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Mining Abstract XML Data-Types
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Schema integration has been a long-standing challenge for the data-engineering community that has received steady at-
tention over the past three decades. General-purpose integration approaches construct unified schemas that encompass all
schema elements. Schema integration has been revisited the last decade in service-oriented computing, since the input/output
data-types of service interfaces are heterogeneous XML schemas. However, service integration differs from the traditional
integration problem, since it should generalize schemas (mining abstract data-types), instead of unifying all schema elements.
To mine well-formed abstract data-types, the fundamental Liskov Substitution Principle (LSP), which generally holds be-
tween abstract data-types and its subtypes, should be followed. However, due to the heterogeneity of service data-types, the
strict employment of LSP on them is not usually feasible. On top of that, XML offers a rich type system, based on which
data-types are defined via combining type patterns (e.g. composition, aggregation). The existing integration approaches have
not dealt with the challenges of defining subtyping relation between XML type patterns. To address these challenges, we
propose a relaxed version of LSP between XML type patterns and an automated generalization process for mining abstract
XML data-types. We evaluate the effectiveness and the efficiency of our process on the schemas of two datasets against
two representative state-of-the-art approaches. The evaluation results show that our process has higher effectiveness and
efficiency than those of the state-of-the-art approaches.
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1. INTRODUCTION
Schema integration has been a long-standing challenge for the data-engineering community [Doan
and Halevy 2005]. Schema integration is the process of merging schemas into a unified schema that
that encompasses all schema elements [Batini et al. 1986]. In particular, the integration process first
establishes semantic correspondences between schema elements and then merges them [Pottinger
and Bernstein 2003].

Schema integration has been revisited the last decade in the field of service-oriented computing
[Erl 2005] to reconcile heterogeneity in service interfaces. In particular, famous software vendors
(e.g. Google1, Amazon2) currently make available their resources over the Web as services, ex-
posing the programmable service interfaces3. Service interfaces are generally defined as sets of
operation signatures, whose input/output data-types are XML schemas4.

1 http://developers.google.com/maps/web-services/overview
2 http://aws.amazon.com
3 http://www.w3.org/TR/ws-arch
4 http://www.w3.org/XML
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Fig. 1. The proposed generalization process that mines abstract XML data-types.

However, service interfaces are usually characterized by high heterogeneity. To reconcile the het-
erogeneity in service interfaces, some approaches have been proposed in the literature (e.g. [Athana-
sopoulos et al. 2011; Liu and Liu 2012]). These approaches automatically mine abstract services
out of a set of alternative services. The data-types of abstract services should generalize the com-
mon/similar elements of input/output data-types. In this way, service integration actually deals with
the problem of schema generalization, instead of the general-purpose schema-integration problem.

To mine well-formed abstract data-types, the fundamental Liskov Substitution Principle (LSP),
which generally holds between abstract data-types and its subtypes, should be followed [Liskov and
Wing 1994]. Specifically, LSP imposes requirements on type signatures and behaviours. Based on
the signature requirements, an input (resp. output) type is subtype (resp. super-type) of another type
if the former (resp. latter) is declared subtype5 of the latter (resp. former). Based on the behavioural
requirements, objects of a subtype should behave only as allowed by objects of its super-type.

Due to the heterogeneity of service data-types, the strict employment of LSP in service interfaces
is not usually feasible. For instance, data-types defined by a service provider are not declared sub-
types of the data-types defined by another service provider. Thus, the challenge is to define a version
of LSP for independently defined service data-types. On top of that, XML offers a rich type-system,
based on which service data-types are defined via combining type patterns (e.g. composition, aggre-
gation) [Rahm et al. 2004]. However, the existing approaches that integrate XML schemas ignore
type patterns. In this way, the challenge is to define subtyping relation between type patterns. The
last (time and space efficiency) challenge is related to the fact that schemas of service data-types
usually include a high number of type patterns [Rahm et al. 2004]. This high number leads to the
enumeration of a very high number of pattern combinations for examining subtyping relations be-
tween type patterns. For instance, the Amazon Web service EC26 includes type patterns that are
repeated more than 1000 times.

To address the first challenge, we propose a relaxed version of the LSP subtyping relation. I partic-
ular, we define LSP-based subtyping based on (i) the number, the structure, and the syntax of schema
elements (syntactic subtyping) and (ii) the generalization/specialization relationships of element la-
bels (semantic subtyping). To address the second challenge, we propose an automated generaliza-
tion process that includes three sequentially executed mechanisms (Fig. 1). The first mechanism
enumerates type patterns that have syntactic subtyping relation. The second mechanism matches
and filters out the enumerated type patterns that have semantic subtyping relation. The third mech-
anism constructs abstract data-types from the filtered type patterns. To address the third challenge,
we enhance the above mechanisms with pruning and greedy techniques. These techniques achieve
the efficient enumeration of patterns, avoiding pattern redundancy. To do so, the efficiency tech-
niques enumerate the best possible patterns by using two suites of metrics. The first suite assesses
the syntactic confidence of type patterns (a.k.a pattern confidence) via calculating the pattern den-
sity. The second suite of metrics assesses the semantic confidence of type patterns (a.k.a. matching
confidence).

We evaluate the effectiveness and the (time and space) efficiency of our process on two
datasets. The first dataset includes the schema pairs provided by the (publicly available) benchmark
XBenchMatch7 of XML schemas. The second dataset includes the data-type schemas of Amazon
Web services. We evaluate the generalization process against two representative state-of-the-art ap-
proaches. The one approach is a general-purpose integration approach [Saleem et al. 2008] and the

5 In Java, a type S is declared subtype of a type T if S implements or extends T.
6 http://aws.amazon.com/releasenotes/Amazon-EC2
7 http://liris.cnrs.fr/∼fduchate/research/tools/xbenchmatch
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other approach is an LSP-based generalization approach [Athanasopoulos et al. 2011]. To evaluate
the effectiveness of mined abstract data-types, we further propose an effectiveness metric that com-
pares mined data-types against expert data-types. Moreover, we evaluate the impact of the pruning
and the greedy techniques on both the efficiency and the effectiveness of our process. The evalua-
tion results show (i) high effectiveness of our process for both datasets in identifying type patterns
and mining abstract data-types; (ii) the pruning and greedy techniques significantly increase the
efficiency of our process, without reducing its effectiveness.

We summarize our contribution as follows:

i. survey of state-of-the-art integration approaches
ii. definition of the notions of type pattern, subtyping relation, and abstract data-type

iii. definition of pattern and matching confidence metrics
iv. specification of the mechanisms of our process
v. description of a methodology for tuning the thresholds used by our process

vi. definition of the effectiveness metric for abstract data-types;
vii. evaluation of the effectiveness and the efficiency of our process.

The rest of the paper is structured as follows. Section 2 categorizes and compares the related
state-of-the-art approaches. Section 3 specifies the basic notions used by the generalization pro-
cess. Section 4 provides an overview of the generalization process. Sections 5, 6, and 7 detail the
modus operandi of the mechanisms and define the confidence metrics. Section 8 evaluates the effi-
ciency and the effectiveness of our process and describes the tuning methodology. Finally, Section
9 summarizes our contribution and proposes future research directions.

2. RELATED WORK
Our approach belongs to the research field of schema integration. Schema integration is the process
of firstly establishing schema matchings and following, merging schemas into a unified schema
[Pottinger and Bernstein 2003]. This process is also known as view integration [Batini et al. 1986].
Apart from unified schemas, mediated schemas can be further constructed to provide uniform query
scripts to users [Halevy et al. 2006]. The construction of mediated schemas is the outcome of an
extended process, known as data integration [Pottinger and Bernstein 2008]. Since we generalize
schemas providing an abstract view of schemas (instead of constructing querying scripts), we focus
in the remainder of the paper on view integration approaches.

In the decade of 80’s, [Batini et al. 1986] specified a view integration process that includes the
pre-integration, schema comparison, schema conformance, and merging phases. In the first phase,
the integration strategy is chosen depending on the number of input schemas (e.g. binary vs. n-
ary strategies). In the second phase, schemas are compared to identify correspondences between
elements and detect possible conflicts. The third phase deals with the conflicts resolution to make
the schema merging possible. In the last phase, schemas are integrated in a unified schema.

In the decade of 90’s, [Parent and Spaccapietra 1998] evolved the process into one that includes
three phases (schema transformation, correspondence investigation, and schema integration). The
purpose of the first phase is to make source schemas syntactically and semantically homogeneous.
In the second phase, schemas are compared to identify correspondences between elements. In the
last phase, schemas are merged guided by the identified correspondences.

In the last two decades, the integration process has been further evolved into a three-phase
matching-centred process (schema matching, matching-driven integration, mapping formulation)
due to the popularity and plethora of schema-matching approaches [Li 2012]. In this vein, we cate-
gorize the existing approaches in terms of the followed matching techniques as follows.

i. Conflict-driven approaches. The approaches of this category (e.g. [Baqasah et al. 2014; Ma
et al. 2005; Pottinger and Bernstein 2003; Parent and Spaccapietra 1998; Kashyap and Sheth
1996]) follow the process described in [Batini et al. 1986] and aim at resolving conflicts. The
most used categories of conflicts concern element names, built-in types, element cardinalities,

ACM Transactions on the Web, Vol. 00, No. 00, Article 00, Publication date: 00.
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and schema structures. Some approaches deal with generalization conflicts [Batini et al. 1986],
but these conflicts concern the element labels or built-in types and not type patterns.

ii. Constraint-driven approaches. The approaches of this category (e.g. [Li and Quix 2011; Are-
nas et al. 2010; Pottinger and Bernstein 2008; Bernstein et al. 2004]) accept logical constraints
as input and perform reasoning on the schema merging. For instance, [Bernstein et al. 2004]
applies inter- and intra-schema integrity constraints in unified schemas. [Pottinger and Bern-
stein 2008] generates unified schemas based on conjunctive queries that specify where input
schemas overlap. However, these approaches do not consider constraints on type patterns.

iii. Matching-driven approaches. The approaches of this category (e.g. [Liu and Liu 2012; Athana-
sopoulos et al. 2011; Radwan et al. 2009; Sarma et al. 2008; Saleem et al. 2008; Melnik et al.
2003]) identify correspondences between schema elements as hints for the merging phase.
For instance, [Saleem et al. 2008] and [Melnik et al. 2003] apply structure-preserving sub-
tree matching techniques. [Athanasopoulos et al. 2011] and [Liu and Liu 2012] match the leaf
elements of schema trees.

Moving beyond the existing integration approaches. The above approaches are compared in
Table I in terms of the type of input schemas (e.g. XML, relational), integration techniques (e.g. rule-
based, clustering, mining), properties of the unified schemas (e.g. generalization, completeness), and
efficiency techniques (e.g. greedy matching, pruning). Based on the above comparison, our approach
is closely related to the matching-driven approaches of [Saleem et al. 2008] and [Athanasopoulos
et al. 2011]. These are the two approaches that we use for evaluating our approach in Section 8.

[Saleem et al. 2008] is a general-purpose integration approach, but it is not a schema gener-
alization approach. In particular, it is the only approach that applies XML subtree mining as an
integration technique, without though considering the integration of type patterns. Concerning the
properties of the unified schemas, [Saleem et al. 2008] achieves schema completeness8 and mini-
mality9, but not schema generalization.

[Athanasopoulos et al. 2011] is a generalization approach that adopts an LSP-based subtyping
relation between the leaf elements of XML schemas, without though examining this relation be-
tween the type patterns formed by the internal schema elements. In this way, the approach considers
a simplified version of subtyping relation between schemas.

Concerning our approach, it extends pattern mining and matching techniques for generalizing
type patterns. To clarify how our techniques extend the existing ones, we further describe the most
representative pattern mining and schema matching techniques in Sections 2.1 and 2.2.

2.1. Pattern mining
Pattern mining techniques aim at extracting subtrees in schema trees. The core types of subtrees
are bottom-up, induced, and embedded [Jiménez et al. 2010]. A bottom-up subtree is rooted at any
node of the tree and involves all the descendants of the root node. An induced subtree is obtained
by a bottom-up subtree by repeatedly removing leaf nodes. An embedded subtree consists of nodes
that do not break the ancestor-descendant relations. Embedded subtree mining techniques extract
more patterns than the other subtree mining techniques, since embedded subtrees do not necessarily
preserve parent-child node relations [Zaki 2005a]. To mine embedded subtrees, a suitable algorith-
mic technique can be pumped from the subtree mining domain [Chi et al. 2005]. The techniques
of this domain can be divided into two broad categories: candidate-generation-and-test and pattern-
growth. In the first category, the existing techniques (e.g. [Zaki 2005a; Zaki 2005b]) a-priori form
all the possible subtrees and iteratively extend them if they appear in schemas. On the other hand,
the techniques of the second category (e.g. [Pei et al. 2004; Yan et al. 2003; Wang et al. 2004; Zou

8 The schema completeness is the percentage of the source elements that are found in a unified schema [Batini et al. 1986].
9 The schema minimality is achieved if no redundant concept appears in a unified schema [Batini et al. 1986].
10 The term HERM stands for the Higher-order Entity-Relationship Model, which is an extension of the flat ER model.
11 A data model capable of describing various data models, e.g. entity-relationship, relational, hierarchical, etc.

ACM Transactions on the Web, Vol. 00, No. 00, Article 00, Publication date: 00.



Mining Abstract XML Data-Types 00:5

Table I. Summary and comparison of schema integration approaches.

Approaches Categories Input Integration Unified-Schema Efficiency
Techniques Properties Techniques

[Ma et al. 2005]

conflict-

HERM10

rule-based minimality & X
[Kashyap and Sheth 1996]

driven

relational
[Baqasah et al. 2014] XML completeness[Parent and Spaccapietra 1998] meta-model11
[Pottinger and Bernstein 2003] correspondences
[Arenas et al. 2010]

constraint-
meta-model11

mapping-based minimality &
X

[Li and Quix 2011]
driven relational completeness[Pottinger and Bernstein 2008] query-based

[Bernstein et al. 2004] schema similarity completeness
[Liu and Liu 2012] WSDL & leaf matching –

X
[Athanasopoulos et al. 2011] XML leaf subtyping generalization
[Radwan et al. 2009] matching- meta-model11 context-based
[Sarma et al. 2008] driven relational element clustering minimality &
[Saleem et al. 2008] XML subtree mining completeness greedy mining
[Melnik et al. 2003] meta-model11

Our approach matching- XML subtree mining & generalization pruned mining

driven type-pattern subtyping (LSP-based indexing structure
subtyping) greedy matching

et al. 2006]) are more efficient than those of the first category, since the former directly enumerate
subtrees that appear in schemas.

Due to the high efficiency of the techniques of the second category, we extend in our problem a
pattern-growth technique. In particular, we extend the embedded-subtree pattern-growth technique
of [Zou et al. 2006] as follows.

i. Mining of valid embedded type patterns that have syntactic subtyping relation. While the recent
subtree mining technique of [Chowdhury and Nayak 2014] checks the pattern validity based on
the canonical form of a tree, our technique checks the pattern validity based on the XML syntax.

ii. Mining of type patterns of two layers. The first layer concerns the mining of type patterns in
an abstract form. The second layer concerns the enumeration of alternative instantiations of a
pattern in schemas.

iii. Employment of a pruning technique. Since the number of patterns and instantiations may be
very high, our technique avoids pattern redundancy via applying a confidence-driven pruning-
technique, in contrast to general purpose pattern pruning techniques (e.g. [Zou et al. 2006;
Chowdhury and Nayak 2014]). In particular, our pruning technique pre-calculates upper-
bounds of the final confidence values of enumerated patterns.

iv. Employment of an indexing technique. We further increase the efficiency of our technique by
constructing an indexing data-structure that accelerates the traversal of schema trees.

2.2. Schema Matching
Matching approaches12 have been applied in hierarchical (e.g. XML), relational (e.g. SQL [Beaulieu
2009]), and ontology schemas (e.g. OWL13). We compare matching approaches based on two cri-
teria: (i) whether an approach matches the schema structure; (ii) whether an approach accounts for
the efficiency of matching algorithm. The outcome of the comparison is summarized in Table II.

Concerning the first criterion, we hereafter call structure-based the approaches that match the
schema structure. We organize the structure-based approaches into two categories. The first cate-
gory includes approaches that match the schema structure in a relaxed manner, i.e. they match the
context of schema elements (e.g. element ancestors, descendants). We call the approaches of the
first category context-based. The second category includes approaches that match the schema struc-

12 The interested reader can also refer to the excellent surveys of schema [Rahm and Bernstein 2001; Bellahsene et al. 2011]
and ontology [Shvaiko and Euzenat 2013] matching approaches.

13 http://www.w3.org/TR/owl-features
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Table II. Summary and comparison of (schema and ontology) structure-based matching approaches.

Approaches Categories Input Type Schema Structure Efficiency TechniquesPatterns Parts
[Hamdaqa and Tahvildari 2014] XML-based

X

X
[Duchateau et al. 2007b]

XML

Graph-structured
[Duchateau et al. 2007c] element
[Meo et al. 2006] neighbourhood
[Duchateau et al. 2007a] B-tree structure
[Hu et al. 2008] OWL, RDFS Partition-based matching
[Do and Rahm 2002] XML Element path, X

[Do and Rahm 2007] XML, OWL children, Partition-based matchingSQL leaves
[Madhavan et al. 2001]

XML

Tree leaves X

[Algergawy et al. 2009] Element ancestor path, Prüfer sequencesContext- children, leaves
[Lee et al. 2002] based Element children, leaves

X
[Giunchiglia et al. 2004] XML, OWL Element descendants
[Nayak and Iryadi 2007]

XML

Element ancestor

[Algergawy et al. 2010] Element ancestor,
children, leaves

[Kim et al. 2011] Root path Greedy graph matching
[Meijer 2008] Element path

X
[Cruz et al. 2009] XML, OWL Element descendants,

RDFS siblings
[Jean-Mary et al. 2009] OWL Element structural
[Lambrix and Tan 2006] relations
[Saleem et al. 2008] XML Embedded subtree Greedy subtree mining

[Melnik et al. 2003] Structure- XML, UML Induced subtree
Xpreserving SQL, RDF

[Voigt 2011]

XML

Embedded subtree

Our approach Syntax-
X

Embedded subtree Pruned subtree mining

conforming (type-pattern subtyping) indexing structure
greedy pattern matching

ture in a strict manner, i.e. they match the tree/graph schema structure. We call the approaches of
the second category structure-preserving. Context-based approaches are not necessarily structure-
preserving (e.g. ancestor-descendant node relations may be violated). Moreover, context-based ap-
proaches are generally less effective than structure-preserving ones [Saleem et al. 2008]. Certain
structure-preserving approaches mine subtree patterns and consequently, are more computationally
demanding than the rest approaches of the second category.

Regarding the second criterion, the (time and space) complexity of an algorithm is acceptable if
it scales polynomially with the size of the algorithm input (in our case, the number of schemas) [Pa-
padimitriou 1994]. The algorithm efficiency in structure-preserving (esp. pattern-based) approaches
is important, since they are computationally demanding.

2.2.1. Context-based matching approaches. We organize the approaches into two groups based
on how the former define the element context. The approaches of the first group models a schema by
a graph [Hamdaqa and Tahvildari 2014; Duchateau et al. 2007b; Duchateau et al. 2007c; Duchateau
et al. 2007a; Meo et al. 2006]. In this case, the context of an element is captured by the graph-
structured neighbourhood of an element, i.e. the nodes that can be reached by traversing graph edges.
The approaches of the second group models a schema by a tree [Do and Rahm 2002; Aumueller
et al. 2005; Do and Rahm 2007; Madhavan et al. 2001; Algergawy et al. 2009; Lee et al. 2002;
Giunchiglia et al. 2004; Nayak and Iryadi 2007; Cruz et al. 2009; Algergawy et al. 2010; Kim
et al. 2011; Jean-Mary et al. 2009; Lambrix and Tan 2006]. In this case, the context of an element
includes the element descendants, ancestors, children, leaves, or a combination of them. The second
group also includes approaches (e.g. [Meijer 2008]) that match the schema structure via adopting
tree edit-distance techniques [Bille 2005].

Independently of the considered definition of the element context, context-based approaches are
usually less effective than structure-preserving ones. For instance, as evaluated in [Saleem et al.
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Table III. The mapping between type patterns and XML elements.

Basic Type-Patterns XML Compositors/ComponentsCategories Sub-categories

has-as-attributes
has-ordered-attributes sequence
has-one-attribute choice
has-unordered-attributes all

group-of-attributes
group-of-ordered-attributes sequence
group-of-one-attribute choice
group-of-unordered-attributes all

specialization

complexType extension complexContent & extension
complexType restriction complexContent & restriction
simpleType extension simpleContent & extension
simpleType restriction simpleContent & restriction
built-in type restriction simpleType & restriction

is-a complexType inheritance element
list built-in type list simpleType & list
union simpleType/built-in type union simpleType & union

2008], a structure-preserving matching technique is more effective than the context-based matching
technique of [Do and Rahm 2007].

2.2.2. Structure-preserving matching approaches. Starting with the approach of [Saleem et al.
2008], it produces structure-preserving matchings by using the subtree-mining technique of [Zaki
2005a]. The main difference with our approach is that [Saleem et al. 2008] matches and integrates
schemas aiming at the completeness and minimality of unified schemas, without considering type
patterns. Continuing to the approach of [Melnik et al. 2002], it produces structure-preserving match-
ings via enumerating all possible subtrees of XML schemas. Particularly, it mines induced subtrees,
which are less general than embedded subtrees. Moreover, it does not consider type patterns and
their subtyping relation. The approach of [Voigt 2011] mines embedded subtrees from each input
schema independently of the other. In this way, it may miss subtrees that co-exist in schemas. More-
over, the approach does not consider type patterns and their subtyping relation. Finally, [Voigt 2011]
mines the complete set of patterns, having time and space efficiency issues.

3. BASIC NOTIONS
We define the following notions that are used by our process: schema representation (Section 3.1),
type pattern (Section 3.2), pattern-instantiation matching (Section 3.3), abstract data-type (Section
3.4), subtyping relation (Section 3.5), and abstract-to-source matching (Section 3.6).

3.1. Schema Representation
XML schemas contain two categories of elements: components and compositors. A component is
used for defining a concept. A compositor relates components. Compositors and components are
combined to form type patterns. A type pattern may include multiple successive compositors. The
XML type patterns are provided in Table III.

Independently of the formed type patterns, we model a schema by an ordered labelled tree S
(Table IV (Eq. 1)), which is characterized by its id (i.e. a URI that uniquely recognizes a schema
over the Web) and its root element e. An element E (Table IV (Eq. 2)) is characterized by (i) its
field oe (Table IV (Eq. 3)) that includes the kind and label of the element; (ii) its scope; (iii) the
set of its children. Regarding the (possibly empty) element label, it consists of pairs of attributes
and values (Table IV (Eq. 4)). The value of an attribute may be a reference to another element.
Element referencing permits the reuse of components, making schemas graph-structured. Since a
tree-structured model is conceptually closer to the hierarchical structure of a data-type, we transform
any schema into its corresponding tree-structured schema by removing element references that form
cycles. We call a leaf node in a formed tree as component declaration (a leaf always corresponds to a
component). We further call a non-leaf node as element definition (a non-leaf node may correspond
to a component or a compositor).
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Table IV. The definition of the schema represention model (using the convention instance:Type).

[Schema]: S :=
(
id : anyURI15, e : E

)
(1)

[Element]: E :=
(
oe : OE, scope : SCOPE, children

)∣∣ children =
{
ei : E

}
∧ ei.oe.kind ≤

ei+1.oe.kind (2)

[Original element]: OE :=
(
kind : String, label : LABEL

)
(3)

[Element label]: LABEL :=
{(
a : String, v : anyType15

)}
(4)

[Element scope]: SCOPE :=
[
left ∈ N, right ∈ N

]
(5)

We use in the above definition the term element kind to refer to its XML kind (e.g. complexType,
simpleType). We consider the element kind as the syntactic field of an element, since the element
kind determines the type pattern in which an element participates. On the contrary, we consider
the element label as the semantic content of an element, since a label is related to the semantic
information needed for specifying a concept.

Concerning the element scope, it corresponds to the position of an element in a schema tree. The
scope is defined as an interval of two integers (Table IV (Eq. 5)). The left endpoint corresponds to
the numbering (starting from zero) of the element based on the pre-order traversal of the schema
tree. The right endpoint corresponds to the numbering of the rightmost descendant of the element.
Using element scopes, our mechanisms can check at constant time tree-node properties (e.g. whether
a tree node is root, leaf, descendant of another node) [Saleem et al. 2008].

Finally, the set of the children of an element includes its in-line (a.k.a locally declared) and/or
referenced elements. To recognize different paths from the root node to a reused element, our model
maintains links to (instead of copies of) reused elements [Rahm et al. 2004]. To this end, our model
uses the field OE14 (Table IV (Eq. 3)) to keep the content (i.e. kind and label) of a reused element only
once. In this way, the size |s| of a schema s equals to the number of distinct elements, increased by
the number of the links to reused elements. In our model, the schema size is found at constant time
by retrieving the right endpoint of the scope of the rightmost element of a schema tree.

Finally, XML schemas are generally semi-ordered, since some compositors (e.g. sequence) de-
fine an order among their children. Without lose of generality, our schema parser automatically
transforms a semi-ordered tree in its ordered representation [Zaki 2005a] via defining a linear (i.e.
alphabetical) order on its elements with respect to their kinds (Table IV (Eq. 2)). In this way, we
decrease the complexity of the mechanisms of the generalization process, since they examine less
combinations of ordered elements.

Taking an example, Fig. 2 depicts three XML schemas that define three alternative data-types
(StudiesInfo1, StudiesInfo2, and StudiesInfo3). Fig. 3 represents the schemas by using
our model and gives some examples of scopes, schema sizes, and type patterns.

3.2. Type Pattern
We distinguish two categories of type patterns: basic and composite patterns. A basic pattern in-
cludes one or multiple successive compositors, followed by one or multiple components. The per-
missible syntactic combinations of components and compositors that form basic type-patterns are
enumerated in Table III. Fig. 3 (a) depicts three basic patterns, outlined by rectangles. Multiple basic
type-patterns can be combined in a syntactically valid way to form a composite type-pattern.

Type pattern. To put it formally, a basic/composite type-pattern P (Table V (Eq. 1)) is character-
ized by its tree structure PAE and instantiations PIs. An instantiation is an occurrence of a pattern

14 The acronym OE stands for the term Original Element, i.e. element that is not copied.
15 www.w3.org/TR/xmlschema-2
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(a) StudiesInfo1

(c) StudiesInfo3(b) StudiesInfo2

Fig. 2. The XML specification of the three schemas of our running example.

in a schema, forming a syntactically-valid embedded-subtree of the schema tree. The instantiations
of a pattern are indexed by their schema id (Table V (Eq. 2)).

Pattern structure. The pattern structure is an abstract representation of pattern instantiations.
We model it as an ordered labelled tree (Table V (Eq. 3)). Each node of the pattern structure is
characterized by the kind of the corresponding element. Our process constructs the nodes of the pat-
tern structure without including labels inside them. Thus, we hereafter call these nodes as abstract
elements. In particular, an abstract element PAE (Table V (Eq. 3)) is characterized by its kind16,
scope, and set of children. Abstract elements with a parent-child relation correspond to valid
combinations of XML elements (verified by the function isContent (Table V (Eq. 4))).

Pattern instantiation. We also model a pattern instantiation PI (Table V (Eq. 5)) as an ordered
labelled tree, whose nodes are concrete elements (a.k.a. they have labels). A concrete element PCE
(Table V (Eq. 6)) is actually a schema element e and is further characterized by its scope and set
of children. By construction, pattern instantiations preserve the ancestor-descendant relations of
schema trees, forming embedded subtrees of the latter. Moreover, instantiations of the same pattern
are isomorphic17 to each other, since they follow the same pattern structure.

Returning to our running example, Fig. 4 (a) and (b) depicts an instantiation and the structure
of the composite pattern mined from the schemas of Fig. 3 (b) and (c). We observe in Fig. 4 (a)
that the concrete elements of the pattern instantiation (outlined by rectangles) preserve the ancestor-
descendant relations, forming an embedded subtree of the corresponding schema-tree. Moreover,
the tree structure of the pattern instantiation is isomorphic to the pattern structure. We also observe
in Fig. 4 (b) that the abstract elements of the pattern structure include the element kind, but they
do not include labels. Finally, the pattern structure and instantiation are syntactically valid (i.e. they
have permissible combinations of components and compositors).

16 Our process defines a linear (esp. alphabetical) order on the kinds of the children of an abstract element (Table V (Eq. 3)).
17 Two trees are isomorphic if there is a mapping between the nodes and edges of the trees [Valiente 2002].
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(a) StudiesInfo1

(b) StudiesInfo2

(c) StudiesInfo3

Fig. 3. The representation of the schemas of the running example using our model.
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(a) The pattern instantiation that is encountered inside StudiesInfo3.

(b) The pattern structure

Fig. 4. An instantiation and the structure of the pattern mined from the schemas of Fig. 3 (b) and (c).

3.3. Pattern-Instantiation Matching
We use the term pattern-instantiation matching to refer to the set of the correspondences that have
been assigned between the concrete elements of pattern instantiations across different schemas.
Two concrete elements are linked if their labels have semantic subtyping relation. More formally, a
matching M (Table VI (Eq. 1)) between two instantiations of the same pattern is defined as a set of 1–
1 correspondences. A correspondence ci (Table VI (Eq. 2)) is assigned between concrete elements
that are of the same kind, have labels with semantic subtyping-relation (if the elements include
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Table V. The definition of the notion of (basic/composite) type-pattern.

[Pattern]: P :=
(
pae : PAE, pis : PIs

)
(1)

[Pattern instantiations]: PIs :=

{(
s.id : URI,

{
pi : PI

})}
(2)

[Abstract element]: PAE :=
(
kind : String, scope : SCOPE, children

) ∣∣∣ children =
{
paei : PAE

∣∣
isContent(kind, paei.kind) ∧ paei.kind ≤ paei+1.kind

}
(3)

isContent
(
kind1 : String, kind2 : String

)
:=

{
true if

(
kind1, kind2

)
is a valid combination

false otherwise
(4)

[Pattern instantiation]: PI := pce : PCE (5)

[Concrete element]: PCE :=
(
e : E, scope : SCOPE, children

) ∣∣∣ children =
{
pcei : PCE

}
(6)

Table VI. The definition of the notion of pattern-instantiation matching.

[Pattern-instantiation matching]: M :=
{
ci : C

}
(1)

[Element correspondence]: C :=
(
pce1 : PCE, pce2 : PCE

) ∣∣∣ pce1.e.oe.kind = pce2.e.oe.kind ∧

simL

(
pce1.e.oe.label, pce2.e.oe.label

)
> 0 ∧

(
inC

(
pce1, pce2

)
⊕ outC

(
pce1, pce2

))
18 (2)

[Internal-element correspondence]: inC
(
pce1 : PCE, pce2 : PCE

)
:= pce1.children 6= ∅ ∧

pce2.children 6= ∅ ∧ pce1.scope.left = pce2.scope.left (3)

[Leaf-element correspondence]: outC
(
pce1 : PCE, pce2 : PCE

)
:= pce1.children = ∅ ∧

pce2.children = ∅ (4)

labels), and have the same left-endpoint in their scopes (if the elements are internal tree-elements –
see relation inC in Table VI (Eq. 3)). If both elements are leaves, then they do not need to have equal
left-endpoints (different left-endpoints do not break the tree structure and syntax – see relation outC
in Table VI (Eq. 4)). Concerning the assessment of the semantic relation of labels (a.k.a. semantic
confidence), our process uses the metric conL (Table VIII (Eq. 6)) that we propose in Section 6.3.

Returning to our running example, Fig. 5 depicts the matching between the pattern instantiations
that exist in the schemas StudiesInfo2 and StudiesInfo3. The element correspondences are
depicted by fine dashed inter-schema lines. We observe that the correspondences have been assigned
between internal concrete-elements that are of the same kind, have labels with semantic relation (if
the elements include labels) and equal left-endpoints in their scopes. In the case of leaf elements, we
also observe that the elements are of the same kind and have labels with semantic relation, without
though having necessarily equal left-endpoints in their scopes.

3.4. Abstract Data-Type
An abstract data-type AT (Table VII (Eq. 1)) is characterized by its schema as, pattern p, and set
of abstract-to-source matchings. The latter refers to correspondences between the elements of an
abstract data-type and those of source schemas (Section 3.6). Concerning the schema of an abstract
data-type, it follows the definition of Table IV. Our process constructs an abstract data-type in such
a way that the structure and syntax of its schema are identical to those of the corresponding pattern
(see the recursive function isIdentical in Table VII (Eq. 2)).

18 We use the symbol ⊕ to denote the XOR operarion.
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Fig. 5. The matching between the pattern instantiations that exist in the schemas of Fig. 3 (b) and (c).

Returning to our running example, Fig. 6 depicts the schema of the abstract data-type mined from
the schemas StudiesInfo2 and StudiesInfo3 of Fig. 3 (b) and (c). We observe that the structure
and syntax of the abstract data-type are identical to those of the pattern structure of Fig. 4.

3.5. Subtyping Relation
LSP imposes requirements on the signatures and behaviours of types [Liskov and Wing 1994].
Concerning signatures requirements, LSP imposes the contra-variance rule for input data-types and
the covariance rule for output data-types. According to the contra-variance (resp. covariance) rule, a
well-formed subtype has more and more specific (resp. less and less specific) constituent input (resp.
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Table VII. The definition of the notions of abstract data-type and abstract-to-source matching.

[Abstract data-type]: AT :=
(
as : S, p : P,

{
mi :MA

}) ∣∣ isIdentical(as.e, p.pae) (1)

isIdentical
(
ae : E, pae : PAE

)
:= ae.oe.kind = pae.kind ∧ ae.scope = pae.scope ∧

isIdentical
(
ei, paei

)
, ∀ei ∈

[
1, |ae.children|

]
∧ paei ∈

[
1, |pae.children|

]
(2)

[Abstract-to-source matching]: MA :=
{
ci : CA

}
(3)

[Abstract-to-source element correspondence]: CA :=
(
ae : E, pce : PCE

) ∣∣∣ ae.oe.kind = pce.e.oe.kind ∧

simL

(
ae.oe.label, pce.e.oe.label

)
> 0 ∧

(
inC

(
ae, pce

)
⊕ outC

(
ae, pce

))
18 (4)

[Internal-element correspondence]: inC
(
ae : E, pce : PCE

)
:= ae.children 6= ∅ ∧

pce.children 6= ∅ ∧ ae.scope.left = pce.scope.left (5)

[Leaf-element correspondence]: outC
(
ae : E, pce : PCE

)
:= ae.children = ∅ ∧

pce.children = ∅ (6)

output) data-types, compared to those of its super-type. Behavioural requirements are related to the
pre/post-conditions, invariants, and history constraints of types. Since behavioural requirements are
not usually documented in service descriptions, we consider only signature requirements. Based on
signature requirements, an LSP-based subtyping relation is related to the number, structure, and syn-
tax of constituent data-types (a.k.a syntactic subtyping), along with the generalization/specialization
relation of the labels of the data-type elements (a.k.a. semantic subtyping).

Syntactic subtyping. We define that an XML schema is syntactic subtype (<:syn) of another
schema (Table VIII (Eq. 2)) if the former contains at least the same kinds and numbers of basic
type-patterns with those of the latter and if the formed composite-patterns in both schemas are
syntactically valid. In particular, a schema s is syntactic subtype of schema as of an abstract data-
type (mined from pattern p), if each instantiation pi of p in s contains at least the same kinds and
numbers of components and compositors (Table VIII (Eq. 2)). The syntactic-subtyping relation is
checked by traversing the tree structures of pi and p in parallel (Table VIII (Eq. 2-3)).

Semantic subtyping. We define that an XML schema is semantic subtype (<:sem) of another
schema (Table VIII (Eq. 5)) if the labels of the elements of the basic type-patterns of the former are
more specific than those of the latter. In particular, a schema s is a semantic subtype of schema as
of an abstract data-type (mined from pattern p), if the element labels of each instantiation pi of p in
s are more specific than those of the abstract data-type (Table VIII (Eq. 5)). The semantic-subtyping
relation is checked by traversing the tree structures of s and as in parallel (Table VIII (Eq. 5-6)).

Subtyping relation. Overall, we define that an XML schema is subtype (<:) of another schema
(Table VIII (Eq. 1)) if the former is both syntactic and semantic subtype of the latter.

Returning to our running example, Fig. 6 depicts the abstract data-type StudiesInfo and its
matchings to StudiesInfo3. StudiesInfo has been mined from the schemas of Fig. 3 (b) and (c).
We observe that StudiesInfo3 is syntactic subtype of StudiesInfo, since the former contains
at least the same kinds and numbers of basic type-patterns with those of the latter. We also observe
that StudiesInfo3 is semantic subtype of StudiesInfo, since the labels of the elements of the
former are more specific compared to those of the latter.

3.6. Abstract-to-Source Matching
We define an abstract-to-source matching MA (Table VII (Eq. 3)) as a set of 1–1 correspondences.
A correspondence (Table VII (Eq. 4)) is assigned between the elements of an abstract and a source
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Fig. 6. The abstract-to-source matching between a mined abstract data-type and the source schema of Fig. 3 (c).

schema only if the elements are of the same kind. Moreover, the elements have equal left-endpoints
in their scopes if the elements are not leaves (Table VI (Eq. 5)).

Returning to our running example, Fig. 6 depicts the matching between an abstract data-type and
its pattern instantiation in StudiesInfo3. The element correspondences are depicted by dashed
inter-schema lines. We observe that the correspondences have been assigned between internal el-
ements of the same kinds. Moreover, the labels of the abstract elements are more generic (if the
elements include labels) than those of the concrete elements. Finally, the non-leaf abstract elements
have equal left-endpoints to those of the concrete elements.
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Table VIII. The definition of the notion of subtyping relation.

[Subtyping relation]: s : S <: as : S := s <:syn as ∧ s <:sem as
∣∣ as ∈ at ∧ at ∈ AT (1)

[Syntactic subtype]: s : S <:syn as : S := pi.pce.e <:syn as.e, ∀(s, pi) ∈ at.p.pis ∧ at ∈ AT (2)

e : E <:syn ae : E := e.kind = ae.kind ∧ ei <:syn ej ∧ isContent
(
e.oe.kind, ei.oe.kind

)
∧

isContent
(
ae.oe.kind, ej .oe.kind

)
, ∀ei ∈

[
1, |e.children|

]
∧ ej ∈

[
1, |ae.children|

]
∧ i = j (3)

isContent
(
kind1 : String, kind2 : String

)
:=

{
true if

(
kind1, kind2

)
is a valid combination

false otherwise
(4)

[Semantic subtype]: s : S <:sem as : AS := pi.pce.e <:sem as.e, ∀(s, pi) ∈ at.p.pis ∧ at ∈ AT (5)

e : E <:sem ae : E := simL

(
e.oe.label, ae.oe.label

)
> 0 ∧ ei <:sem ej ,

∀ ei ∈
[
1, |e.children|

]
∧ ej ∈

[
1, |ae.children|

]
∧
(
ei, ej

)
∈ at.MA.CA ∧ at ∈ AT (6)

4. OVERVIEW OF THE GENERALIZATION PROCESS
We provide below an overview of the mechanisms of the generalization process (Fig. 1).

Enumerating type patterns. The mechanism accepts as input two schemas and enumerates type
patterns that have syntactic subtyping-relation. To avoid the enumeration of a potentially high num-
ber of embedded type patterns, the mechanism applies a pruning technique. The mechanism further
increases its efficiency by using an indexing structure that accelerates the schema traversal.

Matching type patterns. The mechanism accepts as input a set of patterns and determines the
pairs of pattern instantiations that have semantic subtyping-relation. To avoid the examination of a
prohibitively high number of element combinations, the mechanism employs a greedy technique.
The mechanism finally returns the top-k matchings between pattern instantiations.

Constructing abstract data-types. The mechanism accepts as input matchings between pattern
instantiations and constructs the top-k abstract data-types.

5. ENUMERATING TYPE PATTERNS
We specify the underlying algorithm (Section 5.1), the pruning technique (Section 5.2), the pattern
confidence metric (Section 5.3), and the theoretical complexity of the algorithm (Section 5.4).

5.1. Algorithm for Enumerating Type Patterns
Algorithm 1 accepts as input two schemas and the thresholds, conPImin

, conuPImin
, and δ (used

by the pruning technique). Eventually, the algorithm enumerates a non-redundant (i.e. generated at
most once) set of patterns, passing through the following two phases (Sections 5.1.1 and 5.1.2).

5.1.1. Initialization phase. The algorithm constructs an (in-memory) indexing data-structure IAEs
(Table IX (Eq. 1)) via traversing the input schemas (Alg. 1 (2)) and organizing their elements (Alg.
1 (3)) into groups of the same kind (Alg. 1 (4)). Each group is indexed by an abstract element
IAE (Alg. 1 (5)), characterized by its element kind and concrete elements (Table IX (Eq. 2)). The
concrete elements are indexed by their scopes, forming interval trees ICE (Table IX (Eq. 4)). Interval
trees offer element searching in logarithmic time with respect to the tree size [Cormen et al. 2001].

Following, the algorithm constructs a singleton pattern (i.e. includes one abstract element) (Alg.
1 (6)) and inserts the pattern into the list AP (Accepted Patterns) that keeps all enumerated pat-
terns (Alg. 1 (8)). The algorithm further inserts the pattern into the list UP (Unexamined-for-growth
Patterns) that keeps the unexamined patterns (Alg. 1 (9)).

5.1.2. Pattern-enumeration phase. The current phase includes two activities, in which the algo-
rithm grows patterns with elements that preserve the schema structure and syntax, a.k.a. syntax-
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ALGORITHM 1: Enumerating Type Patterns
Input: List<S> l, double conPImin

, double conu
PImin

, double δ

Output: List<P>AP

//Phase 1: Initialization

1 IAEs iaes← new IAEs()
2 for si ∈ l do
3 for ej ∈ si do
4 iaex ← iaes.identify

(
ej .oe.kind

)
5 iaex.insert

(
ej)

6 p← new P ()

7 p.pae.kind← ”root”

8 AP.insert
(
p
)

9 UP.insert
(
p
)

//Phase 2: Pattern enumeration

10 for pi ∈ UP do
11 UP.remove

(
pi
)

12 List<PAE> rightmostPath← pi.determineRightmostPath()

13 List<IAE> qaes← pi.formQueryingAbstractElements
(
rightmostPath

)
14 for qaej ∈ qaes do
15 IAEs gae← iaes.lookUpGAEs

(
qaej .kind

)
16 for iaek ∈ gae do
17 GCE gce← iaes.lookUpGCEs

(
qaej .iae, iaek

)
18 P pnew

i ←new P
(
pi
)

19 pnew
i .insert

(
iaek

)
20 pnew

i .insert
(
gce
)

21 if conPIs(p
new
i .pis) ≥ conPImin

then
22 AP.insert

(
pnew
i

)
23 UP.insert

(
pnew
i

)
24 else
25 if conu

PIs(p
new
i .pis) ≥ conu

PImin
then UP.insert

(
pnew
i

)
;

26 for sv ∈ pnew
i .pis do

27 for pcem ∈ pnew
i .pis.piv do

28 if denPCE(pcem) > maxDen thenmaxDen← denPCE(pcem);

29 for pcem ∈ pnew
i .pis.piv do

30 ifmaxDen− denPCE(pcem) > δ then pnew
i .pis.piv.remove

(
pcem

)
;

growth elements (Table X (Eq. 1-2)). We also use the term growth (Table X (Eq. 3)) to refer to
elements that preserve only the schema structure [Zaki 2005a].

Determining syntax-growth elements. The algorithm identifies for each pattern in UP (Alg. 1
(10)) candidate elements that can extend the pattern structure and instantiations, without violating
the schema structure and syntax (Alg. 1 (14)). To this end, the algorithm determines the nodes
of the rightmost path of a pattern (Alg. 1 (12)). The rightmost expansion further guarantees the
enumeration of non-redundant sets of patterns [Asai et al. 2002; Zaki 2002].

Pattern growth. The algorithm extends each node of the rightmost path of a pattern with the
syntax-growth elements of the node, creating new patterns (Alg. 1 (16-19)). Following, the algo-
rithm repeats the step for the pattern instantiations (Alg. 1 (20)).

5.2. Pruning Technique
The pruning technique copes with the case that input schemas have a high number of common type
patterns. To reduce this number, the pruning technique does not grow patterns that are not dense. To
illustrate the pattern density, Fig. 7 (a) and (b) depict the instantiation in StudiesInfo3 (outlined
by elements in rectangles) and the structure of the pattern mined from the schemas of Fig. 3 (a) and
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Table IX. The definition of the indexing data-structure.

[Indexing abstract-elements]: IAEs :=
{
iaei : IAE

}
(1)

[Indexing abstract-element]: IAE :=
(
kind : String, ices : ICEs

)
(2)

[Indexing concrete-elements]: ICEs :=

{(
s.id : URI, ice : ICE

)}
(3)

[Indexing concrete-element]: ICE :=
(
e : E, children

) ∣∣∣ children =
{
icei : ICE

}
(4)

(c). We observe in Fig. 7 (a) that five non-participating elements intervene between the nodes of
the instantiation, making the instantiation to have low density. To measure the pattern density, we
specify a confidence metric in Section 5.3.

Prior to defining the confidence metric, we firstly describe the modus operandi of the pruning
technique. The pruning technique accepts to grow patterns only if their confidence values are high.
We consider that a pattern is accepted if its confidence value is higher than a threshold conPImin

(Alg. 1 (21)). In this case, the pruning technique inserts the pattern in the lists AP (Accepted Patterns)
and UP (Unexamined-for-growth Patterns) (Alg. 1 (22-23)). UP keeps the patterns whose growth
may lead to accepted patterns. If the pattern confidence is lower than the threshold, then the pruning
technique does not reject the pattern. On the contrary, the pruning technique further examines if the
pattern is promising, i.e. if the pattern growth leads to production of accepted patterns. To decide
that, the pruning technique compares an upper-bound of pattern confidence to another threshold
conuPImin

(Alg. 1 (25)). If the upper-bound is greater than conuPImin
, then the pruning technique

inserts the pattern in UP (Alg. 1 (25)).
Apart from the pattern structure, the pruning technique does not grow pattern instantiations of

low density. To decide that, the pruning technique assesses the closeness of the density of a pattern
instantiation to the maximum density achieved by all pattern instantiations in a schema. If the differ-
ence between the two density values is lower than the value of another threshold δ, then the pruning
technique does not grow the pattern instantiation (Alg. 1 (26-30)).

5.3. Metric of Pattern Confidence
We propose the metric conPIs (Table XI (Eq. 1)) that calculates the product of the densities of two
schemas. We assume that the pattern density in a schema should reflect the best density achieved by
all pattern instantiations in a schema. Based on this assumption, we propose the metric denPI (Table
XI (Eq. 2)) that calculates the maximum density of pattern instantiations in a schema. We further
propose the metric denPCE (Table XI (Eq. 3)) that calculates the density of a pattern instantiation by
the percentage of the concrete elements that participate in a pattern instantiation over all elements
of a pattern instantiation. We call the latter elements internal and their number numOfIEs (Table
XI (Eq. 4)) is calculated in constant time via subtracting the left endpoint of the root of a pattern-
instantiation tree from the left endpoint of the rightmost element of the tree (Table XI (Eq. 6)).

To calculate an upper-bound of pattern confidence, we assume that its pattern instantiations shall
grow with all possible syntax-growth concrete-elements. In this case, the size of a pattern instantia-
tion will be increased by the number numOfGEs19 (Table XI (Eq. 5)) of these elements. Analogously
to the pattern-confidence metrics, we calculate their upper-bounds by using the metrics conuPIs (Ta-
ble XI (Eq. 7)), denuPI (Table XI (Eq. 8)), and denuPCE (Table XI (Eq. 9)) that we propose.

5.4. Time and Space Complexity of the Algorithm for Enumerating Type Patterns
Time complexity. The most time consuming part of the algorithm is the pattern-enumeration phase.
Concerning the first activity of this phase, the time complexity scales quadratically with the numbers

19 The value of numOfGEs is calculated in constant time via subtracting the left endpoint of the scope of the rightmost
element of a pattern-instantiation tree (Table XI (Eq. 6)) from the size of the schema to which the instantiation belongs.

ACM Transactions on the Web, Vol. 00, No. 00, Article 00, Publication date: 00.



Mining Abstract XML Data-Types 00:19

Table X. The definition of the syntax-growth relation.

isSyntaxGrowth
(
ei : E, eg : E

)
:= isContent

(
ei.oe.kind, eg .oe.kind

)
∧ isGrowth(ei, eg) (1)

isContent
(
kind1 : String, kind2 : String

)
:=

{
true if

(
kind1, kind2

)
is a valid combination

false otherwise
(2)

isGrowth
(
ei : E, eg : E

)
:=

{
true if eg .scope.left ∈ ei.scope

false otherwise
(3)

of pattern instantiations and syntax-growth elements. In the worst case, each number equals to
all schema elements. Thus, the time complexity of the first activity scales with the square of the
schema size, multiplied by its logarithm (the latter is the complexity for searching for syntax-growth
elements [Cormen et al. 2001]). Regarding the second activity, the time complexity scales up with
the number of the pattern instantiations and the complexity of the density metric (the latter also
scales up with the number of the pattern instantiations). Finally, the time complexity of the algorithm
TC1 (Table XIII (Eq. 1)) further depends on the number |EP | of the enumerated patterns.

Space complexity. The algorithm instantiates in its initialization phase the indexing data-structure.
Since the latter uses references to schema elements (instead of multiple copies), the initialization
phase is in-place with respect to the schema size (i.e. it does not consume extra memory) [Cormen
et al. 2001]. Regarding the pattern-enumeration phase, the space complexity scales up with the
memory footprints of the abstract and concrete elements. Given that the number of the concrete
elements is bounded by the schema size, the memory footprint of the former scales up with the total
memory footprint of all schema elements. Finally, the space complexity of the algorithm SC1 (Table
XIII (Eq. 2)) depends on the number |EP | of the enumerated patterns.

6. MATCHING TYPE PATTERNS
We specify the underlying algorithm (Section 6.1), the greedy technique (Section 6.2), the matching
confidence metric (Section 6.3), and the theoretical complexity of the algorithm (Section 6.4).

6.1. Algorithm for Matching Type Patterns
Algorithm 2 takes as input a set of accepted patterns AP and the thresholds k20 and conCmin

. The
algorithm identifies for each accepted pattern semantic matchings between the pattern instantiations
via calculating their Cartesian product (Alg. 2 (4)). For each tuple of the Cartesian product (Alg.
2 (5)), the algorithm traverses the tree structure of the compared pattern-instantiations and checks
if correspondences between their concrete elements can be assigned. To decide whether such a
correspondence exists, the algorithm calculates the confidence conC of a correspondence (Alg. 2
(13)). The set of the assigned correspondences forms a matching m (Alg. 2 (8)) that relates a pair
of pattern instantiations. Regarding the assignment of correspondences between leaf elements of
pattern instantiations, the algorithm further calculates the Cartesian product of sibling leaf-elements.
Among all possible combinations of leaf-element correspondences, the algorithm accepts only those
that link disjoint sets of elements. However, the calculation of the Cartesian product of sibling leaf-
elements may be computationally expensive if their number is high. To reduce this complexity, the
algorithm adopts the greedy technique specified in Section 6.2 (Alg. 2 (19)). Finally, the algorithm
calculates the confidence conM (m, pi) (Alg. 2 (25)) of a matching. If the confidence value belongs
to the top-k values, then the algorithm stores that matching (Alg. 2 (25)).

6.2. Greedy Technique
The greedy technique calculates for each leaf element of a pattern instantiation the value of its
correspondence confidence with the leaf elements of the another pattern instantiation and selects

20 The threshold k corresponds to the maximum number of returned matchings.
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(a) The pattern instantiation that exists in StudiesInfo3.

(b) The pattern structure

Fig. 7. An instantiation and the structure of the pattern mined from the schemas of Fig. 3 (a) and (c).

the element pair with the maximum confidence value. A combination of correspondences is kept
only if the confidence value of at least one of the participating correspondences is greater than the
threshold conCmin

(Alg. 2 (21-24)).

6.3. Metric of Matching Confidence
The metric assesses the extent to which generic labels can be constructed from the linked concrete-
elements. We define the metric conM (Table XII (Eq. 1-2)) that calculates the average of the con-
fidence values of all element-to-element correspondences of a matching. To calculate the semantic
confidence of a correspondence, we define the metric conC (Table XII (Eq. 3)), which calculates
the semantic confidence of element labels conL. The metric conL (Table XII (Eq. 4)) calculates
the product of the semantic-confidence values of the label attributes that play dominant role in the
matching confidence. According to [Algergawy et al. 2010], the dominant attributes are the element
name, type, and value.
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ALGORITHM 2: Matching Type Patterns
Input: List<P>AP , int k, double conCmin

Output: List<M>Ms

1 Ms← ∅
2 for pi ∈ AP do
3 AP.remove

(
pi
)

4 List<Tuple<PI>> cartesianProduct← pi.pis.pi1 x pi.pis.pi2

5 for
(
pcei, pcej

)
∈ cartesianProduct do

6 Queue<Tuple<PI>>Q← ∅
7 Q.insert

(
pcei, pcej

)
8 M m← ∅
9 boolean f ← true

10 while |Q| > 0 ∧ f = true do
11 Tuple<PI>

(
pcei, pcej

)
← Q.dequeue()

12 C c←formCorrespondence
(
pcei.e, pcej .e

)
13 if conC

(
c
)
> conCmin

thenm.insert
(
mc
)

;

14 else if pcei.children 6= ∅ ∧ pcej .children 6= ∅ then f ← false;

15 if pcei.children 6= ∅ ∧ pcej .children 6= ∅ then
16 for

(
pceh ∈ pcei.children, pcet ∈ pcej .children

)
do

17 if pceh.scope.left = pcet.scope.left thenQ.enqueue
(
pceh, pcet

)
;

18 else
19 Tuple<C> correspondences← selectGreedily

(
pcei.children, pcej .children

)
20 counter ← 0

21 for ci ∈ correspondences do
22 if conC

(
ci
)
> conCmin

thenm.insert
(
ci
)

;

23 else counter ← counter + 1;

24 if counter = |correspondences| then f ← false;

25 if f = true ∧ conM

(
m, pi, conCmin

)
> conM

(
mk, pk, conCmin

)
thenMs.insert

(
m
)

;

Concerning the confidence of pairs of type attributes, we consider the case of built-in data-
types via using the metric conT (Table XII (Eq. 4)). That confidence is calculated in state-of-the-art
approaches based on statically defined similarity tables [Madhavan et al. 2001; Stroulia and Wang
2005; Plebani and Pernici 2009]. We do not specify a formula for conT , since its values are directly
retrieved by the similarity table in [Plebani and Pernici 2009].

Regarding the confidence of pairs of name attributes, we define the metric conN (Table XII (Eq.
7)) that calculates the relatedness of WordNet concepts [Miller 1995]. conN uses Lin’s metric,
which is the most effective WordNet-based metric [Pedersen et al. 2004]. If names consist of a
concatenation of tokens, then conN automatically segments them into tokens. The tokenization is
based on two widely used naming conventions, the Java-capitalized21 and the Pascal-underscore22.
conN calculates the average confidence of the most related pairs of tokens (Table XII (Eq. 5)). To
automatically identify the latter, the metric solves the assignment problem (Table XII (Eq. 6)) of the
maximum-weighted matching in a bipartite graph [Burkard et al. 2009].

6.4. Time and Space Complexity of the Algorithm for Matching Type Patterns
Time complexity. The time complexity TC2 (Table XIII (Eq. 3)) of the algorithm scales up with the
cardinality of the product of the instantiations

∏
|p.pis.pis| of accepted patternsAP . The complex-

ity further scales up with the number |p.pis.pi.pce| of the concrete elements of pattern instantiations
(Table XIII (Eq. 3)). Moreover, the complexity scales up with the number of the combinations of

21 www.oracle.com/technetwork/java/codeconventions-135099.html
22 edn.embarcadero.com/article/10280
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Table XI. The definition of the suite of the metrics for pattern confidence (on the absolute scale [0, 1]).

[Pattern confidence]: conPIs

(
pis : PIs

)
:=
∏
i

denPI

(
pis.pii

)
(1)

[Density of pattern]: denPI

(
pi : PI

)
:= max

i
denPCE

(
pi.pcei

)
(2)

[Density of pattern instantiation]: denPCE

(
pce : PCE

)
:=

|pce|
numOfIEs

(
pce
) (3)

[Internal elements]: numOfIEs
(
pce : PCE

)
:= rightmost

(
pce
)
.e.scope.left− pce.e.scope.left+ 1 (4)

[Growth elements]: numOfGEs
(
s : S, pce : PCE

)
:= |s| − rightmost

(
pce
)
.e.scope.left− 1 (5)

rightmost
(
pce : PCE

)
:=


pce, if pce.children = ∅
rightmost

(
pcer

) ∣∣ ∀pcei ∈ pce.children, isGrowth(
pcei.e, pcer.e

)
= true, otherwise

(6)

[Upper-bound of pattern confidence]: conu
PIs

(
pis : PIs

)
:=
∏
i

denu
PI

(
pis.pii

)
(7)

[Upper-bound of pattern density]: denu
PI

(
pi : PI

)
:= max

i
denu

PCE

(
pi.pcei

)
(8)

denu
PCE

(
s : S, pce : PCE

)
:=

|pce|+ numOfGEs
(
s, pce

)
numOfIEs

(
pce
)
+ numOfGEs

(
s, pce

) (9)

sibling leaf-elements. Assuming in the worst case that all leaf elements are siblings to each other23,
the above number is captured by the coefficient

(|leaves|2
2

)
(Table XIII (Eq. 3)). Finally, the algo-

rithm complexity further scales up with the complexity of the matching-confidence metric, which
depends on the number of the concrete elements of pattern instantiations.

Space complexity. The space complexity SC2 (Table XIII (Eq. 4)) scales up with the car-
dinality of the product

∏
|p.pis.pis| of the instantiations of accepted patterns AP . Addition-

ally, the space complexity scales up with the memory requirements of each pattern-instantiation
tuple

∑
|si| ∗ space(p.pis.pi.pce) and with the memory footprint of the produced matchings∑

space
(
mj

)
. Finally, the space complexity further scales up with the sum of the memory footprint

of the produced matchings,
∑
space

(
mj

)
.

7. CONSTRUCTING ABSTRACT DATA-TYPES
We specify the underlying algorithm (Section 7.1) and its theoretical complexity (Section 7.2).

7.1. Algorithm for Constructing Abstract Data-Types
Algorithm 3 accepts as input a pattern p, a list of pairs of pattern instantiations pisPairs (along
with their matchings), and a boolean variable isInput24. The algorithm returns a list ats of ab-
stract data-types. In detail, the algorithm examines each pair of pattern instantiations (pi1, pi2) of
pisPairs (Alg. 3 (2)), along with their matchings (Alg. 3 (3)), and constructs an abstract data-type
at (Alg. 3 (5)) from each matching. The algorithm calls the recursive function construct to build
an abstract data-type (Alg. 3 (4)) as follows.

The function construct (Alg. 3 (7-25)) accepts as input (i) the root concrete-elements of two
pattern instantiations (pce1 and pce2), (ii) a matching m between them, (iii) the pattern structure pae,
and (iv) and the variable isInput. The function returns the root abstract-element e of a constructed

23 The number of the leaves of a tree (independently of its type, e.g. binary, triadic, etc.) generally scales up with the sum of
the degrees (i.e. number of children) of the tree nodes,

∑
degree(v) [Aho et al. 1983].

24 It indicates whether the patten instantiations have been mined from the schemas of input or output data-types.
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Table XII. The definition of the suite of the metrics for matching confidence (on the absolute scale [0, 1]).

[Matching]: conM

(
m :M,p : P, conCmin

: double
)
:= conCs

(
m, conCmin

)
(1)

[Correspondences]: conCs

(
m :M, conCmin

: double
)
:=

|m|∑
i=1

conC

(
m.ci.pce1.e, m.ci.pce2.e, conCmin

)
|m|

(2)

conC

(
e1 : E, e2 : E, conCmin

: double
)
:=

{
conL

(
e1.oe.label, e2.oe.label

)
, if conL ≥ conCmin

0, otherwise
(3)

conL

(
l1, l2

)
:=



0, if name, type, value /∈ l1, l2
conN

(
l1.name, l2.name

)
, if name ∈ l1, l2 ∧ type /∈ l1, l2

conT

(
l1.type, l2.type

)
, if type ∈ l1, l2 ∧ name /∈ l1, l2

conN

(
l1.name, l2.name

)
∗ conT

(
l1.type, l2.type

)
, if name, type ∈ l1, l2{

1, if l1.value = l2.value

0, otherwise
, if value ∈ l1, l2

(4)

conN

(
n1 : String, n2 : String

)
:=

|n1|∑
k=1

conN

(
tk, f

(
tk
))

|n1|

∣∣∣ n1 =
{
tk
}
∧ n2 =

{
tm
}
∧ f

(
tk
)
∈ n2 ∧

|n1| ≤ |n2| (5)

[Assignment problem]: f : tk → tm

∣∣∣ |n1|∑
k=1

conN

(
tk, f

(
tk
))

is maximized (6)

[Name attributes]: conN

(
tk : String, tm : String

)
:=

{
Lin

(
tk, tm

)
, if tk, tm ∈ WordNet

0, otherwise
(7)

abstract data-type, and the set of the abstract-to-source matchings ma. The function constructs an
abstract element (Alg. 3 (13-22)) by mining (i) the common kind of the concrete elements (Alg. 3
(13)), a label from the labels of the concrete elements (Alg. 3 (20)), a scope that has as left endpoint
the min of those of the concrete elements (Alg. 3 (21)).

To mine a more generic (resp. specific) label than those of the concrete elements, the func-
tion mines a generic (resp. specific) value for each common attribute of the elements (e.g. name,
built-in type). To this end, the function uses the functions constructAN and constructAT.
constructAN extracts a name as the common hypernym (resp. hyponym) of the compared names
using the WordNet. constructAT considers that all possible built-in types are organized in the
following type groups: Integer, Real, String, Date, and Boolean. Having determined a group,
constructAT extracts as new type the input (resp. output) type of the elements that has the
lowest (resp. highest) depth in the standard XML type hierarchy25.

7.2. Time and Space Complexity of the Algorithm for Constructing Abstract Data-Types
Time complexity. Since the algorithm examines all of the pairs of the instantiations of a pat-
tern p, the time complexity TC3 (Table XIII (Eq. 5)) scales up with the number of those pairs,
|p.pis|∗(|p.pis|−1)/2. Furthermore, the complexity scales up with the number of the combi-
nations of sibling leaf-elements of pattern instantiations. Assuming in the worst case that all leaf
elements are siblings to each other23, the above number is captured by the coefficient

(|leaves|2
2

)
.

25 www.w3.org/TR/xmlschema-2
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Table XIII. The total complexity of the generalization process (without considering the efficiency techniques).

TC1 := O
(
|EP | ∗

2∑
i=1

|si|2 ∗ log |si|
)

(1)

SC1 := O
(
|EP | ∗

(
|p.pae| ∗ space

(
p.pae

)
∗

2∑
i=1

|si| ∗ space(p.pis.pi.pce)
)) ∣∣∣ p ∈ EP (2)

TC2 := O
(
|AP | ∗

2∏
s=1

|p.pis.pis| ∗
(
|p.pis.pi.pce|+

(|leaves|2
2

))) ∣∣∣ p ∈ AP ∧ |leaves| =
O
( ∑

v∈pce
degree

(
v
))

(3)

SC2 := O
(
|AP | ∗

( 2∏
s=1

|p.pis.pis|
)
∗

2∑
i=1

|si| ∗ space(p.pis.pi.pce) +
|Ms|∑
j=1

space
(
mj

)) ∣∣∣ p ∈ AP (4)

TC3 := O
( |p.pis| ∗ (|p.pis| − 1

)
2

∗
(
|p.pis.pi.pce|+

(|leaves|2
2

))) ∣∣∣ p ∈ AP ∧ |leaves| =
O
( ∑

v∈pce
degree

(
v
))

(5)

SC3 := O
( |p.pis| ∗ (|p.pis| − 1

)
2

∗
(
|p.pis.pi.pce|+

(|leaves|2
2

))
∗ |s| ∗ space(e)

) ∣∣∣ p ∈ AP (6)

Space complexity. The space complexity scales up with the memory footprint of a constructed
abstract schema (|s| ∗ space(e)). Furthermore, given that the algorithm constructs so many abstract
schemas as many the different matchings of pattern-instantiation pairs are, the space complexity
SC3 (Table XIII (Eq. 6)) further scales up with the number of the matchings.

8. EXPERIMENTAL EVALUATION
We implemented in Java the research-prototype Hector of out process. We evaluate the effective-
ness and the efficiency of Hector on two datasets against the two representative state-of-the-art
approaches described in Section 2. Concerning the effectiveness evaluation, we compare the mined
abstract data-types against data-types defined by experts (Section 8.2). Regarding the efficiency
evaluation, we examine whether the execution time of Hector is low enough to be practically ap-
plicable (Section 8.3). We also evaluate the impact of the pruning and greedy techniques on both
efficiency and effectiveness of Hector (Section 8.4). Finally, we describe how end-users can tune
the thresholds of Hector based on the evaluation results (Section 8.4.3).

8.1. Experimental Setup
8.1.1. Datasets. The first dataset includes the schema pairs of the (publicly available) benchmark

XBenchMatch26. XBenchMatch covers a wide range of schema sizes and structural & semantic
heterogeneity. XBenchMatch has been used for the evaluation of top-rated schema integration and
matching approaches. The second dataset corresponds to the schemas of Amazon Web services27

that include a high number of basic patterns. We assign the identifiers s1–s18 and s19–s30 to the
schemas of XBenchMatch and Amazon services, respectively (Table XIV). According to the litera-
ture [Duchateau et al. 2008], the size of large-sized schemas is greater than 1000 elements and the
size of small-sized schemas is lower than 100 elements.

8.1.2. Effectiveness Metrics. To compare a mined schema against a schema defined by experts,
three complementary metrics have been proposed in the literature [Duchateau and Bellahsene 2010].

26 http://liris.cnrs.fr/∼fduchate/research/tools/xbenchmatch
27 http://aws.amazon.com

ACM Transactions on the Web, Vol. 00, No. 00, Article 00, Publication date: 00.

http://liris.cnrs.fr/~fduchate/research/tools/xbenchmatch
http://aws.amazon.com


Mining Abstract XML Data-Types 00:25

ALGORITHM 3: Constructing Abstract Data-types
Input: List<(PI , PI , List<M>)> pisPairs, P p, boolean isInput
Output: List<AT> ats

1 ats← ∅
2 for (pi1, pi2, List<M>) ∈ pisPairs do
3 formi ∈

(
pi1, pi2, List<M>

)
do

4
(
E e,MA ma

)
← construct

(
pi1.pce, pi2.pce,mi, p.pae

)
5 AT at←new

(
new S

(
new URI(), e

))
, p,ma

)
6 ats.add(at)

7 function construct(PCE pce1, PCE pce2,M m, PAE pae, boolean isInput):
(
E,MA

)
8 List<E> ch← ∅
9 for (pcei, pcej ) ∈ (pce1.children, pce2.children) do

10 if (pcei, pcej ) ∈ m.C then
11 E e← construct

(
pcei, pcej

)
12 ch.add(e)

13 String kind← pce1.e.kind

14 String name← constructAN
(
pce1.e.oe.label.name, pce2.e.oe.label.name, isInput

)
15 String t← null

16 if pce1.e.oe.label.type is built-in then
17 t← constructAT

(
pce1.e.oe.label.type, pce2.e.oe.label.type, isInput

)
18 else
19 t← constructAN

(
pce1.e.oe.label.type, pce2.e.oe.label.type, isInput

)
20 LABEL label←

(
name, builtinType

)
21 SCOPE scope←

[
min
(
pce1.scope.left, pce2.scope.left

)
, pce1.scope.right

]
22 E e←

(
kind, label, scope, children

)
23 ma.add

(
new CA(e, pce1)

)
24 ma.add

(
new CA(e, pce2)

)
25 return

(
e,ma

)

The completeness metric assesses the percentage of the common elements between two schemas.
The minimality metric assesses the percentage of the extra elements between two schemas. The
structurality metric checks if the elements of a mined schema have the same ancestors with those in
an expert schema. However, these metrics do not assess the quality of schemas with respect to type
patterns. Thus, we propose the metric GEN for evaluating the effectiveness of enumerated patterns
and the metric EFFE for evaluating the effectiveness of pattern matchings.
GENat (Table XV (Eq. 2)) calculates the percentage of the common basic type-patterns btp

of a mined abstract data-type at over the basic type-patterns btpex of an expert abstract data-type
atex (first fraction of Table XV (Eq. 2)). The fraction denominator is the max number of basic
type-patterns to cover the case that either a mined or an expert data-type has more type patterns.
GENbtp calculates the percentage of the common compositors tor, components nent, and links in
a mined type-pattern against those in an expert type-pattern (Table XV (Eq. 3–4)). GENat further
calculates the percentage of the common direct-links between basic type-patterns (second fraction
of Table XV (Eq. 2)). A direct link exists between the components of one type-pattern and the
compositors of another type-pattern. GENat calculates the product of the two fractions, assuming
that the effectiveness of an abstract data-type is high when both percentages of common basic type-
patterns and direct links are high. Given that Hector returns the top-k abstract data-types, we further
propose the metric GENats (Table XV (Eq. 1)) that calculates the effectiveness of an abstract data-
type based on its position in the list of the top-k data-types ats.
EFFE (Table XVI (Eq. 2)) assesses the F-measure (precision and recall) [Baeza-Yates and

Ribeiro-Neto 1999] of a mined matching against an expert matching. The precision metric (Ta-
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Table XIV. The schemas of the datasets used for the evaluation of Hector.

Dataset Schema Name Domain Schema Size ID

XBenchMatch

person1 e-commerce 14 s1
person2 12 s2
univ-dept1

education

15 s3
univ-dept2 16 s4
univ-courses1 27 s5
univ-courses2 23 s6
biology1 biology 1283 s7
biology2 533 s8
stock1

finance

38 s9
stock2 23 s10
currency1 15 s11
currency2 62 s12
betting1 23 s13
betting2 24 s14
sms1 communication 70 s15
sms2 104 s16
travel1 entertainment 11 s17
travel2 20 s18

Amazon

SQS1

queue service

290 s19
SQS2 145 s20
SQS3 187 s21
SQS4 259 s22
EC21

elastic compute cloud

3312 s23
EC22 1589 s24
EC23 1697 s25
EC24 1798 s26
V PC1

virtual private cloud

1923 s27
V PC2 1191 s28
V PC3 1426 s29
V PC4 1697 s30

ble XVI (Eq. 3, 5–6)) calculates the percentage of the true positives over all elements of a mined
matching. Elements are considered true (resp. false) positives if they are (resp. are not) present in an
expert matching. The recall metric (Table XVI (Eq. 4, 7)) calculates the percentage of the true pos-
itives over all elements of an expert matching. Given that Hector returns a list of top-k matchings,
F-measure is calculated based on the position of a matching in the list (Table XVI (Eq. 1)).

If the GEN value is high, then the EFFE value is expected to be high, since the majority of
components, compositors, and links has been correctly matched. However, if the EFFE value is
high, then the GEN value may be low, since the numbers of correctly matched compositors and
links are unknown. We meet these cases in the results of the effectiveness evaluation (Section 8.2).

8.1.3. Efficiency metrics. To evaluate the efficiency of Hector, we measure the execution times28

of the three mechanisms of Hector, their main-memory consumptions, and the values of their main
complexity coefficients (the numbers of patterns and their instantiations) (Table XIII).

8.2. Effectiveness Evaluation
We evaluate the effectiveness of Hector on both datasets against the two representative state-of-
the-art approaches, RW1 [Saleem et al. 2008] and RW2 [Athanasopoulos et al. 2011]. We set the
threshold values for Hector by using our tuning methodology that is described in Section 8.4.3.

XBenchMatch schemas. The GEN and EFFE values are depicted in Fig. 8. We observe that the
GEN values for Hector are higher than those of RW1 and RW2 in all schema pairs. It happens
since RW1 and RW2 do not match compositors and links. Moreover, the EFFE values for Hector

28 We characterize low the execution time of a mining/matching technique for large-sized schemas if the time is < 10 min.
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Table XV. The definition of the suite of effectiveness metrics for abstract data-types (on the absolute scale [0, 1]).

[Abstract data-type in top-k list]: GENats :=
(
at, p, ats

)
:=

{
0, if at /∈ ats
GENat ∗ |ats|−p+1

|ats| , otherwise
(1)

[Abstract data-type]: GENat :=

|btp|∑
i=1

GENbtpi

MAX
(
|btp|, |btpex|

) ∗
|btp|∑
i=2

MIN
(
|lnbtpi−1

|, |lnbtpi−1ex
|
)

|btp|∑
i=2

MAX
(
|lnbtpi−1

|, |lnbtpi−1ex
|
) (2)

[Basic type-pattern]: GENbtp :=

∣∣tor ∩ torex
∣∣ +

∣∣nent ∩ nentex
∣∣ + MIN

(
|lne|, |lneex |

)
MAX

(
|tor|, |torex|

)
+MAX

(
|nent|, |nentex|

)
+MAX

(
|lne|, |lneex |

) (3)

[Compositors and components links]: lne :=

|pairs|∑
i=1

lnei , where pairs is the set of the pairs of compositors and

components that are connected with directed links lnei (4)

Table XVI. The definition of the suite of effectiveness metrics for pattern matchings (on the absolute scale [0, 1]).

[F-measure of pattern-instantiation in top-k list]: EFFE
(
m, p, M

)
:=

{
0, if m /∈M
F (m) ∗ |M|−p+1

|M| , otherwise
(1)

[F-measure of pattern-instantiation]: F := 2 ∗
pr ∗ r
pr + r

(2)

[Precision]: pr :=
tp

tp+ fp
(3)

[Recall]: r :=
tp

tp+ fn
(4)

[True positives]: tp :=
∣∣m.C ∩ mex.C

∣∣ (5)

[False positives]: fp :=
∣∣m.C − mex.C

∣∣ (6)

[False negatives]: fn :=
∣∣mex.C − m.C

∣∣ (7)

are higher than or at the same levels with those of RW1 and RW2. In the cases of close EFFE
values, we manually inspected the results and we observed that RW1 and RW2 identify correct
element-correspondences. However, such cases appear in small-sized schemas, in which few al-
ternative matching options exist. In medium- and large-sized schemas (e.g. s7 and s8), Hector
achieves higher EFFE values than those of RW1 and RW2.

Amazon schemas. The GEN and EFFE values are depicted in Fig. 9. We observe that both GEN and
EFFE values for Hector are higher than those ofRW1 andRW2 in all schema pairs. To explain that,
we inspected the results and we observed that the results of RW1 and RW2 include false positives
related to components that do not have subtyping relation.

8.3. Efficiency Evaluation
We executed Hector using the pruning and greedy techniques. The execution times29 of all of the
approaches for the XBenchMatch and Amazon schemas are depicted in Fig. 10. We observe that

29 The execution time of Hector equals to the sum of the execution times of all of its mechanisms.
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Fig. 8. The effectiveness results on the XBenchMatch schemas using the metrics GEN and EFFE.

the execution times are very low28 in all schema pairs. We also observe that the execution times of
Hector are close to or slightly higher than those of RW1 and RW2.

8.4. Evaluation of the Pruning and Greedy Techniques
We evaluate the impact of the pruning and greedy techniques on the efficiency (execution time and
memory consumption) and the effectiveness of Hector (Sections 8.4.1 and 8.4.2).

8.4.1. Impact of the pruning and greedy techniques on the efficiency of Hector. The pruning tech-
nique is used by the mechanism Enumerating Type Patterns (we denote it by M1) of Hector
and the greedy technique is used by the mechanism Matching Type Patterns (M2).

Execution time. We indicatively present in Table XVII the execution times of Hector for small-
and large-sized schemas from both XBenchMatch amd Amazon datasets. We observe from the re-
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Fig. 9. The effectiveness results on the Amazon schemas using the metrics GEN and EFFE.

sults that the execution times of both M1 and M2 are low for any schema pair when the efficiency
techniques are applied. However, when the efficiency techniques have not been applied, the execu-
tion times of M1 and M2 for large-sized schemas are high.

Memory consumption. We measured the amount of the consumed main-memory via using a JVM
profiler30. When the efficiency techniques have been applied, the memory consumption of Hector
for the pair (s7, s8) was on average 1.5GB. When the efficiency techniques have not been applied,
the average memory-consumption of both M1 and M2 was 3.5GB.

30 http://www.jvmmonitor.org
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Fig. 10. The execution times of all of the approaches for the XBenchMatch and Amazon schemas.

8.4.2. Impact of the pruning and greedy techniques on the effectiveness of Hector. The techniques
depend on the thresholds conPImin

, conuPImin
, and δ. conPImin

and conuPImin
are used for charac-

terizing patterns as accepted and promising, respectively. δ is used for pruning pattern instantiations.
Impact of conPImin

. We measured the numbers of accepted patterns (conPImin
affects their num-

bers)31. We indicatively plot in Fig. 11 the results for the first four schema pairs of our datasets that
include small-, medium-, and large-sized schemas. We observe from the results that for low values
of conPImin , the EFFE value is maximized. Hence, the effectiveness of Hector is kept high even

31 We had set the value of conu
PImin

to zero, so that all unaccepted patterns to be promising.

ACM Transactions on the Web, Vol. 00, No. 00, Article 00, Publication date: 00.



Mining Abstract XML Data-Types 00:31

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

conpimin

#
ac

ce
pt

ed
pa

tte
rn

s

(s1, s2)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

conpimin

(s3, s4)

0

0.2

0.4

0.6

0.8

1

E
FF

E

0 0.2 0.4 0.6 0.8 1
0

10
20
30
40
50

conpimin

#
ac

ce
pt

ed
pa

tte
rn

s

(s5, s6)

0

0.2

0.4

0.6

0.8

1

# accepted patterns EFFE

0 0.2 0.4 0.6 0.8 1
0

800

1600

2400

3200

conpimin

(s7, s8)

0

0.2

0.4

0.6

0.8

1

E
FF

E

# accepted patterns EFFE

Fig. 11. The impact of conPImin
on the effectiveness of Hector for the first four schema pairs of the datasets.

Table XVII. Execution times of Hector in minutes (we have set in bold the values that are not low (> 10 min)).

Dataset Schema Applying efficiency techniques Without applying efficiency techniques
pair M1 M2 M1 M2

XBenchMatch (s1, s2) 0.0006 0.0007 0.0006 0.0007
(s7, s8) 0.3290 0.2840 46.0043 81.3384

Amazon (s19, s20) 0.3700 3.1900 8.4488 11.0552
(s23, s24) 6.3500 2.2000 67.6166 64.4333

if the number of accepted patterns is drastically decreased. For high values of conPImin (≥ 0.81),
M1 does not produce any pattern and the EFFE value equals to zero.

Impact of conuPImin
. We measured the numbers of promising patterns (conuPImin

affects their
numbers). From the results (Fig. 12), we observe that for low values of conuPImin

, the number of
promising patterns increases. From a value of conuPImin

and then, the number of promising patterns
remains constant and the EFFE value is maximized. This happens since all enumerated patterns are
promising and the same set of patterns is enumerated.

Impact of δ. We measured the numbers of pattern instantiations (δ affects their numbers)32. From
the results (Fig. 13), we observe that for high values of δ, the average number of the instantiations
of accepted patterns is drastically decreased and the EFFE value remains high.

8.4.3. Tuning the thresholds. To tune conPImin
, the end-user should keep constant at one the

values of conuPImin
and δ to avoid their interference in the execution of Hector. If the input schemas

are large-sized, the initial value of conPImin
should be greater than 0.2 (e.g. [0.2, 0.4]). The end-

user should execute Hector for these threshold values (starting with the higher values) to check if
many accepted patterns are produced. If that happens, the end-user should re-execute Hector for
lower values of conPImin

. Then, the end-user should continue with conuPImin
. To tune conuPImin

,
the initial value of conuPImin

should be greater than 0.8. Then, the end-user should execute Hector

32 We had set the values of other two thresholds at zero to avoid their interference in the experiment.
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Fig. 12. The impact of conu
PImin

on the effectiveness of Hector for the first four schema pairs of the datasets.
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Fig. 13. The impact of δ on the effectiveness of Hector for the first four schema pairs of the datasets.

for these threshold values (starting with the higher values) to check if many promising patterns are
produced. If that happens, the end-user should re-execute Hector for lower values of conPImin

.
Finally, the end-user should tune δ. The initial value of δ should be medium (e.g. [0.4, 0.6]). The
end-user should execute Hector for these threshold values (starting with the higher values) to check

ACM Transactions on the Web, Vol. 00, No. 00, Article 00, Publication date: 00.



Mining Abstract XML Data-Types 00:33

if many pattern instantiations are produced. If that happens, the end-user should re-execute Hector
for lower values of δ.

9. CONCLUSIONS AND FUTURE WORK
We proposed an automated generalization process that accepts as input two schemas and returns as
output the top-k abstract data-types. To this end, the process enumerates and matches type patterns
that have syntactic and syntactic subtyping-relation. The latter is a relaxed version of the LSP sub-
typing relation. We further enhance the process mechanisms with a pruning and greedy technique
for facing the case of large-size schemas that contain many type patterns. We evaluated the effec-
tiveness and the efficiency of the process on two datasets against two representative state-of-the-art
approaches. The evaluation results showed (i) high effectiveness of our process in identifying type
patterns and mining abstract data-types; (ii) the pruning and greedy techniques significantly increase
the efficiency of our process, without reducing its effectiveness.

A future direction of our work is the definition of the notion of type pattern and the underlying
algorithms to be independent of the schema language (e.g. JSON33). Another future direction is
the (semi-)automated tuning of the thresholds using machine-learning techniques [Zhang and Tsai
2007]. A final direction is the generalization of the underlying algorithms for multiple schemas.
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