, structural

and behavioral models of the system are specified in terms

of a standard modeling notation like UML [8]. These

models direct the overall development process. In a first

step, the models are platform independent, i.e. they describe

the Platform Independent Elements (PIEs) of the system,

while abstracting away technological details that do not

relate with the fundamental functionality of these elements.

The Platform Independent Models (PIMs) may be of the

following kinds:

† Enterprise models, describing the business domain and

the business processes of the system.

† Computational models, specifying the decomposition of

the system into basic computational elements.
Information and Software Technology 48 (2006) 498–516
www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof

A. Zarras / Information and Software Technology 48 (2006) 498–516 499
† Information models, prescribing the semantics of the

information, managed by the computational elements.

† Engineering models, specifying the distribution

transparency requirements of the system.

The step that follows the specification of PIMs amounts

in selecting a middleware platform that provides means for

achieving the distribution transparency requirements of the

system. Given the selected platform, we have to refine the

engineering models of the system into technology models,

describing how the platform is used to achieve these

requirements. In the context of MDA, technology models

are also called Platform Specific Models (PSMs). In general,

the technology models are quite complex compared to the

engineering models of the system and their specification

requires expertise on the selected middleware platform.

The PSMs include Platform Specific Elements (PSEs),

corresponding to the PIEs that constitute the refined

engineering models. Moreover, the PSMs comprise

additional PSEs that are part of the middleware services

used for the realization of the distribution transparency

requirements. Finally, the PSMs specify relationships

between the PSEs, prescribing the achievement of the

distribution transparency requirements. The specification of

PSMs is necessary as they serve as a blueprint targeted to

the developers who take in charge of the system’s

implementation. The previous is actually the last step in

the MDA development process. The system’s implemen-

tation can be divided into source code that realizes the

fundamental behavior of the system’s PIEs and Platform

Specific Code (PSC), which integrates the corresponding

system’s PSEs with the additional PSEs of the middleware

services used.

The provision of a disciplined development process that

relies on standards is by itself a guarantee for building

software while successfully balancing the trade-off between

the quality of the product and the time-to-market.

Architects, designers and developers are constrained in

favor of the clear separation of concerns, which promotes

design/software reuse and simplifies evolution. However,

MDA becomes even more beneficial with the support of

automated methods that facilitate the individual steps of the

development process. Into this context, in [9] we already

proposed a systematic framework that enables the selection

of middleware platforms, given the distribution trans-

parency requirements of the system over the middleware.

In this paper, we focus on a principled methodology for

the refinement of engineering models into technology

models and the automated generation of corresponding

platform specific code. Specifically, the main contributions

of this paper are:

† A UML representation for the specification of engineer-

ing models.

† An automated method for the refinement of engineering

models into technology models.
† An automated method for the generation of platform

specific code.

Both the refinement and the code generation methods are

completely independent from the selected middleware

platform. They rely, respectively, on Aspect-Oriented

Modeling (AOM) [10,11] and Aspect-Oriented Program-

ming (AOP) [12,13]. Aspect-oriented methods are based on

languages that enable the abstract specification of modeling

or programming constructs, which must be incorporated in

specific points within a model or a program, respectively,

towards achieving pervasive concerns like concurrency

control, access control, etc. Such kind of specifications are

called aspects. Aspect-oriented methods further rely on

automated tools, called weavers. The input of a weaver is a

set of aspects and a model or a program. Its output is also a

model or a program, enhanced with the additional modeling

or programming constructs that are specified within the

input aspect.

The remainder of this paper is structured as follows.

Section 2 presents the necessary background on Aspect-

Oriented development, middleware and distribution trans-

parencies. Section 2, further introduces a motivating

example, used throughout the paper to demonstrate the

proposed methodology. Section 3 presents the main steps of

the methodology. Section 4 details the UML representation

for the specification of engineering models. Sections 5 and 6

detail the automated refinement and code generation

methods, respectively. Section 7 provides an assessment

of the proposed methodology. Section 8 presents related

work. Finally, Section 9 summarizes our contribution and

points out the future directions of this work.
2. Background and motivating example

Aspect-Oriented development, middleware and

distribution transparencies are the foundation concepts

employed in the proposed methodology. These concepts

are briefly discussed in this section together with a case

study followed throughout the paper towards exemplifying

the use of the methodology.

2.1. Aspect-oriented programming and modeling

Aspect-Oriented development is an emerging software

development paradigm that originates from the need to

achieve a high degree of separation of concerns [12,13]. The

different concerns involved in the realization of a software

system can be divided into problem-specific and cross-

cutting ones.

Problem-specific concerns relate to the main functionality

that should be provided by the system. Their realization is

tackled in traditional software development methodologies

by the functional decomposition of the system into

abstractions like classes or modules, which represent

Table 1

Basic forms of transparency provided by middleware platforms

Transparency Semantics CORBA J2EE COMC

Access Masks differences in data rep-

resentations and communication

mechanisms to enable

interoperation

CORBA GIOP JAVA RMI DCE RPC

Object model Component

Model (CCM)

Object Model EJBs DCOM model

Location Allows accessing elements of the

system without knowledge of

their physical location

CORBA Naming Service (NS) RMI Registry GUIDs

CORBA Trading Service (TS) JNDI Monikers

Concurrency Allows concurrent processing on

resources without interference

Concurrency Control Service (CCS) Java Synchronization

Mechanisms

COM Synchroniza-

tion Mechanisms

Migration Hides from the system’s elements

the ability of the system to change

their physical location

CORBA Lifecycle Passing objects by value –

Passing objects by value

Failure Enables masking from an element

the failure and recovery of other

elements

Fault tolerant CORBA – –

Persistence Allows masking from an element

the deactivation and reactivation

of other elements

CORBA Persistent State Service

(PSS)

JDBC ADO

SQL/J OLEDB

Transaction Hides the coordination of certain

activities performed towards the

atomic and isolated execution of

transaction

CORBA Object Transaction Service

(OTS)

Java Transaction Service (JTS) Microsoft Trans-

action Service

(MTS)

A. Zarras / Information and Software Technology 48 (2006) 498–516500
problem-specific concerns conceptually or physically. The

conceptual abstractions form the system’s model, while the

physical ones constitute the system’s implementation.

Distribution transparencies are typical examples of

crosscutting concerns. Their realization imposes the need

for additional functionality, which should be spread across

the system’s problem-specific abstractions. Aspect-Oriented

development is based on languages (e.g. AspectJ [14],

Hyper/J [15]) that allow specifying abstractions, which

modularize this additional functionality. In AspectJ, these

abstractions are called aspects. An aspect consists of point-

cuts, i.e. sets of related points (called join-points) in the

source code of the system. Point-cuts are associated with

functionality that should execute before, or right after them.

This functionality is automatically introduced in the system

by the AspectJ weaver. The abstractions used in Hyper/J are

called hyper-slices. A hyper-slice is a fragment of a class

hierarchy. The classes in the fragment contain only methods

and attributes that relate to the particular concern,

modularized by the fragment. Hyper-slices are automati-

cally composed by merging corresponding join-points,

specified within them. Specifying correspondence relation-

ships between the join-points of different hyper-slices is a

responsibility of the developer.
Fig. 1. Realization dependencies among distribution transparencies.
2.2. Middleware and distribution transparencies

The different transparencies we consider in this paper are

summarized in Table 1. The realization of these trans-

parencies in CORBA, J2EE and COMC is discussed in

detail in [9]. It is important to note here that the realization

of some transparencies requires certain others. For example,
any distribution transparency involves using middleware

services that require a broker, which provides access

transparency. Achieving transaction transparency amounts

in using services that implement a distributed atomic

commitment protocol (e.g. OTS, JTS, MTS in Table 1).

These services further require others that enable synchro-

nization and persistence (e.g. PSS, CCS in Table 1). The

realization dependencies for the transparencies considered

in this paper are depicted in Fig. 1 and they play a rather

important role in the overall methodology proposed in this

paper. Further details are given in the rest of the paper.

2.3. Motivating example

The example we adopt in this paper to highlight the use of

the proposed methodology consists of a Climate Control

Fig. 2. Overview of the CCS case study.

A. Zarras / Information and Software Technology 48 (2006) 498–516 501
System (CCS), detailed in [16]. The purpose of this system is

to control the air-conditioning in various locations of a

building, based on a number of thermometers that report

the current temperature in these locations (Fig. 2). Further-

more, CCS aims at controlling the temperature of various

manufacturing devices, through the use of device-specific

thermostats. The thermometers and the thermostats can be

accessed through proprietary communication protocols.

Hence, the CCS system provides a front-end to the

aforementioned peripherals so as to integrate them with the

rest of the IT infrastructure used by the enterprise, installed in

the building. The main CCS engineering elements are:

† Front-end elements of type Thermometer that provide

operations for accessing various technical features of

thermometers (e.g. their model, asset number, location).

Thermometer elements further provide an operation that

reports the current temperature in the location where the

devices are installed.

† Front-end elements of type Thermostat that inherit the

basic functionality of Thermometer elements (i.e. the

Thermostat class inherits from the Thermometer class)

and additionally provide operations for accessing and

changing the temperature of thermostats.

† A Controller element that keeps track of the Ther-

mometer and Thermostat elements installed and provides

operations for:

† Listing the Thermometer and the Thermostat elements.
† Locating a set of Thermometer or Thermostat elements

given an asset number, a location, or a model.

† Updating a set of Thermostat elements as a group by

increasing or decreasing their temperature-setting,

relatively to the current temperature-setting. Some

thermostats may not be able to increase or decrease

their temperature as requested because they are already

close to their temperature limit. In these cases, the

update operation sets those thermostats to their

temperature limit.

The requirements for the CCS front-end elements include

the ones for access and persistence transparency. Access

transparencyis importantgiven theheterogeneousnatureof the

sensing devices. Persistence is also significant, given that the

front-endCCSelementsmaybedeactivatedandreactivatedfor

several reasons (e.g. power loss, upgrade, etc.). For the

Controller element, we further require location transparency to

be able to communicate with it indirectly, using a client

program that possibly executes on mobile devices.
3. A principled methodology for distribution

transparencies

The main objectives of the proposed methodology are the

gradual refinement of engineering models into technology

models and the generation of platform specific code, given

Fig. 3. Overview of the methodology.

A. Zarras / Information and Software Technology 48 (2006) 498–516502
a set of distribution transparency requirements. To achieve

these objectives we follow the basic steps given in Fig. 3,

which are further detailed in the rest of this section.
3.1. Specification of the system’s engineering models

This first step of the methodology involves using UML

[8] for modeling engineering models. This choice originates

from the fact that UML is an emerging industrial standard,

providing a rich vocabulary of modeling constructs that

enable the specification of both structural and behavioral

models of a system. However, the semantics of UML are

quite generic. The previous is reasonable, considering that

UML aims at becoming a base for the development of

a family of representations, called UML profiles, which

serve different modeling purposes (e.g. UML profiles for

realtime systems [17], CORBA systems [18], etc.). One of

these profiles is particularly targeted on modeling Enterprise

Distributed Object Computing (EDOC) systems [19].

EDOC provides a foundation for the specification of

business and computational PIMs (Section 1). However,

EDOC does not support the specification of information,

engineering, and technology models and suggests referring

to the Reference Model for Open Distributed Processing

(RM-ODP) [2] towards dealing with these issues.

RM-ODP proposes a generic architectural style, consis-

ting of different types of engineering elements that should be

provided by middleware platforms to facilitate the realiz-

ation of engineering models. For this architectural style we

define a corresponding UML Platform Independent Rep-

resentation (PIR) for the specification of engineering models.
In [19], we resulted in several significant similarities in the

architectural styles assumed by CORBA, J2EE and COMC.

These similarities mainly originate from the fact that all three

platforms are influenced by the RM-ODP architectural style.

Hence, the proposed representation is generic enough to

tackle the refinement of engineering models into technology

models that rely on the three platforms that we consider. The

proposed PIR comprises the definition of a number of

stereotypes. A stereotype consists of a set of constraints and

properties, enhancing the definition of a standard class of

UML model elements (i.e. a meta-model element, called the

base class of the stereotype). Applying the stereotype on a

particular UML model element of the class (i.e. an instance of

the meta-model element) implies that the element conforms

to the enhanced definition instead of the standard one.
3.2. Refinement of engineering models

into corresponding technology models

The refinement of engineering models into technology

models is the second step of the methodology. Specifically,

the overall refinement method accepts as input an

engineering model, a set of required transparencies and a

selected middleware platform that is going to be used to

achieve them. Its output is a technology model, which

describes how we use the selected platform to achieve the

required set of transparencies. Building this output model

amounts in performing the following steps:

(1) Map the PIEs and the relationships of the engineering

model into corresponding PSEs and relationships in

A. Zarras / Information and Software Technology 48 (2006) 498–516 503
the technology model. These PSEs are called hereafter

the direct mappings of PIEs.

(2) Introduce in the technology model additional PSEs for

the realization of the required set of transparencies.

(3) Establish the relationships (associations, aggregations,

generalizations, dependencies) between the direct

mappings of PIEs and the additional PSEs, introduced

in the previous step.

As already mentioned in Section 1, one of our basic

concerns is to keep the refinement method independent from

the middleware platforms that may be selected for the

construction of the target technology model. To satisfy this

concern, we use an AOM approach. Specifically, the

refinement method is an AOM weaver, which retrieves

from a repository a set of refinement aspects, corresponding

to the set of distribution transparency requirements. Each

aspect consists of a number of point-cuts. A point-cut

specifies generically a group of PIEs or a group of

relationships. We may group PIEs or relationships based

on their types, their behavioral features (i.e. operations),

their structural features (i.e. attributes), or the stereotypes

that characterize them. Each point-cut contains advice

statements, specifying the mapping of the grouped elements

and relationships in the resulting technology model. The

mapping relies on a UML-based Platform Specific

Representation (PSR) that corresponds to the selected

middleware platform. In particular, we consider PSRs for

CORBA, J2EE and COMC. The CORBA PSR relies on

the standard UML profile for CORBA [18]. The J2EE

and the COMC representations are based on existing

non-standard representations that come along with widely

used UML modeling tools (e.g. the Rational Rose modeling

tool1). The advice statements further prescribe additional

PSEs, relationships, behavioral and structural features that

should be introduced in the technology model for each one

of the grouped elements.
3.3. Generation of platform specific code

The last step of the methodology comprises the

generation of platform-specific code. The input to the code

generation method is a technology model that results from

the application of the refinement method and the set of

required transparencies that were used to produce it. Its

output comprises a number of source code files

corresponding to the elements of the input model.

Specifically, the code generation method results in:

(1) Skeleton code for the direct mappings of PIEs.

(2) Implementation code, needed for the integration of the

direct mappings of PIEs with the additional PSEs,
1 http://www.rational.com.
introduced in the technology model towards the

realization of the required set of transparencies.

Alike the refinement method, the code generation one is

kept platform-independent. To satisfy this issue we use an

AOP approach. In particular, the code generation method is

realized as an AOP weaver, which uses a set of code

generation aspects, corresponding to the set of distribution

transparency requirements. A code generation aspect

consists of the following kinds of point-cuts:

(1) Point-cuts for skeleton code: specifying groups of direct

mappings of PIEs. A point-cut for skeleton code may

further group behavioral or structural features of PIEs.

Each point-cut contains a number of advice statements,

specifying the skeleton code that must be generated for

each one of the grouped entities.

(2) Point-cuts for implementation code: specifying groups

of points within the skeleton code that is generated for

the direct mappings of PIEs. Each point-cut contains

advice statements, specifying the code to be generated

at these points towards implementing a relationship

between the direct mappings of PIEs and the additional

PSEs that were introduced in the technology model

during the refinement method.

Fig. 3 depicts the overall organization of the repository

that supports the refinement and the code generation

methods. In principle, different combinations of PSEs can

be employed towards achieving a set of required trans-

parencies [9]. This is immediately visible in Table 1. In

CORBA, for instance, we can achieve location transparency

using either the CORBA Naming Service, or the CORBA

Trading Service [20]. Consequently, the aspect repository

consists of platform-specific directories, divided into

transparency-specific sub-directories. A sub-directory

contains a set of refinement aspects, describing alternative

ways of refining an engineering model, to achieve the

particular form of transparency. Each refinement-aspect is

further associated with a corresponding code generation

aspect.

Further details on the constructs we use for the

specification of refinement and code-generation aspects

are provided in Sections 5 and 6.
4. UML representation for engineering models

The stereotypes we define for the specification of

engineering models rely on UML v2.0 [8], which has

been recently finalized. This particular version enhances

previous UML versions by introducing the concepts of

components and connectors. Historically, components and

connectors were the basic modeling concepts of Architec-

ture Description Languages (ADLs) [21]. In UML v2.0, a

Component is a modular part of a system that defines its

http://www.elsevier.com/locate/infsof

A. Zarras / Information and Software Technology 48 (2006) 498–516504
behavior in terms of provided and required interfaces. A

component may be of an arbitrary granularity, consisting of

other components. UML v2.0 allows distinguishing

between components that can be directly instantiated and

components that only exist at design-time. The latter are

indirectly instantiated through the explicit instantiation of

their constituent elements. A UML Connector specifies a

link that enables the communication between component

instances. It represents a communication protocol between

the instances and it is used for binding parts of components’

functionality that realize a provided interface, with

corresponding parts of components’ functionality that

require using this interface. The connector may be an

instance of an association, specified between the

components, whose instances are linked.

As discussed in the RM-ODP standard, engineering

models are refinements of corresponding computational

models, which describe the functional decomposition of a

system into basic engineering elements. Engineering

models additionally specify the way engineering elements

are organized in a distributed execution environment and

their distribution transparency requirements. At this point,

we could argue that engineering models violate the overall

idea of separating different concerns as they mix-up

information regarding the functional decomposition of the

system with information related to the system’s distribution.

However, this recognized limitation is imposed by the

RM-ODP standard as it is necessary towards the refinement

of engineering models into technology ones and the

generation of platform-specific code.

The basic engineering elements of a system are specified

using the EngElem stereotype, given in Table 2. This

stereotype is derived by the generic PIE stereotype which

represents all the different kinds of modeling elements used

in the specification of engineering models. By definition, the

basic engineering elements are UML Components that can

be directly instantiated. They are primitive in that their

constituent elements do not have any further distribution

transparency requirements. Provided and required interfaces

are specified using the EngInterf stereotype, whose base

class is the standard UML Interface element. A basic

engineering element X that requires an interface Z,
Table 2

UML stereotypes for the specification of engineering models

Stereotype Base class Parent Constraints

PIE Component NA NA

EngElem Component PIE isIndirectlyInstantiatedZfalse

EngInterf Interface PIE NA

EngRef Component PIE NA

EngCluster Component PIE isIndirectlyInstantiatedZtrue

ClusterMgr Component EngRef NA

EngCapsule Component PIE isIndirectlyInstantiatedZfalse

CapsuleMgr Component EngRef NA

EngChannel Association PIE self.connector-iforAll(cjc.

kindZassemply)
communicates with another one Y that provides Z though

the use of an interface reference. Interface references are

specified using the EngRef stereotype.

The basic engineering elements are organized into

clusters, specified using the EngCluster stereotype; all the

elements that belong to a particular cluster form a single unit

for the purpose of activation and deactivation. Moreover,

they share common transparency-related properties. Clus-

ters are design-time elements; hence they cannot be directly

instantiated. Each cluster is associated with a cluster

manager, i.e. the cluster holds a reference to a basic

engineering element, which coordinates the activation and

deactivation of the elements contained in the cluster and

participates in the realization of their distribution trans-

parency requirements. To specify references to cluster

managers we define the ClusterMgr stereotype, which is

derived from the EngRef stereotype.

Clusters are organized into capsules for the purpose of

encapsulation of processing, storage, and request flow. In

other words, capsules model different types of runtime

processes, consisting of basic engineering elements.

Capsules can be directly instantiated and we specify

them using the EngCapsule stereotype. As with the case

of clusters, each capsule is associated with a capsule

manager, i.e. the capsule holds a reference to a basic

engineering element that coordinates the managers of the

capsule’s constituent clusters. The references to capsule

managers are specified using the CapsuleMgr stereotype.

Basic engineering elements that belong to different

capsules communicate through channels. A channel is

an association between an interface reference, held by an

engineering element that requires the referenced interface,

and an engineering element that provides the referenced

interface. An instance of this association is a UML

Connector. To specify channels in UML we use the

EngChannel stereotype.

To demonstrate the use of the PIR we defined, we use the

motivating example of Section 2. Figs. 4 and 5 give,

respectively, the runtime and the static views of CCS for the

building showed in Fig. 2. In the remainder of this paper, we

concentrate on the refinement of the structural models of CCS.

However, the proposed methodology further concerns

behavioral models, which are treated in a similar way.

Fig. 5(a) gives the interfaces, the structural and the behavioral

features of the Thermometer, the Thermostat and the

Controller elements, which constitute the basic engineering

elements of CCS. In each one of rooms B–E of the building

there is an instance of the Location capsule, whose structure is

given in Fig. 5(b). Specifically, in room E the Location capsule

instance encapsulates a Thermometer and a Thermostat

instance, managed by an instance of the ThClMgr cluster

manager. The overall capsule is managed by an instance of the

LCpsMgr capsule manager. Room A contains an instance of

the ControlLocation capsule, whose structure is given in

Fig. 5(c). In particular, this capsule contains an instance of the

Controller element, which encapsulates interface references to

Fig. 4. The runtime view of CCS.

Fig. 5. The engineering model of CCS. (a) Basic elements and interfaces. (b) The structure of the Location capsule. (c) The structure of the ControlLocation

capsule. (d) Basic communication channels.

A. Zarras / Information and Software Technology 48 (2006) 498–516 505

A. Zarras / Information and Software Technology 48 (2006) 498–516506
the Thermometer and the Thermostat elements installed

in rooms B–E. These references are linked with the

corresponding basic engineering elements through instances

of engineering channels, as prescribed by the structural

diagram given in Fig. 5(d).
5. Refinement method

This section provides details regarding the specification

of refinement aspects and the functioning of the refinement

weaver.

5.1. Refinement aspects

Defining point-cuts that group different kinds of PIEs and

structural or behavioral features provided by these PIEs,
Table 3

Point-Cuts for grouping UML model elements

Point-Cut:

MatchElem(Stereotype, Type): Groups stereotyped components

or interfaces. These elements may be constrained by their type or by the

stereotype that characterizes them

Example:

MatchElem(EngElem, ?x): Groups components, characterized by the

EngElem stereotype

Point-Cut:

MatchInstance(Stereotype, Instance, Type): Groups com-

ponent instances. These instances may be constrained by their name and

type. Moreover, they may be constrained by the stereotype that

characterizes their type

Example:

MatchInstance(EngElem, ?x, Thermometer): Groups Ther-

mometer instances, characterized by the EngElem stereotype

Point-Cut:

MatchStructuralFeature(Stereotype, Type, Feature,

FeatureType, Visibility): Groups structural features. The

features are constrained by the type and the stereotype of the components or

the interfaces that contain them. Moreover, the features are constrained by

their type, their name and their visibility. The latter may be set to public,

private, or protected

Example:

MatchStructuralFeature(EngElem, Thermometer, ?x,

?y, private): Groups all the private structural features of the

Thermometer element

Point-Cut:

MatchBehavioralFeature(Stereotype, Type, Feature,

FeatureRetType, Visibilty, Arg1, ArgType1, Arg-

Kind1., ArgN, ArgTypeN, ArgKindN): Groups behavioral

features. The features may be constrained by the type and the stereotype of

the components or the interfaces that contain them. Moreover, the features

are constrained by their name, their return type, their visibility and their

arguments. An arbitrary number of arguments may be specified within the

MatchBehavioralFeature construct. For each argument we specify its name,

type and kind. The latter may be set to in, out, or inout

Example:

MatchBehavioralFeature(EngElem, Thermometer, ?x,

void, private, ?y, ?z, ?w,., ?o, ?p, ?q): Groups all the

private behavioral features of the Thermometer element. These features

may have an arbitrary number of arguments but they are constrained to have

a void return type
involves using constructs like the ones given in Table 3.

The constructs of this table specifically focus on

components and interfaces. Similar constructs are used for

the case of relationships (i.e. associations, generalizations,

or dependencies). All the different point-cut constructs

accept as input a number of arguments that correspond to

properties characterizing the grouped PIEs and

relationships. Such properties are their type, the stereotype

that characterizes them, etc. The arguments serve for

constraining the grouped elements and relationships,

determining thus the contents of the resulting group. All

of the arguments are optional. In case that we choose to

leave an argument unspecified we use a named variable in

its place, specified using the ? symbol.

To specify advice statements within the point-cuts of

Table 3 we rely on the constructs given in Table 4. Similar

advice statements are used for point-cuts that group

relationships. Each advice implies that the refinement

weaver must create a PSE, or a relationship X for every

PIE or relationship Y that belongs in the group, specified by

the point-cut, which encapsulates the advice. Each advice

takes as input a number of arguments, which determine the

properties of the PSE or the relationship that is to be created.

Such arguments may be the type of the element that is to be

created, the stereotype that characterizes the element, etc.

As with the case of point-cuts, all of the arguments are

optional. An unspecified argument in an advice statement is
Table 4

Advice statements for UML model elements

Advice:

CreatePSEElem(Stereotype, Type): creates a stereotyped com-

ponent or interface

Example:

CreatePSEElem(CORBAServant, ?x): creates a CORBAServant element of

type ?x

Advice:

CreatePSEInstance(Stereotype, Instance, Type): creates

a component instance

Example:

CreatePSEInstance(CORBAServant, ?x, Thermometer):

creates a CORBAServant instance ?x of type Thermometer

Advice:

CreatePSEStructuralFeature(Stereotype, Type,

Feature, FeatureType, Visibility): creates a structural feature

within a stereotyped component

Example:

CreatePSEStructuralFeature(CORBAServant, Ther-

mometer, ?x, ?y, private): creates a private structural feature ?x of

type ?y within a CORBAServant element of type Thermometer

Advice:

CreatePSEBehavioralFeature(Stereotype, Type,

Feature, FeatureRetType, Visibilty, Arg1, ArgType1,

ArgKind1., ArgN, ArgTypeN, ArgKindN): creates a behavioral

feature within a stereotyped component or interface

Example:

CreatePSEBehavioralFeature(CORBAServant, ?x,

_default_POA, void, public): creates an public operation, named

_default_POA, within a CORBAServant element of type ?x. The feature

takes no arguments and returns no value

Fig. 6. CORBA-based refinement aspects for CCS.

2 A more sophisticated approach for clustering objects consists of

building CORBA components instead of typical CORBA objects.

Components extend the semantics of simple objects in that they can

register to containers, which implicitly manage the components’

activation/deactivation, transactions, security, etc.

A. Zarras / Information and Software Technology 48 (2006) 498–516 507
given in terms of a named variable, which should match

with a named variable specified in the point-cut that

encapsulates the advice statement. This signifies that in

both X, Y, the corresponding property is the same.

As discussed in Section 2, there exist certain realization

dependencies between different distribution transparencies.

Consequently, there also exist dependencies between the

specification of their corresponding refinement aspects. In

particular, the refinement aspect for access transparency is

completely independent and specifies the mapping of the

different kinds of PIEs, used in an input engineering model,

into corresponding PSEs that are going to be used in the

output technology model. The refinement aspects for

location, concurrency and persistence prescribe additional

PSEs that must be used to achieve these transparencies.

Moreover, they specify the relationships between the

additional PSEs and the PSEs, specified in the access

transparency aspect. The aspect that realizes migration

incorporates additional PSEs in the resulting technology

model and further relates these elements with the PSEs

involved in the aspects that realize the access and the location

transparencies. Similarly, the aspect for transaction trans-

parency relates its PSEs with the ones involved in the aspects

that realize access, concurrency and persistence. Finally, the

aspect for failure transparency relates its PSEs with the PSEs

of the aspects that realize access and persistence.

To further exemplify the use of refinement aspects we

revisit the CCS case study. Specifically, assume that we

select CORBA as the target platform for the realization of

the transparencies required by CCS. Access transparency in

CORBA relies on the standard CORBA Object Model
(Table 1). According to this model, the basic engineering

elements of a system are called servants and they are built

using conventional programming languages like CCC,

Java, etc. A servant realizes a number of CORBA interfaces.

CORBA interfaces define different types of CORBA object

references that can be held by clients who wish to interact

with the servant. Based on the previous, to refine the CCS

engineering model into a CORBA technology model we

map EngElem elements into CORBAServant elements.

Moreover, we map EngRef elements into CORBAObject

elements. The aforementioned mappings are specified using

the point-cut statements described in Fig. 6(1) and (2),

respectively. Fig. 6(1) further specifies that CORBAServant

elements must inherit from certain CORBA specific classes

and encapsulate additional structural and behavioral

features, required for the elements’ realization.

CORBA servants that share common transparency-

related properties are conceptually organized into clusters

managed by CORBA objects that implement the standard

POA (Portable Object Adapter) interface.2 Hence, the

ClusterMgr elements used in the CCS engineering model

are mapped into POA elements. One or more clusters,

sharing the same processing resources constitute a CORBA

server. Consequently, the EngCapsule elements in CCS are

mapped into CORBAServer elements. This is achieved

A. Zarras / Information and Software Technology 48 (2006) 498–516508
using the point-cut statement described in Fig. 6(3).

According to this point-cut, each server holds a reference

to a CORBA object that implements the standard ORB

interface. The ORB element plays the role of the capsule

manager. Moreover, each server provides a number of

additional behavioral features, serving for the server’s

initialization. CORBAObject references are linked with the

CORBAServant elements that provide them though typical

RPC channels, consisting of proxies, skeletons, binders and

GIOP protocol objects.

To realize location transparency we use the standard

CORBA Naming service [20] (Table 1), which allows

servants to publish the CORBA object references that they

provide under publicly known names. Clients can then

retrieve those references and communicate with the servants

without any knowledge of their physical location. Fig. 6(4)

gives a point-cut used to incorporate the Naming service in

the CCS case study. This point-cut groups all the

CORBAServer elements, created according to the point-

cut specified in Fig. 6(3). For each CORBAServer element,

a reference to the Naming service is created.

The case of persistence transparency is slightly more

complicated. Specifically, for every CORBA server we

have to create a connection to a data-store. The creation

of this connection is realized according to the point-cut

given in Fig. 6(5). For every servant encapsulated by the

server we have to create a corresponding storage object

(i.e. a set of typed attributes that constitute the state of the

servant) in the data-store. The creation of storage objects

involves several development activities including the

specification of their type (in PSDL [20]) and the

implementation of the functionality that they provide.

The aforementioned activities are codified in the point-cut

specification given in Fig. 6(6). Finally, we must

appropriately configure certain properties of the POA

object that manages the life-cycle of each servant so as to

create object references that persist to the servant’s

deactivation and reactivation [16].
5.2. Refinement weaver

The refinement weaver accepts as input an engineering

model E, a set of required transparencies, TZ{tijiZ1,.,

N}, and a selected middleware platform. In order to generate

the resulting technology model it performs the following

steps:

(1) Given the set of required transparencies T, the weaver

checks its completeness. Specifically, it checks whether

T includes one or more transparencies that depend on

certain other transparencies, DepTZ{tkjiZ1,.,K},

which are not included in T. Performing the previous

relies on the transparency realization dependencies,

given in Fig. 1. Then, it completes the set of

required transparencies, i.e. it performs the following:

TZTgDepT.
(2) Based on the selected input platform, the weaver

retrieves from the aspect repository the contents

of a number of transparency-directories, TDZ{tdi

jiZ1,.,NCK}. Each tdi corresponds to a required

transparency ti2T. Recall that tdi is a set of refinement

aspects, tdiZ fraspij
jjZ1;.;Mg, specifying alterna-

tive ways for achieving ti.

(3) For every ti, the weaver exposes to the designer the

alternative refinement aspects raspij
and requires him to

select one of them towards the refinement of E.

The result from this step is a set of refinement aspects

RAZ{raspijiZ1,.,NCK}, containing at least one that

realizes access transparency. The previous holds

because all of the distribution transparencies depend

on access transparency (Fig. 1).

(4) Following, the weaver applies the refinement aspects in

the PIEs of the input engineering model, depending on

the particular distribution transparency requirements of

each one of them. The aspects are applied in the order

imposed by the transparency realization dependencies

of Fig. 1. Specifically, the first aspect is always the one

that realizes access transparency.

(5) The result of the previous step is a technology model T1,

which is subsequently refined into T2 based on the

aspects of RA that depend only on the one for access

transparency. The order used for applying these aspects

does not affect T2. In general, Ti is refined based on

aspects that depend only on the ones that were used for

producing T1, T2,.,TiK1.

At this point, we must highlight that the overall

refinement method further facilitates the upgrade of a

particular technology model. The refinement method

consists of subsequent refinement steps, each one of which

is applied on the results of its preceding steps. Conse-

quently, the refinement weaver may eventually accept as

input a technology model TE that realizes a particular set of

transparencies T and an additional set of required

transparencies T 0. Then, it can produce an enhanced

technology model TE 0 that provides TgT 0.

Going back to our example scenario, we have chosen

CORBA for the realization of the access, the location and

the persistence transparencies. Based on the refinement

aspects we discussed in Section 5.1 (the most important

parts of which were given in Fig. 6), we refine the

engineering model of CCS (Fig. 5). The resulted technology

model is given in Fig. 7.

As prescribed in the point-cut of Fig. 6(1), the EngElem

elements are mapped to CORBAServant elements

(Fig. 7(a)). The latter inherit from CORBA specific classes

and provide additional behavioral and structural features,

used for their initialization and management. In Fig. 7(b)

and (c) the structure of the Location and the

ControlLocation elements is enhanced with additional

elements (e.g. Session_ptr, Connector_ptr), used for

connecting CCS with a data-store. These elements are

A. Zarras / Information and Software Technology 48 (2006) 498–516 509
added with respect to the point-cut of Fig. 6(5). Several

elements are further associated with the Thermometer the

Thermostat and the Controller elements. As imposed by the

point-cut of Fig. 6(6), these additional elements are used for

the specification (e.g. ThermometerStorageType, Thermo-

meterAbstrStorageType) and the realization (e.g. Thermo-

meterStorageTypeImpl) of storage objects.
6. Code generation method

This section details the specification of code generation

aspects and the code generation weaver.
6.1. Code generation aspects

To generate skeleton code we specify point-cuts that

group different kinds of PSEs, used within a PSM that

results from the refinement method. This is done using the

constructs we introduced in Table 3 for the specification of

refinement aspects. The advices given for the point-cuts

are collections of code statements. In our case study,
Fig. 7. The technology model of CCS. (a) Basic elements and interfaces. (b) The

capsule. (d) Basic communication channels.
for instance, we use an access transparency code generation

aspect to generate skeleton implementations for the

CORBAServant, the CORBAServer, and the

CORBAInterface PSEs, specified in Fig. 7. Specifically,

for CORBAServant PSEs we generate CCC classes,

containing the declarations of attributes and operations

that correspond to the structural and behavioral features of

these PSEs. For the operations defined in the classes we

further generate corresponding CCC definitions. Similarly,

for the CORBAServer PSEs the aspect generates attribute

and operation declarations and definitions. For CORBAIn-

terface PSEs we generate CORBA IDL interfaces. In the

case study, we further use an aspect that generates

skeleton code for persistence transparency. In particular,

this aspect generates PSDL specifications and skeleton

CCC implementation classes for the different types of

storage objects used. Note that for the case of location

transparency there is no need to generate any skeleton code.

Obviously, the code statements, concerning the generation

of skeleton code depend on properties that characterize

the grouped elements. The names of the generated CORBA

IDL interfaces, for instance, must match the names of
structure of the Location capsule. (c) The structure of the ControlLocation

Fig. 7 (continued)

A. Zarras / Information and Software Technology 48 (2006) 498–516510

A. Zarras / Information and Software Technology 48 (2006) 498–516 511
the grouped CORBAInterface elements. Similarly, the

names of the generated CCC classes must match the

names of the grouped CORBAServant elements.

Consequently, the code statements contain variables that

correspond to the properties of the grouped PSEs. Recall

that these variables are given as point-cut arguments.

To generate a partial implementation of the skeleton

code, we specify code statements that must be placed within

the definitions of the generated skeleton code operations.

The previous is achieved using the MatchBehavioralFeature

construct, given in Table 3. We may, for instance, group all

the run operations (Fig. 6(3)), introduced in the different

CORBAServer elements, and specify a collection of code

statements that should be placed within the definition of

each one of them.

The existence of several realization dependencies

between the different distribution transparencies that may

be required has certain implications on the specification of

code generation aspects. Specifically, the fact that a

transparency A depends on a transparency B implies that

the implementation code, specified in the code generation

aspect of A, may need to be placed in specific points within

the implementation code, specified in the code generation

aspect of B. In particular, the code statements of A may need

to be placed before or after a code statement of B. To group

such kinds of points within a collection of code statements,
Table 5

Point-Cuts for grouping points within a collection of code statements

Point-Cut:

BeforeStructuralFeature(Feature, FeatureType): specifies that

of a given structural feature

Example:

MatchBehavioralFeature(CORBAServer, ?x, run, static void,

fooB;}: groups the run operations, defined for all the CORBAServer elements

before the declaration of the fooA variable another variable, fooB, is introduced

Point-Cut:

AfterStructuralFeature(Feature, FeatureType): specifies that a c

given structural feature

Example:

MatchBehavioralFeature(CORBAServer, ?x, run, static void,

f(fooA);}: groups the run operations, defined for all the CORBAServer elemen

after the declaration of the fooA variable an operation f() is called with fooA as

Point-Cut:

AfterBehavioralFeature(Instance, Feature, FeatureRet, Ar

placed right after a call to a behavioral feature, performed on a given PSE instance

should be used if there is no result). Arg1,., ArgN are the actual parameters of t

communicate values between the called behavioral feature and the code statemen

Example:

MatchBehavioralFeature(CORBAServer, ?x, run, static void,

{g(?y);}: groups the run operations, defined for all the CORBAServer element

after a call to an operation f(), it introduces a call to an operation g(), which tak

Point-Cut:

BeforeBehavioralFeature(Instance, Feature, FeatureRet, A

placed right before a call to a given behavioral feature

Example:

MatchBehavioralFeature(CORBAServer, ?x, run, static void,

{?zZg();}: groups the run operations, defined for all the CORBAServer elem

right before a call to an operation f() that takes an argument ?z, it introduces a c
we use the point-cut constructs that are given in Table 5.

Note that it is obligatory to use these constructs in

conjunction with the MatchBehavioralFeature construct,

which determines the scope within which we place the code

statements of A and B (see the examples given in Table 5).

Regarding our case study, in Fig. 8(1) and (2) we give

two point-cuts, specified in the access transparency code

generation aspect, for the generation of implementation

code. The two point-cuts group respectively the main() and

the create_POA() operations introduced in the CORBA-

Server elements of the system according to the refinement

point-cut that is given in Fig. 6(3). Then, they specify code

that should be included in each one of the grouped

operations. This particular code initializes several parts of

the underlying CORBA platform (e.g. the ORB and the POA

objects). The point-cut given in Fig. 8(3) is part of the

location transparency code generation aspect. It groups all

the main() operations of CORBAServer elements. Within

these operations and right after the call to the operation

that initializes the ORB object, it inserts a call to an

operation that obtains a reference to the CORBA Naming

Service, provided by the platform. Fig. 8(4) gives a

point-cut included in the persistence transparency code

generation aspect. Its purpose comprises grouping all the

create_ POA() operations defined for the CORBAServer

elements and creating within them a set of properties, which
a collection of code statements should be placed right before the declaration

public) && BeforeStructuralFeature(fooA, int){float

of a PSM model. Within the implementation of these operations and right

ollection of code statements should be placed right after the declaration of a

public) && AfterStructuralFeature(fooA, int){fooBZ
ts of a PSM model. Within the implementation of these operations and right

an argument. The result of this operation is placed in fooB

g1,., ArgN): specifies that a collection of code statements should be

. FeatureRet is the variable name where the result of the call is stored (void

he call. In place of FeatureRet and Arg1,., ArgN we may use variables to

ts that are introduced before it

public) && AfterBehavioralFeature(?u, f, ?y, ?z)

s of a PSM model. Within the implementation of these operations and right

es as input the return value of f() that was stored in ?y

rg1,., ArgN): specifies that a collection of code statements should be

public) && BeforeBehavioralFeature(?u, f, ?y, ?z)

ents of a PSM model. Within the implementation of these operations and

all to an operation g(), whose return value is stored in ?z

Fig. 8. CORBA-based code generation aspects for CCS.

A. Zarras / Information and Software Technology 48 (2006) 498–516512
are then used for the creation of persistent CORBA object

references.
6.2. Code generation weaver

The behavior of the code generation weaver is similar to

the one of the refinement weaver. More specifically, its

input comprises a complete set of transparencies and a

technology model, resulted from the application of the

refinement method. The code generation weaver further

uses the refinement aspects RA that were selected during the

refinement method (Section 5), to retrieve their associated

code generation aspects, CAZ{caspijiZ1,.,NCK}. Then,

it performs the following steps:

(1) It applies the code generation aspect for access

transparency. As a result, it creates source code files

for the direct mappings of EngElem PIEs. Similarly, it

creates source code files for the direct mappings of

EngCapsule and EngInterf PIEs. Then, it applies the

advices of the aspect to generate corresponding skeleton

and implementation code.

(2) The generated code is subsequently refined based on the

code generation aspects of the other transparencies,

which are applied in the order imposed by the

transparency realization dependencies of Fig. 1.

Alike the refinement method, the code generation one

facilitates the upgrade of the generated source code. The

code generation weaver may accept as input a number of

source code files, and a set of additional transparencies.

Then, it can apply corresponding code generation aspects

directly on the input source code files and produce

their revised versions that further realize the additional

distribution transparencies.

The application of the access transparency code

generation aspect in CCS results in three CCC source

code files for the Thermometer, the Thermostat and
the Controller elements, respectively. Moreover, we have

three CORBA IDL files for the interfaces provided by

the aforementioned elements and two CCC files or the

Location and the ControlLocation capsules. The effect of

the location transparency code generation aspect is the

modification of the Controller CCC file. The application of

the persistence transparency code generation aspect gives

three PSDL files and three CCC files, containing the

specification and the realization of storage objects for the

Thermometer, the Thermostat and the Controller elements.
7. Assessment

To assess the proposed methodology, we rely on

experimental results from our case study scenario. However,

CCS is a rather simple system consisting of two types of

capsules and three types of engineering elements. To get a

more pragmatic view of the proposed methodology, we

additionally investigate its behavior in the development of

more complex systems, comprising an increased number of

different types of capsules and engineering elements.

Specifically, we evaluate the design effort and the

implementation effort required, respectively, for the refine-

ment of engineering models and the development of

platform specific code. These two issues reflect the gain

from applying the proposed methodology, as the designers

and the developers do not have to manually perform certain

design and development tasks, which are delegated to the

refinement and the code generation weavers. Evaluating

the design and the implementation effort involves using the

following generic framework:

(1) The design effort is measured per different distribution

transparency t, in terms of the following metrics:

† The cardinality, DEStrt
, of the set of structural

features and the cardinality, DEBeht
, of the set of

behavioral features, added in the direct mappings of

A. Zarras / Information and Software Technology 48 (2006) 498–516 513
capsules, engineering elements and interfaces [22].

† The cardinality, DEPSEst
, of the set of additional

PSEs, incorporated in the refined model.

To complete the framework we may further

assume metrics [22], concerning the relationships

added in the refined model.

(2) The implementation effort is also measured per

different distribution transparency t, in terms of the

well-know Lines of Code (LOC) metric [23]. Specifi-

cally, we consider the amount of skeleton code, IESkelt
,

and the amount of implementation code, IEImplt
,

generated for t.

Our evaluation takes place as follows. First, we formalize

the design effort and the implementation effort metrics as a

function of the size of the system, measured in terms of the

number of different types of capsules (NEngCapsule),

engineering elements (NEngElem) and interfaces (NEngInterf)

that constitute it. Then, we calculate the values of the

metrics for the specific case of CCS (NEngCapsuleZ2,

NEngElemZ3, NEngInterfZ3). Finally, we investigate how

the values of the metrics behave with respect to the

increasing number of capsules and engineering elements.
Fig. 9. Design effort. (a) Additional behavioral features. (b) Additional

structural features. (c) Additional PSEs. (d) Overall design effort (sum of

additional features and PSEs).
7.1. Design effort

The realization of access transparency involves adding

several structural and behavioral features in the direct

mappings of the different types of capsules (three behavioral

features), engineering elements (five behavioral and one

structural) and interfaces (one behavioral), used in a system

(Section 5.1). The direct mappings of engineering elements

and interfaces further inherit from CORBA specific PSEs,

added in the refined model. The total numbers of additional

features and PSEs as a function of the size of the system are

given below:

DEBehAccess
Z 3 � NEngCapsule C5 � NEngElem CNEngInterf

DEStrAccess
ZNEngElem

DEPSEsAccess
ZNEngElem CNEngInterf

Regarding location transparency, one additional PSE is

added for every direct mapping of a capsule. Hence:

DEPSEsLocation
ZNEngCapsule

For persistence transparency, we also use additional

PSEs for the connection of capsules with data-stores (three

PSEs per capsule) and for the PSDL specification and

implementation of storage objects (five PSEs per engineer-

ing element). The structural and behavioral features

included in the PSDL specification and implementation

elements of an engineering element EngElemi correspond to

the ones provided by the engineering element (denoted by

NStrEngElemi
and NBehEngElemi

, respectively). Hence, the total

numbers of additional features and PSEs as a function of
the size of a system are:

DEBehPersistence
Z 2 �

P
iZ1;.;NEngElem

NBehEngElemi

DEStrPersistence
Z 2 �

P
iZ1;.;NEngElem

NStrEngElemi

DEPSEsPersistence
Z 5 � NEngElem C3 � NEngCapsule

In the CCS case study, the overall system comprises two

different types of capsules and three different types of

engineering elements and interfaces (NEngCapsuleZ2,

NEngElemZ3, NEngInterfZ3). Consequently, in the technol-

ogy model of the system we have 55 additional features and

28 additional PSEs for the realization of the required

transparencies.

A. Zarras / Information and Software Technology 48 (2006) 498–516514
Fig. 9 shows the design effort required for the three

transparencies in the case of more complex systems.

Specifically, we assume that the number of different types

of capsules linearly increases. Moreover, we assume that

each type of capsule consists of two different types of

engineering elements, providing one interface. Each

element is characterized by 1 behavioral and 1 structural

feature. Amongst the three transparencies, access is the most

demanding regarding the additional behavioral features

(Fig. 9(a)) that should be added. On the other hand,

persistence is more demanding with respect to the number

of structural features (Fig. 9(b)) and PSEs (Fig. 9(c)).

Finally, the overall design effort required for access and

persistence is similar (Fig. 9(d)).
Fig. 10. Implementation effort. (a) Skeleton code. (b) Implementation code.

(c) Overall implementation effort.
7.2. Implementation effort

The realization of access transparency involves gener-

ating skeleton code for the direct mappings of engineering

elements, capsules and interfaces (Section 6). Similarly, for

persistence transparency, skeleton code is generated for the

PSDL specification and implementation of storage objects.

Specifically, for the declaration of skeleton CCC classes,

IDL interfaces and PSDL specifications we count 2LOC.

For the declaration of a structural or a behavioral feature we

count 1LOC. Similarly, for the definition of a behavioral

feature we count 2LOC. Consequently, the total amount of

skeleton code as a function of the size of a system is:

IESkelAccess
Z 2 � ðNEngElem CNEngInterf CNEngCapsuleÞ

C
X

iZ1;.;NEngElem

3 � NBehEngElemi
CNStrEngElemi

� �

C
X

iZ1;.;NEngInterf

NBehEngInterfi

� �

C
X

iZ1;.;NEngCapsule

3 � NBehEngCapsulei
CNStrEngCapsulei

� �

IESkelPersistence
Z 10 � NEngElem C

X
iZ1;.;NEngElem

NBehEngElemi

�

CNStrEngElemi

�
C

X
iZ1;.;NEngElem

3 � NBehEngElemi

�

CNStrEngElemi

�

Regarding the implementation code generated for access

transparency we have 11LOC for the additional behavioral

features, added in every engineering element. Moreover, we

have 36LOC for the additional behavioral features, added in

every engineering capsule (part of the code is given in

Fig. 8(1 and 2)). For the case of location transparency,

2LOC of implementation code is generated for each capsule

(Fig. 8(3)). Finally, for persistence transparency we have

22LOC of implementation code for every engineering

capsule (part of the code is given in Fig. 8(4)). Hence, the

total amount of implementation code as a function of
the size of a system is:

IEImplAccess
Z 11 � NEngElem C36 � NEngCapsule

IEImplLocation
Z 2 � NEngCapsule

IEImplPersistence
Z 22 � NEngCapsule

In the CCS case study, the overall size of skeleton and

implementation code is 425LOC. Fig. 10 shows the

implementation effort required for the three transparencies

in the case of more complex systems. As with the case of the

design effort we assume that the number of different types of

capsules linearly increases. The access and persistence

transparencies are the most demanding ones with respect to

both the skeleton (Fig. 10(a)) and the implementation code

(Fig. 10(b)) that should be produced to achieve them.

Fig. 10(c) shows how the overall implementation effort

increases with the size of the system.

The overall conclusion from the results given in Figs. 9

and 10 is that the benefits from the application of the

proposed methodology increase linearly with the size of

the system that is under construction. It should be further

highlighted that the results from our experiments can

become even more encouraging in cases of systems

consisting of more complex engineering elements and

A. Zarras / Information and Software Technology 48 (2006) 498–516 515
interfaces, comprising an increased number of structural and

behavioral features.
8. Related work

Moriconi et al. [24] addressed the issue of architecture

refinement. According to the authors, the architecture

specification of a system comprises a description of

the different kinds of architectural elements that realize

the fundamental functionality of the system and a theory of

properties, specifying the semantics of these elements. The

properties are specified using formal notations like temporal

logic, CSP, pi-calculus, etc. Refining an abstract architec-

ture into a concrete one involves mapping abstract

architectural elements into concrete ones. The particular

set of mapping rules used is called a refinement pattern. The

overall refinement procedure is faithful if: (1) every

property in the theory of the abstract architecture is a

logical consequence of properties that belong in the theory

of the concrete architecture; (2) every property in the

theory of the concrete architecture can be expanded into a

theory model that proves a property of the abstract theory.

In the context of MDA, there have been several

approaches that follow similar methodologies with the one

proposed by Moriconi et al. More specifically, in [25] the

authors discuss the use of patterns towards the transform-

ation of UML models. Kafka [26], JaMDA [27],

AndroMDA [28] and ArcStyler [29] are representative

examples of tools that address the issue of model

transformation and code generation. In [30], the authors

use template forms of UML diagrams to produce CORBA-

based PSMs from PIMs. Similarly, in [11,31], the authors

use AOM to refine PIMs into PSMs that take into account

security concerns. In all these approaches, the resulting

PSMs and code mainly realize a single form of trans-

parency. In order to realize more than one forms of

transparency the developers should manually tune one or

more transformation patterns to result in a single composed

transformation pattern. In this particular point, the OptimalJ

tool [32] appears more advanced compared to the rest of the

tools we discussed. OptimalJ allows to transform PIMs into

J2EE PSMs that realize access transparency. Moreover, it

allows specifying aspects that can be used to automatically

extend the code that is originally generated by the tool.

These aspects may concern, for instance, other forms of

transparency. However, there is still no systematic support

regarding the rules that should govern the aspects’

composition. Our approach specifically tackles this

problem. Therefore, it can be used in conjunction with

existing MDA tools to enhance their provided functionality.

On the other hand, the functionality of existing MDA tools

may serve for developing refinement and code generation

weavers like the ones we propose.

The aspect composition problem is discussed in [33].

The solution proposed by the author consists of specifying
aspects in relation to each other. In particular, to compose

an aspect A with an aspect B, we have to specify in B

point-cuts that group aspect statements of A. Within such

a point-cut there exist advice statements that should be

placed before or after the aspect statements of A. Then,

the author proposes using an aspect preprocessor, which

takes as input A and B and produces the composed aspect

C. This particular approach is interesting. However, it

renders difficult the upgrade of the generated models and

code. Each time we need to add a distribution transparency

requirement in a system, we have to re-compose all

aspects and re-generate the system’s enhanced models and

code. The proposed methodology efficiently deals with the

aforementioned issue. As we detailed in Sections 5 and 6,

the idea is to define transparency aspects that can be

applied on the results of other transparency aspects.

Another important issue that is not taken into account in

[33] is the scalability problem introduced when defining

aspects in relation to each other. Dealing with this problem

relates to the identification of realization dependencies

between transparency related aspects. In our approach we

cover this issue based on results that were further

discussed in [9].
9. Conclusions

In this paper, we presented a systematic approach for the

realization of distribution transparencies. More specifically:

† We proposed a UML-based representation for the

specification of engineering models.

† We developed an AOM-based refinement method that

facilitates the refinement of engineering models into

technology models.

† We elaborated an AOP-based code generation method

for the generation of platform specific code, from

technology models, resulting from the refinement

method.

† Finally, we assessed the benefits of the proposed

methodology, based on a generic framework for the

evaluation of the design and the implementation effort,

required for the realization of distribution transparencies.

As discussed in Section 8, the proposed methodology can

benefit from functionality provided by already existing

MDA tools. Most of these tools provide APIs that allow to

directly process a graphical UML model. However, using

such APIs in the implementation of our approach implies

placing strong dependencies between our prototype and the

tools that provide these APIs. To avoid such dependencies,

we have chosen to build our first prototype from scratch,

while keeping it interoperable with existing MDA tools.

Most of the existing MDA tools include add-ins enabling

the generation of XMI textual specifications of UML

graphical models. In consequence, we have also chosen

A. Zarras / Information and Software Technology 48 (2006) 498–516516
XMI as the standard input format for our refinement and

code generation weavers. Currently, we experiment with the

integration of our prototype with the Rational Rose tool.

This choice is mainly motivated by our previous experience

with this tool. However, we also intend to investigate other

tools amongst the ones discussed in Section 8.

The approach we proposed here can be complemented

with methods and tools for the automated quality analysis of

technology models [34]. Another challenging problem that

we investigate consists of reverse engineering platform

independent models from platform specific code. Our

interest to this problem originates from the fact that

middleware platforms keep evolving. Nowadays, for

instance, object-oriented middleware platforms start giving

their place to component-based middleware platforms.

Consequently, the provision of systematic methods and

tools for reverse engineering PIMs shall facilitate the

migration of systems’ implementations that rely on ‘legacy’

middleware platforms to systems’ implementations that are

based on ‘up-to-date’ middleware platforms.
References

[1] P.A. Bernstein, Middleware: a model for distributed system services,

Commununications of the ACM (CACM) 39 (2) (1996) 86–98.

[2] ISO/IEC. Open Distributed Processing Reference Model. Part 3:

Architecture. Technical Report 10746-3, ISO/IEC, 1995.

[3] OMG. Common Object Request Broker Architecture (CORBA/IIOP)

v3.0. Technical Report formal/02-12-02, OMG Document.

[4] Sun Microsystems, The Java 2 Enterprise Edition (J2EE) Specifica-

tion v.1.4, Technical Report.

[5] Microsoft Corporation, COMCv1.5, Technical Report.

[6] OMG, Model Driven Architecture, Technical Report ormc/2001-07-

01, OMG Document.

[7] D. Perry, A. Wolf, Foundations for the study of software architecture,

ACM SIGSOFT Software Engineering Notes 17 (4) (1992) 40–52.

[8] OMG, UML Superstructure v.2.0, Technical Report ptc/03-08-02,

OMG Document.

[9] A. Zarras, A comparison framework for middleware infrastructures,

Journal of the Object Technology 3 (5) (2004) 100–123.

[10] J. Gray, T. Bapty, S. Neema, J. Tuck, Handling crosscutting

constraints in domain-specific modeling, Communications of the

ACM 44 (10) (2001) 87–93.

[11] I. Ray, R. France, N. Li, G. Georg, An aspect-based approach to

modeling access control concerns, Information and Software

Technology 46 (9) (2004) 575–587.

[12] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier, C. Lopes, C.

Maeda, A. Mendhekar, Aspect-oriented programming, ACM

Computing Surveys 28 (4) (1996).
[13] T. Elrad, R.E. Filman, A. Bader, Aspect-oriented programming:

introduction, Communications of the ACM 44 (10) (2001) 29–32.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.

Griswold, Getting started with ASPECTJ, Communications of the

ACM 44 (10) (2001) 59–65.

[15] H. Ossher, P. Tarr, Hyper/J: multi-dimensional separation of

concerns for Java Proceedings of the 22nd IEEE-ACM-SIGSOFT

International Conference on Software Engineering (ICSE’00) 2000

pp. 734–737.

[16] M. Henning, S. Vinoski, Advanced CORBA Programming with

CCC, Addison Wesley, Reading, MA, USA, 1999.

[17] OMG, UML Profile for Schedulability Performance and Time,

Technical Report ptc/03-03-02, OMG Document, 2002.

[18] OMG, UML Profile for CORBA v.1.0, Technical Report formal/

02-04-01, OMG Document.

[19] OMG, UML Profile for Enterprise Distributed Object Computing

(EDOC), Technical Report ptc/02-02-05, OMG Document.

[20] OMG, The CORBA Services Specification, Technical Report, OMG

Document.

[21] N. Medvidovic, R. Taylor, A classification and comparison frame-

work for software architecture description languages, IEEE Trans-

actions on Software Engineering 26 (1) (2000) 70–93.

[22] S.R. Chindamber, C.F. Keremer, A metrics suite for object oriented

design, IEEE Transactions on Software Engineering 20 (6) (1994)

476–493.

[23] B. Henderson-Sellers, Object-Oriented Metrics-Measures of Com-

plexity, Prentice-Hall, New Jersey, USA, 1996.

[24] M. Moriconi, X. Quian, R.A. Riemenschneider, Correct architecture

refinement, IEEE Transactions on Software Engineering 21 (4) (1995)

356–370.

[25] S. Sendal, W. Kozaczynski, Model transformation: the heart and soul

of model-driven software development, IEEE Software 20 (5) (2004)

42–45.

[26] T. Weis, A. Ulbrich, K. Geihs, Model metamorphosis, IEEE Software

20 (5) (2004) 46–51.

[27] The JaMDA Project, Technical Report, http://jamda.sourceforge.net/.

[28] AndroMDA from UML to Deployable Components, Technical

Report, http://www.andromda.org/pages/whatisit.html.

[29] ArcStyler 4.0: Product Background Information, Technical Report,

Interactive Objects. http://www.iO-Software.com.

[30] Kamalakar, B., Ghosh, S., A middleware transparent approach for

developing CORBA-based distributed applications, Technical Report

CS04-104, Colorado State University, 2004.

[31] R. France, D-K. Kim, S. Ghosh, E. Song, A UML-based pattern

specification technique, IEEE Transactions on Software Engineering

30 (3) (2004) 193–206.

[32] OptimalJ: How transformation patterns transform UML models into -

high-quality J2EE applications, Technical Report, Compuware, http://

www.compuware.com/products/optimalj/1794_ENG_HTML.htm.

[33] L. Bussard, Towards a pragrmatic composition model of CORBA

services based on ASPECT/J Proceedings of the ECOOP Workshop

on Aspects and Dimension of Concerns 2000.

[34] V. Issarny, C. Kloukinas, A. Zarras, Systematic aid for developing

middleware architectures, Communications of the ACM (CACM) 45

(6) (2002) 53–58.

http://jamda.sourceforge.net/
http://www.andromda.org/pages/whatisit.html
http://www.iO-Software.com
http://www.compuware.com/products/optimalj/1794_ENG_HTML.htm
http://www.compuware.com/products/optimalj/1794_ENG_HTML.htm

	Applying Model-Driven Architecture to achieve distribution transparencies
	Introduction
	Background and motivating example
	Aspect-oriented programming and modeling
	Middleware and distribution transparencies
	Motivating example

	A principled methodology for distribution transparencies
	Specification of the systems engineering models
	Refinement of engineering models into corresponding technology models
	Generation of platform specific code

	UML representation for engineering models
	Refinement method
	Refinement aspects
	Refinement weaver

	Code generation method
	Code generation aspects
	Code generation weaver

	Assessment
	Design effort
	Implementation effort

	Related work
	Conclusions
	References

